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Abstract

This work studies and develops tools to quantify and manage the

risks and uncertainty relating to the pricing of annuities in the

long run. To this end, an idealized Monte-Carlo simulation model

is formulated, estimated and implemented, which enables one to

investigate some typical pension and life insurance products. The

main risks in pension insurance relate to investment performance

and mortality/longevity development. We first develop stochastic

models for equity and bond returns. The S&P 500 yearly total

return is modeled by an uncorrelated and Normally distributed

process to which exogenous Gamma distributed negative shocks

arrive with Geometrically distributed interarrival times. This regime

switching jump model takes into account the empirical observations

of infrequent exceptionally large losses. The 5-year US government

bond yearly total return is modeled as an ARMA(1,1) process after

suitably log-transforming the returns. This model is able to generate

long term interest rate cycles and allows rapid year-to-year corrections

in the returns. We also address the parameter uncertainty in these

models.

We then develop a stochastic model for mortality. The chosen

mortality forecasting model is the well-knownmodel of Lee and Carter

(1992), in which we use the Bayesian MCMCmethods in the inference

concerning the time index. Our analysis with a local version of the

model showed that the assumptions of the Lee-Carter model are not

fully compatible with Finnish mortality data. In particular we found

that mortality has been lower than average for the cohort born in

wartime. However, because the forecasts of these two models were

not significantly different, we chose the more parsimonious Lee-Carter

model. Although our main focus is on the total population data,

we also analysed the data for males and females separately. Finally

we build a flexible model for the dependence structure that allows

us to generate stochastic scenarios in which mortality and economic

processes are either uncorrelated, correlated or shock-correlated.

By using the simulation model to generate stochastic pension

cash-flows, we are then able to analyse the financing of longevity risk

in pension insurance and the resulting risk management issues. This

is accomplished via three case studies. Two of these concentrate on

the pricing and solvency questions of a pension portfolio. The first

study covers a single cohort of different sizes, and the second allows

for multiple cohorts of annuitants. The final case study discusses

3



individual pension insurance from the customer and long-term points

of view.

Realistic statistical long-term risk measurement is the key theme

of this work, and so we compare our simulation results with the

Value-at-Risk or VaR approach. The results show that the limitations

of basic VaR approach must be carefully accounted for in applications.

The VaR approach is the most commonly used risk measurement

methodology in insurance and finance applications. For instance, it

underlies the solvency capital requirement in Solvency II, which we

also discuss in this work.

Key words: equities, stocks, jump model, bond, longevity, Lee-Carter

model, stochastic mortality, cohort mortality, dependence model,

asymmetric dependence, parameter uncertainty, stochastic annuity,

pension, cohort size, solvency, internal model

JEL classification codes: G12, J11
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Tiivistelmä

Väitöskirjatyössä tutkitaan ja kehitetään työkaluja eläkevakuutusten

hinnoitteluun liittyvien riskien ja epävarmuuden kvantifioimiseksi

ja hallitsemiseksi pitkällä aikavälillä. Tätä varten määritellään,

estimoidaan ja implementoidaan idealisoitu Monte-Carlo simulointi-

malli, jonka avulla voidaan tutkia joitakin tyypillisiä eläke- ja henki-

vakuutustuotteita. Keskeisimmät riskit eläkevakuutuksessa aiheu-

tuvat sijoitusten tuottojen ja kuolevuuden/pitkäikäisyyden kehityk-

sestä. Ensin työssä kehitetään stokastiset mallit osakkeiden ja ob-

ligaatioiden tuotoille. S&P 500 indeksin vuosittainen kokonaistuotto

mallinnetaan korreloimattomalla normaalijakautuneella prosessilla,

johon saapuu eksogeenisiä Gamma-jakautuneita negatiivisia shokkeja

Geometrisen jakauman mukaisin odotusajoin. Tämä tilaa vaihtava

hyppymalli ottaa huomioon harvinaiset erityisen suuret tappiot, joita

empiirisesti on havaittu. USA:n 5 vuoden valtionobligaatioiden

vuosittainen kokonaistuotto mallinnetaan ARMA(1,1) -prosessilla,

jota sovelletaan sopivalla log-transformaatiolla muunnettuihin log-

tuottoihin. Tämä malli kykenee tuottamaan pitkiä syklejä ja kor-

jaamaan nopeasti vuosituottoja vastakkaiseen suuntaan. Myös mal-

lien parametriepävarmuus otetaan huomioon.

Seuraavaksi kehitetään stokastinen malli kuolevuudelle. Kuo-

levuuden ennusteisiin on valittu tunnettu Lee-Carter malli (1992),

jossa aika-indeksin tilastollinen päättely tehdään Bayesilaisella

MCMC metodilla. Mallista kehitetyn lokaalin version avulla teh-

ty analyysi osoittaa, että Lee-Carter malli ei täysin sovi suoma-

laiseen kuolevuusaineistoon. Erityisesti havaittiin, että kuolevuus

on ollut keskimääräistä pienempää sota-aikana syntyneellä kohor-

tilla. Koska kyseisten mallien tuottamat ennusteet eivät kuitenkaan

merkittävästi poikkea toisistaan, päädyttiin käyttämään yksinker-

taisempaa Lee-Carter mallia. Vaikka työssä pääpaino on väestön

kokonaiskuolevuudessa, analysoitiin aineistoa myös erikseen miehille

ja naisille. Lopuksi kehitetään joustava malli riippuvuuksien raken-

teelle, jonka avulla voidaan generoida stokastisia skenaarioita, joissa

kuolevuus ja taloudelliset prosessit ovat joko korreloimattomia, kor-

reloituneita tai shokkikorreloituneita.

Simulointimallia käyttäen voidaan generoida stokastisia

eläkkeiden kassavirtoja ja analysoida pitkäikäisyysriskin rahoitusta

eläkevakuutuksessa ja siihen liittyviä riskinhallintakysymyksiä.

Tätä tarkastelua tehdään kolmessa tapaustutkimuksessa. Kaksi

niistä keskittyy eläkevakuutusportfolion hinnoittelu- ja vaka-
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varaisuuskysymyksiin. Ensimmäisessä käsitellään yhtä annuiteet-

tikohorttia, jonka koko vaihtelee, ja toisessa tarkastellaan useampia

kohortteja. Viimeisessä tapauksessa keskitytään yksilölliseen

eläkevakuutukseen asiakkaan ja pitkän aikavälin näkökulmista.

Riskien realistinen tilastollinen kvantifiointi pitkällä aikavälillä on

työn keskeinen tavoite ja sen vuoksi simulointituloksia verrataan ns.

Value-at-Risk eli VaR-menetelmään. Tulokset osoittavat, että yk-

sinkertaisen VaR-lähestymistavan rajoitukset on otettava huolellisesti

huomioon menetelmää sovellettaessa. VaR-metodi on rajoituksistaan

huolimatta yleisimmin käytetty riskinmittausmenetelmä vakuutus-

ja finanssisovelluksissa. Siihen perustuu esimerkiksi Solvenssi II:n

vakavaraisuuspääomavaatimus, jota myös käsitellään työssä.

Avainsanat: osakkeet, hyppymalli, obligaatio, pitkäikäisyys, Lee-

Carter malli, stokastinen kuolevuus, kohorttikuolevuus, riip-

puvuusmalli, epäsymmetrinen riippuvuus, parametriepävarmuus,

stokastinen annuiteetti, eläke, kohortin koko, solvenssi, sisäinen malli

JEL luokitus: G12, J11
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1 Introduction

1.1 Motivation

The importance of mortality/longevity modeling and forecasting

is nowadays globally acknowledged due to the increasing financial

burden that lower mortality means for national social and insurance

systems (cf. Holzmann and Palmer, 2006). Moreover, there is

strong evidence that the traditional deterministic approaches of

demographers and actuaries have not proven adequate for longevity

risk measurement and management. This is evidenced in several

studies in a number of countries (e.g. Keilman, 1990, Alho, 1990

and Keilman et al., 2008). Even more alarming is that the forecast

errors have been invariably on the wrong side, i.e. the forecasts

have generally underestimated the improvements in life expectancy.

Moreover, the experts’ judgements in forecasting have made things

even worse. The following quotation of Alho et al. (2011), sec. 3.2.,

makes these points clear:

‘There appears to have been widely held support of ‘diminishing

returns’ for mortality. Ever-increasing resources were thought to be

needed to achieve improvements similar to those in the past... In

fact, the conclusion to be drawn is that simply allowing past declines

to continue would have made mortality forecasts more accurate...

This is an observation that speaks in favor of trend-based statistical

modelling’.

We have chosen to forecast mortality with the well-known

statistical model by Lee and Carter (1992) in which we use the

Bayesian MCMC methods in the inference concerning the time index.

The analysis based on our local version of the model showed that the

assumptions of the Lee-Carter model are not fully compatible with

Finnish mortality data. In particular, we found that mortality has

been lower than average for the cohort born in wartime. However,

because the forecasts of these two models do not differ significantly,

we prefer the more parsimonious Lee-Carter model. Although our

main focus is on the total population data, we have also analysed the

data for males and females separately.

It is not enough, however, to study only longevity when dealing

with pension insurance risk management. The other side of the

coin relates to the financing of longevity risk. Insurance companies

must estimate their liabilities and have sufficient assets to cover
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them. Additionally, they are required to have capital or solvency

buffers for the risks they face. Equity investments, which play an

important role in life and pension insurance operations due to the

anticipation of higher returns from equities than from bonds, are

prone to white noise random variation. However, in our data we also

observe shocks or exceptionally large losses. We address this by using

a Bernoulli-mixture model where exogenous Gamma-distributed

negative shocks impact on an uncorrelated process of equity returns.

The 5-year US government bond yearly total return is modeled

as ARMA(1,1), after suitably log-transforming the returns. This

model is able to generate long term interest rate cycles and allows

for rapid changes of direction in returns. We also address the

parameter uncertainty in these models and build a dependence

model that enables generation of stochastic scenarios in which

mortality and economic processes are either uncorrelated, correlated

or shock-correlated.

The simulation model is then used to analyze three case studies.

Two cases concentrate on pricing and solvency questions for a pension

portfolio, and the third deals with individual pension insurance

from the customer and long-term points of view. Our case studies

also point out some weaknesses of Solvency II and areas where

internal models could be especially useful. Based on our studies we

believe that pension insurance risk modeling is better done using a

simulation model than by a formula-based approach. Our model takes

a long-term risk management view of pension insurance, and can

be used to supplement insurance companies’ own risk and solvency

assessments.

In general, risk management issues are becoming better recognized

in the international insurance and accounting regulations. In the EU,

the rules for insurance companies are to be implemented via the new

Solvency II Directive (2009/138/EC) in around 2014, and the other

rules are included in the IFRS accounting standards. We next discuss

the above-mentioned topics in more detail and draw some implications

for this study.

1.2 Pension insurance and risk management

The general idea of a pension insurance scheme — whether a pension

insurance contract in a life insurance company, a pension rule in
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a pension fund, or a state pension based on national legislation —

is to transfer the premiums or contributions and asset returns into

pensions. The process is inherently stochastic, which means that

few if any aspects of the system can be known in advance with

certainty. We must thus face up to uncertainty, which calls for the

toolkit for risk management.1 Generally speaking, risk management

includes the identification, analysis and evaluation of all risks, and

finding the best methods of dealing with them. Risk management

actions may include the elimination, sharing, mitigation, or buffering

of risks. We give examples of these concepts below. Moreover, a risk

may be diversifiable or nondiversifiable. In the latter case, pooling

arrangements are ineffective for reducing risk to the participants in

the pool.

In the pension insurance context it is generally the case that not

all the risks can be eliminated from the pension system, but they

can be shared or mitigated in various ways among the stakeholders.

We distinguish three stakeholders: sponsor, beneficiary and insurer.

The sponsor has agreed to pay the insurance premium(s) for the

pension insurance contract. The insurer is in charge of providing the

pension insurance services according to the contract, which include

setting the premiums adequately and managing the assets prudently,

so that the pensions can be paid as agreed. The beneficiary, after

retiring, gets the pension benefits when the savings are transformed

into an annuity. He can also be the sponsor, depending on the pension

scheme in question. If a death benefit is included, there can be several

beneficiaries. We give some examples to illustrate these concepts and

risk analyses.

In a Defined Benefit (DB) scheme, there is a fixed rule for

calculating the benefits. The sponsor then faces the risk that the

contribution level of the pension scheme may become too high or too

volatile. One important means of managing this risk is a Defined

Contribution (DC) scheme where the contribution rule is fixed in

advance. It is an example of a risk sharing arrangement between the

sponsor and the beneficiary which leads to a significant risk transfer

to the beneficiary.

In a funded pension system premiums have to be invested until

they are paid out as pensions. In DB schemes this introduces a

1Vaughan and Vaughan (2008) define (p. 2—3) risk as a condition in which there

is a possibility of an adverse deviation from an expected or desired outcome. The

existence of risk creates uncertainty on the part of individuals when that risk is

recognized.
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market risk for the insurer because asset returns are uncertain. To

manage these risks, the insurer — an insurance company or a pension

fund — must hold adequate reserves and capital resources. A risk

management tool that many life insurance companies have recently

been using extensively, e.g. in the Nordic countries, is to transfer

market risk to beneficiaries via Unit Linked insurance. Unit Linked

insurance is often in essence a mutual fund re-packaged as insurance.

During retirement, the annuitants may face uncertainty as to the

level and variability of their pension. This in turn depends on the

pension rule applied. We assume whole-life annuities, i.e. we do not

study temporary annuities in this work. Therefore the main source

of uncertainty for the annuitant is in the pension index rule.

In whole life annuities either the insurer or the sponsor or both face

longevity risk. Insurance companies and pension funds can mitigate

longevity risk via reinsurance arrangements or mortality bonds etc

investment operations (cf. McWilliam, 2011). Insurers that offer both

life insurances and annuities benefit from this product diversification

because mortality risk and longevity risk then partially offset.

The three alternative ways to manage longevity risk in the national

pension systems are to adjust the retirement age or the premiums

upwards or the pension level downwards. A Finnish example that

shows how longevity risk can explicitly and transparently be taken

into account via an annuity longevity adjustment factor is discussed

in Alho and Spencer (2005), sec. 11.1. Different pension indexation

rules can be studied in the same context (cf. Alho et al., 2011).

There are plenty of options for the design of a pension scheme: DB,

DC, Notional DC (NDC), full funding, partial funding, pay-as-you-go

(PAYG), etc. These concepts are discussed e.g. in Holzmann and

Palmer (2006). Every pension scheme can be characterised by its

risk profile vis-̀-vis sponsor, insurer and beneficiary, if appropriate

stochastic modeling and forecasting tools are available. For example

one way of illustrating the uncertainty and fair sharing of risk from

the point of view of both sponsor and beneficiary is to present both

contributions and pensions and their uncertainty in the same graph

and ask which policies would be acceptable to both parties (cf. the

concept of viability region in Alho et al., 2005).

We give some examples of pension insurance risk management

from the point of view of the sponsor and insurer in the first two

case studies of Chapter 6 where we discuss premium and solvency

buffer issues. The third case study recognizes that a pension insurance

contract is also a risk management tool for an individual acting as a
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sponsor, i.e. when purchasing and paying premiums on an individual

pension insurance. It allows him or her to manage investment and/or

longevity risk in exhange for the insurance premium. An insurance

company and pension fund of sufficient size can pool the variance of

individual life times (diversifiable or idiosyncratic risk), although the

aggregate uncertainty of increasing longevity will remain and must be

managed. Moreover, the forecasting horizon has a major impact on

the aggregate or systemic risk, which is nondiversifiable. We address

these questions in the final case study.

1.3 Solvency II

A new insurance supervisory system called Solvency II will replace

the current rules in the EU in 2014. At the same time important

global development of insurance regulation is being carried out by

the International Association of Insurance Supervisors (IAIS). In

this section we briefly review the key new features of Solvency II.

The fundamental differences between Solvency II and Solvency I are

summarized in the following two tables.

Table 1.1 Solvency II vs Solvency I valuation principles

Balance sheet Solvency II Solvency I

Assets market value book value

Liabilities BE + RM prudent deterministic value

The short-hand notations for valuation in Table 1.1 are defined as

follows. BE = Best Estimate = present value of expected future

cash-flows,2 RM = risk margin. The prudent deterministic value

is the result of traditional actuarial valuation methods, where best

estimates and risk margins are not separated and the level of prudence

is not defined for the calculation of technical provisions. Book value

refers to historical cost based accounting, where the market values

of assets can differ from the values shown on the balance sheet or

the book values. In Solvency II the value of insurance liabilities or

technical provisions is calculated using market consistent methods

2We note that Solvency II directive (2009/138/EC), Article 77.2, uses the

expected present value of cash-flows, while in a more recent document (QIS5

specification) the present value of expected cash-flows is used. These definitions

give in general different results when a stochastic interest rate model is used.
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and assumptions.3 Modeling is necessary because directly observable

market prices for insurance liabilities are not generally available.

Table 1.2 Solvency II vs Solvency I capital requirements

Solvency II Solvency I

risk-based VaR constant

In Table 1.2 solvency capital requirements are compared. VaR denotes

the Value-at-Risk or quantile risk measure, which is discussed in a

separate section below.

We conclude this brief comparison by noting that the key new

features of Solvency II are 1) more consistent, economic, transparent

and harmonized valuation, 2) risk-based capital requirements, and

3) more harmonized supervision. These measures, together with a

number of qualitative tools included in Solvency II (SII), are aimed

at better risk management and supervision of insurance companies,

for the benefit of the European internal market of insurance services

(cf. Linder and Ronkainen, 2004, for an early discussion of the goals

of SII, and Sandström, 2006, for the background of SII).

Consequently, SII builds on a market consistent balance sheet,

where Own Funds (OF) comprise the difference between assets and

liabilities. How OF or Net Asset Value (NAV) changes under

various risk scenarios is then analyzed for each risk type (market,

underwriting, credit and operational risk). Finally, the results are

aggregated via a number of correlation matrices to arrive at the

Solvency Capital Requirement (SCR). The tentative standardized

calculation rules for SCR, which aim at limiting the probability of

OF getting negative in 1 year to 0.5 percent, are given in QIS5

Technical Specifications. These specifications, which are available at

3Regarding the concept of market consistency we note the following

quote of the European actuaries’ parent organization Groupe Consultatif on

their website −: The term
’market consistent’ has become increasingly popular as a description of liability

valuations or, more generally, of cash flow valuations. However, there is no

widely accepted definition of the term. A valuation algorithm is a method for

converting projected cash flows into a present value. A valuation algorithm may

be specified with reference to a set of calibration assets. We say a valuation

is market consistent if it replicates the market prices of the calibration assets to

within an acceptable tolerance. Market consistent valuation can take many forms.

Two different models could produce different liability valuations and yet still both

are market consistent.
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www.eiopa.eu, include the detailed calculation rules. We summarize

briefly some key notions.

SII technical provisions generally consist of the best estimate and

the risk margin. The risk margin in SII approximates the amount

that would have to be paid in addition to the BE in order to transfer

the portfolio to another insurer. It is calculated by determining

the cost of providing an amount of Own Funds equal to the SCR

necessary to support the insurance obligations over their lifetime,

given the Cost-of-Capital rate (currently 6 percent). In practice many

simplifying assumptions are needed to determine the RM. However,

under certain conditions that relate to the replicability of the cash

flows underlying the insurance obligations, BE and RM are not valued

separately but as a whole.

In Solvency II the yield curve derived from the swap market4

for various maturities is used for discounting the cash flows, to

which recently an illiquidity premium and an equilibriummodification

for the very long term rates has been added (cf. QIS5 Technical

Specification at www.eiopa.eu). Therefore interest rates are different

for different maturities and are observed directly from the market.

In Solvency I, on the other hand, (initially) prudently set constant

discount interest rates are used in life insurance when calculating the

technical provisions (cf. Table 1.1).

In calculating the SCR in the SII standard approach, the best

estimate or expected value assumptions are changed, typically by

a given percentage amount upwards and downwards, to determine

the prediction interval at time t+1 for the various risks and their

so-called ∆NAV impact, i.e. the change of Own Funds. For instance,
the interest rate risk, which is very important in life and pension

insurance, would be handled as follows. The yield curve for various

maturities at time t,  , is given, as are the upward stress  



and downward stress  
 . To determine ∆NAV for upward stress

we revalue the assets and liabilities using  

 in the discounting

instead of the current market yield curve  . Another calculation

would be done for the downward stress, and the worse of the two

stresses would be chosen. Along the same lines we would determine

the ∆NAV impact of other risks, and finally aggregate the individual
risk charges via correlation matrices to get the total solvency capital

4Interest rate swap is an agreement to exchange fixed-rate payments for

floating-rate payments. Swap curve can differ substantially from the government

bond yield curve during financial crises, cf. CEIOPS/EIOPA (2010).
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requirement SCR, taking into account any risk mitigation tools that

have been used.

Alternatively, the insurance company may develop its own

stochastic model for calculating the SCR or part of it. Insurance

companies have plenty of freedom when developing their internal

models. However, these models have to be first approved by the

supervisory authorities and fulfill a number of requirements. For a

broader discussion, see Solvency II Directive 2009/138/EC, and for a

review see e.g. Cruz (2009), Ronkainen et al. (2007), or Ronkainen

et al. (2009). Next we review the VaR concept in more detail.

1.4 Value-at-Risk (VaR)

Realistic statistical modeling of equity and bond returns and

mortality is the key theme of this work. We will also frequently

make use of the Value-at-Risk or VaR approach, which is the most

commonly used risk measurement methodology in insurance and

finance applications. For instance it underlies the capital requirement

SCR in Solvency II. The basic idea of VaR is to give a reserve amount

that is sufficient to compensate potential adverse changes in prices

with a high probability.

A standard reference in a large literature on VaR is the

RiskMetrics Technical Document (Fourth Edition, 1996), available

at www.riskmetrics.com. Measurement of the market risk of an

asset portfolio of value  at t consists of modeling the asset return

processes and their dependence structure over the period (t,t+s].

From the resulting probability distribution of profit and loss, one

then chooses the value that corresponds to the chosen quantile point

1- ∈ (0 1). In other words we require that

(+ − +    0) = 1−  (1.1)

In practice VaR is typically assumed independent of t and the

multivariate Normal distribution is used. In the bi-variate case, which

is sufficient for our purposes, we thus assume  = [12]
0 ∼

(Σ), where  = [1 2]
0 is the mean vector, and Σ the

variance-covariance matrix with elements    ∈ {1 2}. Then 11
and 22 are the variances of 1 and 2, and 12 = 21 = 

√
1122

their covariance with correlation coefficient .
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Using1 and2 to describe the yearly returns on equity and bond

investments with the fraction  ∈ [0 1] of equities in the portfolio, we
can calculate the VaR for 1-year horizon with the confidence level 

as follows. The variance of the portfolio is

2 = 211 + (1− )222 + 2(1− )
√
1122 (1.2)

so that

 () =  − (1 + (1− )2) (1.3)

when  corresponds to the chosen 1 −  quantile of the Normal

distribution.

The more general case of 3 or more random variables can be

handled in the same fashion. Risks other than market risks can also

be addressed via the VaR approach, as is done for the SCR in Solvency

II. However, many simplifying assumptions are typically used in the

VaR process, which may significantly affect the accuracy of the risk

measurement, as we will see in the following chapters. The VaR

approach has serious structural limitations in its basic form. Firstly, it

assumes Normally distributed random variables, and secondly, it only

allows for linear correlation in the dependence structure. However,

with more advanced modeling of joint probability distribution these

shortcomings can be circumvented. There are also other smaller

problems with the VaR risk measure, and so other risk measures have

been developed. We return to this matter in the case studies. For a

broader discussion on VaR and its limitations and generalizations see

e.g. Malz (2011) and the references therein.

1.5 Insurance modeling

Insurance and financial modeling is clearly becoming increasingly

important, as Solvency II will for the first time allow insurance

companies to use their own stochastic models to calculate the

regulatory capital requirement. These internal models must first

be approved by the supervisors, and various tests and standards

are applied. These concern e.g. the statistical quality, calibration

and validation of the model (cf. the references mentioned above).

Modeling skills and knowledge of good modeling practices are
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therefore necessary for the insurance companies and for the

supervisors.

Various types of stochastic models are currently employed in

the insurance sector for many purposes such as economic capital

calculations, profit calculations for shareholders and product lines,

asset modeling, liability valuation, and asset and liability or ALM

analyses of the whole balance sheet (see e.g. IAA, 2010, for further

discussion).

The goal of this work is to develop a realistic but yet parsimonious

stochastic model which enables quantification and forecasting of the

chosen key risks and their interactions in pension insurance. As a

first step we simplify the risk profile of the pension insurer to include

just 3 major risks: mortality risk and the risks of equity and bond

investments. These risks are typically very important in life and

pension insurance (cf. EIOPA report on the fifth Quantitative Impact

Study for Solvency II, available at https://eiopa.europa.eu/). There

are other risks that confront pension insurers, e.g. credit risk and the

risks of expenses and policyholder behaviour, which we do not analyse

in this study.

We take a long term (several decades) view regarding risk

management. This is necessary in order to quantify mortality

improvements, which happen only gradually. A long term view is

also needed in order to analyse the risks marked by low frequency

but large impact (equity shocks) or long term cycles (interest rates).

The question of modeling horizon is of fundamental importance, and

it has several important implications.

Firstly, we want to use the longest relevant data series available

that are of good quality. This has lead us to use the US market

index data from 1925 to 2006 for the equity and mid-term government

bond models. Our assumption is that these data are representative

of the underlying stochastic processes for equity and bond prices.

If this is the case, the description of uncertainties relating to asset

management of a pension insurer can in principle be done by

stochastic models based on these two data series. In practice this is an

idealized assumption. The data series alone do not provide sufficient

information for our long term forecasting purposes. Therefore a full

data-based approach is not possible. This will be seen in particular

in developing and applying the interest rate model, where we have to

make assumptions about stationarity and stylized facts of the process.

Another practical limitation concerns the number of modeled assets.

In practice insurers usually invest in several asset classes. Therefore
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either the model parameters have to be adjusted or new models have

to be developed for assets not included in our model. For the mortality

model we use the data from the Human Mortality Database (cf.

www.mortality.org). This data covers over 100 years for Finland.

We use approximately the last 50 years of the data in order to focus

on more recent developments in mortality.

Secondly, we use yearly data to capture the features that are

relevant for long-term forecasting. Use of yearly data leads us to apply

discrete time series models, which we specify, estimate and validate

according to the modeling steps discussed in Box et al. (1994), and

depicted in Figure 1.1.

An important but a difficult part of modeling is the dependence

structure, which we address below. Currently ad hoc approaches are

often used in practice. Furthermore, the theoretical tools for handling

situations of multivariate non-normal and time-varying dependences,

are not yet well developed. Our solution to this problem is to allow a

flexible dependence structure between the chosen 3 risks for stochastic

scenario simulations. We allow the risks to be uncorrelated, correlated

or shock-correlated.

The final part of the study deals with applications. We illustrate

how the model can be used for analysing practical problems faced by

insurance companies, pension funds, and pension product developers.

The first case study concentrates on the single premium calculation

and the risk and solvency assessment of a whole life unit annuity for

a cohort of 65 year old persons, where the cohort size varies. The

second study is an extension of the previous case to the situation

of large multiple cohorts. The final case study discusses individual

pension insurance from the customer and long-term points of view.

Our discussion follows the outline above. In other words we start

with the equity index model, then move to the bond index model, then

to the mortality model, and finally we add the dependence structure

before concluding with the case studies and discussion.

As a final introductory remark we note that in insurance and risk

management applications also various types of models are frequently

applied other than those that we have chosen to study. Those models

typically use more frequentely collected data and are formulated in

continuous time. The model parameters can be chosen to fit the

current prices of various securities and derivatives, instead of being

estimated statistically from historical data. This applies in particular

to the market consistent valuation of liabilities according to Solvency

II. An important part of the market consistent valuation is an interest
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rate model that includes the whole yield curve (cf. IAA, 2010, or

Panjer and Boyle, 1998). In contrast, we only model the 5-year bond

total return index, which is also used in discounting the cash-flows.

However, one has to remember that all models give a simplified

image of reality, which is much too complex to be described exactly.

Therefore expert views, parsimony and ease of use are important

factors when choosing and using risk models.

SPECIFICATION

• Problem specification and restriction
• Objectives specification

PRELIMINARIES

• Literature review • Background theory
• Market best practice • Tools
• Expert knowledge • Data collection
• Earlier experience

MODEL BUILDING

INITIAL DATA ANALYSIS (IDA)
(summary statistics, tables, graphs etc.)

MODEL CHECKING/
EVALUATION/MODEL

FORMULATION/
MODEL
FITTING/ VALIDATION

(diagnostics/residual analysis,SPECIFICATION ESTIMATION
comparison with other

models etc.)

MODEL CHOICE

Figure 1.1 Box-Jenkins modeling steps
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2 Equity index model

We take a statistical point of view to risk management and assume

that uncertain future is well described by history. Therefore our

goal in equity index modeling is to be able to generate long

term simulations (up to 80 years) that have approximately similar

distributional and dynamic features that can be observed from the

chosen reference data set for equity returns.5 The reference data

should form a suitable basis for long-term forecasting and risk

management and should adequately approximate a well-diversified

equity portfolio of an insurance company and its clients (in case of

unit linked business).

In this chapter6 we first analyse the S&P 500 equity market

data and review the most common models for the equity returns.

Subsequently we develop a jump model for the equity returns

and estimate it using Maximum Likelihood and Markov Chain

Monte-Carlo methods. In the final section we present forecasts

generated by the model.

2.1 Data on equity returns

2.1.1 General characteristics of long-term equity returns

Our data series for the equity returns is the S&P 500 Total Return

Index as at year-end t=0,...,81, where t=0 corresponds to year 1925,

as given in Table 5-1 on pages 102—103 of Morningstar (2007). This

index, denoted SP500, is expressed in nominal values (starting at 1.00

at the end of 1925 and reaching 3077.33 at the end of 2006), and it

includes the effect of reinvested dividends. The SP500 consists of 500

large U.S. stocks weighted by their monthly market values.7

5We restrict our attention solely to equity market data and do not consider

any other explanatory economic variables.
6This chapter is based on Ronkainen and Alho (2009).
7For more details see Chapter 3 in Morningstar (2007).
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Figure 2.1 SP500 log-returns for 1926—2006

Figure 2.1 shows the yearly log-return series of SP500, defined

as the difference in successive values of the natural logarithm of the

index. A histogram of the log-returns is given in Figure 2.2. The

summary statistics of SP500 log-returns are as follows: the sample

mean is 0.099, standard deviation 0.192, skewness -0.853, and kurtosis

3.893. From the histogram and the skewness statistic we observe that

the returns are skewed to the left, and kurtosis indicates a higher

probability of extreme values than in a Normal distribution.

The autocorrelations and partial autocorrelations of SP500

log-return series are given in Figures 2.4 and 2.5, and the

autocorrelations of the squared log-returns in Figure 2.3. From these

data we observe that autocorrelation is weak for the log-returns but

more significant for the squared log-returns.
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Figure 2.3 ACF of squared SP500 log-returns for 1926—2006
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Figure 2.4 ACF of log-returns of SP500 for 1926—2006
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Figure 2.5 PACF of log-returns of SP500 for 1926—2006
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Koskela et al. (2008) have analysed in chapter 4 the data in

detail using ARIMA and GARCH models. Their findings can be

summarized as follows:

1. For the yearly data from 1925-2006 the following ARCH(1)

model gives the best fit of ARIMA and GARCH models, as

judged by the information criteria AICC or AIC or BIC:8

 − −1 = 01163 +  (2.1)

where  is the log of SP500 value for  = 0     81,  = 
√


with independent  ∼ (0 1), and  = 00183 + 05829
2
−1.

2. The yearly data from 1955-2006 appear to be uncorrelated and

the best model is:

 − −1 = 01002 +  (2.2)

where  ∼ (0 00234).9

We note that the sample period matters. From 1955 onwards an

uncorrelated model gives a good description of the data. On the other

hand, by analysing the series with some of the data deleted, we find

that it is approximately the first 10 years, i.e. the period from 1926

to 1935, that caused the ARCH(1) model to be chosen in point 1

above. However, one serious problem with the ARCH(1) model is its

symmetry: it treats losses and profits in the same way. This is not

what we observe in the data (cf. Figures 2.1 and 2.2 and the skewness

statistic). Asymmetry and fat tails are well-known empirical findings

for equity returns, although no commonly agreed scientific theory

exists to explain these stylized facts (cf. Kaliva, 2011, Chen et al.

2001).

We conclude that it is necessary to take into account the possibility

of very bad losses for risk management purposes, but in our view an

asymmetric model is a better alternative than a symmetric ARCH

model. We now turn to models that are able to describe downward

jumps.

8These terms are defined for instance in Brockwell and Davis (2002) on page

173.
9For the monthly data from 1955—2006 a GARCH(1,1) model is the best.
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2.1.2 Review of jump models for equity returns

Infrequent equity market crashes can be modeled by a jump process.

The classical example of this approach is the model of Merton (1976),

which is specified in continuous time. This model adds log-normal

jumps to a diffusion process according to a Poisson process. Maximum

Likelihood-based comparative analyses of this and some other jump

model classes has been carried out for weekly and monthly equity

market data from June 1973 to December 1983 in Jorion (1988).

His analysis concludes that a simple diffusion model is chosen for

monthly stock returns over a jump diffusion, a jump-ARCH and an

ARCH model, and that for weekly data the jump-diffusion model is

a significant improvement over the simple diffusion model.

A simplified modeling approach in discrete time has been

suggested for stock returns by Ball and Torous (1983). In their

approach the Bernoulli process is used for the jump times instead

of the Poisson process, and the resulting model is a Bernoulli mixture

of Gaussian densities for the daily stock returns.

Ramezani and Zeng (1998) apply a continous time asymmetric

jump-diffusion process to equity prices. Their model assumes that

good news and bad news arrive according to two Poisson processes,

and that the jump sizes are Pareto and Beta distributed. Another,

more recent jump model specification of this type is the double

exponential Poisson jump diffusion, first proposed by Kou (2002) for

option pricing applications. In the context of modeling the default risk

in corporate bonds when the asset values may have jumps, Hilberink

and Rogers (2002) model only the negative jumps with an Exponential

distribution.

Our model, developed below, observes discrete time for the yearly

equity log-returns, in contrast to the above mentioned models, which

are designed for shorter term applications and use more frequently

sampled data. As in Ball and Torous (1983), we use the Bernoulli

process for the jump times. We apply a similar idea as in Hilberink

and Rogers (2002) in that we only consider negative returns in the

jump term. However, in our model there is a coefficient to eliminate

the effect of jump years from the normal years (cf. (1 - ) in (2.3)),

which is not used in the above mentioned models. Moreover, our

model is formulated for Gamma-distributed jumps.
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2.2 Model specification and preliminary

estimation

2.2.1 Definition of the model

Denote the log of SP500 year-end index as , t = 0,1,...,T=81, where

t=0 corresponds to year 1925. The yearly log-returns from 1926 to

2006 are  =  − −1. We specify the jump model as follows:

 = (1− )(+ )−  (2.3)

where  is the mean and  is the standard deviation of no-jump years,

and  ∼ 10(0 1). For the jump process we assume that  ∼
(), 01, and  ∼ ( )    0. Moreover,
we assume that these three random variables are independent.

Because the yearly returns 1   are assumed independent, we

can write the likelihood function as

() =
Y
=1

(; ) (2.4)

where

(; ) = (1− )
1√
2

−(−)
222 + 



Γ()
(−)−11{0}

(2.5)

Here 1{0} = 1 when the yearly return is negative, and 1{0} = 0
otherwise, as we only wish to model the negative jumps by the last

term in (2.3). In addition we have used the independency of jump

times and jump sizes, and the product rule of probability with the

fact that the jump probability is ( = 1) = . Thus our model

can be described as a Bernoulli-mixture of ( 2) and ( )
distributions.

In this model the mean is

[] = (1− )−  (2.6)

By taking expectations from the square of (2.3) we get

[2 ] = (1− )(2 + 2) + (1 + )2 (2.7)

and using  [] = [2 ]−[]
2 we find that the variance is

10Independently and identically distributed.
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 [] = (1−)(2+2)+(1+)2−{(1− )− }2  (2.8)

2.2.2 Maximum likelihood estimation

The log-likelihood function  corresponding to (2.4) is

() =
X
=1

[(1− )
1√
2

−(−)
222 + 



Γ()
(−)−11{0}]

(2.9)

Wemaximized (2.9) directly by R’s unrestricted optimization function

() via the Nelder-Mead simplex method.11

The ( ) distribution is able to produce a rich variety
of functional shapes. This feature, together with the observed

bimodality of the empirical distribution of SP500 log-returns (cf.

Figure 2.2), motivated us to analyse several specifications for the

equity return model. The summary results of these calculations are

given in Table 2.1.

Model 1 is based on the maximum likelihood estimates (MLE)

with unrestricted  parameter. This model is highly bimodal, as seen

in Figure 2.7. This does not seem reasonable. Namely, the probability

density function has two spikes in its graph: a local maximum at

-0.0227, and a local minimum at zero, and its first derivative is

discontinuous at these points. We conclude that bimodality is not

easily explained, it brings undesirable features to the density without

introducing any apparent advantages, and thus it should not form a

basic feature of the model. Indeed, this bimodality is not observed

in the mid-year index data. The same conclusions regarding the

bimodality problem apply to more parsimonious Model 6, where =1,

corresponding to the Exponential distribution (cf. Figure 2.6).

To make our model more plausible, we change  and carry out the

Maximum Likelihood estimation. We note that when  is increased,

the bimodality decreases. In Figure 2.8  is 2, and in Figure 2.9 it

is 3. These models have less bimodality but still seem implausible.

When alpha is between 3.5 and 4, the bimodality problem gradually

disappears, as seen in Figures 2.10 and 2.11.

11Using the version 2.6.0.
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Table 2.1 Comparison of 6 models with Gamma jumps

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

 0.177 0.171 0.162 0.152 0.131 0.178

 0.121 0.125 0.131 0.138 0.153 0.121

q 0.229 0.208 0.176 0.143 0.071 0.235

 1.41 2 3 3.5 4 1

 8.65 11.4 15.45 16.17 12.79 6.29

l 24.77 24.5 23.58 23.04 22.86 24.36

f(
x)

0
.0

0.
5

1.
0

1
.5

2.
0

2
.5

–1.0
x

–0.5 0.0 0.5 1.0

Figure 2.6 Log-returns of Model 6 when  = 1
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Figure 2.7 Log-returns of Model 1 when  = 141
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Figure 2.8 Log-returns of Model 2 when  = 2
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Figure 2.9 Log-returns of Model 3 when  = 3
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Figure 2.10 Log-returns of Model 4 when  = 35
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Figure 2.11 Log-returns of Model 5 when  = 4

In conclusion, the MLE result (Model 1), which has the best

fit according to likelihood value, as well as the simpler Exponential

model (Model 6), have the serious problem of bimodality. We thus

analysed above several specifications for the model, and we cannot

say with certainty which would be the best specification (cf. the

discussion on parameter uncertainty below). However, it seems to us

that the Gamma distribution with  between 3.5 and 4 would provide

a reasonable class of models. Our preferred choice of =4 (Model 5)

also takes into account our original idea that the jumps should be

relatively rare, as then =0.071, so that on average there would be a

negative jump of equity returns once every 14 years. This feature of

rare but large negative jumps is in our view desirable. It allows us

to model catastrophic losses for risk management purposes although

the returns come from the Normal distribution independently most

of the time. Our model is thus able to take into account the main

features of the data analysis, it has a natural interpretation, and the

ML estimation is not very complicated.

In the final part of our MLE procedure we calculated the

confidence intervals for the parameters using the profile likelihood

method, which is based on the likelihood ratio test and its asymptotic

distribution. In this approach we search for the lower and upper

bound for each parameter such that 2((b) - ∗(e)) is approximately
3.84, i.e. the 5th percentile of the Chi-square distribution with 1
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degree of freedom. Here the log-likelihood function  is evaluated

at the maximum point b, and the other term, ∗(e), is calculated
by optimizing the log-likelihood for the remaining parameters while

keeping one parameter fixed. By gradually changing the fixed value

and re-running the optimization, we obtain the lower and upper

bounds of the confidence interval. This process is applied in turn

to each term of the parameter vector. The optimization algorithm is

the same as that for to the Maximum Likelihood estimation.

To determine the profile likelihood 95 percent confidence intervals

for the chosen model (Model 5), we first fixed =4, and then

calculated the following confidence intervals for the remaining

parameters:  ∈[0.09,0.19],  ∈[0.11,0.19],  ∈[0.01,0.27],  ∈[5.2,26].
We note from the confidence interval sizes that the parameter

uncertainty is high. This is not particularly surprising considering

the complex nature of equity returns and their jump process, which

depend not only on the economic climate but also on other exogenous

factors and human behavior. Although the joint analysis of parameter

uncertainty is difficult and implies more complex modeling, there are

methods available for that, and we consider them next.

2.3 Parameter uncertainty via Markov Chain

Monte-Carlo

Our goal is to simulate future equity returns so as to include the

parameter uncertainty in the calculations. Bayesian approach offers

a natural solution as it treats the parameters of the model as random

variables, each having a prior distribution. Posterior distribution is

the joint distribution of the parameters, conditioned on the observed

data. From this joint density we can sample parameters for instance

by the so-called Markov Chain Monte-Carlo (MCMC) method. We

implement MCMC via the Gibbs sampler, which uses conditional

distributions of the parameters to specify the Markov Chain with the

target joint density as its stationary distribution. For a comprehensive

discussion of MCMC see Gelman et al. (2004) and Gilks et al. (1996),

and for a more accessible introduction see Greenberg (2008).

We specify the Gibbs algorithm for our model in 2 steps as follows:

1. First we assume the jumps  =  and the data  =  ,

t=1,...,T, are known and express the conditional joint density
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L| of the model. Then the conditional distributions for the
remaining parameters, L(|  2 ), L(12|   ),

L(| 2  ), and L(|  2 ), are derived by picking

only those terms that include the parameter in question (the

other terms are constants and can be neglected in the Gibbs

algorithm).

2. In the second step we generate new jumps when all the other

parameters are known.

We assume the following independent priors:  ∼ ( ),
 ∼ (0 2),  = 12 ∼ (   ) and  ∼ ( ). The
parameters should be chosen to allow for a sufficiently flat and wide

distribution. Based on both visual and empirical analysis we proceed

as follows:

•  =  = 1, which leads to a non-informative uniform

distribution on (0,1).

•  = 08, which is 4 times the observed standard deviation
(0.192) of log-returns.

•  = 3  = 005, which gives a mean of 0.15 and standard
deviation of 0.05 for , while its MLE was 0.15 and the 95 %

profile likelihood confidence interval was [0.11, 0.19].

•  = 15  = 01, which gives a mean of 15.0 and a standard
deviation of 12.2, while the MLE was 12.8 and the 95 % profile

likelihood confidence interval was [5.2, 26.0].

From the arguments above we conclude that the chosen priors are

sufficiently non-informative (flat) for our purposes.12

The conditional joint density for the observations and parameters

is

12Testing with other reasonable parameters did not significantly change the

MCMC results.
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| =
Y
=1

4

Γ(4)
(−)31{0} (2.10)

×
Y
=0

 12√
2

−

2
(−)2

× 1√
2

−
222

× −1− 
Γ()

× −1−
Γ()

Note that =4 by our earlier assumption, and that the form of

this likelihood is simpler and much better suited for simulation than

(2.4) because here we use the conditional L| , i.e. we assume J is
known.

Now the conditional distributions required for the Gibbs

simulation can be derived as follows.

(|  2 ) ∝
(Y

=1

41{0}

)
−1− (2.11)

= 41+−1

(
−( −

X
=1

1{0})

)


Thus, (41 +   −
P

=1
1{0}) is the posterior of .

( |   ) ∝
(Y

=0

 12−

2
(−)2

)
−1− (2.12)

= 02+−1

(
−( + 1

2

X
=0

( − )2

)


Thus, (02 +    +
1
2

P
=0

( − )2) is the posterior of  .
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(| 2  ) ∝
(Y

=0

−

2
(−)2

)
−

222 (2.13)

= 

(
−
2

X
=0

( − )2 − 2

22

)


Thus, (( 1
2
+ 0)

−1
P

=0
 (

1
2
+ 0)

−1) is the posterior of .

(|  2 ) ∝ −1(1− )−11(1− )0 (2.14)

Thus, ( + 1  + 0) is the posterior of .
In the equations above, 0 and 1 denote the number of no-jump

( = 0) and jump ( = 1) years respectively. The relation (2.13)
follows from an analoguous result on page 76 in Gilks et al. (1996),

or by the completing the square technique.13

In the second step we update the jump process as follows. For

  0, t=1,...,T, we obtain by (2.5)

 ( = 1|     ) (2.15)

=
4(−)3Γ(4)

(1− ) 
12√
2


©−
2
( − )2

ª
+ 4(−)3Γ(4)

Using these probabilities with the most recent parameters, we

generate a new jump process realisation from the Bernoulli

distribution for each   0. After that, we start a new round of

iterations (step 1 → step 2 etc) until the number of iterations is

adequate. In the first iteration round we use the MLE results as

initial values.

2.4 Simulation of future equity returns

In this section we generate forecasts from our model with both the

MLE and MCMC parameters derived above, and compare the results.

13See e.g. the opening page of Finney (2001).
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The method for generating equity returns is as follows. We take

one parameter vector at a time from the MCMC sample (after the

burn-in period) and plug the parameters into the basic equation (2.3)

as constants; for the MLE-based forecast we use the MLE parameters.

Using 750 000 sampled observations (corresponding to a forecast for

75 years repeated 10 000 times), we get the empirical distributions

of the equity returns, as shown in Figure 2.12. As initial values for

the MCMC iteration we used the MLE results; other values were also

tested but they did not change the outcome.

N = 750000 Bandwidth = 0.0108
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Figure 2.12 Comparison of MLE (dashed) and MCMC (dotted)

based equity return simulations

We note from the kernel density plot in Figure 2.12 that the two

methods give rather similar general distributional results. However, in

the area where the returns are between -0.4 and 0, we see a systematic

difference, as the MCMC method gives more probability mass there.

In fact this seems to result in a return distribution that resembles

39



the case where the value of  is between 3.5 and 4, as we suggested

earlier. These findings are made more explicit in Table 2.2, where we

have included the MLE figures of Model 4 (where =3.5), and both

the MLE and the mean MCMC estimates for our preferred model 5

(where =4). We note that the jump probability  and  rate

parameter  are higher in the MCMC estimation, which implies that

jumps occur more often and are smaller. We also included in the table

the MLE 95 % confidence intervals calculated earlier by the profile

likelihood method, and the 2.5th and 97.5th quantiles of the MCMC

results for Model 5. The confidence intervals are very similar. We

also note asymmetry except for the  parameter.

Table 2.2 Comparison of Model 4 and the MLE and mean

MCMC parameters of Model 5, and the lower and upper

95% MLE confidence intervals (CI) and the respective

MCMC quantiles for Model 5

Variables Model 4 MLE MCMC CI-left CI-right 2.5% 97.5%

 0.152 0.131 0.14 0.09 0.19 0.09 0.19

 0.138 0.153 0.15 0.11 0.19 0.12 0.19

 0.143 0.071 0.11 0.01 0.27 0.02 0.25

 16.17 12.79 15.3 5.2 26 6.6 25.1

We conclude that both the MLE and MCMCmethods are suitable

for the estimation and produce consistent results. The MCMC

parameters partially cancel the jump features that we subjectively

preferred when choosing =4. We have plotted in Figure 2.13

simulated  against , in 2.14  against , and in 2.15 q against

, from the posterior distributions. The posterior correlations of

simulated model parameters are listed in Table 2.3.

Table 2.3 Posterior correlations of model parameters

Variables    

 1 —0.50 0.58 0.47

 1 —0.58 —0.40

 1 0.60

 1

From these statistics we conclude that the model parameters

generally are correlated. For instance we note from the high

correlation (0.6) between q and  that the more frequent the jumps,
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the smaller their sizes (cf. (2.6)). We also observe that , q, and

 are pairwise positively correlated, while  is negatively correlated

with , q and .
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Figure 2.13 Simulated  against 
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In Figure 2.16 we compare the MCMC results to the histogram

of empirical log-returns of SP500. We observe the smoothness and

wider range of values of the modeled returns, which are desirable

simulation characteristics for risk management purposes. Table 2.4

provides some 1-year   measures, i.e. the maximum losses of a

unit investment with a given confidence level , for the price index



1 , where 


1 = (1), and 1 was simulated 3000 × 80 = 240000

times using both the MLE and MCMC parameters.

We compare the Normal assumption to the MLE and MCMC

results, where (0119 02092) is based on the MCMC simulation

results for the price index, and (0099 0192) corresponds to the
historical log-return data, which might be the most commonly used

option in practice. Thus rows 1 and 2 are based on the Normal

assumption and the empirical and modeled data respectively. By

comparing these figures to the third row (MLE) we note that the

methods give different results due to the fat tail of the return

distribution. Finally, by comparing the final rows MLE and MCMC,

we observe a further increase in VaR due to the parameter uncertainty.

This shows more clearly when comparing  0999, which is 0.53 and

0.57 for the MLE and MCMC cases respectively. We also note that

the range of the three MCMC and MLE results is wider than for the

Normal case.

Table 2.4 1-year VaR values, i.e. the maximum losses of

a unit investment with a given confidence level , for the equity

prices based on N1 = N(0.099, 0.192) and

N2 = N(0.119, 0.2092) assumptions, and on the MLE

and MCMC simulations

 0.95 0.99 0.995

N1 0.19 0.29 0.32

N2 0.20 0.31 0.32

MLE 0.22 0.38 0.43

MCMC 0.23 0.38 0.44
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Figure 2.16 Comparison of the histogram of empirical log-returns

and the MCMC based simulations

3 Bond index model

We take a statistical point of view to risk management and assume

that uncertain future is well described by history. Thus our goal

in interest rate index modeling is to be able to generate long term

simulations, up to 80 years, with approximately similar distributional

and dynamic features that can be observed from the chosen reference

data set for government bond returns.14 The reference data should

form a suitable basis for long-term forecasting and risk management,

and should give an approximation to a bond portfolio of an insurance

company and its clients (in case of unit linked business).

14We restrict our attention to interest rates and do not consider any other

explanatory economic variables.
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In this chapter we first analyse the chosen mid-term US

government bond market data and briefly review the most common

approaches for interest rate modeling. We then develop an

ARMA(1,1) model for the log of yearly bond returns and estimate

it by the Maximum Likelihood and parametric bootstrap methods.

We also present simulations of the model.

3.1 Medium term bond index data

As a benchmark index for our interest rate model we chose the 5-year

US government bond total return index at the year-end t=0,...,81,

where t=0 corresponds to year 1925, as given in Table 5—1 on pages

102—103 of Morningstar (2007). This index (5yB) is expressed in

nominal values, and it started at 1.00 at the end of 1925 and reached

64.64 at the end of 2006. The index is calculated according to the

following principles:

• One-bond portfolios are used. The bond chosen each year is the
shortest noncallable bond with maturity not less than 5 years.

• The bond is held for the calendar year, and the total return is
computed, which includes both capital appreciation and income

return.

For more details see chapter 3 in Morningstar (2007).

As is typical in financial modeling, we start with the relevant

index, 5yB, take the natural logarithm, and difference the data once.

This gives us the yearly log-return on the index. The transformed

time series is shown below in Figure 3.1. The summary statistics

of 5yB are as follows: the sample mean is 0.051, the median 0.040,

and the standard deviation 0.052. The difference between the two

central location statistics reveal that the returns are skewed to the

right, which is even more clearly seen from the histogram in Figure

3.2. In the time series graph we observe different regimes or long-term

cycles. This is confirmed by the slowly decreasing autocorrelations in

Figure 3.3. On the other hand the partial autocorrelation in Figure

3.4 is significant only at lag 2.
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3.2 Review of interest rate modeling approaches

3.2.1 Interest rates and the yield curve

Interest rates define the cost of demanding or borrowing loanable

funds for different maturities at a given point in time. This term

structure of interest rates is conveniently presented graphically as

the yield curve by plotting the observed market yields against the

maturities. Typically a very low default risk is traditionally assumed

for highly rated government bonds whereas a risk premium for default

risk is added for corporate bonds. We do not model default risk in

this work.

Economists have tried to develop theories to explain the behavior

of the yield curve. Among the most common are the following (Cairns,

2004, sec. 1.6):

1. Expectations Theory argues that the annualized one-year

forward rate of interest for delivery over the period S to S+1 in

the future is equal to the expected value of the actual one-year

rate of interest at time S.

2. Liquidity Preference Theory is based on the argument that

investors usually prefer short to long term investments and thus

require a risk premium to offset the higher risk in a longer-term

bond.

3. Market Segmentation Theory assumes that each investor prefers

a set of bonds and maturity dates that are most suitable for

his own purposes (cf. the Asset Liability Management of life

insurance companies and the discussion in Introduction and

Case Study 1).

4. Arbitrage-Free Pricing Theory builds on the assumption that

the market for interest rate securities is free of arbitrage.

This theory underlies most interest rate models in the finance

literature.

In practice several theories are needed to explain the various

observed shapes of the yield curve, depending on the situation (see
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e.g. Fabozzi, 2002, chapter 4). For example, Theory 2 (unlike Theory

1) is able to explain why the yield curve usually is upward sloping.

Theory 3 allows short, medium and long term interest rates to change

in unrelated ways.

One factor that partly explains the observed yield curve shape is

the interest rate policy of central banks such as the Fed and the ECB.

A long historical time series will include several different economic,

interest rate, currency etc policies and regimes that influence the data

(see James and Webber, 2000, chapter 2, for a discussion on interest

rates in history). For instance, in our data we observe that the first

half of the observations differ from the second half. During the later

period the returns are higher and more volatile. Moreover, there are

some outliers in the data. For instance the minimum value of -0.053

in 1994 is explained by the fact that the Fed doubled the short term

interest rate from 3 to 6 percent in a short span of time, in response to

faster growth and the threat of higher inflation. Because the interest

rates of different maturities are typically highly correlated,15 the rise

of the short rate had similar effects to the other parts of the yield

curve. For the 5-year maturity bonds, the rise in discount rates

implied a decrease in their market value, which explains the negative

value of log-return in our series 5yB.16

Despite the fact that there are many economic factors that

influence interest rates, we will base our model on the 5yB data alone.

We have also chosen not to model the whole yield curve but the

price index of a dynamically updated bond portfolio. This is much

simpler and we consider it adequate as it allows the quantification of

bond portfolio uncertainty, and we are mostly interested in longevity

risk management issues in pension insurance. However, for each

application the pros and cons of prospective interest rate models

should be analysed and prioritized.

15to the extent that the so called 1-factor interest rate models may assume

nearly perfect correlation
16The so-called modified duration of bonds in 5yB is approximately 5, which

means that when the interest rate level or yield increases by 1 percentage point,

the value of the bond decreases by approximately 5 percentages, and vice versa.

For definitions and details see e.g. Jarrow, 2002, Chapter 2.
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3.2.2 Interest rate models

A large number of interest rate models is actively used by market

players because different applications seem to require different types

of models. The majority of models are expressed by a stochastic

differential equation (SDE) in continuous time. A brief review of some

common models is given in Koskela et al. (2008). Comprehensive

references are e.g. James and Webber (2000), Cairns (2004), and

Fabozzi (2002). The first book also includes a brief introduction to

stochastic calculus, which is needed for manipulating SDEs.

According to Cairns (2004), the following characteristics are

desirable but not essential for the development of an interest rate

term-structure model:

1. Interest rates should be positive.

2. The short rate,17 should be autoregressive.

3. We should get simple formulas for bond prices and for the prices

of some derivatives.

4. The model should be flexible enough and produce dynamics

which are realistic with respect to historical and current market

prices.

The first point is often observed by choosing a model which

only allows for positive values (such as the log-Normal distribution).

Negative real interest rates are possible but negative nominal rates

would violate the no-abitrage condition, as cash would then earn more

than those interest rate securities.

For most applications a one-factor time-homogeneous short rate

model is not sufficient (Cairns, 2004, chapter 6). Therefore various

multifactor models have been developed. For instance a two-factor

model would include separate equations for the short rate and for

some longer term rate.

Time series models in discrete time are one possible modeling

approach although less commonly used in financial applications. For

example in Campbell et al. (1997) some short rate models are

expressed and estimated via time series analysis. Multivariate models

are needed if several maturities in the yield curve are to be modelled

17Usually approximated by the 1-month or 3-month rate.
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separately. For our chosen data series, 5yB, a univariate time series

model is sufficient.

For long-term insurance applications the first globally used model

was the multivariate time series model of Wilkie (Wilkie, 1984). His

approach has been summarized e.g. in Daykin et al. (1994), sec. 8.4.

More recently the so-called Economic Scenario Generator simulation

models have been developed by consultants, typically based on SDEs

and tailored for market consistent valuation of assets and liabilities

(cf. IAA, 2010).

Regarding points 3 and 4 we note that the question of how

the parameters of the SDE model are estimated is fundamental.

Two main approaches are a) using historical data and statistical

estimation, and b) calibrating the model to fit the current market

prices. Often for risk measurement purposes a) is used, and b) for

market consistent valuation (cf. Fabozzi, 2002, Chapter 2). Also

mixtures of a) and b) can be used for both purposes.

For risk management applications there are a number of factor

models for bonds, which focus on parsimonious sets of drivers of

interest rate risk. These models may (to a varying degree) build

on the market, economic or statistical point of view. Fabozzi (2002)

in chapter 9 reviews some factor model classes and cites as the main

benefit of factor models that they simplify the risk measurement (e.g.

the VaR calculation) of complex interest rate security portfolios. This

goal is relevant for us as well when we search for a parsimonious

model that is capable of producing the main features observed in

the initial data analysis above. Via the iterative model development

cycle of Figure 1.1, we discovered that the following ARMA(1,1)

type of time series model is able to describe the data well after a

log-transformation.

3.3 Model specification and estimation

3.3.1 Model specification

Starting at the year-end values  of 5yB, where t=0,1,...,81, and

t=0 corresponds to year 1925, we can write the yearly log-returns

from 1926 to 2006 as

 =  − −1 (3.1)
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Choose a>0. The model is then specified for

 = ( + ) (3.2)

as

 −  = (−1 − ) +  − −1 (3.3)

where  ∼ (0 2), 0<<<1.
We have restricted the stationarity () and invertibility ()

areas to cover only half of their full range (-1,1). Moreover, for

acceptable parameter values () we require that . These

restrictions on the parameter space are based on the initial data

analysis. They guarantee exponentially decaying autocorrelations and

partial autocorrelations (cf. Box et al., 1994, p. 82 and the discussion

on parameter uncertainty below).

3.3.2 Maximum likelihood estimation

We start the estimation by preliminary selecting =0.1. This

parameter must be greater than the negative of the sample minimum,

-0.053, for the logarithm to be defined. This leaves us unknown

Ψ = (  
2
 ) to be estimated, which we carry out by means

of the Maximum Likelihood estimation method implemented in the

time series package  of the R language.18

Next we allow  to vary and re-run the arima estimation for

=0.07,...,0.2. The results show no significant changes in the AR and

MA parameters, but they do influence the mean, the variance and the

log-likelihood: the larger the constant, the smaller the variance and

the higher the log-likelihood value. However, after de-transformation,

larger values of  lead to an increasingly more symmetric return

distribution. Therefore we resort to the method of moments or

moment fitting and choose the value =0.091, which gives the best

fit of simulation results to the empirical data in terms of skewness; cf.

Table 3.1.

The final ML estimation results with =0.091 and the standard

errors in parentheses are as follows: =-2.01 (0.086), =0.93 (0.055),

=0.83 (0.079), 
2
=0.114. We note that both the AR and MA

coefficient are fairly close to 1 in absolute value. This indicates that

18Version 2.8.1.
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the stationarity of yearly bond returns is not guaranteed by the data

alone as the next section also confirms. However, it is not plausible

to have a non-stationary interest rate process over a long period, as

there are various economic controls in place to stabilize interest rates.

Several studies based on international panel data (e.g. Wu and Zhang,

1996, and Constantini and Lupi, 2007) support the assumption of

stationarity, as pointed out by Risku and Kaliva (2009) (p.16). We

assume stationarity as stylized fact 1.

Residuals in Figure 3.5 raise no other concerns except for the

outlier of 1994, which we explained earlier. Figure 3.6 shows a

histogram of the residuals and Figure 3.7 shows a Q-Q plot. A

simulation using these parameters and de-transformation for 100 000

times gives the return distribution of Figure 3.8, where the empirical

histogram of 5yB is also displayed. The summary statistics for this

simulation and for the original data are given in Table 3.1. The

autocorrelations of the simulation are in Figure 3.9 and the partial

autocorrelations in Figure 3.10.

We can conclude that the fit of the model is good. Although

ARMA(2,1) is the best of the ARMA(p,q) class of models according

to the AIC and AICC information criteria,19 we prefer parsimony

over slighty improved fit. Due to the AR-term the model is able to

generate long-term cycles, and due to the negative MA-term it is able

to rapidly correct high and low returns to the other direction, both

of which are features - stylized facts 2 and 3 - that we empirically

observed in the data. Note that the range of the simulations is wider

than in the data and that negative values are not uncommon. In the

data we observe negative returns approximately once every 10 years,

which is our stylized fact 4.

Table 3.1 Simulated returns (MLE) vs empirical returns of 5yB

Variables Simulation Empirical

min —0.064 —0.053

max 0.54 0.26

mean 0.051 0.051

median 0.043 0.040

sd 0.053 0.052

skew 1.16 1.14

19Definitions are given in Brockwell and Davis (2002), p. 173, for instance.
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3.4 Parameter uncertainty

Model’s limitations or model error is an important consideration in

any modeling or forecasting exercise. Parameter uncertainty is a

significant element of model error and therefore point estimates should

be supplemented with confidence intervals. We have studied this issue

from three points of view: a) asymptotic inference, b) Markov Chain

Monte-Carlo (MCMC) approach, and c) parametric boostrapping. In

a) one uses the result that the MLEs are asymptotically Normally

distributed. However, in our case the sample size is rather small

(81 observations), and there is a significant probability that the

AR-parameter  may go outside the stationary region (0,1), as its

upper bound is only 1.2 standard errors from the ML value =0.93.

Therefore we resorted to the Bayesian MCMC approach along the

lines of Chib and Greenberg (1994). We wrote the full conditional

distributions for our model explicitly, and used uniform priors for 

and  in their acceptable region . For the other parameters we

used uninformative priors. However, our algorithm did not converge

under these assumptions.

Therefore we ultimately chose to take into account parameter

uncertainty using the parametric Bootstrap method to generate

additional data samples by our simulation model. Another approach

would bootstrap residuals of the estimated model. Time series

bootstrap is more complicated than the conventional bootstrap based

on independent random sampling, and there are still questions that

are not well known (relating e.g. to unit roots). We refer to Horowitz

(2001) for further discussion and references.

We generated new simulated returns from the model equation

using the ML estimates and randomly generated innovation series

, t=1  2 × 106. The starting value of the process was the mean
1=-2.01. From the generated long series we took samples of 81

consecutive observations and accepted those samples where the newly

estimated  and  were in the acceptable region . New parameters

Ψ were estimated using the  function in R. When running the

new estimation, if an R error occured, i.e. the parameters were outside

the stationary or invertibility areas or unidentified (when =, cf.

Box et al., 1994, p. 266), we started the estimation again from
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a further point in time. From the resulting 16904 simulations we

accepted 10054 belonging to . This gave us the simulated sample

distributions for the parameters. The histograms for each parameter

are presented in Figures 3.11—3.14. Two-dimensional contour plots of

the parameters are given in Figures 3.15—3.20. Additionally, in Figure

3.21 all the simulations are presented for  and . We note that prior

information is indeed necessary because the simulated data alone are

not sufficiently informative to identify an appropriate model for our

application. We continue this discussion in the next section.
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3.4.1 Simulations

In practical application we choose parameter vectors Ψ=(   )
from the bootstrap sample, one at a time, and simulate new

observations for the chosen forecasting horizon from the resulting

ARMA(1,1) model. This is repeated as many times as necessary.

We used R function 20 in the simulation. Finally, we

de-transform the results, to get the simulated bond log-return series.

However, compared to the MLE simulations above, this approach

leads to more volatile results, where the standard deviation and

skewness in particular are higher than in the original data and

negative values are more common, as seen in Table 3.2. This shows the

significant uncertainty underlying the bond return process. Moreover,

our statistical model does not include the policy rules used by the

decision makers to guide and stabilize interest rates. We therefore

resort to the stylized facts and restrict the simulations further as

follows.

When the parameter uncertainty is taken into account in the

simulations, we also get some less likely (from economic point of

view) realisations. E.g. when the MA parameter  is small, a rapid

correction from negative to positive return is less likely. This may

allow several successive negative values to emerge in the simulation,

which is not observed in the data and might not happen in reality.

Another stylized fact of the data is the long-term cycles. This is

consistent with a large AR parameter . Therefore we restricted the

AR and MA parameters and also the standard deviation in order to

get the portion of negative values more in line with the empirical data

and our stylized fact.

The chosen restrictions are 06    095 06      

034, which leads to the acceptance of approximately 22 percent
of the bootstrap parameters. The simulation results based on the

restricted parameters (see Table 3.2) give a better statistical fit

and lead to plausible simulation scenarios. Still, in our view, the

uncertainty of the model is adequately reflected in the simulations,

which can be seen when comparing the chosen area to the MLE

parameters ( )=(0.93,0.83) and their standard errors (0.06,0.08).

20R version 2.12.2.
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For the standard deviation, the restriction is severe due to the goal

of restricting the portion of negative returns. Still they emerge more

often in the simulations than in the data (13 percent vs 10 percent),

which causes significant interest rate risk for the insurer.

We will use the interest rate model in our case studies to model the

bond portfolio returns and to discount the cash flows. We also base

our pension indexation rule on the modeled interest rates. Therefore

the indexation and discounting of pensions largely offset each other,

which does not happen, if the pensions are not index-linked. Another

feature we will study is a floor in the pension rule, which does not

allow the pensions to decrease when the bond returns are negative.

This causes interest rate risk for the insurer. We illustrate these

questions in the first case study.

Table 3.2 Simulated returns, 3000 series of 80 years, using

bootstrap parameters (BS1) and with the restriction (BS2)

vs empirical returns of 5yB. Fraction of negative returns is

given in neg.ratio

Variables BS1 BS2 Empirical

mean 0.053 0.051 0.051

median 0.043 0.043 0.040

sd 0.057 0.051 0.052

skew 1.55 1.16 1.14

neg.ratio 0.15 0.13 0.10

In Table 3.3 we include some 1-year   metrics for the bond

price index  , i.e. the maximum losses on a unit investment with

given confidence level . We compare the Normal assumption to the

MLE and bootstrap results, where 1 = () and  was simulated
for 80 years 3000 times. Parameters for the Normal-distribution are

based on the restricted bootstrap simulation results for the price

index in (0054 00552) and on the historical log-return data in
(0051 00522). We note that the VaR figures are greater in the

Normal case than in either the MLE or bootstrap case. We also note

that the results are very different from the equity returns. Now the

VaR figures are of a much smaller magnitude due to the different

shape of the log-return distribution.
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Table 3.3 1-year   values, i.e. the maximum losses on a unit

investment with a given confidence level , for the bond price

index based on 1 = (0051 00522) and
2 = (0054 00552) and MLE parameters and bootstrap
parameters. BS1 is without and BS2 with the parameter restriction.

VaR 0.95 0.99 0.995

N1 0.034 0.068 0.079

N2 0.036 0.072 0.084

MLE 0.016 0.032 0.037

BS1 0.019 0.036 0.041

BS2 0.015 0.031 0.036

Finally, we note that because our goal is a parsimonious statistical

model reflecting the main features of the chosen data, there are

certain limitations in our approach. Stylized facts are a case in point.

Another one is the log-transformation (3.2). The model specification

implies that log-returns on bonds are bounded from below by −
or equivalently that bond prices are bounded away from zero by a

positive constant.

4 Mortality model

4.1 Introduction

Mortality forecasting is about modeling the stochastic lifetimes of

people. Several types of models are commonly used in practice,

depending on the application (cf. Booth and Tickle, 2008, Cairns et

al., 2008, Keilman, 2003, and McWilliam, 2011). The key questions

to consider in making modeling choices include the following:

• micro level (individuals) or macro level (groups of individuals)
• static or dynamic approach
• explanatory factors (e.g. age, sex, cause of death)
• forecasting horizon
• availability and choice of data
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In actuarial practice models have often been used that build on

an analytical static formula for the force of mortality or the hazard

rate (e.g. the Makeham or Gompertz law; see e.g. Gerber, 1990,

sec. 2.3). The main reason for their use is simplicity. In addition life

and pension insurance portfolios are usually large enough to diversify

away the idiosyncratic risk. However, aggregate uncertainty, i.e.

the systematic risk of mortality change, remains. This is typically

accounted for by implicit safety margins based on ad hoc approaches.

The current international trend in life insurance modeling is towards

the dynamic stochastic approach. A standard approach nowadays in

stochastic mortality forecasting is to use the Lee-Carter model (Lee

and Carter, 1992). We first describe and implement this model for

the Finnish data. In the estimation phase we make use of the MCMC

method to take into account parameter uncertainty. Subsequently

we develop a local version of the Lee-Carter model, that is, a local

bilinear model, and compare the estimation and forecasting results of

the two approaches.

4.2 Data

We use the annual age-specific death rates for the entire Finnish

population for the years 1955 to 2008 from the Human Mortality

Database (HMD, available at www.mortality.org). This choice puts

more focus on recent developments, as it excludes the early part of

the available data in the HMD, which starts from 1878. Our data

also exclude the war years and the period of rapid mortality decline

of younger generations in Finland, around 1950. The general picture

of Finnish mortality is such that more recent data leads to lower

forecasted mortality. Our data choice is also supported by the Finnish

insurance industry’s internal research report by Kuusela and Kukkala

(2010) where different HMD data periods and the resulting Lee-Carter

forecasts are analyzed and compared. We note that the choice of data

includes inevitably subjectivity and expert judgement. However, we

allow certain parameter values to vary in the forecasts by applying

the MCMC method to the mortality index.

Our focus is on the long term trend and uncertainty of mortality

forecasts, and thus the population data is a suitable basis for our

study. Insurance portfolios, however, are selected sub-populations of

the entire population and they typically have a lower mortality due to
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various socioeconomic factors and insurance underwriting practices.

This topic has been analysed recently in Sweden (DUS, 2007, Chapter

4). There it is concluded on page 65 that mortality for the voluntary

insurance sub-population was about 30 percent lower than population

mortality for women and 40 percent lower for men up to 95 years.

However, the data period was only from 2001 until 2005. In general,

the smaller amounts of data in sub-populations, such as those of small

insurance companies, necessarily raise the question of their suitability

as such for long term forecasting. One way to get the best of both

worlds is to aggregate the data of all insurance companies and then

carry out the forecasting, as was done in Sweden and is currently

being done in Finland.

In the HMD the death or mortality rates are available for ages

x=0,1,2, ... ,109,110+. The yearly death rate  = , where

 = number of deaths and  = exposure-to-risk,
21 is calculated in

the HMD period life table according to the formula

 =
 +

( ( ) +  ( + 1))2 + ( −)6
 (4.1)

where  is the number of deaths in the lower and  in the upper

Lexis triangle and P(x,t) is the population aged x at the start of

calendar year t. These and other key concepts that are needed in

the construction of life tables are explained in detail in the Methods

Protocol for the HMD or Alho and Spencer (2005).

For infant mortality rate the HMD formula is modified as

0 =
0

1
3
(− 1) + 2

3
()

 (4.2)

where B(t) denotes the number of births occurring in year t.

The modeling of older ages also requires special measures. We rely

again on the methods developed for the HMD life tables, the main

features of which we review here. For details we refer to the HMD

Methods Protocol.

The HMD uses a combination of methods for deriving age-specific

estimates of population size on January 1 of each year. For most

of the age range, they use either linear interpolation of population

estimates from other sources or intercensal survival methods. At older

ages (80+) they generally use population estimates computed using

special methods, except for Finland and the other Nordic countries,

where reliable official population estimates are available.

21The number of life-years exposed to risk of death
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Period life tables are computed by converting death rates to

probabilities of death (see (4.12)). Before this conversion, death rates

for ages 80 and above are smoothened by fitting a logistic function

separately for males and females. A cohort life table depicts the life

history of a specific group of individuals. A period life table represents

the mortality conditions at a specific moment in time, which however

are not known with certainty. At older ages where this inherent

randomness is most noticeable, the HMD smoothens the observed

values in order to obtain a better representation of the underlying

mortality conditions.

4.3 Review of the Lee-Carter model

The model developed by Lee and Carter (1992) is defined for the

death rate for age x in year t, , as follows

[] =  +  +  (4.3)

where  and  are age-specific constants,  is a time-varying

index of mortality, and  ∼ (0 2) is the error term. The
identifying constraints are chosen as

P
 =1 and

P
 =0, with 0

for t=1955.

In other words the Lee-Carter model expresses the log of

age-specific death rates as a linear function of an unobserved

time-dependent mortality intensity index , where  defines the

age-profile and  is a weighing factor.

Lee and Carter suggested use of the singular value decomposition

(SVD) to find a least squares solution to the underdetermined model

equation. This method is based on matrix theory (see e.g. page

427 in Horn and Johnson, 1985), and its implementation for the

Lee-Carter model is explained in Alho et al. (2011). The method can

be implemented as follows. We first subtract the averages over time

(row-averages) of the matrix log[] (see Figure 4.1), where 

comes as in (4.1) for t=1955,...,2008 for the Finnish total population

data. Then we use the R-function  to find the first left and right

vectors and the leading value of the SVD.  in Figure 4.2 is the first

left vector when divided by the normalizing constant, which makes

the components sum to unity. , which is the product of the latter

two terms in SVD, is divided by the normalizing constant in Figure

4.3.
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Next the mortality index  is modeled using time series methods.

This index is approximately a decreasing line during the sample period

in Finland (Figure 4.3), and it can be modeled as a random walk with

drift. This is the same approach that Lee and Carter used although

the U.S. data included more deviation from the linear trend. In

our case the summary of the once-differenced data (Figure 4.4) is

as follows: Data Points = 53, Sample Mean = -1.880 (s.e. 0.530),

Sample Variance = 14.88, Min = -14.510, Max = 8.883, Median

= -1.818. Consequently the R  software gives the following

estimated model for the yearly mortality index

 = −1 − 188 +  (4.4)

where  ∼ (0 1488).
In order to validate the model we carried out the following

analysis. The Lee-Carter model assumes that mortality develops in

a way where the common mortality index  is multiplied by the

age-dependent weighing factor . The accuracy of this assumption

for our data is assessed in Figure 4.5, which gives () −
(+1) for age-cohorts 30—49, 50—64, 65—79 and 80—99 during
the period from 1950 to 2007. The mean values for these cohorts

are respectively 0.0193, 0.0165, 0.0188 and 0.0137. We note that the

shapes of the log-mortality change-curves are not indentical and that

the means and the standard deviations for the different age groups

differ. We will address this problem below in detail, but first we

analyse parameter uncertainty in the Lee-Carter model.

72



0 10 20 30 40 50

0.
3

0.
2

0.
1

0.
0

0.
1

0.
2

0.
3

Time

lo
g
m
or
ta
lit
y
ch
an
ge

Figure 4.5 Difference of log-mortality ()− (+1) for
ages 30—49(solid), 50—64(dashed), 65—79(dotted), 80—99(longdashed)

during 1950—2007.

4.4 Parameter uncertainty in the Lee-Carter

model

We take into account the parameter uncertainty of the Lee-Carter

model by specifying a Markov-Chain Monte-Carlo algorithm for the

random walk with drift model that was chosen for the mortality index

. The algorithm below can be found in Gilks et al. (1996) on p.75—77

and in Alho and Spencer (2005) in sec. 9.2.2. Lee and Carter also

studied the sources of error for the other parameters of the model

(cf. Appendix B of their paper). Their conclusion was that the error

in forecasting the mortality index, which they evaluated using the

Normal assumption, dominates the total forecasting error for long

horizons. Therefore this approach is sufficient for our purposes. As in

the previous section we use the HMD yearly data from 1955 to 2008

for the age groups 0,1,2,...,109,110+.
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Assuming for  = 1   = 53 that the prior distributions are
sufficiently uninformative conjugate distributions,22

 = +1 −  ∼ ( 1) (4.5)

 ∼ ( 2) = (−19 16)
 ∼ ( ) = (3 45)

that the  are conditionally independent given the parameters, and

that  and  are independent, the joint density for the observations

and parameters is

 =
Y
=1

 (| ) () () (4.6)

=

2


2−(+1)2
−


2


=1(−)2−05

−2(−)2−1 − 

In deriving the full conditional distribution for each parameter, we

pick only those terms that include the parameter in question. Using

the analoguous results in Gilks et al. (1996) or completing the square,

we find that the posterior for  is

(


−2 + 

X


 (
−2 + )

−1) (4.7)

and for 

( + 2  + 05
X


( − )
2) (4.8)

The Gibbs-algorithm samples from the full conditional distributions

above in a stepwise fashion using the results of the previous iteration

as parameters. The starting value for  can be taken from the

ML estimation. The iteration procedure is repeated until a sufficient

sample is obtained.

The results of the procedure are given in Figures 4.6, 4.7 and 4.8,

where the conditional posterior distributions of the parameters and

their dependence are shown.

22i.e. flat and wide enough in light of preliminary estimation results above for

(4.4) to not affect the numerical results
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Figure 4.8 The posterior of  vs the posterior of 

To simulate forecasts from the model, we proceed as follows:

• Choose ( ) from the MCMC sample.

• Generate an i.i.d. sequence  ∼ (0 1) of the desired
length.

• Calculate  = −1++ to get the simulated forecast for .
We choose 0 = −50 so that the jump-off error in the start of
forecast is minimized. Lee and Miller (2001) have shown that

jump-off bias is avoided by constraining the model so that 
passes through zero in the jump-off year (see also Booth and

Tickle, 2008).

• Calculate  = ( + ) to get the simulated forecast
for . We smoothen  and  by the  function

in R in order to reduce the unwanted yearly variation in ; see

Figure 4.2.
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• Choose the next pair ( ) and repeat the procedure for a
new forecast.

We can use the simulation algorithm to study the mortality

forecasting uncertainty for different horizons. Table 4.1 contains the

simulated total population death rates 65 for different forecasting

horizons t=(10,20,30,40). We observe the increase in forecasting

uncertainty for the longer horizons when comparing the summary

statistics. For instance, when the forecasting horizon changes from

10 to 40 years, the mean decreases from 0.91 to 0.53 percent, whereas

the standard deviation increases from 0.13 percent to 0.19 percent.

This is a key feature in longevity forecasting, which makes the pricing

and risk management of annuities challenging.

It is interesting to compare our simulations to the official

deterministic forecast done in 2009 by Statistics Finland. In that

study the expected life time of a 65-year old male (female) in 2010 is

17.6 (21.5) years, the average being 19.6 years.23 In our forecast the

corresponding figure for the total population is 20.2; see Figure 6.2.

Our forecast is thus more optimistic.

Table 4.1 Quantiles and some percentiles of 3000 simulations

for 10065 with different forecasting horizons t

t 1% Q1 Q2 mean Q3 99% sd

0 1.09

10 0.64 0.82 0.90 0.91 0.99 1.26 0.13

20 0.44 0.64 0.74 0.75 0.85 1.22 0.16

30 0.31 0.50 0.61 0.63 0.73 1.14 0.18

40 0.22 0.40 0.50 0.53 0.63 1.10 0.19

4.5 Gender-specific mortality

Remaining life expectancy at age 65 for males and females in Finland

according to the HMD life table for 2008 are 17.3 and 21.0 years

respectively, while for the total population it is 19.5 years. We now

analyse the effect that gender has on mortality by carrying out the

23The official forecast is available at http://tilastokeskus.fi, and the lifetimes

are from Kuusela and Kukkala (2010).
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Lee-Carter calculations above separately for males and females using

the HMD data from 1955 to 2008. This is an important and topical

issue for the European life and pension insurance industry because

a recent decision by the EU Court prohibits the use of gender as a

pricing factor for insurance risks since 2013 (Test-Achats judgement,

C-236/09). We use the same HMD data set as before except, leaving

out ages 0,1,...,19, as there are very few deaths in this age range

(except for infants).

Age-specific parameters ,  and  resulting from the SVD

estimation are shown in Figures 4.9, 4.10 and 4.11. We note that

the mortality age profiles according to  differ, men having higher

mortality except at the very highest ages. Age-dependent weighing

factors  for the mortality index  are also different for males and

females. For men in the age range of 40-65 the mortality gains are

much higher, but the situation changes up to age 90, after which there

are no big differences. When comparing the dynamic factor  that

controls the mortality change, we note that the last 10 years or so have

been rather similar for both sexes. Before that, there are differences

and changes. Men’s  has been higher since the 1970s, in contrast

to the prior situation. However, if one takes 1970 as the starting and

2008 as the end point and connects these points, the lines are almost

indentical. This could indicate that mortality intensity is changing

in the long run similarly for both sexes. However, the correlation of

the once differenced  series for males and females in our data is

0.47. Moreover, we note that it is the product  that drives future

mortality changes. Calculating the difference of these matrix products

for males and females, we get the surface shown in Figure 4.14. We

observe that the mortality changes have not been the same during

the observation period from 1955 to 2008, except for the highest ages.

The pattern has also changed during the period. We note that the

yearly change in mortality for males has been greater than for females

during the last 10 years, in particular for ages around 20 and around

70 years, as the peaks in the figure show.
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Figure 4.10 Lee-Carter weighing factors  for males (solid) and

females in Finland in 1955—2008
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Figure 4.11 Lee-Carter mortality index  for males (solid) and

females in Finland 1955—2008.

Posterior ARMA model parameters for the differenced  series

were calculated by running the MCMC estimation separately for

males and females for 50 000 iteration rounds. The results are

shown in Figures 4.12 and 4.13. We note that both parameters are

distributed differently for the genders, males having generally higher

mean and lower standard deviation than females.
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1.5 2.0 2.5 3.0 3.5

0.
0

0
.5

1.
0

1.
5

N = 50001 Bandwidth = 0.02232

D
en
si
ty

Figure 4.13 Posteriors of  for males (solid) and females.

81



1955
1960

1965
1970

1975
1980

1985
1990

1995
2000

2005
2010

20

30

40

50

60

70

80

90

100

110

0.4

0.2

0

0.2

0.4

0.3

0.2

0.1

0

0.1

0.2
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20—110+ in 1955—2008

Figure 4.15 Fitted LBL minus L-C for ages x=0,1,...,110+ (x-axis)

and years 1955—2008 (y-axis)
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4.6 The local bilinear model

In the literature there have been numerous attempts to improve the

Lee-Carter model, as for instance the review in Booth and Tickle

(2008) illustrates. Our goal is to generalize the Lee-Carter (L-C)

model in order to gain more flexibility in modeling different ages.

This generalization, a local bilinear model (LBL), is developed in

three steps. Firstly we estimate the Lee-Carter model using the

standard SVD method explained above, but now we do it locally

for each age x. We use several data windows [x-h,x+h], h=1,...,10,

from which we choose the optimal bandwidth by cross-validation.

Secondly, we estimate and validate the model parameters. Thirdly,

we fit ARIMA(0,1,0) models for each age and generate forecasts of the

model, which we then compare to the Lee-Carter forecasts. Finally,

we choose the preferred model for our simulations.

4.6.1 Specification and bandwidth selection

In this section we specify the local bilinear model and determine

the optimal size of the age interval to be included in the estimation

step. The data cover the Finnish population for t=1955,...,2008. We

specify the Lee-Carter model locally for each age x=10,11,...,90, using

different bandwidths, = [− +], h=1,...,10. When  ∈,

the model for the death rate in year t or  is

[] =  +  +  (4.9)

where  and  are age-specific constant vectors,  is a

time-varying index of mortality, and  ∼ (0 2 ) is the error
term. When the model is extended to cover the first and last h values

of the age range, we define the middle term as 1010 = 101010
for  ∈ [0 9], and as 9090 = 909090 for  ∈ [91 100].
The age-profile vector  is estimated as the row mean of the data

matrix, as in the Lee-Carter case above and it is first subtracted from

the data. In the data analysis we have assumed the error term equal

to zero and have not set further parameter restrictions on the model,

as we use it only for comparative purposes below.
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The optimal bandwidth selection is based on widely used least

squares cross-validation (see e.g. Park and Marron, 1990, and Patil,

1993) as follows. We estimate the model separately for each age x

using the punctured interval \ {} in the SVD-estimation. We
leave out age x in order to use it in the leave-one-out cross-validation.

More specifically, we calculate the term  of the Lee-Carter formula

by estimating  locally as (−1+ +1)2. We then compare the
estimated result to the actual data, and choose the value of h which

minimizes the Sum of Squared Errors,X


£
05(−1 + +1) −0



¤2
 (4.10)

where 0
 comes from the log-mortality data matrix where the mean

of each age has been subtracted. We find that the optimal bandwidth

is 5 (see Table 4.2).

Table 4.2 Sum of Squared Errors for different bandwidths

h SSE

1 72.0

2 66.9

3 62.9

4 60.3

5 58.0

6 59.2

7 59.3

8 59.7

9 60.1

10 61.0

4.6.2 Estimation and validation

The local bilinear model is estimated in the same way as in the

previous section, except that now h=5 is fixed and we include the

whole interval  when running the SVD algorithm for age x.

The results of these computations are discussed in the context of

forecasting results below.

We validate our model by comparing it to the Lee-Carter model.

This is done by computing the  terms in the local bilinear
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model and the  terms in the Lee-Carter model and taking their

differences. For the first and last 5 values in the LBL we used the first

and the last available values as specified above. The resulting surface

is shown in Figure 4.15. We observe that there are both positive

and negative differences, which indicates that the LBL model fits the

data better. The differences LBL minus L-C for the most part seem

to be rather random. However, a notable exception is the cohort born

around year 1940, i.e. during the wartime, for which the LBL model

gives lower mortality. This is shown as a darker area or valley in the

figure, which is due to negative values.24

4.6.3 Deterministic forecasting and model comparison

Forecasting is based on the Random Walk with Drift (RWD) model

as in the Lee-Carter case, but now we have a different model for each

age. We approach the problem by developing deterministic forecasts

and comparing the result of these two models.

The multipliers in the RWDmodels for each age are the differences

between the last and the first observation divided by the number of

data points minus 1. We smoothed the data by the cubic spline

smoother  in R for graduation.

Mortality forecasts for years t=1,...,75 and ages x=0,1,110+ in the

deterministic case are given by the formula

() = 0 +  +  (4.11)

where 0 is the last data point (year 2008) in the log-mortality

data matrix,  is the subtracted mean value in the data, and  is

the RWD coefficient described above. Finally we de-transform the

results by the  function. In Figures 4.16 and 4.17 we plot a couple

of LBL forecasts together with the observed values.

24Namely, − = +−− = [00
]− [], which

is negative when the LBL-mortality 00
 is smaller than the Lee-Carter mortality

.
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Figure 4.16 Observed and forecasted mortality for age x=30 in the

LBL model
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Figure 4.17 Observed and forecasted mortality for age x=60 in the

LBL model
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The final step in our deterministic calculation is to form a life

table for the LBL and L-C models, which can be used to calculate life

expectancies and compare forecasts. We use the actuarial estimator

(cf. Alho and Spencer, 2005, p. 89) to get the 1-year-survival

probabilities from the forecasted death rates for t=1,...,75

 = (2−)(2 +) (4.12)

where x=0,1,...,109,110+. Using the familiar life table formulas with

0 = 1, we get the expected life time of infant for each t as

0 = 12 + 1 + 2 +  (4.13)

 = 0 × × −1 (4.14)

This standard method is explained in more detail in Gerber (1990),

Appendix A, and in Alho and Spencer (2005) on page 80.

The results for the LBL and L-C models and their difference are

shown in Tables 4.3, 4.4 and 4.5 respectively. We note that the LBL

results are slightly greater for long forecasting horizons, i.e. the LBL

model then gives slightly lower mortality forecasts than the L-Cmodel

does. The differences though are minor, which leads us to conclude

that our LBL model supports the L-C model. The better fit of the

LBL model does not significantly change the L-C forecasts despite

the cohort effect we noted. Moreover, the L-C model is the far more

simple of these two models. By the principle of parsimony we chose

to base our mortality forecasting on the previously discussed MCMC

simulation algorithm for the Lee-Carter model.

Table 4.3 Expected lifetime of infant during the 75-year

forecasting period in the LBL model

year 0
1 80.01 80.20 80.38 80.56 80.75 80.93 81.11 81.29 81.47

10 81.65 81.82 82.00 82.17 82.35 82.52 82.69 82.86 83.03 83.20

20 83.36 83.53 83.70 83.86 84.02 84.19 84.35 84.51 84.67 84.83

30 84.98 85.14 85.29 85.44 85.60 85.75 85.90 86.05 86.20 86.35

40 86.49 86.64 86.78 86.93 87.07 87.21 87.35 87.49 87.63 87.77

50 87.90 88.04 88.17 88.31 88.44 88.57 88.70 88.83 88.96 89.09

60 89.22 89.35 89.47 89.60 89.72 89.84 89.96 90.08 90.20 90.32

70 90.44 90.56 90.68 90.79 90.91 91.02
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Table 4.4 Expected lifetime of infant during the 75-year

forecasting period in the L-C model

year 0
1 80.01 80.19 80.38 80.56 80.74 80.92 81.10 81.28 81.45

10 81.63 81.80 81.97 82.14 82.31 82.48 82.65 82.82 82.98 83.15

20 83.31 83.47 83.63 83.79 83.95 84.10 84.26 84.41 84.57 84.72

30 84.87 85.02 85.17 85.32 85.47 85.62 85.76 85.90 86.04 86.18

40 86.32 86.46 86.60 86.74 86.88 87.01 87.14 87.28 87.41 87.54

50 87.67 87.80 87.93 88.05 88.18 88.31 88.43 88.55 88.67 88.80

60 88.92 89.04 89.15 89.27 89.39 89.50 89.62 89.73 89.84 89.96

70 90.07 90.18 90.29 90.39 90.50 90.61

Table 4.5 Difference of expected lifetimes of infant in LBL

and L-C forecasts

year ∆0
1 0.00

10 0.02

20 0.05

30 0.11

40 0.17

50 0.23

60 0.30

70 0.37

75 0.41

5 Dependence modeling

5.1 Introduction

The final building block in our model is the dependence structure. In

addressing this question we must consider how the equity and bond

total return indexes and mortality experience might be interrelated

in different situations.

Asset managers typically base their investment strategies on the

assumption that correlations between various asset classes are less

88



than perfect. Therefore diversification can provide benefits in terms

of the risk-return profile when choosing the asset portfolio. However,

dependence modeling is generally considered very challenging. This

is true here also due to the comovements of equity and bond returns.

The correlation between the log-returns on the SP500 and 5yB indexes

in our whole data from 1926 to 2006 is small and positive, 0.059, but

there are time periods of large positive and negative correlations. This

is shown in Table 5.1, containing the correlations for 10-year periods.

Table 5.1 Correlation between the log-returns on the US equity

and mid-term bond total return indexes SP500 and 5yB

for various periods

years correlation

1926—1935 0.12

1936—1945 0.38

1946—1955 —0.15

1956—1965 —0.67

1966—1975 0.13

1976—1985 0.37

1986—1995 0.70

1996—2006 —0.51

It is widely believed in the literature that the bond-stock

relationship is time varying and includes nonlinearities. Andersson

et al. (2008), after presenting a literature review, study the variation

in daily data on US, UK and German stock and bond returns from

January 1991 to August 2006. They conclude that stock and bond

prices in general move in the same direction, but that there are periods

of negative stock-bond return correlations which seem to coincide

with the lowest levels of inflation expectations. Moreover, in line

with the flight-to-quality strategy of asset managers, their results

suggest that high stock market uncertainty (measured by the implied

volatility of stock options) leads to a decoupling between stock and

bond prices. Previously Gulko (2002) had shown that the periods of

negative stock-bond correlation tend to coincide with stock market

crashes. For a broad discussion on dynamic correlation modeling and

forecasting we refer to Engle (2009), and for a discussion on asset

prices during financial crisis we refer to Malz (2011), Ch. 14.

Kroner and Ng (1998) argue, in their study of asymmetric

comovements of asset prices in the context of multivariate GARCH
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models, that if the expected return on one asset class changes due to

an asymmetric volatility effect, the correlation between the returns

on that asset and on other assets which have not had a change in

their expected returns should also change.

In addition to multivariate GARCH, there are other widely

used multivariate models in economic and financial applications. A

vector autoregressive (VAR) model is an important example. Engle

and Granger (1987) introduced the notion of cointegrated processes

and the Error Correction Model. For the application of a Vector

Equilibrium Correction model to a pension insurance company, we

refer to Koivu et al. (2005).

Non-linear dependence can be modeled by the so-called copula

method. This method constructs the joint multivariate probability

density as a product of the marginal densities and a copula function;

see e.g. Denuit et al. (2005) or Nelsen (1999). However, one serious

limitation of the copula approach is its static nature, i.e. it does not

take into account the time varying aspect of the dependence.

When it comes to dependence between mortality and economic

factors, there is nowadays little evidence to support the idea

that economic factors and mortality would normally be correlated.

However, historically the situation has been different due to famines

etc; cf. the Finnish study in Turpeinen (1977). On the other

hand, during economic shocks mortality might be higher due to more

stressful living conditions etc, so we allow for this possibility in our

dependence model.

Thus our next goal is to build a flexible model for the dependence

structure that enables generation of stochastic scenarios. In this

chapter we first discuss the structure of the simulation model. Next

we formulate it mathematically, and then discuss the simulation

algorithm for which more information is included in the appendix.

5.2 Model structure

The flow chart of the simulation model is as follows:

1. From the three independent parallel processes with posteriors

, ,  we sample a parameter triple (, Ψ, Θ), where
 = (    ) correspond to the process for equity returns
, Ψ = (   ) are the parameters for the interest rate
returns , and Θ = ( ) and   are the parameters for
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the mortality model . The underlying data and estimation

procedures were described in Chapters 2, 3 and 4.

2. Generate the innovations (  ) for the processes

( ) based on the jump process  and the chosen

correlation structure (Table 5.2 and 5.3).

3. Generate the processes , ,  with a chosen dependence

structure, where  is the equity return process (2.3),  is the

bond return process (3.3), and  is the process driving the

mortality rate  in (4.3) for ages x=0,1,...,110+. From these

processes we calculate the price indexes 

 and  , mortality

forecasts  and other random variables needed in the case

studies for the forecasting period t=1,....,T. For the mortality

rate we assume the error term  = 0, for simplicity.

The dependence model, which is discussed below in more detail,

has the following structure:

1. When  = 0 (no jump in the simulated yearly equity

returns), we use multivariate normal innovations (  ) for

( ) with the given correlation matrix of Table 5.2. The

correlations can also be assumed to be zero.

2. When  = 1 (during the jump years) we can use modified
innovations for interest rates and mortality based on parameters

( ) given in Table 5.3. It is also possible to cancel this

modification. In this case we use the original innovations and

correlation  between interest rates and mortality.

Table 5.2 Correlation matrix between equity, interest rate and

mortality innovations   and 

innov.   
 1  
 1 
 1

Table 5.3 Innovations during equity jump years

Innovations Interest rates Mortality

modified  |∗ |  |∗ |
unmodified  
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In Table 5.3 ∗   ∼ (0 2),  is a chosen constant, 
∗
   ∼

(0 −1 ), and  is a chosen constant.

5.3 Model specification

Although it is possible to assume independence for equity and bond

total returns and mortality in our long-term forecasting model,

there are periods when stock-bond correlation can be significantly

positive or negative, and economic shocks may change its sign rapidly

due to the flight-to-quality phenomenon. These facts, given with

our risk management point of view, make it preferable to have a

flexible dependence model that can be used for generating stochastic

scenarios. We also want to be able to handle differently normal times

and stressed times. A readily available indication of the latter regime

in our model is the equity shock. Thus we build a hierarchical model

based on the simulated stochastic process  that drives the equity

shocks or jumps. Dependence modeling is then addressed in two parts,

depending whether or not there is a shock in the equity index model.

Because the equity shock is negative, we automatically get asymmetry

in the dependence structure.

During normal years ( = 0) we assume that the innovations
(  ) are distributed according to the 3-variate Normal

distribution with given correlations (  ). During the shock

years ( = 1) we assume that the innovations  and  have latent

dependence only via the  process.

We need to adjust the formulas for bond returns and for mortality

to take into account the dependence structure. For convenience we

review here the necessary model equations of Chapters 2 - 4. Our

data are the year-end total return index values of SP500 and 5-year

US bonds from 1925 to 2006, from which we calculated the yearly

log-returns  and  respectively (i.e. 1 is the log-return of 1926 for

equities etc). We then specified the equity model in Chapter 2 as:

 = (1− )(+ )−  (5.1)

where t = 1,...,81,  is the mean and  is the standard

deviation of no-jump years, and  ∼ (0 1). For the jump

process we assumed that  ∼ (), 0<<1, and  ∼
( )    0. Moreover, we assumed independence of
these random variables.
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In Chapter 3 the following ARMA(1,1) model was specified for

 = ( + ), where a0 is a constant estimated by the method of
moments:

 −  = (−1 − ) +  − −1 (5.2)

where  is the mean, and the ARMA parameters are restricted

to 01 based on stationarity and decaying autocorrelation

requirements which we set during the data analysis. Now we adjust

the model so that the innovations are defined differently for normal

and equity jump years, when the shock modification is used. When

 = 0  ∼ (0 2). When  = 1  = |∗ |, where
∗ ∼ (0 2) and  is a chosen constant.

In Chapter 4 the model developed by Lee and Carter (1992) for

the death rate for age x in year t was given as

[] =  +  +  (5.3)

where  and  are age-specific constants,  is a time-varying index

of mortality, and  ∼ (0 2) is the error term. The model
for the yearly mortality index is

 = −1 +  +  (5.4)

where  ∼ (0 −1 ) when  = 0. When  = 1  = |∗ |,
where ∗ ∼ (0 −1 ) and  is a chosen constant, when the

shock modification is used. Although for mortality it is not obvious

to assume permanent influence of the shock, we chose not to subtract

its effect from the next year’s intensity in order to keep the model

more simple.

It is important to note that the correlations we are using for

the innovations are transformed through the model equations, which

implies that they do not give the same correlations for the end-results,

i.e. between the asset returns and mortality rates that we are

forecasting. For instance we have two interest rate series,  and

, where the first concerns transformed data and thus can cannot be

used in forecasting. Therefore an iterative approach is required by the

forecaster when setting the assumptions (cf. Case Study 3 below).
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5.4 Simulation

As previously discussed, the simulation algorithm for the equity model

generates the jump process . Therefore the jump years are known

and can be used in the hierarchical algorithm.

The algorithm to simulate from the multivariate Normal

distribution, having the specified correlations, means and standard

deviations, is typically based on a Choleski decomposition. This

algorithm is discussed in standard books on numerical analysis,

simulation, and statistics. We have instead used the R function

 in MASS library in our implementation.

We also add the option of using unaltered innovations for the shock

years. In this case we generate all three innovations (  ), as for

the normal years, although we do not use the equity innovation term

 because the jump part of the formula is then activated.

The simulation steps, where the parameter uncertainty is taken

into account by choosing new parameters from the MCMC and

bootstrap samples for each forecast, were given in sec. 5.2. For more

details on implementation see the appendix.

6 Pension insurance applications

6.1 Introduction

Our simulation model enables us to study longevity and market

risk in pension insurance. We have discussed in the introductory

chapter some fundamental aspects of pension schemes and solvency

requirements. We move on to concrete situations via the following

three case studies:

1. Single premium calculation and risk assessment of a whole life

unit annuity for a cohort of 65-year old persons, where the

cohort size varies, and comparison with an earlier study in Italy

(Cruz, 2009, Ch. 14).

2. Extension of the previous case to the case of multiple large

cohorts, and comparison with an earlier study in Japan

(Fujisawa and Li, 2010).
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3. The customer’s view of an individual pension contract and a

long-term analysis (for the broader view, see Alho et al., 2011).

6.2 Annuity premium and risk analysis for a

cohort aged 65

In the first case study on annuities in a pension fund we analyse

an index-linked unit whole life pension insurance contract without

death benefit. We simulate the probability distribution of discounted

annuity cash-flows and study the solvency of the pension fund. The

same approach can be used to analyse more complex products.

For instance, the pension rule  below could include interest rate

guarantees or an equity return part (see e.g. Detering et al., 2011).

Other interesting product features might include Variable Annuities

(cf. Hardy, 2003), and profit sharing rules (cf. Cruz, 2009, Ch. 15).

6.2.1 Specifications of the simulation setting

We assume a cohort of pensioners exactly aged x=65 at the start of

the base year t=0 (cf. Figure 6.1). Without regard to gender, we

study four cohort sizes, 0 = {1 10 100 1000}. Life is assumed to
end exactly at age =105, at the latest.

We now specify the pension insurance contract for the cohort of

individuals  ∈ {1  0}. The annual unit pension with indexation
is defined for t=1,2,...,39 as

 = −1 {1 +(; 0)}  (6.1)

where 0 = 1 +(0; 0) and  is the simulated log-return on the

bond index  , as defined in (3.1). In our calculations we assume

that the return indexes are observed at the end of each year, and for

convenience log-return is used in (6.1).

For each annuitant  we specify an indicator vector  =
(0  39), where  equals 1 if the person is alive at the start

of year t and 0 otherwise. Let  denote the number of pensioners

alive at the start of year t

 =
X


 (6.2)
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The amount of pensions  paid out of the fund in year t is

 = ( − ) (6.3)

where  =  − +1 and, as a final pension a year’s pension of

1 − ,  ∈[0,1], is paid to each of the  persons. Having =0.5,

means that half a year’s pension is paid. This is our assumption in

the calculations below.

Pension liability is defined as

 =
X


 (6.4)

where  = 1

 . Note that PV is a random variable. Its randomness

derives from the uncertainty of survival and stochastic interest rates.

The expected pension liability is EPV = E[PV], which can also be

interpretated as the net single premium for the pension portfolio.

The assets of the pension fund, which consist of the premiums and

solvency buffers for the yearly pension expenditures of unit pensions,

are invested in the equity and bond indexes 

 and  , t=0,...,39 as

follows. Define

 = 

 + (1− )  (6.5)

where  ∈[0,1] is the fraction of equities, and the indexes are

calculated from the simulated equity and bond returns  and  (cf.

(2.3) and (3.3)) with log-returns as in (3.1). From the assets of the

fund each year t the amount (−) is sold to pay the pensions

. Their discounted difference is

∆ = Σ[( − ) −] (6.6)

6.2.2 Risk analysis

In this section we analyse the various sources of risk in our annuity

model and define the required solvency buffers.

Uncertainty in our annuity product can be split into the following

risk components:

1. The risk due to stochastic life times.

2. The risk due to the floor ( ≥ −1) of the pension index.

3. The risk due to equity investments.

96



In Solvency II the notion of underwriting risk includes for instance

the longevity risk, and there is a specific solvency requirement for this

purpose. In our case study, we address this risk, which is due to the

difference between expected and observed life times, by calculating the

distribution of EPV-PV and extracting the desired VaR or quantile

point.

If we remove the floor of the pension index by defining 0
 = 

and assume h=0, the assets and the liabilities of the pension fund will

depend on the same index  , and there will be no interest rate risk.

When we include the floor or embedded option back in the product,

i.e. use pension rule , there is interest rate market risk even if h=0,

because  can be negative. In Solvency II this kind of risk is split into

2 parts: the difference in the EPV is included in the best estimate

part of technical provisions, and the tail risk is included partly in the

SCR and partly in the risk margin part of technical provisions.25 We

illustrate these concepts below by calculating the present values with

and without the floor. If the pension fund chooses to invest in equities

(h0), it always introduces market risk.

We address market risk based on the following question: howmuch

of assets are needed at the start to ensure that the yearly pension

payments can be covered with a given confidence level? We apply

the approach of Alho and Spencer (2005), p. 84, to our simulation

setting, and require that

(∆ ≥ 0) =  (6.7)

where  ∈ (0 1) and ∆ was defined in the previous section.

Alternative approaches to the above-mentioned question are discussed

below.

25SCR includes the tail risks for 1 year; the risk margin covers the cost of SCR

for all future years.
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105

Figure 6.1 Lexis diagram for the case studies

6.2.3 Calculation method

We illustrate the solvency calculation for market and mortality risk

using the following random vectors26 resulting from N simulations

carried out for cohort 0. For each simulation round, the profit or

loss due to market risk is defined as  = ∆ and due to the

mortality underwriting risk as  =  −  . The solvency

requirement for each risk is based on the distributions of  and

, as in the last step in the algorithm below.

The total solvency requirement  can be calculated from

 and  using the chosen aggregation method. The

problem of summing up several random variables and VaR metrics

is discussed in e.g. Embrechts and Puccetti (2010). The Solvency II

aggregation methodology is based on the VaR approach, as discussed

in Introduction. However, with our simulation model we can sum

26All variables in this section are random variables except N, 0 and t.
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the generated random variables directly and obtain the empirical

aggregate distribution, which is very useful.

The calculation proceeds from year t to year t+1, t=0,..,38, as

follows. We already have available the necessary stochastic mortality

and economic scenario files containing T=80 forecasting years and N

simulation rounds for the modeled random variables ,  and .

Our algorithm for a single simulation round is:

1. Choose next equity and bond return series  and  and

mortality forecast . Calculate total return indeces 

 and

 and discounting factors  from  and  according to the

definitions in section 6.2.1.

2. Calculate the forecasted one-year survival probabilities  from

 based on the actuarial estimator:  = (2−)(2+)
(cf. (4.12)).

3. Calculate the survival probabilities  = 01−1, where the
1-year survival probabilities emerge cohort-wise for the chosen

cohort from the previous step.

4. Sample a life time for each pensioner from the survival

distribution by the inverse probability transform, i.e. sample

a number from the uniform distribution to get a point on the

y-axis of the survival distribution curve, and then take the

corresponding inverse value or point on the x-axis to get the

lifetime.

5. Calculate ∆ and PV for the cohort 0.

After N simulation rounds:

6. Calculate EPV for the portfolio.

7. Next calculate the distributions of  and . Finally,

choose the required solvency buffer SB so that it remains

positive with the chosen risk metric, i.e. sort the simulation

results and choose from the left tail of - and - the

desired VaR or TVaR, and aggregate the figures to get the total

requirement SB. For the definition of TVaR we refer to Case

Study 2 below.

Note that the cumulative definition of ∆ allows buffering of profits
and losses with respect to time, and that the asset management
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strategy of the fund is determined at the start by , i.e. we do not

study more dynamic asset management strategies or hedging that

might be used in practice. Furthermore, we do not differentiate

between the roles and decision rules for the solvency buffer and

pension liability. The terms and definitions above, which are

deliberately different from Solvency I and Solvency II, and their

alternative formulations are discussed in the final section of this case

study.

6.2.4 Results

We simulated the above random variables for N=3000 simulation

rounds of T=80 years under various assumptions and with the same

simulation seed to make the results comparable.27 Table 6.1 focuses

on the premium or PV calculation for different cohort sizes. We note

that for the larger cohorts there is less variation. The coefficient of

variation decreases from 0.46 to 0.065 when the cohort increases from

1 to 1000. The assumptions for 3000 simulation rounds with cohort

size 100 are the placeholder assumptions in our calculations unless

otherwise stated. PV distribution with these assumptions is depicted

in Figure 6.3.

Table 6.2 concentrates on the solvency calculation under the

placeholder assumptions and different investment strategies, i.e.

for different fractions of equities . For instance when =0.5,

 0995 = 100202 = 050. We note that the market

risk for equities is quite significant even under the above-mentioned

cumulative approach.

Table 6.1 Simulated single premium (0) results for different

65 year-old cohort sizes 0

0 1% Q1 Q2 mean Q3 99% sd/mean

1 1.5 13.5 20.7 20.0 26.9 38.8 0.46

10 12.8 18.1 20.2 20.3 22.3 28.3 0.16

100 17.2 19.2 20.1 20.2 21.1 24.7 0.076

1000 17.7 19.4 20.1 20.2 20.9 24.3 0.065

27When N=3000, there is still notable random variation in the results.

Repeating the simulation 10 times with different seeds and with the placeholder

assumptions and  = 05, the results for  0995 were as follows. :

min=9.9, mean=10.4, max=10.9, sd=0.4. : min=5.0, mean=5.5, max=6.0,

sd=0.3. The results of this section are thus at the lower end of the test sample.
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Table 6.2 Simulated solvency buffer requirement for 

per annuitant for different equity weights 

  099  0995
0.00 4.2 5.6

0.25 5.4 6.5

0.50 9.1 10.0

0.75 11.4 12.5

1.00 13.1 14.2
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Figure 6.2 Simulated life times for a cohort aged 65 (total

population). 3000 simulations, cohort size 100.
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Figure 6.3 PV/0 of 3000 simulation rounds for a cohort aged 65

(total population). Cohort size 100.

In the calculations of this case study we have assumed independence

between the equity and bond price indexes 

 and  and between

them and mortality. Aggregation and dependence options are

analysed in Case Studies 2 and 3 below.

Two important features of traditional life and pension insurance

contracts are the capital protection and the interest rate guarantee.

In our case study the pension rule  includes the former. The price

of this embedded option is EPV - EPV’ = 20.2 - 19.7 = 0.5, where

EPV’ is calculated without the option. From the left tail of (PV’-PV)

we get VaR values of 4.2 and 5.6 for confidence levels 0.99 and 0.995

respectively. This is the same result as from  with h=0; cf. the

first row in Table 6.2.

We note that the pension rule with the floor introduces significant

interest rate risk because  is negative once every 13 years on average.

In practice insurers do not distribute all profits to the customer but

only e.g. 80 percent, and they may also smoothen the result by

summing up profits and losses over several years. We do not examine

further the various forms of embedded options and profit sharing rules

in this work.
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Longevity risk charge for  is calculated in Table 6.3 for

various risk measures. It derives from the difference between actual

and expected lifetimes. This can be seen as follows. Assuming

 =  =  = 1 for all t, and that a full pension is paid for
the final year (i.e. =0) yields  =

P
 =

P
. Now,

 =  −  =
P

[]−
P

.

Table 6.3 Simulated solvency buffer requirement for 

per annuitant

 099  0995  099  0995
 4.5 5.0 6.0 7.2

The previous equation for  also illustrates the difference

between the 1-year and multi-year approaches, in particular if the

cohort size is small and yearly fluctuations are significant. In

insurance company solvency assessment, e.g. in SII, it is commonly

assumed that the cohort size is large enough so that only the

undiversifiable or systemic risk needs to be taken into account. Alho

concluded in his annuity study Alho (2008) that for a cohort size of

around 30 the idiosyncratic uncertainty is smaller than the aggregate

uncertainty. This is in line with our results (cf. Table 6.1).

In Cruz (2009), Chapter 14, Solvency II type calculations have

been carried out by Olivieri and Pitacco using Italian mortality

data and 7 differently parametrized mortality models of the

Heligman-Pollard family. The expected lifetime of the 65 year-old

cohort of males was 21.8 in their best estimate scenario, and for the

other scenarios it was between 19.9 and 24.7. Moreover, the scenarios

were differently weighted. The Italian data are not available to us,

but for the Finnish total population data the median is 21, the first

quartile is 14, and the third quartile is 27. Our model thus seems to

produce more variation and uncertainty for the remaining lifetimes

at the age of 65. Many other calculations were included in the

Italian study. For instance, the net single premium for a unit annuity

was 15.3 under the best estimate assumptions. The annuity did not

include indexation or death benefit, and a constant discount interest

rate of 3 percent was used. When we modified our calculation method

by adding 0.03 to the yearly interest rates in the discount factors,

the net single premium was 14.3 for the Finnish whole population

data.  was now 2.7 for the 99.5 percent VaR, which gives the

ratio 2.7/14.3=0.19. In the Italian study the full run-off solvency

requirement (termed [R3] in the paper) at t=0 for a cohort-size 100
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plus their risk margin was 0.136+0.065=0.201 or 20.1 percent of the

best estimate technical provision. However, we need to keep in mind

that both the data and the calculation methods differ, so that the

results are not necessarily comparable.

6.2.5 Chosen methods and alternatives

In the EU the new Solvency II (SII) system will address

mortality/longevity risk partly in the technical provisions and partly

in the Solvency Capital Requirement (SCR). For the SCR there are

two methods available. The standard approach uses simple stress

tests, where the best estimate mortality is shifted or stressed upwards

and downwards by a constant amount, and the resulting change in

technical provisions is the basis for the required solvency buffer (cf.

Cruz, 2009, Ch.14, or QIS5 specifications). We note that a parallel

shift is not an accurate method, because the prediction interval for

mortality is more parabolic than linear (cf. Chapter 4). The level of

longevity risk stresses in QIS5 were +0.15 and -0.20, which are within

one standard deviation of our 6520 (cf. Table 4.1).

It is also interesting to note that the equity risk stresses in QIS5

were -0.39 for global equities and -0.49 for other equities but these

numbers were subsequently adjusted by adding 0.09 to both. Our

model, on the other hand, produces higher figures; cf. Chapter 2 and

Case Study 3.

The internal modeling option in SII allows more freedom and

realism in assessing longevity risk as well as other risks and their

dependencies. On the other hand SII system does not cover pension

funds but is limited to life and non-life and reinsurance companies.

We have analyzed above the solvency problem from a different

point of view. For one thing, we have used a run-off approach (i.e.

until the cohort vanishes) whereas SII uses the 1-year VaR approach

for the solvency capital. In our case study we focused on PV and

EPV whereas ’Technical provision’ in SII is the best estimate plus

a multi-year risk margin as explained in Introduction and in Cruz

(2009), Ch. 14. The latter paper, and the earlier Olivieri and Pitacco

(2009), address more generally the problem of 1-year versus multi-year

risk measurement, in particular from the longevity risk point of view.

They discuss and compare 4 alternative ways to calculate the SCR for

annuities under the SII internal modeling option. A particular issue is

whether a full run-off is analysed, and whether there is yearly checking
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of the solvency position. Olivieri and Pitacco found these two full

run-off alternatives not to differ significantly in terms of longevity

risk. In our case studies future losses and profits are allowed to offset

each other during the pension period.

It is a good idea to use several risk measures and measurement

horizons in solvency analysis (cf. Wang and Koskinen, 2009). In

Solvency II the so-called own risk and solvency assessment (ORSA)

requires that the insurance companies also conduct longer term

analyses. Olivieri and Pitacco recommended that both shorter and

longer term measures be used in internal models. In our case study

we addressed the market risk due to the embedded option or floor in

the pension index. We found that it is important not to look only at

the 1-year VaR; instead, one should examine the whole run off horizon

when assessing this risk (cf. EIOPA, 2011).

In non-life insurance both 1-year and multi-year approaches have

been used in solvency analysis, cf. Pentikäinen and Rantala (1982),

sec. 3.1, and Daykin et al. (1994), Ch. 13. We applied the approach

of the latter reference to our case study by multiplying the assets

 in (6.6) by  = 1 +  , and canceling the discounting

by assuming  = 1 for all t. Then we classified each simulation

path as a ruin if any yearly component of ∆ was negative, and

determined the 1-year ruin probability as follows. When  = 05,
 = 15 at the confidence level of 0.995. The number of ruins divided
by the number of simulations and the number of forecasting years

is 600/3000/40=0.005, which thus corresponds to the VaR level of

0.995. For  = 025 and for  = 075 the results were 0.004 and 0.006
respectively.

SII internal model users can choose any time horizon and risk

measure, but the models must also produce the results according to

the 1 year and 99.5 percent VaR definition of the SCR. The best

estimate part in technical provisions should take into account the

expected mortality improvements, and the risk margin part, together

with the SCR longevity risk module, should allow for the remaining

uncertainty. However, we believe that horizons longer than 1 year are

more suitable for longevity risk analysis and that simplistic proxies

should not be used in the SCR and risk margin calculations for

practical SII implementations. Our modeling examples in this work

and the reference literature such as Alho et al. (2011) highlight the

significant long-term uncertainty in mortality forecasting. We note

that the risk margin concept of Solvency II also has some theoretical

weaknesses, as discussed in Cruz (2009), Ch. 17.
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To conclude, there are different approaches available for the

valuation and for the risk and solvency assessment of annuities.

Some approaches focus more on the hedging of market and longevity

risk through financial market instruments such as derivatives and

longevity bonds; cf. Panjer and Boyle (1998), IAA (2010), Chapter

IV, Hardy (2003), Chapter 7, and Cruz (2009), Ch. 15—16, and

McWilliam (2011). An approach based on stochastic discounting

factors or deflators and the valuation portfolio is presented in

Wüthrich et al. (2008). Our methodology allows the main risks to be

addressed from the statistical point of view. The approaches based

on financial derivative methods are likely to suffer from the problems

of long horizons (deep, liquid and transparent market is not available)

and market incompleteness, as there are no market for some risks; cf.

Kaliva et al. (2007). European Insurance and Occupational Pensions

Authority concludes in EIOPA (2011) on page 17: ’Demographic risks

and policyholder dynamic behaviour are very difficult to effectively

hedge’. Hilli et al. (2011) study pension portfolio valuation and risk

management in incomplete markets. Risk measurement is based on

the distribution of wealth at the end of the forecasting horizon, and

dynamic hedging and market consistent valuation is also discussed in

the paper.

6.3 Annuity premium and risk analysis for

multiple cohorts

We now extend the previous case study to allow for multiple cohorts

of annuitants. Our additional reference in this section is the paper by

Fujisawa and Li (2010), which we first review.

6.3.1 Literature review

Fujisawa and Li (2010) propose 3 longevity risk measures for a Defined

Benefit plan using IFRS accounting: 1) longevity value-at-risk, 2)

probability of longevity deficit, and 3) probabilistic corridor rule.

They illustrate these concepts with a hypothetical pension plan in

Japan, which includes 3000 pensioners with stationary age-structure

based on the Japanese population. Mortality data are from the

Human Mortality Database. Their stochastic mortality simulations,
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including parameter uncertainty, are based on the model of Cairns

et al. (2006) and the distribution of DB liability change: Y(t) =

PV(t) - PV(0), where PV(t) is the aggregate figure when applying

the single premium annuity formula for each pensioner in year t with

a 3 percent discount rate (cf. ̈ in Gerber, 1990, Appendix A), and

0 is the current year. We note that in IFRS high quality corporate

bond yields are used in the discounting. Another remark concerns

the definition of Y(t). Because there is no discount factor in the

formula for Y(t) to take into account the time value of money, t is

the year when a new DB liability is calculated under new mortality

assumptions but with the original population size and age structure.

The pension fund population is therefore assumed stationary.

The various longevity risk indicators proposed for Y(t) - namely

Value-at-Risk (VaR), Tail-Value-at-Risk (TVaR), probability of

longevity deficit (PLD) and its expectation, and a probabilistic

corridor - are calculated for a 5-year window t=2006,...,2010 as

follows:

 [ ()] =  [; ( ()  ) ≤ 1− ] (6.8)

 [ ()] = [ ()| ()   [ ()]] (6.9)

 =  ( ()  0) (6.10)

[] = [ ()| ()  0] (6.11)

 (()  ) =  ( () (0)  ) (6.12)

where >0 is the chosen treshold. We note that the treshold idea is

methodologically similar to the viability region approach mentioned

in the Introduction.

For further discussion of risk measures we refer to Wang and

Koskinen (2009) and the references therein, where VaR and TVaR

and some other risk measures are analysed and compared from the

Solvency II internal model point of view.
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6.3.2 Case study calculations

We now generalize the previous case study to allow for multiple

cohorts of immediate whole life annuities without a death benefit.

The definitions and the calculation methods are in general similar to

Case Study 1. There are a few differences, however. Firstly, we

calculate the cohort mortality 0
 for those who are x years old

at t=0 (cf. Figure 6.1) from the forecasted mortality rates  as

0
 = ( ++1)2.
Secondly, we assume that the cohort sizes are sufficiently large to

render the diversifiable risk insignificant (cf. Case Study 1). Then we

need not sample the individual lifetimes from the simulated survival

function. Instead we can read directly from the survival function the

remaining cohort size of yearly pension recipients. This implies also

that we assume a full pension be paid for the final year.

Our first illustration is a generalisation of Case Study 1 for

multiple cohorts. For the example, which is summarized in Table

6.4, we assumed the initial population to include 1000 persons of ages

x=55,60,...,85 at t=0. We then calculated EPV,  and 

for the cohorts, with h=0.4. We note that both longevity risk and

market risk are proportionally smaller at higher ages, which shows

the effect of a shorter forecasting horizon in reducing uncertainty.28

For instance, the required /EPV is 0.23 and 0.11 at the ages 55

and 85, while the respective figures for the required /EPV are

0.43 and 0.25 at the 99 percent confidence level.

We illustrate the effect of multiple cohorts on the VaR

measurement for the longevity risk as follows. Firstly, when we sum

the VaR requirements for  for the cohorts in the table, the result

is 22.4. This approach is similar to the SII SCR aggregation method

for risk modules and their sub-modules, assuming perfect correlation

(cf. QIS Technical Specification p. 95). Secondly, when we use

our simulation model and sum the simulated (EPV-PV)’s of cohorts

before taking the VaR from the aggregated distribution, the result

is 22.7. The result that 22.7  22.4 illustrates one weakness of the

VaR metrics, that it is not sub-additive. When the dependence is

high and the distributions are very skewed, this failure may show up

(cf. Embrechts and Puccetti, 2010, or Denuit et al., 2005, and the

references therein). Note that we have assumed large cohorts so that

28This also applies to the VaR metric in sec. 1.4. In the basic VaR setting

the time effect for different horizons is approximated by the square root of time

multiplier.
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diversifiable risk can be neglected. If this were taken into account, it

would reduce aggregate variance and risk.

Table 6.4 Simulation of multiple cohorts of equal size 1000 at

 = 0. Equity weight  = 04. VaR099 for underwriting and
market risk per annuitant, based on 3000 simulation rounds.

Age x EPV SB SB

55 29.9 7.0 12.8

60 24.8 5.2 10.1

65 20.0 4.0 7.7

70 15.5 2.7 5.6

75 11.5 1.8 3.7

80 8.1 1.1 2.4

85 5.5 0.6 1.4

For another illustration we consider a 1-year risk metric for

longevity -  095/EPV - for a person aged 70 years. VaR for

above-defined Y(1) is first calculated based on the difference in

annuity single premiums at t=1 and t=0 using the corresponding

period life tables. The resulting risk metric with 3 percent discount

rate is 0.029. Secondly, we approximate the effect of cohort approach

by applying a multiplying factor 0.036/0.014, which gives 0.075.

The factor is the ratio of the coefficients of variation (standard

deviation divided by mean) for cohort and period based annuity single

premiums.

In the Japanese study  095 for the pension fund was

0.041 for 1-year period. However, we need to keep in mind that the

results are not necessarily comparable due to differences in methods

and data, the full details of which are not easily analysed.

6.4 Annuities from the customer’s point of view

In the final case study we concentrate on the customer’s view and

long-term aspects of annuities. First of all, it is important to

distinguish between a whole life annuity with and without the death

benefit. If the death benefit is included in the contract, the price will

be higher, or to put it another way, the return on pension savings is

lower. Without a death benefit, the remaining savings after the death

are used for the benefit of the remaining pensioners in the fund.
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Another fundamental property is the pooling effect of insurance. If

the customer chooses not to participate in a pool, he faces a significant

risk when choosing his monthly pension withdrawal: the annuity

savings may not last long enough or the annuity may be smaller than

necessary, depending on whether or not he lives longer than average.

In other words the average lifetime assumption is not an appropriate

financial planning tool for a single person. In Case Study 1 we found

that the standard deviation divided by the mean of PV was 0.46 and

0.07 for the 65 year-old cohort consisting of a single person and of

1000 persons, respectively.

In our next example we sample a life time for a 25 year-old person

for 300 000 times using our mortality simulation model. We assume

that a constant premium is saved yearly until the retirement or death,

if earlier. The death benefit is zero, or the accumulated savings are

distributed to other policyholders. From age 65 a unit pension is taken

until death. We disregard discounting (or we assume that indexing

and discounting of cashflows cancel). We find that a yearly premium

of 0.58 is sufficient on average. However, the variability of premium is

high: a yearly premium of 0.88, 0.93 or 1 unit is needed to ascertain

that the savings are sufficient for pensions at 90, 95 or 99 percent

confidence level, respectively.

The third major consideration is the investment return and

risk, which depend chiefly on the chosen asset mix for the pension

savings. In traditional insurance contracts insurance company is

in charge of asset management while in Unit Linked contracts it

is on responsibility of customers. We can illustrate the risk and

return profiles of different asset portfolios using the equity and bond

log-returns  and  and their dependence as follows.

We simulated 3000 stochastic scenarios covering 80 years of

equity and bond returns with selected asset mixes and dependence

assumptions. The resulting summaries of the yearly log-returns are

given in Table 6.5, where h is the proportion of equity investments

in the asset portfolio, ,  is the assumed correlation between

the innovations, and  is the shock-innovation multiplier for bond

returns.
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Table 6.5 Simulated log-return statistics for asset portfolio ,

when equity fraction () and dependence assumption

( ) varies

h  s 1% Q1 Q2 mean Q3 99% sd cor

0.5 0.0 - -0.22 0.016 0.082 0.072 0.14 0.28 0.10 0

0.5 -0.5 - -0.22 0.027 0.084 0.072 0.13 0.25 0.094 -0.22

0.5 0.5 - -0.22 0.0067 0.079 0.072 0.14 0.31 0.11 0.30

0.5 0.0 2 -0.18 0.024 0.086 0.081 0.15 0.29 0.096 -0.27

0.5 0.0 -2 -0.25 0.012 0.079 0.067 0.14 0.28 0.11 0.20

0.0 0.0 - -0.032 0.015 0.043 0.052 0.078 0.21 0.051 -

1.0 0.0 - -0.48 -0.013 0.11 0.094 0.23 0.49 0.20 -

Using the bi-variate Normal assumption, we can calculate  099
for the asset portfolio directly according to Section 1.4. Thus, for the

assumed simulated estimates in the above table, we get  099 as

(0.17, 0.14, 0.20, 0.13, 0.19, 0.067, 0.37) for the rows respectively.

Shock-correlations have a significant effect in Table 6.5. When

a positive shock-multiplier =2 was used, equity shocks were

compensated by positive interest rate shocks to the extent that the

correlation of yearly log-returns was -0.27. The negative multiplier

increased the correlation to 0.20.

Our next example considers investment risk and return in the long

run for some typical asset portfolios in pension insurance. First, we

simulate 3000 times for the horizon of t=(1,10,20,30,40) years when

assuming 0=1 and the fraction of equities h=1/3. The summary

statistics of simulations are given in Table 6.6. Note that  is constant

which implies yearly rebalancing. Next, Table 6.7 includes first

percentiles and means for the same periods when h=1/6 and h=2/3.

We note that a larger proportion of equities is likely to give higher

returns in the long run but at the same time uncertainty increases

also. Negative returns are possible for long periods of time as the

columns of first percentiles show.
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Table 6.6 Summary statistics of asset index  with 0 = 1
and equity fraction  = 13. Forecasting horizon  = 1 40

t 1% Q1 Q2 mean Q3 99%

1 0.87 1.02 1.07 1.07 1.12 1.29

10 0.94 1.56 1.92 2.04 2.37 4.35

20 1.21 2.72 3.73 4.23 5.07 13.03

30 1.72 4.75 7.06 8.87 10.56 36.06

40 2.49 8.47 13.61 19.02 22.32 90.93

Table 6.7 Statistics of asset index  with 0 = 1 and equity
fraction 1 = 16 and 2 = 23. Forecasting horizon  = 1 40

t 1%(1) mean(1) 1%(2) mean(2)

1 0.94 1.07 0.74 1.09

10 0.97 1.91 0.70 2.46

20 1.18 3.68 0.84 6.22

30 1.56 7.22 1.23 15.98

40 2.22 14.39 1.76 42.85

Finally, we add three important considerations. The costs that

the service provider(s) charge affect negatively the net returns. This

should be considered carefully by the customer. We have not modeled

this aspect in our work. The customer also has to keep in mind that it

is the real return after inflation that is relevant for his or her standard

of living. We have modeled only nominal returns because insurance

companies typically do not give real return guarantees. Thus inflation

adjustment of some sort is needed for the pension, e.g. based on the

bond index as we have done, or on a long term observed average

inflation of a chosen kind. In the U.S. the yearly inflation (calculated

similarly as log-returns) during our data period from 1925 to 2006 in

Morningstar (2007), was on average 0.030 with a standard deviation

of 0.041. Figure 6.4 depicts the log-returns of equities, bonds and

inflation during this period. The last consideration is the effect

of taxes during both the saving and pension periods. This effect,

however, is difficult to anticipate and to model. Therefore scenario

testing of various alternatives may be the best starting point.
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Figure 6.4 log-returns of the U.S. equities (dotted), bonds (dashed)

and inflation (solid line) for 1926—2006

7 Discussion

We have studied the financing of longevity risk in pension insurance

by developing a stylized and parsimonious, yet in our view realistic

simulation model. The model takes into account the main sources

of risk, the uncertainty of equity and bond returns and mortality,

and their interrelations and the uncertainty relating to parameter

estimation. We applied the model to topical and important long-term

risk management problems in three case studies.

The model for equity returns is built on the assumption that

the underlying stochastic process is a mixture of an uncorrelated

process and a negative jump process. Bernoulli-mixture implies

Geometric interarrival times with the memoryless property, which

is desirable from the economic point of view. The Gamma-process

for jump size allows fatter tails than the Normal distribution and

is flexible enough to smooth the unwanted bimodality of year-end
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SP500 returns. Our model includes some novel features, and it seems

to give a good presentation of reality, as witnessed by the similarity of

MLE andMCMC estimation results. VaR calculations were presented

for several alternatives, which indicate that the jump model is more

prudent than the Normal model. Moreover, the MLE and MCMC

based results differ in the tail area, MCMC being more prudent.

Bond total return was modeled as an ARMA(1,1) process after

a log-transform. This parsimonious model was chosen after testing

with more complex alternatives. The uncertainty of the underlying

process renders the data horizon of 81 observations rather short for

specifying the model. In the data there are 2 regimes, the first having

lower mean and volatility than the second, which started around

1970. Therefore we resorted to the 4 stylized facts for restricting

the bootstrap parameters: 1) stationarity, 2) long cycles or a large

AR parameter, 3) rapid corrections of large innovations or a large

MA parameter, and 4) negative return approximately once every 10

years. The VaR results were different from the equity case because the

log-returns of bonds are skewed to the right. Normal-approximation

gave now larger results than the simulations.

The statistical mortality model of Lee and Carter (1992), which is

trend-based but stochastic, is nowadays a standard tool for forecasting

and risk management. Although the model is parsimonious, it is not

easily outperformed in long-term forecasting applications although

many variations of the model have been developed. We also developed

a more complex version of the model, namely the local bilinear model,

which gave a better fit to the data and revealed some interesting

features of it. However, the model forecasts for expected life times

were about the same for both models. Therefore we preferred the

standard Lee-Carter model in our calculations, but used the MCMC

approach to account for parameter uncertainty in the time index,

which determines the long term improvement in longevity. We also

analysed the difference that gender has on the Lee-Carter forecasts.

This is an important area for the European insurance companies due

to the recent EU court decision that requires unisex mortality tables

for life insurance pricing. However, it is not clear to us how this

decision is justified by the data.

We can use the mortality model to study the mortality forecasting

uncertainty for different horizons. The increase in forecasting

uncertainty for longer horizons is the key observation, which makes

the pricing and risk management of annuities challenging. One

solution to this problem is some kind of risk sharing arrangement
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between the parties involved, e.g. the customer and the insurance

company. For instance, in the Finnish statutory occupational pension

scheme a longevity adjustment is applied to the pensions. It is

calculated using the most recent data available before the cohort

retires (cf. Alho and Spencer, 2005, Ch. 11.1.). On the other hand in

voluntary individual pension insurance contracts provided by the life

insurance companies this type of adjustment is not currently allowed

under normal circumstances in Finland. Taking into account the

major uncertainty for the long mortality forecasting horizons needed

for annuities, this restriction may hinder the development of the

annuity market in Finland. On the other hand, in some countries

even more flexible rules for annuities are considered. In Sweden, for

instance, there has been discussion of whether the annuity could and

should be longevity-adjusted even after the person has retired, e.g at

the age of 75. For further discussion, see Alho et al. (2011).

Dependence modeling was known to be challenging from the

outset. Our model structure allows flexibility that can take into

account correlations and shocks via the equity jump term. Our

approach enables the modeling of many typical and atypical situations

in a justified and novel way, by allowing asymmetric comovements of

the variables.

Case studies for several annuity portfolios were included with risk

analysis for the premiums and required solvency buffers. Particular

attention was given to Solvency II (SII). The studies located

some weaknesses and areas where SII internal models could be

especially useful. Based on our studies we believe that pension

insurance risk modeling is better done using a simulation model

than by a formula-based approach. Our model takes a long-term

risk management view of pension insurance, and can be used to

supplement SII models in insurance companies’ own risk and solvency

assessments.

We applied the model to Value-at-Risk calculations, which

showed that non-normal distributions and their aggregation is much

better addressed by the simulation model than by the multi-Normal

assumption. However, the analysis of extreme events, i.e. events that

are rare but have severe impacts, is always difficult and subjective,

due the difficulty of fully specifying the tail area of the distribution

because of data limitations.

Further work could focus on yield curve modeling and market

consistent valuation of liabilities. The simulation model could be used

to study more complex products and more dynamic portfolios than in
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the case studies. Another interesting question is why the cohort born

in wartime seems to live longer. Is this due to the low-calory diet or

something else?
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8 Appendix

8.1 Model implementation example

We have implemented the model with R language. The code has the

following parts:

1. Preparations (data input, parameter assumptions, variable

definitions and initializations)

2. Generation of parameters (equity model MCMC from sec. 2.3,

mortality model MCMC from sec. 4.4, bond model bootstrap

parameter input from sec. 3.4)

3. Generation of economic processes with given dependence

structure and parameters (Ch. 5)

4. Case study 1 (generation of life times and insurance calculations,

the algorithm and results are presented in sec. 6.2)

5. Case study 2 (generation of survival function and insurance

calculations, the algorithm and results are presented in sec. 6.3)

A full run of the model includes running the first three blocks

and the chosen case study in succession. Economic scenarios can be

generated by running parts 1, 2 and 3. The R code and data are

available from the author by e-mail.

124



Bank of Finland Publications

Scientifi c monographs

Series E (ISSN 1238-1691, print) (ISSN 1456-5951, online)
From year 2009 new ISSN numbers (ISSN-L 1798-1077, print) (ISSN 1798-1085, online)  

(Series E replaces the Bank of Finland’s research publications series B, C and D.)

E:1 Jukka Vesala Testing for Competition in Banking: Behavioral Evidence from Finland. 1995. 
206 p. ISBN 951-686-447-3.

E:2 Juha Tarkka Approaches to Deposit Pricing: A Study in the Determination of Deposit 
Interest and Bank Service Charges. 1995. 166 p. ISBN 951-686-457-0.

E:3 Timo Tyrväinen Wage Determination, Ta xes, and Employment: Evidence from Finland. 
1995. 212 p. ISBN 951-686-459-7.

E:4 Sinimaaria Ranki Realignment Expectations in the ERM: Causes and Measurement. 1996. 
164 p. ISBN 951-686-507-0.

E:5 Juhana Hukkinen Kilpailukyky, ulkomaankaupan rakenne ja taloudellinen kasvu 
(Competitiveness, structure of foreign trade and economic growth). 1996. 134 p. 
ISBN 951-686-512-7.

E:6 Eelis Hein Deposit Insurance: Pricing and Incentives. 1996. 120 p. ISBN 951-686-517-8.

E:7 Vesa Vihriälä Banks and the Finnish Credit Cycle 1986–1995. 1997. 200 p. 
ISBN 951-686-537-2.

E:8 Anne Brunila Fiscal Policy and Private Consumption-Saving Decisions: European Evidence. 
1997. 147 p. ISBN 951-686-558-5. (Published also as A-131, Helsinki School of Economics 
and Business Administration, ISBN 951-791-225-0, ISSN 1237-556X)

E:9 Sinimaaria Ranki Exchange Rates in European Monetary Integration. 1998. 221 p. 
ISBN 951-686-564-X.

E:10 Kimmo Virolainen  Tax Incentives and Corporate Borrowing: Evidence from Finnish 
Company Panel Data. 1998. 151 p. ISBN 951-686-573-9. 
(Published also as A-137, Helsinki School of Economics and Business Administration, 
ISBN 951-791-290-0, ISSN 1237-556X)

E:11 Monica Ahlstedt  Analysis of Financial Risks in a GARCH Framework. 1998. 181 p. 
ISBN 951-686-575-5.

E:12 Olli Castrén Fiscal-Monetary Policy Coordination and Central Bank Independence. 1998. 
153 p. ISBN 951-686-580-1.

E:13 Antti Ripatti Demand for Money in Infl ation-Targeting Monetary Policy. 1998. 136 p. 
ISBN 951-686-581-X.



E:14 Risto Koponen – Kimmo Soramäki Intraday Liquidity Needs in a Modern Interbank 
Payment System. A Simulation Approach. 1998. 135 p. ISBN 951-686-601-8.

E:15 Liisa Halme Pankkisääntely ja valvonta. Oikeuspoliittinen tutkimus säästöpankkien 
riskinotosta (Banking regulation and supervision: A legal policy study of risk taking by 
savings banks). 1999. XLIV + 560 p. ISBN 951-686-606-9, print; 
ISBN 951-686-607-7, online.

E:16 Juha Kasanen Ilmoitusvelvollisten osakeomistus ja -kaupat Helsingin Pörssissä 
(Corporate insiders shareholdings and trading on the HEX Helsinki Exchanges). 1999. 
146 p. ISBN 951-686-630-1, print; ISBN 951-686-631-X, online.

E:17 Mikko Spolander Measuring Exchange Market Pressure and Central Bank Inter vention. 
1999. 118 p. ISBN 951-686-645-X, print; ISBN 951-686-646-8, online.

E:18 Karlo Kauko The Microeconomics of Innovation: Oligopoly Theoretic Analyses with 
Applications to Banking and Patenting. 2000. 193 p. ISBN 951-686-651-4, print; 
ISBN 951-686-652-2, online. (Published also as A-166, Helsinki School of Economics and 
Business Administration, ISBN 951-791-442-3, ISSN 1237-556X)

E:19 Juha Kilponen The Political Economy of Monetary Policy and Wage Bargaining. Theory 
and Econometric Evidence. 2000. 180 p. ISBN 951-686-665-4, print; 
ISBN 951-686-666-2, online.

E:20 Jukka Vesala Technological Transformation and Retail Banking Competition: Implications 
and Measurement. 2000. 211 p. ISBN 951-686-695-6, print; ISBN 951-686-696-4, online. 
(Published also as A-184, Helsinki School of Economics and Business Administration, 
ISBN 951-791-518-7, ISSN 1237-556X)

E:21 Jian-Guang Shen Models of Currency Crises with Banking Sector and Imperfectly 
Competitive Labor Markets. 2001. 159 p. ISBN 951-686-711-1, print; 
ISBN 951-686-712-X, online.

E:22 Kari Takala  Studies in Time Series Analysis of Consumption, Asset Prices and Forecasting. 
2001. 300 p. ISBN 951-686-759-6, print; ISBN 951-686-760-X, online.

E:23 Mika Kortelainen Edge: a model of the euro area with applications to monetary policy. 
2002. 166 p. ISBN 952-462-001-4, print; ISBN 952-462-002-2, online.
(Published also as A-204, Helsinki School of Economics and Business Administration, 
ISBN 951-791-715-5, ISSN 1237-556X)

E:24 Jukka Topi Effects of moral hazard and monitoring on monetary policy transmission. 
2003. 148 p. ISBN 952-462-031-6, print; ISBN 952-462-032-4, online. 

E:25 Hanna Freystätter Price setting behavior in an open economy and the determination of 
Finnish foreign trade prices. 2003. 84 p. ISBN 952-462-045-6, print; 
ISBN 952-462-046-4, online.

E:26 Tuomas Välimäki Central bank tenders: three essays on money market liquidity auctions. 
2003. 232 p. ISBN 952-462-051-0, print; ISBN 952-462-052-9, online.
(Published also as A-218, Helsinki School of Economics, Acta Universitatis Oeconomicae 
Helsingiensis, ISBN 951-791-762-7, ISSN 1237-556X)



E:27 Heikki Hella On robust ESACF identifi cation of mixed ARIMA models. 2003. 159 p. 
ISBN 952-462-112-6, print; ISBN 952-462-113-4, online. 

E:28 Heiko Schmiedel  Performance of international securities markets. 2004. 275 p. 
ISBN 952-462-132-0, print; ISBN 952-462-133-9, online. 

E:29 Tuomas Komulainen  Essays on fi nancial crises in emerging markets. 2004. 173 p.
ISBN 952-462-140-1, print; ISBN 952-462-141-X, online. 

E:30 Jukka Vauhkonen  Essays on fi nancial contracting. 2004. 134 p. 
ISBN 952-462-172-X, print; ISBN 952-462-173-8, online. 

E:31 Harry Leinonen (ed.) Liquidity, risks and speed in payment and settlement systems – 
a simulation approach. 2005. Compilation. 350 p. ISBN 952-462-194-0, print; 
ISBN 952-462-195-9, online.

E:32 Maritta Paloviita  The role of expectations in euro area infl ation dynamics. 2005. 88 p.
ISBN 952-462-208-4, print; ISBN 952-462-209-2, online.

E:33 Jukka Railavo  Essays on macroeconomic effects of fi scal policy rules. 2005. 150 p. 
ISBN 952-462-249-1, print; ISBN 952-462-250-5, online.

E:34 Aaron Mehrotra  Essays on Empirical Macroeconomics. 2006. 243 p.
ISBN 952-462-290-4, print; ISBN 952-462-291-2, online.

E:35 Katja Taipalus  Bubbles in the Finnish and US equities markets. 2006. 123 p.
ISBN 952-462-306-4, print; ISBN 952-462-307-2, online.

E:36 Laura Solanko Essays on Russia’s Economic Transition. 2006. 133 p. 
ISBN 952-462-316-1, print; ISBN 952-462-317-X, online.

E:37 Mika Arola  Foreign capital and Finland Central government’s fi rst period of reliance on 
international fi nancial markets, 1862–1938. 2006. 249 p. 
ISBN 952-462-310-2, print; ISBN 952-462-311-0, online.

E:38 Heli Snellman  Automated Teller Machine network market structure and cash usage. 
2006. 105 p. ISBN 952-462-318-8, print; ISBN 952-462-319-6, online.

E:39 Harry Leinonen (ed.)  Simulation studies of liquidity needs, risks and effi ciency in 
payment networks. 2007. Proceedings from the Bank of Finland Payment and Settlement 
System Seminars 2005–2006. 320 p. ISBN 978-952-462-360-5, print; 
ISBN 978-952-462-361-2, online.

E:40 Maritta Paloviita Dynamics of infl ation expectations in the euro area. 2008. 177 p. 
ISBN 978-952-462-472-5, print; ISBN 978-952-462-473-2, online.

E:41 Charlotta Grönqvist Empirical studies on the private value of Finnish patents. 2009. 162 p.
ISBN 978-952-462-498-5, print; ISBN 978-952-462-499-2, online.

E:42 Harry Leinonen (ed.) Simulation analyses and stress testing of payment networks. 2009. 
Proceedings from the Bank of Finland Payment and Settlement System Seminars 
2007–2008. 340 p. ISBN 978-952-462-512-8, print; ISBN 978-952-462-513-5, online.  
hgfhf



E:43 Hanna Freystätter Essays on small open economy macroecomics. 2012. 169 p. 
ISBN 978-952-462-793-1, print; ISBN 978-952-462-794-8, online.

E:44 Vesa Ronkainen Stochastic modeling of fi nancing longevity risk in pension insurance. 2012. 
124 p. ISBN 978-952-462-801-3, print; ISBN 978-952-462-802-0, online. 



V e s a  R o n k a i n e n 

 

Stochastic modeling of 
financing longevity risk 
in pension insurance

S c i e n t i f i c  m o n o g r a p h s

E : 4 4  ·  2 0 1 2

978-952-462-801-3
ISSN-L 1798-1077
 
Edita Prima Oy
Helsinki 2012

Stochastic m
odeling of fi

nancing longevity risk in pension insurance	
Scientifi

c m
onographs    E:44 · 2012


	Stochastic modeling offinancing longevity riskin pension insurance
	Abstract
	Tiivistelmä
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Pension insurance and risk management
	1.3 Solvency II
	1.4 Value-at-Risk (VaR)
	1.5 Insurance modeling

	2 Equity index model
	2.1 Data on equity returns
	2.1.1 General characteristics of long-term equity returns
	2.1.2 Review of jump models for equity returns

	2.2 Model specification and preliminaryestimation
	2.2.1 Definition of the model
	2.2.2 Maximum likelihood estimation

	2.3 Parameter uncertainty via Markov Chain Monte-Carlo
	2.4 Simulation of future equity returns

	3 Bondindexmodel
	3.1 Medium term bond index data
	3.1 Medium term bond index data
	3.2 Review of interest rate modeling approaches
	3.2.1 Interest rates and the yield curve
	3.2.2 Interest rate models

	3.3 Model specification and estimation
	3.3.1 Model specification
	3.3.2 Maximum likelihood estimation

	3.4 Parameter uncertainty
	3.4.1 Simulations


	4 Mortalitymodel
	4.1 Introduction
	4.2 Data
	4.3 Review of the Lee-Carter model
	4.4 Parameter uncertainty in the Lee-Carter model
	4.5 Gender-specific mortality
	4.6 The local bilinear model
	4.6.1 Specification and bandwidth selection
	4.6.2 Estimation and validation
	4.6.3 Deterministic forecasting and model comparison


	5 Dependence modeling
	5.1 Introduction
	5.2 Model structure
	5.3 Model specification
	5.4 Simulation

	6 Pension insurance applications
	6.1 Introduction
	6.2 Annuity premium and risk analysis for acohort aged 65
	6.2.1 Specifications of the simulation setting
	6.2.2 Risk analysis
	6.2.3 Calculation method
	6.2.4 Results
	6.2.5 Chosen methods and alternatives

	6.3 Annuity premium and risk analysis formultiple cohorts
	6.3.1 Literature review
	6.3.2 Case study calculations

	6.4 Annuities from the customer’s point of view

	7 Discussion
	References
	8 Appendix
	8.1 Model implementation example

	Bank of Finland Publications



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




