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Abstract 
 

We present a new composite leading indicator of economic activity in mainland China, es-

timated using a dynamic factor model. Our leading indicator is constructed from three se-

ries: exports, a real estate climate index, and the Shanghai Stock Exchange index. These 

series are found to share a common, unobservable element from which our indicator can be 

identified. This indicator is then incorporated into out-of-sample one-step-ahead forecasts 

of Chinese GDP growth. Recursive out-of-sample accuracy tests indicate that the small-

scale factor model approach leads to a successful representation of the sample data and 

provides an appropriate tool for forecasting Chinese business conditions. 
 

 
Keywords: Forecasting, China, Leading Indicator, Factor Model, Growth Cycles 

JEL-Classification: C32, C52, E32, E37 
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Tiivistelmä 
 

Tässä tutkimuksessa esitellään uusi Manner-Kiinan taloutta kuvaava ennakoiva suhdan-

neindikaattori. Indikaattori estimoidaan dynaamisen faktorimallin avulla, ja se koostuu 

viennistä, kiinteistömarkkinoiden luottamusindeksistä ja Shanghain pörssin hintaindeksis-

tä. Näillä aikasarjoilla on yhteinen, havaitsematon elementti, jonka avulla indikaattori voi-

daan identifioida. Tämän indikaattorin avulla voidaan muodostaa Kiinan BKT:n kasvua 

koskevia yhden neljänneksen ennusteita. Rekursiivisten testien perusteella indikaattori 

edustaa hyvin sen estimointiin käytettyä dataa, ja sitä voidaan käyttää Kiinan suhdanne-

vaihteluiden ennakoimisessa. 

 

Asiasanat: ennustaminen, Kiina, ennakoiva indikaattori, faktorimalli, kasvusyklit 
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1 Introduction 
 
Over the past decades, China’s economic performance has been nothing short of sensa-

tional, and, as a consequence, its role in the world economy has increased dramatically. 

This is reflected in the phenomenal growth of China’s GDP, which has risen at an average 

annual growth rate of 8.4 percent over the last decade. In 2004, its share in PPP-valued 

world GDP reached 13.2 percent.1 This remarkable growth is not confined solely to the 

domestic economy: China overtook Japan in 2005 as the world’s third largest exporter af-

ter a surge in demand for its electronic goods led to a 35 percent jump in the country’s 

overseas sales.2 The Chinese economy also managed to steer clear of the severe macroeco-

nomic instability that afflicted many of its Asian neighbors in the late 1990s. Given these 

developments, the need for timely estimates of Chinese economic activity has become all 

the more acute. Yet, despite China’s importance for the world economy, the number of 

studies developing and investigating leading indicators of economic activity in China is 

surprisingly scant.3  

Despite the dearth of reliable forecasting methods emanating from the forecasting 

fraternity, Marcellino (2005) suggest reliable and accurate forecasting may be possible by 

constructing coincident and leading indicators through estimation of a common factor 

model. One has to wonder, however, if this approach, based on the methodology developed 

by Stock and Watson (1989, 1991, 1993), is sufficiently broad to assess an economy as dy-

namic as China’s or sufficiently nuanced to capture economic conditions particular to 

China. As we illustrate in Section 2, recent Chinese economic development must be char-

acterized as a growth cycle rather than as a traditional business cycle. The difficulty and 

the uncertainties arising from the transition process in China make growth cycle analysis a 

less-than-ideal tool for monitoring and forecasting the Chinese economy. We therefore 

concentrate on developing a composite leading indicator for the Chinese GDP growth rate 

itself to analyze growth rate cycles. It is our belief that, properly tailored to the attributes of 

                                                 
1 See IMF (2005). The IMF (2004) examines the issue of whether the Chinese growth experience differs fun-
damentally from the growth experiences of Japan or the newly industrialized countries (NICs), which include 
Hong Kong, Singapore and Taiwan and the ASEAN-4 (Indonesia, Malaysia, the Philippines, and Thailand). 
The key insight is that mainland China’s current growth performance is not unprecedented.  
2 “China’s exports overtake those of Japan”, Financial Times, April 14, 2005. 
3 Very recently, Nilsson and Brunet (2006) noted the exceptional difficulty in finding suitable composite 
leading indicators for China (see http://www.olis.oecd.org/olis/2006doc.nsf/LinkTo/std-doc(2006)1). The 
Deutsche Bank Research publishes a “China Overheating Indicator,” which can be used as a leading indicator 
for inflation (see http://www.dbresearch.de/servlet/reweb2.ReWEB?rwkey=u1076388).   



Declan Curran and Michael Funke 
 

Taking the temperature –  
forecasting GDP growth for mainland China 

 

 

 8

the Chinese economic climate, the calculation of a leading indicator for mainland China’s 

growth cycles represents a potentially fruitful avenue for research. 

The remainder of this paper is structured as follows. Section 2 briefly describes the 

nature of the available Chinese GDP data and considers GDP data revision issues, as well 

as presenting a chronology of Chinese growth cycles. Section 3 deals with specification 

and econometric issues inherent in the common factor model developed from Stock and 

Watson’s work, and presents the empirical results. In section 4, recursive out-of-sample 

forecast accuracy tests are presented. In the final section, we discuss conclusions and pol-

icy issues based on our findings. 

 

 

2 Chinese GDP data and  
the chronology of China’s growth rate cycles 

 

In this section, we review the main characteristics of China’s GDP data to better under-

stand the reference series, i.e. the variable the leading indicator is supposed to lead. China 

has only recently made the transition of its system of national accounts to universally ac-

cepted national accounting practices. Li (1997) identifies three phases in the development 

of China’s national accounts: 1952-1984, 1985-1992, and 1992 to the present day. The first 

stage saw the implementation by the then State Statistical Bureau (SSB) of a Materials 

Production System (MPS) of accounts suited to the centrally planned economy. Instead of 

such terms as Gross Domestic Product, the MPS featured such aggregate indicators of eco-

nomic activity as National Income and Uses of National Income. The second stage in-

volved the co-existence of the MPS and the Standardized National Accounts (SNA) system 

advocated by the OECD. In 1985, the SSB began officially estimating GDP and the value 

added of the tertiary sector, which, prior to 1978, had been considered a “non-productive” 

sector. The third stage, which brings us up to the present day, has seen the SSB (now the 

NBS) abandon aggregate indicators such as National Income and Uses of National Income 

and concentrate on establishing a national accounts system compatible with the SNA. GDP 

estimation is beginning to internalize the principles espoused in the 1993 SNA.4 

                                                 
4 For a detailed account of differences between existing Chinese GDP measurement techniques and 1993 
SNA guidelines, see Xu (2003), who concludes that China’s ongoing transition to the 1993 SNA does not 
detract from the international comparability of Chinese GDP estimates. 
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As one would expect, China’s transition from a socialist production accounting 

method, with its neglect of items such as depreciation and “non material” services, toward 

an internationally recognized system of national accounts has not been without blemish. A 

number of idiosyncrasies have surfaced in the measurement of Chinese GDP growth, e.g. 

China’s use of unusual methods of constructing price indices and deflating GDP that may 

overestimate GDP growth.5 Wu (1997) notes vestiges of the previous national accounts 

system may still exist within the Chinese system, creating the possibility that unreformed 

fragments of the statistical data collection system at the grassroots level could contribute to 

GDP underreporting. Moreover, while random sampling surveys are the main component 

of Chinese national accounting system, elements of administrative reporting remain.6 That 

said, statutory measures have been taken to address such issues. The revised Statistics 

Laws of 1996 safeguard this central role of random sample surveys and censuses, with ad-

ministrative reports relegated to a supplementary role. Two unpublished government de-

crees in 1998, however, made it clear that local government interference in statistical re-

porting would not be tolerated. Holz (2003, pp. 157-162) notes that the NBS has also taken 

large strides toward improved data quality. Since the late 1990s, a restructuring of the sta-

tistical reporting system has seen the NBS improve data accuracy both by collecting higher 

quality data from a smaller number of enterprises and by increasing the number of enter-

prises that report their economic data directly to the NBS via the internet. The NBS has 

thus endeavored to create a core of reliable reporting from which high quality data on eco-

nomic activity can be compiled. 

 

 

 

 

 

 

 

 

                                                 
5 For a discussion of Chinese price indices, see Gu and Xu (1997). The NBS reports real GDP growth indices 
in comparable prices, as discussed by Wu (1997, p. 8). 
6 The veracity of Chinese GDP figure came under scrutiny in 1997/98 when provincial estimates exceeded 
the national figures compiled by the NBS; see Rawski (2002) and Holz (2003). 
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Figure 1.  Long-run trends in annual Chinese real GDP and year-on-year real GDP growth 
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Figure 1 illustrates long-run trends in both Chinese GDP and year-on-year GDP growth 

over the period 1953-2004. Two interesting features emerge from Figure 1: estimates of 

Chinese real economic activity over the 1953-2004 period display a positive trend 

throughout, while year-on-year growth displays a distinct cyclical pattern. This clearly in-

dicates that the common rule of thumb that a downturn consists of at least two consecutive 

quarters of negative GDP growth does not apply – post-reform China has not experienced 

negative GDP growth. Rather than speaking of a Chinese business cycle, therefore, it is 

more appropriate to talk in terms of a Chinese growth cycle. Oppers (1997) has proposed a 

division of cycles based on the rates of GDP growth, suggesting the following demarca-

tion: 1979 to 1981, 1982 to early 1986, mid-1986 to 1990, and 1991 onward. The cycle is 

assumed to start in the first year of increasing growth and end in the last year of decreasing 

growth.7 Similarly, the Economic Cycle and Research Institute (ECRI) have identified a 

pattern of peaks and troughs over the 1983-2004 period (see Figure 2). Both appear to pro-

vide reasonable approximations of the Chinese growth cycle.8 

 

 

 

 

                                                 
7 See Oppers (1997), p. 5. 
8 European Cycle Research Institute (2005), “Growth Rate Cycle Peak and Trough Dates, 20 countries, 1949-
2004,” (see www.businesscycle.com). Please note that Oppers’ (1997) demarcation of the Chinese growth 
cycle covers the period 1979–1997, while the ECRI demarcation covers the period 1983–2004. 
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Figure 2.  Demarcations of the Chinese growth cycle 
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China began calculating quarterly GDP estimates in 1992. It now publishes quar-

terly data approximately fifteen days after the relevant quarter.9 However, the NBS only 

began benchmarking quarterly GDP to verified annual GDP in 2003. Prior to 2003, no ad-

justments (benchmarking, revising, or seasonal adjustments) were carried out on the quar-

terly data, and the data was left in its initial state [see Liu (1997) and Jin (2004)]. China’s 

quarterly data is compiled in cumulative form and estimated using eight economic sectors: 

agriculture, industry, construction, transport, storage, post and telecommunication services, 

wholesale & retail trade and catering services, finance and insurance, real estate, and other 

services. The last five sectors comprise tertiary industry. While annual GDP is compiled 

from sources such as annual statistics reports, annual sample surveys, business accounting 

information, budget and financing statistics, most of the basic data for quarterly GDP is 

collected through monthly and quarterly surveys [see Liu (1997) and OECD (2002)]. This 

divergence in data sources leads to inconsistencies between annual GDP estimates and 

quarterly totals, resulting in the need for benchmarking of the quarterly totals against an-

nual data. As outlined by Jin (2004), the NBS uses a simple pro rata technique for bench-

marking the quarterly data.10 

The NBS releases two quarterly GDP series: a real GDP index and nominal Gross 

Domestic Product. Both are in cumulative form.11 These data series, as well as a wide 

                                                 
9  See Dong (2003) and Jin (2004). 
10 Maitland-Smith (2003) provides a comprehensive overview of techniques for benchmarking quarterly na-
tional accounts data to annual data. For a broader discussion of techniques for estimating quarterly GDP at 
constant prices, see Maitland-Smith (2001) and Davies (1997). 
11 To construct quarterly data in cumulative form, take, for example, the nominal GDP series. The quarter 
one figure for each year gives the actual nominal GDP estimate for that quarter. The quarter two figure is the 
sum of the GDP estimates of quarters one and two. The quarter three estimate is the summation of GDP esti-
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range of other Chinese data, are available from the CEIC database.12 For the purposes of 

this paper, we wish to construct a real GDP series in constant prices (in levels rather than 

cumulative form) from which we can assess for the presence of a conventional business 

cycle, as well as a series of year-on-year real GDP growth to detect the presence of a 

growth cycle similar to that seen in the annual real GDP data. This series of year-on-year 

real GDP growth will serve as a reference series for the construction of our composite 

leading indicator in section three. As it is compiled in cumulative form, the real GDP index 

for each quarter of a given year is calculated as if that same quarter in the previous year 

was set to 100. It is this feature of the real GDP index that facilitates the construction of the 

two series we require – real GDP in constant prices and year-on-year real GDP growth. 

Raw data limitations are the reason Chinese quarterly GDP estimates are compiled in cu-

mulative [see Liu (1997) and Jin (2004)]. Yet this cumulative form cannot be used to es-

tablish the quarter-to-quarter change in the real GDP index; we merely observe the changes 

between a quarter in any given year and the same quarter in the previous year, and there-

fore cannot simply transform cumulative real GDP index into levels. Thus, we take an indi-

rect route to solve this problem, constructing cumulative real GDP in constant prices using 

the working assumption that in order to use the real GDP index as a deflator for the nomi-

nal GDP series, a suitable base year for constant prices must be identified. 

We assume that in a year where the four cumulative quarterly real GDP index fig-

ures are relatively stable, the quarter-to-quarter real GDP growth is also relatively stable. 

The minimum coefficient of variation can be used to determine this stability. Once we 

identify and appropriate base year (2000 in our case), it is as if we have pinned down each 

of the four quarters of that year to their actual, as opposed to cumulative, growth rates. 

This allows us to establish the quarter-to-quarter changes throughout the series – and in the 

process allows us to use the real GDP index as a deflator as if it were in levels. Starting 

from the base year values, a cumulative constant price real GDP can be constructed quite 

easily using the GDP series as the deflator. It is also relatively straightforward to convert 

this newly constructed series from cumulative form to levels through a residual process.13 

With the help of a little numerical dexterity, we have constructed our quarterly real GDP 

                                                                                                                                                 
mates for the first three quarters, and the fourth quarter GDP figure comprises of the GDP estimates for the 
four preceding quarters. The fourth quarter figure should equal the annual GDP figure for that year. 
12 See www.ceicdata.com. 
13 Once the quarter one GDP figure is subtracted from the cumulative quarter two figure, the residual gives us 
the actual quarter two GDP figure. In the same way, the actual GDP figures for quarters three and four can be 
obtained from the cumulative data. 
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series in levels, from which the corresponding growth rate series has been constructed us-

ing a log-difference transformation. Both are illustrated in Figure 3. 

 
Figure 3.  Quarterly real GDP and real GDP growth rates 
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A number of salient features can be discerned from Figure 3. Considering Chinese 

quarterly real GDP first (left-hand panel), the absence of a traditional business cycle is 

once again evident, with the series exhibiting a sustained positive trend over time. Fur-

thermore, Chinese quarterly real GDP exhibits very strong seasonal effects. If one consid-

ers the year-on-year growth rate of real GDP, however, these strong seasonal effects are 

not present (right-hand panel). As it is this GDP growth series that will be utilized for the 

remainder of this paper, this feature is of particular importance. 

Of even greater significance is the question of just how accurate our newly con-

structed GDP growth series actually is. To gauge the accuracy of our newly constructed 

series, we compare it to quarterly real GDP growth as estimated by Abeysinghe and Gu-

lasekaran (2004), who apply Chow-Lin related techniques to annual real GDP data ranging 

from 1979-1999 and obtain the associated quarterly growth rates. The two real GDP 

growth series are denoted as “constructed” and “alternative” in Figure 3, respectively. On 

the whole, our newly constructed GDP growth series exhibits a strong correlation with the 

alternative series, particularly from the first quarter of 1995 to the last quarter of 1999 (i.e. 

they share a noticeable overlap for much of that period). Before 1995, despite a tendency 

of the Abeysinghe and Gulasekaran (2004) estimates to exceed our series by 1-2.5% in cer-

tain quarters, a number of corresponding data points as well as a common trend are dis-
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cernable. In all, one would have to say that the clear similarities between our constructed 

GDP growth series, which has the benefit of benchmarked quarterly real GDP, and the 

Abeysinghe and Gulasekaran (2004) estimates, based on disaggregated annual GDP data, 

over the entire 1992-1999 period appear to provide a strong endorsement of our newly 

constructed series. 

While our newly constructed GDP growth series appears to perform very well, one 

further issue must be addressed – the recent substantial revision to Chinese annual GDP 

data. In December 2005, official revisions of China’s annual GDP revealed an economy 

worth 16 trillion yuan in 2004, 17 percent more than previously thought. Some 93 percent 

of the increase was ascribed to the services sector. As a result, the share of services in the 

economy jumped to 41 percent.14 Most of the unearthed GDP comes from four categories. 

The first is real estate, which has boomed in the coastal provinces, and boosted demand for 

architects, developers and other building services. The second is retail and catering; the 

third is transport and telecommunication services. The final component is the surge in me-

dia and technology services. Most of these activities were not captured by a statistical sys-

tem geared to measure factory production. The revision period of the GDP data runs from 

1993, as the 1992 First National Tertiary Industry Census had already enabled the NBS to 

revise annual GDP data for the period 1978-1992. This dominant role of the services sector 

in the revised GDP data is captured neatly in Figures 4 and 5, where it is evident that only 

the tertiary industry exhibits a pronounced difference in its pre- and post-revision trends, 

both in levels and year-on-year growth. The figures for primary and secondary industries 

remain virtually unchanged after the revision. 

 

 

 

 

 

 

                                                 
14 Under the revised figures, it appears China’s services sector is rather well developed and roughly as large 
as the services sectors of Japan, South Korea and Taiwan at a similar stage of development (although the 41 
percent of GDP claimed by services is still substantially below the 60-75 percent typical of advanced econo-
mies). Crucially, the rising share of services cast serious doubt on the usefulness of industrial production in-
dices as a reference series. 
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Figure 4.  Chinese pre- and post- revision annual GDP, 1993-2005 
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Figure 5.  Annual Chinese pre- and post-revision value added, by industry (1993-2005) 
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The visual impressions created by Figures 4 and 5 confirm that the pre- and post-

revision real GDP data share a large common component and that the divergences between 

the two are predominantly driven by the services sector. This presents us with an opportu-

nity to use the quarterly real GDP data that existed prior to the 2005 revision to disaggre-

gate the post-revision annual GDP data into quarterly frequency. 

The issue of temporal aggregation has been considered extensively in the econo-

metric literature and numerous solutions have been proposed so far. Broadly speaking, two 

alternative approaches have been followed: (i) methods that make use of the information 

obtained from related indicators observed at the desired higher frequency, and (ii) methods 

that rely upon time series models to derive a smooth path for the unobserved series. The 

first approach includes the Denton (1971) procedure and the method suggested by Chow 

and Lin (1971) and further developed by Fernández (1981) and Litterman (1983).  The lat-

ter approach comprises of model-based methods relying on the ARIMA representation of 

the series to be disaggregated [Wei and Stram (1990)].  

Here, we use the proportional Denton procedure for temporal disaggregation of the 

recently revised Chinese GDP data. The proportional Denton method of distribution of the 

revised annual GDP series by use of an associated “indicator series” imposes the constraint 

that the interpolated series obeys the annual totals. The missing intra-period data are ob-

tained through quadratic minimization of the differences between the realigned and origi-

nal series. Unlike the simple pro rata distribution approach, the proportional Denton proce-

dure avoids the problem of discontinuities between fourth quarter and the first quarter of 
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the following year.15 As discussed above, the pre-revision and revised annual real GDP 

data share a large common component; namely, the primary and secondary sectors, which, 

as illustrated in Figures 4 and 5, have remained virtually unchanged despite the revision 

process. This fact is utilized in our expansion of the revised annual GDP data into a newly 

constructed quarterly GDP rate series; we take the pre-revised quarterly GDP data as the 

indicator series for our temporal disaggregation and then construct the corresponding quar-

terly real GDP y-o-y growth rate series. Figure 6 compares our newly constructed revised 

real GDP growth rate with its pre-revision counterpart. Figure 6 reveals a revised quarterly 

real GDP growth rate series that exhibits all the characteristics discussed thus far. The re-

vised series exceeds the pre-revision series throughout the period in question, and this di-

vergence appears to increase over time, a feature consistent with burgeoning services sec-

tor growth that was not fully captured in the pre-revision data, Finally, as one would ex-

pect, our revised series mirrors the growth cycles observed in the pre-revision data. 

 

Figure 6.  Pre- and post-revision quarterly real GDP growth 
 

 

 

 

 

 

 

 

 

 

 

 

In the following section, as we develop a composite leading indicator of Chinese quarterly 

economic growth, our constructed pre-revision quarterly real GDP growth rate series will 

initially serve as reference series against which the performance of our leading indicator 

                                                 
15 The method is recommended by the IMF as “relatively simple, robust, and well-suited for large-scale ap-
plications” [see Bloem et al. (2001)]. EUROSTAT provides the software ECOTRIM for temporal disaggre-
gation of time series using the Chow-Lin (1971) and the Denton (1981) procedure (see 
http://www.oecd.org/dataoecd/60/5/21781488.ppt). 
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can be assessed. We will then proceed to use our revised quarterly real GDP growth rate 

series as reference series. 

The use of this revised reference series offers two important benefits: it enables us 

to address the issue of Chinese National Bureau of Statistics’ sizable December 2005 data 

revision and serves as a robustness check against which to assess the suitability of our 

composite leading indicator. 

 
 

3 A leading indicator for Chinese growth rates 
 

Traditionally, leading indicators have been developed to identify growth cycles, i.e. devia-

tions in economic activity from the trend. While growth cycles are not hard to identify in 

long time series, they are difficult to measure accurately in short samples. This stems from 

the fact that the unobserved trend estimates tend to be very unstable near the end. This dif-

ficulty and the uncertainties arising from the transition process in China make growth cycle 

analysis a less-than-ideal tool for monitoring and forecasting the Chinese economy. We 

therefore develop a composite leading indicator for the quarterly growth rate itself, i.e. we 

are analyzing growth rate cycles.16 Furthermore, we do not consider deviation cycles; 

China’s recent institutional shake-ups and transformation process make removal of a sto-

chastic trend from the data a fairly daunting task. The rich body of research on leading in-

dicators can be traced back to the seminal work of Burns and Mitchell (1946). The leading 

indicator is itself an unobserved variable, a ghost. As there are numerous ways to calculate 

leading indicators, the issue becomes one of which ghost to pursue. The first stage of this 

pursuit involves the identification of a set of potential leading variables. The second stage 

involves estimating a small-scale factor model using the methodology developed by Stock 

and Watson (1989, 1991, 1993).17 The factor model approach represents a massive step 

forward in leading indicator research as it captures the cyclical co-movement of various 

economic activities. It is this cyclical co-movement that is the hallmark of each economic 

                                                 
16 What has emerged in recent years is the recognition that growth cycles and growth rate cycles can be moni-
tored in a complementary fashion. Growth cycles, however, are better suited to historical analysis, while 
growth rate cycles are more appropriate for real-time monitoring and forecasting. Another reason for using 
year-on-year growth rates of GDP rather than a measure of the output gap is that output gap measurement is 
particularly likely to be imprecise for China. 
17 For a comprehensive discussion of a whole host of relevant econometric issues not discussed here, see Kim 
and Nelson (1999) and the references cited therein. 
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cycle. While this framework has been fully developed for most advanced economies, the 

framework is still being extended to transition economies. 

The initial stage of identifying potential leading variables is hampered by the fact 

that the set of Chinese component series from which a selection can be made is somewhat 

limited. Moreover, some of the series that do exist are only available for a limited histori-

cal period. In spite of these restrictions, we have succeeded in collecting a comprehensive 

dataset, initially containing 134 variables, from which our potential leading variables can 

be selected.18 The data source used is the CEIC database. The size and scope of the dataset 

allows us to describe the Chinese economy on a broad basis as sectoral data can be taken 

into consideration. Attaining this all-encompassing view of Chinese economic activity is of 

particular importance given the nature of the Chinese economic transformation. As the 

Chinese economy matures and integrates with the global economy, China will inevitably 

become more exposed to macroeconomic shocks, both internal and external.  

Given the fundamental importance of variable selection in the construction of lead-

ing indicators, it is not surprising that establishing a set of criteria for identifying suitable 

variables has long been the source of considerable discussion in the leading indicator lit-

erature [see Moore and Shiskin (1967), Boehm (2001), and Marcellino (2005)]. The selec-

tion criteria utilized here are broadly in line with those supported in the literature (some 

lend themselves more easily to formal evaluation than others, of course). A bit of fine-

tuning is needed in any case to capture the unique attributes of the Chinese economic trans-

formation. Thus, our selection of potential indicators uses the following criteria: (1) eco-

nomic significance – there has to be an economic reason for the observed leading relation-

ship before the series can be accepted as an indicator; (2) breadth of coverage – series with 

a wide coverage in terms of representing the economic activity of interest are preferred to 

narrowly-defined series; (3) frequency of publication – monthly series are preferred to 

quarterly series; (4) absence of excessive revisions; and (5) timeliness of publication and 

easy accessibility for data collection and updating. Once we have assembled a group of po-

tential indicators that meet the criteria, it remains to examine the relationship between 

these candidate variables and the reference series with an eye to identifying leading indica-

tor properties. Naturally, a visual inspection of the trends exhibited by the potential indica-

                                                 
18 The variables in the dataset are categorized as follows: real estate, fiscal, household income and expendi-
ture, retail sales, employment, prices, retail sales, consumer confidence, prices, foreign trade, monetary, in-
terest rates, exchange rates, fixed asset investment, foreign direct investment, transportation, and financial 
markets.   



Declan Curran and Michael Funke 
 

Taking the temperature –  
forecasting GDP growth for mainland China 

 

 

 20

tors and the reference series over time is the obvious starting point. As a more rigorous 

next step, cross-correlation analysis is performed on the de-trended individual series and 

the reference series to scrutinize variables that have given signals in the past. The number 

of lags at which the correlation has the highest value is a guide to the average lag of the 

indicator over the reference series, while the value of the correlation coefficient is a meas-

ure of the general fit of individual indicator series in relation to the reference series.19 

Our final selection of indicator series consists of three variables: exports, real estate 

climate index (RECI), and the Shanghai Stock Exchange (SSE) composite index. Graphs 

of these three indicator series spanning the maximum sample period available are provided 

in Appendix 1. A brief discussion of these variables’ characteristics illustrates their adher-

ence to our selection criteria, as well as their broad economic scope. 

Export data is intuitively appealing as a potential indicator of Chinese economic ac-

tivity because it captures China’s burgeoning role in international trade.20 Export data, de-

nominated in US dollars, is available in monthly frequency from January 1992 and the data 

is released in current prices. As Chinese export price indices are not available to us, we 

must find another means of deflating this data. We have worked with two deflators: the US 

export (all commodities) price index and the Chinese producer price index. The two result-

ing constant price export series are virtually identical, so our factor model results are not 

affected by our choice of deflator. 

The real estate climate index (RECI), developed by the National Bureau of Statis-

tics in 1997, describes the present situation and future trend of the real estate market in 

China. Based on the monthly statistics of Chinese real estate development, the RECI is cal-

culated based on eight indices related to land, financial capital, and sales prices in the real 

estate market and thus functions as a composite index of the Chinese real estate market.21 

                                                 
19 One strand of the literature has recently suggested the use of large-scale factor models [see Stock and Wat-
son (2002) and Forni et al. (2000, 2001)]. The idea is to include a broad dataset to use all available informa-
tion efficiently. This nonparametric estimation procedure is based on principal components. It does not ad-
dress the problem that a growing cross-section dimension leads to an increased number of parameters and 
therefore higher uncertainty of coefficient estimates than in state-space models, however. We do not pursue 
the large-scale factor model approach due to the limited number of time series leading GDP in mainland 
China. It is also worth mentioning that we have not treated expansions and recessions as distinct processes in 
a switching model as suggested by Diebold and Rudebusch (1996), since China did not experience a reces-
sion during the sample period. An excellent up-to-date assessment of the vast literature is provided by 
Marcellino (2005). 
20 As noted in Section 1, China overtook Japan in 2005 as the world’s third largest exporter, after a surge in 
demand for its electronic goods led to a 35 percent jump in the country’s overseas sales. 
21 The eight indices are: investment in real estate development, financial appropriation (access to credit);  
revenue from transfers of land, area of land development, area of newly-started buildings, area of completed 
buildings, area of unsold buildings, sales price of commercial buildings. 
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Data is collected through the Overall Statistics Reporting System on Fixed Assets from 31 

provincial statistical offices, providing us with a countrywide barometer of the investment 

climate. Since China’s macroeconomic growth is driven more by fixed investment than by 

household consumption, it is especially vulnerable to any slowing of corporate investment 

spending. In investment cycles, the leading indicators are profit margins, product prices 

and property prices, which forecast corporate cash flow or ability to borrow. 

As with exports and RECI, the inclusion of the SSE composite index, from an eco-

nomic standpoint, is intuitively appealing. Equity prices should play an important role for 

GDP, whether one takes a conventional asset market view, or the credit market view. Stock 

and Watson (2003) recently examined the role of asset prices, including equity prices, in 

forecasting both output and inflation in seven OECD countries, obtaining plausible find-

ings for output forecasts. The availability of a monthly SSE composite index since 1990 

and its broad scope across Chinese industries also strengthen the series’ credentials for in-

clusion in the common factor model. The composite index encompasses a number of indi-

ces of listed shares, categorized by industry and constructed from a sample of the A and B 

shares listed on the SSE.22 The conventional channel through which share prices influence 

GDP growth is a wealth effect, whereby increasing share prices lead the holders of these 

assets to consume and invest this newfound wealth. However, the relatively low holding of 

shares among the Chinese public suggests that, in the Chinese case, it is a valuation effect 

that is at play. Thus, given the investment cycle underpinning Chinese GDP growth, share 

prices reflect investors’ expectations of the future profitability of the listed firms.23 

Having identified three suitable variables for inclusion in our composite leading in-

dicator model, we now proceed to develop a model for the Chinese economy. The empiri-

cal methodology involves constructing a common unobserved factor from our selected in-

dicators, following the tradition of dynamic factor analysis. This common factor is as-

sumed to represent the shared influence of the state of the economy on the leading indica-

tor.24 To the best of our knowledge, this is the first attempt to construct such a composite 

                                                 
22 SSE shares range from A, B, and C to signify types of shares traded. A-shares are held only by residents of 
China and are traded in renminbi. B-shares are denominated in renminbi, but payable in foreign currency and 
are designated for foreign investors. C-shares are wholly owned by state-owned enterprises and not publicly 
traded. See http://www.china-fund.com/. 
23 For example, the People’s Bank of China notes in its survey of urban household saving (Feb. 2006) that 4.1 
percent of the households surveyed chose “stocks” as their major financial asset.  
See http://www.pbc.gov.cn/english//detail.asp?col=6400&ID=656 .  
24 This modeling philosophy, certainly not new in the econometric literature, has recently been rigorously 
laid out and applied using U.S. data by Chauvet (1998), Kim and Nelson (1999), and Kaufmann (2000).  
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leading indicator for China using a dynamic common factor model. One fundamental prob-

lem arises from the fact that structural change is endemic in China, implying that conven-

tional econometric modeling techniques, which proceed under the assumption that there is 

a structurally stable “true” economy to be discovered, are inappropriate. The factor model 

approach, however, allows us to overcome this difficulty as it incorporates the Kalman Fil-

ter and thus enables the econometric model itself to adjust its parameters in the light of 

economic change. 

For the purposes of our factor model, we denote our three series are follows:  

Let Y1t be the fourth difference of exports, Y2t the fourth difference of RECI, and Y3t 

the fourth difference of the SSE composite index.25 Unit root tests for the three series sug-

gest that one cannot reject the hypothesis of the three differenced series being I(0). Bor-

rowing from Stock and Watson (1989), we consider the following dynamic factor model: 

 

(1) ttt eIDY 111111 ++=
−

γ  

 

(2) ttt eIDY 22122 ++= γ  

 

(3) ttt eIDY 33133 ++= γ  

 

(4) ( )101 ,~)()( NiidII tttt ϖϖδφδ +−=−
−

 

 

(5) ( ) 3210 2
4411 ,,,~,,,, =++=

−−

iNiideee iitittiitiiit σεεψψ  

where It is the common component (leading indicator) that enters equation (1), (2), and (3) 

with different weights.26 These weights γi indicate the extent to which each series is af-

fected by the common component, It, which arises from a single source. In (4), it is as-

                                                 
25 We have constructed a quarterly index because, as discussed in Section 2, monthly GDP data for China are 
not available. Another reason is that month-to-month movements in leading indicators tend to be character-
ized by a high noise-to-signal ratio. Stock and Watson (1989) have therefore elected to smooth the resulting 
monthly series to improve the indicator’s forecasting performance. Here, we have aggregated each of the 
three monthly series into quarterly averages. 
26 We have lagged It in equation (1) to take into account the phase shift between Y1t, Y2t,  and Y3t . 
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sumed that the unobserved component follows a stationary first-order autoregressive proc-

ess. The autoregressive structure of the idiosyncratic component is given in (5). The main 

identifying assumption in the model is that (e1t, e2t, e3t) are mutually uncorrelated at all 

leads and lags. Stock and Watson (1991) have shown that the parameters Di and δ are not 

separately identified. Therefore, they suggest writing the model in deviations from means 

and thus concentrating the likelihood function. 

 

(6) ttt eiy 11111 +=
−

γ  

 

(7) ttt eiy 2212 += γ  

 

(8) ttt eiy 3313 += γ  

 

(9) ( )101 ,~ Niidii ttt ϖϖφ +=
−

 

 

(10) ( ) 3210 2
41 ,,,~,,, =++=

−−

iNiideee iittititiit σεεψ  

 

where YYy iitit −=  and δ−= Ii tt . In general, for Kalman filter estimation, the model is 

expressed in its state-space form. The latter is composed of two parts: the measurement 

and the transition system. The following two equations describe our model in deviations 

from mean in a particular state-space representation. 
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νββ ttt F +=
−1     [Transition equation]

    

In the above state-space representation, the fourteen rows of the transition equation 

describe identities. Estimation of the model will allow the unobserved components 

(“states”) to be uncovered. The parameters are estimated by the recursive Kalman filter 

algorithm. Using numeric derivatives, the BHHH algorithm is employed to maximize the 
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likelihood with respect to the unknown parameter vector.27 The recursive procedure calcu-

lates the optimal estimator of the state vector based on all information available at time t. 

Once filtering is performed, we can use smoothing techniques for information made avail-

able after time t. The smoothed estimator is based on more information than the filtered 

estimator and therefore will generally have a smaller mean square error than the filtered 

estimator without smoothing. Here, we use the fixed interval-smoothing algorithm as in-

troduced in Harvey (1993).28 This procedure involves a backward pass of the data through 

the Kalman filter from t = T  to t = 1.29 
 

Table 1.  Parameter estimates of the Dynamic Factor Model, 1998Q2-2005Q2 
 

Parameters Estimates t-values 

γ11 0.206 2.90 

γ21 -0.074 2.08 

γ31 -0.206 2.47 

φ 0.956 17.23 

ψ11 0.728 7.24 

ψ14 0.457 5.56 

ψ21 0.483 5.52 

ψ24 0.615 8.46 

ψ31 0.800 6.97 

ψ34 0.337 3.33 

σ1² 0.108 2.67 

σ2² 0.170 3.68 

σ3² 0.229 3.30 

Log-likelihood 23.06 

Diagnostics Test statistics p-values 

   

LB(ε1) 2.57 0.63 

LB(ε2) 2.22 0.70 

LB(ε3) 1.54 0.67 

Note: LB(εi): Ljung-Box Q-test measuring general AR(4) residual autocorrelation. 

                                                 
27 Since the simplex algorithm is more robust to initial parameter starting values than the BHHH algorithm, 
we use the simplex algorithm to provide initial parameter estimates for the BHHH algorithm, which in turn 
provides the final parameter estimates along with their corresponding variance-covariance matrix. 
28 Harvey (1993) introduces three smoothing algorithms: fixed point smoothing, fixed lag smoothing, and 
fixed interval smoothing. The filtered estimator assumes that agents have the latest information set at hand, 
while the smoothed estimator takes future information into account. 
29 The GAUSS code developed to perform the Kalman filtering and the maximum likelihood estimation 
largely draws on programs kindly made available by Chang-Jin Kim.  
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At this point, it is useful to consider our estimates in greater detail. All parameters 

are consistent with those predicted by theory and statistically significant at the 5-percent 

level. According to the results, at least, the model seems to fit the data quite well. With re-

gard to the estimated autoregressive coefficient φ, the coefficient is positive and signifi-

cant. This suggests a great deal of persistence in growth rate cycle fluctuations. To check 

the adequacy of the model specification, we analyze the disturbances εi. If the model is 

correctly specified, then the residuals are serially uncorrelated and normally distributed. 

The Ljung-Box tests for residual autocorrelation are satisfactory, their results providing 

evidence that does not allow one to reject the null hypothesis of uncorrelated distributed 

residuals. The overall impression conveyed by these results is that the model works quite 

well. Given these parameter estimates, we get it|t and It|t, t = 1, 2, ..., T, by running the 

Kalman filter. 
 
Figure 7.  Leading indicator It and real GDP growth  
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Note: Real GDP growth is measured in percent (right scale) and the leading indicator has been normalized 
to 1 in 2000Q1 (left scale). 

 

The first step in our evaluation of the leading indicator constructed by the dynamic com-

mon factor model is to look at how well the measure performs in tracking real GDP growth 

over the 1998Q2-2005Q2 sample period.30 As illustrated in Figure 7, turning points of the 

leading indicator, It, appear to lead real GDP growth turning points throughout 1998/99. 

                                                 
30 This sample period is determined by the fact that the real estate climate index is only available from 
1997Q1 onward. 
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From 2001 to the end of the sample period, the leading indicator performs quite well in-

deed, displaying a healthy lead over the reference series turning points for virtually every 

quarter. Only in 2000 does the indicator move contemporaneously with the reference series 

for sustained period of time. This result indicates it is possible to find smooth underlying 

leading indicator components for the Chinese growth rate cycle. Recalling that the leading 

indicator is intended for prediction, it is not important whether the index represents causal 

factors or merely symptoms coming in advance of changes in GDP – its success or failure 

must be judged on predictive power alone. 

We now consider the components of our common factor model in light of the sub-

stantial upward revision of Chinese GDP figures in December 2005. The data revision was 

aimed almost exclusively at tackling under-valuation of the services sector and the sources 

of the newly found GDP were real estate services, retail and catering, transport and com-

munication services, and media and technology services. Primary and secondary industries 

were virtually untouched by the revision. As these services appear to be largely of the non-

traded variety, one would not expect export data to be unduly affected by the revision. It is 

also likely that our real estate climate index is capable of factoring in high demand for real 

estate services that may have gone unmeasured in GDP figures, so we should expect our 

leading indicator to perform better when the revised GDP series (as opposed to the pre-

revision data) is used as the reference series due to the increased proportion of services 

captured in the revised figures. The revised quarterly real GDP growth series constructed 

in Section 2 using the Denton procedure provides us with a method of testing the perform-

ance of our indicator It against a revised quarterly real GDP growth series.31 
 

                                                 
31 The revised quarterly real GDP growth series constructed using the Denton procedure ends in 2004Q4. 
Thus, the sample period for Figure 8 is 1998Q2-2004Q4.  
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Figure 8. Leading indicator It and revised real GDP growth 
 

 

 

 

 

 

 

 

 

 

 

 

Note: Revised real GDP growth is measured in percent (right scale) and the leading indicator  
has been normalized to 1 in 2000Q1 (left scale). 

 

In Figure 8, the revised quarterly real GDP growth series bears a striking resem-

blance to its pre-revision counterpart in Figure 7 due to the use of pre-revision nominal 

GDP as the benchmark series in the Denton temporal aggregation. As discussed previ-

ously, this choice of benchmark is particularly suited to the December 2005 revision, given 

the revision’s almost exclusive focus on the services sector. As a result, our common factor 

indicator remains robust despite the GDP revision and continues to display strong leading 

properties with respect to the reference series. Having established the leading indicator 

properties of the unobserved common factor embodied in the factor model, Section 4 fur-

ther explores the usefulness of this indicator in generating out-of-sample one-step-ahead 

forecasts of Chinese quarterly real GDP growth. Once such forecasts are constructed, a 

range of forecasting performance tests may be used to assess the predictive power inherent 

in our leading indicator. 
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4 Analysis of out-of-sample forecasting accuracy 
 
In Section 3, we relied on a bare-bones small-scale factor model to reveal an unobserved 

common component reflecting China’s investment-led growth cycle of recent years. Obvi-

ously, a number of valid questions concerning the robustness and forecast accuracy of this 

leading indicator now need to be addressed. It is therefore pertinent to undertake a more 

rigorous examination of the forecasting potential inherent in our leading indicator. The 

most meaningful and sound tests of forecast accuracy of any leading indicator are out-of-

sample tests.32 To achieve this, we perform a predictive ability exercise in which one-step-

ahead forecasts of quarterly y-o-y real GDP growth are generated and the usefulness our 

indicator as a predictor can be assessed.33 To calculate the incremental predictive power of 

the leading indicator, we estimate the following nested models: 

 

(13) ttt eGDPGDP 11 ++=
−

βα  

(14) ttttt eIIGDPGDP 211 ++++=
−−

ηδβα   

 

where GDPt and GDPt-1 denote the quarterly real GDP y-o-y growth rate at times t and t-1, 

respectively; It and It-1 denote the leading indicator at time t and time t-1, respectively; and 

the error terms, e1t and e2t, are iid in the nested models. 

In the following out-of-sample forecasting exercise, the univariate autoregressive 

(AR) model serves as a benchmark model, against which the merits of including our indica-

tor as a predictor can be evaluated. Although sometimes labeled a “naive” model, it is of-

ten difficult for other models to produce forecasts better than those of the AR model. The 

lag orders of the different models have been specified using the Akaike information crite-

rion (AIC) and the Schwarz information criterion (SIC).34 Figure 9 provides a visual im-

pression of the forecasting performance of the nested models, with “R” denoting the in-

cremental one-step-ahead out-of-sample forecasts generated by the restricted model, equa-

                                                 
32  In-sample tests can be biased by the use of the same data for estimation and forecast evaluation.  
33 Clements and Hendry (2005) are emphatic that considerable care is needed in interpreting forecast com-
parisons. One reason multi-step forecasts may be poor guides on the credence of a model is that multi-step 
forecasts require strong exogeneity of the variables, while for one-step-ahead forecasts need only weak exo-
geneity.  
34 The empirical literature has shown that the inclusion of lags of the unobserved factors may improve the 
forecasting ability of the models. See, for example, Artis et al. (2005), Camba-Mendez et al. (2001), and 
Stock and Watson (2002).  
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tion (13), and “UR” denoting those generated from the unrestricted model, equation (14), 

over the period 2001Q2-2005Q2. These incremental forecasts have be constructed both for 

pre-revision and revised quarterly Chinese real GDP growth series. The parameters of the 

models in (13) and (14) are estimated using a recursive scheme, with 1998Q2-2001Q1 

serving as the initial estimation period for the first one-step-ahead forecast. From that point 

on, each model’s parameter estimates utilize additional data as the one-step-head forecast-

ing moves forward through time. A number of insights can be gleaned from Figure 9. First, 

while there may be little to choose between the two sets’ forecasts in the early stages of the 

2001Q2-2005Q2 sample period, the unrestricted one-step-ahead forecasts appear to per-

form relatively better than their restricted counterparts later in the sample period. Second, 

both the relatively better performance of the unrestricted forecasts and the importance of 

the forecasting horizon hold for pre-revision and revised real GDP growth. In light of this 

observation, as well as the fact our revised quarterly real GDP growth series ends in 

2004Q4, we continue our evaluation of forecasting accuracy using the pre-revision real 

GDP growth data and corresponding forecasts. The results for the revised forecasts are re-

ported in Appendix 2. 

 

Figure 9.  Real GDP growth and one-step-ahead forecasts, 2002Q2- 2005Q2 
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Having motivated an appreciation of the forecasting quality of models which in-

clude our leading indicator, we now statistically test the predictive performance of the in-

dicator. To assess out-of-sample predictive performance the Diebold and Mariano (1995, 

2002) test and the encompassing test statistics for a pair of nested models developed by 

Clark and McCracken (2001) and McCracken (2004) have been employed. 
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When one has several reasonable forecasting models, superior forecasting perform-

ance can be identified by putting the alternative models to a head-to-head test. As dis-

cussed by Enders (2003), this can be achieved by holding back a portion of the observa-

tions from the estimation period, estimating the alternative models over the shortened span 

of data, and using these estimates to forecast the observations of the forecast period. One 

can then compare the properties of the forecast errors from the two models. To create an 

impression of the forecasting accuracy of the factor model, we first apply the Diebold and 

Mariano (1995, 2002) test of equal forecasting accuracy. This test is based on the differ-

ence of squared forecast errors of two competing forecast models.35 Under the “equal accu-

racy” null hypothesis, the forecast accuracy of the two models is not statistically different. 

In Table 2, each cell in the second column contains the asymptotic p-values for the Diebold 

and Mariano (1995, 2002) statistic. A significance level below 0.10 or 0.05 indicates a re-

jection of the null hypothesis. The various out-of-sample tests are carried out as follows:  
(i) The forecasting equations (13) and (14) are estimated using data for the period 

1998Q2-2002Q1.  

(ii) An out-of-sample forecast is carried out for the subsequent period 2001Q2-

2005Q2, using the recursive scheme mentioned above. The forecasts are evalu-

ated by calculating the mean squared error (MSE) for a one-step forecast hori-

zon. 

(iii) Steps (i) and (ii) are repeated, except that the forecasting equations are now es-

timated for the periods 1998Q1-2002Q1 and 1998Q1-2003Q1 and the out-of-

sample forecasts are calculated for the periods 2002Q2-2005Q2 and 2003Q2-

2005Q2, respectively. The out-of-sample predictive performance of the leading 

indicator is presented in Tables 2 and 3. 

 

Table 2.  Diebold and Mariano (1995, 2002) test for equal forecasting accuracy 
 
Forecast sample p-value Durbin-Watson statistic 

1.   2001Q2-2005Q2 0.18 0.90 

2.   2002Q2-2005Q2 0.01 0.91 

3.   2003Q2-2005Q2 0.01 1.08 
 

Note: The weighting scheme of the autocovariances follows Newey and West (1987). 

                                                 
35 Regarding the loss function specification, we report the results for the quadratic loss. We do not show the 
results for the absolute loss case as the results were qualitatively identical with both loss function specifica-
tions.  
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Table 3.  Encompassing tests of Clark and McCracken (2001) and McCracken (2004) 
 
 Encompassing tests 

Forecast sample MSE-f MSE-t ENC-f ENC-t 

1.   2001Q2-2005Q2 3.31** 0.88** 5.68*** 2.33*** 

2.   2002Q2-2005Q2 7.25*** 2.23*** 7.62*** 3.34*** 

3.   2003Q2-2005Q2 13.27*** 2.36*** 14.04*** 4.06*** 

 

 

The encompassing tests of Clark and McCracken (2001) and McCracken (2004) incorpo-

rate and further develop the forecast accuracy tests of Granger and Newbold (1976) and 

Diebold and Mariano (1995, 2002).36 In Table 3, the statistics denoted “MSE-f” and “MSE-

t” test for equal mean squared error of the restricted and unrestricted forecast series. The 

latter is in the spirit of the regression-based test for equal mean squared error (MSE) pro-

posed by Granger and Newbold (1976). The inclusion of these test statistics in Table 3 al-

lows us to consider the results of Table 2 in light of the bootstrapped test statistics con-

structed by Clark and McCracken (2001) and McCracken (2004). The statistics denoted 

“ENC-f” and “ENC-t” address the question of whether forecasts generated by the univari-

ate AR model of equation (13) encompasses those of equation (14), thereby indicating that 

the inclusion of the indicator in equation (14) adds no additional predictive information. 

The ENC-t test, developed by Harvey et al (1998), draws on Diebold and Mariano (1995), 

while the ENC-f test owes its origins to Clark and McCracken (2001). As noted above, the 

null hypothesis is that of “equal accuracy” for the two MSE tests and “forecast encompass-

ing” for the ENC tests, and, as discussed in Clark and McCracken (2001), these tests are all 

one-sided, with the only rejection regions of interest under the alternative hypothesis resid-

ing in the right-hand tail. 

The results of the tests in Tables 3 and 4 strongly reject both the null hypotheses of 

equal forecast accuracy and forecast encompassing. Thus, we can conclude that our indica-

tor possesses significant forecasting potential, with findings for more recent forecasting 

samples actually gaining in significance. The fact that the forecasting performance of the 

                                                 
36 Using Monte Carlo simulations, Clark and McCracken (2001) find that, in commonly used sample sizes, 
the ENC-f test is more powerful than both the ENC-t test and the out-of-sample forecasting test proposed by 
Diebold and Mariano (1995). Following McCracken (2004), the critical values for each of the ENC-T and 
ENC-F test statistics are obtained using a bootstrap procedure since the test statistics are non-standard in the 
case of nested models and contain nuisance parameters. 
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augmented model displays a marked improvement for forecast sample 3 implies that the 

advantages of including our leading indicator are not systematic. It should also be noted 

that the Durbin-Watson statistic provided in Table 2 rules out the possibility that these sig-

nificant results are driven by correlation between the MSPEs of the two sets of forecasts. 

These findings confirm that the quarterly y-o-y real GDP growth forecasts of the aug-

mented model are generally better than the forecasts of the rival benchmark model. Over-

all, the results indicate that the leading indicator can serve as a valuable aid for short-term 

forecasting of the Chinese economy. 

 

 

5 Conclusions 
 

Economic developments in economies in transition undoubtedly involve a high degree of 

uncertainty, which complicates the construction of suitable leading indicators of economic 

activity. Against this background, our paper provided insights into the usefulness of small-

scale factor models proposed by Stock and Watson (1989, 1991, 1993) in the forecasting of 

mainland China’s quarterly y-o-y real GDP growth. Measures of Chinese economic activ-

ity, however, possess a number of idiosyncrasies, stemming both from China’s own eco-

nomic transition and its relatively recent adoption of an OECD-approved national account-

ing system. First and foremost is the realization that recent Chinese economic development 

must be characterized as a growth cycle, rather than as a traditional business cycle. Further, 

the difficulty and the uncertainties arising from the transition process in China make 

growth cycle analysis a less-than-ideal tool for monitoring and forecasting the Chinese 

economy. We therefore developed a composite leading indicator for the quarterly y-o-y 

real GDP growth rate itself, i.e. we sought to analyze growth rate cycles. With respect to 

Chinese national accounts data, we discussed how difficulties due to the publication of 

quarterly data in cumulative form can be successfully overcome. Recent revisions in Chi-

nese GDP data, most notably those in December 2005, are also captured in our model. We 

applied the Denton procedure to disaggregate the revised annual Chinese GDP data, which 

allowed us to consider our leading indicator with respect to both pre- and post-revision 

quarterly real GDP growth. 

A further challenge arose in compiling a comprehensive economic dataset suffi-

ciently broad in scope to span the full spectrum of Chinese economic activity over a 
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lengthy time period. Having accomplished this, a set of criteria for identifying indicator 

series with suitable leading properties was adopted. The three indicator series from which 

our leading indicator is constructed (exports, the real estate climate index, and the Shang-

hai Stock Exchange composite index) are intuitively appealing from an economic perspec-

tive. They incorporate the investment-led nature of Chinese growth, the burgeoning role of 

international trade, as well as the rapid growth of the Chinese services sector. These three 

series have been found to share an underlying, unobservable element, which, by virtue of 

the factor model and its Kalman filter estimation of parameters and state vectors, yield our 

leading indicator of economic activity. Upon establishing the leading indicator properties 

of the unobserved common factor embodied in the factor model, we explored the useful-

ness of this indicator in generating out-of-sample one-step-ahead forecasts of Chinese 

quarterly real GDP growth. Once these forecasts were constructed and their forecasting 

quality considered, a range of forecasting performance tests were utilized to assess the pre-

dictive power inherent in our leading indicator. All strongly rejected both the null hypothe-

ses of equal forecast accuracy and “forecast encompassing,” leading us to conclude our 

indicator possesses significant forecasting potential. 

Taken together, the out-of-sample forecast accuracy tests suggest such a leading in-

dicator model is a promising, relatively low-cost forecasting tool that can be usefully ap-

plied to Chinese economic conditions. Of course, it should be stressed that the use of larger 

samples and/or prediction periods in the future may yield additional evidence that could be 

useful for understanding the Chinese growth cycles. Until such a time as China’s economic 

transition enters a more tranquil forecasting climate, our leading indicator model may rep-

resent the most feasible thermometer available for gauging Chinese economic activity. 
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Appendix 1.  Indicator series in levels and growth rates (y-o-y) 
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Appendix 2. Tests of forecast accuracy and forecast encompassing for revised Chinese quarterly 
  real GDP growth, y-o-y 

 

                      Diebold and Mariano (1995, 2002) test for equal forecasting accuracy 

Forecast sample p-value Durbin-Watson statistic 

1.   2001Q2-2005Q2 0.36 0.75 

2.   2002Q2-2005Q2 0.02 0.86 

3.   2003Q2 -2005Q2 0.03 0.92 

 Note: The weighting scheme of the autocovariances follows Newey and West (1987). 

 

 
 Encompassing tests of Clark and McCracken (2001) and McCracken (2004) 

 Encompassing tests 

Forecast sample MSE-f MSE-t ENC-f ENC-t 

1.   2001Q2-2005Q2 1.23* 0.34* 3.97** 1.78** 

2.   2002Q2-2005Q2 5.85*** 1.94*** 6.17*** 2.85*** 

3.   2003Q2-2005Q2 8.03*** 1.75*** 9.10*** 3.13*** 
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