
Tölö, Eero

Working Paper

Predicting systemic financial crises with recurrent neural
networks

Bank of Finland Research Discussion Papers, No. 14/2019

Provided in Cooperation with:
Bank of Finland, Helsinki

Suggested Citation: Tölö, Eero (2019) : Predicting systemic financial crises with recurrent neural
networks, Bank of Finland Research Discussion Papers, No. 14/2019, ISBN 978-952-323-287-7, Bank
of Finland, Helsinki,
https://nbn-resolving.de/urn:nbn:fi:bof-201908271427

This Version is available at:
https://hdl.handle.net/10419/212448

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:fi:bof-201908271427%0A
https://hdl.handle.net/10419/212448
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Bank of Finland Research Discussion Papers
14 • 2019

Eero Tölö
–

Predicting systemic financial crises with
recurrent neural networks

Bank of Finland
Research

Bank of Finland Research Discussion Papers
Editor-in-Chief Esa Jokivuolle

Bank of Finland Research Discussion Paper 14/2019
27 August 2019

Eero Tölö
Predicting systemic financial crises with recurrent neural networks

ISBN 978-952-323-287-7, online
ISSN 1456-6184, online

Bank of Finland
Research Unit

PO Box 160
FIN-00101 Helsinki

Phone: +358 9 1831

Email: research@bof.fi
Website: www.suomenpankki.fi/en/research/research-unit/

The opinions expressed in this paper are those of the authors and do not necessarily reflect the views
of the Bank of Finland.

http://www.suomenpankki.fi/en/research/research-unit/

Predicting systemic financial crises

with recurrent neural networks

Eero Tölö*†

Revised version

30 August 2019

Abstract:

We consider predicting systemic financial crises one to five years ahead using recurrent neural

networks. The prediction performance is evaluated with the Jorda-Schularick-Taylor dataset,

which includes the crisis dates and relevant macroeconomic series of 17 countries over the period

1870-2016. Previous literature has found simple neural network architectures to be useful in

predicting systemic financial crises. We show that such predictions can be significantly improved

by making use of recurrent neural network architectures, especially suited for dealing with time

series input. The results remain robust after extensive sensitivity analysis.

JEL Classification: G21, C45, C52

Keywords: Early Warning System, Banking Crises, Neural Networks, Validation

*
Department of Financial Stability, Bank of Finland.

Helsinki GSE, University of Helsinki, E-mail address: eero.tolo@helsinki.fi

Department of Economics, London School of Economics and Political Science.

† The work was conducted at the LSE during spring 2019. The author would like to thank Milan

Vojnovic for useful comments and suggestions as well as anonymous comments received

during the editorial process. The views expressed in the paper are solely those of the author and

do not necessarily represent the views of the Eurosystem or the Bank of Finland.

mailto:eero.tolo@helsinki.fi

2

1. Introduction

For obvious reasons, there is on-going interest to devise better models for forecasting

macroeconomic turning-points such as onset of economic downturns, recessions, and systemic

financial crises. This paper investigates the ability of different types of neural networks to predict

systemic financial crises.

For purposes of this study, a systemic financial crisis can be thought merely as a recession

amplified by a massive deleveraging of the financial sector (see Laeven and Valencia, 2012,

Reinhart and Rogoff, 2009, and Jordà et al, 2015, for more precise definitions). Lists of crisis

dates have been made widely available by previous research. Researchers have found several

warning signs that predate such crisis events by a few years (see e.g. Alessi and Detken, 2011,

Babecký et al, 2014, Barrell et al, 2011, Bordo and Meisner, 2012, Borio and Drehmann, 2009,

Büyükkarabacak and Valev, 2010, Davis and Karim, 2008, Demirgüc-Kunt and Detragiache,

1998, 2000, Detken et al, 2014, Domaç and Martinez Peria, 2003, Drehmann and Juselius, 2014,

von Hagen and Ho, 2007, Kaminsky and Reinhart, 1999, Kauko, 2014, Lo Duca and Peltonen,

2013 and Roy and Kemme, 2012, Tölö et al, 2018). These include a rapid increase in asset values,

increased leverage of the private sector, and often current account deficit of a country that is

borrowing from abroad to finance its excesses.

Earlier literature (see e.g. Alessi et al, 2014, Detken et al, 2014) has considered various crisis

prediction methods ranging from variations of logistic models to decision trees and other machine

learning methods. A few recent studies have also considered artificial neural networks (Fricke

2017, Holopainen and Sarlin, 2017, and Ristolainen, 2018) with mostly very promising results.

The neural network approach may be justified on basis of nonlinear relationship between the

indicators and the crisis event. For example, Kauko (2012) found that rapid credit growth

predicted the deterioration of bank credit quality in the 2008 financial crisis only in countries that

had a current account deficit.

So far in these studies, the neural network architectures have been limited to the multilayer

perceptron with one hidden layer, which may not be optimal, given the time-series nature of the

data. This study takes a step forward by considering how recent advances in the field of recurrent

neural networks could benefit the predictions. Specifically, recurrent neural networks with

parameter sharing enable the use of lagged values of predictors without introducing too many

additional free parameters.

We consider three recurrent neural network architectures – a basic RNN, an RNN with long short-

term memory (LSTM) cells, and an RNN with Gated Recurrent Units (GRUs), which we

3

benchmark against a multilayer perceptron model and the logistic regression. The data comes

from the Jorda-Schularick-Taylor (JST) macrohistory database, which covers the financial crisis

dates and relevant macroeconomics data for 17 advanced economies in the period 1870–2016.

We train the models to predict financial crises with a prediction horizon extending from 1 to 5

years. The models are subsequently tested out-of-sample either in a country-by-country cross-

validation or a two-step sequential. We assess the out-of-sample prediction performance by the

area under the ROC curve. We generally find that the recurrent neural network architectures

outperform both the multilayer perceptron and the logistic regression benchmarks and exihibit

robustness across different forecast horizons. The LSTM and GRU architectures have roughly

equivalent performance. The results survive extensive sensitivity analysis.

Hence, our main contribution is to demonstrate the value of the recurrent neural networks for the

task of systemic financial crisis prediction. Similar techniques could be useful in the related

literature recession prediction, as in Qi (2001), and other types of crises, as in Fioramanti (2008),

or more generally in predicting macroeconomic time series (see Smalter Hall and Cook, 2017).

The rest of the report is organized as follows. Section 2 offers a view on the scant literature of

predicting systemic financial crises with neural networks. Section 3 reviews the neural network

architectures considered in this study. Section 4 presents the data including the financial crisis

dates. Section 5 describes the performance evaluation and validation frameworks. Section 6

presents the results from the performance evaluation and sensitivity analysis. How the results

relate to earlier work is discussed in Section 7. Section 8 concludes.

2. Literature on predicting systemic financial crises
with neural networks

Even though neural networks have been considered in various early warning systems, a thorough

searched brought up only a handful of earlier studies that have considered neural networks in

prediction of systemic financial crises. Fricke (2017) and Holopainen and Sarlin (2017)

benchmark the crisis prediction performance among various machine learning methods including

neural networks. Ristolainen (2018) focuses strictly on the neural network approach and

benchmarks it against logistic regression. All four studies consider the most straightforward

neural network architecture called one hidden layer perceptron. However, their results differ due

to differences in the datasets and in the evaluation approach.

Fricke (2017) considers earlier version of the JST dataset that covers 14 developed countries over

maximum of 137 years (1870–2008, whereas in the present study the dataset covers 17 developed

economies over the period 1870-2016). He considers a prediction horizon of one year and a

4

minimal set of input features (five lags of credit growth) and finds that the logistic regression has

most robust prediction performance overall. In his study, a classification forest and the one-

hidden-layer perceptron (with 3 or 5 nodes in the hidden unit) outperform the logistic regression

for some validation samples, while K-nearest-neighbors (KNN), quadratic discriminant analysis

(QDA), support vector machines (SVM), are consistently worse than the logistic regression.

Holopainen and Sarlin (2017) consider a quarterly dataset of 15 European Union countries. Also

unbalanced, their data covers 26 to 35 years for each country in the period 1976–2012. They

consider a flexible prediction horizon of 5 to 12 quarters and include 14 input features at the time

of prediction (no lagged variables). In their study, a perceptron neural network with eight hidden

units and KNN are among the top performing methods and both outperform logistic model by a

wide margin in all evaluations.

Ristolainen (2018) considers monthly dataset of 18 countries obtained from Kaminsky (2006).

His data covers on average 23 years for each country and extends from 1970/80 to 2003. He

considers prediction horizon of 24 months and includes 13 input features. In his study, perceptron

neural networks also outperform logistic regression in all evaluations. He finds that grouping of

similar countries also improves the predictions. The performance of the neural network improves

rapidly when the number of units in the hidden layer are increased from 5 to 10 but does not

change much for higher number of neurons.

The difference in the outcomes in the latter studies compared to Fricke (2017) appear to be borne

mainly from the minimal number of features included in Fricke's study. Other factors, which

would likely become significant once more features are added, are the more extended period, 137

years, and heterogeneity of the countries, and possibly the use of multiple lagged values of the

features present in Fricke (2017).

3. Neural network architectures

A. Feedforward neural networks

A feedforward neural network is the earliest and most straightforward type of artificial neural

network. In this network, the input data enters only once from the input nodes (see the bottom of

Figure 1) and moves through the hidden nodes and to the output node(s).

A multilayer perceptron consists of three or more layers: an input layer, one or more hidden layers,

and an output layer. The basic architectural question for the multilayer perceptron is the number

and width of the hidden layer(s). According to universal approximation theorem for neural

networks (Hornik et al. 1989), every continuous function on a bounded domain can be

5

approximated with a multilayer perceptron with just one hidden layer. The problem is that the

required size for such a network can be impractically large making the network prone to

overfitting. Empirical evidence generally suggests that depth can be beneficial. However, as our

primary interest in this study lies in the recurrent neural networks, we only consider the single

hidden layer perceptron used in the earlier related work by Fricke (2018), Holopainen and Sarlin

(2017), and Ristolainen (2018).

In our basic setup the number of nodes in the hidden layer is 10 and the number of input features

is 5 (or 25 when we include 5 lagged values of input features). The one hidden layer perceptron

used in this study can be defined recursively as:

𝒉(𝑿) = 𝑎𝑟𝑒𝑙𝑢(𝑾𝑿 + 𝒃), (1)

𝑜(𝒉) = 𝑎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑽𝒉 + 𝒄), (2)

where a are activation functions (applied elementwise), W and V are weight matrices, b and c are

bias vectors, X is the input, and o is the output. Following common practice, we apply rectified-

linear (relu) activation function at the hidden nodes and sigmoid activation at the single output

node.

To manage the overfitting, we include L2 regularization, which is a squared penalty term for the

neural network weights. The regularization parameter is initially set to 0.1 following Ristolainen

(2018), while other values are included in the sensitivity analysis.

The weights and biases are optimized by minimizing a cross-entropy loss function that compares

the predicted output to the actual known state (crisis or not). We train the neural network by

Adam, an adaptive variation of the gradient descent algorithm utilizing the backpropagation

algorithm for fast computation of gradients. Various other training algorithms and

hyperparameters are considered in the sensitivity analysis. The weights and biases (W, V, b, c)

are initially set at random values.

B. Recurrent neural networks

Recurrent neural networks (RNNs) are a family of neural networks designed for sequential data

such as language and time series. The RNN accepts input data sequentially, which allows RNNs

to use their hidden states (akin to memory) dynamically to process a sequence of input data. A

key idea is parameter sharing, which restricts the number of parameters in the model and helps

avoid overfitting. For example, Smalter Hall and Cook (2017) use recurrent neural networks to

predict unemployment.

6

In this study, we consider three different RNN architectures: basic RNN, RNN with Long-Short

Term Memory (LSTM) cells, and RNN with GRU cells.

In the basic RNN presented in Figure 2, there is a hidden state 𝒉𝑡 of dimensionality h, which

evolves through a number of time steps T. The evolution of 𝒉𝑡 depends on the previous hidden

state 𝒉𝑡−1 and the current input 𝑿𝑡. At the final time step, the hidden state is mapped to output

and the weights and biases of the network are again trained to minimize a cross-entropy loss

function. In our main results, the dimensionality of the hidden state is 10, and the number of

time steps is 5.

The basic RNN can be defined recursively as

𝒉𝑡(𝒉𝑡−1, 𝑿𝑡) = 𝑎𝑡𝑎𝑛ℎ(𝑾𝑿𝑡 + 𝑼𝒉𝑡−1 + 𝒃), 𝑡 = 1, 2, 3, . . . , 𝑇 , (3)

𝑜(𝒉𝑇) = 𝑎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑽𝒉𝑇 + 𝒄) . (4)

The network is trained similarly as the feedforward neural network: the output enters a cross-

entropy loss function that is minimized with algorithm from the gradient descent family of

methods. However, it should be noted that due to repeated multiplication of the hidden state by

the same U, the basic RNNs are susceptible to the problem of vanishing or exploding gradient.

LSTM type RNNs were developed to deal with this problem.

The idea of an LSTM was proposed by Hochreiter and Schmidhuber (1997) and it has turned

out to be quite popular. The idea is to make the recurrence going from 𝒉𝑡to 𝒉𝑡+1 more

complicated such that the network can control what kind of information propagates onward

from one time step to another. To visualize the LSTM network, think of each hidden node in

Figure 2 being replaced by an LSTM cell depicted in Figure 3. The hidden state is now

composed of two components 𝒉𝑡 and 𝒔𝑡, which both have dimensionality h. Gating units σ are

elementwise sigmoid-functions that control the flow of information at points (x), x denoting

Hadamard product ⊙ (elementwise multiplication).

We denote by f, i, and o the results from forget, input, and output gate (not to be confused with

the output layer of the neural network) respectively. The LSTM cell operation can then be written

as:

𝒇𝑡 = 𝜎(𝑾𝑓𝒙𝑡 + 𝑼𝑓𝒉𝑡−1 + 𝒃𝑓), (5)

𝒊𝑡 = 𝜎(𝑾𝑖𝒙𝑡 + 𝑼𝑖𝒉𝑡−1 + 𝒃𝑖), (6)

𝒐𝑡 = 𝜎(𝑾𝑜𝒙𝑡 + 𝑼𝑜𝒉𝑡−1 + 𝒃𝑜), (7)

7

𝒔𝑡 = 𝒇𝑡 ⊙ 𝒔𝑡−1 + 𝒊𝑡 ⊙ 𝑎𝑡𝑎𝑛ℎ(𝑾𝒙𝑡 + 𝑼𝒉𝑡−1 + 𝒃), (8)

𝒉𝑡 = 𝒐𝑡 ⊙ 𝑎𝑡𝑎𝑛ℎ(𝒔𝑡). (9)

In the main results, the dimensionality of the hidden state is 10, and the number of time steps is

5. Alternative hyperparameters are considered in the sensitivity analysis. Training the LSTM

network is similar to training a feedforward neural network as described previously. To manage

overfitting, we initially use the same L2 regularization weight 0.1 for the recurrent neural

networks as for the feedforward neural networks.

GRU is a gating mechanism proposed by Cho et al. (2014) with a similar purpose as the LSTM.

It has only two gates - a reset gate and an update gate - and a single vector presents the hidden

state. Hence, it has somewhat fewer parameters than the LSTM, so it is computationally more

efficient, but LSTM cells can do more complex tasks than GRU cells. However, GRU has been

shown to exhibit better performance in some relatively small datasets.

Following update equations describe GRU cell:

𝒖𝑡 = 𝜎(𝑾𝑢𝒙𝑡 + 𝑼𝑢𝒉𝑡−1 + 𝒃𝑢), (10)

𝒓𝑡 = 𝜎(𝑾𝑟𝒙𝑡 + 𝑼𝑟𝒉𝑡−1 + 𝒃𝑟), (11)

𝒉𝑡 = 𝒖𝑡 ⊙ 𝒉𝑡−1 + (1 − 𝒖𝑡) ⊙ 𝑎𝑡𝑎𝑛ℎ(𝑾𝒙𝑡 + 𝑼(𝒓𝑡 ⊙ 𝒉𝑡−1) + 𝒃). (12)

In the main results, the dimensionality of the hidden state is 10, and the number of time steps is

5. Training the GRU follows the same steps as described previously.

4. Data

All input data for this study come from the Jorda-Schularick-Taylor macro history database (Jorda

et al, 2017, and Knoll et al, 2019). The dataset includes 17 countries: Australia, Belgium, Canada,

Switzerland, Germany, Denmark, Spain, Finland, France, UK, Italy, Japan, Netherlands, Norway,

Portugal, Sweden, and the USA.

The target variable that we try to predict is the systemic financial crisis dummy variable, which

takes value 1 for a year that marks the start of a systemic financial crisis in a given country. The

dataset classifies financial crises as “events during which a country’s banking sector experiences

bank runs, sharp increases in default rates accompanied by large losses of capital that result in

public intervention, bankruptcy, or forced merger of financial institutions” (Schularick and

Taylor, 2012). Table 1 lists the crisis dates. We can infer from Table 1 that financial crises were

8

fairly common until the WW2. The WW2 was followed by a long financial calm until the crises

started happening again starting from the 70s. This pattern discussed more extensively in

Schularick and Taylor (2012) motives us to consider training for the full-sample, post-WW2 and

the post-Bretton-Woods era (the 1970s onwards).

We consider following input variables that we call features according to the neural network

nomenclature.

1. Loans to non-financial private sector divided by GDP, 1 year growth

2. Current account-to-GDP ratio, level

3. Real GDP, 1 year growth

4. Real house prices, 1 year growth

5. Real stock prices, 1 year growth

(6.) Consumer price index, 1 year growth

(7.) Public sector debt-to-GDP ratio, 1 year growth

(8.) Real loans to non-financial private sector, 1 year growth

(9.) Real loans to households, 1 year growth

(10.) Real loans to businesses, 1 year growth

(11.) Mortgage loans, 1 year growth

(12.) Short-term interest rate, level

(13.) Long-term interest rate, level

Our main result are calculated with neural networks that take features 1-5 as input. For models

other than non-recurrent neural networks we additionally consider adding 5 lags of each feature

as in Schularick and Taylor (2012) and in Fricke (2017). In the sensitivity analysis, we consider

using all the 13 features, which corresponds to similar amount of features as in Ristolainen (2018)

and Holopainen and Sarlin (2017).

5. Performance evaluation

Target variable

The target variable, the financial crisis dummy, is dealt with similarly as in Fricke (2017) apart

from the fact that we additionally consider longer prediction horizons. For example, if the crisis

happens in year 2007, then a one-year forecast based on 1 lagged value uses the indicator data

9

from 2006 only; a two-year forecast based on 1 lagged value uses the indicator data from 2005

only; and so on. Correspondingly, one-year forecast based on 5 lagged values uses the indicator

data from the years 2002–2006; respective two-year forecast uses data from the year 2001–2005;

and so forth.

Also note that the crises are considered as breaks in a series in the sense that in the above example,

in the case of one-year forecast we do not attempt to predict a crisis in 2008 based on 2007 data

if there was a crisis in 2007. Also, once a crisis has occurred, we do not try predict another until

5 years have passed. Similarly, in the two-year forecast, we do not attempt to predict a crisis “too

late”, e.g. in the case of two-year forecast of 2007 crisis, the prediction that would be based on

base 2006 data is left outside the evaluation. This handling of the pre-crisis and post-crisis periods

is largely similar to Sarlin and Holopainen (2017) and Ristolainen (2018).

However, compared to Sarlin and Holopainen (2017) and Ristolainen (2018), we treat forecast

horizons somewhat differently as the RNN structure naturally facilitates the lagged values of

features. For example, Ristolainen (2018) uses a continuous 24-month prediction horizon, and

Sarlin and Holopainen (2017) consider 5–12 quarter horizon. In that case, the whole 24-month or

the 5–12 quarter horizon is set as a pre-crisis target variable (=1). As Ristolainen (2018) points

out, the pre-crisis dummy approach is widely applied with quarterly and monthly data to avoid

considering large number of lagged predictors.

Cross-validation and sequential-validation

We consider two alternative out-of-sample performance evaluation frameworks, cross-validation

and sequential-validation.

In the cross-validation, we exclude each country in turn, train the network, and then perform the

out-of-sample prediction for each year for the country that was excluded. Then we pool all the

predictions together and evaluate the AUC statistics. The cross-validation does not fully preserve

temporal ordering in the sense that full information about the other countries are used to do

prediction for the excluded country. However, because temporal ordering for the predicted

country is preserved (as opposed to randomized cross-validation) and because all the input

variables are transformed stationary, the validation can be considered quite robust.

Cross-validation algorithm pseudocode:

[1]: Loop C over countries:

[2]: Train model excluding the data of country C

[3]: Test model using data of country C only

[4]: Store prediction probabilities for country C.

[5]: end loop

[6]: Calculate the out-of-sample AUC by pooling the prediction probabilities.

10

In the sequential-validation, we split the sample into two parts. The earlier part is used for training

and the latter part is used for testing. In this case, the temporal structure is fully preserved as we

do not use any future information for prediction. The downside is that for practical sample splits,

we are mainly predicting the 2007-2008 financial crisis.

Comparing the two validation methods, cross-validation is computationally more intensive as we

have to train the neural network separately when each country is excluded. The benefit is that we

get lower variance in the result, both due to being forced to train several times but also due to

being able to use more data in the validation phase.

Performance measure

We evaluate the prediction performance based on the area under the ROC curve (AUC). Each

neural network outputs a number that can be interpreted as a probabilistic forecast for the 0-1

crisis event.

If this probability is larger than some threshold h, then we say that the neural network predicts a

crisis. Otherwise, the prediction is that there is no crisis. Correctly predicted crisis is labeled a

true positive (TP). Correctly predicted tranquil state is labeled a true negative (TN). A false alarm

is labeled a false positive (FP) and a missed pre-crisis state is labeled false negative (FN).

Sensitivity is defined as TP/(TP+FN) and specificity is defined as TN/(TN+FP). If we plot

sensitivity vs. 1-specificity for all possible threshold values h we get the receiver operating

characteristic (ROC) curve. The area under the ROC curve is an approximately proper scoring

rule for the classification task. The best value of the AUC, one, is achieved for a perfect model

that is able to distinguish the two states for some threshold h perfectly. A random guess obtains

AUC = 0.5. For the AUC, a higher value is better.

6. Results

The presentation of results is structured in two sections. Section A presents the performance

results first for the cross-validation and then for the sequential-validation. Section B presents

sensitivity analysis, which, for brevity, focuses on the LSTM neural network. Similar sensitivity

analysis for the other neural network architectures is available in the annex at the end of the report.

A reader who wishes to quickly get the overall picture may now jump directly to the validation

summary and Table 5.

11

A. Prediction performance

Cross-validation

Recall that in the cross-validation, each country, in turn, is used as the test sample while the other

countries form the training sample. The less interdependent the time series of different countries,

the more robust the cross-validation becomes.

Start by considering forecasting a financial crisis one year ahead. We consider three alternative

time periods for the cross-validation: the full-sample from 1870 to 2016, the post-world-war II

period from 1946 to 2016, and the post-Bretton-Woods period ranging from 1970 to 2016. The

AUC evaluated for each prediction model for each period is shown in Table 2. In this test RNN-

GRU performs best followed closely by the RNN-LSTM. Also, the logit model with 5 lags, the

one-hidden layer perceptron with 5 lags, and the basic RNN outperform the corresponding single

lag models. For example, for the post-Bretton-Woods period, the RNN-GRU achieves AUC =

0.801 while the logit model with 5 lags only attains AUC = 0.649. The perceptron model with

five lags also consistently outperforms the logistic benchmark.

Let us now consider alternative forecast horizons up to five years. For brevity, we only consider

the post-Bretton-Woods period but expect the results to be similar also for the other periods. Table

3 presents the AUC evaluated for each model and forecasting horizon. Again, RNN-LSTM and

the RNN-GRU emerge as the most reliable prediction models and consistently outperform the

logistic benchmarks as well as the one-hidden-layer perceptron models. For the prediction

horizons from 2 to 4 years, the RNN-LSTM has slightly better score than the RNN-GRU.

Sequential validation

Next, we turn to the sequential evaluation. We train the model using data from some initial year,

T0, until 2002 and then assess the prediction performance over the remaining period 2003-2016.

We consider three alternative training periods T0 = 1870, 1946, and 1970, corresponding to the

largest available sample, post-WW2 period and post-Bretton-Woods period, respectively.

Table 4 presents the prediction performance in the sequential evaluation for different prediction

horizons. The results for each training sample are shown in panels a through b. In each table, we

see again that RNN-LSTM and RNN-GRU tend to outperform the other methods by a significant

margin. Moreover, the results tend to improve progressively when the training data is more recent,

in other words, when we move from panel a to panel b and from panel b to panel c.

Compared to the cross-validation presented in previous tables, there is somewhat more variability

in the results. Besides the strict temporal ordering imposed by the sequential-validation, the

12

increased variability is partly a result of running the neural network optimization only once here

vs. 17 times in the cross-validation.

Validation summary

Overall, we have seen that the recurrent neural network architectures (RNN, LSTM, GRU)

performed better than the one-hidden layer perceptron in both cross-validation and sequential

validation. To summarize the results, following Ristolainen (2018) we produce Table 5 that shows

the in-sample performance, the (cross-)validation performance‡, and the (sequential) out-of-

sample performance as measured by the AUC. The reported numbers are based on the post-

Bretton Woods period data.

According to our understanding, the hidden-layer perceptron with multiple (5) lags falls behind

primarily, because despite the L2 regularization weight, the model still becomes somewhat too

overfitted during the training. The recurrent architectures avoid this overfitting by reliance on

parameter sharing. Another important observation is the stronger performance of RNN-LSTM

and RNN-GRU as compared to the basic RNN. We attribute this both to the fact that the

LSTM/GRU avoid the exploding gradient problem that can sometimes hamper the performance

of basic RNN, and to the enhanced ability (due to the memory state) of the LSTM/GRU networks

to keep track of intertemporal dependencies. These and other issues are analyzed further in the

following sensitivity analysis.

B. Sensitivity analysis

In this section, we do a sensitivity analysis based on neural network training and neural network

model complexity. For brevity, the discussion here mainly focuses on the RNN-LSTM, which

performed best in off-the-shelf evaluations presented in the previous section. Further sensitivity

analysis for the other neural architectures can be found in the supplementary material. We first

consider sensitivity to training and then sensitivity to complexity (=size) of the neural network.

In the following analysis, we concentrate primarily on the sequential out-of-sample 3-year ahead

prediction but we expect that the sensitivity results would be similar had we used some other

forecast horizon or cross-validation.

Sensitivity to training

‡ The cross-validation classification statistics are typically lower when using country-by-country cross-

validation than when using a randomized cross-validation as in Holopainen and Sarlin (2017) and

Ristolainen (2018).

13

As a non-convex optimization problem, training a neural network with a large number of

parameters is highly non-trivial. Two optimization runs with different algorithms or different

initial values hardly ever converge to the same result. Hence, the prediction performance tends to

depend on how we train the network. The dependence on the initial values is easy to handle as we

can train an ensemble of neural networks and take an average prediction. For the training process,

besides the algorithm, considerations include different regularization techniques such L2

regularization and dropout, which are used to reduce overfitting. L2 regularization adds a penalty

term proportional to the sum of the squared weights. Dropout randomly excludes neurons from

the network in order to avoid excessive co-adaptation.

Figure 5 shows the sequential out-of-sample 3-year ahead prediction performance measured by

AUC (using the 1970-2002 period for training) as a function of performed training epochs for

different optimization algorithms using regularization weight 0.1 (Adam corresponds to what we

did in the previous section). Panel a shows the result for a random seed and panel b shows the

result for another random seed. Two important observations can be drawn. Despite some

persistent performance differences, none of the algorithms strictly dominates the other algorithms.

The performance typically reaches a maximum at a finite number of epochs and deteriorates after

that. This deterioration seems to be a result of the network adapting too well to the training data,

and it can be counteracted by increasing the regularization weights or introducing dropout.

Figure 6 panel a shows the effect of adding the dropout feature to the neural network, and panel

b shows the effect of increasing the value of regularization weight to 0.3. Both adjustments seem

to independently counteract the co-adaptation. After 500 epochs the average AUC among the

algorithms is 0.797 with the dropout in panel a and 0.779 with the increased regularization weight.

Even if single run for the algorithms is not statistically significant evidence, the results suggest

that, in the case of LSTM, adding the dropout feature could be helpful and better option than

increasing the regularization weight further.

As noted before, in the sequential evaluation the multilayer perceptron (with 5 lags) suffered from

overfitting when regularization weight was set to 0.1. Increasing the regularization weight should

alleviate this problem and possibly improve the prediction performance. Figure 7 illustrates the

sensitivity of the neural network predictions to the strength of the L2 regularization weight

parameter. Increasing the regularization weight significantly improves the performance of the 5-

lag one-hidden layer perceptron. The 1-lag one-hidden layer perceptron improves moderately,

while the RNNs perform best with little to no regularization. To check whether this affects our

main conclusions, we calculate the sequential prediction performance for the hidden-layer

perceptron as in Table 4a–c when we use L2 regularization weight 0.5 or 1.0. The results

(available in supplementary material, Table S1, at the end of the document) show that while the

14

performance improves for the particular forecast horizon and training sample that was used to

choose the value of the parameter, the improvement is less pronounced for other forecast horizons

and training samples. Hence, the conclusions about the advantage of the RNN architecture remain

valid.

Sensitivity to model complexity

As a final topic, we consider the sensitivity of the prediction results to the number of input features

and the size of the neural network. Again the discussion focuses on the RNN-LSTM and the case

of 3-year prediction based on the post-Bretton-Woods era sample.

The size of the RNN-LSTM neural network can be expanded by increasing the number of units

in the hidden state. This leads to an increase in the number of weight parameters to be optimized.

If we denote the number of output nodes in the LSTM cell by h and the number of input features

by d, the number of parameters in the LSTM layer can be calculated as 4h2+4(d+2). Also, there

are h+1 parameters related to the single node output layer.

Figure 8 shows both the cross-validated and sequentially evaluated out-of-sample prediction

performance for the RNN-LSTM neural network as a function of the number of nodes in the

hidden state. Panel a presents the results with 5 input features and panel b presents the results with

13 input features. We see that in both panels a and b, increase in the dimension of the hidden state

improves the prediction performance. Moreover, in cross-validation, the network using 13 input

features tends to outperform the network using only 5 input features. However, in the sequential

validation smaller number of input features is preferred.

Alternatively, we can expand the network by increasing the amount of input time steps, which

corresponds to the number of times the recurrent neural network repeats the recurrent operation

until the hidden state reaches the final output layer. Because of parameter sharing, this does not

change the number of weight parameters to be optimized. Figure 9 shows the cross-validated

prediction performance as a function of time steps. Both the sequential validation and cross-

validation have the highest performance when the number of time steps is about 5.

7. Discussion

Our results relate to the earlier work that aims to predict systemic financial crises with neural

networks reviewed in Section 2. Similar to Fricke (2018) and in contrast to Ristolainen (2018)

and Holopainen and Sarlin (2017), we don't find very large performance difference between the

logistic regression model and the multilayer perceptron. Three potential reasons are, first, the

datasets differ, and second, Ristolainen (2018) and Holopainen and Sarlin (2017) use higher

15

frequency data and, lastly, they do not include lagged values of predictors. Additionally,

Ristolainen (2018) mainly reports AUC for individual crises.

The AUC can't be compared directly to those in Ristolainen (2018) and Holopainen and Sarlin

(2017) because of the above mentioned differences. However, compared Fricke (2018) whose

dataset and methodology are similar to ours, our highest attained values of AUC are considerably

higher.

In the cross-validation, we find the best forecast accuracy at the 3-year prediction horizon and

using five time steps in the recurrent neural network. These numbers are consistent with the

relatively long length of the financial cycle reported in the literature (8 to 20 years, see e.g. Borio

2014 or Filardo et al. 2018).

In future work, a straightforward extension would be to try datasets with quarterly or monthly

frequency. Regarding the architecture, one could take the analysis a step further by considering

slightly deeper network structures that allow for a higher level of abstraction. Additionally, it

would make sense to try to pinpoint where the benefits of the neural network prediction come

from, e.g. what are the non-linearities underlying the good out-of-sample performance.

8. Conclusions

Earlier literature has found artificial neural network with single hidden-layer perceptron to be

excellent models for financial crisis forecasting. We have found that the prediction performance

can be improved further with recurrent neural networks (RNNs) based on Long-Short Term

Memory (LSTM) and Gated Recurrent Unit (GRU) cells. The capacity to handle time series data

seems to be particularly important for the stable performance across different prediction horizons

as compared to single layer perceptron architecture. These advantages derive from the parameter

sharing inherent for the RNN structure, which efficiently counteracts overfitting. Overall, the

results support the notion that recurrent neural networks could be a useful tool for time series

applications in finance and empirical macroeconomics.

The recurrent neural network architectures are relatively straightforward to implement in practice

using, for example, Python/Keras. The downside is that even if we were able to outperform the

logistic regression practically without fine-tuning parameters, in general choosing the

hyperparameters and training the model requires expertize and possibly considerable effort.

16

References

Alessi, L., Antunes, A., Babecky, J., Baltussen, S., Behn, M., Bonfim, D., Bush, O., Detken, C.,

Frost, J., Guimaraes, R., Havranek, T., Joy, M., Kauko, K., Mateju, J., Monteiro, N., Neudorfer,

B., Peltonen, T. A., and Rusnak, M., Marques R., Paulo Manuel, Schudel, W., Sigmund, M.,

Stremmel, H., Smidkova, K., van Tilburg, R., Vasicek, B., Zigraiova, D., 2015, Comparing

Different Early Warning Systems: Results from a Horse Race Competition Among Members of

the Macro-Prudential Research Network. Available at SSRN: https://ssrn.com/abstract=2566165

or http://dx.doi.org/10.2139/ssrn.2566165

Alessi, L., Detken, K., 2011, Quasi real time early warning indicators for costly asset price

boom/bust cycles: A role for global liquidity, European Journal of Political Economy, 27(3), pp.

520-533.

Babecký, J., Havránek, T., Matěju, J., Rusnák, M., Šmídková, K., Vašíček, B., 2014, Banking,

debt and currency crises in developed countries: Stylized facts and early warning indicators,

Journal of Financial Stability, 15, 1-17.

Barrell, R, Davis, E.P., Karim, D., Liadze, L., 2011, How idiosyncratic are banking crises in

OECD countries? National Institute Economic Review, 216, R53-R58.

Bordo, M.D., Meissner, C.M., 2012, Does inequality lead to a financial crisis? Journal of

International Money and Finance, 31, pp. 2147-2161.

Borio, C., 2014, The financial cycle and macroeconomics: What have we learnt?, Journal of

Banking and Finance, Vol. 45, pp. 182–198.

Borio, C., Drehmann, M., 2009, Assessing the risk of banking crises – revisited. BIS Quarterly

Review, March, pp. 29-46.

Büyükkarabacak, B., Valev, N.T., 2010, The role of household and business credit in banking

crises, Journal of Banking and Finance, 34, pp. 1247-1256.

Cho, K.; van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio,

Y., 2014, Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine

Translation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pp. 1724–1734.

Davis, E.P., Karim, D., 2008, Comparing Early Warning Systems for Banking Crises, Journal of

Financial Stability, 4(2), pp. 89-120.

Demirgüc-Kunt, A., Detragiache, E., 1998, The Determinants of Banking Crises in Developed

Countries, IMF Staff Papers, 45(1), 81–109.

Demirgüc-Kunt, A., Detragiache, E., 2000, Monitoring Banking Sector Fragility: A Multivariate

Logit Approach, World Bank Economic Review, 14, pp. 287-307.

Detken. K, Weeken, O., Alessi, L., Bonfim, D., Boucinha, M., Castro, C., Frontczak, S., Giordana,

G., Giese, J., Jahn, N., Kakes, J., Klaus, B., Lang, J., Puzanova, N., Welz, P., 2014,

Operationalising the countercyclical capital buffer: indicator selection, threshold identification

and calibration options, ERSB Occasional Paper Series No. 5 / June 2014.

https://ssrn.com/abstract=2566165
http://dx.doi.org/10.2139/ssrn.2566165

17

Domaç, I., Martinez Peria, M.S., 2003, Banking crises and exchange rate regimes: is there a link?

Journal of International Economics 61.

Drehmann, M., Juselius, M., 2014, Evaluating early warning indicators of banking crises:

Satisfying policy requirements, International Journal of Forecasting 30, pp. 759-780.

Filardo, A., Lombardi, M., Raczko, M., 2018, Measuring financial cycle time, BIS Working

Papers 755.

Fioramanti, M., 2008, Predicting Sovereign Debt Crises Using Artificial Neural Networks: A

Comparative Approach, Journal of Financial Stability, Vol. 4, No. 2.

Fricke, D., Financial Crisis Prediction: A Model Comparison (November 29, 2017). Available at

SSRN: https://ssrn.com/abstract=3059052 or http://dx.doi.org/10.2139/ssrn.3059052.

von Hagen, J., Ho, T-K., 2007, Money market pressure and the determinants of banking crises.

Journal of Money, Credit and Banking, 39, pp. 1037-1066.

Hochreiter, S., and Schmidhuber, J., 1997, Long short-term memory, Neural Computation, 9(8):

1735–1780.

Hornik, K., 1991, Approximation Capabilities of Multilayer Feedforward Networks, Neural

Networks, 4(2), 251–257.

Holopainen, M., Sarlin, P. 2017, Toward robust early-warning models: a horse race, ensembles

and model uncertainty, Quantitative Finance, Vol. 17, pp. 1933–1963.

Jordà, Ò., Schularick, M., and Taylor, A. M., 2015, Leveraged Bubbles, Journal of Monetary

Economics 76, S1-S20.

Kaminsky, G., Reinhart, C., 1999, The twin crises: the causes of banking and balance-of-

payments problems, IMF Staff Papers, 45.

Kauko, K., 2012, External deficits and non-performing loans in the recent financial crisis,

Economics Letters, 2012, vol. 115, issue 2, 196-199.

Kauko, K., 2014, How to foresee banking crises? A survey of the empirical literature, Economic

Systems, 38, pp. 289-308.

Knoll, K., Schularick, M., and Steger, T., 2016, No Price Like Home: Global House Prices 1870-

2012, American Economic Review 107(2): 331-353.

Laeven, L., Valencia, F., 2012, Systemic Banking Crises Database: An Update, Working Paper

No. 12/163.

Lo Duca, M., Peltonen, T., 2013, Assessing systemic risks and predicting systemic events, Journal

of Banking and Finance, 37, pp. 2183-2195.

Olmedo, E., 2014, Forecasting Spanish Unemployment Using Near Neighbour and Neural Net

Techniques, Computational Economics, vol. 43, no. 2, pp. 183–197.

Qi, M., 2001, Predicting US recessions with leading indicators via neural network models,

International Journal of Forecasting, vol. 17, issue 3, 383-401.

Reinhart, C. M., Rogoff, K. S., 2009, This Time Is Different: Eight Centuries of Financial Folly,

Princeton University Press.

https://ssrn.com/abstract=3059052
http://dx.doi.org/10.2139/ssrn.3059052

18

Ristolainen, K., 2018, Predicting Banking Crises with Artificial Neural Networks: The Role of

Nonlinearity and Heterogeneity, Scandinavian Journal of Economics, 120(1), 31–62.

Roy, S., Kemme, D.M., 2012, Causes of banking crises: Deregulation, credit booms and asset

bubbles, then and now, International Review of Economics and Finance, 24, pp. 270-294.

Schularick, M., Taylor, A. M., 2013, Credit Booms Gone Bust: Monetary Policy, Leverage Cycles

and Financial Crises, 1870-2008, American Economic Review, 102(2): 1029-1061.

Smalter Hall, A., Cook, T. R., 2017, Macroeconomic Indicator Forecasting with Deep Neural

Networks, Federal Reserve Bank of Kansas City, Research Working Paper 17-11, September.

Available at https://doi.org/10.18651/RWP2017-11

Tölö, E., Laakkonen, H., Kalatie, S., 2018, Evaluating Indicator for Use in Setting the

Countercyclical Capital Buffer, International Journal of Central Banking, Vol. 14, 2, pp. 51–1.

https://doi.org/10.18651/RWP2017-11

Figure 1. Perceptron with one-hidden layer

Figure 2. Basic recurrent neural network

20

Figure 3. Long-Short Term Memory cell

Figure 4. Gated Recurrent Unit

21

Table 1. Crisis dates in the Jorda-Schularick-Taylor database.

1870: Belgium, Switzerland

1871: Japan

1873: Germany, Italy, USA

1877: Denmark, Finland

1878: Sweden

1882: France

1883: Spain

1885: Belgium, Denmark

1887: Italy

1889: France

1890: Japan, Portugal, Spain

1890: UK

1891: Germany

1893: Australia, Italy, Netherlands, USA

1899: Norway

1900: Finland

1901: Germany

1907: Canada, Germany, Italy, Japan, Netherlands, Sweden, USA

1908: Denmark

1910: Switzerland

1913: Spain

1920: Japan, Portugal, Spain

1921: Denmark, Finland, Italy, Netherlands

1922: Norway, Sweden

1923: Portugal

1924: Spain

1925: Belgium

1927: Japan

1929: USA

1930: France, Italy

1931: Belgium, Denmark, Finland, Germany, Norway, Portugal, Spain, Sweden, Switzerland

1934: Belgium

1935: Italy

1939: Belgium, Netherlands

1974: UK

1977: Spain

1984: USA

1987: Denmark

1988: Norway

1989: Australia

1990: Italy

1991: Finland, Sweden, Switzerland, UK

1997: Japan

2007: UK, USA

2008: Belgium, Denmark, France, Germany, Italy, Netherlands, Portugal, Spain, Sweden, Switzerland

22

Table 2. Cross-validation results with 1-year forecast horizon.

Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden

state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to

five lags of the same variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio,

current account-to-GDP ratio, and annual growth in real GDP.

Table 3. Cross-validation results for different forecast horizons.
Time period is 1970-2016.

Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden

state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to

five lags of the same variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio,

current account-to-GDP ratio, and annual growth in real GDP.

Model Lags Full sample Post WW2 1970-2016

Logit 1 0.610 0.623 0.618

Logit 5 0.637 0.674 0.649

NN 1 0.607 0.607 0.608

NN 5 0.690 0.700 0.687

RNN 5 0.654 0.692 0.619

RNN-LSTM 5 0.714 0.774 0.761

RNN-GRU 5 0.762 0.798 0.801

Time period

Model Lags 1 2 3 4 5

Logit 1 0.618 0.655 0.671 0.692 0.420

Logit 5 0.649 0.693 0.735 0.755 0.721

NN 1 0.608 0.729 0.700 0.687 0.552

NN 5 0.687 0.696 0.756 0.682 0.691

RNN 5 0.619 0.695 0.726 0.707 0.728

RNN-LSTM 5 0.761 0.762 0.835 0.799 0.759

RNN-GRU 5 0.801 0.750 0.783 0.795 0.750

Forecast horizon

23

Table 4. Sequential-validation results for different forecast horizons.
The training period is indicated in each panel and the test period is 2003-2016.

a) Training period 1870-2002

Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden

state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to

five lags of the same variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio,

current account-to-GDP ratio, and annual growth in real GDP.

b) Training period 1946-2002

Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden

state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to

five lags of the same variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio,

current account-to-GDP ratio, and annual growth in real GDP.

Model Lags 1 2 3 4 5

Logit 1 0.535 0.616 0.744 0.757 0.417

Logit 5 0.505 0.521 0.671 0.671 0.633

NN 1 0.553 0.614 0.766 0.760 0.622

NN 5 0.363 0.431 0.542 0.408 0.632

RNN 5 0.557 0.616 0.781 0.701 0.656

RNN-LSTM 5 0.584 0.742 0.643 0.731 0.850

RNN-GRU 5 0.531 0.721 0.728 0.745 0.820

Forecast horizon

Model Lags 1 2 3 4 5

Logit 1 0.558 0.602 0.748 0.672 0.458

Logit 5 0.426 0.41 0.513 0.575 0.622

NN 1 0.485 0.612 0.783 0.657 0.644

NN 5 0.415 0.448 0.238 0.357 0.751

RNN 5 0.551 0.641 0.799 0.685 0.694

RNN-LSTM 5 0.595 0.717 0.735 0.786 0.873

RNN-GRU 5 0.609 0.744 0.727 0.678 0.838

Forecast horizon

24

c) Training period 1970-2002

Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden

state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to

five lags of the same variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio,

current account-to-GDP ratio, and annual growth in real GDP.

Model Lags 1 2 3 4 5

Logit 1 0.574 0.608 0.713 0.685 0.338

Logit 5 0.398 0.366 0.566 0.698 0.736

NN 1 0.502 0.551 0.732 0.674 0.479

NN 5 0.348 0.455 0.485 0.589 0.577

RNN 5 0.575 0.668 0.773 0.652 0.597

RNN-LSTM 5 0.644 0.708 0.751 0.810 0.876

RNN-GRU 5 0.687 0.749 0.773 0.670 0.848

Forecast horizon

25

Table 4. Summary of the evaluation results

Table notes. In-sample refers to using period 1970–2016 for both training and testing. Validation refers to corresponding country-by-

country cross-validation (Table 3). Out-of-sample refers to the corresponding sequential evaluation (Table 4c). The numbers in the

table are AUC. Number of features is 5, number of neural units in the hidden layer or RNN hidden state is 10, L2 weight is 0.1,

training algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to five lags of the same

variables: real annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, current account-to-

GDP ratio, and annual growth in real GDP.

Model Lags Metric 1 2 3 4 5

In-sample 0.693 0.710 0.723 0.759 0.618

Logit 1 Validation 0.618 0.655 0.671 0.692 0.420

Out-of-sample 0.574 0.608 0.713 0.685 0.338

In-sample 0.831 0.857 0.898 0.897 0.878

Logit 5 Validation 0.649 0.693 0.735 0.755 0.721

Out-of-sample 0.398 0.366 0.566 0.698 0.736

In-sample 0.770 0.812 0.788 0.794 0.707

NN 1 Validation 0.608 0.729 0.700 0.687 0.552

Out-of-sample 0.502 0.551 0.732 0.674 0.479

In-sample 0.943 0.963 0.973 0.967 0.963

NN 5 Validation 0.687 0.696 0.756 0.682 0.691

Out-of-sample 0.348 0.455 0.485 0.589 0.577

In-sample 0.761 0.778 0.813 0.822 0.813

RNN 5 Validation 0.619 0.695 0.726 0.707 0.728

Out-of-sample 0.575 0.668 0.773 0.652 0.597

In-sample 0.868 0.875 0.933 0.897 0.871

RNN-LSTM 5 Validation 0.761 0.762 0.835 0.799 0.759

Out-of-sample 0.644 0.708 0.751 0.810 0.876

In-sample 0.870 0.871 0.890 0.898 0.854

RNN-GRU 5 Validation 0.801 0.750 0.783 0.795 0.750

Out-of-sample 0.687 0.749 0.773 0.670 0.848

Forecast horizon

26

Figure 5. Sensitivity of RNN-LSTM prediction performance to training algorithm.

a) A random initialization

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural

units in the hidden layer or RNN hidden state is 10, L2 weight is 0.1, minibatch size is 16.

b) Another random initialization

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural

units in the hidden layer or RNN hidden state is 10, L2 weight is 0.1, minibatch size is 16.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 100 200 300 400 500

A
U

C

Epoch

adam nadam adagrad adamax

adadelta sgd rmsprop

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 100 200 300 400 500

A
U

C

Epoch

adam nadam adagrad adamax

adadelta sgd rmsprop

27

Figure 6. Sensitivity of RNN-LSTM prediction performance dropout and L2 regularization.

a) Dropout neurons with probability 0.3

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural

units in the hidden layer or RNN hidden state is 10, L2 weight is 0.1, minibatch size is 16, dropout probability is 0.3.

b) No dropout but increase regularization weight to 0.3

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural

units in the hidden layer or RNN hidden state is 10, L2 weight is 0.3, minibatch size is 16.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 100 200 300 400 500

A
U

C

Epoch

adam nadam adagrad adamax

adadelta sgd rmsprop

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 100 200 300 400 500

A
U

C

Epoch

adam nadam adagrad adamax

adadelta sgd rmsprop

28

Figure 7. Sensitivity of the neural network architectures to L2 regularization

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. The x-axis is the L2 regularization weight.

Number of features is 5, number of neural units in the hidden layer or RNN hidden state is 10, minibatch size is 16.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
U

C

L2 regularization weight

NN-1 NN-5 RNN RNN-LSTM RNN-GRU

29

Figure 8. Sensitivity of RNN-LSTM prediction performance to number of units in the hidden state.

a) Number of features = 5

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. L2 weight is 0.1, training algorithm is Adam,

training time is 100 epochs, minibatch size is 16.

b) Number of features = 13

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. L2 weight is 0.1, training algorithm is Adam,

training time is 100 epochs, minibatch size is 16.

30

Figure 9. Sensitivity of RNN-LSTM prediction performance to number of time steps.

Figure notes. The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural

units in the hidden layer or RNN hidden state is 10, L2 weight is 0.1, training algorithm is Adam, training time is 100 epochs,

minibatch size is 16.

31

Supplementary material

Figure S1 shows the sensitivity to training algorithm for rest of the neural network architectures.

We can see that GRU architecture tends to dominate the simple RNN architecture, which in turn

dominates the one hidden layer perceptron architecture. This confirms that the conclusions of the

article do not depend on the training algorithm.

Table S1 shows the sequential validation results for the one-hidden layer perceptron when using

larger regularization weight. The regularization weight is introduced to reduce overfitting. In panel

a) the regularization weight is 0.5, which is optimal for the one-hidden layer perceptron with one

lag (based on Figure 7 where the forecast horizon 3 with 1970-2002 training period). In panel b) the

regularization weight is 1, which is optimal for the one-hidden layer perceptron with 5 lags (again

based on Figure 7 where the forecast horizon 3 with 1970-2002 training period). Fine-tuning the

regularization weight improves the performance of the one-hidden layer perceptron. However, the

improvement in performance is less stable (i.e. does not generalize well to different forecast

horizons or training samples) than for the non-fine-tuned RNN algorithms.

32

Figure S1. Sensitivity of prediction performance to training algorithm for different network

architectures.

a) One hidden layer perceptron (1 lag)

The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural units in the

hidden layer or RNN hidden state is 10, L2 weight is 0.1.

b) Recurrent neural network

The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural units in the

hidden layer or RNN hidden state is 10, L2 weight is 0.1.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 100 200 300 400 500

A
U

C

Epoch

adam nadam adagrad adamax

adadelta sgd rmsprop

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 100 200 300 400 500

A
U

C

Epoch

adam nadam adagrad adamax

adadelta sgd rmsprop

33

c) GRU neural network

The y-axis is AUC for sequential out-of-sample 3-year ahead prediction. Number of features is 5, number of neural units in the

hidden layer or RNN hidden state is 10, L2 weight is 0.1.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 100 200 300 400 500

A
U

C

Epoch

adam nadam adagrad adamax

adadelta sgd rmsprop

34

Table S1. Sequential-validation results for one hidden-layer perceptron with large

regularization weight
The training period is indicated in column 1.

a) L2 regularization weight = 0.5

Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer is 10, training

algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to five lags of the same variables: real

annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, current account-to-GDP ratio, and

annual growth in real GDP.

b) L2 regularization weight = 1

Table notes. The numbers in the table are AUC. Number of features is 5, number of neural units in the hidden layer is 10, training

algorithm is Adam, training time is 100 epochs, minibatch size is 16. All the models use up to five lags of the same variables: real

annual house price growth, real annual stock index growth, annual growth in credit-to-GDP ratio, current account-to-GDP ratio, and

annual growth in real GDP.

Training period Model Lags 1 2 3 4 5

1870-2002 NN 1 0.532 0.618 0.777 0.773 0.419

1870-2002 NN 5 0.413 0.482 0.547 0.418 0.749

1946-2002 NN 1 0.517 0.657 0.783 0.734 0.383

1946-2002 NN 5 0.362 0.483 0.489 0.357 0.698

1970-2002 NN 1 0.556 0.651 0.774 0.755 0.470

1970-2002 NN 5 0.444 0.390 0.687 0.804 0.725

Forecast horizon

Training period Model Lags 1 2 3 4 5

1870-2002 NN 1 0.508 0.609 0.727 0.782 0.345

1870-2002 NN 5 0.426 0.471 0.592 0.546 0.704

1946-2002 NN 1 0.506 0.646 0.775 0.773 0.308

1946-2002 NN 5 0.406 0.588 0.660 0.560 0.721

1970-2002 NN 1 0.559 0.692 0.742 0.730 0.393

1970-2002 NN 5 0.477 0.453 0.771 0.726 0.823

Forecast horizon

Bank of Finland Research Discussion Papers 2019

ISSN 1456-6184, online

1/2019 Marco Gallegati – Federico Giri – Michele Fratianni

Money growth and inflation: International historical evidence on high inflation
episodes for developed countries
ISBN 978-952-323-257-0, online

2/2019 Francesco D'Acunto – Daniel Hoang – Maritta Paloviita – Michael Weber

IQ, Expectations, and Choice
ISBN 978-952-323-258-7, online

3/2019 Orkun Saka
 Domestic banks as lightning rods? Home bias and information during Eurozone crisis
 ISBN 978-952-323-260-0, online

4/2019 Saara Tuuli

Model-based regulation and firms' access to finance
ISBN 978-952-323-261-7, online

5/2019 Thomas A. Lubik – Christian Matthes – Fabio Verona

Assessing U.S. aggregate fluctuations across time and frequencies
ISBN 978-952-323-263-1, online

6/2019 Karlo Kauko – Eero Tölö

On the long-run calibration of the Credit-to-GDP gap as a banking crisis predictor
 ISBN 978-952-323-264-8, online

7/2019 Olli-Matti Laine

The effect of TLTRO-II on bank lending
 ISBN 978-952-323-269-3, online

8/2019 Michaela Schmöller

Stagnant wages, sectoral misallocation and slowing productivity growth
 ISBN 978-952-323-273-0, online

9/2019 Adam Gulan – Markus Haavio – Juha Kilponen

Can large trade shocks cause crises? The case of the Finnish-Soviet trade collapse
 ISBN 978-952-323-274-7, online

10/2019 Ewa Stanisławska – Maritta Paloviita – Tomasz Łyziak
 Assessing reliability of aggregated inflation views in the European Commission consumer survey
 ISBN 978-952-323-277-8, online

11/2019 Patrick M. Crowley – David Hudgins
 U.S. Macroeconomic Policy Evaluation in an Open Economy Context using Wavelet Decomposed

Optimal Control Methods
 ISBN 978-952-323-279-2, online

12/2019 Luís Aguiar-Conraria – Manuel M. F. Martins – Maria Joana Soares
 The Phillips Curve at 60: time for time and frequency
 ISBN 978-952-323-280-8, online

13/2019 Gene Ambrocio – Iftekhar Hasan
 Friends for the benefits: The effect of political ties on sovereign borrowing conditions
 ISBN 978-952-323-282-2, online

14/2019 Eero Tölö

Predicting systemic financial crises with recurrent neural networks
ISBN 978-952-323-287-7, online

	BoF DP 14/2019
	Predicting systemic financial crises with recurrent neural networks
	Abstract:
	1. Introduction
	2. Literature on predicting systemic financial crises with neural networks
	3. Neural network architectures
	A. Feedforward neural networks
	B. Recurrent neural networks

	4. Data
	5. Performance evaluation
	Target variable
	Cross-validation and sequential-validation
	Performance measure

	6. Results
	A. Prediction performance
	B. Sensitivity analysis

	7. Discussion
	8. Conclusions
	References
	Figures and tables
	Supplementary material

	Bank of Finland Research Discussion Papers 2019

