A Service of

[ ) [ J
(] [ )
J ﬂ Leibniz-Informationszentrum
° Wirtschaft
o Leibniz Information Centre
h for Economics

Make Your Publications Visible.

Ahlstedt, Monica

Book

Analysis of financial risks in @ GARCH framework

Bank of Finland Studies, No. E:11

Provided in Cooperation with:
Bank of Finland, Helsinki

Suggested Citation: Ahlstedt, Monica (1998) : Analysis of financial risks in a GARCH framework, Bank
of Finland Studies, No. E:11, ISBN 951-686-575-5, Bank of Finland, Helsinki,

https://nbn-resolving.de/urn:nbn:fi:bof-201408071673

This Version is available at:
https://hdl.handle.net/10419/212944

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:fi:bof-201408071673%0A
https://hdl.handle.net/10419/212944
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Monica Ahlstedt

Analysis of
Financial Risks in

a GARCH Framework

SUOMEN PANKKI
Bank of Finland

BANK OF FINLAND STUDIES E:11 ¢ 1998







Analysis of
Financial Risks in
a GARCH Framework

SUOMEN PANKKI
BANK OF FINLAND
P.O. Box 160

FIN - 00101 HELSINKI
FINLAND

To enable us to update our mailing list for the E series of the Bank of Finland’s
research publications, we kindly ask you to inform us of any changes in your name or
address.
Please return the address label containing the erroneous data together with this card.
New name/address:

COmMPANY:  o.uvterireererenneensecoossooosoossssoscssssssscoossnocens

Name: = cccceeeeeccecns Ceeecesseanes Cetesesseceteeccneneeenas

AdAresS:  ciiiieiitceetttttetctecccactoscssecssoreccnasccnssannas

number of copies







Monica Ahistedt

Analysis of
Financial Risks in
a GARCH Framework

SUOMEN PANKKI
Bank of Finland

BANK OF FINLAND STUDIES E:11 + 1998



ISBN 951-686-575-5
ISSN 1238-1691

Oy Trio-Offset Ab
Helsinki 1998



Abstract

This study uses GARCH modelling to estimate and forecast conditional
variances and covariances of returns calculated from a set of financial
market series: twelve markka exchange rates, twelve corresponding short-
term euro interest rates and the Finnish short-term interest rate, the
Finnish long-term interest rate, the Finnish all-share index and real estate
prices.

The variances are specified through univariate estimation and the
analysis is then extended to a portfolio of assets by presenting and
applying two alternative methods for covariance modelling. The first
method is based on the assumption of identical autocorrelation structure
for variances and covariances. The other method is based on the
assumption of constant correlation. Both methods are flexible and enable
the extension of the analysis to a large number of return series.

The study then derives a forecast function from the models estimated
from pooled data for variances and covariances of exchange rates and
interest rates and from individual data for the other rates, in the form of a
weighted moving average of past squared residuals. GARCH forecasts
for the variances of individual return series as well as portfolios are
compared in an ex post context, on the one hand, to two alternative
forecasts based on piecewise homoscedastic variance models and, on the
other, to actual data on squared returns.

The empirical results in the study show that the estimated variance-
covariance models display a high degree of similarity both across the
variables and across subsamples (ie across exchange rate regimes);
GARCH(1,1) seems to represent the underlying conditional variance
process fairly well. In terms of persistence in the variance processes,
which is nearly IGARCH(1,1), the estimated models are also remarkably
similar both for the individual variables and for pooled data. Hence
parsimony suggests using an integrated process to represent volatility in
the sample. The study also argues that the estimated GARCH models
represent a methodological and empirical improvement over those
estimates typically used eg in value-at-risk calculations.

Keywords: time-dependent volatility, GARCH estimation, value-at-risk
models



Sammandrag

I denna studie anvinds GARCH-modeller for att estimera och prognosti-
sera savil konditionella varianser som kovarianser for en avkastning be-
rdknad pa ett antal finansiella serier: tolv vixelkurser for den finska mar-
ken, tolv motsvarande korta eurorintor, den finska korta riantan, den fin-
ska langa rintan, den finska fondborsens generalindex och fastighetspri-
ser.

Varianserna specificeras och estimeras individuellt och analysen ut-
vidgas dérefter till en virdepappersportfolj med en presentation och till-
limpning av tva alternativa metoder for modellering av kovarianserna.
Den forsta metoden &r baserad pa antagandet om en identisk
autokorrelationsstruktur for varianser och kovarianser. Den andra meto-
den 4r baserad pa antagandet om en konstant korrelation. Bdda metoderna
ar flexibla och tillater en utvidgning av analysen till att omfatta ett stort
antal avkastningsserier.

Fran de modeller som estimerats utifrén paneldata for valutakurserna
och de korta rantorna och utifran individuella data for de Ovriga serierna
hirleds sedan en formel for prognostisering uttryckt som ett végt glidande
medeltal av kvadraterna pa tidigare perioders residualer. GARCH-prog-
noserna savil for de individuella avkastningsseriernas varianser som for
portfoljerna jamfors i en ex post-uppfoljning med & ena sidan tva alterna-
tiva prognoser baserade pa periodvisa homoskedastiska variansmodeller
och & andra sidan aktuella data uttryckta som kvadraten pa avkastningar-
na.

De empiriska resultaten i denna studie visar att i de estimerade
varians-kovariansmodellerna foreligger en hoggradig likformighet bade
mellan olika variabler och mellan olika delsampel (dvs. mellan olika valu-
takursregimer); GARCH(1,1) forefaller att vél representera den bakom-
liggande konditionella variansprocessen. Vad giller graden av persistens i
variansprocessen, ndara IGARCH(1,1), &r de estimerade modellerna ocksa
anméarkningsvirt lika. Foljaktligen stoder parsimoniprincipen anvéindan-
det av en integrerad process for att aterge volatiliteten i urvalet. Arbetet
argumenterar ocksa for att de estimerade GARCH-modellerna represente-
rar metodologiska och empiriska forbattringar jimfort med de estimat
som typiskt anvinds 1 s.k. value-at-risk-analyser.

Nyckelord: tidsberoende volatilitet, GARCH-estimering, value-at-risk-
modeller
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1 Introduction

The increased importance of risk measurement of portfolio investments
can be seen in the emergence of a special class of variance -based models
for financial applications, the value-at-risk (VaR) models. The VaR
framework provides a means to measure and forecast the amount of
value, as a function of variance, that can be lost or gained in a portfolio
due to changes in market prices of the underlying assets. The VaR models
have become popular among firms and financial institutions, and even
supervisory bodies have accepted them as a tool for calculating risk-based
capital requirements.

There are however methodological shortcomings in the main VaR
applications. The most aggravating are that (i) the sample variance
formula for the returns on assets and portfolios is mostly not based on
statistical inference but rather on an ad hoc procedure; (ii) the assumption
of a normal distribution is typically not supported by the data; and (iii) the
use of the sample variance in forecasting has no methodological
justification.

High frequency data on financial return series exhibit deviation from
normality in the frequency distribution, mostly in the form of
leptokurtosis. This feature can be modelled in the GARCH framework as
a non-constant time-dependent variance. There is a vast amount of
literature on GARCH applications, but almost all of it deals with the
univariate approach and only a few series. In this literature, portfolio
applications are rare; the number of parameters to be estimated in the
general multivariate model is too large to be of any empirical use beyond
the bivariate case.

The purpose of this study is to provide modifications to the VaR
framework that correct for the aforementioned methodological
shortcomings by estimating the variance of portfolios of the main
financial assets in a GARCH framework. We first apply univariate
GARCH modelling to a number of financial return series, including
exchange rates, short- and long-term interest rates and equity and real
estate prices. The analysis is then extended to a portfolio application by
presenting and applying two alternative methods for covariance
modelling. The first method is derived in this study and is based on the
assumption of identical autocorrelation structures for variances and
covariances. The other method is based on the assumption of constant
correlation, and here we reconstruct an originally iterative estimation
process as a two-stage procedure, which enables extension of the analysis

11



to a large number of return series. Statistical testing supports the
assumptions underlying both methods.

The GARCH methodology provides models of the variance which
not only coincide with the data but are also well suited for forecasting
since the GARCH model for the time-dependent variance is itself in the
form of one-step-ahead forecast.

We then compare forecasts based on our estimated time-dependent
GARCH variances to sample variance-based forecasts for two types of
portfolios: one with weights roughly mirroring average portfolios of
Finnish banks and the other with the weights of a global minimum-
variance portfolio. A VaR application for these portfolios completes the
comparison.

The main contributions in this study are that

» through GARCH modelling we have achieved the methodologically
best estimates of the variance in the maximum likelihood context by
accounting for the non-normal features in a large number of financial
return series

e we end up with standardized GARCH residuals, which are
theoretically normal, thus allowing the use of normal confidence
statements in VaR applications

e we have extended the univariate approach that is generally applied in
the literature to a portfolio approach by developing two flexible and
easily applicable methods for covariance estimation for a large
number of asset returns

e the estimated parameter structure for the individual series and the
pooled data allows for an integrated GARCH interpretation of most
series covered in this study. This greatly simplifies the forecasting
formulas for the portfolio variance. Although the integrated GARCH
model has complicating features in the long-run context, it appears to
perform well in the short run

e our VaR-model comparisons show that the use of sample variances
overestimates the risk in portfolios compared to GARCH variances,
which is especially important when a VaR model is used for
calculating capital requirements

e our estimated GARCH model, which is also the forecasting formula,
is very close to the more ad hoc exponentially weighted sample

12



variance formula used in the RiskMetrix by J.P. Morgan. This
application is widely used and forms a benchmark in financial
applications. Our results thus provide a methodological basis for the
use of their approximating formula for calculating the variance and
also for using it as a forecast. The RiskMetrix has been criticized for
applying the same formula for all instruments. Also in this respect,
our results support the approach in the RiskMetrix, since we were
able to show that the estimated parameter structure for the integrated
variance is also relevant for returns from changes in the main series,
ie exchange rates, short-term interest rates and equity prices, but not
for changes in the long-term interest rate.

In addition to serving the prime purpose of providing the methodological
basis for estimating and forecasting the portfolio variance in VaR models,
the results of this study are also of general interest and can be utilized in
other areas of financial economics, where an appropriate estimate of
variance, ie coinciding with the data, is of utmost importance.

Although the methodological reasoning in this study has general
applicability, the empirical part is estimated from the viewpoint of a
Finnish investor. We deal with twelve markka exchange rates, the long-
term Finnish interest rate, the Finnish all-share stock index and Finnish
property prices. Of the thirteen short-term interest rates included, one is
the Finnish short-term rate and the others are Euro rates and thus relevant
also for investors in other countries. Our results on exchange rates and
equity prices are largely in line with results from univariate studies on
dollar and sterling exchange rates and with results for share indices in
other stock markets. We therefore have reason to believe that the findings
in this study can contribute to further development of variance-based risk-
measuring portfolio models for use by global investors.

1.1 General background

Increased volatility of financial asset prices during the 1980s and 1990s
has raised important questions regarding both the measurement of
volatility and its causes. Causes have been sought specifically in such
factors as deregulation, internationalization of portfolios, new hedging
instruments, and macroeconomic policies. The increased risk due to asset
price volatility has in turn both micro- and macroeconomic
consequencies, as it effects the allocation of financial resources via

13



investment decisions of both individual and institutional investors and can
threaten the stability of financial markets.'

Increased volatility underscores the importance of an appropriate and
well-defined measure of risk that can be priced by asset markets.
Defining risk as the variance of a probability distribution of returns is a
central statistical concept in financial economics. Some of the key areas
where variance is used as the measure of risk are derivatives pricing,
evaluation of hedging strategy and risk premium identification. The
increasing importance of risk measurement can be seen in the emergence
of a special class of variance-based models for financial applications, the
value-at-risk (VaR) models. The VaR framework provides a means to
measure and forecast the amount of value, as a function of the variance,
that can be lost or gained in a portfolio due to changes in market prices of
the underlying assets.” The VaR models’ have become popular among
firms and financial institutions, and even supervisory bodies have
accepted them as a tool for calculating risk-based capital requirements for
supervised entities.*

If we choose to adopt variance as the measure of risk, we need to
identify the distributions of financial returns. The standard way to model
stochastic processes of price changes for financial assets, ie return series,
in VaR models and in financial applications generally, is based on the
assumption of a random walk process. This assumption implies that the
price changes are independent and identically distributed, that their
expected value is zero and that the variance is constant over time. The
auxiliary assumption, that the changes are normally distributed, is usually
added to the others, thus making the generating process a Brownian
motion (Mill 1993, p. 1-2). The normality assumption is in general not
necessary from a theoretical standpoint. It is adopted rather for statistical
convenience, since it considerably simplifies both the estimation and the

! See BIS (1996) for an extensive collection of papers on volatility in the main financial
market instruments and countries.

2 Simons (1996) provides a good description of the methodology and main applications in
the vast literature on VaR models.

3 There are three main methodological approaches: analytical, historical and simulation.
These approaches are represented in the commercially distributed packages: J.P. Morgan’s
Riskmetrics, Bankers Trust’'s RAROC2020 and Chase’s RISK$. The internal applications
developed within corporations and financial institutions are essentially variations on these
approaches. The estimation of variance in these approaches is not based on statistical
inference but rather on ad hoc procedures. These points are elaborated further in section
8.5.

4 Proposal of the Basle Committee on Banking Supervision (1995) and the Capital
Adequacy Directive (1995) adopted by the European Commission.
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forecasting. It justifies the use of multiples of the standard deviation
around the expected mean to get the confidence level for the point
forecast. Combined with the assumption of independence, it also enables
calculation of the forecasted cumulative standard deviation over a finite
holding period by multiplying the base-period standard deviation by the
square root of the length of the holding period.

The assumption of a zero mean is in general confirmed by empirical
findings suggesting that the true mean is close to zero (Figlewski 1994).
This is also consistent with the hypothesis of market efficiency, which
states that the random movements in returns cannot be forecasted.
However, the constant variance and independence assumptions of the
random walk process are contrary to the stylized facts found in empirical
realizations of many financial return series. Typical stylized facts that are
found in high frequency data but which tend to recede with time
aggregation are fat tails and peakedness around the mean (leptokurtosis)
in the unconditional distribution. These features carry over to the time
series interpretation as clustering of small and large changes. This
clustering means that the price changes are not independent. Deviation
from normality and time dependence in the first and second moments
render inappropriate the generally accepted measurement and forecasting
based on the normally distributed random walk.

The family of generalized autoregressive heteroscedastic (GARCH)
models has been developed (the seminal papers are Engle 1982 and
Bollerslev 1986) to cope with these features. In these models, the return
formation process is defined as a martingale, which means that the
stochastic realizations are uncorrelated but not necessarily independent.
The dependency is expressed in the conditional variance equation, which
models conditional variance as a function of past variances and squared
returns.

The need for an estimation method that accounts for the special
features of the probability distributions of return series is widely
recognized and the use of GARCH has increased extensively in academic
research.’ For practical applications, as in VaR models, the method has
however been considered to be too laborious (J.P. Morgan 1995) or to
generate unsolvable problems, above all in connection with covariance
estimation, for rate sets beyond the bivariate case (Alexander 1995).6

5 Surveys by Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993) and
Bollerslev, Engle and Nelson (1994) already report more than a hundred papers on
GARCH estimation of the variance of exchange rates, share prices and interest rates.

¢ The difficulties in achieving convergence (ie positive definiteness of the matrices) in a
multivariate approach increase with the number of parameters estimated.
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In this study, we apply univariate GARCH modelling to a number of
financial return series, including exchange rates, short- and long-term
interest rates and equity and real estate prices, to account for the stylized
facts. We show that the appropriatt GARCH methodology actually
simplifies practical application since it replaces the usual ad hoc
parameter selection with a uniform selection method derived from the
data itself. The analysis is then extended to a multivariate framework to
include the covariances. We show that the problems with the multivariate
approach can be solved in a parsimonious and pragmatic way. We
present two multivariate covariance estimation methods, both of which
provide a flexible format that allows for easy addition or removal of
instruments to/from the portfolio, with no need for re-estimation.

With the GARCH methodology, we not only take account of serial
correlation but we also solve the problem of fitting a normal distribution
to the data. GARCH parameterization produces standardized stochastic
processes, which by definition are normal and in empirical work much
closer to normal than are the raw data. This means above all that the
standard confidence intervals can be attached to the point forecasts. The
GARCH interpretation is also well suited for forecasting, since the
parameterization of the volatility is expressed in the form of a one-step-
ahead prediction.

In order to limit the scope of financial rates to be covered in this
study, we have chosen to restrict the discussion to risks that are relevant
to banking.” There are two main reasons for this choice. First, banks are
the main users of VaR models and, second, there is an ongoing
discussion among regulatory bodies about the suitability of these models
for calculation of risk-based capital requirements, and the results from
this study can serve as input to this discussion.

The ideal situation for banks would be to have an integrated risk
management procedure, in which all risk categories would be measured
using the same VaR methodology. VaR models have so far been used
only for market risk measurement. In this study, we extend the
methodology to real estate risk. Attempts to measure credit risk® (Oda and
Muranga 1997) and operational risk (Wilson 1995, Ho 1997) in the VaR
framework have already appeared in the literature.

7 The framework is as such also directly applicable to insurance companies.

8 J.P. Morgan has recently (April 1997) launched a VaR application for credit risk
measurement. See also Ho (1997) for applying a VaR model to operational risk.
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The main issue in the ongoing discussion between regulators and
financial institutions’ is how the measurement of risk exposures and
calculation of capital requirements can be uniformly parameterized to
yield results that are as similar as possible across the various VaR model
applications. The VaR models differ in approach but also in the
parameterization. Our results can be used to improve the theoretical and
empirical foundation of VaR applications in regard to the distributional
properties of the relevant return series. They also provide for a uniform
way of selecting parameters, which are identified from the data itself by
statistical inference and applicable to different models, as an alternative to
the usual more or less ad hoc approach. The key parameters are the
sample length and weight structure of the historical observations used in
forecasting variances and covariances of returns on various instruments. '
Consequently, the results from this study will be utilized in the VaR
model developed at the Bank of Finland (Ahlstedt 1990) for use by the
supervisory authority in the measurement of market risk in Finnish banks.

Although the risk areas considered are limited to those relevant to
banking and the main application is with VaR models, the results found
here on risk measurement as applied to financial return series are of
general interest and can be utilized in other areas of financial economics,
where an appropriate estimation of variance as a risk measure is of prime
importance.

1.2 Banking risks

In the traditional literature on the theory of intermediation,! optimal
behaviour of a bank is defined as the attempt to maximize an objective
function in terminal wealth. The general form of the objective function
can be specified according to three distinct perspectives on the balance
sheet: asset allocation modelling, liability choice modelling and two-sided
balance sheet modelling. According to the approach of the two-sided

° The main ideas are presented in a proposal by the Basle Committee on Banking
Supervision published in April 1993. The Committee has, since receiving comments on
this proposal, continued the discussion of parameterization and comparability of model-
based risk calculations in a number of consultative papers.

' See eg Jackson, Maude and Perraudin (1995) for an evaluation of the sensitivity of VaR
calculations to selected window length and weighting schemes.

"1 See eg surveys by Pyle (1971), Baltensperger (1980) and Santomero (1984). See also
Yanelle (1988, 1989) for a strategic analysis of intermediation.
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nature of the banking activity, a bank collects funds from lenders in order
to redistribute them among final borrowers. In doing so, the bank exploits
economies of scale by reducing risks via diversification and reducing
transaction and information costs. Summarizing the functions, it can be
said that a typical bank serves as both an asset transformer and a broker,
ie the main functions in banking are intermediation and investment. The
risks inherent in these two basic functions can, for our purposes, be
broken down into five main categories: strategic risk, operational risk,
market risk, real estate risk and credit risk.'?

Strategic risk is the risk of selecting the wrong strategy in trying to
maximize shareholders wealth. For example, strategic risk at the
company level might involve choosing the wrong strategy in overall
asset-liability management, in the sense that it causes so much uncertainty
as to future asset values and profits that the bank’s solvency is
threatened.

Operational risk covers such areas as deficiencies in information or
other systems or in internal routines that may result in unexpected losses.
Additional categories of operational risk are legal risk, management risk,
and the risk of fraud or theft or of overstepping of authority or
competence by employees.

Market risk can be broken down into exchange rate risk, interest rate
risk and equity price risk. In our framework, liquidity risk is also included
in this risk category, the reason being that since funding for short-term
liquidity needs is always available to banks either in the money markets
or from the central bank, the risk is related to the price. This means that
liquidity risk gets transformed into interest rate risk.

Credit risk is the uncertainty regarding borrowers’ ability to fulfil
commitments to repay loans. Insolvency can be caused by individual
circumstances concerning borrowing companies or households or by an
economic recession resulting in a deterioration of a bank’s entire loan
portfolio.

Analysis of strategic risk and operational risk fits naturally into the
two-sided specification of the general objective function while market
risk, real estate risk and credit risk fit into the portfolio risk-return
modelling within the asset allocation approach. These risk categories

'2 The common breakdown of banking functions into different types of risks does not
include real estate risk. Although investment in real estate is not a typical business activity
in banking, it is included in our analysis due to the growing stock of real estate holdings in
banks’ balance sheets. This stock consists mainly of redeemed collateral acquired in cases
of realized credit risk. Another reason for including real estate prices in the risk categories
is that in credit risk assessment estimation of future collateral value of the outstanding
stock of loans is important.
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differ from each other not only in this applied analytical approach but also
in their measureability. Risk is strictly defined as randomness with a
known probability distribution (Knight 1921). If the probability
distribution is not known, we talk about uncertainty. Randomness in the
case of banks’ activities lies in future asset values and financial returns.
Market risk, real estate risk and credit risk are measurable as outcomes of
a statistical probability distribution and hence fulfil the strict definition of
risk. Strategic risk, on the other hand is considered as uncertainty because
probabilities cannot be attached to future outcomes. Operational risk can
be considered as partly measurable risk, partly uncertainty.

The general form of the objective function for terminal wealth of
either shareholders or management allows for distinct types of strategic
behaviour.”® The main aspect of strategy selection can be seen to be the
allocation of assets or exposures to market risk, real estate price risk and
credit risk. The allocation of assets can be based on the mean-variance
strategy, which is one type of behaviour within the asset allocation
modelling approach that is allowed for by the general objective function.
The mean-variance approach utilizes the quantitative characteristics of the
economic variables that generate the risks and allows for risk
measurement with statistical distributional properties by linking the
concept of risk-return to the concept of mean-variance. The expected
return (ie the change in financial rates) is measured by the mean and the
risk by the variance of the probability density distribution. This is the
framework adopted in this study to measure market risk and real estate
risk. Credit risk and operational risk, are not considered since the
application of the mean-variance methodology to these risks categories
has not yet been developed.

The mean-variance approach in the theoretical explanation of banks’
behaviour connects portfolio theory to our framework. In order to
measure the mean-variance composition of market risk and real estate
exposures in banks’ portfolios, the mean and variance parameters of the
statistical univariate distributions of exchange rates, interest rates, share
prices and real estate prices must be estimated. Because economic theory
suggests that these variables are interrelated," so too are the risks.
Changes in the variables not only affect market risk and real estate price
risk but also credit risk and strategic risk. An assessment of the total risk
in a bank’s portfolio should therefore also consider interactions not only

3 An alternative approach, based on game theory, has been suggested by Yanille (1988,
1989).

14 Relevant theories are monetary theory, portfolio theory and purchasing power parity
theory (see Dornbusch 1980).

19



within risk categories but also between risk categories. For those risk
categories that can be measured by the variances, ie market risk and real
estate risk, the interactions between risks can be measured by the
covariances. A necessary requirement for identification of these
covariances is that the economic variables behind the risks display
behaviour within and between groups that is sufficiently uniform to fit
them into a single type of stochastic process model.

The theoretical evaluation of the interaction between risk categories
other than market risk and real estate risk, ie between strategic risk,
operational risk and credit risk, must be based on methods other than the
mean-variance approach.

Correlations between risks can also be viewed in a purely practical
way. For example, one might note a correlation between credit risk and
market risk. If the exchange rate risk in lending in a foreign currency is
hedged by borrowing in the same currency, the realization of the credit
risk, when a counterparty fails to meet his obligations, also nullifies the
currency hedge. The same interdependence can be found between credit
risk and interest rate risk. The realization of operational risk in the form
eg of mispricing affects all other risks. The effects of realized strategic
risk can nullify all measures taken to hedge or manage market risks.

The mean-variance approach in banking theory justifies the use of the
variance as a measure of risk. Via the connection to portfolio theory, not
only is the covariance concept included but also the portfolio
composition," ie the portions invested in the different risk categories. The
available investment strategies in the mean-variance framework are all the
portfolios on the efficient frontier. The global minimum-variance
portfolio is a unique point on the frontier and thus a possible choice.

In the portfolio approach in this study, we choose the portfolio
weights in two ways. First, we estimate the variance of a fictive portfolio
with weights given by minimum-variance optimization. Secondly, we
estimate the variance of a portfolio containing the same instruments but
with weighting that roughly mirrors the average shares in the trading
portfolios of Finnish banks.

15 Portfolio composition decisions can be based on capital asset pricing theory or portfolio
theory. Portfolio theory considers how an optimizing investor would behave, whereas
capital asset pricing theory is concerned with economic equilibrium assuming that all
investors optimize in that particular manner (Markowitz 1991).
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1.3 Modelling financial returns

There is a methodological dichotomy in the literature on modelling
financial returns. Economic theory-based models are used to explain
structural dependencies between macroeconomic variables, and time
series analysis is used to explain the historic behaviour of the variables
themselves.'®

In the first approach, relationships among economic variables, the
possible changes, which are the causes of the financial risks under
consideration here, can be modelled according to alternative economic
theories. These models express stationary, long-run equilibrium
relationships among economic variables. According to Dornbusch
(1980)" there are essentially three approaches to exchange rate
determination, which also include the links to interest rate determination

- the monetary approach, which treats the exchange rate as the relative
price of money

- the portfolio balance approach, which treats the exchange rate as the
relative price of bonds

- the purchasing power parity approach, which treats the exchange rate
as the relative price of goods.

Each of these approaches taken alone provides an incomplete theory since
each gives only a partial picture of the exchange rate determination
mechanism. A broader picture can be built on the integrated application
of the models.

The monetary approach to exchange rate determination asserts that
exchange rates are determined by supplys and demands for national
money stocks. The major content of this approach is that national
monetary policies exert the primary influence on exchange rate
movements. Like the monetary approach, the portfolio balance approach
asserts that exchange rates are determined by the interaction of supply
and demand for financial assets. The portfolio approach broadens the
more narrow monetary approach by extending the set of financial assets
that influence exchange rates beyond relative money supplies to include
relative bond supplies. The two approaches also differ in their
assumptions regarding the degree of asset substitutability. The monetary

'S In this context we apply the narrow interpretation of time series analysis, where no
exogenous variables are included. The typical example is the ARIMA process.

17 See also Pentecost (1991) and Taylor (1995).

21



approach assumes perfect substitutability while the portfolio balance
approach admits imperfect substitutability between domestic and foreign
bonds. These asset market exchange rate models pay little attention to the
goods market. They assume that output is fixed at its full employment
level and that price levels are fully flexible. The assumption of price
flexibility leads to the connection with the purchasing power parity
theory, ie that exchange rates adjust instantaneously to equate the relative
prices of domestic and foreign goods, which is an equilibrium condition
in asset market theories.

The macroeconomic structural models built on the monetary asset
theories are estimated at low frequency, ie quarterly or annually, in line
with the available frequencies of macroeconomic data such as GDP and
inflation. Therefore these models are well suited for long-horizon
analyses and forecasting, eg for banks’ strategy planning. Financial time
series, eg exchange rates and interest rates, are recorded daily or even
hourly. In structural models (by definition medium- or long-horizon
models) in which data on macroeconomic variables and financial rates are
combined, a lot of financial data remains unused.

The second methodological approach, time series analysis, utilizes
the available high frequency data. Time series analysis is used for
modelling short-run movements in financial rates along the short-run
adjustment path toward equilibrium. In the short run, exchange rates,
interest rates and share prices are determined largely by expectation-based
speculative flows, rather than by gradually evolving changes in
macroeconomic fundamentals. Therefore, the short-run analysis applied
in this study concentrates on time series modelling of nominal rates
characterized by noisy changes caused mainly by news arrival processes.

In economic models the first moment (mean) of the levels or changes
in economic variables is modelled and forecasted. The time series
approach allows for analysis of the special stylized facts regarding the
second moment in high frequency data on financial time series. These
features fade with temporal aggregation and are therefore lost in low
frequency economic models. Although we know that the linear random
walk model does not fit observed data perfectly, these models have been
found to dominate both structural marcoeconomic models and more
sophisticated time series models in accuracy in predicting the mean
(Meese and Rogoff 1983, Nerlove, Diebold, van Beeck and Cheung
1988, Marsh and Power 1996). Modelling of the second moment has
produced strong empirical evidence that autoregressive conditional
heteroscedasticity models are adequate to capture the leptokurtosis in the
unconditional distribution (Nerlove et al 1988). The family of
autoregressive conditional heteroscedasticity (ARCH) models was
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introduced by Engle (1982) and later generalized by Bollerslev (1986) to
GARCH. Further applications, such as IGARCH, GARCH-M and
EGARCH, have been developed to capture both linear and nonlinear
dependencies in first and higher moments.

The body of academic research on ARCH has grown extensively
since the seminal paper of Engle.”® Although the implementation of
ARCH represents a giant methodological step forward, there have been
doubts about its ability to capture all the nonlinearities in time series. The
alternative approach to modelling the stylized facts in financial returns is
to use stochastic variance (SV) models (Hull and White 1987, Taylor
1993).” The GARCH and SV methodology can be combined by
including an unobserved stochastic component in the conditional variance
equation. Hsieh (1988), for example, concludes that time-varying means
and variances in a GARCH model are not sufficient to fully account for
the leptokurtosis in exchange rates but that a stochastic variance GARCH
model with time-varying parameters can explain the nonlinearity of the
data (Hsieh 1991). Andersen (1996) developed a ‘mixture of distribution
hypothesis’ (MDH) model by combining a stochastic volatility process
and generalized standard ARCH specifications and found that the model
can be useful in analysing the economic factors behind the volatility
clustering that has been observed in returns.

It is possible that even the ARCH and SV models and mixtures of
them are too simple to capture the nature of the stochastic processes
driving the financial markets. This leads to the methodology of
complexity and chaos, which has been applied in numerous scientific
fields.

Abrupt and extreme changes in financial time series in particular,
such as those associated with the stock market crash of 19 October 1987,
have fostered the idea of extending the methodology of explaining time-
dependence in volatility in financial data to deterministic chaotic
dynamics. In time-series models such as Box-Jenkins and the GARCH
family, the economy has a stable momentary equilibrium but is

18 See Bollerslev et al (1992, 1994) for an extensive survey.

19 See Harvey, Ruiz and Shephard (1994) for a comparison of SV and GARCH models.
The properties in the two types of models are shown to be very close. Nelson (1991)
expounds the view that the stochastic volatility specifications can be interpreted as
continuous time analogues of exponential GARCH models. See also Spanos (1994) for a
derivation of a student’s t autoregressive model with heteroscedasticity (STAR).

2 See Tong (1994) for views on how the field of deterministic chaos has become a multi-
disciplinary area of research and how this new paradigm has much to offer also to the
statistical analysis of nonlinear time series in economics. Examples of applications to
financial markets are Hsieh (1991) and Sengupta and Zheng (1995).
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constantly being perturbed by external shocks. The behaviour of
economic time series comes about as a result of these external shocks. In
chaotic models the time series follow nonlinear dynamics, which are self-
generating and never die out. The fact that the fluctuations in financial
time series, according to this theory, can be internally generated is very
appealing, especially since it has been very difficult to find a theoretical
framework in economics that will explain the GARCH approach to
modelling nonlinearity.

One can search for chaos using the method of correlation dimension
proposed by Grassberger and Procaccia (1983). This method requires
large data sets, which are available in the natural sciences but not to the
same extent in economics and finance. The method also lacks a statistical
theory for hypothesis testing (Hsiech 1991). Brock, Dechert and
Sceinkman (1987) have developed a related method from the correlation
dimension, called the BDS statistic. It tests the null hypothesis that a time
series is [ID against an unspecified alternative using a nonparametric
technique. This statistic has been shown to have good asymptotic and
finite sample properties and good power to detect chaotic behaviour and
most types of nonlinear structures. The BDS test will be used in this study
as part of the routine used to test for misspecifications of the estimated
models.

1.4 Outline of the study

This study applies time series techniques developed for modelling
heteroscedasticity in the conditional variance to obtain measures of risk in
the main financial return series from the viewpoint of a Finnish investor.
Two techniques have been particularly successful in modelling time-
dependent variance: stochastic variance models (SV) and autoregressive
conditional heteroscedasticity models (GARCH). Studies in SV
modelling have only been done for a few financial series. The
identification generally results in different models for different
instruments and no solution to the problem of covariance estimation has
been provided (Harvey, Ruiz and Shephard 1994, Lopez 1995).
However, one of the aims of this study is to try to fit the same model to
different financial return series, above all because this allows for
covariance calculations. Empirical studies®' show that the GARCH(1,1)
process is able to represent the majority of financial time series and

! Surveys by Bollerslev et al (1992, 1994) and Bera and Higgins (1993).
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therefore the GARCH(1,1) framework is used in this study to model the
stochastic processes driving the variances and covariances of preselected
financial return series. The estimated model also turns out to work well
for market risk at daily frequency and real estate risk at monthly
frequency.

The GARCH(1,1) model is identified for the individual variances for
a group of twelve markka exchange rates, a group of thirteen short-term
interest rates, the Finnish long-term interest rate and the Finnish all-share
index.” The covariances are calculated using two alternative methods.
With the first method, the estimated parameter structure of the univariate
conditional variances is extended to the conditional covariances. The
applicability of this method is founded on statistical tests of dependence
between the autocorrelation structures of the variances and covariances.
The second method is a two-stage version of the restricted multivariate
estimation procedure proposed by Bollerslev (1990).

Although the theory of general multivariate GARCH estimation is
developed for simultaneous assessment of the full covariance matrix, the
large number of return series included in this study means that there are
too many parameters to be estimated to allow for general multivariate
estimation.” In fact, the number of parameters in the general model is so
large as to obviate its empirical usefulness, even with a small number of
variables. Methods of restricting the parameter space include requiring
diagonality of the parameter matices (Bollerslev, Engle and Wooldridge
1988) or carrying over the GARCH effects into common factors affecting
both variances and covariances (Diebold and Nerlove 1989, Engle,
Granger and Kraft 1984). In the restrictive multivariate approach (one of
the two approaches applied here), which was developed by Bollerslev
(1990), the estimation and inference procedures are simplified by the
assumption of constant correlations between the stochastic processes.
Although this seems like a strong assumption, numerous studies have
shown it to be empirically reasonable.* In this study, we apply a two-
stage version of the Bollerslev method in estimating conditional

2 The Helsinki Stock Exchange Index (HEX) is a price index (excluding dividends). See
Hernesniemi (1990) on the composition of the index.

3 See chapter 2 on the dependence between the number of variables and parameters to be
estimated.

 See eg Baillie and Bollerslev (1990), Schwert and Seguin (1990), Cecchetti, Cumby and
Figlewski (1988), Kroner and Classens (1991), McCurdy and Morgan (1991), Ng (1991),
Malliaropulos (1997) and a number of unpublished manuscripts mentioned in the review
of Bollerslev et al (1992). Sheedy (1997) shows that the assumption of constant correlation
is plausible when autocorrelation in variance is adequately accounted for.
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variances. The assumption of constant correlations within structurally
homogeneous time periods, ie periods with the same exchange rate
regime, will also be shown to pass statistical tests.

An alternative solution would have been to select only a few
exchange rates and corresponding interest rates, which might have
enabled use of a general multivariate estimation method.”> However, the
aim was to derive results for real life implementation, which means
considering investments in more than a few major currencies and interest
rates. The number of selected exchange rates and corresponding interest
rates is already limited in that only the main currencies used by banks are
included. The number of rates within the groups is however large enough
to enable comparison of patterns within the European ERM, the group of
Nordic rates and the freely floating rates in the US and Japan. The
selected multivariate applications for the rates in our analysis produce two
alternative solutions as to how the covariances can be estimated from
univariately-determined variances. The loss in efficiency in our two-stage
applications has to be weighed against the advantage that both these
methodologies are very flexible, compared to the other restricted
multivariate solutions, in that the number of return series included in the
system or portfolio can be increased or decreased case by case without
requiring re-estimation.

In the univariate estimation the same methodology, GARCH(1,1), is
applied to daily changes in all rates, since empirical studies show that the
GARCH(1,1) process is the best model in the sense of maximum
likelihood for virtually all financial rates.® The estimation period, 1
January 1987 - 31 December 1995, was divided into three
nonoverlapping subperiods to account for structural changes triggered by
realignments in the Finnish markka. Prefiltering of the data was applied
when necessary to remove linear dependence. Prior to model
specification, unit root tests were applied to ensure stationarity of the
mean. Next the mean equation identification was performed and the
parsimonious GARCH(1,1) model was estimated for all rates. The
goodness of fit was evaluated using BDS statistics and the usual statistical
tests. The method of principal components was used to detect common
factors driving the high-frequency stochastic processes. Spectral analysis
was performed to identify length and regularity in the cyclical behaviour

» To our knowledge, illustrative empirical applications have been done only for the
bivariate case.

% The GARCH-M(1,1) model was also tested but was rejected on statistical grounds. The
outcomes of the statistical testing are presented in connection with each group of included
rates.
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of the estimated conditional variances and their principal components.
Finding a dominant frequency would justify, at least for the purpose of
comparison, the use of a random walk model with constant variance in a
sample with the number of observations depending on the frequency.
Since there turned out to be a pronounced likeness in the univariate
estimation results within groups of rates, GARCH estimation on pooled
data was applied to force the rates within groups into the same model.

The estimation procedure for monthly equity risk was much like that
used for daily market risk. However, because of the lower frequency,
neither division of the time period nor BDS testing were feasible.

Next a portfolio application was done to produce an empirical
example of how the separately estimated risk categories are to be treated
when they are combined in a portfolio. Since the portfolio is constructed
for illustrative purposes, we included only four instruments, but the
methodology can be generalized to more extensive portfolios, especially
since empirical risk measures are derived in this study for twenty-seven
instruments. The instruments included in the portfolio are two short-term
money market instruments, entailing both interest rate risk and exchange
rate risk, one long-term bond and Finnish equities.

Following the introduction, the study proceeds as follows. The
alternative applications of ARCH modelling of the stylized facts of
financial time series are described in chapter 2. Chapters 3 and 4 cover
the market risk-generating return series at daily frequency. In chapter 3
we deal with markka exchange rates and in chapter 4 with short-term
interest rates, the long-term interest rate, the all-share index and real
estate risk. Chapter 5 summarizes the variance estimation results.

In chapter 6 the multivariate nature of the system of market rates is
accounted for by estimating the covariances within and between groups
of rates. Based on the estimation results with pooled data, formulas for
conditional ex post and ex ante forecasting are developed in chapter 7 for
variances and covariances, both within and between groups for the
individual financial return series. Forecasts generated by the estimated
heteroscedastic GARCH models are compared to forecasts generated by
homoscedastic models with different window lengths. A portfolio is then
composed so as to include the main risk areas, with weights determined
first via minimum-variance optimization and second using reported
historical average shares in Finnish banks’ trading portfolios. The
forecasting results are compared between models at monthly frequency.
In chapter 7 we also clarify how the estimation results in this study can be
used to improve the methodological foundation and unify the parameter
selection in value-at-risk applications. Chapter 8 includes the summary
and concluding remarks.
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2 ARCH modelling of financial data

The stylized facts of the observable behaviour of financial return series
are well documented. In the graphical interpretation of the time series, a
typical feature is that large and small changes are each clustered over
time. The clustering is reflected in the frequency distribution as fat tails,
resulting from outliers of either sign and leptokurtosis due to the centring
of small changes around the mean. In time series analysis the family of
autoregressive conditional heteroscedasticity (ARCH) models have been
developed, starting with the seminal paper of Engle (1982), to account for
the clustering by explicitly modelling time variation in the second and
higher moments of the conditional frequency distribution, which is
assumed to be normal.”’” The assumption of a normal density function is
convenient in that it enables probability statements about the conditional
variance. In the ARCH models heteroscedasticity is treated as an intrinsic
quality of the data, which has to be modelled, in contrast to econometric
analysis, where heteroscedasticity is interpreted as a sign of model
misspecification.

The ARCH approach has been used not only in modelling the time
series interpretation of key financial return series, such as changes in
exchange rates, interest rates and share prices, but also to test financial
theories by introducing the concept of time-variation. ARCH modelling
of time-dependence in risk premiums has been used in testing for market
efficiency as well as in modelling time-variation in asset betas in testing
capital asset pricing theories.

Bollerslev et al (1992 and 1994) and Bera and Higgins (1993)
provide excellent overviews of the state of the art in ARCH modelling,
which will not be repeated here. Only the main areas applied in the
empirical part of this study are highlighted below.

In the seminal paper by Engle (1982) a discrete time stochastic
process (g,) is defined as an ARCH model of the form

£,=2, hlt/2
2.1
z, IID, E(z)=0, var(z)=1,

27 See chapter 5 for a discussion of nonnormal distributions.
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where h, is a time-varying, positive and measurable function of the
information set at time t-1. By the IID assumption, €, is serially
uncorrelated with the zero mean. The conditional variance of €, equals h,
and may change over time. Engle (1982) suggests a time-dependent
parameterization for h,:

q
h=0,+Yogr, 2.2)

1=

where a, > 0 and o, > O for all i. Constraining the parameters to non-
negative values is necessary to ensure that the conditional variance, h,, is
always positive. The variance h, is expressed as a linear function of past
squared values of order q in the ARCH(q) model. From the ARCH
parameterization of h,, it follows that the stochastic process in the mean
equation (2.1) is not a random walk but is a martingale, which rules out
correlation but allows for dependence in €, The time-dependent formula
for the conditional variance captures the tendency toward volatility
clustering that is found in financial data. The o, parameters measure the
persistence of shocks in the system.

The order of the process, q, can be based on model selection tests
such as that based on the autocorrelation function of the squared
residuals, and many applications of the linear ARCH model use a long
length. With large q, estimation will often lead to violation of the
nonnegativity constraints on the o;'s. Bollerslev (1986) introduced the
generalized ARCH (GARCH) model to provide an alternative and more
flexible lag structure.

In a GARCH(p,q) model the h, follows the process

2.3)

t-i’

q 5 P
h=a,+Xog +2XBh
i i=1

where oy > 0, o; > 0 and B; > O for all i. The conditional variance, h,
depends linearly on the past behaviour of the squared values in an
autoregressive AR(q) process and on past values of the conditional
variance itself in a moving average MA(p) process. The persistence of
shocks in the model is given by the sum of the parameters «; and p.

By repeated substitution, it can be shown the GARCH model is
simply an infinite-order ARCH model with exponentially decaying
weights for large lags. A high-order ARCH can therefore be substituted
by a low-order GARCH model, thus diminishing the problem of
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estimating many parameters subject to nonnegative constraints.
GARCH(1,1) corresponds to a high-order ARCH of the form

o,
h,= 5 — 40 JZB” Q.4)
) -

Finding the optimal values for p and q can be facilitated through time
series testing procedures. The parsimonious GARCH(1,1) model has
proven to be an adequate representation for most financial series
(Lamourex and Lastrapes 1990).

The conditional variance formula (2.3) can be interpreted as a one-
step-ahead forecast expression. For the GARCH(1,1) model, the s-step-
ahead forecast can be written as

Et(ht+s)=°2+(°‘1 + ﬁl)s-l{hm - 02}' 2.5)

Thus the GARCH model not only captures the clustering feature in the
data but also, as this equation shows, encompasses the mean-reverting
process also found in empirical observations on financial returns.

A common finding in empirical studies where the GARCH model
has been applied to high-frequency data is that the shocks to the variance
are highly persistent: ie the sum of the parameters o; and B, is close to
one. Engle and Bollerslev (1986) define the class of models in which the
parameters sum to one as being integrated in variance or IGARCH.
Nelson (1990b) has provided an explanation for the empirical results by
showing that the limit of the sum of the parameters in the GARCH(1,1)
model converges to one as the sampling frequency declines.

If in the GARCH model in (2.3) the polynomial

a . p .
1-Xaz'-XB,z'=0 (2.6)

i=1 i=1

has d > O unit roots and o, = 0, the process is said to be integrated in
variance of order d. If &, > O the process is integrated in variance of order
d with a trend. Integration in variance is analogous to a unit root in the
mean equation, which for financial data is defined as a martingale. In a
model that is integrated or persistent in variance, the current information
remains important for the forecasts of the conditional variance for all
horizons (Engle and Bollerslev 1986).

30



The problem with IGARCH is that, unlike the martingale of the mean
equation for asset prices, it lacks theoretical motivation (Lamoureux and
Lastrapes 1990b). A possible explanation is that the movements in
volatility are driven by latent unobservable common factors, which
themselves are integrated. Engle, Ito and Lin (1990) have investigated the
possibility of such common factors in the news arrival process. An
alternative explanation for the high persistence in daily data is given by
Lamoureux and Lastrapes (1990b), who claim that this characteristic is
due to time-varying GARCH parameters, especially the trend parameter,
0.

Another problem with the IGARCH model is that the unconditional
variance for the simple IGARCH(1,1),

)

(1-(o,+B))’ &7

does not exist. Nelson (1990b) has however shown that, in spite of the
infinite unconditional variance, the IGARCH model is strictly stationary
and ergodic, though not covariance stationary. Lumisdaine (1991) proves
that standard asymptotic inference is valid even in the presence of
IGARCH effects.

An extension of the GARCH model that incorporates the
fundamental tradeoff in financial theory between risk and return is the
GARCH-in-mean (GARCH-M) model (Engle, Lilien and Robins 1987).
This model allows the conditional variance to be a determinate of the
conditional mean:

z,=Y,+Y,Vh+e,
) (2.8)
h=a,+ac +Bh .

The parameter y, gives the time-varying risk premium and the level of
risk aversion. Economic theory allows for a wide range of alternative risk
measures to be incorporated into the mean equation. Engle, Lilian and
Robins (1987) state that in general one might expect the mean to increase
less than in proportion to the variance, thus supporting the choice of the
standard deviation in the conditional mean equation. Log h, has also been
used in empirical work.

Nelson (1990a) has developed the EGARCH model, ie the
exponential GARCH, to capture the asymmetric impact of shocks on the
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conditional variance. This asymmetry is found particularly in share price
data. Negative innovations increase volatility more than positive
innovations. The linear GARCH model is not able to capture this
dynamic pattern since the sign of the shocks plays no role in the
conditional variance model. In EGARCH, the leverage effects are
modelled in the conditional variance as an asymmetric function of past
ES:

q p
logh=a,+Xo(dz, +v[|z,|-E|z |+ XBlogh, . (2.9)
i=1 i=1

In this model the variance depends on both the magnitudes and signs of
past shocks.

Empirical findings from the basic GARCH models indicate that the
technique removes leptokurtosis for the most part from standardized
residuals, but the remaining part often turns out to be significant.
Solutions (Engle and Bollerslev 1986) have been sought in nonlinear
GARCH models other than the EGARCH and, for time-dependent
parameters, in stochastic conditional volatility (Hsieh 1991) as well as in
nonnormal conditional densities (Bollerslev 1987, Hsieh 1989).

The univariate ARCH model only measures the conditional variances
in individual rates. Portfolio theory implies that if nonzero covariances
exist between rates, they should be incorporated in the risk-return
evaluation. In the multivariate ARCH model by Nerlove, Diebold, van
Beeck and Cheung (1988) parameterization of the time-dependent
variances and covariances enables full efficiency in estimation.

The multivariate model of an N x 1 vector of stochastic process

12
£=2Q,

z, IID,E(z)=0 var(z)=I,

(2.10)

given in Kraft and Engle (1983), is a direct generalization of the
univariate ARCH(q) model, except that the entire N x N conditional
variance-covariance matrix, Q,, must be modelled. Bollerslev, Engle and
Wooldridge (1988) derived the properties of a general multivariate linear,
GARCH(p,q), model:

q P
vech(Q)=A,+ X A,vech(e )+ XB,vech(Q,,). (2.11)
i i=1

=1
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In an unrestricted parameterization of the general model, the number of
parameters to be estimated is too large for it to be of much empirical use.
The model has (N(N + 1)/2)[1 + (p + @)N(N + 1)/2] parameters, which
makes numerical maximization of the likelihood function extremely
difficult, even for low values of N, p and q (Diebold and Lopez 1995).
Several restrictions have been imposed to reduce the parameter space to a
manageable size. Bollerslev, Engle and Wooldridge (1988) force
parsimony by requiring the A; and B, matrices to be diagonal, thus
reducing the number of parameters to (N(N + 1)/2)[1 + p + q]. However,
the parsimony of this diagonal model may come at a high cost because
much of the potential cross-variable volatility interaction, which is a
prime concern in multivariate analysis, is assumed away (Diebold and
Lopez 1995). Alternative models with reduced parameter spaces are the
latent factor interpretation of a ARCH(q) model by Diebold and Nerlove
(1989) and the k-factor GARCH(p,q) model by Engle, Granger and Kraft
(1984). In these models, movements in the N time series are driven by a
set of k < N common shocks of ‘factors’ displaying GARCH effects. In
the Diebold and Nerlove model, the factor is an unobserved latent factor,
while in the k-factor GARCH model, the factors are linear combinations
of the residuals. The number of parameters in a k-factor model is
N(k + 1) + K*(1 + p + q). In the one-factor model, which is of practical
importance, the number of parameters is 2N + (1 + p + q), which is a
notable reduction from the general multivariate case, but still not small
enough not to cause difficulty in ensuring the positive definiteness of the
variance vector, again for dimensions exceeding the bivariate case.

In the multivariate generalized ARCH model of Bollerslev (1990) the
estimation and inference procedures are simplified by the assumption of
constant conditional correlations between the N stochastic processes. The
GARCH(1,1) structure for the conditional variances and covariances is
expressed as

g,=2z;h :/2
2
hy =0 +og 80 +B by 2.12)
_ 12
h; =0;(h; by )™,

i,t .t

where g is the correlation between €; and €;.

In this study the GARCH(1,1) univariate process is estimated for
exchange rates, interest rates, equity prices and real estate prices. An
attempt to identify the GARCH-M model is also made for all series in
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order to test the theory of a time varying risk premium. A two-step
procedure developed in this study for the multivariate version of
Bollerslev is used as one of two applied methods to measure the
covariance structure within and between groups. The forecasting formulas
are based on the autoregressive interpretation in (2.4).
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3 Exchange rate risk

In order to measure the exchange rate risk in typical bank portfolios,
twelve currencies are included in the analysis. The reason for the large
number is that we want to cover the main currencies in which the banks
continuously have considerable exposures. This selection also enables
comparison of movements in Scandinavian, continental European, US
and Japanese exchange rates.

3.1 Markka exchange rates

Most studies that model probability distributions of foreign exchange
rates concentrate on dollar exchange rates. Bollerslev et al (1992) provide
a good survey of empirical results for model identification and parameter
estimation involving US dollar exchange rates. Common results found by
several authors are that the GARCH(1,1) model is best suited to capture
the stylized facts for exchange rates. Hiesh (1988) found that an
ARCH(12) model with a linearly declining lag structure captures most of
the stochastic nonlinearities present in the conditional variance, but later
(1989) he found that the simple GARCH(1,1) does a better job of
describing the data. Ballie and Bollerslev (1989) showed that their daily
data on six dollar-based currencies confirm the suitability of the
GARCH(1,1) model.

This study deals with markka exchange rates expressed as markka
values of foreign currencies. Results for non-markka exchange rates are
not necessarily applicable to markka exchange rates due to the Finnish
institutional structure, which affects the exchange rate generating process,
and to the smallness in scale and scope of the Finnish markets. To our
knowledge, only three studies deal with markka exchange rates (Ahlstedt
1990 and 1995, Sulamaa 1995). Some of these earlier results (Ahlstedt
1995), though not repeated here, are referred to in the sections on the
empirical work.
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3.2 Frequency

It is a well documented empirical fact that certain distributional
properties of financial time series, such as heteroscedasticity and
leptokurtosis, decrease as frequency decreases. Ballie and Bollerslev
(1989) show that the stylized facts for daily spot rates carry over to
weekly, forthnightly and monthly data in which the degrees of
leptokurtosis and time-dependent heteroscedasticity decrease as the length
of the sampling interval increases. Also the high persistence in the daily
data diminishes with temporal aggregation. Convergence to unconditional
normality occurs with temporal aggregation (Nerlove et al 1988), so that
one-month changes are closer to normality than one-week changes (on a
monthly level), which are closer to normality than daily observations. For
exchange rates, even intraday prices are quoted. In intraday quotations,
the volumes and prices of exchange rates are determined at points where
supply and demand are in balance. These momentary equilibria are
reached at numerous discrete points in time during ongoing trading. The
price quotes on the way toward the long-term equilibrium mirror traders’
reactions to the arrival of news. An attempt to explain these stylized facts
in foreign exchange rate movements has been sought in common factors.
For low frequency data, international economic variables have been tested
and for high frequency data, the source of the pattern of variability has
been sought in the news arrival process in the form of either meteor
showers or heat waves (Engle, Ito and Lin 1990).

The purpose of this study, however, is to quantify, using time series
techniques to model time-varying conditional variances, the inherent
riskiness of short-term changes in the values of banks’ portfolios, which
are marked to market daily. Hence daily data is used. High frequency
common factors will be tested for using principal components analysis on
estimated daily variances.

3.3 Structural changes

Since this study also deals with the interaction between exchange rates
and interest rates, the data is extended backward to cover the longest
possible common interval for these rates in the Bank of Finland’s
database. This period is 1 January 1987 - 31 December 1995. The period
(Figure 3.1) includes a 4 per cent revaluation of the Finnish markka
against a currency basket on 17 March 1989, a 12.30 per cent devaluation
on 15 November 1991 and a floating rate regime from 8 September 1992
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onwards. A period of markka depreciation at the start of the float is
followed by a period of appreciation. To account for possible structural
shifts caused by changes in the exchange rate regime, the sample period is
divided first into two periods: one covering the exchange rate band
regime, 1 January 1987 - 5 September 1992, and the other covering the
floating-rate regime, 8 September 1992 - 31 December 1995 (Figure
3.1). As it is not our aim to explain the effects or transmission
mechanism of structural shocks or to forecast turning points, pre- and
post-data around shifts in the exchange rate regime are excluded.

Figure 3.1 External value of the markka
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1. Bank of Finland currency index (left scale)
2. Markka value of the ECU from 7 Jun 1991 (right scale)

The data consist of daily observations on log changes of closing rate bid-
ask midpoints. Weekends and holidays are omitted. Monday is treated as
the day after Friday. Relevant weekend or weekday effects have not been
found (Ahlstedt 1990) in the exchange rates or interest rates. First
differences are used in light of numerical studies on dollar rates that show
that higher order differencing is not necessary to achieve stationarity
(Chappell and Padmore 1995). For the markka’s exchange rate band
period, this is most certainly true, since the aim of the intervention
mechanism is exchange rate stability.

The exchange rates included in this study are those of the twelve
major currencies, USD, GBP, SEK, NOK, DKK, DEM, NLG, BEEF,
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CHF, FRE, ITL and JPY, against the markka. The markka-values of these
currencies display some special features during the period under
consideration, which are reported in Table 3.1. These features may well
have affected the final variance-covariance estimates presented in this
study.

Table 3.1 Special volatility features in the exchange rates
1 Jan 1987 - 31 Dec 1995

Rates  Special volatility features

ALL All series have huge peaks at the 15 Nov 1991 devaluation and 8 Sep 1992 shift
to the floating-rate regime.

UsD The magnitude of the changes in the USD exchange rate is bigger than those of
the ERM currencies.

GPB Peaks at joining the ERM 8 Oct 1990 and shows turbulence and excess volatility
at exit from the system 16 Sep 1992.

SEK Increased volatility at the time preceding transition to the floating-rate regime in
Sep 1992.

NOK Increased volatility at the time preceding transition to the floating-rate regime in
Sep 1992.

DKK High volatility in connection with the turbulence of the Sep 1992 crisis involving
the ERM and the other Nordic currencies; stayed in the ERM band.

DEM 3 % revaluation on 12 Jan 1987.

NLG 3 % revaluation on 12 Jan 1987; high volatility in connection with the ERM crisis
in Sep 1992.

BEF 2 % revaluation on 12 Jan 1987; increased volatility in September 1992.
CHF Turbulence in Sep 1992.

FRF Turbulence in Sep 1992 as with the other ERM currencies: DKK, BEF, NLG and
CHF.

ITL The lira's band was narrowed from 6 % to 2.25 % on 5 Jan 1990, the effects of
which can be clearly seen in reduced volatility; 3.5 % devaluation on 14 Sep
1992 and exit from the system and float as from 16 Sep 1992.

JPY Increased volatility at the time of instability among the Nordic currencies and
ERM in early autumn 1992 but for a longer period.

Preliminary statistical testing of the hypothesis of a normal distribution
with zero mean and constant variance for the twelve exchange rates was
conducted for both main periods. Since the test values are extremely
sensitive to even a single outlier, the observations of the revaluation and
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devaluation trading days within this period strongly affect the descriptive
statistics.

For the first main period, 1 January 1987 - 5 September 1992, the
hypothesis of zero mean could not be rejected at the 5 per cent
significance level. The skewness and leptokurtosis measures are high. To
control for possible effects of structural breaks, the exchange rate band
period is further divided into two subperiods with the dividing date being
the revaluation date, 17 March 1989.

The full series was accordingly split into three nonoverlapping sub-
series.

Exchange rate band 1 Jan 1987 - 16 Mar 1989
period 21 Mar 1989 - 5 Sep 1992

Floating rate period 8 Sep 1992 - 31 Dec 1995

The realignments are treated in two alternative ways: either the data is
divided into three periods or their effects are captured by dummy
variables (in the second exchange rate band period).”® The skewness
figures are neglible in all periods except the second exchange rate band
period, which includes the realignment.

3.4 Exchange rate band period

3.4.1 First subperiod: 1 January 1987 - 16 March 1989

Summary statistics for the two subperiods, 1 January 1987 - 16 March
1989 and 21 March 1989 - 5 September 1992, show that the data for the
first period is much closer to a normal distribution than the data for the
second period. In most cases, the skewness measure does not differ
significantly from that of the theoretical distribution. The mean
percentage change of spot exchange rates is significantly different from
zero only for the SEK, NOK and ITL.

% Using dummy variables to account for the regime switch, identified ex post, the
estimated variances will undervalue the risks when used for ex ante forecasting. This
problem can be solved using the switching-regime Markov model developed by Hamilton
(1989) and Lam (1990), which can accommodate the dynamics of conditional
heteroscedasticity. See also Gray (1996) for an application to short-term interest rates.
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While the magnitude of the excess kurtosis for the first subperiod is
only a fraction of that for the later subperiod, it is significant for all currencies.

The later subperiod for the first main period, 21 March 1989 -
5 September 1992, includes the devaluation of 15 November 1991.
Although the devaluation day and nearby days are excluded from the
data, spillover effects from the devaluation remain. The subperiod ends
with the volatile market activity preceding the switch from an exchange
rate band regime to a float for the FIM, SEK and ITL. It also covers the
joining of the GBP to the ERM and the period preceding its exit from the
system. This turbulence can be seen in higher variances for all currencies
except the FRF and ITL. The skewness measures differ significantly
from zero for all currencies except the JPY. The figures for excess
kurtosis are generally very high in this set of the data. The USD and JPY
display less but still statistically significant kurtosis. This means that
during this period extreme values occurred more often than in the
theoretical distribution.

For the floating rate period, 8 September 1992 - 31 December 1995,
the hypothesis of a zero mean rate of depreciation is rejected only for the
ITL. The skewness measures differ significantly from zero for all
currencies except the DKK, NLG and BEF. All excess kurtosis measures
differ significantly from zero. Thus most of the empirical unconditional
distributions appear to display asymmetries and to have fatter tails and
more peakiness around the mean than the normal distribution.

The magnitudes of the variances are, as expected, largest for the
floating rate period. Also as expected, currencies within the ERM tend to
have lower variances for all periods than do the USD and JPY, which
float freely.

As kurtosis in the unconditional distribution may be considered an
indication of conditionality in the moments, we next proceed to model the
mean and variance with the ARCH process.

Estimation of the ARCH process starts with specification of the
conditional mean equation. Since first differencing produces stationarity,
log changes of the exchange rates can be initially expressed as

R,-R =a+eg, (3.1

where R, = In(X)) denotes the natural log of the original series, X,, & is a
constant and €, is a zero-mean error term. Under a serially uncorrelated
and homoscedastic error process, R, follows a random walk, possibly
with drift. The results for each series R, reveal the constant to be
insignificantly different from zero, confirming the absence of a
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deterministic trend or drift. There is no evidence of serial correlation in
the residuals, with the exception of the ITL. The ITL Ljung-Box test
statistics for linear serial correlation for lags up to five are highly
significant. The Jarque-Bera normality test statistic is significant for all
currencies except the CHF, which lends support to earlier results showing
deviation from normality in the form of leptokurtosis and skewness.

These deviations from normal errors may be evidence that the €'s are
not independently distributed over time, although as such these non-
normalities do not run counter to the assumption of a martingale process
for exchange rates. The graphs of the logarithmic differences show
clustering, which on the balance of the evidence is typical for high
frequency dollar exchange rate data. Thus there is a tendency for large
daily exchange rate changes to be followed by large changes and small
changes by small changes, with the sign unpredictable in either case. This
time-dependence, as well as various other sources of heteroscedastic
behaviour, are modelled in the conditional variance equation in the
ARCH processes. The variance equation explicitly allows for temporal
dependence by parameterizing the conditional variance as a function of
the past squared residuals and past conditional variances themselves.

Bollerslev et al (1992) suggests that the inclusion of a one-period lag
for the squared innovations, €, and conditional variance, h,, in the
variance functions, ie the GARCH(1,1) model, is usually sufficient to
capture most of the conditional heteroscedasticity in financial market
return data. This is also confirmed by previous results for markka
exchange rates and interest rates (Ahlstedt 1990, 1995) and by the
ARCH(1) test (Table 3.2).* Consequently a GARCH(1,1) structure for
the mean and variance equations was assumed:

R,-R, =g,

g ~ N(Oh) (3.2)
2

h=ag+a,e, +Bh,.

If the value of the parameter B, is not significantly different from zero,

then the process can be represented by an ARCH model. If «, is zero, the

process depends only on its past history. If both «; and B, are zero, ¢ is
white noise.

» The LM test for ARCH(1) reported in Table 3.2 is actually the same as the LM test for
GARCH(1,1) (Bollerslev, Engle and Nelson 1994). The ARCH(1) test statistic is
distributed according to student’s t.
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The GARCH model was estimated by the method of maximum
likelihood, assuming conditional normality, although the Jarque-Bera
normality test statistic strongly rejects the null hypothesis of normal
errors. Conditional normality is however not necessary for consistency
and asymptotic normality of the estimators. Weiss (1986), Bollerslev and
Wooldridge (1992) and West and Cho (1995) have shown that when
normality is inappropriately assumed the resulting quasi-maximum
likelihood estimators are nonetheless asymptotically normally distributed
and consistent if the conditional mean and variance functions are
specified correctly. Moreover, Bollerslev and Wooldridge (1992) derive
asymptotic standard errors for the quasi-maximum likelihood estimators
that are robust to conditional nonnormality and readily calculated as
functions of the estimated parameters and first derivatives of the
conditional mean and variance functions (Diebold and Lopez 1995).

The results of the GARCH estimation are shown in Table 3.2. The
models required a large number of iterations in order to achieve
convergence. Based on the Ljung-Box test statistics for the ITL, the
lagged endogenous variable was included in the mean equation for this
currency. The drift parameter in the variance equation, @, was
statistically significant for all currencies. Both the ARCH parameter ¢,
and the GARCH parameter [3, were significant in all equations.
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Table 3.2 GARCH estimation of the volatility of foreign
exchange rates, 1 Jan 1987 - 16 Mar 1989
(t-statistics in parentheses)

o, o, B, ARCH(1) test Ljung-Box test statistics

LAG(1) LAG() LAG(3) LAG@) LAGG)

USD  O01341E-5 00883 08661 220 172 18 183 283 398
(2.47) (329)  (2337)

GBP  0.1764E-6 00305 09473 546 101 245 424 433 488
(2.04) @97 (5278

SEK  03315E-7 00733 09011 875 697 770 883 903 1280
(223) 435 (4349

NOK  0.1363E-6 00757 08868 230 287 686 863 869 871
(2.64) @351  (781)

DKK  0.5654-E-6 0.127 0.7070 11.32 0.10 2.79 435 440 441
(3.17) (3.11) (9.89)

DEM  02490E-6 01468 0789  30.83 092 296 337 419 527
(4.04) @467)  (2386)

NLG  02207°E-6 0.1479  0.797 25.77 0.57 1.64 1.64 212 3.89
(3.16) (4500 (21.78)

BEF  0.1489E-6 0.0914  0.8601 3251 0.48 457 499 6.63 9.75
(2.62) (384)  (26.25)

CHF  03854E-6 00756 08659  21.96 041 461 490 541 545
(162) (285)  (17.33)

FRF  0.1630E-6 01054 08355 1830 041 054 087 429 53
(262) (399)  (2095)

ITL  04655E-5 02284 03007 4795 5744 5995 6402 6441 6654
(9.82) 430)  (4.69)

JPY  01208E-5 00925 08094 262 0.51 281 344 356 372
(262) (318 (14.12)

The effect of the squared surprises (shocks) on the variance is measured
by the parameter o,. The magnitude of the impact was quite similar for
the freely floating currencies, USD and JPY, and the European currencies
except for the ITL, which has a unique pattern. The sum of the
parameters o, and P, is close to one, indicating a GARCH process
integrated in variance or a GARCH process with persistence in the sense
of Engle and Bollerslev (1986).> In such a persistent variance model,

30 The formal statistical ML-based testing of the hypothesis o, + B, = 0 was not allowed for
in the computational package. This shortcoming seems to be common, since testing cannot
be found in the existing empirical GARCH studies either.

31 See Nelson (1990b) for a general analysis of persistence and convergence in
GARCH(1,1) models.
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current information remains important for the forecasts of the conditional
variance at all horizons.

An extension of the GARCH model to the regression framework is
the GARCH-in-mean (GARCH-M) model proposed by Engle, Lilien and
Robbins (1987). In financial applications, the GARCH-M model is
employed to capture a linear relationship between return and variance
(risk) according to the intertemporal capital asset pricing model of
Merton (1973) (Mills 1993, p. 137):

R-R, =Y0+Y1\/Ht+8t

) 3.3)
h=ay+ae,+Bh,;.

The conditional standard deviation (or variance) is included as an
explanatory variable in the mean equation. The impact of the standard
deviation on returns is interpreted as a time-varying risk premium.

To test for the existence of time-varying risk premia in the foreign
exchange market and ensure that the GARCH(1,1) is the correct model, a
GARCH(1,1)-M model was also tested for comparitive purposes. The
results showed that the parameter values y, for the risk premium are not
statistically significant. These results agree with the outcomes of other
studies dealing with non-markka exchange rates (eg Chappel and
Padmore 1995) where no risk premium was found when modelling the
return in excess of the riskless yield.

According to portfolio theory the risks in a portfolio are reflected not
only by the variances of the individual currencies but also by the
covariances. One way to estimate the covariances would be to switch
from univariate to multivariate modelling. Theoretically, the multivariate
model is a direct generalization of the univariate model, except that an
entire variance-covariance matrix is modelled. The problem, as discussed
earlier, is that the number of parameters in the general form may be so
large as to render the approach infeasible.

An alternative method to the general multivariatt GARCH for
accounting for simultaneous dependencies between rates is the use of
principal component techniques to test for common factors driving the
individual exchange rate variances, h,. If significant common factors are
found, they can be used in a factor GARCH model such as that of
Diebold and Nerlowe (1989). The underlying assumption here is that
exchange rate movements depend on a common set of international
variables observable only at certain frequencies (Bollerslev 1990). If the
common factors are macroeconomic variables, they are relevant only at
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low frequencies. If the common factors are to be found in the news
arrival process, they are relevant only at high frequencies. Hence, using
the GARCH model, one can predict how exchange rates react to shocks
or news, whereas with the principal component method one tries to
identify the shocks.

In this study the principal components were calculated for the
conditional variances, h;,, for the twelve rates.”> The use of principal
component analysis serves two main purposes. First, it provides a means
of comparing uniform behaviour in the individiual variances on a wider
scale than is possible in parewise comparison. Secondly, the method
allows for measurement of the degree of homogeneity within the groups
of rates. The eigenvalues and cumulative fractions of variance explained
are shown in Table 3.3. When the variables are highly correlated and
form a homogeneous group, the first principal component explains more
than 90 per cent of the total variation. This is usually the case for a set of
macroeconomic variables. The results presented in Table 3.3 indicate that
the variances within the group of exchange rates are more heterogeneous,
and the total variance cannot be concentrated into a few common factors
as it can for the macroeconomic variables. The fraction of explained
variance for the exchange rates starts at 50 per cent for the first principal
component and rises by about 10 percentage points with each additional
component. The factor loading values of the individual variances show
that the variance for the USD dominates the first principal component
with a value of 0.815. The GARCH estimation results concerning the
exceptional behaviour of the ITL are confirmed also in the principal
component calculations. The factor loading values for the ITL are only
0.152 and 0.036, thus indicating practically no correlation with any of the
first two principal components. Removal of this currency would increase
the fraction explaned by the first few components for the remaining
currencies.

32 Note, however, that the factors in the k-factor model of Diebold and Nerlove (1989) are
linear combinations (principal components) of the residuals, whereas we look at the factors
as principal components of the variances.
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Table 3.3 Principal components of conditional variances,
eigenvalues and cumulative fraction explained,
foreign exchange rates for
1 Jan 1987 - 16 Mar 1989

Component Eigenvalue Cumulative

R-squared
1 5.5140 0.4595
2 1.5249 0.5865
3 1.3212 0.6966
4 0.9697 0.7775
5 0.8193 0.8457
6 0.5164 0.8888
7 0.4753 0.9284
8 0.0118 0.9294
9 0.0767 0.9358
10 0.1658 0.9496
1 0.2974 0.9744
12 0.3068 1.0000

Using spectral analysis on both the individual conditional variances and
the principal components, one can decompose the observed time-
variability of the conditional variances or principal components into
contributions from periodic cycles at different angular frequencies (and
hence for different cycle lengths). Furthermore, visual inspection of the
power spectra provides a potentially powerful tool for identifying the
autocorrelation structure of the underlying process generating the
observed time variability of the conditional variances and ultimately the
process itself. Finally, spectral analysis may prove useful in constructing
optimal filters to remove specific cycles of a given length from the data.
Now, the overall shape of the power spectrum of the first principal
component (Figure 3.2) of the conditional variances, which is very
similar to the power spectrums of the individual variances themselves,
provides evidence of persistence in the component, ie the general shape
of the spectrum resembles that of a positively autocorrelated process.
Furthermore, additional contributions to the time-variability of the
conditional variances come from cycles with frequencies in the range
0.0224-0.0561 radians or 0.0036-0.0089 cycles per day (corresponding
to wavelengths between 70 and 280 days). Given the shape of the
spectrum, however, cycles within this range need not be highly regular.
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Figure 3.2 Spectral density function of the first principal
component of conditional variances of foreign
exchange rates for 1 Jan 1987 - 16 Mar 1989
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3.4.2 Second subperiod: 21 March 1989 - 5 September 1992

The results of the GARCH(1,1) estimation for the second subperiod, 21
March 1989 - 5 September 1992, of the fixed-rate regime are shown in
Table 3.4. This period includes a 12.3 per cent devaluation of the Finnish
markka on 15 November 1991. The effects of this realignment of the
markka are modelled by three dummy variables, which take the value one
for the actual devaluation day and two following days. The estimated
coefficients for the dummy variables show a devaluation effect of 13 per
cent for the actual devaluation day, a strengthening of 4 per cent on the
following day and a weakening of 1 per cent on the third day. The
cumulative effects of the three days amount to a 10 per cent weakening of
the markka against the currency basket.

The ARCH coefficient is significant for all currencies. The GARCH
parameter is not significant for the GBP and CHFE. The change in the
pattern of the variance of the GBP is explained by the fact that the period
includes the GBP’s entry to and exit from the ERM. The sum of «, and
B, is less than one, suggesting that the underlying variance processes are
weakly stationary, though in most cases the sum of the parameters is very
close to one.

The values of the estimated principal components appear in Table
3.5. The fractions explained are almost identical to those of the earlier
subperiod of the band regime. However, the dominant currency is not the
USD but the DEM (and DEK and NLG because of their high correlation
with the DEM).

The spectral density functions of the individual conditional variances
are very similar to those of the first band period. The pattern is also
confirmed in the spectral density function of the first principal
component. The overall picture is that the spectrum shows strong
persistence although there are visible local peaks for the period at about
180 days and its harmonic 340 days.
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Table 3.5 Principal components of conditional variances,
eigenvalues and cumulative fraction explained,
foreign exchange rates for
21 Mar 1989 - 5 Sep 1992

Component Eigenvalue Cumulative

R-squared
1 55139 0.4594
2 1.6188 0.5944
3 1.2500 0.6985
4 0.9555 0.7781
5 0.8184 0.8464
6 0.5995 0.8963
7 04758 0.9360
8 0.5208 0.9794
9 0.1007 0.9878
10 0.0200 0.9894
" 00717 0.9954
12 0.0543 1.0000

3.5 Floating-rate period

The markka’s floating rate regime is analysed here more thoroughly,
because forecasting will be based on estimates of conditional variances
for this period, whereas estimates for the exchange rate band period are
used to compare volatility estimates across regimes. These comparisons
may prove useful, since formally the markka’s free float come to an end
on 14 October 1996, when it was joined to the ERM. The institutional
circumstances and obligations of ERM membership are however
presently closer to those of the floating rate period than to the earlier band
periods.

Stationarity tests were performed on the data for the floating rate
period, 8 September 1992 - 31 December 1995. The Weighted
Symmetric T test, the augmented Dickey-Fuller t test and the Phillips-
Perron Z test were employed with both logs of exchange rates and log
differences. The estimated test statistics for the levels imply that the
hypothesis of a unit root cannot be rejected, even at the 1 per cent
significance level. The only value close to the 1 per cent critical value is
the Dickey-Fuller t test for the USD; the other two statistics for this
currency do not support rejection. Pantula (1985) has shown that the
asymptotic distribution of the Dickey-Fuller statistic is invariant to
ARCH, meaning that the test is asymptotically robust to autoregressive
conditional heteroscedasticity. The Phillips-Perron test, on the other hand,
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has good finite sample properties and may thus be more reliable here.
Based on all the test statistics for the first differences, the hypothesis of a
unit root can thus be rejected. The presence of a trend, which is detected
for the levels, cannot be found in the differences. The tests support the
presence of one, and only one, unit root in the levels of the series. Thus
each series is appropriately made stationary by taking first differences.

The results of the GARCH(1,1) estimation are presented in Table 3.6.
The initial turbulent days of the floating rate regime are omitted so that
the estimation period begins on 14 September 1992. The ARCH
parameter ¢, is zero for DEM and JPY and 1 for BEF. These values are
determined in the iteration process when the estimated values approach
the boundaries of 0 and +1 for the parameters. The constant «, is
significant for all currencies but very small in magnitude. The sum
o, + B, is close to one for most currencies; forcing the &, parameter to its
boundary value in the iteration causes the sum of the coefficients to be
much greater than one for the BEE The parameter values for the ITL
indicate nonstationarity in variance.”

 The large values of the standard t-statistics, found here for ITL and later on for some
interest rates and especially for the pooled models, cast doubt on the distributional
properties of the statistics. The empirical evidence in this study and in others (see eg
Heynen and Kat 1994 for exchange rates) seems to be that the value of the statistic
increases at a very high rate as the value of the parameter 3, is approaches unity, ie the
process approaches the unit root property. The standard t-statistics are commonly used in
GARCH literature. We have also calculated corrected t-statistics by using robust standard
errors as described by Bollerslev and Wooldridge (1992) and found them more reasonable.
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Table 3.6 GARCH estimation of the volatility of foreign
exchange rates for 14 Sep 1992 - 31 Dec 1995
(t-statistics in parentheses)

a, o B ARCH(1) Ljung-Box test statistics
LAG(1) LAG(Z) LAG(3) LAGH) LAG()

USD  03189E-5 00792 08608 6371 084 112 181 203 203
(457) @487 (3979

GBP  0.113¢E-5 00393 09225 6460 051 220 1804 2016 2265
(353) 4200 (5951)

SEK  04929E-8 00549 09196 2255 2245 2332 3655 4128 477
(@27 (503)  (58.09)

NOK  02793E-8 00670 09292 3006 812 840 935 1154 2294
(4.43) (7420 (139.94)

DEK  03186E-5 04585 05686 002 093 550 1205 1417 1420
403) (147 (1324)

DEM  01653E-6 0 09859 2620 485 487 1488 1493 1494
(7.78) (699.75)

NG O06442E-7 01025 08623 1876 853 1193 1241 1564 6644
759 (7752

BEF  0.1568E-6 1 0.4677 693 1079 2602 4304 4487 5281
(620) (36.17)

CHF  04272E-5 05814 03996 7094 429 462 671 721 733
772) (2493  (1287)

FRF  02884E-5 02109 06612 7482 014 354 718 735 760
(5.61) 691)  (14.86)

ML 08532E-7 04615 06914 4170 1726 8597 8629  97.85 9802
(1741)  (1760)  (55.29)

JPY  09024E-9 0 09898 2651 132 454 957 958 1410
(11.98) (1563.21)

The principal components are presented in Table 3.7. Compared to the
band period, the fraction explained is 10 per cent higher for the three first
components. This indicates greater homogeneity in the variance
structures. The dominant currencies seem to be the GBP and DEM. The
first component can perhaps be interpreted as a general underlying factor,
strongly correlated with the dominant currencies in the ERM.

Visual inspection of the spectrum of the first principal component of
the conditional variances once again strongly suggests that the variance
processes are persistent. The spectrum decreases almost monotonically
from its value at the lowest frequency of 0.00754 radians per day or
0.0012 cycles per day (corresponding to a wavelength of 834 days) to its
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value at the Nyqvist frequency (m radians or Y2 cycles per day,
wavelength 2 days).

Table 3.7 Principal components of conditional variances,
eigenvalues and cumulative fraction explained,
foreign exchange rates for
14 Sep 1992 - 31 Dec 1995

Component Eigenvalue Cumulative

R-squared
1 6.5713 0.5476
2 1.5919 0.6802
3 1.3205 0.7903
4 0.9224 0.8671
5 0.5081 0.9095
6 0.4612 0.9479
7 0.2909 0.9722
8 0.1673 0.9861
9 0.0773 0.9926
10 0.0463 0.9964
1 0.0381 0.9996
12 0.0043 1.0000

3.6 Pooled data

The results of the GARCH estimation for the individual currencies
during both the band period and the float show that there is a close
similarity in the estimated parameter values of the variance processes
within the periods. To evaluate the similarity between the individual
conditional variance models, the sum «, + P, for the variances for
different pairs of periods were plotted against each other. In the upper
part of Figure 3.3, the sum for the first band period is plotted against the
second band period. In the lower part, the second band period is plotted
against the floating-rate period. The figures show pronounced clustering,
which is interpreted as similarity between the individual parameter
structures and so justifies pooling of the data.
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Figure 3.3 The sum o, + [3, for pairs of periods
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The next step was to force the conditional variances for all the currencies
into the same model by identifying a GARCH model on the pooled data.
In the estimation, the log differences for the twelve individual currencies
were pooled separately for each period and a GARCH(1,1) model was
estimated on this data. The pooled data within periods was constructed by
simply connecting the data on the individual currencies. While this
implies incorrect data at the connecting points, given the huge amount of
data, the impact of such a few data points is considered to be negligible.

The GARCH(1,1) estimates for the first fixed-rate period, 1 January
1987 - 16 March 1989, are

h,=0.2692xE-7+0.0567¢_, +0.9406h, ,. 3.4)
(7.69) (37.73) (953.01)
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To compare the goodness of fit of the pooled model to the individual
models, maximum values of the likelihood functions were calculated. The
sum of the individual maximum likelihood values is 31 794; the
maximum likelihood value for the pooled model is 31 582; and the
corresponding test statistic ()7, for the null of the same GARCH(1,1)
model is 420. This is highly significant, thus confirming the expectation
that forcing leads to an inferior model.

The impact of news given by the parameter o, = 0.0567 is not very
strong. The persistence parameter is 3, = 0.9406, which implies that the
estimated mean lag of the variance expression, 1/(1-f,), equals 16.7, and
that it takes more than 3 weeks for shocks to come through in the model.
The sum «, + 3, = 0.9973, which indicates that the process is integrated.
One way to measure how long shock effects remain in the process (ie the
persistence) is to use the half-life figure, A, which gives the number of
days over which a shock to volatility diminishes to half its original size
(Lamoureux and Lastrapes 1990b). The half-life figure depends only on
the sum of «, + P, and is given by

log?2
=1-{ —=——1.
[ log(oc1+[31)) (3-5)

For an integrated process, log(e, + [3,) approaches zero from below and
so the A value is infinity. This is another way of expressing the typical
feature of an integrated process: impacts of shocks on the variance never
die out. For the pooled data, the sum &, + B, gives a half-life value of
A =257 days.

For the second subperiod of the fixed exchange rate regime, 21
March 1989 - 5 September 1992, the GARCH(1,1) estimates on pooled
data were

h,=0.3813*E-7+0.1295D, -O.O361D2+0.0109D3+O.O6218t2_1
(13.41) (71.22) (32.37) ©.17) (32.19)

+0.9353h, .
(532.95)

(3.6)

The estimated values of the ARCH and GARCH parameters are almost
the same as for the earlier subperiod. The models indicate a rather weak
reaction of the conditional variance to shocks but a strong persistence.
Even the values of the variance drift parameters are very close to each
other. Hence one can surmise that the behaviour of the exchange rates is
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homogeneous throughout the band period when the effects of
realignments are eliminated.

The sum of the values of the individual maximum likelihood
functions was 48 089 and the value for the pooled data model was
47 969. The x5 was 240. Although this test statistic is also highly
significant, it is clear that the violence done to the data by forcing the
same model on the individual exchange rates is much less during this
period than during the other periods.

The GARCH(1,1) estimation on pooled data for the floating rate
period, 14 September 1992 - 31 December 1995 produced the following
results:

h,=0.2642E-5+0.1883¢;, +0.7556h, . 3.7)
(24.79) (71.53) (169.51)

The sum of the maximum likelihood functions for the individually
estimated currencies is 47 249 and for the pooled data 38 013. The test
statistic 7, = 18 471 is highly significant, which indicates the inferiority
of the forced model estimated from the pooled data compared to the
freely estimated individual models and even more so for this period than
for the band period.

The value of the «,, 0.1883, shows that the impact of news on the
variance is much greater than during the band period. The impact of the
lagged conditional variance dies considerably faster in this period than
during the band period. The estimated mean lag of the variance
expression, 1/(1-,), equals 4.17 or about four days. The sum o, + B, is
0.9439, which means that the model is highly persistent but strictly
speaking not integrated. The half-life, A, equals 13 days. The value of the
estimated drift parameter for the variance, ¢, is much higher for the
floating rate period than for the band period.

Looking at Figure 3.1 we see a clear turning point in the currency
index in the middle of March 1993. From the start of the floating rate
regime on 8 September 1992, there is a strong positive trend in the level
of the index up to 10 March 1993, followed by a similarly strong
negative trend. This kind of trend change could have implications for the
estimation results that should be taken into account. Perron (1989) has
suggested that widespread evidence of a unit root in the univariate
representation of a time series may be due to the presence of important
structural changes in the trend function. Such changes can occur in the
intercept, in the slope or in both. Similarly, ARCH effects may occur
because of misspecification of the mean of the process or, more precisely,
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of the markka’s trend during the float. The trend reversal itself may be an
indication of the markka overshooting its long-term value or of a shift in
the intervention policy pursued by the central bank. In any case, the
observed trend reversal point is taken as exogenously given, and to
account for its possible effects on estimated volatility, the sample is split
into two subsamples at that point.

With the currency index, the hypothesis of an exogenously chosen
break point is preferable, especially because the slope change occurred
not slowly but immediately after reaching a certain level (probably
reflecting overshooting), which may have triggered intervention by the
central bank.* There is a clear break point in the data, found ex post, that
can be interpreted as a sign of nonstationarity, eg an unpredictable regime
change. To account for this change in the regime, the floating rate period
was divided into two parts and new pooled estimations were carried out:
one covering the period of the uptrend in the currency index (markka
depreciation) and the other the downtrend.

GARCH(1,1) estimation for pooled data covering the period of
markka depreciation, 14 September 1992 - 10 March 1993, produced the
following results:

h,=0.2958 E-2+0.3176¢., +0.4455h, ,. (3.8)
(8.54) (7.88) (7.30)

The results of the GARCH(1,1) estimation on pooled data for the period
starting with the break date 10 March 1993 and ending at 31 December
1995 were

h,=0.9189xE-6+0.0809¢_, +0.8847h, . (39)
(14.87) (18.16) (152.92)

The maximum value of the log-likelihood function for the whole floating
rate period based on pooled data was 38 013. The sum of the maximum
values of the log-likelihood function for the subsamples was 38 303. The
value of x* was 580, which is highly significant, thus indicating that
splitting the floating rate period results in a superior model
Nonstationarity within the original full floating rate period is imbedded in
o, Accounting for the trend beak by allowing the constant to be freely

34 See Hung 1995 on the effects of intervention strategies on exchange rate volatilities in
the US.
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estimated for the subperiods, we obtained widely differing values for a,
Also the values of «, and [, differ between subsets. The identified model
for the uptrend period is far from being integrated, with o, + 3, = 0.7731.
For the downtrend period, the sum is 0.9656 and the half-life figure
A =21 days.

The pooled model for the first band period, 1 January 1987 - 16
March 1989, is

h,=0.2692+E-7+0.0567¢; , +0.9406h, , (3.10)
(7.69) (37.73) (953.01)

and for the second band period, 21 March 1989 - 5 September 1992

h,=0.3813*E-7+0.1295D, -O.O361D2+0.0109D3+0.O621$:[2_1
(13.41) (71.22) (32.37) ©.17) (32.19)

+0.9353h, .
(532.95)

(3.11)

These have very similar o, and [, parameter values, which suggests that
the same model is applicable for the whole band period. The estimated
model for the downtrend floating rate period,

h,=0.9189+E-6+0.0809€”, +0.8847h, ,, (3.12)
(14.87) (18.16) (152.92)

is also very close to the model identified for the band period. The F-test
of equality of the coefficients estimated for different periods turned out to
be highly significant, thus rejecting the null hypothesis. Given the large
number of observations in the pooled data, however, this formal rejection
of the null is perhaps not surprising. We must therefore rely on common
sense to justify the conclusion that the conditional volatility of exchange
rates can be modelled as the same integrated process regardless of the
exchange rate regime. The assumption of equality simplifies the
multivariate analysis considerably.
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3.7 Testing for deviation from IID

The abrupt large changes that occur in financial time series, especially in
share prices, has fostered the idea that even GARCH modelling is too
simple to capture the dynamics of the stochastic processes driving the
financial markets. This has led to attempts to apply the method of
complexity and chaos to financial market data.

Most applied studies on chaotic behaviour of financial time series
deal with share returns. The results have been mixed. Chaos is found in
some papers in US share returns, while others dispute the claim. Chaos as
a general model of German stock returns is also rejected (Booth et al
1992). In an extensive study, Hsieh (1991) rejects the hypothesis that
weekly share returns are IID. He tests various explanations for the
rejection: linear dependence, nonstationarity, chaos and nonlinear
stochastic processes. The cause cannot be found either in regime changes
or chaotic dynamics but rather in conditional heteroscedasticity. Similar
results are reported in a study by Booth et al (1992) on Finnish share
returns. The paper concludes that the share returns exhibit nonlinear
dependence but that the form of dependence is not chaotic. The nonlinear
behaviour in their data is best explained by a GARCH model.

Although the evidence found so far for the presence of deterministic
chaotic generators in economic and financial time series has not been
very strong, the search for such generators has led to the development of
new statistical tests (Brock et al 1991) of which the most commonly used
one is the Brock, Dechart and Scheinkman BDS test (Brock et al 1987).

The BDS statistic provides a general test for model misspecification.
It is a diagnostic test where a rejection of the null hypothesis of IID
innovations is consistent with some type of dependence in the data.
Dependence may result from a linear stochastic system, a nonlinear
stochastic system, or a nonlinear deterministic system, ie chaos.
Additional diagnostic tests are therefore needed to determine the source
of the rejection (Mills 1993, p. 125).

The asymptotic distribution of the BDS statistic, N(0,1), can be used
to approximate the finite sample distribution for 500 or more
observations. The approximation appears unaffected by skewness or
heavy tails. Simulations by Hsieh (1991) confirm that neither the
asymptotic nor the finite sample distribution of the BDS test is altered by
using residuals instead of raw data linear models. This is not the case,
however, when the test is applied to residuals from GARCH and
EGARCH models. For these conditional variance models, the BDS test
may reject too infrequently. Hsieh (1991) gives simulated critical values
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for the BDS statistic, for use at the 2.5 per cent and 97.5 per cent
confidence levels for GARCH and EGARCH residuals.

The BDS statistics for standardized residuals of the mean equation of
the log differences are reported in Table 3.8 for the entire floating rate
period. For this data, the N(0,1) assumption for the distribution of the test
statistic is applicable. The test statistics provide strong evidence against
the null hypothesis of IID for all the series. Simulations done by Hsieh
(1991) show that the BDS test has good power to detect at least four
types of non-IID features: linear dependence, nonstationarity, nonlinear
stochastic processes and low-dimensional chaos. In our case, prefiltering
of the data rules out linear dependence. Nonstationarity caused by
structural changes is accounted for by dividing the estimation period into
three intervals. What is left then is nonlinearity in the mean and variance.
To capture nonlinearity in the mean, the GARCH-M(1,1) model was
tested. The results showed that the MEAN parameter is not statistically
significant for any currency. The GARCH(1,1) model was postulated to
capture nonlinearity in the variance. If the GARCH model is correctly
specified, the standardized residuals should be IID in large samples. To
determine whether any remaining nonlinear structure is present in the
model, the BDS test was applied to the standardized GARCH(1,1)
residuals (Table 3.8). For five currencies, the null of IID could not be
rejected when we used the simulated critical value of Hsieh, which is 2.11
for m=2 and €/o = 0.5. For the SEK, DKK, DEM, NLG, BEF, CHF and
ITL the test finds evidence of remaining nonlinearity or deterministic
chaos. These findings are well in line with results reported in the
literature for dollar exchange rates.

Table 3.8 BDS statistics for exchange rates
9 Sep 1992 - 31 Dec 1995, m =2, €/6 = 0.5

Standardized GARCH-

residuals residuals
UsD 5.32 0.88
GBP 4.66 0.64
SEK 9.55 7.99
NOK 9.16 1.52
DKK 7.22 279
DEM 7.32 5.49
NLG 13.92 2.90
BEF 15.19 429
CHF 8.19 3.13
FRF 6.85 1.23
JPY 16.26 1.00
ITL 7.79 6.34
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3.8 Summary for exchange rates

So far we have shown that the stylized facts found in the FIM bilateral
exchange rates can be modelled with a GARCH(1,1) process. Log-
changes in the spot exchange rates are martingales, since conditional
means are zero and there is no serial correlation. The results indicating a
unit root in levels, no linear dependence and high persistance are in
conformity with results of studies on daily exchange rates.*

The ARCH and GARCH parameters are significant for all exchange
rates. The sum of the estimated parameters in the conditional equation for
the individual currencies is close to one, indicating an integrated variance
process. This is also seen in the model estimated on pooled data, which
turned out to be integrated for all periods.

The principal component analysis applied to the estimated conditional
variances was used to detect a common set of variables generating
exchange rate movements. The reason for the relatively low value of the
fraction explained by the first principal components may be related to the
ITL, the inclusion of which reduces the homogeneity within the group.

Spectral analysis was performed on the estimated principal
components to assess and measure common cyclical behaviour for the
variances. There is a local peak in the spectral density functions of the
individual variances and the first principal component at 180 days for
both band periods. The spectral density function of the first principal
component for the floating period shows a peak at 420 days, but the
overall interpretation of the density function is that of an at-least-
persistent conditional variance process, perhaps even an integrated one.

In financial applications such as VaR models, the most common
assumption for the stochastic process in first differences of financial rates
is that of a normal distribution of a random walk generating process with
a constant unconditional variance. Although we know that this model
does not fit observed data as well as autoregressive conditional variance
models, this does not necessarily mean that its average performance is
inferior to the time-varying models. The estimated integrated conditional
model for exchange rates derived in this study indicates that a constant
variance forecast may be a good approximation of the time-varying
model. The random walk model can be considered as a benchmark
against which the more sophisticated changing volatility models can be
compared (Heynen and Kat 1994).

35 See eg Harvey, Ruiz and Shephard (1994) for dollar exchange rates, Chappel and
Padmore (1995) for the sterling-Deutschemark exchange rate and McKenzie (1997) for
Australian bilateral exchange rates.
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The alternative measures of the conditional, unconditional and
sample variance of movements in the individual exchange rates can be
summed up in a performance evaluation as follows:

- GARCH(1,1) conditional variance h; .

- GARCH(1,1) unconditional variance o,y/(1-(ct; + B,)), which also is
the convergence limit for the conditional variance h,.

- sample variance constant for the local peak frequency evaluated on
the cyclical behaviour of the individual conditional variances, h,, and
their principal components; 180 days for the band periods and 420
days for the floating rate period.

- sample variance calculated on quarterly data; frequency selection is
based on previous results (Ahlstedt 1990) where a subsample of 70
observations was found to be large enough to yield reasonable
statistical efficiency but still small enough to make it likely that the
sample variance remains constant. The power spectrum of the
variances also gives some support to this period.

Figure 3.4 Conditional, unconditional and sample variance
comparison: USD in the floating rate period

0.0 T T T T T T T
50 100 200 300 400 500 600 700 800

— UFX1 --- UFX2 ——UFX3 —- -UFX4
UFX1 GARCH(1,1) conditional variance

UFX2 GARCH(1,1) unconditional variance
UFX3 Homoscedastic variance; 420-day window
UFX4 Homoscedastic variance; 70-day window
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Figure 3.4 gives a comparison of the four methods for the USD in the
floating rate period. The GARCH unconditional variance can be visually
interpreted as a mean approximation of the conditional variance. The
dominant frequency for the floating rate period, 420 days, appears twice
in the sample size. This two-step function also gives a good visual
approximation of the mean of the conditional variance. The step function
formed by the 70-day sample period, ie quarterly frequency, smooths out
the wide swings in the conditional variance and seems to capture the
basic pattern of fluctuations in the variance.

The corresponding variance measures are displayed in Figure 3.5 for
the GBP in the same floating rate period. The outcome of the comparison
for this exchange rate is generaly the same as for the USD exchange rate.

Figure 3.5 Conditional, unconditional and sample variance
comparison: GBP in the floating rate period
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— GFX1 --- GFX2 ——GFX3 —- GFX4
GFX1 GARCH(1,1) conditional variance
GFX2 GARCH(1,1) unconditional variance
GFX3 Homoscedastic variance; 420-day window
GFX4 Homoscedastic variance; 70-day window
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4  Interest rate risk, equity risk and
real estate risk

In this chapter we will consider short- and long-term interest rate risk, the
equity risk measured by the volatility of the all-share index and real estate
risk.

4.1 Conditional variance of interest rates

ARCH methodology has been applied to interest rate data mainly to
model the term structure with a time-varying risk premium.*® The time-
series variables modelled in these studies have been measures of excess
returns of long-term yields over short-term yields or yields on corporate
bonds over yields on credit-risk-free Treasury bonds.

The ARCH-M and GARCH-M models in particular have been used
in these studies. In these models, a function of the conditional variance is
included as a regressor in the mean equation as a measure of the risk
premium. These models have however not been very successful.
Inclusion of a MEAN term usually makes variables that have previously
been found significant no longer so. As a result, the usefulness of the
model has also been challenged both on theoretical grounds by Backus,
Gregory and Zin (1989) and on empirical grounds by Mehra and Prescott
(1985), who showed that the ARCH effects are more closely related to
forecast errors than to risk premiums.

Since most studies involving interest rates have nonetheless adopted
the GARCH(1,1) or GARCH-M(1,1) specifications, these models are
also used here.”’” Most of the studies concentrate on yields, which are
measured separately for individual bonds. However, since the aim of this
study is to find a measure for interest rate risk in banks’ portfolios

3 See eg Shiller and Singleton (1980), Engle, Lilien and Robins (1987), Bollerslev, Engle
and Wooldridge (1988) and other papers mentioned in the survey of Bollerslev et al (1992,
1994).

37 The GARCH-M(1,1) model was tested both for the band and floating rate periods. For
the floating rate period, the MEAN variable was statistically significant only for ERUSD.
Inclusion of MEAN, however, makes the GARCH parameter insignificant, thus
confirming the results from other studies.
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without knowing the individual bond holdings,*® publicly quoted interest
rates were used instead of yields.

Inclusion of the entire term structure of interest rates for all
currencies in the study was not feasible. One way of reducing the number
of variables while still including the behaviour of the entire term structure
would be to use the method of principal components. Using this method,
the variances of all interest rates for one currency can be transformed into
three main variables describing changes, respectively, in the overall level
of the term structure and changes in the slope and curvature of the term
structure (Kérki and Reyes 1994). If the principal component method is
used, then forecasting should accordingly concentrate on these types of
changes in the curve. Since the objective of this study is to construct an
estimate for the future behaviour of the rates themselves, we decided not
to use the principal component method in this context. Instead, the
solution to the problem of term structure coverage was sought by
selecting one rate to represent all short rates up to one year. We
calculated the correlation matrix for one-, three-, six- and twelve-month
rates. Since the three-month rate was tested to have the highest
correlation with the other short-term rates, it was selected to represent the
term structure up to one year. The domestic three-year rate was selected
to represent the longer rates. Selection of the three-year term is based on
the historical data (reported to the supervisors) on the average duration of
bonds in Finnish banks’ trading portfolios.

The main time periods were the same as for the exchange rates.
Although the structural changes on which the division is based are not as
clear as for the exchange rates, the division is defendable (Figure 4.1).
Daily changes in interest rates are expressed as differences relative to
levels:*

Rt'Rt-l
1+R,

The order of differencing is dictated by the requirement of stationarity in
the mean equation. To this end, the Weighted Symmetric 7 test, Phillips-
Perron Z-test and the augmented Dickey-Fuller test were applied to levels
and differences, both for the band period, 1 January 1987 - 5 September
1992, and the floating rate period, 9 September 1992 - 31 December

38 Supervisors do not have such detailed information, but the banks themselves do.

% Multiplying a change defined in this way by the duration of the interest rate instrument
gives the change in a bond price, ie the capital gain.
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1995. The hypothesis of a unit root in levels was not rejected, but was
strongly rejected in first differences by all three tests for both periods and
all interest rates. The estimated p-values for differences for Type I error
are always zero for the band period. The largest p-value for the floating
period is 0.005 per cent, for ERGDP. Based on the results of the
augmented Dickey-Fuller test, we conclude that there is no trend or
constant in the unit root process generating observed interest rates.

Figure 4.1 Key interest rates

%

Nt WA

87 88 89 90 91 92 93 94 95 96

1 Long-term bond rate (close to ten-year)
2 3-month HELIBOR
3 1-month HELIBOR

The interest rate differentials, unlike the exchange rates, reveal strong
linear serial correlation according to the Ljung-Box test. The mean
equation therefore is expressed in the following form:*

Rt-Rtl 4
—=AR =YX $.AR .+¢,
1+R t i=l¢l Rt—l t

t

where ¢, is the autocorrelation coefficient of order i.

Prior to specifying the variance equation in the GARCH model for
the interest rate series, the rates had to be filtered from this linear
dependence. AR(p) models with p<5 were accordingly identified. The

“0 Based on the test results, no constant term was included in the mean equation.
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selection of the order p (Table 4.1) is based on the 1 per cent probability
level for the Jung-Box test statistic. It would have been very convenient
to use the same order of AR filtering for all series. However, it was found
that over-filtering for some interest rates removed the significant GARCH
effects in the data under lower-order filtered data. In order to avoid the
harmful effects on the data of over-filtering, the orders of the linear
autoregressive filtering models were chosen individually for all thirteen
series. The test values for the residuals of these pre-filtered models show
that the filtering process produced linearly independent data for all
interest rates except ERGBP. For ERGBP, even using twelve lags is
insufficient to remove serial correlation during the first band period.

Table 4.1 Selected order of pre-filtering,
3-month interest rates

Lags up to order AR(p)
1.1.87-16.3.89 21.3.89-5.9.92 8.9.92-31.12.95

ERUSD AR(1) AR(1) AR(3)
ERGBP AR(12)* AR(2) AR(3)
ERSEK AR(2) AR(2) AR(5)*
ERNOK AR(1) AR(3) AR(5)
ERDKK AR(2) AR(1) AR(3)
ERDEM AR(1) AR(2) AR()
ERNLG AR(1) AR(1) AR(1)
ERBEF AR(4) AR(1) AR(1)
ERCHF AR(1) AR(2) AR(3)
ERFRF AR(5) - AR(4)
ERITL AR(2) AR(2) AR(5)*
ERJPY AR(1) AR(1) AR(1)
ERFIM AR(1) AR(2) AR(4)

* Linear dependence remaining in the pre-fitered data.

4.2 Short-term interest rate risk

4.2.1 Exchange rate band period

In this section we deal with short-term interest rate risk, measured by the
volatility of thirteen three-month money market rates.

67



4.2.1.1 First subperiod: 1 January 1987 - 16 March 1989

Table 4.2 shows the results of GARCH(1,1) estimation for the first band
period, 1 January 1987 - 16 March 1989, on the prefiltered interest rate
differences for ERUSD, ERGBP, ERSEK, ERNOK, ERDKK, ERDEM,
ERNLG, ERBEF, ERCHF, ERFRF, ERITL, ERJPY and ERFIM. In the
iterative estimation, the ARCH parameter for ERDKK was set at its
lower boundary value, zero, which means that news has no impact on the
variance process. The GARCH parameter for ERGBP and ERCHF were
also set at the lower boundary value, zero. Thus for these two interest
rates, past conditional variance does not help in forecasting future

conditional variances.

Table 4.2 GARCH (1,1) estimation of the volatility of
3-month interest rates, 1 Jan 1987 - 16 Mar 1989
(t-statistics in parentheses)

(data multiplied by 100)
O xy B
ERUSD  04374E-2 0.2885 0.1442
(6.12) (453) (127)
ERGBP  0.0294 0.1105 0
(73.42) (2.55)
ERSEK  0.1371E-2 0.2400 0.7390
(437) (6.47) (25.79)
ERNOK  0.1177E-2 0.1253 0.8481
(2.49) (8.25) (41.37)
ERDKK  0.8462E-5 0 0.9957
(031) (1200.28)
ERDEM  0.1516E-3 0.0927 0.8871
(2.70) (3.85) (31.55)
ERNLG  0.7243E-4 0.0947 0.8888
2.92) (4.68) (40.72)
ERBEF  0.4927E-3 0.0930 0.8359
(4.99) (5.60) (41.33)
ERCHF  0.8482E-2 0.0892 0
(19.93) (1.59)
ERFRF  0.1237E-2 0.1766 0.7299
@377) (4.39) (15.32)
ERTL  0.5298E-2 0.2976 0.5605
(5.07) (6.42) (9.56)
ERIPY  0.1143E-3 0.0583 0.9080
(2.14) (3.20) (38.19)
ERFIM  0.6582E-4 0.2049 0.7559
(4.83) (10.33) (38.97)
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The estimated models are (weakly) stationary in variance’' with the
exception of ERFIM, for which the sum o, + f3; is 1.0508. Even though
this value is probably not significantly different from one, the Finnish
interest rate was excluded from the pooled data. In forecasting, the
domestic interest rate will be forced to follow the model that is estimated
on the pooled data.

In order to detect common factors driving the conditional variances
of interest rates, principal components were estimated for the band
periods. The eigenvalues and cumulative fraction explained by the
components for the first band period are shown in Table 4.3. The
fractions explained by the first components are generally, relatively small
compared to macroeconomic data and clearly lower than those for the
exchange rates. The conditional variance of ERBEF has the strongest
factor loading on the first principal component, followed by ERITL and
ERJPY. The factor loading for the US interest rate is practically neglible.
Graphical analysisis of the principal components also indicates that it is
not possible with this method to identify strong common factors that
could be used in an application of the k-factor multivariate GARCH
model proposed by Engle, Granger and Kraft (1984).

! In the absence of autocorrelation, &, + B, < 1 is sufficient for weak stationarity. Serial
autocorrelation requires a correction term that is a function of the autocorrelation
coefficients. Bera, Higgins and Lee (1990) give the stationary condition for an ARCH(q)

1 ¢ . .
- Y a,<1, as pointed out in

1-¢%i=1

process in the presence of first-order serial correlations as

Bera and Higgins (1993).
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Table 4.3 Principal components of conditional variances,
eigenvalues and cumulative fraction explained
3-month interest rates
1 Jan 1987 - 16 Mar 1989

Component Eigenvalue Cumulative R-Squared

1 4.2484 0.3268
2 1.9312 0.4753
3 1.4134 0.5840
4 0.9874 0.6600
5 1.0417 0.7401
6 0.6315 0.7887
7 0.8260 0.8523
8 0.7940 0.9133
9 0.4775 0.9501
10 0.3746 0.9789
1 0.1327 0.9891
12 0.1082 0.9974
13 0.0328 1.0000

Spectral analysis of the individual variances, h,, and of the first principal
component once again strongly suggest persistence in the underlying
factors affecting the time variability of the conditional variances.
Moreover, a cycle corresponding to a period of 280 days (second
harmonic and 0.0224 radians or 0.0036 cycles per day) is seen as a local
peak in the spectral density function.

As in the case of exchange rates, the use of pooled data would
impose the same structure on all the interest rates. In the same way as
with exchange rates, we graphically tested the similarity between the
estimated individual interest rate models by plotting the sum of the
ARCH and GARCH coeffients for the three main periods against each
other. Figure 4.2 displays strong clustering and in this sense sustains the
analysis on the pooled data.
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Figure 4.2 Pairs of sums «, + p, for different periods
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The following GARCH(1,1) model was estimated on the pooled data for
the first band period:

h,=0.3770+E-6+0.0669¢., +0.9418h, ,. @.1)
(6.36) (49.08) (1526.19)

The sum of the estimated ARCH and GARCH parameters is 1.0087,
which indicates that the conditional variance process of the interest rates
is integrated. The mean lag, 1/(1-B,), equals 17 days and the half-life
frequency for the integrated process, A, is infinite.
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4.2.1.2 Second subperiod: 21 March 1989 - 5 September 1992

Prior to GARCH estimation, the data for the second band period, 21
March 1989 - 5 September 1992, were prefiltered. The selected order, p,
based on the Box-Ljung statistic is presented in Table 4.1 for each
interest rate.

Table 4.4 presents the results from the GARCH(1,1) estimation for
the second band period. Both the ARCH and GARCH parameters are
significant for all interest rates. With the exception of ERFIM, all interest
rates are stationary in variance. For the first band period, the sum o, + f3,
for the ERFIM was 1.0508 and for this second period 1.0476. Neither
sum differs significantly from one, and so we conclude that there is a unit
root in the conditional variance process for both band periods for the
Finnish interest rate. This second band period includes a 12.3 per cent
devaluation of the Finnish currency on 15 November 1991. This
realignment is accounted for in the GARCH estimation for foreign
exchange rates on the corresponding period by using dummy variables. In
the Finnish interest rate data, there is a high spike at the devaluation date.
An alternative model was tested for ERFIM with a dummy variable for
the crucial date. There was no change in the estimated ARCH and
GARCH parameter values compared to the model estimated without the
dummy variable.

The results from the principal components analysis on the second
band period are shown in Table 4.5. The cumulative fraction explained by
the components grows very slowly with the number of components
included. There is an even stronger heterogenity in this group of
conditional variances than for the previous period. For this period, we
find the same dominant interest rates in the factor loadings of the first
principal component as were found for the first band period.

Whereas the spectral density function of the first principal component
also in this subperiod clearly provides evidence of persistent factors
underlying the conditional variance processes, the contributions from
higher frequencies can be seen, most notably from those corresponding to
cycle lengths of 62-174 days (0.0362-0.1014 radians or 0.0058-0.0161
cycles per day, ie 5-14 harmonics).
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Table 4.4

GARCH(1,1) estimation of the volatility of
3-month interest rates,

21 Mar 1989 - 5 Sep 1992
(t-statistics in parenthesis)

(data multiplied by 100)
&) ay B,

ERUSD 0.2160E-3 0.0878 0.8772
(439) (5.80) (44.77)

ERGBP 0.6923E-2 0.4098 0.0983
(15.50) (6.40) (1.81)

ERSEK 0.8382E-2 0.2768 0.4710
(14.39) (11.03) (13.26)

ERNOK 0.3710E-2 0.2058 0.6001
(1097) (5.94) (17.60)

ERDKK 0.1520E-2 0.2788 0.6092
(923) 8.77) @1.71)

ERDEM 0.1387E-2 0.1862 0.5381
(4.68) (5.74) (6.67)

ERNLG 0.1504E-3 0.1037 0.8551
(352) (5.68) (3357)

ERBEF 0.9879E-3 0.0743 0.7244
(324) (351) (9.81)

ERCHF 0.8691E-3 0.1359 0.7958
(2.98) (7.02) (22.55)

ERFRF 0.8490E-4 0.0565 0.9258
(344) (5.26) (80.28)

ERITL 0.7565E-3 0.2001 0.7874
(6.32) (10.72) (45.44)

ERJPY 0.4072E-3 0.1881 0.7140
(10.37) (7.36) (37.19)

ERFIM 0.1788E-2 0.5929 0.5547
(10.05) (19.10) (45.05)
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Table 4.5 Principal components of conditional variances,
eigenvalues and cumulative fraction explained
3-month interest rates, 21 Mar 1989 - 5 Sep 1992

Component Eigenvalue Cumulative R-squared

1 2.8366 02182
2 2.0931 0.3792
3 0.2627 0.3994
4 0.3257 0.4244
5 0.4213 0.4568
6 1.1914 0.5485
7 0.6008 0.5947
8 0.6849 0.6474
9 0.7879 0.7080
10 0.8417 0.7728
1 0.9601 0.8466
12 1.0010 0.9236
13 0.9923 1.0000

The GARCH(1,1) model for the pooled data on the second band period is

h,=0.1497+E-5+0.0958¢;, +0.9005h, . 4.2)
(58.15) (61.76) (1444.69)

The sum of the ARCH and GARCH coefficients is 0.9963, which
indicates an integrated variance process even for this second band period.
Although the sum of the coefficients is the same for both band periods,
the estimated values differ between the individual coefficients. The
impact of news, a.,, is bigger for the second period and thus the impact of
the past conditional variance is smaller. Since the value of 3, determines
the mean lag of shocks, this lag measure will also differ between the two
periods. The mean lag for the first period is 17 days and for the second
period 10 days. The half-life statistic, A, is 188 days for the second
period.
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4.2.2 The floating rate period

The results from prefiltering of order p are shown in Table 4.1. Despite
the prefiltering, ERSEK and ERITL still showed linear dependence
according to the Ljung-Box test.

The results from the GARCH(1,1) estimation for the floating rate
period, 9 September 1992 - 31 December 1995, are shown in Table 4.6.
The GARCH coefficient is significant for all interest rates. For ERDEM
and ERNLG, the ARCH parameter was set at its lower boundary value,
zero. News has no impact on these interest rates. The sum o, + B, is less
than one for most interest rates. The sum is exactly one for ERGBP, thus
indicating an integrated model. The models for ERNOK, ERDKK,
ERBEF and ERFRF are however nonstationary in variance.

Graphs of the individual prefiltered interest rate data display
increasing volatility during the turbulent times at the start of the floating
rate period; interest rates reacted strongly to the perceived uncertainty in
the currencies while they were approaching equilibrium after fierce
speculative attacks against them. This period must however be regarded
as exceptional and inappropriate as a basis for forecasting. Thus, the
turbulent period can be removed from the estimation period for those
currencies whose sum o, + [, exceeds one. For these currencies, the
estimation period was chosen in accord with the requirement that the
conditional variance process be at most integrated. In the case of
ERNOK, this was constructed by dropping the first 100 data points; for
DKK, by dropping the first 250 observations. The nonstationarity in
ERBEF could not be eliminated by selection of a subperiod, since the
nonstationary features in its variance are distributed over the entire
period. ERFRF shows clear nonstationarity at the beginning and end of
the period. The middle period is too short to be used for identification of
the model. Even though several subperiods were tested, stationarity was
not achieved.

The GARCH estimation results for stationary periods for ERNOK
and ERDKK appear in Table 4.7.

75



Table 4.6 Garch (1,1) estimation of the volatility of
the 3-month interest rate, 8 Sep 1992 -
31 Dec 1995 (t-statistics in parenthesis)

(data multiplied by 100)
(o) a Bl
ERUSD 0.4320-E-4 0.0460 0.9298
(4.10) (5.01) (66.52)
ERGBP 0.2766-E-4 0.0663 0.9289
452) (7.51) (144.17)
ERSEK 0.4519-E-3 0.0610 0.9098
(8.74) (7.48) (114.59)
ERNOK 0.2272-E-2 0.9826 04215
(6.06) (59.82) (17.69)
ERDKK 0.8906-E-3 0.4743 0.6849
(18.12) (18.75) (57.47)
ERDEM 0.8772-E-5 0 0.9902
(11.35) (1550.77)
ERNLG 0.3544-E-5 0 0.9941
(5.57) (1731.46)
ERBEF 0.1576-E-2 0.8218 0.5428
(14.36) (16.34) (40.95)
ERCHF 0.5007-E-4 0.0393 0.9420
(3.70) (6.17) (93.02)
ERFRF 0.2938-E-4 0.1705 0.8687
(6.90) (27.10) (361.04)
ERITL 0.1029-E-6 0.0944 0.8501
(8.24) (6.08) (52.53)
ERJPY 0.1038-E-7 0.1447 0.8113
(6.72) (10.30) (45.28)
ERFIM 0.2387-E-3 0.0711 0.8768
(14.87) (14.99) (131.87)
Table 4.7 GARCH (1,1) volatility estimation, interest rates,

subperiod 9 Sep 1992 - 31 Dec 1995

Xy x4 B,

ERNOK  02520E-2 01319 06772  (-100)
(3.49) (441)  (889)

ERDKK  0.1380E-2 04133 05829  (-250)
(12.92) (1129)  (22.77)
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Principal components are presented in Table 4.8. The figures for the
cumulative fraction explained by the principal components show a much
higher degree of homogeneity for this period than for the band period.
The same pattern is also present in the factor loadings of the first
components.

This time the power spectrum of the first principal component
conforms well to the spectrum of a highly persistent component process,
although there is a local peak at 420 days and at its harmonic, 840 days.
The overall interpretation of the power spectrum for interest rates during
the floating rate regime is the same as for the exchange rates during the
corresponding regime, ie the spectrum is typical for an integrated
stochastic process.

Table 4.8 Principal components of conditional variances,
eigenvalues and cumulative fraction explained,
3-month interest rates, 8 Sep 1992 - 31 Dec 1995

Component ~ Name Eigenvalue Cumulative R-squared

1 P1 7.3626 0.5663
2 P2 1.4651 0.6790
3 P3 1.0793 0.7620
4 P4 0.8284 0.8258
5 P5 0.9202 0.8966
6 P6 0.5711 0.9405
7 P7 0.3500 0.9674
8 P8 0.1778 0.9811
9 P9 0.1012 0.9889
10 P10 0.0674 0.9941
1 P11 0.0516 0.9981
12 P12 0.0205 0.9996
13 P13 0.0041 1.0000

A pooled series was formed from the stationary estimation period for the
individual interest rates, which was the full period for ERUSD, ERGBP,
ERSEK, ERDEM, ERNLG, ERCHF, ERITL, ERJPY and ERFIM. Sub-
periods were used for ERNOK and ERDKK. Due to the nonstationarity
of its conditional variance process over the entire period, ERBEF is
excluded from the pooled data. Since no stationary subperiod was found
for ERFREF, this interest rate is also excluded from the pooled series. In
the forecasting, ERBEF and ERFRF as well as the other interest rates,
were forced to follow the process estimated from the pooled data.

The estimated GARCH(1,1) model for the pooled data for this period
is
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h,=0.4223 «E-8+0.0881¢., +0.9367h, . 4.3)
(173.49) (112.32) (2683.54)

The sum «, + B, is 1.0247, which suggests nonstationarity in variance.
The null of an integrated variance model, &, + B, = 1, would most likely
pass statistical testing.

At the start of the empirical part of this study, the data were divided
into three separate subperiods to account for exogenously identified
structural changes in the exchange rate regime. In the third period, there
is a clear change in the trend of exchange rate levels. Consequently this
subperiod was divided into two parts: one covering the uptrend and the
other the downtrend. The same partition was then adopted for the interest
rates, and a GARCH(1,1) model was estimated on the pooled data for the
second half of the third period, 11 March 1993 - 31 December 1995, to
detect possible effects of the trend break. The results are very similar to
those for the model covering the full period:

h,=0.1981+E-9+0.0793¢, +0.939h, ,. @.4)
(136.96) (95.07) (2699.19)

As the sum «, + B, = 1.0192 does not differ significantly from 1, we
conclude that the inclusion of a structural change has a neglible impact on
the estimated parameter values and that the resulting model is
approximately IGARCH(1,1).*> The estimated mean lag for the floating
rate period is about 17 days, the same lag as was estimated for the first
band period.

The similarity between the estimated models on pooled data for the
three main periods is not as strong as for the exchange rates. The
estimated GARCH(1,1) model on the pooled data for the first subperiod
of the band period is

h,=0.3770 E-6+0.0669., +0.9418h,,. 4.5)
(6.36) (49.08) (1526.19)

The GARCH(1,1) model for the pooled data on the second band period is

2 See Lamourex and Lastrapes (1990) on the effects of structural changes on persistence
parameters.
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h,=0.1497 +E-5+0.0958¢; , +0.9005h, (4.6)
(58.15) (61.76) (1444.69)

and for the second part of the floating rate period

h,=0.1981*E-9+0.0793¢;,+0.939%h, . (4.7)
(136.96) (95.07) (2699.19)

Due to the large number of observations, the equality of the coefficients
in a formal F-test is rejected; differences in the estimated parameter
vectors are however fairly small, so that the conditional variance of the
interest rate process is assumed to be the same across exchange rate
regimes.

4.2.3 Testing for deviation from IID

The BDS statistics for the standardized residuals of the prefiltered raw
data are reported in Table 4.9 for the full period and for shorter periods.
There is strong evidence against the null hypothesis of IID for all series.
The values of the test statistics for ERNOK and ERDKK are reduced
with the shortening of the period but remain significant. After controlling
for linear dependence, ie nonstationarity due to possible structural
changes, deviations from the null of IID residuals could be due to
nonlinearity in either the mean or variance. To capture nonlinearity in the
mean, the GARCH-M(1,1) model was tested. The results showed that the
MEAN parameter is not statistically significant for most interest rates. In
one case where it is significant, it makes the GARCH parameter
insignificant. The GARCH(1,1) was postulated to capture nonlinearity in
variance. If the GARCH model is correctly specified, the standardized
residuals should be IID in large samples. To determine whether any
remaining nonlinear structure is present in the model, the BDS test was
applied to the standardized GARCH(1,1) residuals (Table 4.9). Although
the figures are smaller than those for the prefiltered raw data, a trace of
nonlinearity still appears in most of the residual processes.
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Table 4.9 BDS statistics for filtered interest rates,
9 Sep 1992 - 31 Dec 1995, m = 2, €/0 = 0.5

Long period Shortened GARCH-
period residuals
ERUSD 9.97 7.84
ERGBP 7.1 374
ERSEK 11.94 8.39
ERNOK 14.90 1.96 -0.98
ERDKK 17.89 11.62 2.66
ERDEM 8.32 7.66
ERNLG 417 2.70
ERBEF 12.66 299
ERCHF 474
ERFRF 18.07
ERJPY 8.40 7.46
ERITL 10.75 6.07
ERFIM 11.55 10.10

4.2.4 Summary for short-term interest rates

For the 13 three-month interest rates, GARCH(1,1) models were
estimated for three intervals selected to account for possible structural
changes triggered by realignments of the domestic currency. The interest
rates differed from the foreign exchange rates in that they reveal strong
linear dependence in the raw data, which required prewhitening of the
data. Also, nonstationarity conditional variance tends to be more typical
of the interest rates than the exchange rates.” We were not able to
identify the whole model for some interest rates since either the ARCH
parameter or the GARCH parameter was set to its lower boundary value
in the iteration process, regardless of the selection of initial values. The
models estimated on pooled interest rate data turned out to be integrated
in variance. The same parameter values are valid for all periods regardless
of the current exchange rate regime. The same result was found for the
exchange rates.

Spectral analysis of individual conditional variances and first
principal components also suggests that the conditional variance
processes are highly persistent; large contributions to the time-variability

4 Other studies also report problems with short interest rate modelling in that the
conditional variance process is not covariance-stationary (Gray 1996). Examples of studies
where the sum of the estimated ARCH and the GARCH parameters exeeds one are Engle,
Ng and Rothschild (1990), Hong (1988) and Engle, Lilien and Robins (1987).
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of the conditional variances or their first principal components also come
from shorter cycles, especially during the later band period. Indications
were found of a common local cyclical period of 180 days for both band
periods and 420 days for the floating rate period. Even in this feature, the
results coincide with corresponding results for exchange rates.

Next we compare alternative measures of interest rate volatility
derived from the estimation results. The expressions for the conditional,
unconditional and sample variance measures are the same as for the
foreign exchange rates:

- GARCH(1,1) model conditional variance, h;,

- GARCH(1,1) unconditional variance, oy/(1-(e;+B,)), the
convergence limit for the conditional variance, h,

- sample variance constant for the local peak frequency evaluated on
the cyclical behaviour of individual conditional variances and their
principal components; 180 days for the band period and 420 days for
the floating rate period.

- sample variance calculated on quarterly data; frequency selection
based on previous results (Ahlstedt 1990, 1995). A subsample of
about 70 observations was found to be large enough to yield
reasonable statistical efficiency yet small enough to make it likely
that the sample variance remains constant.
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Figure 4.3
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Figure 4.4 Conditional, unconditional and sample variance,
measure comparison, ERUSD, floating rate
period

0.08 1

T T T T T T T T
6 100 200 300 400 500 600 700 800
—ERG! ---'ERG2 --ERG3 -- ERG4

ERG1 GARCH(1,1) conditional variance

ERG2 GARCH(1,1) unconditional variance
ERG3  Homoscedastic variance, 420-day window
ERG4 Homoscedastic variance, 70-day window

The four alternative volatility measures are plotted in Figure 4.3 for the
ERUSD and in Figure 4.4 for ERGBP for the floating rate period. The
sample variances work as smooth mean values for the rough fluctuations
in the daily conditional volatility, h; .

4.3 Long-term interest rate risk

To capture the interest rate risk inherent in the bonds in banks’ trading
portfolios, we need an estimate of the variance of the long-term rate. The
bonds in those portfolios are mainly markka-denominated, so we focus on
the three-year markka bond rate as a proxy for the interest rate term
structure for the entire bond portfolio. Selection of the three-year term is
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based on historical data on the average duration of bonds in the trading
portfolios of individual Finnish banks.

Figure 4.1 shows the long-term bond rate for the period under
consideration. The data were divided into two periods: the band period,
1 January 1990 - 5 September 1992, and the floating rate period, 8
September 1995 - 31 December 1995.

Next we look at the stationarity of the long-term rate. The unit root
test statistics for the weighted symmetric 7 test, the Dickey-Fuller t test
and the Phillips-Peron Z test on first-differenced series are all statistically
significant, which means that the hypothesis of a unit root is rejected.
Differencing once produces a mean stationary series.

To detect linear dependency, the Ljung-Box test was performed on
the differences. The test statistics reveal strong autocorrelation. AR
filtering of order one for the first period and order three for the second
period are sufficient to remove the linear dependence in the mean.*
ARCH effects are detected for both periods.

The GARCH(1,1) model was estimated for both periods and the
results are shown in Table 4.10. All estimated parameter values are
statistically significant. The process is not integrated for either period: for
the band period the sum ¢, + [, is 0.8870 and the mean lag 1.1 days; for
the floating rate period the sum is 0.6183 and the mean lag 1.2 days. Low
persistence is also measured by the half-life statistic, A, which is 7 days
for the band period and 2.5 days for the floating rate period. The low
persistence also means a strong mean-reverting process in the time path
of the conditional variance, ie the effects of shocks on the current
conditional variance of the forecast of the future variance die out
relatively quickly.

Table 4.10 Long Rate, Differences

GARCH(1,1) estimation of volatility (t-values in parentheses)

o &y By
1Jan 90 - 5 Sep 92 AR(1) 09206E-7 07800 0.1070
(19.50) (10.50) (3.84)
8 Sep 92 - 31 Dec 95 AR(3) 0.2030E-6 0.4420 0.1763
(1493) (7.02) (3.19)

4 Estimation results for the drift parameter in the mean equation showed variability in
statistical significance and very small values. The constant was excluded from the
GARCH estimation following Figlewski (1994), showing that since the true mean in most
financial time series is both close to zero and prone to estimation errors, estimates of the
volatility are often made worse by including noisy estimates of the mean.
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These results conform with results on bond rates in other countries.
Fischer (1996), for example, finds that the volatility of daily data on
Swiss government bond rates is well modelled by GARCH(1,1) process.
The rates show significant first-order autocorrelation in the mean
equation but the variance model is closer to an integrated process than
that for the Finnish data.

BDS statistics to detect remaining nonlinearity are presented in Table
4.11. Conditional variance modelling reduced the values of the test
statistics to half the value for the filtered raw data, but they were still high
enough to reject the null of IID.

Table 4.11 BDS statistics for the standardized residuals for
the 3-year interest rate and the all-share index

Residuals from GARCH(1,1)

AR fittered data residuals
Band period
Long-term rate 8.7 417
Stock index 1.74 1.14
Floating rate period
Long-term rate 857 422
Stock index 497 1.71

To test the hypothesis of a time-varying risk premium in the long-term
rate, the GARCH-M(1,1) model was estimated for both periods. For the
band period, inclusion of the standard deviation with a coefficient of vy, in
the mean equation resulted in a statistically significant vy, parameter, but
at the same time P, lost its significance. For the floating rate period, the
estimated vy, parameter was set at its boundary value, zero, in the iteration
process.

4.4 Equity risk

Market risk includes also uncertainty about future values of traded shares
in the portfolios. To measure this risk, we need an estimate of volatility in
share prices. Assuming that banks and investors in general behave as
enlightened traders who diversify their portfolios to remove idiosyncratic
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risk, the variance of the all-share index can be used as an estimate of the
remaining systematic risk in the equity portfolio.

The data employed are daily log changes of the all-share index of the
Helsinki Stock Exchange. This index transformation is used to measure
capital gains in equity investments (excluding dividends). Figure 4.5
displays the all-share index in levels.

Figure 4.5 Helsinki Stock Exchange share prices by sector
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Empirical studies have shown that Finnish index series have one unit
root, ie stationarity is achieved by transformation into first differences
(Malkaméki 1993). To check if first differencing is enough to produce
stationarity, unit root tests were performed on log differences of the stock
index for the band period, 1 January 1987 - 5 September 1992, and the
floating rate period, 14 September 1992 - 31 December 1995. Based on
the results of the weighted symmetric t test, Dickey-Fuller t test and
Phillips-Perron Z test, the hypothesis of a unit root was rejected. Thus, the
logarithmic transformation of the stock index is integrated of order one.
Descriptive statistics for the stock index were then calculated. The
null hypothesis of zero mean cannot be rejected for the band period but is
rejected for the floating rate period. While skewness for the band period
is huge, removal of the ‘black Monday’ observation substantially reduces
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it. Again, we see that a single outlier can considerably affect the value of
a test statistic.

In empirical studies, skewness has been found to be a much stronger
feature in share prices than in exchange rates and interest rates. This is
not the case with the Finnish stock index.

Most empirical implementations of GARCH(p,q) models for stock
indices have adopted low orders for the lag lengths, p and q. Typically,
GARCH(1,1), GARCH(1,2) or GARCH(2,1) models have been selected.
However, a limitation in GARCH models is the assumption that only the
magnitude, and not the sign, of unanticipated returns determines volatility
Mills 1992, p. 140). Nelson (1990a) presented an alternative to the
GARCH model, the exponential GARCH, ie EGARCH, which
encompasses the observed feature that changes in share return volatility
are negatively correlated with the returns themselves, ie volatility tends to
rise in response to ‘bad news’ and fall in response to ‘good news’.

In this study we hope to be able to use a GARCH model with the
same orders p and q for all the market risks and therefore the
GARCH(1,1) process, which was selected for exchange rates and interest
rates, is selected for the Finnish stock index as well.

Prior to the GARCH identification, the data were prefiltered to
remove linear dependence. An AR(3) process was selected for the band
period and AR(1) for the floating rate period. The selection was based on
the Ljung-Box test statistics.

The estimated parameter values for the GARCH(1,1) model for both
periods are presented in Table 4.12. The values of the parameters o, and
B, differ between periods, while the estimated o, parameters are very
similar indeed. For the band period, the sum is 0.8584, the mean lag 7
days and the half-life 6 days. For the floating period, the sum of the two
parameters is 0.9475, the mean lag 7 days and the half-life 14 days.

Table 4.12 All-share index, compound yield, log differences

GARCH(1,1) estimation of the volatility ( t-values in parentheses)

Oy o B,
1Jan 87 - 5Sep 92 AR(3) 0.1208E-4 0.3275 0.5309
(11.43) (1099 (159
8Sep%2- 31Dec%  AR(1) 09196E-5  0.0966 08509
(15 Nov 92 included) (2.37) @3 (197
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Results from applications of ARCH to share return data are reported in
Bollerslev et al (1992). Highly significant test statistics for ARCH have
been found both for individual share returns (Engle and Mustafa 1992)
and for index returns (Akgiray 1989). Akgiray also reports a strong first-
order autocorrelation process in the mean equation for the CRSP stock
index, which is also found in this study using a Finnish stock index.

The BDS statistic was originally developed to test for deterministic
chaos as a form of nonlinearities in share returns. For share returns, most
studies find that standardized ARCH residuals exhibit very little evidence
of nonlinear dependence (see eg LeBaron 1988, 1989, Hsieh 1991).

BDS statistics for the residuals in the Finnish stock index prior to and
after GARCH estimation are displayed in Table 4.11. The test statistics
are significantly reduced by accounting for GARCH(1,1) effects in the
conditional variance and the hypothesis of IID residuals cannot be
rejected for the resulting standardized returns to the stock index.

The GARCH-M(1,1) was also estimated for the stock index to detect
a possible time-varying risk-return relationship in the mean equation. The
Y, parameter was not significant for either of the two data periods.

Prior to selecting the maintained volatility models, the odds for the
general idea of imposing the same GARCH structure on all rates
affecting banks’ portfolio returns were perceived to be least favourable
for share returns, since evidence from other sources strongly favoured an
EGARCH model these returns.*’ Yet, the empirical estimation in this
study revealed that GARCH(1,1) was best suited to capture
heteroscedasticity in share returns. For exchange rates and interest rates,
the BDS test statistic still detects deviations from IID in the standardized
GARCH residuals.

4.5 Real estate risk

Since market risk-sensitive assets are marked to market daily, we have in
previous chapters looked at daily changes in exchange rates, interest rates
and the all-share index in connection with the measurement of market
risk. In this section we deal with real estate risk where changes in asset
values, because of the thinner markets involved, are more reliably
measured at lower frequencies. The frequency differences between real

4 Although the EGARCH model was especially developed for share returns, Hsieh (1991)
has shown by applying the BDS test to the residuals from a EGARCH(1,1) model for
share indices and portfolios that not even the EGARCH model can completely account for
all deviation from IID in share returns.
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estate risk and market risk enable us to determine empirically the effects
of temporal aggregation on the distributional properties of financial
series.

Real estate is included in banks’ activities in three different
categories: fixed assets, real estate acquired as redeemed collateral from
defaulting borrowers, and real estate required as collateral for the loan
portfolio. The first category of real estate, which banks hold for long
periods and is reported at book value, is thus disregarded in this study.
The market value of collateral for the loan portfolio is important for
assessing the true credit losses in case of a realization of credit risk. Since
the supervisors for whom this real estate risk evaluation model is
developed do not have continuous information on loan-specific collateral,
the real estate price risk for this category can only be measured by the
banks themselves. What the regulators can measure then is the
uncertainty or variance of the market values of real estate acquired either
as redeemed collateral or in some cases for investment purposes.

The aim is to model the real estate risk in the same way as the market
risk in previous chapters. While the methodology will be the same, there
will be a difference in the frequency of the observed data. Market risk is
measured in previous chapters at daily frequency. Data on real estate
prices are available only on quaterly or monthly bases. That is not
necessarily a limitation because changes in market values of real estate
may react more slowly to new information and changes in the economic
environment. Therefore the optimal frequency for the measurement of
real estate risk may be monthly.

The bulk of real estate owned by Finnish banks is in domestic
residental properties. Statistics on housing prices in Finland are available
from two sources: a real estate agency and Statistics Finland (SF). The
(monthly) data provided by the real estate agency are regional prices on
existing two-room apartments, and the (quarterly) series published by SF
covers the prices of all apartments and properties sold throughout the
country, as reported for tax purposes. The real estate agency series entail
a great deal of stochasticity and noise due to occasionally thin markets,
which limits their credibility. The SF series are used in this study because
they are smoother and more reliable due to the inclusion of a greater
number of sales.

Although the SF series is officially published on a quaterly basis, it
was possible to get monthly figures from Statistics Finland. Figure 4.6
shows the monthly SF series in levels for the relevant period, 1 January
1987 - 31 December 1995.
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In order to estimate the GARCH(1,1) model, we start with the
identification of the mean equation. The following equation was
estimated for the seasonally adjusted log SF series:

log SF,=0.0186+0.9954log SF, . 48)
(0.29) (68.32) :

Hence the mean equation was statistically confirmed as a martingale
process without drift.

Stationarity in the mean was tested both for seasonally adjusted log
levels and log differences. The same unit root tests were performed for
the monthly real estate price series as for the daily market rates. The
weighted symmetric T test, the Dickey-Fuller t test and the Phillip-Peron
Z test were not significant for the log levels series but were significant for
the log difference series. Thus differencing once produces a mean
stationary series.

Figure 4.6 Monthly housing prices in levels
1 Jan 1987 - 31 Dec 1995, FIM
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The descriptive statistics for log differences of SF (Table 4.13) show that
the skewness measure of 0.37 with a standard error of 0.23 is not
significant but that the kurtosis measure of 5.80 with standard error of
0.46 is highly significant. Leptokurtosis is thus found also in monthly
series. The efficient market hypothesis is confirmed by the fact that the
mean does not differ significantly from zero.

To detect linear dependence, the Ljung-Box test for up to five lags
was performed. The test statistics reveal strong autocorrelation, which
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was removed via AR(1) filtering. The ARCH test statistic was significant
and so the next step was to estimate an AR(1)-GARCH(1,1) model. The
following parameter values resulted:

h,=0.13024 E-5+0.1969¢>, +0.5904h, ,. 4.9)
(2.25) (2.76) (4.20)

All estimated parameter values are statistically significant. The sum o, +
B, is 0.7873, which means that the process is far from being integrated
but strongly mean reverting. Compared to the results for the models
estimated in this study with daily data, this result can be seen as
confirmation of empirical findings of other studies indicating that the
degree of persitence increases with frequency.

Figure 4.7 Conditional variance of housing prices in log
differences, GARCH (1,1) model
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In the conditional variance shown in Figure 4.7, two clearly separate
periods are found, in terms of oscillation: high volatility in the early part
of the estimation period and a smoother path in the latter part. To test the
stability of the parameters in the conditional variance equation, the
estimation period was divided into two non-overlapping periods, the first
covering 50 months and the other 57 months. GARCH estimation was
applied separately to each subperiod. The number of observations in the
subperiods clearly puts us at the lower limit for degrees of freedom for
identification of a GARCH model, which affects the efficiency of the
estimation results.

The estimated model for the first subperiod for the mean equation
turned out to be an AR(1) process with a conditional variance equation
consisting only of a constant and an MA(1) part:
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h,=0.1637-E-3+0.8419h, ,.
(1.59) (6.80)

For the later subperiod the model turned out to be an AR(1) process in
mean with a constant variance.

The estimation results for the two subperiods differ so sharply from
each other that there is no need to apply a formal statistical test on
parameter stability. The two subperiods with differing volatility patterns
correspond closely to the pattern for the price series in Figure 4.6. The
period of high price levels during the first subperiod of the time interval is
characterized by higher volatility compared to the second subperiod with
lower prices. This fact gives reason to test the fit of a model in which the
price level or volume of sales is treated as an exogenous variable in the
conditional variance equation, in what can be called a GARCH-X model.
This kind of model has been used with daily data on financial return
series in order to capture the source of the ARCH effects. The use of an
exogenous volume variable in a GARCH model has been tested for daily
share return data (Lemourex and Lastrapes 1990a). The authors start with
the hypothesis suggested by Diebold (1986) and Gallant, Hsieh and
Tauchen (1988) that returns are generated by a mixture of distributions, in
which the daily arrival of information is a stochastic mixing variable for
which GARCH modelling might capture the time series properties. The
hypothesis was tested for twenty actively traded shares on the CBOE by
estimating a GARCH(1,1) model, using daily trading volumes as a proxy
for the mixing variable. The results show that the strongly persistent
GARCH effect in the GARCH(1,1) without the volume variable becomes
negligible in the GARCH-X(1,1) model with the volume variable
included. They thus conclude that there is no need for a contemporaneous
explanatory volume variable at daily frequency, since the tested
hypothesis is correct and the GARCH framework captures the behaviour
of share prices, ie on the market microstructure level the volume is driven
by exactly the same factors that generate return volatility (Andersen
1996). Sharma et al (1996) extended the work of Lemoureux and
Lastrapes from the implied micro level of individual stocks to the macro
level described by the NYSE index, a share price indicator. They showed
that the inclusion of volume as a proxy for news arrival in the conditional
variance dampens but does not eliminate the GARCH effects. Andersen
(1996) ends up with results confirming the work by Sharma et al for five
stocks commonly traded on the NYSE. The decay in persistence when
return-volatility analysis is expanded to return-volume analysis can be
explained by the hypothesis that the variance generating process cannot
be completely captured by volume as a proxy for news.
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To test the joint return-volume hypothesis, a GARCH-X(1,1) model
with volume of sales, Z, included as an explanatory variable in the
conditional variance equation of the following form was estimated over
the whole period:

=0+ +B b, +YZ, (4.10)

and the result was

h,=0.1599-E-3+0.1157¢. +0.8654h, ,-0.3057-E-4Z, @.11)
(3.26) (2.03) (15.58) (-3.24)

The Z variable, ie the volume of sales, is highly significant. Compared to
the GARCH model estimated for the whole period but without exogenous
variables in the variance equation, the impact of news as measured by the
parameter o, has diminished but the persistance parameter, 3,, has
increased in size. The sum o, + B, is 0.9811 so that the process is close to
being integrated. This suprising result shows that the unit-root-in-variance
proposition can also appear in lower frequency data.

The conditional variance estimated in the GARCH-X model is shown
in Figure 4.8. The signs of constancy present in the later period in the
GARCH model disappear in the GARCH-X interpretation.

In our application with monthly real estate prices, the results for
volatility persistence in moving from a GARCH model to a GARCH-X
model are the reverse of those with daily return data on individual shares
and stock indices. Inclusion of a volume variable in the real estate
variance model does not cause the GARCH effects to disappear or decay
but instead strengthens the GARCH-type persistence in the conditional
variance. In the estimated GARCH-X model, the persistence expressed as
the sum o, + B, was much higher (nearly integrated) than in the GARCH
model. The significant parameter estimate for the volume variable shows
that both GARCH variables and the volume variable are needed to
accurately model the variance process.
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Figure 4.8 Conditional variance of housing prices in
log differences, GARCH-X model
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Table 4.13 Descriptive statistics for housing prices in
log differencies
Skewness Kurtosis

Raw data GARCH GARCH-X | Raw Data GARCH GARCH-X
residuals residuals residuals residuals

0.37 -0.41 -0.077 5.80 3.97 2.72

Stand error 0.23 Stand error 0.46

The limited number of observations, 107, does not allow the use of the
BDS statistics for testing the hypothesis of IID. What can be done,
however, is to compare the deviation from normality in terms of
skewness and kurtosis in the residuals of the raw data to the GARCH
standardized residuals. Figure 4.9 includes the histograms of the raw data
and the standardized GARCH and GARCH-X residuals for the whole
period. Table 4.13 gives the descriptive statistics for the residuals of the
raw data and the GARCH and GARCH-X standardized residuals.

94



Housing prices: graphical comparison of raw
data and GARCH and GARCH-X standardized
residuals to the theoretical normal distribution

Figure 4.9
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Temporal aggregation into monthly series seems to lead to lower
kurtosis figures compared to the daily data delt with in pevious chapters.
This is consistent with both the theory and empirical findings and can be
explained in respect of the housing price series by the fact that the effects
of outliers are smoothed out partly because the data is recorded at a lower
frequency and parly because a large amount of sales is included. The
conclusions that can be drawn are that a trace of kurtosis still remains
after GARCH modelling of the variance but that the standardized
conditional residuals are closer to normality than are the residuals from
the raw data. The GARCH-X modelling reduces the kurtosis figure even
more.*s

4.5.1 Forecasting the exogenous volume variable

The final estimated interpretation of real estate price volatility is an
integrated model with an explanatory volume variable, Z, included in the
conditional variance equation. In order to be able to forecast changes in
real estate values with the estimated GARCH-X(1,1) model, we need a
forecast for Z.*” To evaluate forecasting possibilities, the autocorrelation
function was estimated for the Z series. Based on this estimate, the
following AR(1) interpretation was identified:

Z,=1.1018+0.7670Z,,,
(375  (1294)

which enables one-period-ahead forecasting.

% The only publication found on GARCH modelling of real estate data is by Fischer
(1996). His results on monthly data for the Swiss housing market are that the prices of
office buildings and rental units follow a GARCH process with a high positive moving
average component. Prices of apartments and single family homes do not show any
GARCH effects. The results, according to the author, must be treated with caution
because of the limited sample size.

47 An alternative model with the level variable log SF as a more easily forecastable
exogenous variable was estimated, but it proved to be statistically inferior to the selected
model.
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5 Evaluation of
variance estimation results

The objective of the first part of the study has been to model the time-
varying variances in twelve exchange rates, thirteen short-term interest
rates, one long-term rate, and the stock index on a daily basis. The
variance of real estate prices is modelled on a monthly frequency. A
GARCH structure was used in order to account for the observed
heteroscedasticity in the rates, and GARCH(1,1) turned out to perform
reasonably well for all the rates. The evidence on the significance of
GARCH-M effects remains inconclusive and so the study argues against
its use here. Hence, it is concluded that no significant time variability can
be observed in the risk-return relationship in the selected data set.

One of the strongest conclusions of the present study is that the
conditional variance model for individual exchange rates and short-term
interest rates is at least approximately the same across exchange rate
regimes. The model for long-term interest rate volatility, on the other
hand, displays less persistence with floating exchange rates than with
fixed rates, although the estimated conditional variance process appears
(weakly) stationary under both regimes.

Furthermore, results from the pooled data suggest that changes in
markka exchange rates and short-term interest rates have a time-varying
conditional variance that can be modelled as an identical IGARCH
process. Perhaps suprisingly, observed volatility in the stock index also
seems to follow the same IGARCH(1,1) process, while the long-term rate
exhibits strong mean-reverting behaviour. The finding of an IGARCH
process is consistent with the common finding that when a GARCH
model is applied to high-frequency data, shocks to variance are strongly
peristent; that is, the sum of the ARCH and GARCH parameters is very
close to one. One possible explanation for integration in the conditional
variance can be found in Nelson (1990b), who derives the stationary
distribution of the GARCH conditional variance process in continuous
time. This underlying diffusion model, which is close to IGARCH,
provides accurate approximations to high frequency data. Furthermore,
the distribution of the diffusion limit, and hence of the approximating
process in high frequency data, displays some interesting properties; the
GARCH innovation process is conditionally normal (ie given the
conditional variance), but unconditionally its distribution is
approximately Student’s t. Also, in the special case of the diffusion limit
of the IGARCH(1,1) model, the Student’s t has an infinite variance.
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Lamoureux and Lastrapes (1990b) suggest that the persistence is
overstated when the estimation is based on long series. The resulting
IGARCH could as well be due to the existence, but failure to take into
account, of deterministic structural shifts in the model or to time-varying
parameters. Structural shifts may result in instability of the drift
parameter, «, over the sample period, ie nonstationarity of the
conditional variance and high persistence in o, and [3,. The reason for the
division of the full data into subsets in this study was to account for the
possibility of such structural shifts due to changes in the exchange rate
regime. In the GARCH estimation on the pooled data, the same model
was forced on the individual rates and the individual drift parameters, o,
were also composed into a single constant in the estimation for each
period. The drift parameters in the individual models are very small in
magnitude but differ between rates and so can be interpreted as structural
shifts. This feature might have had the effect on the estimation results of
the model identified on the pooled data of giving the appearance of
extremely strong persistence in variance. However, the average sum of
the ARCH and GARCH parameters of the individual models, where the
structural changes were accounted for, is close to one, thus supporting the
hypothesis of an integrated variance process.

In the following we evaluate the variance estimation results in two
ways. First, we discuss the assumption of normally distributed
standardized residuals. Secondly, we test for asymmetry in the volatility.

As a result of the GARCH estimation, it was possible to construct
new variables by standardizing the raw data with the estimated standard
deviations. Through this procedure we should theoretically end up with
series that are normal. Table 5.1 and Figure 5.1 compare the descriptive
statistics for measuring skewness and kurtosis between the raw data and
the GARCH residuals for USD, ERUSD, DEM, ERDEM, ERFIM, the
FIM long-term rate and the stock index HEX. Skewness is found in the
raw data only for ERFIM. The kurtosis figures are also in most cases
substantially reduced via conditional variance modelling, with ERLONG
being the exception, whereas for ERFIM a substantial amount of kurtosis
remains after filtering with the estimated GARCH model. The BDS
statistics, given in Tables 3.7, 4.9 and 4.11, however show a considerable
reduction for the GARCH residuals compared to the raw data for all daily
rates considered, although some of them show traces of deviation from
IID normality.

Hence, while the GARCH(1,1) model is able to track the own
temporal dependencies, the assumption of conditionally normally
distributed innovations may require further study with the present data.
As a reference, under the null of IID normally distributed standardized
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residuals, the sample skewness should be the realization of a normal
distribution with a mean of 0 and a variance of 6/831 = 0.085?, while the
sample kurtosis is asymptotically normally distributed with a mean of 3
and a variance of 24/831 = 0.17%

The traces of remaining conditional leptokurtosis in the standardized
residuals indicate that the distribution of the conditionally normal
GARCH process is not sufficiently heavy tailed to account for the all the
excess kurtosis found in the return series.”® The rejection of the
conditional normality assumption is also frequently reported in
applications of ARCH family models (Bera and Higgins 1993). Several
methods have been proposed to account for this recorded inability of the
standardized residuals to pass the diagnostic normality test by introducing
a nonnormal conditional frequency distribution.*” Nonnormal alternatives,
which allow for leptokurtosis, are above all the Paretian family and
variates of the Student’s t distribution. The selection of the Paretian
distribution has however proved to be unsatisfactory because of the fact
that the distribution of financial data under temporal aggregation exhibit
diminishing leprokurtosis and convergence toward normality, which is
inconsistent with the Paretian distribution. On the other hand, on either
the normal or Student’s t assumption for the conditional distribution, the
unconditional distribution modelled by an ARCH process not only
exhibits leptokurtosis but also convergences to normality under addition
over time. The normal and t distibutions are therefore the distributions
which are most consistent with the observed behaviour of financial data.

Bollerslev (1987) proposed a conditional-t distribution that allows for
heavier tails than the normal distribution and, as the degrees of freedom
goes to infinity, approaches the normal distribution in the limit. Studies of
Bollerslev (1987), Engle and Bollerslev (1986), Baillie and Bollerslev
(1989) and Hsieh (1989) show that employing a conditional-t distribution
succeeds in accounting for the excess kurtosis in daily rates of return on a
number of exchange rates.

“8 Another reasonable explanation is the presence of outliers, the effects of which are not
removed in the GARCH estimation. Both the skewness and kurtosis figures have been
found to be very sensitive to even a single extreme observation.

“*This describtion of the handling of nonnormal conditional distributions is based mainly
on the presentation in Bera and Higgins (1993).
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Table 5.1 Skewness and Kurtosis statistics for raw data and
GARCH(1,1) residuals for USD, ERUSD, DEM,
ERDEM, ERFIM, FIM long-term rate and
all-share index for the floating rate period,
14 Sep 1992'- 31 Dec 1995

Skewness figures

Raw data GARCH(1,1) residuals
usb 0.34 -0.23
ERUSD 0.60 0.75
DEM 0.11 -0.52
ERDEM -1.33 -0.78
ERFIM -327 0.59
ERLONG -0.45 -1.55
HEX -0.07 0.04

Kurtosis figures

Raw data GARCH(1,1) residuals
usD 78.11 240
ERUSD 342 573
DEM 240.28 3.17
ERDEM 14.24 6.74
ERFIM 4274 16.02
ERLONG 2349 27.35
HEX 2.36 0.71
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No of obs

No of obs

No of obs

No of obs

Figure 5.1 Raw data in the left column for USD, ERUSD,
DEM, ERDEM, ERFIM, FIMlong and HEX,
figures for corresponding GARCH residuals in
the right column
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Other specifications of a nonnormal error distribution are given by
Nelson (1991) and Lee and Tse (1991). Nelson employed a generalized
error distribution (GED), which encompasses distributions with tails both
thicker and thinner than the normal, and includes the normal as a special
case. Lee and Tse used a distribution based on the first three terms of the
Gram-Charlier series, allowing for both thick tails and skewness. Hansen
(1992) introduced an autoregressive conditional density (ARCD) model
with a conditional-t distribution and time-varying degrees of freedom.
McCulloch (1985) suggested an infinite variance leptokurtic stable
Paretian  distribution in his so-called adaptive conditional
heteroscedasticity (ACH) model.

Empirical evidence on the suitability of the conditional distributions
described above is contradictory. Applications where none of the
conditional distributions is totally satisfactory for modelling conditional
heteroscedasticity have been reported.”® This leaves the door open for
further research on more adequate methods of implementation.

We continue the evaluation of the variance estimation results by
testing for asymmetry. Asymmetry is found in empirical studies,
particularly in share price data where downward movements in the
market are followed by higher volatilities than upward movements of the
same magnitude. Figure 5.2 shows an asymmetric news impact curve as
described by Engle and Ng (1991).

Figure 5.2 Asymmetric news impact curve

VOLATILITY
A

A
7

NEWS

%Hsieh (1989) found, for example, that a GARCH(1,1) model with either a conditional-t
or conditional GED distribution could not adequately represent daily returns on the
Brittish pound nor Japanese yen. Our work also shows that the GARCH(1,1) is not
suitable for the Japanese yen for the floating rate period for the Finnish markka.
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If asymmetry is found in volatility, the forecasting procedure will be
complicated since the outcome of the forecast depends on the sign of the
future changes in the financial rates.

TARCH and EGARCH models will be used here to describe and test
for asymmetry. The TARCH model or the Threshold ARCH has been
introduced, among others, by Glosten, Jaganathan, and Runkle (1994).
The model for the variance is

2 2
h =0, +ag.  +v,5.,d ,+Bh,

where d, = 1 if ¢, <0 and O otherwise.

Good news has an impact of «, while bad news has an impact of
o + y,. If y, is significantly different from zero, then the null of
symmetry is rejected.

The EGARCH model, which is the second model to be used here for
testing for asymmetry, was proposed by Nelson (1991) and specifies the
variance in the form

-1

' £
log(ht)=a0+ﬁlog(ht_l)+a’i :
Vha| b

The log transformation smooths out the effects of exceptionally large
shocks but there is some evidence that this smoothing may go too far.
The null hypothesis of symmetry is rejected if vy, is significantly different
from zero.

The estimated parameter values y, and vy, along with their t-statistics
for exchange rates and interest rates are presented in Table 5.2. The t-
values, calculated in a quasi maximum likelihood estimation procedure,
are corrected by using robust standard errors as described by Bollerslev
and Wooldridge (1992). The t-values for y, in the TARCH model show
that the hypothesis of symmetry remains valid for all exchange rates and
almost all interest rates. The only exception showing asymmetry is the
ERNLG interest rate. As a rule, the vy, coefficient in the EGARCH model
is also insignificant. Significance is found in these parameter values only
for BEF and ITL exchange rates and for ERDKK, ERBEF and ERITL
interest rates. The asymmetry coefficients y, and 7y, are in general of
opposite sign. This is because standardized residuals are used for the
EGARCH model and a dummy for negative shocks in the TARCH
model. When the sign is interpreted according to these models, a general
conclusion is that if the y, parameters are significant, then the negative

€

+Y,
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values found for almost all rates indicate that there are higher volatilities
related to upward movements than to downward movements.

The results from the testing show that traces of asymmetry are found
only for a few small country exchange rates and interest rates. The
hypothesis of symmetry cannot be rejected for the big countries. Since the
dominant parts of portfolio investments are made in major country
financial instruments, we can use the asymmetry assumption in the
forecasting framework presented in this study.
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Table 5.2 Testing for asymmetry of the conditional
distribution. vy, corresponds to the TARCH
model and vy, to the EGARCH model
(t-statistics in parentheses)”

Exchange rates Interest rates

Y: Y2 Y1 Y2
usD 0.0004 -0.0184 -0.0358 0.0385
(0.005) (-0.437) (-0.786) (0.893)
GBP -0.0039 0.0148 -0.0209 -0.0212
(-0.063) (0.456) (-0.720) (-0.508)
SEK 0.0531 0.0002 -0.0772 0.0583
(0.516) (0.003) (-0.542) (0.702)
NOK 0.1531 -0.0198 -1.5337 0.4285
(0.790) (-0.474) (-1.051) (2.730)
DKK -0.4048 0.1665 -0.5059 0.2005
(-0.863) (1.193) (-1.780) (3.233)
DEM -0.0796 0.0636 -0.0101 0.0028
(-1.075) (1.479) (-0.772) (0.198)
NLG -0.0967 0.0643 -0.0202 -0.0015
(-0.678) (0.775) (-2.049) (-0.057)
BEF -1.4982 0.4041 -1.0891 0.2696
(-1.054) (2.715) (-1.535) (2.330)
CHF -0.5242 0.2035 0.0091 -0.0079
(-0.970) (1.330) (0.268) (-0.213)
FRF -0.0742 0.0526 -0.1598 0.1987
(-0.663) (0.8575) (-1.844) (2.146)
ImL -0.6740 0.1848 -0.3395 0.1276
(-1.334) (3.101) (-1.524) (1.994)
JPY 0.0418 0.0049 -0.0059 -0.0229
(0.517) (0.335) (-0.058) (-0.293)
ERFIM -0.0287 0.0391
(-0.892) (1.042)
FIMLONG -0.0395 -0.0141
(-1.635) (-0.389)

" The t-values are calculated using Bollerslev-Wooldridge robust standard errors.
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6 Covariances in market risk

Next, two multivariate methods will be suggested and used to measure
the covariances of returns to allow for measurement of the total portfolio
variance. The first method is developed in this study and is based on the
assumption of identical autocorrelation structures for variances and
covariances between rates. The assumption allows us to extend the
univariate estimation results for the conditional variances to the
conditional covariances. The other method is developed here as a two-
stage version of the originally iterative Bollerslev method (1990), which
is based on the assumption of constant correlation between rates. Both
methods simplify the estimation procedure by enabling use of the results
for individual conditional variances in the calculation of conditional
covariances. The first method can be applied only to covariances within
groups of rates, unless the parameter structures of the different groups can
be proven to be sufficiently similiar. The other can be applied also to
covariances between groups of rates.

6.1 Conditional covariances:
identical autocorrelation structures

In the first method for covariance estimation, we test for dependence

between the autocorrelation structure of the variances and covariances. If

dependence is found to exist, then the conditional covariances can be

modelled with the same parameter structure as their conditional variances.
By analogy to the conditional variance formula

2 2 2
h; =0 =0+ &, +B,07,. 6.1)

The conditional covariances can be expressed as

Oy =055+ @ (8 18 0p) + Bl,ijoij,t-l ) (6.2)

where €; and ¢, are the innovations in the mean equation of returns series i
and j.

Since the terms o;;,_, are not observable, the covariances cannot be
estimated using a univariate GARCH method.
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The null hypothesis of independence is tested using the non-
parametric Kendall coefficient of concordance, W (Siegel 1956, p. 227~
239), which expresses the degree of association among a set of ranked
variables. The variables to be ranked in this case are the autocorrelation
functions of variances and covariances within the two groups of rates.

In the case of dependence between the autocorrelation structure for
the univariate conditional variance (6.1) and the conditional covariance
(6.2), the parameter values for the P,'s univariately estimated for the
variances, can also be used for covariances. Most conditional variances in
interest rates in this study were estimated to follow an integrated process
in which the ARCH parameter, «,, and the autocorrelation or GARCH
parameter, f3,, sum up to one. If we can show that the autocorrelation
structure measured by [, is not independent between variances and
covariances, it then follows from the unit root proposition that there is
dependence between the «, parameters for variances and covariances as
well.

By repeated substitution, the conditional variance formula in (6.1)
can be written as

b=

©(1-By

-
+ “1% Bl'el, (6.3)
J:

where the conditional variance is expressed in the form of a geometrically
weighted average of past squared residuals, so that the parameter 3, gives
the decay rate.

For the IGARCH process, formula (6.3) takes the form

o = .
ht=——°+a1_2(1-oz1)1'lst2_j. (6.4)
(Xl j=1

The expression for the covariances corresponding to formula (6.4) for the
variances is then

o -

__0 s-1

Oy =— 10 X(1-a) & t-s8jtst (6.5)
(xl s=1

Hence, in the empirical implementation of the derived formula for the
conditional covariances, we use the parameter estimates of the o,'s and
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B/'s from the pooled data within groups and periods and for the €'s and €'s
the observations on innovations in the individual returns.

6.2 Conditional covariances: constant correlations

In the second method for covariance estimation, the assumption of time-
varying variances and covariances with constant conditional correlation
between the N stochastic processes, following Bollerslev (1990), allows
the univariate GARCH estimation to be extended to a multivariate
framework via a simplified estimation and inference procedure. The
GARCH(1,1) structure for the conditional variances and covariances is
expressed as

12
=z
2
hy =0+ g B by (6.6)
_ 12
hij,t“ Qij(hii,thjj,t .

In the original application, the correlation coefficients, p;, of the
standardized residuals are estimated simultaneously with the conditional
moments. In our application we use a two-step method: first we calculate
the correlation coefficients on the univariately estimated standardized
GARCH(1,1) residuals and then we calculate the covariances from the
joint information on the correlation coefficients and the estimated
conditional univariate variances. In our application we assume constant
correlation within periods of homogeneous exchange rate regimes but
allow for time-variation between periods.

6.3 Covariances between exchange rates

Nontrivial covariation of the exchange rates and interest rates is highly
likely, not only because of the arrival of new information affecting all the
rates but also because of intervention policies of central banks.

In the first method of measuring the covariances between exchange
rates, we test for the possibility of encompassing the coherence between
rates in the analysis by extending the estimated parameter structure from
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the conditional variances to the conditional covariances. In order to do so,
we must test for dependence between these conditional moments.

The null hypothesis of independence was tested using the Kendall
coefficient of concordance, W, (Siegel 1956) which expresses the degree
of association among sets of ranked variables. The variables to be ranked
are the sample autocorrelation functions of variances and covariances.
The test was performed separately for the group of twelve exchange rates
and the group of thirteen interest rates.

Autocorrelations in variances and covariances up to the fifth order
were calculated from the exchange rate data separately for the band and
floating rate periods. The numerical autocorrelation values were then
ranked. The test statistic, W, was calculated to test the null hypothesis that
the rankings are unrelated. The numerical value of the coefficient of
concordance was 0.691 for the band period and 0.469 for the floating rate
period. The coefficient W is in this case approximately distributed as X,
and the corresponding test statistics are 215.59 and 146.33. These test
statistics are highly significant, which means that the null of
independence can be rejected for both periods. Based on the outcome of
the Kendall-W test procedure, which indicated that the variances and
covariances were not independent, we modelled the conditional
covariances between exchange rates using the same parameter structure,
ie the same values of «,; and P, ;, as for their conditional variances.

The Kendall-W test was performed on ranked autocorrelation values
of variances and covariances. The numerical values of the autocorrelation
function can also be used to approximate the similarity between the
variances and covariances. Table 6.1 gives the means of the numerical
values of the autocorrelation functions up to order five for variances and
covariances. For the exchange rates, we can conclude that the structures
are very similar.
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Table 6.1 Autocorrelation mean values of variances and
covariances

Exchange rates

P P2 Ps Pa Ps

Exchange rate band period

Variances 0.1279 0.0202 0.0322 0.0214 -0.0050
Covariances 0.0908 0.0421 0.0248 0.0057 0.0144

Floating rate period

Variances 0.1964 0.0830 0.0851 0.0301 0.0612
Covariances 0.2190 0.1247 0.1165 0.0383 0.0687

Interest rates

Py P2 P3 P4 Ps

Exchange rate band period

Variances 0.1863 0.0619 0.0874 0.0422 0.0273
Covariances 0.0143 0.0534 0.0105 0.0013 0.0123
Floating rate period

Variances 0.1509 0.0987 0.1083 0.0926 0.1001
Covariances 0.0049 0.0160 0.0009 0.0031 0.0185

A third method of evaluating the dependence between conditional
variances and covariances is based on principal components analysis.
Principal components were calculated separately for the sample variances
and covariances for the second band period, which in the estimation were
found to be identical to those of the first band period, and for the floating
rate period. The correlation coefficient, R, was then determined by
regressing the first principal component of the variances on the first
principal component of the covariances. The correlation coefficient is
0.54 for the band period and 0.87 for the floating rate period. A strong
dependence is thus found in this way between variances and covariances.

The outcome of the Kendall-W test, the visual interpretation of the
mean values of the autocorrelation functions, and the high degree of
correlation between principal components all support the use of the same
parameter structure for variances and covariances of exchange rates.

The estimated conditional variance model of the pooled data can
therefore be used as the basic model for the conditional covariances
between exchange rates. The estimated pooled model for the band period
is

111



h,=0.3813+E-7+0.0621¢, +0.9353h, (6.7)

and for the floating rate period

h,=0.9189+E-6+0.0809¢_, +0.8847h, . (6.8)

The sum «, + P, does not differ significantly from one, so we can
conclude that the conditional variance for the exchange rates follows a
GARCH process integrated in variance, which appears to apply across
exchange rate regimes.

Rewriting formula (6.4) we get the following weight structure for the
floating rate period when o, =0.08 and B, =1 - «;:

h=—"0 1+0.08¢2,+0 08(0.92)e>, +0.08(0.92)%>
t— 0.08 t-1 7 Y- 92)¢, ,+0. 92)%€,;
: 6.9)

+0.08(0.92)%7,+...+0.08(0.92)" ‘e +... .

The series of lagged squared residuals to be included in the formula is
truncated at 28, as the weight of the subsequent observation is less than
10 per cent of the weight of the first observation.

Table 6.2 gives the numerical values of the weights.
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Table 6.2 Numerical values of weights for the truncated
sequence of lagged squared innovations

Lag number weight

1 0.089
2 0.082
3 0.075
4 0.069
5 0.063
6 0.058
7 0.054
8 0.050
9 0.045
10 0.042
1 0.038
12 0.035
13 0.033
14 0.031
15 0.028
16 0.025
17 0.023
18 0.021
19 0.020
20 0.018
21 0.017
22 0.015
23 0.014
24 0.013
25 0.012
26 0.011
27 0.010
28 0.009

The expression for the covariances corresponding to formula (6.4) for the
variances is then

o
C.. = _0_ + 0088 £ + 0‘08(0'92)8i,t-28j,t-2

it i,t-1%,-1
£ 0.08 J

+0.08(0.92)%, 1€, ,+0.08(0.92)%; &, 4+ .. (6.10)

+0.08(0.92)" 'e. e+

it-n"jtn © 0t C

In the empirical implementation of the derived formula for the
conditional covariances, we thus use the parameter estimates of «, and J3,
from the pooled data within groups and periods. For the €s and g's, we
use observations on the individual exchange rates.
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The plots of the conditional covariances for the main currencies
calculated according to the formula (6.10) for USD/DEM, USD/GBP,
DEM/FRF, and USD/IPY are displayed in Figure 6.1. Visually, the
variation in covariances is often very similar to that of the corresponding
variances. The excessive time variability of the USD/JPY conditional
covariance at the beginning of the period reflects increased volatility of
the JPY at that time.

Figure 6.1 Conditional covariances, 9 Sep 1992 -
31 Dec 1995, USD/DEM, USD/GBP, DEM/FRF
and USD/JPY (weighted series)
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The alternative approach to calculating covariances is the Bollerslev
method of constant conditional correlations. In applying this method, we
assume that the correlations are constant within each of the three main
periods but allow them to change between periods.

To evaluate the empirical correctness of the assumption of constant
correlation in the Bollerslev method, a CUSUM test was applied to the
standardized residuals to test the stability of the regression parameter in
an OLS estimation where the exchange rate residuals were regressed one
at a time on each of the other exchange rate residuals.”’ CUSUM test
values for the floating rate period are presented in Appendix 2. The test
values for the first band period were well below the critical values even at
the 10 per cent significance level and consequently did not allow rejection
of the null hypothesis that the regression parameters remain constant.
Exceptions were the correlations ITL/JPY, ITL/DEM and DKK/JPY, for
which the null was rejected at the 5 per cent level but not at the 1 per cent
level. For the second band period the test statistics did not allow rejection
for any correlation between exchange rates at any significance level. For
the floating rate period the test statistics allowed rejection of the null at
the 5 per cent level for almost all correlations with the GBP and for
BEC/FRF, BEC/ITL and JPY/ITL. None of these test values were
however significant at the 1 per cent level.

The evidence in the data in favour of the constant correlation
assumption supports the use of the Bollerslev method. In applying this
method, the conditional correlation coefficients of pairs of GARCH
standardized residuals of individual exchange rates in (6.6) were first
calculated using sample data from the three subperiods. The correlation
coefficients for all 27 return series for the floating rate period are
presented in Appendix 2. Theoretically, these correlation coefficients are
approximately normally distributed under the null of either small or no
correlation if, in the latter case, one uses the normal to approximate the
exact Student’s t distribution. The bigness of the sample sizes makes even
low correlations statistically significant. For the first band period, the
sample size is 558 and the critical value at the 5 per cent level for the
correlation coefficient is 0.083. The corresponding figures for the second
band period are 866 and 0.067 and for the floating rate period, 819 and
0.068.

3! Since the CUSUM test is classified as a weak test, the emphasis in our testing is placed
on the 10 per cent significance level. An alternative method of testing for constant
correlation is given in Jennrich (1970).
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The numerical values of within-group correlations are highest for the
group of the exchange rates. This conforms with the theory that the
arrival of information affects all markka rates instantaneously.

With the Bollerslev method, we assume constant conditional
correlations within periods, but allow for changing correlations between
periods reflecting different regimes. A significant difference in the level
of the coefficients is also to be seen in the sample estimates.

During the first band period, 1 January 1987 - 16 March 1989, the
highest covariances are found between the European currencies, DKK,
DEM, NLG, BEC, CHF and FRF. The ERM apparently affects these
correlations. For the USD, the correlations are significant only with the
GBP, SEK, NOK and JPY.

For the second band period, 21 March 1989 - 5 September 1992, the
conditional correlations are significant for all pairs of exchange rates and
much higher in value than during the first band period. An explanation of
the phenomenon could be intensified central bank intervention activity
aimed at dampening exchange rate movements during this turbulent
period.

During the floating rate period, 8 September 1992 - 31 December
1995, the covariances between ERM currencies are again significant,
although much lower than for the first band period. Correlations between
the other currencies are generally insignificant. High correlation between
the USD and GBP and the Nordic currencies is found for this period.

Figure 6.2 shows the conditional covariances for the floating rate
period for USD/DEM, USD/GBP, DEM/FRF and USD/JPY, using the
constant correlation method. These figures correspond to the figures in
Figure 6.1, showing the conditional covariances for the same pairs of
exchange rates calculated by assuming identical parameter structures for
the variances and covariances.
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Figure 6.2 Conditional covariances, 9 Sep 1992 -
31 Dec 1995, USD/DEM, USD/GBP, DEM/FRF
and USD/JPY (constant correlation)
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6.4 Covariances between interest rates

Similar calculations for determining covariances were then carried out for
the group of thirteen interest rates as for the group of twelve exchange
rates.

In the first method, we test the null hypotheses of linear
independence of the autocorrelation structures of the variances and
covariances, ie of the parameters B,; and B, ;. If the null hypothesis is
rejected, dependence between the o, ; and «, ;; parameters results from the
assumption of IGARCH variance processes.

Ranking was done according to the numerical values of the
autocorrelation functions of the sample variances and covariances for
interest rates. The value of the Kendall coefficient W was 0.1014 for the
band period and 0.0264 for the floating rate period. The corresponding
X test statistics are 36.504 and 9.502. For the first period, the test
statistic is significant even at the 0.1 per cent level and for the second
period at the 5 per cent level. The null hypothesis of independence can
thus be rejected.

The test implies, both for interest rates and exchange rates, that the
parameter values estimated for the conditional variances can also be used
to calculate the conditional covariances.

As for exchange rates, the mean values of the numerical
autocorrelation functions up to the fifth order were calculated separately
for variances and covariances. The figures presented in Table 6.1 confirm
the results of the Kendall-W in revealing a clearly weaker dependence
between the conditional second moments for interest rates as compared to
exchange rates. The assumption of idential parameter structures thus gets
less empirical support with respect to interest rates.

As a third test of dependence between variances and covariances, a
principal component-based analysis was used, as was the case for the
exchange rates. The correlation coefficient, R, between first principal
components of variances and covariances for the first band period was
estimated to be 0.88, for the second band period 0.83 and for the floating
rate period 0.58. This outcome supports the assumption of dependence
between variances and covariances.

The estimated conditional variance for the pooled data was used as
the basic expression for the conditional covariances between interest rates
in the same way as for the exchange rates. The estimated pooled model
for the band period for interest rates was

h,=0.1497 +E-7 +0.0958$t2_1 +0.9005h, , (6.11)
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and for the floating period

h,=0.1981 *E-9+0.0793¢;,+0.939h, . 6.12)

For both periods, the sum «, + B, for both the pooled exchange rate
model and the pooled interest rate model does not differ significantly
from one. Therefore, we conclude that the conditional variances of the
rates follow a GARCH process integrated in variance.

For the floating rate period, we end up with the same weighted
formula (6.9) for interest rates as for exchange rates and consequently the
same values of weights as in Table 6.2.

The expression for the covariances corresponds to formula (6.10) for
exchange rates. The conditional covariances for interest rates for the
floating period are displayed in Figure 6.3 for ERUSD/ERDEM,
ERUSD/ERGBP, ERDEM/ERFRF and ERDEM/ERFIM.

The CUSUM test statistics for constant correlation in standardized
residuals within periods, which is the simplifying assumption in the
second method of covariance estimation, were calculated by regressing
the pairs of standardized residuals for the interest rate series on each
other. The test statistics for the floating rate period are presented in
Appendix 2. For the first band period, the null of constancy was rejected
at the 1 per cent significance level for all correlations between ERUSD
and the other interest rates. The null was rejected for ERNLG/ERFRF
and ERBEC/ ERFREF also at the 1 per cent level and for ERCHF/ERFRF
and ERBEC/ERFIM at the 5 per cent level. For the second band period,
the null was rejected at the 5 per cent level only for the SEK/NOK
correlation. For the floating rate period, there were no rejections at the
1 per cent significance level. At the 5 per cent level, some test statistics
were significant, most of them between ERDKK and ERGBP and the
other interest rates. For this period the same pattern of nonconstancy is
seen for the United Kingdom, both for the exchange rate and the interest
rate.

Compared to the CUSUM test results for the exchange rates, the test
results for the interest rates cast some doubt on the hypothesis of constant
correlation within periods. Since the main emphasis is placed here on the
results for the floating rate period, we however conclude that the use of
the Bollerslev method is justified.

In applying our two-stage application of the Bollerslev method as a
second method for covariance estimation, we calculated the conditional
correlation coefficients for GARCH standardized residuals for all pairs of
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interest rates for the three periods into which the data was divided in
order to account for regime changes.

For all periods, the numerical values of the correlations are much
smaller within the group of interest rates than within the group of
exchange rates. For the first band period, there is significant
contemporaneous correlation between ERUSD and almost all the other
interest rates. Within the group of ERM currencies, only a few significant
coefficients were found.

The pattern for the calculated coefficients is to a large extent the
same for the second band period. The only difference is found in the
greater dependence between ERGBP and the other interest rates.

For the floating rate period, more of the correlations were significant
compared to the band period, but they still remain low in comparison to
the correlations within the group of exchange rates (Appendix 2). Even
ERJPY, which in the band periods appears to be completely uncorrelated
with the other interest rates, shows significant correlations with almost all
the other interest rates under the floating rate regime. The change in the
correlation between the interest rates may be attributed to a degree of
integration of financial markets, both within and outside Europe.

Covariances calculated according to the second method are displayed
in Figure 6.4 for the floating rate period for the pairs of interest rates
ERUSD/ERDEM, ERUSD/ERGBP, ERDEM/ERFRF and ERDEM/
ERFIM. These figures correspond to the outcomes for the first method of
covariance estimation based on identical parameter structures for
variances and covariances for the same pairs of interest rates and the same
period as in Figure 6.3.
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Figure 6.3 Conditional covariances, 9 Sep 1992 -
31 Dec 1995, ERUSD/ERDEM, ERUSD/ERGBP,
ERDEM/ERFRF and ERDEM/ERFIM
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Figure 6.4 Conditional covariances, 9 Sep 1992 -
31 Dec 1995, ERUSD/ERDEM, ERUSD/ERGBP,
ERDEM/ERFRF and ERDEM/ERFIM

(constant correlation)
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6.5 Covariances between groups of rates

It was also necessary to undertake the multivariate measurement of
coherence between different groups.

Within groups of exchange rates and interest rates, the
encompassment of conditional covariances is accomplished by showing
that the autocovariance structures of variances and covariances are not
independent. Thus the parameter estimates of the conditional variance
processes for the pooled data are used to model the conditional
covariance processes. However, this method is not applicable to
covariances between groups unless the parameter structures are identical.
The other method, based on Bollerlev (1990), can be used also to
measure coherence between groups. The validity of the working
assumption of time-dependent conditional variances and covariances with
constant correlation is however more open to dispute for between-group
than within-group relationships.

To measure the covariation between groups in the covariance
estimation method of Bollerslev, the correlation matrix was calculated for
all twenty-seven rates: twelve exchange rates, thirteen short-term interest
rates, one long-term interest rate and the all-share index. The correlation
coefficients were calculated for the GARCH residuals of the individual
rates, which are assumed to be normal and IID. In this context, we
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