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Abstract 38 

How do we make simple consumer choices (e.g., deciding between an apple, an 39 

orange, and a banana)? Recent empirical evidence suggests a close link between choice 40 

behavior and eye movements at the group level, with generally higher choice probabilities for 41 

items that were looked at longer during the decision process. However, it is unclear how 42 

variable this effect is across individuals. Here, we investigate this question in a 43 

multialternative forced-choice experiment using a novel computational model that can be 44 

easily applied to the individual participant level. We show that a link between gaze and choice 45 

is present for most individuals, but differs considerably in strength, namely, the choices of 46 

some individuals are almost independent of gaze allocation, while the choices of others are 47 

strongly associated with gaze behavior. Accounting for this variability in our model allows us 48 

to explain and accurately predict individual differences in observed choice behavior. 49 

Keywords: decision making, individual differences, eye movements, gaze bias, 50 

evidence accumulation 51 

Main text word count: 6506 52 
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 55 

In everyday life, we are constantly confronted with simple consumer choices, such as 56 

whether to have an apple or a banana for breakfast, or which bottle of juice to buy at the 57 

supermarket. Traditional models describing this type of consumer choice assume that people 58 

assign a utility (or subjective value) to each available option and make utility-maximizing 59 

choices (Von Neumann & Morgenstern, 1945). Notably, choices are assumed to be based 60 

solely on option attributes, and thereby, are independent of information search processes 61 

during the decision. This assumption has recently been challenged by a variety of empirical 62 

findings showing that the allocation of gaze during the decision-making process also plays a 63 

significant role, as a longer gaze towards one option is regularly associated with a higher 64 

choice probability for that option (Armel, Beaumel, & Rangel, 2008; Cavanagh, Wiecki, 65 

Kochar, & Frank, 2014; Fiedler & Glöckner, 2012; Folke, Jacobsen, Fleming, & De Martino, 66 

2016; Glöckner & Herbold, 2011; Konovalov & Krajbich, 2016; Krajbich & Rangel, 2011; 67 

Krajbich, Armel, & Rangel, 2010; Krajbich, Lu, Camerer, & Rangel, 2012; Pärnamets et al., 68 

2015; Shimojo, Simion, Shimojo, & Scheier, 2003; Stewart, Gächter, Noguchi, & Mullett, 69 

2015; Stewart, Hermens, & Matthews, 2016; Vaidya & Fellows, 2015). Further, external 70 

manipulation of an individual’s gaze allocation changes choice probabilities accordingly 71 

(Armel et al., 2008; Pärnamets et al., 2015; Shimojo et al., 2003; Tavares, Perona, & Rangel, 72 

2017). 73 

These findings led to the development of novel computational models, which integrate 74 

eye movement data into the choice process and formalize the empirically observed association 75 

between gaze and choice (Ashby, Jekel, Dickert, & Glöckner, 2016; Cavanagh et al., 2014; 76 

Fisher, 2017; Krajbich & Rangel, 2011; Krajbich et al., 2010, 2012; Towal, Mormann, & 77 

Koch, 2013). These models are based on classic evidence accumulation models (Ratcliff, 78 

1978; Ratcliff, Smith, Brown, & McKoon, 2016) and make the additional assumption that the 79 
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momentary rate of evidence accumulation depends on the decision maker’s eye movements: 80 

Evidence accumulation for an option is assumed to be discounted by a constant factor while 81 

another item is fixated upon. Accounting for this gaze bias, these models provide a precise 82 

quantitative account of many aspects of simple consumer choice behavior at the group level. 83 

While group level statistics are informative for some research questions (e.g., 84 

forecasting product sales in economic research), statements about the majority of people, or 85 

the “average person”, are often unsuitable for understanding the choice behavior of an 86 

individual. Even worse, aggregate models of behavior can lead to false conclusions about true 87 

underlying individual processes (Grandy, Lindenberger, & Werkle-Bergner, 2017; 88 

Lewandowsky & Farrell, 2010): In a learning task, for example, the group level average 89 

learning curve would appear as a gradual, smooth function over time, even if all individuals 90 

showed abrupt, step-like learning curves (much like an epiphany), but with variable learning 91 

onsets across individuals (Hayes, 1953). This group level model, however, would not describe 92 

any individual of the group well, and the deduction that individual learning occurs smoothly 93 

would be false. It is thus crucial to understand and explain choice behavior at the individual 94 

level. 95 

Similarly, previously reported group level models quantifying the association between 96 

gaze and choice specified a constant gaze bias for all individuals (e.g., Krajbich et al., 2010; 97 

Krajbich & Rangel, 2011), without testing the model performance on the individual level. It 98 

therefore remains to be shown whether an association between gaze and choice is present 99 

across individuals and whether the strength of such an association is constant. If, however, 100 

people’s decisions were affected differently by looking behavior, we would find that the 101 

choices of some individuals are more biased by gaze, and therefore, more inconsistent with 102 

subjective value ratings than other individuals’ choices. Imagine, for example, a choice 103 

between two bottles of orange juice in the supermarket: one has a slightly higher utility for the 104 

decision maker than the other, but it is also less visually salient. If this person’s association of 105 
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gaze and choice behavior was strong, her choice would be biased towards the bottle that is 106 

attracting more of her gaze, even though it has lower utility. On the other hand, if the person’s 107 

association is weak, she would then be able to select the option that is higher in utility, despite 108 

her gaze being attracted more towards the inferior option. Accordingly, if the strength of this 109 

association is variable across individuals, it is necessary to account for these differences to 110 

accurately predict individual choice behavior.  111 

Here, we investigated whether the previously reported link between gaze and choice 112 

behavior is variable across individuals, using a novel computational model that can easily be 113 

applied to individual participant and multialternative choice data. With this model, we 114 

reaffirmed that an association between gaze and choice is present at the group level, and 115 

indeed, present for most individuals. The strength of this association, however, showed 116 

substantial variability. By accounting for this variability, we were able to explain and 117 

accurately predict empirically observed differences in individuals’ choice behavior.  118 
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 119 

Figure 1: Experimental Paradigm. All the participants completed two tasks in a single 120 

session. Task 1: The participants rated all 70 snack foods items on a liking rating scale 121 

between -10 and 10, according to how much they would like to eat each item. Task 2: In each 122 

choice trial, the participants were required to maintain a central fixation for 2 s. Next, the 123 

participants were asked to choose the item that they would like to eat most from sets of 3 124 

choice items, while their eye movements were being recorded. Choices were followed by 1 s 125 

of visual feedback. 126 

Results 127 

Data set & Task overview 128 

To investigate individual differences in the influence of gaze allocation on simple 129 

economic choice behavior, we used a previously published, prototypical data set (Krajbich & 130 

Rangel, 2011) that we obtained from the original authors in a preprocessed format (see 131 

Methods for full details). In the corresponding experiment, hungry participants made choices 132 

between three snack food items, without time restrictions (Figure 1). Participants also gave a 133 

liking rating for each of the 70 snack food items that were used in the experiment. During the 134 

choice task, the participants’ eye movements were continuously recorded using an eye 135 

tracker. The data set included 30 participants, who performed 100 choice trials each. 136 
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 137 

Figure 2: Individual differences in the three behavioral metrics: response time, 138 

probability of choosing the highest rated item and influence of gaze on choice probability. A: 139 

Mean individual response times (error bars denote first and third quartile). B: Mean 140 

probability of choosing the item with the highest liking rating. The dashed horizontal line 141 

indicates chance level accuracy. C: Individual influence of gaze on choice probability (mean 142 

increase in choice probability for an item that is fixated longer than the others, after correcting 143 

for the influence of item value). The data points are sorted from high to low in each panel. 144 

  145 

Individual differences in the data 146 

We analyzed three metrics for individual differences, namely, (i) the participants’ 147 

response time, (ii) the mean probability of choosing the item with the highest liking rating, 148 

and (iii) the influence of gaze allocation on choice probability (mean increase in choice 149 

probability for an item that was fixated on longer than the others, after correcting for the 150 

influence of the item value). We found that participants differed considerably in all of the 151 

three metrics (Figure 2): 152 

The participants’ mean response times ranged from 1006 to 6217 ms, with mean ± s.d. 153 

= 2462 ± 1298 ms (Figure 2A), while their probabilities of choosing the highest rated item in 154 

a trial ranged from 50.00% to 95.00%, with mean ± s.d. = 71.94% ± 10.01% (Figure 2B). 155 
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We also probed the relationship between individual allocation of gaze and choice. 156 

Previous work in simple choice tasks has shown that individuals are, on average, more likely 157 

to choose an option when they spent more time fixating on it, relative to the others (Armel et 158 

al., 2008; Cavanagh et al., 2014; Folke et al., 2016; Krajbich & Rangel, 2011; Krajbich et al., 159 

2010). Here, we devised an individual measure to quantify the relationship between gaze 160 

allocation and choice for each individual: following previous work (Krajbich & Rangel, 2011; 161 

Krajbich et al., 2010), for each participant we first estimated the probability of choosing the 162 

left item in a choice set using logistic regression, based on its relative item value (the 163 

difference between the item’s value and the mean value of all other items in that trial) and the 164 

range between the other items’ value. We then subtracted this estimated probability from the 165 

empirically observed choice (either 1 if the left item was chosen, or 0 otherwise). Finally, we 166 

averaged the resulting “residual” choice probability for trials in which the left item had a 167 

positive and negative final gaze advantage (computed as the difference in the fraction of the 168 

total fixation time that the participants spent fixating on the left item and the average fraction 169 

that they spent fixating on the others). The difference between these two described the 170 

average difference in choice probability for the items with a positive versus negative final 171 

gaze advantage, when corrected for the influence of relative item value on choice probability 172 

and the other items’ range of values. We found that individual scores on this measure ranged 173 

from 0.05 to 0.58, with mean ± s.d. = 0.25 ± 0.14 (Figure 2C). Notably, all the participants 174 

showed positive scores, indicating an overall positive relationship between gaze allocation 175 

and choice. We did, however, find strong variation in this measure. 176 
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 177 

Figure 3: Gaze-weighted linear accumulator model (GLAM). The GLAM describes 178 

the influence of gaze allocation on the decision process, in the form of a linear stochastic race: 179 

It assumes that individuals accumulate evidence in favor of each item i and make a choice as 180 

soon as the relative evidence 𝐸𝑖 in favor of one item reaches a choice threshold (D). 181 

Importantly, the speed of the accumulation process is dependent on the distribution of visual 182 

gaze during the decision (A & B). For each option in the choice set, an absolute evidence 183 

signal 𝐴𝑖 is computed. The magnitude of this signal is dependent on the allocation of visual 184 

gaze, with lower magnitudes for options that are momentarily not fixated on. Absolute 185 

evidence signals are transformed into relative decision signals 𝑅𝑖 (indicating relative item 186 

preferences) by (i) computing the average absolute evidence signal for each item in the trial 187 

(dashed lines in B), (ii) and then computing the difference between each of these averages and 188 

the maximum of the respective other two. (iii) The GLAM assumes an adaptive representation 189 

of these relative evidence signals that is maximally sensitive to small differences in the 190 

relative decision signals. To this end, a sigmoid transform is applied (C). The resulting scaled 191 
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relative evidence signals determine the drift terms 𝑅𝑖 in the stochastic race (D). The stochastic 192 

race provides first-passage time distributions 𝑝𝑖, describing the likelihood of each item being 193 

chosen at each time point. See Methods for a more detailed model description. 194 

 195 

Modeling individual differences in simple economic choice 196 

The behavioral and eye tracking data suggest substantial variability in the extent to 197 

which gaze affects a participant’s choice behavior (Figure 2C). The computational mechanism 198 

relating gaze and choice patterns, however, cannot be inferred from descriptive analyses 199 

alone. In addition, conclusive quantitative evidence for or against the presence of a 200 

mechanism that biases choices depending on the distribution of gaze has yet to be provided at 201 

the individual level. We therefore adopted a principled computational modeling approach to 202 

investigate whether a formalized gaze bias mechanism, in conjunction with individual gaze 203 

patterns, can improve model predictions of individual choice and response time data. 204 

We propose a new model called the Gaze-weighted Linear Accumulator Model 205 

(GLAM; Figure 3) that is inspired by the attentional Drift Diffusion Model (aDDM) proposed 206 

by Krajbich et al. (2010; also, Krajbich & Rangel, 2011; Krajbich et al., 2012). The GLAM 207 

assumes accumulation of evidence in favor of each item, that is modulated by gaze behavior: 208 

While an item is not fixated on, accumulation occurs at a rate discounted by the gaze bias 209 

parameter γ. A choice is made as soon as evidence in favor of one item reaches a decision 210 

threshold. The GLAM is rooted in the class of linear stochastic race models (Tillman, 2017; 211 

Usher, Olami, & McClelland, 2002). These models naturally generalize to choice scenarios 212 

with more than two items and remain analytically tractable, allowing for more complex 213 

applications (e.g., embedding in a hierarchical Bayesian framework). 214 
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In addition to the gaze bias parameter γ, the GLAM includes a general velocity 215 

parameter v, a noise parameter σ and a scaling parameter τ (see Methods for full model 216 

implementation details). 217 

 218 

 219 

Figure 4: Model comparison between the full GLAM model and a no-gaze-bias 220 

GLAM ( = 1) variant. A: Individual best fitting models, given by the lowest DIC score. 221 

Twenty-six of 30 participants (87%) were better described by the full model that includes a 222 

gaze bias mechanism. B: Individual differences in the Deviance Information Criteria (DIC) 223 

between the full and ( = 1) model. Negative differences in the model DIC scores indicate 224 

better fits of the full model.  225 

 226 

Individual model comparison 227 

We fitted and compared two GLAM variants to the response time and choice data of 228 

each participant to gauge the evidence in favor of the previously described gaze bias 229 

mechanism and to quantify its strength on an individual level: 230 

1. A full GLAM variant with free parameters v, γ, σ, τ. This model allowed the gaze 231 

bias parameter γ to vary freely between the individuals. 232 

2. A no-gaze-bias GLAM variant, where the gaze bias parameter γ was fixed to 1 233 

(resulting in no influence of gaze on the accumulation process)  234 
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The two models differ in their complexity: The full model has one more free parameter and 235 

can therefore be expected to provide a better absolute fit to the data. We used the Deviance 236 

Information Criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002; 237 

Spiegelhalter, Best, Carlin & Van Der Linde, 2014) to perform model comparisons at the 238 

individual level as it includes a penalty for model complexity: more complex models are only 239 

preferred only if their added complexity is justified by an improvement in absolute fit. Lower 240 

DIC scores indicate a better model fit accounting for differences in model complexity. 241 

The full model fitted 26 of 30 (87%) participants better than the no-gaze-bias model 242 

(Figure 4A, B). The mean ± s.e.m. difference in the DIC scores between the full and no-gaze-243 

bias models was -34.22 ± 6.84 (Figure 4B). 244 

Individual estimates of the gaze bias parameter γ in the full model ranged from -0.93 245 

to 0.81, with a mean ± s.d. = 0.20 ± 0.39 (Figure S2). Notably, the individual estimates 246 

covered a wide range of possible values between γ = −1 (strong gaze bias) to γ = 1 (no gaze 247 

bias). With a strong gaze bias, the GLAM leaks evidence for an item, while another is fixated 248 

on, whereas evidence accumulation is independent of gaze allocation when no gaze bias is 249 

present. 250 

Taken together, the individual model comparison revealed that most participants’ 251 

behavior was better described by a model that includes the gaze bias mechanism. Importantly, 252 

the extent to which the accumulation process was influenced by gaze, as captured by 253 

individual gaze bias (γ) estimates, showed non-trivial individual differences.  254 
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 255 

Figure 5: Out of sample correlations between the observed and predicted individual 256 

behavior in the odd experiment trials (the predictions were based on parameters estimated 257 

from even experiment trials). A: mean response time. B: probability of choosing the highest 258 

rated item. C: influence of gaze on choice probability. Model predictions are simulated from 259 

hierarchically estimated parameter estimates. Blue color indicates predictions from the full 260 

GLAM, whereas orange indicates predictions from a restricted GLAM variant with no gaze 261 

bias ( = 1). 262 

 263 

GLAM predicts individual choice behavior 264 

We found that in a relative model comparison the full GLAM best describes the data 265 

of most participants, when compared to a restricted variant with no gaze bias (γ = 1; see 266 

Figure 4). However, this analysis did not take into account whether the GLAM also accurately 267 

predicts individuals’ behavior on an absolute level. To test this, we again used both model 268 

variants to simulate response data for each individual participant. This time, however, we split 269 

the data into even- and odd-numbered trials. We then used all the even trials to estimate the 270 

model parameters (training). Subsequently, we predicted the choices and response times for 271 

all the odd-numbered trials (test). The purpose of this out of sample prediction was to validate 272 

the individually estimated parameters, by comparing the GLAM’s predictions to response 273 

data that did not inform the parameter estimates. To compensate for the resulting loss of 274 
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training data we fitted both GLAM variants using a hierarchical Bayesian framework 275 

(Kruschke, 2014; Wiecki, Sofer, & Frank, 2013). Here, individual model parameters and their 276 

group distributions are simultaneously estimated from the data. This is desirable as individual 277 

parameter estimates are informed by their distribution at the group level, thereby capitalizing 278 

on the information that is shared across individuals. With the hierarchical parameter estimates 279 

we then tested whether individual behavioral patterns across the three metrics are accurately 280 

predicted by the two models (see Figures 2 & 5). 281 

We found that the full GLAM variant accurately predicted individual differences in 282 

response times (β = 1.06, t(28) = 26.17, P < 10−20; Figure 5A). Similarly, individual 283 

differences in the probability of choosing the highest rated item were predicted precisely (β = 284 

0.75, t(28) = 8.57, P < 10−8; Figure 5B). Lastly, we also found that the full GLAM predicted 285 

individual differences in the influence of gaze on choice probability well (β = 0.98, t(28) = 286 

6.69, P < 10−6; Figure 5C). 287 

The restricted GLAM variant with no gaze bias predicted the participants’ individual 288 

response times and the probability of choosing the highest rated item similarly well (RT: β = 289 

1.02, t(28) = 27.07, P < 10-20, Figure 5A; P(choose best): β = 0.75, t(28) = 6.53, P < 10−6, 290 

Figure 5B). However, the model failed to predict the influence of gaze on the participants’ 291 

choices (β = −2.97, t(28) = −1.53, P = 0.14; Figure 5C), resulting in no correlation between 292 

the predicted and empirical data in our gaze influence measure. 293 

These results showed that the full GLAM outperformed the restricted model variant in 294 

accurately predicting the participants’ empirical choices, as it also captured empirical choice 295 

patterns that are driven by gaze and not solely by the items’ liking rating. 296 
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 297 

Figure 6: Correlations between individuals response behavior in the odd-numbered 298 

trials and the model parameters estimated from the even-numbered trials. A: Response time 299 

and v (plotted on a log-log-scale). B: Probability of choosing the highest rated item and . C: 300 

Influence of gaze on choice probability (mean increase in choice probability for an item that 301 

is fixated on longer than the others, when corrected for the influence of the item’s relative 302 

value and the range of the other items’ values) and . 303 

 304 

GLAM explains individual choice behavior 305 

We found that the GLAM accurately predicted individuals’ response behavior. Next, 306 

we tested whether the individual model parameters are able to explain variability in the 307 

participants’ choice behavior. Here, we used standard OLS regressions to predict the three 308 

behavioral metrics in the odd-numbered trials from the individual GLAM parameters that 309 

were previously estimated hierarchically from the even-numbered trials (see Figure 6). We 310 

found that v (velocity parameter; see Methods for details) scaled logarithmically with the 311 

participants mean response time (β = −0.89, t(28) = −18.87, P < 10−16; Figure 6A). We did not 312 

find a meaningful relationship between the individual σ estimates and the probability of 313 

choosing the highest rated item (β = -1.59, t(28) = -0.19, P = 0.85), even though the σ 314 

parameter determines the magnitude of noise in the accumulation process (see Methods for 315 

details). However, we found that γ (gaze bias) estimates predicted the participants’ 316 
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probabilities of choosing the highest rated item (β = 0.18, t(28) = 4.98, P < 10−4 ; Figure 6B), 317 

so that stronger gaze biases (smaller γ) were associated with more choices that were 318 

inconsistent with the item ratings. This relationship can be explained as follows: the gaze bias 319 

parameter γ allows the model to bias the choice process according to the distribution of gaze 320 

between items: with a strong gaze bias, the model’s predictions are strongly dependent on the 321 

distribution of gaze, and a gaze distribution that is random with respect to the items’ liking 322 

ratings then leads to random choices. On the other hand, the model’s predictions are 323 

independent of gaze when no gaze bias is present. The model then neglects gaze and predicts 324 

choices solely driven by liking ratings. Lastly, as expected, we also found that γ estimates 325 

predicted the participants’ individual scores of gaze influence on choice probability (β = 326 

−0.31, t(28) = −5.68, P < 10−5 ; Figure 6C). 327 

 328 

Discussion 329 

Here, we investigated individual differences in the influence of gaze allocation on 330 

simple economic choice behavior by analyzing a previously published data set, where 331 

individuals made choices between three snack food items. We found that individuals showed 332 

an overall positive relationship between gaze and choice (longer gaze increases choice 333 

probability), but that the strength of this relationship was highly variable across individuals. 334 

To better understand the computational mechanism underlying this effect and its variability, 335 

we proposed a new model called the Gaze-weighted Linear Accumulator Model (GLAM). It 336 

assumes that individuals accumulate evidence in favor of each available item and make a 337 

choice as soon as the cumulative evidence for one item reaches a choice threshold. 338 

Importantly, the accumulation process is biased by gaze behavior, with discounted 339 

accumulation rates for unattended items. We found that the GLAM accurately predicts 340 

individuals’ choice and response time data and does so better than a model that does not 341 

assume any influence of gaze allocation on choice. We also found that the GLAM’s gaze bias 342 
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estimates reliably explained individual differences in choice behavior, namely, the strength of 343 

the individuals’ association of gaze and choice behavior and the individuals’ probability of 344 

choosing the highest rated item in a choice set (stronger gaze biases were generally associated 345 

with more choices that were inconsistent with item ratings). 346 

With the GLAM, we have provided a model that captures individual choice behavior 347 

in simple economic choice tasks with multiple alternatives with high predictive accuracy by 348 

integrating information about the individuals’ allocation of gaze. It is statistically and 349 

computationally tractable, making it readily extendable to novel choice tasks and research 350 

questions. 351 

Our individual model comparison revealed the added value of a gaze bias mechanism 352 

in decision models. The large majority of the participants were better described by the full 353 

model, compared to a restricted variant without any influence of gaze on choice. One reason 354 

for this superior performance is that the GLAM’s use of the individual trial gaze data allows 355 

the model to make different predictions across otherwise identical choice sets. In this way, the 356 

model is able to explain variance in behavior that would otherwise be attributed to unspecified 357 

decision noise. As decision making can be seen as a stochastic process (Rieskamp, 2008), 358 

choices across identical trials with high difficulty (where ratings for the available items are 359 

very similar, for example, 3, 2 and 2 for the left, middle and right item, respectively) can be 360 

assumed to vary. A stochastic choice model without a gaze bias mechanism will make 361 

probabilistic, but identical predictions for two such trials (Gluth & Rieskamp, 2017). 362 

Leveraging a gaze bias mechanism, however, allows a model to make trial specific 363 

predictions, and these, relying on the generally positive relationship between gaze and choice, 364 

will have higher accuracy. We expect the gaze bias mechanism to be especially relevant in 365 

high-difficulty trials, where item rating information by itself provides little evidence in favor 366 

of any one alternative. 367 
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Naturally, the inclusion of gaze information into choice models leads to the question 368 

of what drives gaze during choice. This question has received considerable attention in 369 

previous research, confirming influences of item surface size (Lohse, 1997; Wedel & Pieters, 370 

2008), position (Chandon, Hutchinson, Bradlow, & Young, 2009) and saliency (Itti & Koch, 371 

2000) on gaze. Still, a formal integration with computationally formalized choice models was 372 

achieved only recently (Towal et al., 2013). We believe that the development of generative 373 

models for the fixation process itself, and their integration with choice models, has the 374 

potential to largely improve existing models. 375 

Our analyses also confirmed the need for individual model fits: we found substantial 376 

variability across individuals in the influence of gaze on choice that was hidden in the group 377 

level analyses. Given that the influence of gaze on choice is variable between participants, a 378 

single gaze bias parameter γ for the whole group would not fit all the individuals well and 379 

would therefore result in inferior predictive performance of the model: participants whose link 380 

between gaze allocation and choice behavior is weaker than the group average would falsely 381 

be predicted to make choices less consistent with their value ratings, and driven more by 382 

looking behavior. Predictions for the participants’ choices with a stronger link than the group 383 

average, on the other hand, would not contain enough influence of gaze. Accounting for 384 

individual differences in the link between gaze allocation and choice behavior opens 385 

important avenues for future research, focusing on the specific determinants of these 386 

differences. For example, are these differences best characterized as a trait (stable within a 387 

person, but variable between persons), state (variable within a person, between different 388 

situations or contexts) or both (variable between persons and contexts) (see Peters & Büchel, 389 

2011, for a similar discussion in the context of delay discounting)? 390 

Despite a wealth of findings exploring the computational mechanisms underlying 391 

simple choice behavior and its link to visual fixations (e.g., Shimojo et al., 2003; Armel et al. 392 

2008; Krajbich et al., 2010; Krajbich & Rangel, 2011; Towal et al., 2013; Cavanagh et al., 393 
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2014; Fisher, 2017), most of this work, and the associated computational frameworks (e.g., 394 

Ratcliff et al., 2016), is difficult to extend to complex choice scenarios (i.e., involving more 395 

than two choice alternatives). Here, we have shown that the GLAM captures individuals’ 396 

choice behavior well in choice situations with only few choice alternatives. However, the 397 

GLAM naturally extends to choices involving many more options, as we mostly encounter in 398 

our everyday lives. Imagine standing in front of a vending machine to buy a snack. These 399 

machines can easily store up to 20 items. We assume that in these multialternative choice 400 

situations, both gaze and individual differences will play an even more prominent role: 401 

individuals, when confronted with large choice sets, do not always look at all available items 402 

(e.g., Reutskaja, Nagel, Camerer, & Rangel, 2011). A choice model that considers 403 

individuals’ liking values only will therefore fail in accurately predicting individuals’ choice 404 

behavior. A model that includes information about individuals’ gaze distribution during 405 

decision formation will, on the other hand, outperform such naive models, because it will 406 

better account for the set of items that individuals actually consider for a choice. In addition, 407 

we assume that behavioral differences between individuals to increase with increasing choice 408 

set size. For example, we assume that some individuals may look at only a few of the 409 

available items, before making a choice, while others may spend a long time searching for the 410 

most highly valued option (as indicated in Reutskaja et al., 2011). To understand whether 411 

there is a common choice mechanism underlying these different types of choice behavior, it is 412 

necessary to test the ability of a model to capture individual choice patterns. 413 

Real life choices have another level of complexity often not considered in simple 414 

economic choice tasks; options comprise multiple, oftentimes orthogonal attributes. For 415 

example, each item in a vending machine is associated with a price that has to be considered. 416 

Consumer goods often also include other attributes (e.g., ratings by other consumers: De 417 

Martino, Bobadilla-Suarez, Nouguchi, Sharot, & Love, 2017; energy consumption, etc.), 418 

which are commonly displayed visually to the decision maker. Certain configurations of 419 
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option attributes can induce systematic shifts in preference, called context effects (Mohr, 420 

Heekeren, & Rieskamp, 2017; Soltani, De Martino, & Camerer, 2012; Trueblood, Brown, 421 

Heathcote, & Busemeyer, 2013). These preference shifts can vary considerably between 422 

individuals (Mohr et al., 2017). Notably, eye-tracking data about the identity and sequence of 423 

fixated attributes are predictive of choice in context effect settings (Noguchi & Stewart, 424 

2014). Future research on these effects and their relationship to gaze requires a model that can 425 

be fitted on an individual basis and is applicable to multialternative choice scenarios. The 426 

GLAM provides a starting-point to explore these types of research questions in the future. 427 

Like other existing decision making models (e.g., Usher and McClelland, 2001; Roe, 428 

Busemeyer & Townsend, 2001; Ratcliff et al., 2016; Krajbich et al., 2010), the GLAM also 429 

incorporates several assumptions about the neural computations underlying simple economic 430 

choices. It is necessary to evaluate the plausibility of these assumptions, next to the ability of 431 

a model to capture individuals’ choice behavior. The GLAM assumes evidence accumulation 432 

towards a decision threshold and a fixation-dependent bias of this process. There is strong 433 

neural evidence for accumulation-to-bound processes during decision formation in a variety 434 

of choice tasks (e.g., Basten, Biele, Heekeren, & Fiebach, 2010; Philiastides & Sajda, 2007; 435 

Churchland, Kiani & Shadlen, 2008; Liu & Pleskac, 2011; O’Connell, Dockree & Kelly, 436 

2012; Wyart, De Gardelle, Scholl & Summerfield, 2012; Polanía, Krajbich, Grueschow & 437 

Ruff, 2014; Lafuente, Jazayeri & Shadlen, 2015; for a review see Gold & Shadlen, 2001, and 438 

Heekeren, Marrett & Ungerleider, 2008). Recently, it was also shown that single-trial EEG 439 

components reflecting attention in simple perceptual decision-making tasks explain variance 440 

in single-trial evidence accumulation rates of the decision process (Nunez, Vandekerckhove, 441 

& Srinivasan, 2017) and that variability in these components can explain behavioral 442 

differences between individuals (Nunez, Srinivasan, & Vandekerckhove, 2015). Two recent 443 

studies also provided first empirical evidence that value-driven activity in the orbitofrontal 444 

cortex of monkeys is modulated by fixation location when they viewed reward-associated 445 
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visual cues in a free-viewing paradigm (Hunt, Malalasekera, Berker, Miranda, Farmer, 446 

Behrens & Kennerley, 2017; McGinty, Rangel, & Newsome, 2016). Together, these studies 447 

provided the first neurobiological evidence of the influence of visual fixations on the process 448 

of decision formation. Ultimately, a better understanding of these computations will be central 449 

to building holistic models of the choice process and for advancing existing choice 450 

frameworks. In addition, it might also help us to better understand the origin of behavioral 451 

variability that we observe within and between individuals. 452 

The focus on individual differences in the relationship between gaze and choice 453 

behavior can also prove itself relevant in clinical research domains. Increasingly prevalent 454 

clinical conditions, such as type 2 diabetes and obesity, typically involve maladaptive 455 

decision-making between visually presented stimuli, often strategically positioned and 456 

designed to capture attention. Snack food items, for example, are advertised with bright, 457 

salient colors and placed prominently (e.g., at eye level, near the checkout in the 458 

supermarket), which could have adverse effects on individuals prone to making maladaptive 459 

food choices. Healthier diets (i.e., food choices) are both prevention and treatment for such 460 

diseases, and a better understanding of how individuals’ decisions are impacted by looking 461 

behavior could help inform the search for predictors of clinical behavior and improve 462 

therapeutic approaches. In addition, individually tailored therapeutic approaches, based on a 463 

better understanding of individual response patterns, promise higher efficacy and, in turn, 464 

reduced health care spending. 465 

 466 

Methods 467 

Data, tasks, procedure & preprocessing 468 

We reanalyzed a data set that was previously published in Krajbich and Rangel 469 

(2011). In the corresponding experiment, hungry participants made repeated choices between 470 
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multiple snack food items (e.g., Twix, Lays Chips, Skittles, etc.), while their eye movements 471 

were recorded. 472 

The data set contains data from 30 Caltech students, who reported to regularly eat the 473 

snack foods that were used in the experiment and had no dietary restrictions. The participants 474 

received a show-up fee of $20 and one food item. The experiment was approved by Caltech’s 475 

Human Subjects Internal Review Board. 476 

All participants were asked not to eat for 3 hours prior to the experiment. In an initial 477 

liking rating task the participants indicated liking ratings between -10 to 10 for each of the 70 478 

different snack food items using an on screen slider with a randomized starting point and free 479 

response time (“How much would you like to eat this at the end of the experiment?”; Figure 480 

1, Task 1). These ratings were used as a measure of the value participants placed on each 481 

item. In the subsequent choice task the participants made choices between triplets of food 482 

items. The items were arranged in a triangular fashion on the screen (Figure 1, Task 2). In one 483 

half of the trials, this triangle pointed upwards (center option on top), in the other half it 484 

pointed downwards (center option at the bottom). Choices were indicated with free response 485 

times and using the left, down and right arrow keys on a keyboard. Each trial began with a 2 s 486 

forced fixation towards the center of the screen. A yellow feedback box was shown around the 487 

chosen item for 1 s after a choice was made. Lastly, the participants were required to stay for 488 

30 min after the experiment, to eat a food item that they chose in one randomly selected 489 

choice trial. The participants performed 100 choice trials each. 490 

The participants’ eye movements were continuously recorded with a 50 Hz desktop-491 

mounted Tobii eye tracker. 492 

The data were obtained from the original authors in an already preprocessed format. 493 

The original preprocessing steps included the removal of trials with missing fixation data for 494 

more than 500 ms at the beginning or end of the trial, resulting in a total of 2966 remaining 495 

trials (mean ± s.e.m. number of trials dropped per participant was 1.1 ± 0.9). Rectangular 496 
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areas of interest (AOIs) were constructed around each food item in each trial and visual 497 

fixations were assigned to the corresponding item or coded as non-item fixations. If a non-498 

item fixation was preceded and succeeded by fixations on the same item, the non-item fixation 499 

would also be assigned to this item. Other non-item fixations were not reassigned and 500 

discarded from all further analyses. 501 

 502 

Gaze-weighted Linear Accumulator Model (GLAM) details 503 

The GLAM belongs to the class of linear stochastic race models (Usher & 504 

McClelland, 2001). It assumes accumulation of noisy evidence in favor of each available 505 

alternative i, and that the choice is determined by the first accumulator that reaches a common 506 

boundary. In particular, we define the accumulated relative evidence 𝐸𝑖 in favor of alternative 507 

i, as a stochastic process that changes at each point in time t according to: 508 

 𝐸𝑖(𝑡) =  𝐸𝑖(𝑡 − 1) + 𝑣 × 𝑅𝑖 + 𝑁(0, 𝜎2); 𝐸𝑖(0) = 0  (1) 509 

𝐸𝑖 consists of two separate components: a drift term 𝑅𝑖 and zero-centered normally 510 

distributed noise with standard deviation σ. The overall speed of the accumulation process is 511 

governed by the velocity parameter v. The drift term 𝑅𝑖 describes the average amount of 512 

relative evidence for item i that is accumulated at each point in time t. We define the relative 513 

evidence 𝑅𝑖
∗ as the difference in the stationary absolute evidence signal 𝐴𝑖 of item i and the 514 

maximum absolute evidence of all other items J: 515 

 𝑅𝑖
∗ = 𝐴𝑖 − 𝑚𝑎𝑥𝐽(𝐴𝐽) (2) 516 

The model’s gaze bias mechanism is implemented in the absolute evidence signal 𝐴𝑖: 517 

Similar to the aDDM, the absolute evidence signals are assumed to be proportional to the 518 

value ratings 𝑟𝑖, and crucially, switch between two different states during the trial: an 519 

unbiased state, when an item is currently looked at, and a biased state, when gaze is directed 520 
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towards a different item. Therefore, on average, 𝐴𝑖 is a linear combination of two terms that 521 

are weighted by the fraction 𝑔𝑖  of the total fixation time that item i was fixated in the trial: 522 

 𝐴𝑖 = 𝑔𝑖  ×  𝑟𝑖 + (1 − 𝑔𝑖)  ×  𝛾𝑟𝑖 (3) 523 

Here, γ (−1 ≤ γ ≤ 1) is the model’s gaze bias parameter that determines the strength of 524 

the downweighting during the biased state. If γ = 1, there is no difference between the biased 525 

and unbiased state, producing no gaze bias. If γ < 1, the absolute evidence signal is discounted 526 

by the γ parameter, resulting in a gaze bias. If −1 ≤ γ < 0, the sign of the evidence signal 527 

changes, thereby leaking evidence, when the item is not fixated. This leakage mechanism is 528 

supported by a recent empirical study (Ashby et al., 2016). The maximum amount of evidence 529 

that can be accumulated or leaked at each time point is symmetric in magnitude, as the γ 530 

parameter is bounded between -1 and 1. 531 

Note that the range of possible 𝑅𝑖
∗ (equation (2)) depends on the participants’ use of 532 

the item rating scale: if the ratings only cover a narrow range of possible values on the scale, 533 

the relative evidence values 𝑅𝑖
∗ will likewise be small, whereas they will be large if the 534 

participant utilizes the entire range of the rating scale. GLAM assumes an adaptive 535 

representation of the relative evidence signals that is compensating for the participants’ use of 536 

the rating scale and thereby sensitive to marginal differences in the relative evidences, 537 

particularly to values close to 0 (where the absolute evidence signal for one item is only 538 

marginally different to the maximum of all others). To this end, a logistic transform 𝑠(𝑥), 539 

with scaling parameter τ is applied: 540 

 𝑠(𝑥) =
1

1+exp (−𝜏𝑥)
 (4) 541 

 𝑅𝑖 = 𝑠(𝑅𝑖
∗) (5) 542 

The first passage time density 𝑓𝑖(𝑡) of a single linear stochastic accumulator 𝐸𝑖, with 543 

decision boundary b, is given by the Inverse Gaussian Distribution (Wald, 1973): 544 

  𝑓𝑖(𝑡) = [
𝜆

2𝜋𝑡3]
1

2⁄
 𝑒𝑥𝑝 {

−𝜆(𝑡−𝜇)2

2𝜇2𝑡
} with   𝜇 =

𝑏

𝑣𝑅𝑖
 and 𝜆 =

𝑏2

𝜎2 (6) 545 
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However, this density does not take into account that there are multiple accumulators 546 

in each trial racing towards the same boundary. As soon as any of these accumulators crosses 547 

the boundary a choice is made and the trial ends. For this reason, 𝑓𝑖(𝑡) must be corrected for 548 

the probability that any other accumulator crosses the boundary first. The probability that a 549 

single accumulator crosses the boundary prior to t, is given by its cumulative distribution 550 

function 𝐹𝑖(𝑡): 551 

  𝐹𝑖(𝑡) = Φ(√
𝜆

𝑡
(

𝑡

𝜇
− 1)) + exp (

2𝜆

𝜇
)  Φ(−√

𝜆

𝑡
(

𝑡

𝜇
+ 1)), (7) 552 

where Φ(x) is the standard normal cumulative distribution function. Hence, the joint 553 

probability  𝑝𝑖(𝑡) that accumulator 𝐸𝑖 crosses b at time t, and that no other accumulator j has 554 

reached b first, is given by: 555 

  𝑝𝑖(𝑡) = 𝑓𝑖(𝑡) ∏ (1 − 𝐹𝑗(𝑡))𝐽 . (8) 556 

We performed a parameter recovery study to rule out misspecifications of the model 557 

and assert the validity of the parameters estimated from empirical data. All of the parameters 558 

could be recovered to a satisfying degree (see Figure S1 for detailed results).  559 

Although the race framework deviates from the classical Drift-Diffusion Model 560 

(DDM; Ratcliff, 1978; Ratcliff et al., 2016), which is known to implement an optimal 561 

decision procedure in the sense of the sequential probability ratio test (Bogacz, Brown, 562 

Moehlis, Holmes, & Cohen, 2006), it has reasonable benefits in the context of this paper: first, 563 

the model naturally generalizes to choices between three alternatives, which is not trivial for 564 

the classical DDM. Second, it generalizes to settings with even larger choice sets. Third, an 565 

analytical solution for the first-passage time density of the linear stochastic race exists. This 566 

solution enables a very fast and efficient parameter estimation, without the need to 567 

numerically estimate densities from a large number of model simulations. 568 

 569 

  570 
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GLAM parameter estimation 571 

Individual. For the individual model comparison, we first estimated the model 572 

parameters at the individual level. The full GLAM has four parameters (v, γ, σ, τ). The 573 

individual models were implemented in the Python library PyMC3 (Salvatier, Wiecki, & 574 

Fonnesbeck, 2016) and fitted using the default Markov Chain Monte Carlo No-U-Turn-575 

Sampler (NUTS; Hoffman & Gelman, 2014). We parameterized the model so that the noise 576 

parameter σ was sampled proportionally to the velocity parameter v using a signal-to-noise 577 

variable SNR (note that this does not add a free parameter to the model, as σ is now fully 578 

determined by v and SNR). We placed uninformative, uniform priors between sensible limits 579 

on all model parameters: 580 

v ~ Uniform(1e-10, 0.01) 581 

 ~ Uniform(-1, 1) 582 

SNR ~ Uniform(1, 500) 583 

 = v × SNR 584 

τ ~ Uniform(0, 5) 585 

Further, we assumed a fixed 5% rate of error trials, which we model as a participant-586 

specific uniform likelihood distribution  𝑢𝑠(𝑡). This error likelihood describes the probability 587 

of a random choice for any of the N available choice items at a random time point in the 588 

interval of empirically observed response times (cf. Ratcliff & Tuerlinckx, 2002; Wiecki et 589 

al., 2013): 590 

  𝑢𝑠(𝑡) =
1

𝑁( max(𝑟𝑡𝑠)−min(𝑟𝑡𝑠)) 
 (9) 591 

The resulting choice likelihood is then given by: 592 

  𝑙𝑖(𝑡) = 0.95 × 𝑝𝑖(𝑡) +  0.05 ×  𝑢𝑠(𝑡) (10) 593 
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For each individual model, the NUTS sampler was initialized using the default 594 

behavior in PyMC 3.2, followed by 500 tuning samples that were discarded. Finally, we drew 595 

2000 posterior samples that we used to estimate the model parameters. 596 

In addition, a restricted no-gaze-bias GLAM variant was also fit to the individual data. 597 

It was specified and fitted identically to the full model, but had the gaze-bias parameter γ fixed 598 

at 1.0. The reported parameter estimates are maximum a posteriori (MAP) estimates. 599 

Hierarchical. We also estimated the GLAM parameters in a hierarchical Bayesian 600 

framework (Kruschke, 2014; Vandekerckhove, Tuerlinckx, & Lee, 2008; Wiecki et al., 2013). 601 

Here, the fit of participant level parameters is informed by the group distribution of 602 

parameters. Each parameter on the participant level is modeled as coming from a population 603 

distribution whose shape and location are also estimated from the data. We assumed that all 604 

participant level parameters are drawn from normal population distributions, which we 605 

bounded to sensible ranges: 606 

v  (1e-10, 0.01), SNR  (1, 500),   (-1, 1),   (0, 5). 607 

We used ADVI (Kucukelbir, Ranganath, Gelman, & Blei, 2015) from the PyMC3 608 

python library (Salvatier et al., 2016) to approximate the posterior distribution of the model 609 

parameters. In analogy to the individual models, we assumed a fixed 5% rate of participant-610 

specific uniformly distributed error responses (see above). The reported parameter estimates 611 

are maximum a posteriori (MAP) estimates. 612 

 613 

Model simulations 614 

Choice and response time data was simulated from the GLAM according to the 615 

following procedures: each trial in the left-out data set, containing all the odd-numbered trials, 616 

was repeated 50 times. For every trial the model used the empirically observed item ratings 617 

and gaze distributions. With a fixed rate of 5% the simulation produced a random choice and 618 

a random response time between the participant’s minimum and maximum observed response 619 
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times (cf. equations (9) & (10)). With a rate of 95% the choice and response time were 620 

simulated from the actual GLAM: for each item in the trial, a first passage time (FPT) was 621 

drawn according to the single-item first passage densities (equation (8)). The response time 622 

and choice were then determined by the item with the shortest FPT. 623 

 624 

Availability of data, model and analysis code 625 

All analyses and figures can be reproduced using the data set, scripts and GLAM 626 

resources that are available at http://www.github.com/glamlab/glam. 627 

 628 

Software 629 

All analyses were performed in Python, using the NumPy and SciPy (Van der Walt, 630 

Colbert & Varoquaux, 2011), Pandas (McKinney, 2010), Statsmodels (Skipper & Perktold, 631 

2010), PyMC3 (Salvatier et al., 2016) and Theano (Theano Development Team, 2016) 632 

libraries. We used Matplotlib (Hunter, 2007) for visualization. 633 

  634 
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Supplementary Information 857 

Parameter recovery 858 

 859 

Figure S1: Results of a parameter recovery study of the GLAM. Parameter estimates 860 

were estimated from model simulated data sets. Panels A to D show relationships between 861 

generating and recovered parameters. All parameters could be recovered to a satisfying 862 

degree. 863 

We performed a parameter recovery study to validate the parameter estimates. We simulated 864 

data using the GLAM and the corresponding hierarchically estimated individual parameter 865 

estimates. Each empirically observed even-numbered trial (i.e., set of item value ratings and 866 

relative gazes in training set trials) was simulated once, resulting in a GLAM-generated data 867 

set that matches the original training data in size and structure. We then performed the exact 868 

same hierarchical parameter estimation procedure as we did in the training data. Ideally, the 869 

recovered parameters should match the originally estimated ones. The correlations between 870 

generating and recovered parameters are displayed in Figure S1. The critical model 871 

parameters v,  and  were recovered very well (Figure S1 A, B, C, respectively). We found a 872 

significant linear relationship between generating and recovered  parameters (Figure S1D), 873 

although they include some level of variance.  874 
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Parameter estimates 875 

 876 

Figure S2: Parameter estimates and correlations between parameters. Estimates shown 877 

are from individual model fits. 878 
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