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Abstract

We extract cycles in the term spread (TMS) and study their role for predicting the

equity risk premium (ERP) using linear models. The low frequency component of the

TMS is a strong and robust out-of-sample ERP predictor. It obtains out-of-sample

R-squares (versus the historical mean benchmark) of 2.09% and 22.9% for monthly and

annual data, respectively. It forecasts well also during expansions and outperforms sev-

eral variables that have been proposed as good ERP predictors. Its predictability power

comes exclusively from the discount rate channel. Contrarily, the high and business-

cycle frequency components of the TMS are poor out-of-sample ERP predictors.

Keywords: equity risk premium, term spread, predictability, frequency domain

JEL classi�cation: C58, G11, G12, G17
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1 Introduction

The equity risk premium (ERP) plays a crucial role in economics and �nance. Hence, fore-

casting it has been a �ourishing area of research for many years (see e.g. the literature

reviews of Rapach and Zhou, 2013 and Harvey, Liu, and Zhu, 2016). Within the large set of

ERP predictors considered in the literature, one that has since long time generated particu-

lar interest is the term spread (TMS) of US treasury securities � the di�erence between the

long-term government bond yield and the T-bill. The attractiveness of the TMS is that it is

easy to compute from publicly available data, is closely linked with the business cycle (see

e.g. Wheelock and Wohar, 2009), and is continuously watched by professional forecasters

and policymakers alike.1 In their seminal studies, Chen, Roll, and Ross (1986), Campbell

(1987) and Fama and French (1989) �nd that the term structure of interest rates predicts

the ERP. However, as it happens with many other predictors, the predictability power of the

TMS is rather poor when the forecasting exercise is done out-of-sample (Goyal and Welch,

2008). This is particularly relevant as an out-of-sample test is more appropriate to assess

genuine return predictability in real time. Accordingly, our key contribution in this paper is

to evaluate the ERP out-of-sample forecasting performance of the TMS and of its frequency

components.

In a recent paper, Dew-Becker and Giglio (2016) derive frequency-speci�c risk prices that

capture the price of risk of �uctuations in consumption growth at di�erent frequencies. This

allows to measure the relative importance of economic �uctuations at di�erent frequencies and

to assess whether they are priced in risky asset markets. Similarly, Fama and French (1989)

propose a frequency-domain analysis of the ERP predictability, suggesting that di�erent

variables may track di�erent frequency components of the ERP. In particular, they claim

that the default spread and the dividend yield track long-term business conditions, while

1 For instance, in September 2016 the Bank of Japan supplemented its quantitative and qualitative
monetary easing with an explicit yield curve control (Nakaso, 2017).
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the TMS tracks variation in expected returns in response to shorter-term business-cycle

�uctuations.2

Motivated by this conjecture, in this paper we consider three economically-motivated fre-

quency components of the TMS as potential ERP predictors: the high frequency component,

the business cycle frequency component, and the low frequency component. We �rst ex-

plore the in-sample ERP predictability of the TMS and of its frequency components, and

then explore the economic source of this predictability using the Campbell and Shiller (1988)

present value identity and the log linearization of stock returns (Cochrane, 2008, 2011). The

predictability power of the TMS comes from both the discount rate and cash-�ow channels.

The analysis using the di�erent frequency components of the TMS allows to unveil that the

predictability power of the TMS that operates through the cash-�ow channel is concentrated

at business-cycle frequencies, while the one operating through the discount rate channel is

concentrated at low frequencies.

When evaluating the ERP out-of-sample forecasting performance of the TMS and of its

frequency components, we �nd that the low frequency component of the TMS is a strong and

robust out-of-sample predictor of the ERP for forecasting horizons ranging from one month

to two years. Its outperformance versus the historical mean (HM) benchmark is remarkably

good for the one-month horizon, increases with the forecasting horizon, and is consistently

stable throughout an out-of-sample period comprising 27 years of monthly data. It also

performs well during expansions. Di�erently, the remaining frequency components of the

TMS are poor ERP out-of-sample predictors. This �nding is aligned with existing evidence

showing that low frequency �uctuations in the economy � long-run risks � are signi�cantly

2 A similar reasoning underlies the Ferreira and Santa-Clara (2011) sum-of-parts method for forecasting
stock returns, where di�erent parts of stock market returns (the dividend-price ratio, earnings growth, and
price-earnings ratio growth) capture di�erent frequencies of stock returns. More recently, Bandi, Perron,
Tamoni, and Tebaldi (2018) and Faria and Verona (2018) achieve relevant statistical and economic improve-
ments in ERP predictability by explicitly taking into account the frequency dependence between the ERP
and its predictors.
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priced in the equity market, while business cycle and higher frequency �uctuations are not

(e.g. Dew-Becker and Giglio, 2016).

We then evaluate the forecasting performance of the predictors from an economic point of view

by means of an asset allocation analysis. For a mean-variance investor who allocates his or her

wealth between equities and risk-free bills, we �nd signi�cant utility gains when making the

forecasts using the low frequency component of the TMS. For example, considering a trading

strategy based on one-month-ahead forecasts, the annual rate of return that an investor

would be willing to accept instead of holding the risky portfolio is 591 basis points.

Finally, we run three additional exercises. First, we evaluate the forecasting performance

of the low frequency component of the TMS for di�erent sub-samples. We �nd that our

results are robust to the sub-period considered and we document that forecasting during

good growth periods using the low frequency component of the TMS also outperforms the

HM benchmark in a statistically signi�cant way. This contrasts with large evidence in the

literature that return predictability is usually concentrated in recessions. Second, we demon-

strate that the �ltering method used to extract the low frequency component of the TMS is

crucial, as methods based on the more popular band-pass and Hodrick-Prescott (HP) �lters

underperform the one using wavelets. Third, we show that the low frequency component of

the TMS also outperforms several variables that have recently been proposed as good ERP

predictors.

We review related literature in the remaining part of this section. Section 2 introduces

wavelet �ltering methods. Section 3 presents the data and the method to construct the

predictors. Section 4 presents the in-sample (IS) predictability analysis and section 5 the

out-of-sample (OOS) forecasting results. Section 6 reports the results of the asset allocation

exercise. Section 7 discusses possible interpretations of the results. Robustness analyses are

done in section 8. Finally, section 9 concludes.

5



Related literature

This paper is primarily related with the literature that analyzes the ERP forecasting prop-

erties of the TMS. Fama and French (1989) �nd that the ERP on US stocks is positively

related to the slope of the yield curve of US Treasury securities. Asprem (1989) studies

the relationship between the US TMS and the returns on stocks of ten European countries.

Boudoukh, Richardson, and Smith (1993) and Ostdiek (1998) show how risk premia on US

stocks and the world stock portfolio are negative in periods preceded by inverted yield curves.

McCown (2001) �nds empirical evidence about the relationships between the yield curves of

larger economies (US, Germany, and Japan) and risk premia of stocks for eight industrial-

ized countries. Resnick and Shoesmith (2002) and Nyberg (2013) �nd that the US TMS is a

powerful predictive variable for bear equity markets in the US. While this literature mainly

analyzes the IS predictability of the TMS, our main focus is on its OOS forecasting power.

The second strand of literature to which this paper relates focuses on �nding good OOS

predictors of the ERP. As pointed out initially by Goyal and Welch (2008), most ERP

predictors perform poorly OOS on US data up to 2008. Since Goyal and Welch (2008),

several new predictors have been developed and tested, most notably macro, �nancial market-

and behavioral-related variables.3 Our paper contributes to this literature as the di�erent

frequency components of the TMS are used as ERP predictors.

3 With regards to macro variables, Cooper and Priestley (2009, 2013) use the output gap and the world
business cycle, respectively, Favero, Gozluklu, and Tamoni (2011) consider a demographic variable (the
proportion of middle-aged to young population), Li, Ng, and Swaminathan (2013) study the aggregate implied
cost of capital, Chava, Gallmeyer, and Park (2015) study the predictive power of bank lending standards,
and Moller and Rangvid (2015, 2018) study di�erent US-based macroeconomic variables and global economic
growth, respectively, by focusing on their fourth-quarter growth rate. Financial market variables include
the variance risk premium (Bollerslev, Tauchen, and Zhou, 2009), lagged US market returns for the OOS
predictability of stock returns of other industrialized countries (Rapach, Strauss, and Zhou, 2013), the stock-
bond yield gap (Maio, 2013), technical indicators (Neely, Rapach, Tu, and Zhou, 2014), the government
bond volatility index (Pan and Chan, 2017), option-implied state prices (Metaxoglou and Smith, 2017),
risk neutral variance of the equity market return measured from index option prices (Martin, 2017), and
generalized �nancial ratios (Algaba and Boudt, 2017). Behavioral-related variables include the investment
sentiment indexes (Huang, Jiang, Tu, and Zhou, 2015) and information on short-interest positions (Rapach,
Ringgenberg, and Zhou, 2016).
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In doing this, our paper is also related to the literature that focuses on the spectral prop-

erties of �nancial asset returns. Frequency domain tools have long been used in economics

(e.g. Granger and Hatanaka, 1964 and Engle, 1974). In �nance, the interest in using fre-

quency domain tools has been growing in more recent years. For example, Dew-Becker and

Giglio (2016) develop a frequency domain decomposition of innovations to the pricing ker-

nel, Chaudhuri and Lo (2016) apply spectral analysis techniques to quantify stock-return

dynamics across multiple time horizons and propose a spectral portfolio theory, and Bandi,

Perron, Tamoni, and Tebaldi (2018) explore a model where returns and predictors are linear

aggregates of components operating over di�erent frequencies, and where predictability is

frequency-speci�c.

Finally, this paper relates to the literature that uses wavelets methods to forecast (out-of-

sample) economic and �nancial time series.4 Examples include Zhang, Gencay, and Yazgan

(2017) and Faria and Verona (2018), both focused on stock market returns predictability; Rua

(2011, 2017), who propose a factor-augmented wavelets approach to forecast GDP growth

and in�ation; and Kilponen and Verona (2016), who forecast aggregate investment using the

Tobin's Q theory of investment.

4 Crowley (2007) and Aguiar-Conraria and Soares (2014) provide excellent reviews of economic and �nance
applications of wavelets tools. The seminal works of Ramsey and Lampart (1998a,b) apply wavelets to study
the relationship between macroeconomic variables (consumption versus income and money supply versus
income, respectively). More recently, wavelets methods have been applied to test for the (IS) frequency
dependence between two or more variables (Kim and In, 2005, Gencay, Selcuk, and Whitcher, 2005, Gallegati,
Gallegati, Ramsey, and Semmler, 2011 and Gallegati and Ramsey, 2013), to study the comovements and
lead-lag relationship between variables at di�erent frequencies (Rua and Nunes, 2009, Rua, 2010, Aguiar-
Conraria and Soares, 2011, and Aguiar-Conraria, Martins, and Soares, 2012), and to analyze optimal �scal
and monetary policy (Crowley and Hudgins, 2015, 2017).
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2 Time-frequency decomposition of economic time series

using wavelet �ltering methods

2.1 Wavelet �ltering methods

Wavelets have long been popular in many �elds such as geophysics, engineering, medicine, and

biomedical engineering. Real-life applications include the FBI algorithm for �ngerprint data

compression (Onyshczak and Youssef, 2004). Notably, Yves Meyer, a French mathematician,

received the 2017 Abel Prize �for his pivotal role in the development of the mathematical

theory of wavelets.�5,6

Wavelet multiresolution analysis (MRA) is a useful tool to analyze the time and frequency

properties of a time series. Using a wavelet �lter, any time series yt � regardless of its time

series properties � can be decomposed as

yt =
J∑

j=1

y
Dj

t + ySJ
t , (1)

where y
Dj

t , j = 1, 2, . . . , J , are the J wavelet detail components and ySJ
t is the wavelet smooth

component. Equation (1) shows that the original series yt, exclusively de�ned in the time

domain, can be decomposed in di�erent time series components, each de�ned in the time do-

main and representing the �uctuation of the original time series in a speci�c frequency band.

In particular, for small j, the j wavelet detail components represent the higher frequency

characteristics of the time series (i.e. its short-term dynamics). As j increases, the j wavelet

detail components represent lower frequencies movements of the series. Finally, the wavelet's

smooth component captures the lowest frequency dynamics (i.e. its long-term behavior).

5 The Abel Prize is, with the Fields Medal, considered to be the highest honor a mathematician can
receive. These awards have often been described as the mathematician's �Nobel Prize�.

6 Our presentation here is limited to basic facts that are directly relevant to our empirical analysis. A
more detailed analysis of wavelets methods can be found in Appendix A and in Percival and Walden (2000).
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In this paper, we perform wavelet decomposition analysis by applying the maximal overlap

discrete wavelet transform (MODWT) MRA. This methodology i) is not restricted to a

particular sample size; ii) is translation-invariant, so that it is not sensitive to the choice of

starting point for the examined time series; and iii) does not introduce phase shifts in the

wavelet coe�cients, i.e. peaks or troughs of the original time series are perfectly aligned with

similar events in the MODWT MRA. This last feature is especially relevant in a forecasting

exercise.7

2.2 The advantages of using wavelets

Traditional econometric techniques (time series and spectral/frequency analysis) impose

strong assumptions about the data generating process. In particular, they usually require

the data to be stationary, i.e. its mean and variance do not change over time and do not

follow any trends. However, several economic and �nancial time series are hardly stationary

as they exhibit trends and patterns such as structural breaks, clustering and long memory.

Unlike Fourier analysis, wavelets are de�ned over a �nite window in the time domain, which

is automatically and optimally resized according to the frequency of interest. That is, using a

short time window allows to isolate the high frequency features of a time series, while looking

at the same signal with a large time window reveals its low frequency features. Hence, by

varying the size of the time window, it is possible to capture simultaneously both time-varying

and frequency-varying features of the time series. Wavelets are thus extremely useful when

dealing with non-stationary time series, regardless of whether the non-stationarity comes

from the level of the time series (i.e. from long-term trend or jumps) and/or from higher

order moments (i.e. from changes in volatility).

7 Papers using the MODWT MRA decomposition include Galagedera and Maharaj (2008), Xue, Gencay,
and Fagan (2013), Bekiros and Marcellino (2013), Barunik and Vacha (2015), Caraiani (2015), Bekiros,
Nguyen, Uddin, and Sjo (2016), Berger (2016), Kilponen and Verona (2016), Zhang, Gencay, and Yazgan
(2017) and Faria and Verona (2018).
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Wavelet �ltering methods allow a decomposition of a time series into di�erent frequency

bands. To obtain the decomposition, an appropriate cascade of wavelet �lters is applied.

This is essentially equivalent to �ltering by a set of band-pass �lters so as to capture the

�uctuations of the time series in di�erent frequency bands.

Skeptics of the wavelet methodology may ask the question of why not just use the more

popular Baxter and King (1999) or Christiano and Fitzgerald (2003) band-pass �lters, which

also permit the isolation of �uctuations in di�erent frequency bands. The band-pass �lter is a

combination of a Fourier decomposition in the frequency domain with a moving average in the

time domain. It is optimized by minimizing the distance between the Fourier transform and

an ideal �lter. Like a short-time Fourier transform, it applies an �optimal� Fourier �ltering on

a sliding window in the time domain with constant length regardless of the frequency being

isolated. Wavelet �ltering, in contrast, provides better resolution in the time domain as the

wavelet basis functions are both time-localized and frequency-localized. Guay and St.-Amant

(2005) observe that the band-pass �lter is not an ideal �lter, as it is a �nite representation

of an in�nite moving-average �lter, and that it performs well at business-cycle frequencies

but not at low and high frequencies. Moreover, Murray (2003) points out that the band-pass

�lter may introduce spurious dynamic properties.8

3 Data and predictors

We use monthly data from January 1973 to December 2017 and focus on the predictability

of the S&P500 index excess returns (ERP), measured as the log return on the S&P500

index (including dividends) minus the log return on a one-month Treasury bill. Data for the

S&P500 index total return is from CRSP and for the one-month Treasury bill is from the

8 Some observations at the beginning and at the end of the sample have to be discharged when using the
Baxter and King (1999) �lter.
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FRED2 database. The TMS (TMSTS) is computed as the di�erence between the US 10-year

government bond yield and the 3-month T-bill time series, and the time series is obtained

from the New York Federal Reserve Bank website.

Although the relationship between stock market returns, economic growth, and the TMS has

been extensively studied in previous research (see references in section 1), we are particularly

motivated by the conjecture of Fama and French (1989) that the TMS tracks variation in

expected returns in response to business cycles. So, besides the time series of the TMS,

we evaluate three frequency components of the TMS as individual ERP predictors. The

�rst, denoted TMSHF , captures the high-frequency �uctuations of the series (HF stands

for high frequency). The second, denoted TMSBCF , broadly corresponds to business cycle

�uctuations. The third, denoted TMSLF , captures the low-frequency �uctuations of the

series (LF stands for low frequency).

To compute those frequency components, we start by running a J=6 level MODWT MRA to

the time series of the TMS using the Haar wavelet �lter with re�ecting boundary conditions

(as done by e.g. Manchaldore, Palit, and Soloviev, 2010 and Malagon, Moreno, and Ro-

driguez, 2015).9 As we use monthly data, the �rst component (TMSD1
t ) captures oscillations

of the TMS between 2 and 4 months, while components TMSD2
t , TMSD3

t , TMSD4
t , TMSD5

t

and TMSD6
t capture oscillations of the TMS with a period of 4-8, 8-16, 16-32, 32-64 and

64-128 months, respectively. Finally, the smooth component TMSS6
t captures oscillations of

the TMS with a period exceeding 128 months (10.6 years).10

Subsequently, the high-frequency component (TMSHF ) is computed as TMSHF,t =
∑3

i=1 TMSDi
t ,

the business cycle frequency component (TMSBCF,t) is computed as TMSBCF,t =
∑6

i=4 TMSDi
t ,

9 Results are robust using di�erent wavelet �lters (like e.g. Daubechies). As regards the choice of J, the
number of observations dictates the maximum number of frequency bands that can be used. In our case,
N = 204 is the number of observations in the in-sample period, so J is such that J ≤ log2N ' 7.7.

10 In the MODWT, each wavelet �lter at frequency j approximates an ideal high-pass �lter with passband
f ∈

[
1/2j+1 , 1/2j

]
, while the smooth component is associated with frequencies f ∈

[
0 , 1/2j+1

]
. The level j

wavelet components are thus associated to �uctuations with periodicity
[
2j , 2j+1

]
(months, in our case).
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whereas the low-frequency component (TMSLF ) corresponds to TMSS6
t .

To illustrate the rich set of di�erent dynamics aggregated (and thus hidden) in the original

time series, Figure 1 plots the time series of the TMS and its three frequency components

under analysis. As expected, the lower the frequency, the smoother the resulting �ltered

time series. We note that, by summing these three frequency components, we get the exact

original time series of the TMS.

The summary statistics of the predictors (and of the ERP) and their correlations are reported

in Panel A and B of Table 1, respectively. The monthly excess market return has a mean of

0.43% and a standard deviation of 4.44%, which implies a monthly Sharpe ratio of 0.10. The

excess market return has little autocorrelation, while the predictors are quite persistent (with

the exception of the TMSHF ). The frequency components of the TMS are low correlated.

4 In-sample predictability

Let rt be the ERP for month t and h the forecasting horizon. For each variable xt, the

predictive regression is

rt:t+h = α + βxt + εt:t+h ∀t = 1, ..., T − h , (2)

where rt:t+h = (1/h) (rt+1 + · · ·+ rt+h). The objective of the IS analysis is to estimate equa-

tion (2) by OLS in order to test the signi�cance of estimated β coe�cients. As there are some

concerns about the statistical inferences from equation (2) (related with Stambaugh, 1999

and Campbell and Yogo, 2006 bias), to make reliable inferences we follow Rapach, Ringgen-

berg, and Zhou (2016) and use a heteroskedasticity- and autocorrelation-robust t-statistic

and compute a wild bootstrapped p-value to test H0 : β = 0 against HA : β > 0 in (2). To

enhance comparisons across predictors, we also standardize each predictor to have a unitary

12



standard deviation before estimating equation (2). After accounting for lags and overlapping

observations, we thus have 540, 538, 535, 529 and 517 to estimate equation (2) for one-month-

ahead (h=1), one-quarter-ahead (h=3), one-semester-ahead (h=6), one-year-ahead (h=12),

and two-years-ahead (h=24) forecasting horizons.

Panel A of Table 2 reports, for each predictor and forecasting horizon, the OLS estimate of

β in equation (2), its t-statistic, and the R2 of the regression.

Starting with the monthly horizon (h=1), the high and business-cycle frequencies of the

TMS (TMSHF and TMSBCF ) are not statistically signi�cant, whereas the TMSTS and

the TMSLF are signi�cant at the 10% and 5% level, respectively. Overall, the R2s are

rather small, which is expectable due to the large unpredictable component in monthly data.

Campbell and Thompson (2008) argue, however, that a monthly R2 of about 0.5% represents

an economically relevant degree of return predictability. The monthly R2s of the statistically

signi�cant predictors are indeed slightly above that threshold.

Looking at longer forecasting horizons (h ≥ 3), the estimated βs for the TMSTS and the

TMSLF are similar to the ones obtained for h=1. Those two predictors continue to be

statistically signi�cant (at least at the 10% level) at all forecasting horizons. As it is common

in this literature, the �t of the regression increases as the forecasting horizon increases. The

high frequency component is never signi�cant, while the business cycle frequency component

becomes signi�cant at longer horizons (h ≥ 12).

Thus, the TMS and its low frequency component are statistically signi�cant IS predictors of

the ERP for all forecasting horizons. In what follows we provide the economic source of ERP

predictability of the TMS and of its frequency components.
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Channels of predictability

The value of a stock is the discounted value of its expected cash �ows. Stock return can

thus result from change in the discount rate, change in the expectations of cash �ows, or

both. That is, a variable that predicts lower stock market return should either predict an

increase in the discount rate or a decrease in cash �ow expectations, or both (Baker and

Wurgler, 2006, 2007). In the following analysis, we use the log dividend-price ratio (DP) as

the proxy for the discount rate channel, supported by the evidence that changes in aggregate

DP ratio comes primarily from changes in discount rates (Cochrane, 2008, 2011). Regarding

the cash �ow channel, we follow an extensive literature and use the log dividend growth (DG)

as its proxy (see e.g. Campbell and Shiller, 1988, Menzly, Santos, and Veronesi, 2004 and

Cochrane, 2008, 2011).

Most existing attempts to disentangle variation in expected discount rates versus variation in

future cash �ows start with the Campbell and Shiller (1988) log linearization of stock returns

(Cochrane, 2008, 2011):

Rt+1 = κ+DGt+1 − ρDPt+1 +DPt , (3)

where Rt+1 is the one-month-ahead stock market return, and κ and ρ are positive log-

linearization constants.

Equation (3) implies that, if a variable has forecasting power of the next-period market

return (beyond that of DPt), then it must predict DPt+1, DGt+1, or both. As DPt+1 and

DGt+1 are proxies for the discount rate and cash �ow channels, respectively, evaluating their

predictability from a variable provides insight into the economic source of the eventual market

return predictability power of that variable.

We use the approach in Huang, Jiang, Tu, and Zhou (2015) to investigate whether the
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discount rate channel or the cash �ow channel (or both) play a role in the market return

predictive ability of the TMS and of its frequency components under analysis. To do so,

we estimate two bivariate predictive regressions for the TMS and for each of its frequency

components:

Yt+1 = %+ δX t + ψDPt + ϑt+1 , (4)

where X = TMSTS, TMSHF , TMSBCF , TMSLF and Y = DP, DG. To make reliable in-

ferences, we use a heteroskedasticity- and autocorrelation-robust t-statistic and compute a

wild bootstrapped p-value to test H0 : δ = 0 against HA : δ < 0 and H0 : ψ = 0 against

HA : ψ > 0 in (4).11

Table 3 reports the results. The lagged DP ratio has a strong predictive power for the one-

month-ahead DP ratio, with very high persistence as given by the auto-regressive coe�cient

of 0.99, and no forecasting power for the one-month-ahead DG. This supports the claim of

Cochrane (2008, 2011) that the dividend-price ratio captures the time change in discount

rates. The TMSTS has predictive power for both the discount rate and cash-�ow proxies,

as both slope estimates are statistically signi�cant. This suggests that the predictability

power of the TMSTS is from both channels. Interestingly, this analysis also unveils that the

predictability power of the TMS operating through the cash-�ow channel is concentrated at

the business cycle frequency, while the one operating through the discount rate channel is

concentrated at the low frequency.

11 Data is from Goyal and Welch (2008) updated database and the sample period is 1973-2016.
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5 Out-of-sample forecasting

As it has been emphasized in the literature (e.g. Goyal and Welch, 2008 and Huang, Jiang,

Tu, and Zhou, 2015), an OOS exercise is more relevant to evaluate e�ective return predictabil-

ity in real time while avoiding the IS over-�tting issue, eventual small-sample size distortions

and the look-ahead bias concern.

The OOS forecasts are produced using a sequence of expanding windows. We use an initial

sample (1973:01 to 1989:12) to make the �rst OOS forecast. The sample is then increased

by one observation and a new OOS forecast is produced. This is the procedure until the end

of the sample. The full OOS period runs from 1990:01 to 2017:12.

The h-step-ahead OOS forecast of the excess returns, r̂t:t+h, is computed as

r̂t:t+h = α̂t + β̂txt , (5)

where α̂t and β̂t are the OLS estimates of α and β in equation (2), respectively, using data

from the beginning of the sample until month t.12

The OOS forecasting performance of each predictor is evaluated using the Campbell and

Thompson (2008) R2
OS statistic. As is standard in the literature, the benchmark model is

the historical mean (HM) forecast rt, which is the average excess return up to time t. The

R2
OS statistic measures the proportional reduction in the mean squared forecast error for the

predictive model (MSFEPRED) relative to the historical mean (MSFEHM) and is given by

R2
OS = 100

(
1− MSFEPRED

MSFEHM

)
= 100

[
1−

∑T−h
t=t0

(rt:t+h − r̂t:t+h)
2∑T−h

t=t0
(rt:t+h − rt)2

]
,

12 As the MODWT MRA at any given point in time uses information of neighboring data points (both
past and future), we recompute the frequency components at each iteration of the OOS forecasting process to
make sure we only use current and past information when making the forecasts. As a result, our forecasting
method does not su�er from a look-ahead bias.
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where r̂t:t+h is the excess return forecast from the model using each of the alternative predic-

tors. A positive (negative) R2
OS indicates that the predictive model outperforms (underper-

forms) the HM in terms of MSFE.

As in Rapach, Ringgenberg, and Zhou (2016), the statistical signi�cance of the results is

evaluated using the Clark and West (2007) statistic. This statistic tests the null hypothesis

that the MSFE of the HM model is less than or equal to the MSFE of the predictive model

against the alternative hypothesis that the MSFE of the HM model is greater than the

predictive model (H0 : R
2
OS ≤ 0 against HA : R2

OS > 0).

Columns two to six of Panel A in Table 4 show the R2
OS of each predictor for the entire OOS

period (1990:01-2017:12). As in the IS analysis, �ve forecasting horizons h are considered.

For forecasting horizons up to six months, the TMSTS is a poor OOS predictor of the

ERP (negative R2
OS). However, it outperforms the HM benchmark (positive and statistically

signi�cant R2
OS) at the one-year- and two-years-ahead forecasting horizons.

The results for the di�erent frequency components of the TMS allow us to uncover some

interesting features about the OOS predictive power of the TMS. The high and business-

cycle frequencies of the TMS (TMSHF and TMSBCF ) perform rather poorly as OOS ERP

predictors. This result is hardly surprising given their poor IS performance. In contrast, the

TMSLF has a remarkable OOS forecasting power for all forecasting horizons under analysis.

Its R2
OS ranges between 2.09% for h=1 and 31.9% for h=24.

To evaluate the consistency over time of the OOS performance of the predictors, we look

at the dynamics of the di�erence between the cumulative square forecasting error for the

HM forecasting model and the cumulative square forecasting error when the TMSTS and the

TMSLF are used as ERP predictors. The results are plotted in Figure 2 and should be read as

follows. When the line rises (falls), the predictive regression using the TMSTS (black line) and

the TMSLF (blue line) outperforms (underperforms) the HM. A forecasting model/variable
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that consistently outperforms the HM over time would then feature an upward-sloping curve.

Furthermore, the R2
OS is positive when the end point is above the zero line. For all forecasting

horizons, the TMSLF consistently outperforms the HM benchmark during the entire OOS

period (excluding the �rst �ve years for h=1, 6 and 12).

From a statistical point of view, these results show that the low frequency component of the

TMS is a remarkably good predictor of the ERP for forecasting horizons from one month to

two years. This is an improvement with respect to previous results using wavelet �ltering

methods in out-of-sample forecasting exercises (see e.g. Rua, 2011 and Kilponen and Verona,

2016), which �nd improved predictability only at very short horizons.

6 Asset allocation analysis

To analyze the economic value of the di�erent predictive models from an asset allocation per-

spective, we consider a mean-variance investor allocating his or her wealth between equities

and risk-free bills. At the end of month t, the investor optimally allocates

wt =
1

γ

R̂t+h

σ̂2
t+h

(6)

of the portfolio to equity for the period from t to t+h. In equation (6), γ is the investor's

relative risk aversion coe�cient, R̂t+h is the model prediction of excess return at time t for

the period t+h, and σ̂2
t+h is the forecast of the variance of the excess return. As in Rapach,

Ringgenberg, and Zhou (2016), we assume a relative risk aversion coe�cient of three, use a

ten-year moving window of past excess returns to estimate the variance of the excess return,

and constrain the weights wt to a range between -0.5 and 1.5. These constraints introduce

limits to the possibilities of short-selling and leveraging the portfolio.

We assume that the rebalancing frequency of the portfolio is equal to the forecasting horizon
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h. Taking the semester horizon (h=6) as an example, the procedure is as follows. The

investor uses the model prediction of excess returns over the next six months and the rule

(6) to de�ne the equity weight for the next six months. Then, at the end of that semester,

the investor updates the model prediction of excess returns and determines the new weight

using the non-overlapping return forecasts.

The average utility (or certainty equivalent return, CER) of an investor that uses the portfolio

rule (6) is given by CER = RP − 0.5γσ2
RP , where RP and σ2

RP are the sample mean and

variance of the portfolio return, respectively. We report the annualized utility gain from using

the predictive models associated with di�erent predictors. The utility gain is computed as

the di�erence between the CER for an investor that uses the predictive model to forecast

excess returns and the CER for an investor who uses the HM benchmark for forecasting.

The di�erence can be interpreted as the annual portfolio management fee that an investor

is willing to pay for access to the alternative forecasting model versus the historical average

forecast. The analysis of di�erent forecasting/rebalancing horizons (from one month to two

years) allows us to take into account the perspective of agents with di�erent pro�les, as they

include those with short- and medium-term approaches (e.g. some mutual funds) and those

with longer-term horizons (e.g. central banks, pension and sovereign wealth funds).

Reported results in columns seven to eleven in Panel A of Table 4 show that the performance

of the TMSLF is strong also from an economic point of view. The CER gains obtained

are remarkable and range from 453 basis points (h=24) to 659 basis points (h=3). From a

practical standpoint, this means that the information contained in the TMSLF may be useful

to investors with di�erent pro�les regarding their forecasting and rebalancing horizons.

To complement this analysis, Figure 3 provides a dynamic perspective of the portfolio and

cumulative wealth for an investor that uses a trading strategy (for h=1) based on the ERP

forecast using the HM model (black dashed line), the TMSTS (black solid line), and the

TMSLF (blue line). Panel A presents the dynamic equity weights (resulting from equation
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6). Three results stand out. First, changes in the equity exposure of the TMSLF portfolio

are much smoother than those using the TMSTS. Second, a trading strategy based on the

TMSLF is una�ected by the lower bound on the equity weight (-0.5), but is quite often

constrained by the upper bound (1.5). Third, the strategy based on the TMSLF displays

excellent market timing in the three business cycle recessions. The exposure of the TMSLF

based portfolio to the equity market smoothly decreases before the occurrence of a recession

(leading the portfolio to enter the recession with a rather low exposure to the risky asset),

starts to increase in the late stage of the recession period, and continues to increase, smoothly,

at the beginning of the subsequent expansionary period.

Panel B in Figure 3 shows the log cumulative wealth for an investor that begins with $1

and reinvests all proceeds. Consistent with the results reported in Table 4 and Figure 2,

the strategy based on the TMSLF clearly outperforms those based on the HM and on the

time series of the TMS. In particular, an investor who put $1 at the end of December 1989

would have accumulated approximately $43 ($8.6 / $6.9) by the end of December 2017 using

a strategy based on the TMSLF (TMSTS / HM).

7 Interpretation of the results

We now discuss several possible interpretations of the predictive power of the TMSLF .

In section 4 we show that the ERP predictability power of the TMSLF comes from the

discount rate channel. Accordingly, high (low) TMSLF predicts high (low) future returns,

because it predicts low (high) discount rates. This implies an increased (decreased) appetite

for risk-taking, triggering an increased (decreased) future equity exposure. This lead-lag

pattern is illustrated in Figure 4. Let us start from the most left point A in the Figure,

where both the TMSLF and the optimal equity exposure are at their maximum. After point

A, the TMSLF starts to decrease while the optimal equity exposure still stays at its maximum
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for approximately four more years (until point B), after which the equity exposure starts to

decrease. At point C the TMSLF reaches its relative minimum, while the equity exposure

continues to decrease and reaches its relative minimum immediately before the beginning of

the recession. It stays around that level until the very end of the recession (point D), after

which it starts to increase again. After point D, approximately the same lead-lag pattern

restarts. So this Figure shows the good market timing of the TMSLF as ERP predictor.

Another possible explanation comes from Dew-Becker and Giglio (2016). They �nd that

low frequency shocks in the consumption growth are signi�cantly priced in the U.S. equity

markets, which a�ects the one-period innovation in the stochastic discount factor, whereas

business-cycle and higher frequencies are not priced. This supports the existence of aversion

to low frequency �uctuations by investors in the equity market, and is related to our �ndings

in two ways. First, it is the dynamics of the low-frequency component of macroeconomic

variables � rather than their business cycle or higher frequencies components � that is really

relevant for the equity markets evolution, either from a cross-sectional or from a forecasting

perspective. Second, this relationship works through the discount rate channel.

Finally, in Figure 5 we plot the dynamics of the one-month ahead ERP forecast using the

TMSLF and the high frequency, business-cycle and low frequency components of the ERP

(top, middle and bottom graph, respectively). It is clear that the ERP predictability power

of the TMSLF comes essentially from its ability to capture the low frequency dynamics of the

ERP. In fact, the correlation between the forecast with the TMSLF and the low frequency

component of the ERP is 0.62, while the correlation between the forecast with the TMSLF

and the other frequency components are much lower. This is consistent with empirical

evidence that there are low-frequency, decades-long shifts in asset values relative to measures

of macroeconomic fundamentals in the U.S. (see e.g. Bianchi, Lettau, and Ludvigson, 2017).
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8 Extensions and robustness analysis

8.1 Di�erent sample periods

We �rst test the robustness of the results by evaluating the forecasting performance of the

low frequency component of the TMS in di�erent sample periods.

First, we divide the OOS period into two sub-periods: from January 1990 to December 2006,

which broadly corresponds to the great moderation period, and from January 2007 onwards,

which includes the great �nancial crisis and its aftermath. Panel A of Table 5 presents

the R2
OS and CER gains for the TMSTS and the TMSLF . For both sub-sample periods

and all forecasting horizons considered, the TMSLF has strong statistical and economic

performances.

Second, we evaluate the one-month-ahead return forecasts based on the TMSTS and TMSLF

during periods of bad, normal, and good economic growth. These regimes are de�ned as the

bottom, middle, and top-third of sorted growth rates of industrial production in the US,

respectively.13 This analysis is motivated by the fact that, while there is common agreement

in the literature that return predictability is usually concentrated in recessions,14 there is an

ongoing debate about OOS returns predictability during expansions and good times. Henkel,

Martin, and Nardari (2011), Ferreira and Santa-Clara (2011) and Neely, Rapach, Tu, and

Zhou (2014) �nd no return predictability during expansions, whereas Dangl and Halling

(2012) and Huang, Jiang, Tu, and Zhou (2016) �nd statistically signi�cant levels of OOS

predictability during expansions and good times when using models with time-varying or

state-dependent coe�cients.

We report the R2
OS and the CER gains for each regime in Panel A of Table 6. Overall, the

13 Data on US industrial production was downloaded from Federal Reserve Economic Data at
http://research.stlouisfed.org/fred2/.

14 Using a general equilibrium model, Cujean and Hasler (2017) explore the issue of why the return
predictability tends to concentrate in bad times.
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TMSTS is never signi�cant while the TMSLF is statistically signi�cant in all sub-samples �

even in good growth periods. In bad growth periods, the TMSLF delivers R2
OS of 2.87% and

CER gains of 752 basis points. These values are higher than in the full sample case, thus

con�rming that return predictability and utility gains are higher in bad times.

8.2 Comparison with alternative �ltering methods

We evaluate the importance of the �ltering method used to extract the low frequency compo-

nent of the TMS by using two alternative �lters. The �rst one is the Christiano and Fitzgerald

(2003) asymmetric band-pass �lter, assuming a unit root with drift. The frequency bands of

the �lter are chosen so as to extract exactly the same frequency components as in our previ-

ous analysis: the high frequency (TMSBP−HF ), the business-cycle frequency (TMSBP−BCF )

and low frequency (TMSBP−LF ) components. The second �lter is the one-sided Hodrick and

Prescott (1997) �lter, which is used to isolate the business-cycle component (TMSHP−CY )

from its low-frequency component (TMSHP−TR).
15

Panels B of Tables 2, 4, 5 and 6 report the R2, R2
OS and CER gains for TMSBP−HF ,

TMSBP−BCF , TMSBP−LF , TMSHP−CY and TMSHP−TR for the full sample and for the dif-

ferent sub-sample periods. We only discuss the results for the TMSBP−LF and TMSHP−TR,

as our main interest is to compare the performance of the TMSLF with that of predictors

with similar characteristics.

As regards the IS analysis (Table 2), the low-frequency components of the TMS obtained

using the alternative �ltering methods are statistically signi�cant (at least at the 10% level)

for all forecasting horizons. Looking at the OOS results (Tables 4 to 6), the TMSBP−LF is

a poor ERP predictor as it is never statistically signi�cant. Regarding the TMSHP−TR, it

features positive and statistically signi�cant R2
OSs for all forecasting horizons when looking

15 See Mehra (2004). As we use monthly data, we set the smoothness parameter of the HP �lter to 129600
as suggested by Ravn and Uhlig (2002) and de Jong and Sakarya (2016).
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at the entire sample period. However, its forecasting performance across di�erent sub-sample

periods is mixed. It performs poorly during the great moderation period for the one-month

horizon and in periods of normal and good growth, but performs reasonably well in the other

periods/horizons. Despite being a good ERP predictor, the TMSHP−TR lacks robustness

across sample periods.

These results show that the methodology used to extract the low frequency component of

the TMS is crucial for the quality of the ERP forecasting exercise. Wavelet �ltering methods

enable the extraction of a low-frequency component with forecasting performance clearly

superior to that obtained using alternative �lters.

8.3 Comparison with other predictors

We evaluate the OOS ERP predictability performance of some variables which have been

recently proposed as good ERP predictors. We consider two �nancial market variables �

the excess bond premium (EBP, Gilchrist and Zakrajsek, 2012) and the yield gap (Maio,

2013), a macro variable � the output gap (Cooper and Priestley, 2009), a technical indicator

based on �nancial market variable (TI-MA(2,12), Neely, Rapach, Tu, and Zhou, 2014), and

a behavioral-related variable � the short-interest positions (SII, Rapach, Ringgenberg, and

Zhou, 2016).

Due to data availability, the sample period starts in January 1973 and ends in December 2014.

The OOS period spans from January 1990 to December 2014. Panel C of Table 4 reports the

results. For comparison, we also report the results for the TMSLF for this sample period.

Overall, none of these alternative predictors outperforms the TMSLF . Except for the SII,

these variables are not good predictors of the ERP during the OOS under consideration. As

shown by Rapach, Ringgenberg, and Zhou (2016), the SII is a good predictor up to a one-year

horizon. Its forecasting power, however, deteriorates signi�cantly at the two-year horizon.
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Panels C of Tables 5 and 6 report the results for the OOS periods as in sub-section 8.1. As

shown in Table 5, the SII exhibits an unstable performance as its success as ERP predictor

is a fairly recent phenomenon. In fact, it strongly underperforms the HM benchmark during

the �rst sub-sample period (up to 2006), while it features an outstanding performance in the

second sub-sample period (from 2007 onwards).

9 Concluding remarks

In this paper we show that the low frequency component of the term spread, when ex-

tracted using wavelet �ltering methods, has a remarkably robust empirical equity premium

OOS forecasting power. Its OOS forecasting performance is strong for forecasting horizons

ranging from one month to two years. It is also consistently stable throughout an OOS pe-

riod comprising 27 years of monthly data. Importantly, it performs well in expansions and

outperforms several variables that have recently been proposed as good ERP predictors.

In line with the literature claiming that stock market predictability comes from time varia-

tion of discount rates, we �nd that the excess stock returns predictability power of the low

frequency component of the term spread operates through the discount rate channel. We

also show that the methodology used to extract the low frequency component of the term

spread is relevant. In particular, wavelet �ltering methods allow the extraction of a predictor

that is clearly superior versus predictors extracted using alternative �ltering methods.

From a practical standpoint, the term spread (and its low frequency component obtained

through a wavelets decomposition) is easy to compute from publicly available data, making

it straightforward for �nancial market practitioners to use reported �ndings in their asset al-

location decision process. Additionally, Bianchi, Lettau, and Ludvigson (2017) show evidence

that "breaks" in the mean of the consumption-wealth variable (as introduced by Lettau and

Ludvigson, 2001) are strongly associated with low frequency �uctuations in the real value
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of the Federal Reserve's primary policy rate, with low policy rates associated with high as-

set valuations, and vice versa. Therefore, for policymakers interested in targeting valuation

regimes, de�ned by the level of equity markets and excess returns, the low frequency of the

term spread can be a very promising variable to look at.
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Table 1: Summary statistics and correlations
Panel A reports the summary statistics for the equity risk premium (ERP) and the predictors. Panel B

reports the correlation coe�cients for the predictors. Predictors are the original time series of the term spread

TMSTS and the three frequency components TMSHF , TMSBCF and TMSLF obtained through wavelets

decomposition capturing oscillations of the TMS of less than 16 months, between 16 and 128 months and

greater than 128 months, respectively. The database contains 540 monthly observations from 1973:01 to

2017:12.

Panel A: Summary statistics

Variable Mean Median 1st percentile 99th percentile Std. dev. AR(1)

ERP (%) 0.43 0.85 -11.7 10.5 4.40 0.05

TMSTS (%, ann.) 1.58 1.75 -2.38 3.67 1.35 0.95

TMSHF (%, ann.) 0.00 -0.01 -1.03 1.67 0.42 0.60

TMSBCF (%, ann.) 0.00 0.09 -2.00 1.53 0.95 0.99

TMSLF (%, ann.) 1.58 1.76 0.56 2.37 0.52 1.00

Panel B: Correlations

Variable TMSTS TMSHF TMSBCF TMSLF

TMSTS 1

TMSHF 0.47 1

TMSBCF 0.89 0.22 1

TMSLF 0.61 0.02 0.31 1
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Table 2: In-sample predictive regression results
This table reports the β estimation by OLS of the predictive model (2) and the corresponding R2 statistic (in

percentage), for the various forecasting horizons (h = 1, 3, 6, 12, 24) and di�erent predictors. The predictors in

Panel A are the original time series of the term spread TMSTS , and the three frequency components TMSHF ,

TMSBCF , and TMSLF obtained through wavelets decomposition capturing oscillations of the TMS time

series less than 16 months, between 16 and 128 months, and greater than 128 months, respectively. The

predictors in Panel B are the high frequency, business-cycle and low frequency components (TMSBP−HF ,

TMSBP−BCF and TMSBP−LF ) of the TMS obtained using the BP �lter and the cycle (TMSHP−CY )

and the low frequency component (TMSHP−TR) of the TMS obtained using the one-sided HP �lter. Each

predictor variable is standardized to have a standard deviation of one. Brackets below the β estimates contain

the heteroskedasticity- and autocorrelation-robust t-statistics for H0 : β = 0 versus HA : β > 0. ***, **, and

* denote signi�cance at the 1%, 5%, and 10% levels, respectively, accordingly to wild bootstrapped p-values.

The sample period runs from 1973:01 to 2017:12, monthly frequency.

Predictor h=1 h=3 h=6 h=12 h=24

β̂ R2 β̂ R2 β̂ R2 β̂ R2 β̂ R2

PANEL A: Predictors

TMSTS 0.33 0.55 0.30 1.33 0.28 2.22 0.36 6.95 0.32 12.9

[1.64]* [1.71]* [1.63]* [2.35]** [2.99]**

TMSHF 0.17 0.16 0.03 0.02 -0.09 0.23 0.04 0.10 0.01 0.01

[0.91] [0.22] [-0.76] [0.56] [0.15]

TMSBCF 0.21 0.22 0.23 0.79 0.26 1.90 0.30 5.04 0.29 10.0

[1.12] [1.37] [1.53] [1.96]* [2.15]*

TMSLF 0.33 0.56 0.33 1.61 0.33 3.00 0.34 6.26 0.32 12.1

[1.68]** [1.93]** [1.99]* [2.25]** [3.72]***

PANEL B: Alternative �ltering methods

TMSBP−HF 0.13 0.09 -0.03 0.01 -0.16 0.74 -0.02 0.02 -0.02 0.07

[0.71] [-0.19] [-1.40] [-0.27] [-0.83]

TMSBP−BCF 0.20 0.21 0.23 0.78 0.26 1.95 0.30 4.78 0.28 9.68

[1.11] [1.40] [1.56] [1.95]* [2.19]**

TMSBP−LF 0.28 0.40 0.28 1.14 0.27 2.09 0.28 4.13 0.23 6.47

[1.38]* [1.55]* [1.60]* [1.77]* [2.63]**

TMSHP−CY -0.22 0.25 -0.26 1.00 -0.28 2.15 -0.15 1.22 -0.06 0.39

[-1.04] [-1.22] [-1.36] [-0.93] [-0.74]

TMSHP−TR 0.51 1.35 0.51 3.93 0.51 7.30 0.49 12.9 0.38 17.4

[2.53]*** [2.81]*** [2.74]** [2.74]** [2.82]**
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Table 3: Economic channel analysis
This table reports the estimation results of equation (4) considering four predictors (X): the original time

series of the term spread TMSTS , and the three frequency components TMSHF , TMSBCF , and TMSLF

obtained through wavelets decomposition capturing oscillations of the TMS time series less than 16 months,

between 16 and 128 months and greater than 128 months, respectively. DP stands for the dividend-price

ratio and represents the discount rate channel. DG is the dividend growth and represents the cash �ow

channel. The regression slopes, the heteroskedasticity- and autocorrelation-robust t-statistics for H0 : δ = 0

versus HA : δ < 0 and H0 : ψ = 0 versus HA : ψ > 0 in equation (2), and the R2 (in percentage) are

reported. ***, ** and * denote signi�cance at the 1%, 5% and 10% levels, respectively, accordingly to wild

bootstrapped p-values. The sample period runs from 1973:01 to 2016:12, monthly frequency.

Xt Yt+1 δ t-stat ψ t-stat R2

TMSTS
DP -0.24 -1.60* 0.99 218*** 98.9

DG -0.08 -3.06*** 0.04 0.58 3.78

TMSHF

DP -0.30 -0.67 0.99 218*** 98.9

DG -0.02 -0.45 0.07 1.06 0.30

TMSBCF

DP -0.24 -1.21 0.995 216*** 98.9

DG -0.15 -3.80*** 0.09 1.29* 6.08

TMSLF

DP -0.68 -1.63** 0.99 196*** 98.9

DG -0.04 -0.59 0.05 0.65 0.41
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Table 4: Out-of-sample R-squares (R2
OS) and annualized CER gains

Columns two to six report the OOS R-squares R2
OS (in percentage) for the excess returns forecasts at h-

month horizon from the model as given by equation (5). The R2
OS measures the proportional reduction

in the mean squared forecast error for the predictive model relative to the forecast based on the historical

mean HM. The h-month-ahead OOS forecast of excess return is generated using a sequence of expanding

windows. Panel A reports the results for the original time series of the term spread TMSTS , and the three

frequency components TMSHF , TMSBCF , and TMSLF obtained through wavelets decomposition capturing

oscillations of the TMS time series less than 16 months, between 16 and 128 months and greater than 128

months, respectively. Panel B reports the results for the high frequency, business-cycle and low frequency

components (TMSBP−HF , TMSBP−BCF and TMSBP−LF ) of the TMS obtained using the BP �lter, and

the cycle (TMSHP−CY ) and the low frequency component (TMSHP−TR) of the TMS obtained using the

one-sided HP �lter. Columns seven to eleven present the annualized certainty equivalent return (CER) gains

(in percent) for an investor who allocates his or her wealth between equities and risk-free bills according

to the rule (6), using stock return forecasts from model in equation (5) with alternative predictors under

analysis instead of the forecasts based on the HM. Panel C reports the R2
OS and the CER gains obtained using

alternative predictors from the literature (excess bond premium, yield gap, output gap, technical indicator

based on moving averages and the short interest index). The sample period is from 1973:01 to 2017:12.

The OOS period is from 1990:01 to 2017:12, monthly frequency. Asterisks denote signi�cance of the OOS

MSFE-adjusted statistic of Clark and West (2007). ***, **, and * denote signi�cance at the 1%, 5%, and

10% levels, respectively.

Predictor R2
OS CER gains

h=1 h=3 h=6 h=12 h=24 h=1 h=3 h=6 h=12 h=24

PANEL A: Predictors

TMSTS -0.72 -1.99 -1.28 3.47** 15.0*** 0.10 0.52 0.33 1.38 1.84

TMSHF -0.87 -1.70 0.58* -1.63 2.37 -1.16 -0.78 0.05 -0.81 -0.03

TMSBCF -1.52 -5.01 -8.16 -7.78 5.19* -2.25 -1.96 -2.19 -0.58 0.81

TMSLF 2.09*** 6.36*** 12.0*** 22.9*** 31.9*** 5.91 6.59 6.34 5.46 4.53

PANEL B: Alternative �ltering methods

TMSBP−HF -0.13 -0.28 -5.25 -0.43 -0.50 1.28 -0.14 -1.05 -0.01 -0.30

TMSBP−BCF -0.68 -2.30 -3.81 -2.58 6.46** -1.29 -1.33 -1.24 -0.21 0.78

TMSBP−LF -0.01 0.06 0.59 1.55 8.26 0.90 1.89 1.63 1.83 2.73

TMSHP−CY 0.21 0.79 1.91 -0.98 1.41 0.38 0.39 0.52 -0.82 0.64

TMSHP−TR 1.24** 3.89*** 8.10*** 15.5*** 20.5*** 3.83 4.03 3.98 3.40 2.21

PANEL C: Alternative predictors (OOS period: 1990-2014)

EBP 0.97 0.66 -7.23 -10.1 -11.6 3.90 5.09 0.14 -1.30 1.44

Yield gap -1.13 -4.22 -8.79 -15.7 -16.2 -0.21 -0.25 -1.01 -1.29 -0.87

Output gap -3.24 -7.40 -8.52 -5.25 -8.02 -3.73 -2.86 -1.65 -0.75 0.70

TI-MA(2,12) 1.20* 0.76 2.55 0.86 -0.34 4.78 1.76 2.53 0.67 0.21

SII 1.94*** 6.52*** 11.6*** 13.1** 4.85 4.18 4.67 5.44 3.40 -0.02

TMSLF 2.17*** 6.49*** 12.1*** 23.1*** 31.0*** 6.29 6.99 6.68 5.63 4.24
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Table 5: Out-of-sample R-squares (R2
OS) and annualized CER gains

Columns three to six present the OOS R-squares R2
OS (in percentage) for the excess returns forecasts at

h-month horizon from the model as given by equation (5). Panel A reports the results for the original time

series of the term spread TMSTS , and the low frequency component of the term spread TMSLF , obtained

through wavelets decomposition capturing oscillations of the TMS time series greater than 128 months. Panel

B reports the results for the low frequency component (TMSBP−LF ) of the TMS obtained using the BP �lter,

and the low frequency component (TMSHP−TR) of the TMS obtained using the one-sided HP �lter. Panel C

reports the results obtained using alternative predictors from the literature (excess bond premium, yield gap,

output gap, technical indicator based on moving averages and the short interest index). The R2
OS measures

the proportional reduction in the mean squared forecast error for the predictive model relative to the forecast

based on the historical mean HM. The h-month-ahead OOS forecast of excess returns is generated using a

sequence of expanding windows. Columns seven to ten present the annualized certainty equivalent return

(CER) gains (in percent) for an investor who allocates his or her wealth between equities and risk-free bills

according to the rule (6), using stock return forecasts from model in equation (5) with alternative predictors

under analysis instead of the forecasts based on the HM. The sample period runs from 1973:01 to 2017:12.

Two OOS forecasting periods are considered. The �rst runs from 1990:01 to 2006:12 and the second from

2007:01 to 2017:12, monthly frequency. Asterisks denote signi�cance of the OOS MSFE-adjusted statistic of

Clark and West (2007). ***, **, and * denote signi�cance at the 1%, 5%, and 10% levels, respectively.

Sample Predictor R2
OS CER gains

period h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

PANEL A: Predictors

1990-2006
TMSTS -1.12 -3.13 -3.44 -2.37 0.72 1.67 0.71 0.13

TMSLF 1.66*** 6.13*** 13.5*** 25.1*** 5.51 6.57 5.62 4.72

2007-2017
TMSTS -0.16 -0.74 0.57 9.38*** -0.87 -1.28 -0.37 3.08

TMSLF 2.67*** 6.62*** 10.8*** 20.8*** 6.50 6.59 7.39 6.44

PANEL B: Alternative �ltering methods

1990-2006
TMSBP−LF 0.05 0.79 2.57 4.17 1.34 2.95 2.19 3.22

TMSHP−TR 0.35 1.54* 4.29** 8.64*** 2.57 3.20 2.28 1.47

2007-2017
TMSBP−LF -0.10 -0.74 -1.09 -1.09 0.24 0.30 0.90 0.04

TMSHP−TR 2.48** 6.48*** 11.3*** 22.4*** 5.77 5.26 6.48 6.20

PANEL C: Alternative predictors (OOS period: 1990-2014)

EBP 0.64 3.41** -6.47 -10.7 2.59 4.31 -0.98 -1.23

Yield gap -0.99 -3.33 -8.43 -21.5 -0.89 -0.40 -1.35 -1.35

1990-2006 Output gap -4.05 -9.31 -13.0 -8.74 -5.12 -3.96 -2.60 -1.13

TI-MA(2,12) 1.05 1.67 6.25** 0.24 4.17 2.15 2.72 -0.10

SII -0.15 -0.51 -0.95 -9.49 0.88 0.74 0.59 -0.38

EBP 1.48 -2.62 -7.90 -9.56 6.68 6.69 2.42 -1.47

Yield gap -1.34 -5.27 -9.11 -9.48 1.24 0.06 -0.28 -1.10

2007-2014 Output gap -1.96 -5.14 -4.50 -1.48 -0.80 -0.64 -0.11 -0.99

TI-MA(2,12) 1.44 -0.33 -0.76 1.53 6.06 0.95 2.33 2.33

SII 5.24*** 14.9*** 22.9*** 37.4*** 11.2 13.1 15.9 11.2
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Table 6: Out-of-sample R-squares (R2
OS) and annualized CER and SR gains

The sample period runs from 1973:01 to 2017:12. We divide the OOS in periods of bad growth, normal

growth, and good growth. These regimes are de�ned as the bottom, middle, and top-third of sorted growth

rates of industrial production in the US, respectively. This table reports, for the three regimes, the OOS

R-squares R2
OS (in percentage) for the excess returns forecasts at the one-month horizon (h = 1) from

the model as given by equation (5). Panel A reports the results for the original time series of the term

spread TMSTS , and the low frequency component of the term spread TMSLF , obtained through wavelets

decomposition capturing oscillations of the TMS time series greater than 128 months. Panel B reports the

results for the low frequency component (TMSBP−LF ) of the TMS obtained using the BP �lter, and the low

frequency component (TMSHP−TR) of the TMS obtained using the one-sided HP �lter. Panel C reports

the results obtained using alternative predictors from the literature (excess bond premium, yield gap, output

gap, technical indicator based on moving averages and the short interest index). The R2
OS measures the

proportional reduction in the mean squared forecast error for the predictive model relative to the forecast

based on the historical mean HM. The one-month-ahead OOS forecast of excess return is generated using

a sequence of expanding windows. The table also reports the annualized certainty equivalent return (CER)

gains (in percent) for an investor who allocates his or her wealth between equities and risk- free bills according

to the rule (6), using stock return forecasts from model in equation (5) with alternative predictors under

analysis instead of the forecasts based on the HM. Asterisks denote signi�cance of the OOS MSFE-adjusted

statistic of Clark and West (2007). ***, **, and * denote signi�cance at the 1%, 5%, and 10% levels,

respectively.

Predictor Bad growth Normal growth Good growth

R2
OS CER gains R2

OS CER gains R2
OS CER gains

PANEL A: Predictors

TMSTS 0.57 0.92 -2.61 -1.70 -0.82 1.03

TMSLF 2.87*** 7.52 2.17** 4.95 1.16** 5.24

PANEL B: Alternative �ltering methods

TMSBP−LF -0.10 1.24 -0.44 -0.81 0.37 2.30

TMSHP−TR 2.51*** 6.29 0.12 1.33 0.62 3.84

PANEL C: Alternative predictors (OOS period: 1990-2014)

EBP -0.30 5.97 3.26** 4.39 0.77 1.37

Yield gap -1.87 -0.39 0.20 0.46 -1.22 -0.67

Output gap -2.23 -4.18 -5.23 -4.37 -2.97 -2.69

TI-MA(2,12) 3.47* 10.3 2.49* 5.58 -2.23 -1.46

SII 2.88** 4.98 0.13 1.73 2.16* 5.79

TMSLF 3.00*** 7.88 2.13** 5.55 1.29** 5.45
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Figure 1: Time series of the term spread and of its frequency components

This �gure reports the original time series of the term spread TMSTS (black line) and of its three frequency

components TMSHF , TMSBCF and TMSLF obtained through wavelets decomposition capturing oscillations

of the TMS less than 16 months (green line), between 16 and 128 months (red line), and greater than 128

months (blue line), respectively. Gray bars denote NBER-dated recessions. Sample period runs from 1973:01

to 2017:12, monthly frequency.
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Figure 2: Cumulative sum of squared forecast errors

This �gure reports the di�erence between the cumulative square forecasting error for the HM forecasting

model and the cumulative square forecasting error for the predictive regression based on the model (5) for

the original time series of the term spread TMSTS (black line) and the low frequency component of the term

spread TMSLF (blue line). Gray bars denote NBER-dated recessions. The sample period runs from 1973:01

to 2017:12. The OOS forecasting period runs from 1990:01 to 2017:12, monthly frequency.
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Figure 3: Equity weights and log cumulative wealth

Panel A plots the dynamics of the equity weight for a mean-variance investor who allocates monthly his or

her wealth between equities and risk-free bills according to the rule (6), using stock return forecasts based on

the HM benchmark (dashed black line), the original time series of the term spread TMSTS (solid black line),

and the low frequency component of the term spread TMSLF (blue line). The equity weight is constrained

to a range between -0.5 and 1.5. Panel B delineates the corresponding log cumulative wealth for the investor,

assuming he or she begins with $1 and reinvest all proceeds. The investor is assumed to have a relative risk

aversion coe�cient of three. Gray bars denote NBER-dated recessions. Sample period runs from 1990:01 to

2017:12, monthly frequency.

A. Equity weights

B. Log cumulative wealth
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Figure 4: Equity weights and low frequency component of the term spread

This �gure plots the dynamics of the low frequency component of the term spread (TMSLF , black line) and

the equity weight (blue line) for a mean-variance investor who allocates monthly his or her wealth between

equities and risk-free bills according to the rule (6) using stock return forecasts based on the TMSLF . Both

series are centered to have zero mean and scaled to have standard deviation 1. The investor is assumed to

have a relative risk aversion coe�cient of three. Gray bars denote NBER-dated recessions. Sample period

runs from 1990:01 to 2017:12, monthly frequency.
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Figure 5: ERP frequency components and ERP forecast (h = 1) based on the TMSLF

This �gure plots the dynamics of the one-month ahead equity risk premium (ERP) forecast based on the

low frequency component of the term spread (TMSLF , blue line) and the high frequency, business-cycle and

low frequency components of the ERP (top, middle and bottom graphs, respectively, black lines). The series

are centered to have zero mean and scaled to have standard deviation 1. Gray bars denote NBER-dated

recessions. Sample period runs from 1990:01 to 2017:12, monthly frequency.
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Appendix A

The discrete wavelet transform (DWT) multiresolution analysis (MRA) allows the decom-

position of a time series into its constituent multiresolution (frequency) components. There

are two types of wavelets: father wavelets (φ), which capture the smooth and low frequency

part of the series, and mother wavelets (ψ), which capture the high frequency components of

the series, where
∫
φ (t) dt = 1 and

∫
ψ (t) dt = 0.

Given a time series yt with a certain number of observations N, its wavelet multiresolution

representation is given by

yt =
∑
k

s
J,k
φ

J,k
(t) +

∑
k

d
J,k
ψ

J,k
(t) +

∑
k

d
J−1,k

ψ
J−1,k

(t) + · · ·+
∑
k

d
1,k
ψ

1,k
(t) , (7)

where J represents the number of multiresolution levels (or frequencies), k de�nes the length

of the �lter, φ
J,k

(t) and ψ
j,k

(t) are the wavelet functions and s
J,k
, d

J,k
, d

J−1,k
, . . . , d

1,k
are the

wavelet coe�cients.

The wavelet functions are generated from the father and mother wavelets through scaling

and translation as follows

φ
J,k

(t) = 2−J/2φ
(
2−Jt− k

)
ψ

j,k
(t) = 2−j/2ψ

(
2−jt− k

)
,
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while the wavelet coe�cients are given by

s
J,k

=

∫
ytφJ,k

(t) dt

d
j,k

=

∫
ytψj,k

(t) dt ,

where j = 1, 2, ..., J .

Due to the practical limitations of DWT in empirical applications, we perform wavelet

decomposition analysis here by applying the maximal overlap discrete wavelet transform

(MODWT). The MODWT is not restricted to a particular sample size, is translation-invariant

so that it is not sensitive to the choice of the starting point of the examined time series, and

does not introduce phase shifts in the wavelet coe�cients (so peaks or troughs in the orig-

inal time series are correctly aligned with similar events in the MODWT MRA). This last

property is especially relevant in the forecasting exercise.
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