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Abstract: 

We consider predicting systemic financial crises one to five years ahead using recurrent neural 

networks. The prediction performance is evaluated with the Jorda-Schularick-Taylor dataset, 

which includes the crisis dates and relevant macroeconomic series of 17 countries over the period 

1870-2016. Previous literature has found simple neural network architectures to be useful in 

predicting systemic financial crises. We show that such predictions can be significantly improved 

by making use of recurrent neural network architectures, especially suited for dealing with time 

series input. The results remain robust after extensive sensitivity analysis. 
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1. Introduction 

For obvious reasons, there is on-going interest to devise better models for forecasting 

macroeconomic turning-points such as onset of economic downturns, recessions, and systemic 

financial crises. This paper investigates the ability of different types of neural networks to predict 

systemic financial crises. 

For purposes of this study, a systemic financial crisis can be thought merely as a recession 

amplified by a massive deleveraging of the financial sector (see Laeven and Valencia, 2012, 

Reinhart and Rogoff, 2009, and Jordà et al, 2015, for more precise definitions). Lists of crisis 

dates have been made widely available by previous research. Researchers have found several 

warning signs that predate such crisis events by a few years (see e.g. Alessi and Detken, 2011, 

Babecký et al, 2014, Barrell et al, 2011, Bordo and Meisner, 2012, Borio and Drehmann, 2009, 

Büyükkarabacak and Valev, 2010, Davis and Karim, 2008, Demirgüc-Kunt and Detragiache, 

1998, 2000, Detken et al, 2014, Domaç and Martinez Peria, 2003, Drehmann and Juselius, 2014, 

von Hagen and Ho, 2007, Kaminsky and Reinhart, 1999, Kauko, 2014, Lo Duca and Peltonen, 

2013 and Roy and Kemme, 2012, Tölö et al, 2018). These include a rapid increase in asset values, 

increased leverage of the private sector, and often current account deficit of a country that is 

borrowing from abroad to finance its excesses. 

Earlier literature (see e.g. Alessi et al, 2014, Detken et al, 2014) has considered various crisis 

prediction methods ranging from variations of logistic models to decision trees and other machine 

learning methods. A few recent studies have also considered artificial neural networks (Fricke 

2017, Holopainen and Sarlin, 2017, and Ristolainen, 2018) with mostly very promising results. 

The neural network approach may be justified on basis of nonlinear relationship between the 

indicators and the crisis event. For example, Kauko (2012) found that rapid credit growth 

predicted the deterioration of bank credit quality in the 2008 financial crisis only in countries that 

had a current account deficit. 

So far in these studies, the neural network architectures have been limited to the multilayer 

perceptron with one hidden layer, which may not be optimal, given the time-series nature of the 

data. This study takes a step forward by considering how recent advances in the field of recurrent 

neural networks could benefit the predictions. Specifically, recurrent neural networks with 

parameter sharing enable the use of lagged values of predictors without introducing too many 

additional free parameters. 

We consider three recurrent neural network architectures – a basic RNN, an RNN with long short-

term memory (LSTM) cells, and an RNN with Gated Recurrent Units (GRUs), which we 
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benchmark against a multilayer perceptron model and the logistic regression. The data comes 

from the Jorda-Schularick-Taylor (JST) macrohistory database, which covers the financial crisis 

dates and relevant macroeconomics data for 17 advanced economies in the period 1870–2016. 

We train the models to predict financial crises with a prediction horizon extending from 1 to 5 

years. The models are subsequently tested out-of-sample either in a country-by-country cross-

validation or a two-step sequential. We assess the out-of-sample prediction performance by the 

area under the ROC curve. We generally find that the recurrent neural network architectures 

outperform both the multilayer perceptron and the logistic regression benchmarks and exihibit 

robustness across different forecast horizons. The LSTM and GRU architectures have roughly 

equivalent performance. The results survive extensive sensitivity analysis. 

Hence, our main contribution is to demonstrate the value of the recurrent neural networks for the 

task of systemic financial crisis prediction. Similar techniques could be useful in the related 

literature recession prediction, as in Qi (2001), and other types of crises, as in Fioramanti (2008), 

or more generally in predicting macroeconomic time series (see Smalter Hall and Cook, 2017). 

The rest of the report is organized as follows. Section 2 offers a view on the scant literature of 

predicting systemic financial crises with neural networks. Section 3 reviews the neural network 

architectures considered in this study. Section 4 presents the data including the financial crisis 

dates. Section 5 describes the performance evaluation and validation frameworks. Section 6 

presents the results from the performance evaluation and sensitivity analysis. How the results 

relate to earlier work is discussed in Section 7. Section 8 concludes. 

2. Literature on predicting systemic financial crises 
with neural networks 

Even though neural networks have been considered in various early warning systems, a thorough 

searched brought up only a handful of earlier studies that have considered neural networks in 

prediction of systemic financial crises. Fricke (2017) and Holopainen and Sarlin (2017) 

benchmark the crisis prediction performance among various machine learning methods including 

neural networks. Ristolainen (2018) focuses strictly on the neural network approach and 

benchmarks it against logistic regression. All four studies consider the most straightforward 

neural network architecture called one hidden layer perceptron. However, their results differ due 

to differences in the datasets and in the evaluation approach. 

Fricke (2017) considers earlier version of the JST dataset that covers 14 developed countries over 

maximum of 137 years (1870–2008, whereas in the present study the dataset covers 17 developed 

economies over the period 1870-2016). He considers a prediction horizon of one year and a 
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minimal set of input features (five lags of credit growth) and finds that the logistic regression has 

most robust prediction performance overall. In his study, a classification forest and the one-

hidden-layer perceptron (with 3 or 5 nodes in the hidden unit) outperform the logistic regression 

for some validation samples, while K-nearest-neighbors (KNN), quadratic discriminant analysis 

(QDA), support vector machines (SVM), are consistently worse than the logistic regression. 

Holopainen and Sarlin (2017) consider a quarterly dataset of 15 European Union countries. Also 

unbalanced, their data covers 26 to 35 years for each country in the period 1976–2012. They 

consider a flexible prediction horizon of 5 to 12 quarters and include 14 input features at the time 

of prediction (no lagged variables). In their study, a perceptron neural network with eight hidden 

units and KNN are among the top performing methods and both outperform logistic model by a 

wide margin in all evaluations. 

Ristolainen (2018) considers monthly dataset of 18 countries obtained from Kaminsky (2006). 

His data covers on average 23 years for each country and extends from 1970/80 to 2003. He 

considers prediction horizon of 24 months and includes 13 input features. In his study, perceptron 

neural networks also outperform logistic regression in all evaluations. He finds that grouping of 

similar countries also improves the predictions. The performance of the neural network improves 

rapidly when the number of units in the hidden layer are increased from 5 to 10 but does not 

change much for higher number of neurons. 

The difference in the outcomes in the latter studies compared to Fricke (2017) appear to be borne 

mainly from the minimal number of features included in Fricke's study. Other factors, which 

would likely become significant once more features are added, are the more extended period, 137 

years, and heterogeneity of the countries, and possibly the use of multiple lagged values of the 

features present in Fricke (2017). 

3. Neural network architectures 

A. Feedforward neural networks 

A feedforward neural network is the earliest and most straightforward type of artificial neural 

network. In this network, the input data enters only once from the input nodes (see the bottom of 

Figure 1) and moves through the hidden nodes and to the output node(s). 

A multilayer perceptron consists of three or more layers: an input layer, one or more hidden layers, 

and an output layer. The basic architectural question for the multilayer perceptron is the number 

and width of the hidden layer(s). According to universal approximation theorem for neural 

networks (Hornik et al. 1989), every continuous function on a bounded domain can be 
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approximated with a multilayer perceptron with just one hidden layer. The problem is that the 

required size for such a network can be impractically large making the network prone to 

overfitting. Empirical evidence generally suggests that depth can be beneficial. However, as our 

primary interest in this study lies in the recurrent neural networks, we only consider the single 

hidden layer perceptron used in the earlier related work by Fricke (2018), Holopainen and Sarlin 

(2017), and Ristolainen (2018). 

In our basic setup the number of nodes in the hidden layer is 10 and the number of input features 

is 5 (or 25 when we include 5 lagged values of input features). The one hidden layer perceptron 

used in this study can be defined recursively as: 

𝒉(𝑿) = 𝑎𝑟𝑒𝑙𝑢(𝑾𝑿 + 𝒃),     (1) 

𝑜(𝒉) = 𝑎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑽𝒉 + 𝒄),     (2) 

where a are activation functions (applied elementwise), W and V are weight matrices, b and c are 

bias vectors, X is the input, and o is the output. Following common practice, we apply rectified-

linear (relu) activation function at the hidden nodes and sigmoid activation at the single output 

node. 

To manage the overfitting, we include L2 regularization, which is a squared penalty term for the 

neural network weights. The regularization parameter is initially set to 0.1 following Ristolainen 

(2018), while other values are included in the sensitivity analysis. 

The weights and biases are optimized by minimizing a cross-entropy loss function that compares 

the predicted output to the actual known state (crisis or not). We train the neural network by 

Adam, an adaptive variation of the gradient descent algorithm utilizing the backpropagation 

algorithm for fast computation of gradients. Various other training algorithms and 

hyperparameters are considered in the sensitivity analysis. The weights and biases (W, V, b, c) 

are initially set at random values. 

B. Recurrent neural networks 

Recurrent neural networks (RNNs) are a family of neural networks designed for sequential data 

such as language and time series. The RNN accepts input data sequentially, which allows RNNs 

to use their hidden states (akin to memory) dynamically to process a sequence of input data. A 

key idea is parameter sharing, which restricts the number of parameters in the model and helps 

avoid overfitting. For example, Smalter Hall and Cook (2017) use recurrent neural networks to 

predict unemployment. 
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In this study, we consider three different RNN architectures: basic RNN, RNN with Long-Short 

Term Memory (LSTM) cells, and RNN with GRU cells. 

In the basic RNN presented in Figure 2, there is a hidden state 𝒉𝑡 of dimensionality h, which 

evolves through a number of time steps T. The evolution of 𝒉𝑡 depends on the previous hidden 

state 𝒉𝑡−1 and the current input 𝑿𝑡. At the final time step, the hidden state is mapped to output 

and the weights and biases of the network are again trained to minimize a cross-entropy loss 

function. In our main results, the dimensionality of the hidden state is 10, and the number of 

time steps is 5. 

The basic RNN can be defined recursively as 

𝒉𝑡(𝒉𝑡−1, 𝑿𝑡) = 𝑎𝑡𝑎𝑛ℎ(𝑾𝑿𝑡 + 𝑼𝒉𝑡−1 + 𝒃),         𝑡 = 1, 2, 3, . . . , 𝑇 ,  (3) 

𝑜(𝒉𝑇) = 𝑎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑽𝒉𝑇 + 𝒄) .   (4) 

The network is trained similarly as the feedforward neural network: the output enters a cross-

entropy loss function that is minimized with algorithm from the gradient descent family of 

methods. However, it should be noted that due to repeated multiplication of the hidden state by 

the same U, the basic RNNs are susceptible to the problem of vanishing or exploding gradient. 

LSTM type RNNs were developed to deal with this problem. 

The idea of an LSTM was proposed by Hochreiter and Schmidhuber (1997) and it has turned 

out to be quite popular. The idea is to make the recurrence going from 𝒉𝑡to 𝒉𝑡+1 more 

complicated such that the network can control what kind of information propagates onward 

from one time step to another. To visualize the LSTM network, think of each hidden node in 

Figure 2 being replaced by an LSTM cell depicted in Figure 3. The hidden state is now 

composed of two components 𝒉𝑡 and 𝒔𝑡, which both have dimensionality h. Gating units σ are 

elementwise sigmoid-functions that control the flow of information at points (x), x denoting 

Hadamard product ⊙ (elementwise multiplication). 

We denote by f, i, and o the results from forget, input, and output gate (not to be confused with 

the output layer of the neural network) respectively. The LSTM cell operation can then be written 

as: 

𝒇𝑡 = 𝜎(𝑾𝑓𝒙𝑡 + 𝑼𝑓𝒉𝑡−1 + 𝒃𝑓),    (5) 

𝒊𝑡 = 𝜎(𝑾𝑖𝒙𝑡 + 𝑼𝑖𝒉𝑡−1 + 𝒃𝑖),    (6) 

𝒐𝑡 = 𝜎(𝑾𝑜𝒙𝑡 + 𝑼𝑜𝒉𝑡−1 + 𝒃𝑜),    (7) 
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𝒔𝑡 = 𝒇𝑡  ⊙ 𝒔𝑡−1 + 𝒊𝑡 ⊙ 𝑎𝑡𝑎𝑛ℎ(𝑾𝒙𝑡 + 𝑼𝒉𝑡−1 + 𝒃),  (8) 

𝒉𝑡 = 𝒐𝑡 ⊙ 𝑎𝑡𝑎𝑛ℎ(𝒔𝑡).    (9) 

In the main results, the dimensionality of the hidden state is 10, and the number of time steps is 

5. Alternative hyperparameters are considered in the sensitivity analysis. Training the LSTM 

network is similar to training a feedforward neural network as described previously. To manage 

overfitting, we initially use the same L2 regularization weight 0.1 for the recurrent neural 

networks as for the feedforward neural networks. 

GRU is a gating mechanism proposed by Cho et al. (2014) with a similar purpose as the LSTM. 

It has only two gates - a reset gate and an update gate - and a single vector presents the hidden 

state. Hence, it has somewhat fewer parameters than the LSTM, so it is computationally more 

efficient, but LSTM cells can do more complex tasks than GRU cells. However, GRU has been 

shown to exhibit better performance in some relatively small datasets. 

Following update equations describe GRU cell: 

𝒖𝑡 = 𝜎(𝑾𝑢𝒙𝑡 + 𝑼𝑢𝒉𝑡−1 + 𝒃𝑢),    (10) 

𝒓𝑡 = 𝜎(𝑾𝑟𝒙𝑡 + 𝑼𝑟𝒉𝑡−1 + 𝒃𝑟),    (11) 

𝒉𝑡 = 𝒖𝑡  ⊙ 𝒉𝑡−1 + (1 − 𝒖𝑡) ⊙ 𝑎𝑡𝑎𝑛ℎ(𝑾𝒙𝑡 + 𝑼(𝒓𝑡 ⊙ 𝒉𝑡−1) + 𝒃). (12) 

In the main results, the dimensionality of the hidden state is 10, and the number of time steps is 

5. Training the GRU follows the same steps as described previously. 

4. Data 

All input data for this study come from the Jorda-Schularick-Taylor macro history database (Jorda 

et al, 2017, and Knoll et al, 2019). The dataset includes 17 countries: Australia, Belgium, Canada, 

Switzerland, Germany, Denmark, Spain, Finland, France, UK, Italy, Japan, Netherlands, Norway, 

Portugal, Sweden, and the USA. 

The target variable that we try to predict is the systemic financial crisis dummy variable, which 

takes value 1 for a year that marks the start of a systemic financial crisis in a given country. The 

dataset classifies financial crises as “events during which a country’s banking sector experiences 

bank runs, sharp increases in default rates accompanied by large losses of capital that result in 

public intervention, bankruptcy, or forced merger of financial institutions” (Schularick and 

Taylor, 2012). Table 1 lists the crisis dates. We can infer from Table 1 that financial crises were 
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fairly common until the WW2. The WW2 was followed by a long financial calm until the crises 

started happening again starting from the 70s. This pattern discussed more extensively in 

Schularick and Taylor (2012) motives us to consider training for the full-sample, post-WW2 and 

the post-Bretton-Woods era (the 1970s onwards). 

We consider following input variables that we call features according to the neural network 

nomenclature. 

1. Loans to non-financial private sector divided by GDP, 1 year growth 

2. Current account-to-GDP ratio, level 

3. Real GDP, 1 year growth 

4. Real house prices, 1 year growth 

5. Real stock prices, 1 year growth 

(6.) Consumer price index, 1 year growth 

(7.) Public sector debt-to-GDP ratio, 1 year growth 

(8.) Real loans to non-financial private sector, 1 year growth 

(9.) Real loans to households, 1 year growth 

(10.) Real loans to businesses, 1 year growth 

(11.) Mortgage loans, 1 year growth 

(12.) Short-term interest rate, level 

(13.) Long-term interest rate, level 

Our main result are calculated with neural networks that take features 1-5 as input. For models 

other than non-recurrent neural networks we additionally consider adding 5 lags of each feature 

as in Schularick and Taylor (2012) and in Fricke (2017). In the sensitivity analysis, we consider 

using all the 13 features, which corresponds to similar amount of features as in Ristolainen (2018) 

and Holopainen and Sarlin (2017). 

5. Performance evaluation 

Target variable 

The target variable, the financial crisis dummy, is dealt with similarly as in Fricke (2017) apart 

from the fact that we additionally consider longer prediction horizons. For example, if the crisis 

happens in year 2007, then a one-year forecast based on 1 lagged value uses the indicator data 
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from 2006 only; a two-year forecast based on 1 lagged value uses the indicator data from 2005 

only; and so on. Correspondingly, one-year forecast based on 5 lagged values uses the indicator 

data from the years 2002–2006; respective two-year forecast uses data from the year 2001–2005; 

and so forth.  

Also note that the crises are considered as breaks in a series in the sense that in the above example, 

in the case of one-year forecast we do not attempt to predict a crisis in 2008 based on 2007 data 

if there was a crisis in 2007. Also, once a crisis has occurred, we do not try predict another until 

5 years have passed. Similarly, in the two-year forecast, we do not attempt to predict a crisis “too 

late”, e.g. in the case of two-year forecast of 2007 crisis, the prediction that would be based on  

base 2006 data is left outside the evaluation. This handling of the pre-crisis and post-crisis periods 

is largely similar to Sarlin and Holopainen (2017) and Ristolainen (2018).  

However, compared to Sarlin and Holopainen (2017) and Ristolainen (2018), we treat forecast 

horizons somewhat differently as the RNN structure naturally facilitates the lagged values of 

features. For example, Ristolainen (2018) uses a continuous 24-month prediction horizon, and 

Sarlin and Holopainen (2017) consider 5–12 quarter horizon. In that case, the whole 24-month or 

the 5–12 quarter horizon is set as a pre-crisis target variable (=1). As Ristolainen (2018) points 

out, the pre-crisis dummy approach is widely applied with quarterly and monthly data to avoid 

considering large number of lagged predictors. 

Cross-validation and sequential-validation 

We consider two alternative out-of-sample performance evaluation frameworks, cross-validation 

and sequential-validation. 

In the cross-validation, we exclude each country in turn, train the network, and then perform the 

out-of-sample prediction for each year for the country that was excluded. Then we pool all the 

predictions together and evaluate the AUC statistics. The cross-validation does not fully preserve 

temporal ordering in the sense that full information about the other countries are used to do 

prediction for the excluded country. However, because temporal ordering for the predicted 

country is preserved (as opposed to randomized cross-validation) and because all the input 

variables are transformed stationary, the validation can be considered quite robust. 

Cross-validation algorithm pseudocode: 

[1]: Loop C over countries: 

[2]:   Train model excluding the data of country C 

[3]:   Test model using data of country C only 

[4]:   Store  prediction probabilities for country C. 

[5]: end loop 

[6]: Calculate the out-of-sample AUC by pooling the prediction probabilities. 
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In the sequential-validation, we split the sample into two parts. The earlier part is used for training 

and the latter part is used for testing. In this case, the temporal structure is fully preserved as we 

do not use any future information for prediction. The downside is that for practical sample splits, 

we are mainly predicting the 2007-2008 financial crisis. 

Comparing the two validation methods, cross-validation is computationally more intensive as we 

have to train the neural network separately when each country is excluded. The benefit is that we 

get lower variance in the result, both due to being forced to train several times but also due to 

being able to use more data in the validation phase. 

Performance measure 

We evaluate the prediction performance based on the area under the ROC curve (AUC). Each 

neural network outputs a number that can be interpreted as a probabilistic forecast for the 0-1 

crisis event. 

If this probability is larger than some threshold h, then we say that the neural network predicts a 

crisis. Otherwise, the prediction is that there is no crisis. Correctly predicted crisis is labeled a 

true positive (TP). Correctly predicted tranquil state is labeled a true negative (TN). A false alarm 

is labeled a false positive (FP) and a missed pre-crisis state is labeled false negative (FN). 

Sensitivity is defined as TP/(TP+FN) and specificity is defined as TN/(TN+FP). If we plot 

sensitivity vs. 1-specificity for all possible threshold values h we get the receiver operating 

characteristic (ROC) curve. The area under the ROC curve is an approximately proper scoring 

rule for the classification task. The best value of the AUC, one, is achieved for a perfect model 

that is able to distinguish the two states for some threshold h perfectly. A random guess obtains 

AUC = 0.5. For the AUC, a higher value is better. 

6. Results 

The presentation of results is structured in two sections. Section A presents the performance 

results first for the cross-validation and then for the sequential-validation. Section B presents 

sensitivity analysis, which, for brevity, focuses on the LSTM neural network. Similar sensitivity 

analysis for the other neural network architectures is available in the annex at the end of the report. 

A reader who wishes to quickly get the overall picture may now jump directly to the validation 

summary and Table 5. 
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A. Prediction performance 

Cross-validation 

Recall that in the cross-validation, each country, in turn, is used as the test sample while the other 

countries form the training sample. The less interdependent the time series of different countries, 

the more robust the cross-validation becomes.  

Start by considering forecasting a financial crisis one year ahead. We consider three alternative 

time periods for the cross-validation: the full-sample from 1870 to 2016, the post-world-war II 

period from 1946 to 2016, and the post-Bretton-Woods period ranging from 1970 to 2016. The 

AUC evaluated for each prediction model for each period is shown in Table 2. In this test RNN-

GRU performs best followed closely by the RNN-LSTM. Also, the logit model with 5 lags, the 

one-hidden layer perceptron with 5 lags, and the basic RNN outperform the corresponding single 

lag models. For example, for the post-Bretton-Woods period, the RNN-GRU achieves AUC = 

0.801 while the logit model with 5 lags only attains AUC = 0.649. The perceptron model with 

five lags also consistently outperforms the logistic benchmark. 

Let us now consider alternative forecast horizons up to five years. For brevity, we only consider 

the post-Bretton-Woods period but expect the results to be similar also for the other periods. Table 

3 presents the AUC evaluated for each model and forecasting horizon. Again, RNN-LSTM and 

the RNN-GRU emerge as the most reliable prediction models and consistently outperform the 

logistic benchmarks as well as the one-hidden-layer perceptron models. For the prediction 

horizons from 2 to 4 years, the RNN-LSTM has slightly better score than the RNN-GRU.  

Sequential validation 

Next, we turn to the sequential evaluation. We train the model using data from some initial year, 

T0, until 2002 and then assess the prediction performance over the remaining period 2003-2016. 

We consider three alternative training periods T0 = 1870, 1946, and 1970, corresponding to the 

largest available sample, post-WW2 period and post-Bretton-Woods period, respectively. 

Table 4 presents the prediction performance in the sequential evaluation for different prediction 

horizons. The results for each training sample are shown in panels a through b. In each table, we 

see again that RNN-LSTM and RNN-GRU tend to outperform the other methods by a significant 

margin. Moreover, the results tend to improve progressively when the training data is more recent, 

in other words, when we move from panel a to panel b and from panel b to panel c. 

Compared to the cross-validation presented in previous tables, there is somewhat more variability 

in the results. Besides the strict temporal ordering imposed by the sequential-validation, the 
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increased variability is partly a result of running the neural network optimization only once here 

vs. 17 times in the cross-validation. 

Validation summary 

Overall, we have seen that the recurrent neural network architectures (RNN, LSTM, GRU) 

performed better than the one-hidden layer perceptron in both cross-validation and sequential 

validation. To summarize the results, following Ristolainen (2018) we produce Table 5 that shows 

the in-sample performance, the (cross-)validation performance‡, and the (sequential) out-of-

sample performance as measured by the AUC. The reported numbers are based on the post-

Bretton Woods period data.  

According to our understanding, the hidden-layer perceptron with multiple (5) lags falls behind 

primarily, because despite the L2 regularization weight, the model still becomes somewhat too 

overfitted during the training. The recurrent architectures avoid this overfitting by reliance on 

parameter sharing. Another important observation is the stronger performance of RNN-LSTM 

and RNN-GRU as compared to the basic RNN. We attribute this both to the fact that the 

LSTM/GRU avoid the exploding gradient problem that can sometimes hamper the performance 

of basic RNN, and to the enhanced ability (due to the memory state) of the LSTM/GRU networks 

to keep track of intertemporal dependencies. These and other issues are analyzed further in the 

following sensitivity analysis. 

B. Sensitivity analysis 

In this section, we do a sensitivity analysis based on neural network training and neural network 

model complexity. For brevity, the discussion here mainly focuses on the RNN-LSTM, which 

performed best in off-the-shelf evaluations presented in the previous section. Further sensitivity 

analysis for the other neural architectures can be found in the supplementary material. We first 

consider sensitivity to training and then sensitivity to complexity (=size) of the neural network. 

In the following analysis, we concentrate primarily on the sequential out-of-sample 3-year ahead 

prediction but we expect that the sensitivity results would be similar had we used some other 

forecast horizon or cross-validation. 

Sensitivity to training 

                                                           
‡ The cross-validation classification statistics are typically lower when using country-by-country cross-

validation than when using a randomized cross-validation as in Holopainen and Sarlin (2017) and 

Ristolainen (2018). 
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As a non-convex optimization problem, training a neural network with a large number of 

parameters is highly non-trivial. Two optimization runs with different algorithms or different 

initial values hardly ever converge to the same result. Hence, the prediction performance tends to 

depend on how we train the network. The dependence on the initial values is easy to handle as we 

can train an ensemble of neural networks and take an average prediction. For the training process, 

besides the algorithm, considerations include different regularization techniques such L2 

regularization and dropout, which are used to reduce overfitting. L2 regularization adds a penalty 

term proportional to the sum of the squared weights. Dropout randomly excludes neurons from 

the network in order to avoid excessive co-adaptation. 

Figure 5 shows the sequential out-of-sample 3-year ahead prediction performance measured by 

AUC (using the 1970-2002 period for training) as a function of performed training epochs for 

different optimization algorithms using regularization weight 0.1 (Adam corresponds to what we 

did in the previous section). Panel a shows the result for a random seed and panel b shows the 

result for another random seed. Two important observations can be drawn. Despite some 

persistent performance differences, none of the algorithms strictly dominates the other algorithms. 

The performance typically reaches a maximum at a finite number of epochs and deteriorates after 

that. This deterioration seems to be a result of the network adapting too well to the training data, 

and it can be counteracted by increasing the regularization weights or introducing dropout. 

Figure 6 panel a shows the effect of adding the dropout feature to the neural network, and panel 

b shows the effect of increasing the value of regularization weight to 0.3. Both adjustments seem 

to independently counteract the co-adaptation. After 500 epochs the average AUC among the 

algorithms is 0.797 with the dropout in panel a and 0.779 with the increased regularization weight. 

Even if single run for the algorithms is not statistically significant evidence, the results suggest 

that, in the case of LSTM, adding the dropout feature could be helpful and better option than 

increasing the regularization weight further. 

As noted before, in the sequential evaluation the multilayer perceptron (with 5 lags) suffered from 

overfitting when regularization weight was set to 0.1. Increasing the regularization weight should 

alleviate this problem and possibly improve the prediction performance. Figure 7 illustrates the 

sensitivity of the neural network predictions to the strength of the L2 regularization weight 

parameter. Increasing the regularization weight significantly improves the performance of the 5-

lag one-hidden layer perceptron. The 1-lag one-hidden layer perceptron improves moderately, 

while the RNNs perform best with little to no regularization. To check whether this affects our 

main conclusions, we calculate the sequential prediction performance for the hidden-layer 

perceptron as in Table 4a–c when we use L2 regularization weight 0.5 or 1.0. The results 

(available in supplementary material, Table S1, at the end of the document) show that while the 



14 
 

performance improves for the particular forecast horizon and training sample that was used to 

choose the value of the parameter, the improvement is less pronounced for other forecast horizons 

and training samples. Hence, the conclusions about the advantage of the RNN architecture remain 

valid. 

Sensitivity to model complexity 

As a final topic, we consider the sensitivity of the prediction results to the number of input features 

and the size of the neural network. Again the discussion focuses on the RNN-LSTM and the case 

of 3-year prediction based on the post-Bretton-Woods era sample. 

The size of the RNN-LSTM neural network can be expanded by increasing the number of units 

in the hidden state. This leads to an increase in the number of weight parameters to be optimized. 

If we denote the number of output nodes in the LSTM cell by h and the number of input features 

by d, the number of parameters in the LSTM layer can be calculated as 4h2+4(d+2). Also, there 

are h+1 parameters related to the single node output layer. 

Figure 8 shows both the cross-validated and sequentially evaluated out-of-sample prediction 

performance for the RNN-LSTM neural network as a function of the number of nodes in the 

hidden state. Panel a presents the results with 5 input features and panel b presents the results with 

13 input features. We see that in both panels a and b, increase in the dimension of the hidden state 

improves the prediction performance. Moreover, in cross-validation, the network using 13 input 

features tends to outperform the network using only 5 input features. However, in the sequential 

validation smaller number of input features is preferred. 

Alternatively, we can expand the network by increasing the amount of input time steps, which 

corresponds to the number of times the recurrent neural network repeats the recurrent operation 

until the hidden state reaches the final output layer. Because of parameter sharing, this does not 

change the number of weight parameters to be optimized. Figure 9 shows the cross-validated 

prediction performance as a function of time steps. Both the sequential validation and cross-

validation have the highest performance when the number of time steps is about 5. 

7. Discussion 

Our results relate to the earlier work that aims to predict systemic financial crises with neural 

networks reviewed in Section 2. Similar to Fricke (2018) and in contrast to Ristolainen (2018) 

and Holopainen and Sarlin (2017), we don't find very large performance difference between the 

logistic regression model and the multilayer perceptron. Three potential reasons are, first, the 

datasets differ, and second, Ristolainen (2018) and Holopainen and Sarlin (2017) use higher 
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frequency data and, lastly, they do not include lagged values of predictors. Additionally, 

Ristolainen (2018) mainly reports AUC for individual crises. 

The AUC can't be compared directly to those in Ristolainen (2018) and Holopainen and Sarlin 

(2017) because of the above mentioned differences. However, compared Fricke (2018) whose 

dataset and methodology are similar to ours, our highest attained values of AUC are considerably 

higher. 

In the cross-validation, we find the best forecast accuracy at the 3-year prediction horizon and 

using five time steps in the recurrent neural network. These numbers are consistent with the 

relatively long length of the financial cycle reported in the literature (8 to 20 years, see e.g. Borio 

2014 or Filardo et al. 2018). 

In future work, a straightforward extension would be to try datasets with quarterly or monthly 

frequency. Regarding the architecture, one could take the analysis a step further by considering 

slightly deeper network structures that allow for a higher level of abstraction. Additionally, it 

would make sense to try to pinpoint where the benefits of the neural network prediction come 

from, e.g. what are the non-linearities underlying the good out-of-sample performance. 

8. Conclusions 

Earlier literature has found artificial neural network with single hidden-layer perceptron to be 

excellent models for financial crisis forecasting. We have found that the prediction performance 

can be improved further with recurrent neural networks (RNNs) based on Long-Short Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) cells. The capacity to handle time series data 

seems to be particularly important for the stable performance across different prediction horizons 

as compared to single layer perceptron architecture. These advantages derive from the parameter 

sharing inherent for the RNN structure, which efficiently counteracts overfitting. Overall, the 

results support the notion that recurrent neural networks could be a useful tool for time series 

applications in finance and empirical macroeconomics. 

The recurrent neural network architectures are relatively straightforward to implement in practice 

using, for example, Python/Keras. The downside is that even if we were able to outperform the 

logistic regression practically without fine-tuning parameters, in general choosing the 

hyperparameters and training the model requires expertize and possibly considerable effort. 
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Figure 1. Perceptron with one-hidden layer 

 

Figure 2. Basic recurrent neural network 
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Figure 3. Long-Short Term Memory cell 

 

Figure 4. Gated Recurrent Unit 
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Table 1. Crisis dates in the Jorda-Schularick-Taylor database. 

 

1870: Belgium, Switzerland

1871: Japan

1873: Germany, Italy, USA

1877: Denmark, Finland

1878: Sweden

1882: France

1883: Spain

1885: Belgium, Denmark

1887: Italy

1889: France

1890: Japan, Portugal, Spain

1890: UK

1891: Germany

1893: Australia, Italy, Netherlands, USA

1899: Norway

1900: Finland

1901: Germany

1907: Canada, Germany, Italy, Japan, Netherlands, Sweden, USA

1908: Denmark

1910: Switzerland

1913: Spain

1920: Japan, Portugal, Spain

1921: Denmark, Finland, Italy, Netherlands

1922: Norway, Sweden

1923: Portugal

1924: Spain

1925: Belgium

1927: Japan

1929: USA

1930: France, Italy

1931: Belgium, Denmark, Finland, Germany, Norway, Portugal, Spain, Sweden, Switzerland

1934: Belgium

1935: Italy

1939: Belgium, Netherlands

1974: UK

1977: Spain

1984: USA

1987: Denmark

1988: Norway

1989: Australia

1990: Italy

1991: Finland, Sweden, Switzerland, UK

1997: Japan

2007: UK, USA

2008: Belgium, Denmark, France, Germany, Italy, Netherlands, Portugal, Spain, Sweden, Switzerland
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Table 2. Cross-validation results with 1-year forecast horizon. 

 
Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden 

state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to 

five lags of the same variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, 

current account-to-GDP ratio, and annual growth in real GDP. 

 

Table 3. Cross-validation results for different forecast horizons. 
Time period is 1970-2016. 

 
Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden 

state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to 

five lags of the same variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, 

current account-to-GDP ratio, and annual growth in real GDP. 

 

  

Model Lags Full sample Post WW2 1970-2016

Logit 1 0.610 0.623 0.618

Logit 5 0.637 0.674 0.649

NN 1 0.607 0.607 0.608

NN 5 0.690 0.700 0.687

RNN 5 0.654 0.692 0.619

RNN-LSTM 5 0.714 0.774 0.761

RNN-GRU 5 0.762 0.798 0.801

Time period

Model Lags 1 2 3 4 5

Logit 1 0.618 0.655 0.671 0.692 0.420

Logit 5 0.649 0.693 0.735 0.755 0.721

NN 1 0.608 0.729 0.700 0.687 0.552

NN 5 0.687 0.696 0.756 0.682 0.691

RNN 5 0.619 0.695 0.726 0.707 0.728

RNN-LSTM 5 0.761 0.762 0.835 0.799 0.759

RNN-GRU 5 0.801 0.750 0.783 0.795 0.750

Forecast horizon
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Table 4. Sequential-validation results for different forecast horizons. 
The training period is indicated in each panel and the test period is 2003-2016. 

a) Training period 1870-2002 

 
Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden 

state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to 

five lags of the same variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, 

current account-to-GDP ratio, and annual growth in real GDP. 

b) Training period 1946-2002 

 
Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden 

state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to 

five lags of the same variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, 

current account-to-GDP ratio, and annual growth in real GDP. 

  

Model Lags 1 2 3 4 5

Logit 1 0.535 0.616 0.744 0.757 0.417

Logit 5 0.505 0.521 0.671 0.671 0.633

NN 1 0.553 0.614 0.766 0.760 0.622

NN 5 0.363 0.431 0.542 0.408 0.632

RNN 5 0.557 0.616 0.781 0.701 0.656

RNN-LSTM 5 0.584 0.742 0.643 0.731 0.850

RNN-GRU 5 0.531 0.721 0.728 0.745 0.820

Forecast horizon

Model Lags 1 2 3 4 5

Logit 1 0.558 0.602 0.748 0.672 0.458

Logit 5 0.426 0.41 0.513 0.575 0.622

NN 1 0.485 0.612 0.783 0.657 0.644

NN 5 0.415 0.448 0.238 0.357 0.751

RNN 5 0.551 0.641 0.799 0.685 0.694

RNN-LSTM 5 0.595 0.717 0.735 0.786 0.873

RNN-GRU 5 0.609 0.744 0.727 0.678 0.838

Forecast horizon
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c) Training period 1970-2002 

 
Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden 

state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to 

five lags of the same variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, 

current account-to-GDP ratio, and annual growth in real GDP. 

  

Model Lags 1 2 3 4 5

Logit 1 0.574 0.608 0.713 0.685 0.338

Logit 5 0.398 0.366 0.566 0.698 0.736

NN 1 0.502 0.551 0.732 0.674 0.479

NN 5 0.348 0.455 0.485 0.589 0.577

RNN 5 0.575 0.668 0.773 0.652 0.597

RNN-LSTM 5 0.644 0.708 0.751 0.810 0.876

RNN-GRU 5 0.687 0.749 0.773 0.670 0.848

Forecast horizon
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Table 4. Summary of the evaluation results 

 
Table notes. In-sample refers to using period 1970–2016 for both training and testing. Validation refers to corresponding country-by-

country cross-validation (Table 3). Out-of-sample refers to the corresponding sequential evaluation (Table 4c). The numbers in the 

table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden state is 10, L2 weight is 0.1, 

training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to five lags of the same 

variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, current account-to-

GDP ratio, and annual growth in real GDP. 

  

Model Lags Metric 1 2 3 4 5

In-sample 0.693 0.710 0.723 0.759 0.618

Logit 1 Validation 0.618 0.655 0.671 0.692 0.420

Out-of-sample 0.574 0.608 0.713 0.685 0.338

In-sample 0.831 0.857 0.898 0.897 0.878

Logit 5 Validation 0.649 0.693 0.735 0.755 0.721

Out-of-sample 0.398 0.366 0.566 0.698 0.736

In-sample 0.770 0.812 0.788 0.794 0.707

NN 1 Validation 0.608 0.729 0.700 0.687 0.552

Out-of-sample 0.502 0.551 0.732 0.674 0.479

In-sample 0.943 0.963 0.973 0.967 0.963

NN 5 Validation 0.687 0.696 0.756 0.682 0.691

Out-of-sample 0.348 0.455 0.485 0.589 0.577

In-sample 0.761 0.778 0.813 0.822 0.813

RNN 5 Validation 0.619 0.695 0.726 0.707 0.728

Out-of-sample 0.575 0.668 0.773 0.652 0.597

In-sample 0.868 0.875 0.933 0.897 0.871

RNN-LSTM 5 Validation 0.761 0.762 0.835 0.799 0.759

Out-of-sample 0.644 0.708 0.751 0.810 0.876

In-sample 0.870 0.871 0.890 0.898 0.854

RNN-GRU 5 Validation 0.801 0.750 0.783 0.795 0.750

Out-of-sample 0.687 0.749 0.773 0.670 0.848

Forecast horizon
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Figure 5. Sensitivity of RNN-LSTM prediction performance to training algorithm. 

a) A random initialization 

 
Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural 

units in the hidden layer or RNN hidden state is 10, L2 weight is 0.1, minibatch size is 16. 

 

b) Another random initialization 

 
Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural 

units in the hidden layer or RNN hidden state is 10, L2 weight is 0.1, minibatch size is 16. 
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Figure 6. Sensitivity of RNN-LSTM prediction performance dropout and L2 regularization. 

a) Dropout neurons with probability 0.3 

 

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction.  Number of features is 5, number of neural 

units in the hidden layer or RNN hidden state is 10, L2 weight is 0.1, minibatch size is 16, dropout probability is 0.3. 

b) No dropout but increase regularization weight to 0.3 

 

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural 

units in the hidden layer or RNN hidden state is 10, L2 weight is 0.3, minibatch size is 16. 
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Figure 7. Sensitivity of the neural network architectures to L2 regularization 

 
Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. The x-axis is the L2 regularization weight. 

Number of features is 5, number of neural units in the hidden layer or RNN hidden state is 10, minibatch size is 16. 
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Figure 8. Sensitivity of RNN-LSTM prediction performance to number of units in the hidden state. 

a) Number of features = 5 

 
Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. L2 weight is 0.1, training algorithm is Adam, 

training time is 100 epochs, minibatch size is 16. 

b) Number of features = 13 

 

 
Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. L2 weight is 0.1, training algorithm is Adam, 

training time is 100 epochs, minibatch size is 16. 
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Figure 9. Sensitivity of RNN-LSTM prediction performance to number of time steps. 

 

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural 

units in the hidden layer or RNN hidden state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, 

minibatch size is 16.  
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Supplementary material 

Figure S1 shows the sensitivity to training algorithm for rest of the neural network architectures. 

We can see that GRU architecture tends to dominate the simple RNN architecture, which in turn 

dominates the one hidden layer perceptron architecture. This confirms that the conclusions of the 

article do not depend on the training algorithm. 

Table S1 shows the sequential validation results for the one-hidden layer perceptron when using 

larger regularization weight. The regularization weight is introduced to reduce overfitting. In panel 

a) the regularization weight is 0.5, which is optimal for the one-hidden layer perceptron with one 

lag (based on Figure 7 where the forecast horizon 3 with 1970-2002 training period). In panel b) the 

regularization weight is 1, which is optimal for the one-hidden layer perceptron with 5 lags (again 

based on Figure 7 where the forecast horizon 3 with 1970-2002 training period). Fine-tuning the 

regularization weight improves the performance of the one-hidden layer perceptron. However, the 

improvement in performance is less stable (i.e. does not generalize well to different forecast 

horizons or training samples) than for the non-fine-tuned RNN algorithms. 
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Figure S1. Sensitivity of prediction performance to training algorithm for different network 

architectures. 

a) One hidden layer perceptron (1 lag) 

 
The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural units in the 

hidden layer or RNN hidden state is 10, L2 weight is 0.1. 

b) Recurrent neural network 

 
The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural units in the 

hidden layer or RNN hidden state is 10, L2 weight is 0.1. 
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c) GRU neural network 

 
The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural units in the 

hidden layer or RNN hidden state is 10, L2 weight is 0.1. 

  

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 100 200 300 400 500

A
U

C

Epoch

adam nadam adagrad adamax

adadelta sgd rmsprop



34 
 

Table S1. Sequential-validation results for one hidden-layer perceptron with large 

regularization weight 
The training period is indicated in column 1. 

a) L2 regularization weight = 0.5  

 

 
Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer is 10, training 

algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to five lags of the same variables: real 

annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, current account-to-GDP ratio, and 

annual growth in real GDP. 

 

b) L2 regularization weight = 1 

 
Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer is 10, training 

algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to five lags of the same variables: real 

annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, current account-to-GDP ratio, and 

annual growth in real GDP. 

Training period Model Lags 1 2 3 4 5

1870-2002 NN 1 0.532 0.618 0.777 0.773 0.419

1870-2002 NN 5 0.413 0.482 0.547 0.418 0.749

1946-2002 NN 1 0.517 0.657 0.783 0.734 0.383

1946-2002 NN 5 0.362 0.483 0.489 0.357 0.698

1970-2002 NN 1 0.556 0.651 0.774 0.755 0.470

1970-2002 NN 5 0.444 0.390 0.687 0.804 0.725

Forecast horizon

Training period Model Lags 1 2 3 4 5

1870-2002 NN 1 0.508 0.609 0.727 0.782 0.345

1870-2002 NN 5 0.426 0.471 0.592 0.546 0.704

1946-2002 NN 1 0.506 0.646 0.775 0.773 0.308

1946-2002 NN 5 0.406 0.588 0.660 0.560 0.721

1970-2002 NN 1 0.559 0.692 0.742 0.730 0.393

1970-2002 NN 5 0.477 0.453 0.771 0.726 0.823

Forecast horizon
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