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Abstract

We propose a new non-recursive identification scheme for uncertainty shocks, which ex-

ploits breaks in the unconditional volatility of macroeconomic variables. Such identification

approach allows us to simultaneously address two major questions in the empirical literature

on uncertainty: (i) Does the relationship between uncertainty and economic activity change

across macroeconomic regimes? (ii) Is uncertainty a major cause or effect (or both) of de-

cline in economic activity? Empirical results based on a small-scale VAR with US monthly

data for the period 1960-2015 suggest that (i) the effects of uncertainty shocks are regime-

dependent, and (ii) uncertainty is an exogenous source of decline of economic activity, rather

than an endogenous response to it.

Keywords: Heteroskedasticity, Identification, Non-recursive SVAR, Uncertainty shocks,

Volatility regime.

J.E.L.: C32, C51, E44, G01.

1 Introduction

Since the aftermath of the recent Global Financial Crisis (GFC), there has been revamped

attention on the role played by uncertainty as a driver of the business cycle. Two main stylized

facts have emerged from the literature: first, heightened uncertainty triggers a contraction in real

activity; second, uncertainty tends to be higher during economic recessions. The first stylized

fact is consistent with the theoretical literature that shows why uncertainty can have negative

∗We thank Efrem Castelnuovo, Giovanni Pellegrino and Chiara Scotti for useful comments and suggestions.

Paper presented at the ‘Padova Macro Talks’, June 2017.
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macroeconomic effects. The prevailing view is that uncertainty is recessionary in presence of real

options effects (e.g. Bloom, 2009) or financial frictions (e.g. Christiano, Motto and Rostagno,

2014), and its effects can be amplified in extreme conditions like high financial stress (e.g. Alfaro

et al.,, 2016; Arellano et al, 2012; Gilchrist et al., 2014) or the Zero Lower Bound (Basu and

Bundick, 2017). However, uncertainty appears also to endogenously increase during recessions,

as lower economic growth induces greater dispersion at the micro level and higher aggregate

volatility. This second stylized fact is consistent with the theoretical literature on ‘endogenous

uncertainty’, which contends that uncertainty is rather a consequence, not a cause, of declining

economic activity, as in e.g. Van Nieuwerburgh and Veldkamp (2006), Bachmann and Moscarini

(2012), Fajgelbaum et al. (2014), Gourio (2014), Navarro (2014) and Plante et al. (2017). We

refer to Ludvigson et al. (2017a) for an excellent review.

Whether causality runs from uncertainty to real activity, or from real activity to uncertainty,

or in both directions, and whether these relationships assume greater importance under different

macroeconomic conditions are issues which can be investigated empirically within a Structural

VAR (SVAR) framework. The first issue requires moving away from recursive identification

schemes, which are by construction ill suited to shed light on the reverse causality issue. To the

best of our knowledge, this issue has been explicitly analyzed only in Ludvigson et al. (2017a).

The second issue requires moving away from linear SVARs, which would not allow to uncover

possibly regime-dependent effects of uncertainty shocks. This concern has been addressed in the

recent literature, and evidence that uncertainty shocks have regime-dependent effects has been

provided by, among others, Alessandri and Mumtaz (2014), and Caggiano et al. (2014, 2017a).

This paper contributes to the empirical literature on uncertainty by proposing a methodology

that allows to examine both issues simultaneously within a SVAR framework via a non-recursive

identification approach, which exploits breaks in the (unconditional) volatility of post-WW2

US macroeconomic variables. As discussed in Magnusson and Mavroeidis (2014), structural

breaks induced by policy shifts and/or the occurrence of financial crises, provide exogenous

identifying information which can be fruitfully used for inference. Our identification strategy

extends the standard ‘identification-through-heteroskedasticity’ approach, popularized in the

empirical macroeconomic literature by Rigobon (2003), Rigobon and Sack (2004) and Lanne

and Lütkepohl (2008), to the case where the structural parameters of the VAR, and hence the

associated impulse response functions (IRFs), may vary with the volatility of the shocks, as in

Bacchiocchi and Fanelli (2015) and Bacchiocchi et al. (2017). This allows us to address the

causality issue, since in our setup causal ordering is not necessary to identify the shocks: uncer-

tainty shocks are allowed to hit real activity on impact and, at the same time, real activity shocks

are allowed to trigger uncertainty contemporaneously. Our framework also allows to estimate
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regime-dependent effects of uncertainty shocks, where regimes are endogenously identified by

the estimated volatility breaks. To the best of our knowledge, this is a novelty in the empirical

literature on the effects of uncertainty shocks, which allows to jointly address two issues that so

far have been either ignored or treated in isolation.

We estimate, as in Ludvigson et al. (2017a), a small-scale SVAR with three variables: a

measure of real activity, Yt; an index of macroeconomic uncertainty, UMt; and an index of finan-

cial uncertainty, UFt. Real activity is proxied by either industrial production or employment,

and the indices of macroeconomic and financial uncertainty are taken from Jurado et al. (2015)

and Ludvigson et al. (2017a), respectively.1 Data are monthly, and span the 1960-2015 sample.

As highlighted by Ludvigson et al. (2017a), the joint use of measures of macroeconomic and

financial uncertainty is crucial to identify the transmission channels of uncertainty shocks and

to disentangle the causes and consequences of macroeconomic and financial uncertainty. Shocks

are identified using a non-recursive approach, which exploits the differences in the average level

of volatility displayed by macroeconomic variables on different sub-samples in the period 1960-

2015. Volatility breaks are selected in accordance with the paths shown by the recursive and

rolling-windows estimates of the VAR covariance matrix. These paths are consistent with two

main breaks which can be associated with two important episodes of the US history: one is

the onset of the Great Moderation, and the other is the GFC of 2007-2008. This leads to the

identification of three broad volatility regimes in the data, which correspond to three well-known

macroeconomic regimes: the Great Inflation period (1960M8-1984M3), the Great Moderation

period (1984M4-2007M12) and the ‘Great Recession+Slow Recovery’ period (2008M1-2015M4).2

Our main findings can be summarized as follows. First, macroeconomic and financial un-

certainty shocks trigger a decline of US real economic activity in all volatility regimes. Second,

the magnitude and the persistence of the effects of uncertainty shocks on economic activity vary

substantially across the three volatility regimes, with the largest impact found in the Great

Recession + Slow Recovery period. Third, our impulse responses differ substantially with those

coming from a linear model with standard recursive identification scheme which ignores changes

in volatility. Fourth, both macroeconomic and financial uncertainty can be better described as

exogenous drivers of real activity, rather than as endogenous responses to it: we find evidence

that uncertainty shocks have a contemporaneous and significant impact on real activity and the

1Other measures of macro uncertainty available in the literature have been proposed by Rossi et al. (2016) and

Scotti (2016). We use the measure proposed by Jurado et al. (2015) to be consistent with the VAR specification

in Ludvigson et al. (2017a), see below.
2Given the strong and well established association between the (average) volatility of most macroeconomic

variables and specific macroeconomic regimes of U.S. economic history (e.g. McConnel and Perez-Quiros, 2000),

throughout the paper we use the terms ‘volatility regime’ and ‘macroeconomic regime’ interchangeably.
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effect is robust to several robustness checks, but the opposite is not supported by the empiri-

cal evidence. This finding holds true in all three macroeconomic regimes, including the Great

Recession+Slow Recovery and is robust to several perturbations of the baseline model.

From an empirical viewpoint, these findings relate our paper to different strands of the lit-

erature. We relate to contributions that have looked at time-dependent effects of uncertainty

shocks, such as Beetsma and Giuliodori (2012), Choi (2013), Bontempi et al. (2016), Mumtaz

and Theodoridis (2017) and Caggiano et al. (2017b). The main message of these contributions

is that uncertainty shocks are more powerful if the economy is in extreme conditions, such as an

economic recession and high financial strain. In line with them, we also find that uncertainty

shocks have possibly time-varying effects which are related to different macroeconomic volatility

regimes. All these contributions, however, either identify and estimate recursive SVARs sepa-

rately on different sub-samples, or estimate time-varying recursive SVARs which cannot account

for the reverse causality issue. Our approach, which exploits the heteroskedasticity of the data,

allows us to identify a single non-recursive SVAR with structural breaks in both the error covari-

ance matrix and in the structural parameters. Breaks in the structural parameters allow us to

estimate regime-dependent effects of uncertainty shocks, as in the related literature. Breaks in

the covariance matrix allows us to identify non-recursively uncertainty and real activity shocks,

so that, unlike the above mentioned contributions, causality can run from uncertainty to real

activity and viceversa. Moreover, the finding that uncertainty shocks have had larger effects in

the aftermath of the GFC are in line with Basu and Bundick (2017) and Caggiano et al (2017a),

who highlight the role played by the stance of monetary policy in magnifying the effects of

uncertainty shocks. Differently from their papers, we do not investigate the causes of why real

activity reacts more in the GFC, but we confirm their findings with a more general identification

approach that, crucially in a period of high economic and financial turmoil, does not require a

recursive structure.

Our result on causality that runs from uncertainty to real activity is strictly related to Lud-

vigson et al. (2017a). While we find that both macroeconomic and financial uncertainty are not

contemporaneously caused by real activity shocks, they report that only financial uncertainty

can be considered exogenous. The discrepancy between our result and that in Ludvigson et

al. (2017a) can be explained by the different methodologies employed to identify the shocks.

Ludvigson et al. (2017a) implement a novel approach (see also Ludvigson et al., 2017b)) which

combines external instruments with set-identification methods, in which financial and macroe-

conomic uncertainty shocks are treated asymmetrically, in the sense that one instrument is

assumed to be correlated with both shocks and the other instrument is assumed to be correlated

only with financial uncertainty shocks. We point-identify our non-recursive SVAR and obtain
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economic meaningfull IRFs by following the insight that changes in the distribution of the data

induced by policy regime shifts and/or financial crises provide, once combined with economic

information, additional exogenous variation that can be usefully exploited to identify the shocks

non-recursively and for inference.

On the methodological side, our paper is closely related to works that have identified un-

certainty shocks using non-recursive schemes. Recent examples are methods based on the com-

bination of external instruments with other type of restrictions (Ludvigson et al. 2017; Piffer

and Podstawski, 2017), methods based on the penalty function approach (Caldara et al. 2016)

and methods based on sign restrictions (e.g. Furlanetto et al. 2017). None of these contri-

butions, however, has examined the joint issue of causality and regime-dependence. Moreover,

in our setup, the additional information necessary to point-identify the non-recursive SVAR

stems from the changes in volatility of the data with some advantages. On the one hand, the

researcher is exempted from any consideration about the validity and relevance of external in-

struments (Stock and Watson 2012, 2016; Mertens and Ravn, 2013; Olea et al. 2015). On

the other hand, the inferential issues which arise in signed restricted SVARs are automatically

circumvented (Moon et al. 2013; Giacomini and Kitagawa, 2015) because in our framework the

inference on the SVAR coefficients and the IRFs is standard under a set of regularity conditions.

The paper is organized as follows. Section 2 introduces the identification problem and

presents our non-recursive identification approach. Section 3 discusses the data and the em-

pirical results obtained from the estimated SVAR. Section 4 modifies the baseline structural

specification to account for some robustness checks. Section 5 provides some concluding re-

marks. Additional technical details and empirical results and robustness checks are confined in

a Technical Supplement associated with the paper.3

2 Identifying uncertainty shocks through volatility regimes

In this Section, we outline our econometric methodology to deal with both regime-dependence

and the joint identification of uncertainty and real activity shocks. Subsection 2.1 discusses

the nature of the problem we face and possible solutions, while Subsection 2.2 presents our

‘identification-through-volatility’ approach.

2.1 Reverse causality, regime-dependence, and the identification problem

Consider the following SVAR:

Xt = c+A1Xt−1 + ....+ApXt−p +Bet = ΠWt +Bet , et ∼WN(0n×1, In) , t = 1, ..., T (1)

3Available online at http://www.rimini.unibo.it/fanelli/TS Uncertainty36.pdf
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where T is the sample length, p is the system lag order, Xt is the n × 1 vector of endogenous

variables, c is a n×1 constant, Ai, i = 1, ..., p are n×nmatrices of parameters, Π := (A1, ..., Ap, c),

Wt := (X ′t−1, ....X
′
t−p, 1)′, B is a n × n non-singular matrix containing what we call ‘structural

parameters’, and et is the vector of mean zero, unit variance and uncorrelated structural shocks.

Let

Xt = µ+ Ψ(L)Bet (2)

be the associated structural moving average representation, where Ψ(L):=In + Ψ1L+ Ψ2L
2 + ...

is a polynomial in the lag operator L of infinite order, Ψh, h = 1, 2, ... is the n × n matrix of

coefficients associated with the h-th lag of Ψ(L), and µ:=Ψ(1)c. In eq. (2), Ψ(L) = A(L)−1,

where A(L):=In − A1L− ...− ApLp, and it is assumed that the solutions to det(A(z)) = 0 are

such that |z| > 1. Let

ηt = Bet (3)

be the n × 1 vector of reduced form innovations, with (unconditional) covariance matrix Ση =

BB′.

Suppose we are interested in the dynamic effects of the structural shocks in et. Let A be the

VAR companion matrix, Xc
t :=(X ′t, X

′
t−1, ..., X

′
t−p+1)

′ the state vector associated with the VAR

companion form and R:=(In, 0n×n, ..., 0n×n) a selection matrix such that Xt=RX
c
t , RR

′ = In.

As is known, the dynamic response of Xt+h to shock ejt to the variable Xjt is summarized by

the (population) IRF:

IRFj(h) := Ψhbj = R (A)hR′bj , h = 0, 1, 2, ..., j = 1, ..., n (4)

where bj is the j-th column of B, i.e. B:=(b•j : bj : bj•), and b•j and bj• are the sub-matrices

that contain the columns that precede (if any) and follow (if any) the column bj , respectively.

Absent further restrictions on the coefficients, the IRF in eq. (4) requires that bj is identified

in the sense that it can not be expressed as linear combination of the columns in b•j and/or in

bj•. For h = 0, the IRF in eq. (4) is such that Ψ0 = In, hence up to possible normalizations of

the shocks, the element bij of the B matrix in eq. (3) captures the instantaneous (on-impact)

effect of the j-th structural shock on the i-th variable of the system.

Consider now our specific case, where n = 3. Let Yt denote a (scalar) measure of real activity,

and let UMt and UFt be two (scalar) measures of macro and financial uncertainty, respectively,

so that Xt:=(UMt, Yt, UFt)
′. In the absence of further restrictions, the structural relationship in

eq. (3) is given by the following system of equations
ηMt

ηY t

ηFt


ηt

=


bMM bMY bMF

bYM bY Y bY F

bFU bFY bFF


B


eMt

eY t

eFt


et

(5)
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where we conventionally call eMt ‘macroeconomic uncertainty shock’, eFt ‘financial uncertainty

shock’ and eY t ‘real economic activity shock’. As is known, at least three restrictions are needed

in eq. (5) to identify the shocks.4 The covariance matrix Ση = BB′ provides n(n + 1)/2 = 6

symmetry restrictions to identify the 9 elements of B, leaving 3 element unidentified. A common

solution to this problem is to specify B as a triangular matrix, which provides the 3 zero

(identifying) restrictions. The empirical literature on the identification of uncertainty shocks

largely relies on the use of recursive SVARs because the interest typically lies on the effect

of uncertainty shocks on Yt, while it is presumed that UMt (UFt) responds to shocks to Yt

only with lags. If one imposes an upper (lower) triangular structure on B, it is not possible

to identify simultaneously the parameters of interest bYM , bY F , bMY and bFY , meaning that

‘reverse causality’ cannot be addressed.5

The reverse causality issue and the related identification problem can be addressed by using

external (valid) instruments that permit to increase the number of useful moment conditions

other than Ση = BB′, without further restricting B; see e.g. Stock and Watson (2012, 2016),

Mertens and Ravn (2013) and Olea et al. (2015). Ludvigson et al. (2017a) discuss the peril of

such an approach in the uncertainty framework, and improve upon this methodology by arguing

that if UMt and UFt are potentially endogenous (i.e. they may respond endogenously to eY t),

then it is difficult to find credible observable exogenous external instruments for the uncertainty

shocks. Based on this intuition, and starting from the returns of a stock market index as

initial external instrument, they construct ‘synthetic’ proxies of valid instruments within a set-

identification approach. The class of set-identified SVARs consistent with the synthetic proxies

is narrowed down by considering two types of shock-based restrictions, ‘event constraints’, which

require that the identified shocks be consistent with economic reasoning in a small number of

extraordinary events (think e.g. to the 1987 stock market crash) and ‘component correlation

constraints’, which are placed on the correlation between the identified financial uncertainty

4It is worth remarking that regardless of the type of identifying restrictions we impose on B, we do not have

enough information in this stylized small-scale model to claim that eY t is a demand or supply shock. In general,

eY t could be a combination of technology, monetary policy, preferences and government expenditures. For this

reason, and in line with Ludvigson et al. (2017a), we refer to eY t as ‘real activity shock’. Likewise, we do not have

enough information to disentangle whether uncertainty shocks originate from economic policies and/or technology.
5Also imposing e.g. a ‘conventional’ non-recursive structure on B of the type

B:=


bMM 0 bMF

bY M bY Y 0

0 bFY bFF


which places 3 zero restrictions which identify (locally) the SVAR (Rubio-Ramirez et al. 2010), would not be

fully consistent with our objective of analyzing reverse causality. Other rotations of the zeros in the matrix B are

in principle possible, but do not generally solve the problem.
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shocks and real economic activity shocks.

While synthetic external instruments and set-identification methods address the reverse

causality problem, they do not help dealing with the issue of possibly regime-dependent effects

of uncertainty shocks. In order to jointly address both issues, one needs to combine a non-

recursive structure for B with the case where the structural parameters in B may change across

macroeconomic regimes, generating regime-dependent IRFs. We solve the problem by exploiting

the heteroskedasticity displayed by the reduced form errors ηt across different macroeconomic

regimes that characterize US business cycle. More specifically, we relax (and check empirically

the validity of) both the assumption of time-invariant VAR error covariance matrix Ση, and

the assumption of time-invariant structural parameters in B. Our identification methodology

is based on the existence of different volatility regimes in the post-WW2 US business cycle,

i.e. different values that the unconditional error covariance matrix Ση takes across sub-samples.

Associated with the changes in Ση, changes in the structural parameters B may be also allowed.

Suppose, as an example, that there are two volatility regimes in the data captured by the error

covariance matrices Ση,1 and Ση,2, respectively. Based on Rigobon (2003) and Rigobon and

Sacks (2004), Lanne and Lütkepohl (2008) have shown that the ‘additional’ moment conditions

needed to identify a ‘full’ (but time-invariant) matrix B can be obtained from the fact that

the condition Ση,1 6= Ση,2 implies the simultaneous factorization Ση,1 = BB′, Ση,2 = BV B′,

where V is a diagonal matrix with positive distinct elements on the diagonal. With this ap-

proach, however, the matrix of structural parameters B is kept fixed across volatility regimes

and the SVAR produces regime-invariant IRFs. Bacchiocchi and Fanelli (2015) and Bacchiocchi

et al. (2017) have extended this approach to the case where the parameters in the matrix B

are allowed (but not forced) to change across volatility regimes, so that regime-dependent IRFs

arise.6 In this framework, the condition Ση,1 6= Ση,2 is modelled by the specification Ση,1 = BB′,

Ση,2 = (B + Q)(B + Q)′, where Q is a matrix whose non-zero elements capture the changes, if

any, that occur in the structural parameters across the two volatility regimes. Under suitable

linear restrictions on B and Q, the SVAR can be (point-)identified such that the relationships

ηt = Bet (first volatility regime) and ηt = (B + Q)et (second volatility regime) are not subject

to the limits of causal ordering.

6We refer to Lütkepohl (2013) and Lütkepohl and Netšunajev (2017) for a review of this literature.
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2.2 Identification strategy

Consider the SVAR for Xt:=(UMt, Yt, UFt)
′ defined in eq. (1) and the structure of the uncondi-

tional covariance matrix Ση:

Ση = E(ηtη
′
t):=


σ2M σM,Y σM,F

σ2Y σY,F

σ2F

 , (6)

where, σM,Y = E(ηMtηY t), σM,F = E(ηMtηFt) and σY,F = E(ηY tηFt). For ease of exposition,

assume that there are two structural changes in the unconditional error covariance matrix, which

correspond to the existence of three distinct volatility regimes.7 If t=TB1 and t=TB2 denote the

dates of the two structural breaks, with 1 < TB1 < TB2 < T , then the reduced form VAR in eq.

(1) can be generalized to:

Xt = Π(t)Wt + ηt , Ση(t):=E(ηtη
′
t) , t = 1, ..., T (7)

where Wt := (X ′t−1, ..., X
′
t−p, 1)′ contains lagged regressors and a constant, Π(t) is the matrix of

associated slope (autoregressive) coefficients given by

Π(t):=Π1 × 1 (t ≤ TB1) + Π2 × 1 (TB1 < t ≤ TB2) + Π3 × 1 (t > TB2) (8)

and, finally, the error covariance matrix Ση(t) is given by

Ση(t):=Ση,1 × 1 (t ≤ TB1) + Ση,2 × 1 (TB1 < t ≤ TB2) + Ση,3 × 1 (t > TB2) (9)

where 1 (·) is the indicator function. Key to our identification approach is that Ση,1 6= Ση,2 6=
Ση,3. Important for our analysis, notice that the specification in eq.s (7)-(9) covers the case in

which also the slope (autoregressive) parameters vary across volatility regimes (Π1 6= Π2 6= Π3).
8

We assume that the system described by eq.s (7)-(9) is subject to a set of regularity assump-

tions (Assumptions 1-3 in the Technical Supplement) which allow standard inference. Given the

existence of three volatility regimes, the SVAR is defined by the structural specification:

ηt = Bet 1 ≤ t ≤ TB1

ηt = (B +Q2) et TB1 < t ≤ TB2

ηt = (B +Q2 +Q3) et TB2 < t ≤ T
(10)

7This is the case we will deal with in our empirical section. Our analysis, however, can be easily generalized

to the case in which there are m structural breaks in the unconditional error covariance matrix, corresponding to

m+ 1 volatility regimes in the data.
8The number of VAR lags might change across volatility regimes, i.e. the number of columns of Π1, Π2 and Π3

might be different. In this and in the other sections we work, without any loss of generality, under the maintained

hypothesis that the VAR lag length is the same across regimes.
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where B, Q2 and Q3 are 3×3 matrices containing structural parameters and et:=(eMt, eY t, eFt)
′

is the vector of structural shocks such that E(et)=03×1 and with normalized covariance ma-

trix E(ete
′
t):=I3.

9 As before, we call eMt ‘macroeconomic uncertainty shock’, eFt ‘financial

uncertainty shock’ and eY t ‘shock to real activity’. In eq. (10), B is the non-singular matrix

that governs the structural contemporaneous relationships (on-impact responses) between the

variables and the shocks in the first volatility regime. The matrix Q2 captures the changes

in the structural parameters, if any, from the first to the second volatility regime, hence the

non-singular matrix (B +Q2) captures the structural contemporaneous relationship (on-impact

responses) between the variables and the shocks in the second volatility regime. The matrix Q3

captures the change in the structural parameters, if any, from the second to the third volatility

regime, hence the non-singular matrix (B +Q2 +Q3) captures the structural relationship (on-

impact responses) between the variables and the shocks in the third volatility regime. Eq. (10)

leads to the system of second-order moment conditions

Ση,1 = BB′ (11)

Ση,2 = (B +Q2) (B +Q2)
′ (12)

Ση,3 = (B +Q2 +Q3) (B +Q2 +Q3)
′ (13)

which link the reduced form to the structural parameters. System (11)-(13) represents the

platform upon which the SVAR with breaks in volatility can be identified.

In order to point-identify the SVAR, it is necessary to add to system (11)-(13) a proper set

of linear restrictions on B, Q2 and Q3, such that a rank condition is meet (Bacchiocchi and

Fanelli (2015); see also Technical Supplement). These restrictions come from economic theory.

The so-obtained matrices B, Q2 and Q3 depend uniquely on the structural parameters which

we collect in the vector θ, hence we use the notation B = B(θ), Q2 = Q2(θ) and Q3 = Q3(θ).
10

The appealing feature of the structural specification in eq. (10) is that the matrices B(θ),

(B(θ) +Q2(θ)) and (B(θ) + Q2(θ) + Q3(θ)) need not be triangular, so that reverse causality

issues can be taken into account.

Moreover, the SVAR in eq.s (7)-(10) generates regime-dependent IRFs, which allows us to

address also the issue of possibly regime-dependent effects of uncertainty shocks. To see this

9An alternative and equivalent parametrization of the SVAR in eq. (10) is discussed in the Technical Sup-

plement and is based on the assumptions that the structural shocks have a diagonal matrix covariance matrix,

E(ete
′
t):=Σe:=diag(σ2

eM , σ
2
eY , σ

2
eF ), and that these variances may change across volatility regimes. The IRFs

presented and discussed in eq. (14) below can be ‘scaled’ accordingly. To keep exposition as simple as possible,

throughout the paper we refer, without loss of generality, to the parametrization of the SVAR in eq. (10), except

where explicitly indicated.
10The quasi-maximum likelihood (QML) estimation of θ is discussed in detail in Bacchiocchi and Fanelli (2015).
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point, let Ai, i = 1, 2, 3 be the reduced form companion matrices associated with the SVAR in

eq.s (7)-(10). The dynamic response of Xt+h to a one-standard deviation shock in variable j at

time t is then summarized by the (population) IRFs:

IRFj(h):=


R′(A1)

hRb̃j t ≤ TB1

R′(A2)
hR(b̃j + q̃2j) TB1 < t ≤ TB2

R′(A3)
hR(b̃j + q̃2j + q̃3j) t > TB2

h = 0, 1, ..., hmax

j = M,Y, F

(14)

where R is the selection matrix introduced in Section 2, b̃j is the j-th column of the matrix B̃,

b̃j + q̃2j is the j-th column of the matrix B̃ + Q̃2, b̃j + q̃2j + q̃3j is the j-th column of the matrix

B̃ + Q̃2 + Q̃3, respectively, and hmax is the largest horizon considered. Even in the special case

in which the slope (autoregressive) coefficients do not vary across volatility regimes, i.e. when

A1 = A2 = A3 (meaning that Π1 = Π2 = Π3 in eq. (8)), the IRFs in eq. (14) change across

volatility regimes because of the changes in the on-impact response coefficients.

3 Empirical results

In this section, we apply the SVAR for Xt:=(UMt, Yt, UFt)
′ presented in eq. (1) to address our

two main research questions: (i) Does the response of Yt to shocks to (UMt, UFt) vary across

macroeconomic regimes? (ii) Are UMt and UFt exogenous sources of fluctuations in Yt, or do

UMt and UFt also respond endogenously to shocks in Yt? In Section 3.1 we present the data and

in Section 3.2 we test for structural breaks in the unconditional volatility of the variables and

present evidence on the VAR informational sufficiency. In Section 3.3 we specify and discuss the

baseline non-recursive SVAR and in Section 3.4 we analyze the resultant IRFs.

3.1 Data

Our VAR includes three variables; UMt(f), UFt(f) and Yt, where Yt is a measure of real economic

activity, UMt(f) is a measure of f -period-ahead macroeconomic uncertainty and UFt(f) is a

measure of f -period-ahead financial uncertainty, where f = 1 (one-month) or f = 12 (one-year).

Our measure of real economic activity is the growth rate of the log of real industrial production,

denoted ∆ipt. The real industrial production index is taken from the FRED database. The

measure of financial uncertainty is taken from Ludvigson et al. (2017a), while the index of

macroeconomic uncertainty is taken from Jurado et al. (2015).11 The data are monthly and

cover the period 1960M8-2015M4 for a total of T = 653 observations. The use of these two

proxies of uncertainty, which are plotted in Figure 1 for f = 1 (one-month uncertainty), is

11The Technical Supplement also discusses at length how the two proxies of uncertainty have been constructed.
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motivated by two facts. First, as discussed in Jurado et al. (2015), other widely used measures

of uncertainty based on option-based volatility indexes such as VIX or VXO are comparatively

less defensible because they contain a large component attributable to changes in the variance

risk premium that are unrelated to common notions of uncertainty. Second, and more important

for our analysis, they allow us to disentangle macro and financial uncertainty using two proxies

that have been constructed using the same econometric methodology and that differ only in

terms of their informational content.

3.2 Volatility breaks and informational sufficiency

Two crucial features of our VAR are that the identification approach requires breaks in the

unconditional volatility of the data, and that a small-scale VAR like ours is not affected by

non-fundamentalness, which implicitly amounts to claim that it does not omit important vari-

ables. Our major hypothesis is that the relationship between uncertainty and real activity vary

across the main macroeconomic regimes of post-WW2 US business cycle because of changes

in the unconditional variance of Yt . To provide evidence in favour of volatility breaks, we

proceed in two steps. First, we provide suggestive evidence of time variation by looking at re-

cursive and rolling windows estimates of the residual variances and covariances in our baseline

VAR. Second, we formally test for the existence of two structural breaks using Chow-type tests,

with possible break dates identified in the previous step. Next, we deal with potential non-

fundamentalness of our VAR by testing for its ‘informational sufficiency’ using the procedure

by Forni and Gambetti (2014). We do so in light of the small dimension of Xt:=(UMt, Yt, UFt)
′

because non-fundamentalness is best seen as an informational deficiency problem. Not rejecting

the informational sufficiency of Xt:=(UMt, Yt, UFt)
′ ensures that we can correctly estimate the

effects of uncertainty shocks through IRFs.

We start by estimating our baseline VAR for Xt:=(UMt, Yt, UFt)
′ with four lags (p = 4)

both recursively and over 10- and 15-years rolling-windows. The estimates of the six elements

of the unconditional VAR error covariance matrix Ση are plotted in Figure 2. The graphs on

the diagonal report the estimated variances while the off-diagonal terms report the estimated

covariances for the recursive (blue line), the 10-years (red line) and the 15-years (yellow line)

rolling windows VARs. The graph in the position (2,2) reports the unconditional variance of

the residuals of the second equation of our VAR, the one associated with Yt, i.e. σ2Y in Ση in

eq. (6). The graph clearly shows that the average volatility level is time-varying, being higher

during the seventies and eighties, declining from the mid-eighties until the end of 2007, and

then increasing again after the financial crisis of 2007–08 before stabilizing. All the remaining

graphs in Figure 2 broadly confirm the presence of three volatility regimes. As expected, the two
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main changes of volatility occur in correspondence of the beginning of the Great Moderation

and Great Recession periods, respectively. The two dashed vertical lines correspond to the

possible break dates, i.e. TB1 = 1984M3 and TB2 =2007M12. These two break dates would

partition the whole sample period 1960M8-2015M4 into three different sub-samples: the Great

Inflation period (1960M8-1984M3, T = 280), the Great Moderation period (1984M4-2007M12,

T = 285), and the Great Recession+Slow Recovery period (2008M1-2015M4, T = 88).12 It

is worth noting, however, that while the unconditional variance associated with the proxy of

macroeconomic uncertainty roughly follows the same volatility pattern as the unconditional

volatility of Yt (position (1,1) in Figure 2), the unconditional variance associated with the proxy

of financial uncertainty increases until the beginning of nineties probably because of the process

of financial innovation which characterizes US financial markets (position (3,3) in Figure 2).

Interestingly, these differences in volatility patterns provide identification information in our

approach.

The evidence reported in Figure 2 is consistent with the information conveyed in Table 1. The

second column of Table 1 summarizes the OLS-based estimates of the VAR covariance matrix

Ση on the whole sample, i.e. under the null hypothesis that there are no volatility regimes in

the data (H ′0 : Ση,1 = Ση,2 = Ση,3), and then separately on the three volatility sub-periods.13 As

already shown in Figure 2, these results confirm that unconditional variances and covariances

have changed over time. Table 1 also summarizes some diagnostic statistics associated with the

estimated models, which suggest that VAR residuals tend to be not Gaussian but not serially

correlated within regimes.14 The non-normality of VAR disturbances is detected, as expected,

on the overall sample period but also within macroeconomic regimes and is fully consistent

with the analysis in e.g. Cúrdia et al. (2014). We remark that the possible presence of within-

regimes heteroskedasticity (conditional or unconditional), while affecting the full efficiency of our

estimates, does not represent a major obstacle to the identification strategy presented below.

12As concerns the third volatility regime, according to the U.S. National Bureau of Economic Research the

Great Recession began in December 2007 and ended in June 2009, thus extending over 19 months. Thus, we treat

TB2 =2007M12 as the date in which the Great Moderation ends. Considering three distinct volatility regimes

does not necessarily rule out the possibility that the VAR for Xt:=(UMt, Yt, UFt)
′ might display unconditional (or

possibly conditional) heteroskedastic disturbances within regimes, other than across them. This is clearly seen

from the graphs in Figure 2 but, as discussed below, does not represent a major obstacle to the implementation

of our identification approach.
13The OLS estimates in Table 1 can be interpreted as QML estimates generated by maximizing Gaussian

densities within each of the considered samples, see e.g. Bai (2000) and Qu and Perron (2007).
14Albeit the multivariate test for residuals autocorrelation associated the VAR estimated on the Great Reces-

sion+Slow Recovery period reported in Table 1 leads to reject the null hypothesis of absence of correlation, the

corresponding uni-equational tests computed on the single VAR equations do not reject the null. Results are

available upon request to the authors.
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To verify formally the hypothesis that there are two main structural breaks in the VAR

error covariance matrix at the dates TB1 =1984M3 and TB2 = 2007M12, we compute a set of

Chow-type tests. We first test whether the joint null hypothesis of absence of structural breaks

in all VAR coefficients:

H0 :

(
Π1

Ση,1

)
=

(
Π2

Ση,2

)
=

(
Π3

Ση,3

)
=

(
Π

Ση

)
(15)

is rejected and, conditional on the rejection of H0, we test the null hypothesis of absence of

volatility regimes

H ′0 : Ση,1 = Ση,2 = Ση,3 (16)

under the maintained restriction: Π1 = Π2 = Π3 = Π on slope coefficients. Results are sum-

marized in the bottom panel of Table 1 which reports the quasi-LR tests for the hypotheses

H0 and H ′0, respectively. Both H0 and H ′0 are strongly rejected by the data. This result is

consistent with Aastveit et al. (2017) who, using a wide range of econometric techniques, pro-

vide substantial evidence against the stability of common VARs in the period since the Great

Recession.

Other than documenting the existence of three broad volatility regimes in the data, Table 1

provides some rough evidence about the changing nature of the relationships between our proxies

of uncertainty, UMt and UFt, and real economic activity, Yt. This can be partly seen from the

correlations obtained from the estimated VAR residuals in the third column. The negative

correlation between the Yt-residuals and the UMt-residuals increases systematically in the move

from the Great Moderation to the Great Recession+Slow Recovery, while the correlation between

the Yt-residuals and the UFt-residuals is negative only on the Great Recession+Slow Recovery

period. Although it is not possible to infer any causality direction from the correlations in Table

1, the data clearly point towards changing relationships.

Finally, we check the ‘informational sufficiency’ of our small-scale VAR using the testing

procedure of Forni and Gambetti (2014). For each macroeconomic regime, we consider an

augmented VAR system (a FAVAR) comprising Xt plus a vector of factors, included in the vector

Vt, extracted from the McCracken and Ng’s (2015) large set of macroeconomic and financial

variables. We then test whether Vt Granger-causes Xt. Detailed results are reported in the

Technical Supplement and show that the null of absence of Granger-causality from Vt to Xt is

supported in all three volatility regimes. This is evidence against the presence of nonfundamental

shocks induced by lack of informational sufficiency, and suggests that the risk of incorrectly

recovering the shocks from our non-recursive SVAR is under control.
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3.3 The structural model

In this section we discuss the specification of the matrices of structural parameters B = B(θ),

Q2 = Q2(θ) and Q3 = Q3(θ) in eq. (10). Recall that the vector of shocks is et:=(eMt, eY t, eFt)
′,

and we call conventionally eMt ‘macroeconomic uncertainty shock’, eFt ‘financial uncertainty

shock’ and eY t ‘shock to real activity’, see the discussion in Section 2.

The three volatility regimes we have identified in the previous section provide us with 18

moment conditions. Since we have 27 parameters to estimate, we need to place at least 9

parameter restrictions to achieve identification. We do so by imposing a triangular structure

in the first subsample only, which guarantees non-triangular structures (in particular, ‘full’

matrices) in the second and third subsamples. This means that in the Great Inflation period

causality runs from macro uncertainty to real activity and financial uncertainty, but not the

reverse.15 Such restrictions allow us to keep the number of identifying constraints to place on

Q2 = Q2(θ) and Q3 = Q3(θ) in the two remaining regimes at a minimum, so to tackle jointly

the issues of time-variation and reverse causality. It is important to notice that the triangular

structure imposed in the first subsample means that we give financial factors the ‘passive’ role

of merely amplifying the shocks before the eighties, and bring the role of financial markets back

to center-stage of business cycle when we consider periods after the mid-eighties. This is in

line with Ng and Wright (2013), who stress how the role played by financial factors in driving

business cycle fluctuations has become relevant only from the 1980s onwards.16

15Results are robust to the inversion of macroeconomic and financial uncertainty in the VAR, see Section 4.
16Our choice is also supported by institutional facts, in particular the changes in the norms regulating financial

markets which occurred in the early 1980s, like the Depository Institutions Deregulation and Monetary Control

Act in 1980, particularly the termination of regulation Q, and the Garn-St. Germain Act of 1982, which granted

easier access to financial liquidity to households and firms only from the mid-eighties onwards.
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Based on these considerations, the non-recursive SVAR in eq. (10) is based on the matrices:

Great Inflation:

B̃:=


bMM 0 0

bYM bY Y 0

bFM bFY bFF


Great Moderation:

B̃ + Q̃2:=


bMM q2,MY q2,MF

bYM + q2,Y M bY Y + q2,Y Y q2,Y F

bFM bFY + q2,FY bFF


Great Recession + Slow Recovery:

B̃ + Q̃2 + Q̃3:=


bMM q2,MY + q3,MY q2,MF + q3,MF

bYM + q2,Y M + q3,Y M bY Y + q2,Y Y + q3,Y Y q2,Y F + q3,Y F

bFM bFY + q2,FY + q3,FY bFF

 ,

(17)

hence the vector of structural parameters θ contains 18 non-zero coefficients bi,js, q2,ij and q3,ij ,

i, j = M,Y, F (dim(θ)=18). The symbol ‘∼’ remarks that B̃ = B(θ), B̃ + Q̃2 = B(θ) + Q2(θ)

and B̃ + Q̃2 + Q̃3 = B(θ) + Q2(θ) + Q3(θ) respect the necessary and sufficient rank condition

for identification. The non-recursive structures of the matrices B̃+ Q̃2 (Great Moderation) and

B̃+ Q̃2 + Q̃3 (Great Recession+Slow Recovery) in eq. (17) stresses that we are ‘agnostic’ about

causality links from the onset of the Great Moderation and let the data determine whether

macroeconomic and financial uncertainty also respond endogenously to negative economic fluc-

tuations. Observe that the estimation of two separate SVARs, one based on ηt = (B̃ + Q̃2)et

on the Great Moderation period and the other based on ηt = (B̃ + Q̃2 + Q̃3)et on the Great

Recession+Slow Recovery period, respectively, would not be possible with ‘standard’ recursive

schemes.

Eq. (17) gives rise to the following system

Ση,1 = B̃B̃′ (18)

Ση,2 = (B̃ + Q̃2)(B̃ + Q̃2)
′ (19)

Ση,3 = (B̃ + Q̃2 + Q̃3)(B̃ + Q̃2 + Q̃3)
′ (20)

which maps 18 structural parameters contained in B̃, B̃ + Q̃2 and B̃ + Q̃2 + Q̃3 (dim(θ)=18) to

18 second-order moment conditions provided by Ση,1, Ση,2 and Ση,3.

3.4 The dynamic effects of uncertainty shocks

The non-recursive SVAR specified in eq. (17) is estimated on the period 1960M8-2015M4 im-

posing the two break dates TB1 = 1984M3 and TB2 =2007M12 which define the three volatility

16



regimes analyzed in Section 3.2. The quasi-maximum likelihood (QML) estimates of the struc-

tural parameters θ that enter the matrices B̃, B̃ + Q̃2 and B̃ + Q̃2 + Q̃3 are reported for f = 1

(one-month uncertainty) in the upper panel of Table 2, along with analytic and bootstrap stan-

dard errors.17 The estimated θ̂ corresponds to the on-impact responses featured by our IRFs.

A plot of the estimated structural shocks êjt, t = 1, ..., T , j = M,Y, F , where êt = B̂−1i η̂t,

i = 1, 2, 3, B̂1 = B̃, B̂2 = B̃ + Q̃2, B̂3 = B̃ + Q̃2 + Q̃3, is reported in Figure 3. The graph

interestingly shows that the identified macro and financial uncertainty shocks are substantially

different. Prominent macro uncertainty shocks are those corresponding to the two oil price

shocks of the 1970s and the fiscal battles in the 2010s, while the stock market crash in 1987 and

the Asian crisis in the late 1990s are examples of two major financial uncertainty shocks which

did not cause any increase in macroeconomic uncertainty. The GFC in 2007-2009 is an example

of a shock that has increased both macro and financial uncertainty.

The IRFs are computed as in eq. (14) by replacing A1, A2 and A3 and B̃, B̃ + Q̃2 and

B̃+Q̃2+Q̃3 with their QML estimates, and are plotted in Figures 4-7 over an horizon of hmax =60

periods (5 years). Figure 4 compares the IRFs obtained on the three volatility regimes for f = 1

(one-month uncertainty) on the same graph. Figures 5-7 plot the IRFs separately for each

regime, disentangling the case f = 1 (one-month uncertainty) from the case f = 12 (one-year

uncertainty). All plots show responses to one standard deviation changes in ejt, j = M,Y, F in

the direction that leads to an increase in its own variable Xit, i = M,Y, F , where XMt = UMt,

XY t = Yt and XFt = UFt, respectively. This normalization allows us to directly compare the

responses of real economic activity in the three volatility regimes.

In Figure 4 (which can be fully appreciated in color), the blue IRFs refer to the Great In-

flation period, the red IRFs to the Great Moderation period and the yellow IRFs to the Great

Recession+Slow Recovery period. The first row reports the response to each shock of macroeco-

nomic uncertainty, the second row reports the response of industrial production, and the third

row reports the response of financial uncertainty. Confidence bands have not been reported

to ease reading.18 In order to compare results with simple benchmarks, Figure 4 also plots the

IRFs generated by two recursive Cholesky-based SVARs estimated on the whole sample 1960M8-

2015M4, i.e. under the hypothesis of constant parameters (which has been sharply rejected by

17Bootstrap standard errors are computed using Kilian’s (1998) bootstrap-after-bootstrap method, keeping the

break dates TB1 = 1984M3 and TB2 =2007M12 fixed and resampling (non-parametrically) separately within each

volatility regime.
18Recall that the reduced form analysis in Section 3.2 shows that there are significant differences between all VAR

coefficients (autoregressive parameters and covariance matrices) across the three volatility regimes. Accordingly,

the three IRFs in each graph of Figure 4 read as transformations of parameters which are different in their

population values.
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the data in Section 3.2). One recursive SVAR is based on the ordering XR
t :=(UMt, Yt, UFt)

′

(dashed black IRFs), and the other is based on the ordering XR′
t :=(UFt, Yt, UMt)

′ (dotted black

IRFs). We consider these two orderings in order to be as neutral as possible on the relative

importance of the two sources of uncertainty.

The graphs in Figure 4 suggest four main comments. First, there is evidence of substantial

time variation in the impulse responses: the estimated IRFs differ quantitatively and qualita-

tively across the three volatility regimes. Although uncertainty shocks curb industrial produc-

tion growth in all three macroeconomic regimes, the persistence of the shocks and the number

of periods after which the negative peak is reached vary across regimes. Second, the effects

of macroeconomic uncertainty shocks on all variables are larger and more persistent in the

Great Recession+Slow Recovery period.19 In particular, macroeconomic uncertainty seems to

have played a sizable role in driving persistently down economic activity during this period.

Third, while real activity reacts negatively and persistently to uncertainty shocks, uncertainty

reacts only mildly to real activity shocks, if anything. Fourth, there exists substantial difference

between the IRFs estimated with our non-recursive SVAR and the IRFs produced with conven-

tional Cholesky-based systems which ignore the presence of volatility regimes in the data. In

particular, the constant-parameter VARs with Cholesky identification fail to capture both the

magnitude and the persistence of the responses in the Great Recession+Slow recovery period.

The differences between the IRFs in the three macroeconomic regimes can further be ap-

preciated by looking at the numbers in Tables 3a-3b, which extrapolate the significant peaks

of the IRFs plotted in Figure 4 along with the number of months necessary to achieve these

peaks. Table 3a refers to our non-recursive SVAR, while Table 3b refers to the two Cholesky-

based systems. Table 3a indicates that within each macroeconomic regime, both the magnitude

and persistence of the effects of uncertainty shocks increase with the length of the uncertainty

horizon f . Moreover, the negative effects of uncertainty shocks tend to be higher on the Great

Recession+Slow Recovery sample, which is the period characterized by higher financial frictions

after the financial crisis of 2007-2008. Finally, the magnitude of the effect of macroeconomic

uncertainty shocks is typically higher, on average, than the effect of financial uncertainty shocks.

The comparison of estimates in the two Tables shows that ignoring the regime-dependence na-

ture of the effects of uncertainty shocks leads one to underestimate their impact. Consider, as

an example, the case f = 1: the estimated highest negative effect of macroeconomic uncertainty

shocks ranges from -0.11 to -0.07 percentage points according to the Cholesky-based SVARs,

19The comparatively more jagged profile of the IRFs estimated on the Great Recession+Slow Recovery period

(yellow lines) in Figure 4 can be explained in terms of the combined effects of the financial crisis of 2007–08 and

the shorter estimation sample (T = 88 monthly observations as opposed to T = 280 observations on the Great

Inflation and T = 280 observations on the Great Moderation).
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and is achieved either on-impact or 3 months after the shock; with the non-recursive SVAR, the

effect is instead equal to -0.178 percentage points and is achieved 5 months after the shock on

the Great Recession+Slow recovery period.

Overall, combined with the reduced form evidence in Section 3.2, Figure 4 and Table 3

provide a positive answer to our first research question: the short-run relationship between

uncertainty and real economic activity changes qualitatively and quantitatively across macroe-

conomic regimes. A researcher who ignores the regime-dependent nature of uncertainty shocks is

likely to estimate compounded effects, which hide the different dynamics displayed in the data.

We now examine in more detail the specific features of each macroeconomic regime by looking

at Figures 5-7, which report the estimated IRFs with associated 90% bootstrap confidence bands

(shaded areas) separately for the three volatility regimes. The we focus on the reverse causality

issue.

Great Inflation. Figure 5 plots the dynamic responses of the variables inXt:=(UMt, Yt, UFt)
′

to each structural shock during the Great Inflation period (1960M8-1984M3) considering both

f = 1 (one-month uncertainty, blue line) and f = 12 (one-year uncertainty, red line). The

graphs show that, in line with the specification in eq. (17), positive shocks to macroeconomic

uncertainty lead to a decline in industrial production growth, which is statistically significant

for a large number of months. IRFs are shorter-lived and less persistent in the case f = 1.

For f = 1, the largest effect is on impact and is equal to -0.101 percentage points, while for

f = 12 the negative significant peak is obtained 8 months after the shock and is equal to -0.067

percentage points.

Positive shocks to financial uncertainty have lagged (recall that there is no instantaneous

impact according to eq. (17)) and slightly less persistent negative effects on industrial produc-

tion growth relative to the case of macroeconomic uncertainty shocks. The effect of financial

uncertainty shocks lasts for roughly 12 months after the shock, reaches its maximum significant

negative effect 3 months after the shocks and is equal to -0.121 (f = 1) and -0.101 (f = 12)

percentage points, respectively.

Notably, regardless of whether one considers macroeconomic or financial uncertainty shocks,

industrial production growth does not overshoot its trend after recovering, suggesting that the

decline in industrial production might be permanent.20 Conversely, for both f = 1 and f = 12,

20This phenomenon is further scrutinized in the Technical Supplement where we report the associated cumulated

long-run multipliers, which quantify the final effect of uncertainty shocks on the level of industrial production

once all dynamic adjustments are taken into account. The analysis confirms the existence of a significant long

run negative impact.
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macroeconomic and financial uncertainty do not respond significantly to shocks to real economic

activity, suggesting that there might be no reverse causality on the Great Inflation period.

Overall, for the Great Inflation period, the IRFs in Figure 5 corroborate the hypothesis

that both macroeconomic and financial uncertainty shocks trigger recessionary effects. They

also support the view that uncertainty is a driver, rather than a consequence, of business cycle

fluctuations.

Great Moderation. Figure 6 plots the dynamic responses of the variables inXt:=(UMt, Yt, UFt)
′

to each structural shock on the Great Moderation period (1984M4-2007M12). In this case, we

have a fully non-recursive structural framework, as the matrix B̃ + Q̃2 in eq. (17) is full and

does not exclude short-run instantaneous causality from macroeconomic and financial uncer-

tainty shocks to real economic activity and, simultaneously, from real economic activity shocks

to macroeconomic and financial uncertainty.

The graphs show that positive shocks to macroeconomic uncertainty lead to a decline in

industrial production growth with a slowdown which remains statistically significant for about

12 months after the shock for f = 1, and for about 30 months after the shocks for f = 12. The

peak effect of macroeconomic uncertainty shocks is on-impact and is equal to -0.085 percentage

points for f = 1, while it occurs after 2 months and is -0.069 percentage points for f = 12,

which are similar in magnitude to what observed in the Great Inflation period.

Positive shocks to financial uncertainty lead to a sharp decline in industrial production

growth but the effect is short-lived. Indeed, for both f = 1 and f = 12, the highest significant

negative effect is on-impact and is equal to -0.194 and -0.173 percentage points, respectively. Also

in this case, both macroeconomic and financial uncertainty shocks seem to lead to a permanent

drop in industrial growth because the dynamics of Yt does not overshoot its trend significantly

after recovering.

As concerns the reverse causality issue, the estimated IRFs suggest that while macroeconomic

uncertainty does not respond significantly to real economic activity shocks in the short-run, the

response of one-month (f = 1) financial uncertainty is significant for about 20 months after

the shock. This result is in line with the positive response of financial uncertainty to industrial

production shocks found by Ludvigson et al. (2017a) on the entire 1960-2015 period, although

the IRFs are less persistent in their case. Also Bekaert et al. (2013) find a positive response of

their measure of financial uncertainty to positive shocks to industrial production growth: they

consider the sample 1990M1-2007M7 which is compatible with our Great Moderation period,

but their IRFs are not statistically significant.21 The procyclical significant responses of UFt

21Popescu and Smets (2010) show that real industrial production shocks in Germany have significant, yet

non-monotonic, effects on perceived uncertainty. In their case, both uncertainty and risk premia initially fall in
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to real economic shocks in the system Xt:=(UMt, Yt, UFt)
′ during the Great Moderation are

not permanent because the associated long-run impact multipliers, reported in the Technical

Supplement, are not statistically significant. Moreover, as it will be seen in Section 4, the

dynamic causality link from real economic activity shocks to one-month financial uncertainty

does not prove to be robust to a crucial control for financial frictions.

Overall, the IRFs in Figure 6 confirm that both macroeconomic and financial uncertainty

curb real economic activity during the Great Recession period with slightly larger effects for

financial uncertainty shocks compared to what estimated on the Great Inflation period.

Great Recession+Slow Recovery. Figure 7 plots the dynamic responses of the variables

in Xt:=(UMt, Yt, UFt)
′ to each structural shock on the Great Inflation+Slow Recovery period

(2008M1-2015M4). Also in this case, the non-recursive structure of the matrix B̃ + Q̃2 + Q̃3 in

eq. (17) is full and features reverse causality.

In this case, positive shocks to macroeconomic uncertainty lead to a decline in industrial

production growth with a slowdown which remains statistically significant for about 10 months

for both f = 1 and f = 12. Regardless of the length of the uncertainty horizon, the highest

negative impact of macroeconomic uncertainty shocks is reached 5 months after the shock and

is equal to -0.178 (f = 1) and -0.174 (f = 12) percentage points, respectively. Compared to the

previous subsamples, the response of industrial production is less persistent but the magnitude

is remarkably larger.

Positive shocks to financial uncertainty produce comparatively more jagged responses of

industrial production growth. The highest negative significant peak is obtained 3 months after

the shock and is equal to -0.183 (f = 1) percentage points and -0.123 (f = 12) percentage

points, respectively.

As before, both macroeconomic and financial uncertainty shocks do not seem to generate

overshooting phenomena in industrial production growth. We do not detect reverse causality in

this regime.

Overall, the IRFs in Figure 7 show that the real effects of uncertainty shocks have become

larger during the Great Recession+Slow Recovery period. We notice that this is in line with

several contributions in the literature, which highlight how uncertainty shocks have had larger

effects during the Great Recession. This can be due to large financial frictions, as in Alfaro et

al. (2016), Caggiano et al. (2017b), and Gilchrist et al. (2014), or to the presence of the Zero

Lower Bound, as in Caggiano et al. (2017a) and Basu and Bundik (2017).

Reverse causality: discussion. The IRFs plotted in Figures 5-7 deliver also an answer

response to positive output shocks, but eventually increase.
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to our second research question, i.e. whether uncertainty is an exogenous source of economic

fluctuations or an endogenous response to it, or both. Overall, the estimated dynamic causality

relationships provide clear evidence that uncertainty shocks trigger a persistent reaction in real

activity, while evidence that uncertainty reacts to real activity shocks is scant.

These findings on reverse causality allow us to make contact with Ludvigson et al. (2017a),

the paper in the literature that is the closest to ours in this respect. In line with their results,

we find that financial uncertainty is an important driver of the business cycle, and it is not

a reaction to it. However, we find remarkable differences compared to their analysis when we

look at the behavior of macroeconomic uncertainty. While they report that macroeconomic

uncertainty shocks have positive effects on real activity and that it could be characterized as

an endogenous response to business cycle fluctuations, we find that macroeconomic uncertainty

is as important as financial uncertainty in triggering a downturn in real activity, and that it

is exogenous to the business cycle. As discussed in Section 2.1, Ludvigson et al. (2017a) base

their conclusions from a novel methodology which combines the external instruments approach

with the mechanics of set-identification, see also Ludvigson et al. (2017b). The endogeneity of

macroeconomic uncertainty they document might reflect the ‘asymmetric’ characterization of

financial and macroecomomic uncertainty shocks implicit in their approach (i.e. the fact that

both of their two synthetic instruments are correlated with financial uncertainty while only one

of them is correlated with macroeconomic uncertainty), and the effects of the constraints they

impose on the unobservable shocks. Instead, our approach point-identifies the non-recursive

SVAR by treating macroeconomic and financial uncertainty symmetrically, and allowing for

regime-dependence in the SVAR parameters, which unveils important time-variation in the dy-

namic responses to uncertainty shocks. Strictly speaking, the two approaches are not directly

comparable: in our case, sampling uncertainty is evaluated using frequentist confidence inter-

vals; on the other hand, as argued in Ludvigson et al. (2017b), in set-identified models the

evaluation of sampling uncertainty from a frequentist perspective is challenging and is specific

to the imposition of the particular identifying restictions.

4 Robustness checks

In this section, we check the robustness of our findings to a number of perturbations of the

baseline structural model. These refer to: the inclusion of a measure of financial stress in the

system to control for first-moment financial shocks; the ordering of the variables in the first

volatility regime; the use of a measure of macroeconomic uncertainty ‘purged’ from its financial

component as in Ludvigson et al. (2017a); the use of the growth rate of employment as a measure
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of real economic activity. Here we sketch a summary of these checks which are analyzed in details

in the Technical Supplement.

The role of financial frictions. Our baseline empirical analysis considers macroeconomic

and financial uncertainty jointly but ignores financial frictions, which have been analyzed in

several recent contributions, see e.g. Bachmann et al. (2013), Christiano et al. (2014), Gilchrist

et al. (2014), Alessandri and Mumatz (2014) and Alfaro et al. (2016); see also Caldara et al.

(2016), Caggiano et al. (2017b) and Furlanetto et al. (2017). We check whether the omission of

measures of financial frictions drive our main results by estimating our non-recursive SVAR for

two different vectors of endogenous variables: X∗t := (UFt, Yt, CSt)
′ and X∗◦t :=(UMt, Yt, CSt)

′,

respectively, where CSt is the spread between yields on Baa- and Aaa-rated long-term industrial

corporate bonds (source FRED database). In both models we assume, in line with the specifica-

tion in eq. (17), that the uncertainty measure is exogenous on the Great Inflation period, while

it can also respond contemporaneously to other shocks on the Great Moderation and Great

Recession+Slow Recovery regimes. Results are reported in Figures TS.1-TS.3 of the Technical

Supplement. The baseline findings in Figures 5-7 on the contractionary effect of uncertainty

shocks tend to be confirmed: industrial production reacts negatively to both macro and finan-

cial uncertainty, and it does so by more in the Great Recession+Slow Recovery period. As far

the reverse causality issue is concerned, controlling for first-moment financial shocks reinforces

the baseline result of exogenous uncertainty: in none of the three macroeconomic regimes real

economic activity shocks trigger significant responses to financial uncertainty. In particular,

Figure TS.2 shows that also in the Great Moderation period, financial uncertainty UFt does no

longer respond significantly to real economic activity shocks.

Different ordering of macroeconomic and financial uncertainty in the first volatil-

ity regime. The main advantage of our identification approach over a number of alternative

methods is that it allows full contemporaneous reactions of all variables to all shocks. This

holds true, looking at the specification in eq. (17), in all identified volatility regimes except the

first one, i.e. the Great Inflation period, where we take a specific stance on causality, which

we assume running from macroeconomic to financial uncertainty. In principle, this restriction

might drive, at least partly, our findings on time variation and reverse causality in the Great

Inflation period and, more generally, in all identified volatility regimes. To check whether our

baseline findings, i.e. real activity reacts more to macroeconomic uncertainty shocks in the

Great Recession+Slow Recovery period and causality runs from uncertainty to real activity, are

driven by this restriction, we re-estimate the structural model by including financial uncertainty

first and macroeconomic uncertainty last. Estimated IRFs, reported in Figures TS.4-TS.6 of

the Technical Supplement, point out that there are not appreciable differences relative to the
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baseline case in Figures 5-7.

‘Purged’ measure of macroeconomic uncertainty. The proxy of macroeconomic un-

certainty used in our baseline model, taken from Jurado et al. (2015), is constructed using a

dataset that contains both macroeconomic and financial indicators. In principle, this measure

might have substantial overlap with the financial uncertainty index by Ludvigson et al. (2017a)

and might be capturing not pure macroeconomic uncertainty but a mixture of macro and finan-

cial uncertainty. To overcome this problem, we proceed as in Ludvigson et al. (2017a) and adopt

a measure of macroeconomic uncertainty which is extracted from a smaller dataset including

only real activity indicator (‘real uncertainty’). We label this sub-index UpMt. Estimated IRFs,

reported in Figures TS.7-TS.9 of the Technical Supplement, tend to confirm substantially the

overall picture in Figures 5-7 produced for the baseline case.

Employment as real activity indicator. Our main findings show that real activity, prox-

ied by the growth rate of industrial production, reacts significantly to both macro and financial

uncertainty shocks and that these effects are remarkably larger in the Great Recession+Slow

Recovery period. To check whether this finding is not confined to the specific measure of real

activity we have adopted, we use as an alternative to industrial production the growth rate

of employment. IRFs are reported in Figures TS.10-TS.12 of the Technical Supplement and

confirm qualitatively the baseline scenario in Figures 5-7.

Overall, the robustness checks reported in this section show that our two main findings

hold true after changing the baseline specification in different directions, i.e. (i) the effects

of uncertainty shocks are time varying and depend on the macroeconomic regime, and (ii)

uncertainty, both macroeconomic and financial, is better characterized as an exogenous driver

of the business cycle rather than an endogenous response to it.

5 Concluding remarks

There has recently been a remarkable attention on the role played by time-varying uncertainty in

driving business cycle fluctuations. In spite of the expanding theoretical and empirical literature

on this topic, two main issues remain controversial: whether the real effects of uncertainty shocks

have changed over time, and whether time-variation in uncertainty should be considered as an

exogenous driver of the business cycle or, rather, an endogenous response to it.

This paper addresses both issues empirically and simultaneously by resorting to an ‘identification-

through-volatility’ approach, which is novel in the literature on uncertainty. Unlike other existing

identification approaches, our framework allows us to jointly estimate regime-dependent effects

of uncertainty shocks and is general enough to account for reverse causality, i.e. to allow for
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a contemporaneous response of both real activity to uncertainty shocks and of uncertainty to

real activity shocks. We apply this identification approach to a small-scale non-recursive SVAR

estimated on US post-WW2 data.

Our results suggest that there are important differences in the impact and propagation mech-

anisms of uncertainty shocks across the three main macroeconomic regimes that characterize US

business cycle, and that uncertainty, both macro and financial, is better approximated as an

exogenous source of economic decline rather than an endogenous response to it. We find that

uncertainty shocks, both macroeconomic and financial, have always had a contractionary impact

on real activity, but that these effects have become larger since the GFC.

Overall, our findings support theoretical and empirical research that highlights how uncer-

tainty shocks might have time-varying effects which depend on different macroeconomic condi-

tions like, e.g. the level of financial frictions (Alfaro et al., 2016; Gilchrist et al., 2014, Alessandri

and Mumtaz, 2014), the stance of the business cycle (Cacciatore and Ravenna, 2016; Caggiano

et al., 2014), or the stance of monetary policy (Basu and Bundick, 2017, Caggiano et al., 2017a).

They also supports the theoretical models where uncertainty is an exogenous driver of economic

fluctuations, as in e.g. Bloom (2009) and Basu and Bundick (2017). In this respect, our analysis

is partially consistent with the evidence reported in Ludvigson et al. (2017a) who also investi-

gate the exogeneity/endogeneity of financial and macroeconomic uncertainty empirically. While

we find that both macroeconomic and financial uncertainty are exogenous in all macroeconomic

regimes, Ludvigson et al. (2017a) report that macroeconomic uncertainty responds endoge-

nously to negative economic shocks. This discrepancy can be ascribed to the different methods

used to identify the uncertainty shocks. The two methods are not directly comparable in terms

of sample variability that can be associated with the estimated dynamic causality effects, but the

advantage of our non-recursive SVAR specification is that it combines economic reasoning with

the “truly exogenous” identification information provided by the changes in the distribution of

the data which reflect the changes in the impact and propagation of uncertainty shocks across

macroeconomic regimes.
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TABLE 1. Estimated reduced form VAR covariance and correlation matrices and Chow-type tests for structural breaks.

Overall period: 1960M8-2015M4 (T=653)

log-Likelihood = 2871.6

NDH = 645.281[0.000]

AR5 = 19.216[0.997]

Σ̂η =


1.05e-04∗ −0.011∗ 6.94e-05∗

0.433∗ 6.80e-04

7.39e-04∗

 , ρ̂η =


1 -0.167∗ 0.249∗

1 0.038

1


GI: 1960M8-1984M3 (T=280)

log-Likelihood = 1170.5

NDH = 111.242[0.000]

AR5 = 35.521[0.843]

Σ̂η,1 =


1.25e-04∗ −0.001∗ −3.49e-05∗

0.587∗ 0.002

6.72e-04∗

 , ρ̂η,1 =


1 -0.157∗ 0.120∗

1 0.086

1


GM: 1984M4-2007M12 (T=285)

log-Likelihood = 1399.9

NDH = 317.978[0.000]

AR5 = 51.729[0.228]

Σ̂η,2 =


7.18-05∗ −5.58e-04∗ 7.62e-05∗

0.221∗ 4.24e-04

7.84e-05∗

 , ρ̂η,2 =


1 -0.140∗ 0.321∗

1 0.032

1


GR+SR: 2008M1-2015M4 (T=88)

log-Likelihood = 428.1

NDH = 108.785[0.000]

AR5 = 79.523[0.001]

Σ̂η,3 =


8.51e-05∗ −0.001∗ 7.90e-05∗

0.378∗ −0.001

4.62e-04∗

 , ρ̂η,3 =


1 -0.214∗ 0.398∗

1 -0.089

1


H0 : quasi-LRT = 253.99[0.000] (no breaks in all VAR coefficients)

H ′0 : quasi-LRT = 96.061[0.000] (no breaks in the VAR covariance matrix)

Notes: Results are based on a VAR for Xt := (UMt, Yt, UFt)
′ (with four lags) with Yt = ∆ipt (industrial production growth). Top

panel: estimates on the whole sample. Second, third and fourth panels: estimates on partial samples. Bottom panel: Quasi-LRT

in the bottom panel are the Chow-type quasi-LR tests for the null H0 in eq. (15) and the null H ′0 in eq. (16). Asterisks (∗) denote

statistical significance at the 10% confidence level. NDH is the Doornik-Hansen multivariate test for Gaussian disturbances. AR5 is

an LM-type test for the absence of residual autocorrelation against the alternative of autocorrelated VAR disturbance up to 5 lags.

P -values in brackets. ‘GI’=Great Inflation, ‘GM’=Great Moderation and ‘GR+SR’=Great Recession + Slow Recovery.
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TABLE 2. Estimated structural parameters.

GI: 1960M8-1984M3 GM: 1984M4-2007M12 GR+SR: 2008M1-2015M4

SVAR for Xt := (UMt, Yt, UFt)
′

B̂ :=



0.0097
(0.0003)
(0.0004)∗

0 0

−0.1012
(0.0393)
(0.0509)∗

0.7570
(0.0320)
(0.0379)∗

0

0.0037
(0.0012)
(0.0012)∗

0.0028
(0.0015)
(0.0015)∗

0.0247
(0.0009)
(0.0014)∗


, B̂ + Q̂2 :=



0.0097
(0.0003)
(0.0004)∗

0.0008
(0.0010)
(0.0005)∗

0.0016
(0.0007)
(0.0005)∗

−0.0850
(0.0616)
(0.0460)∗

0.4220
(0.0305)
(0.0512)∗

−0.1940
(0.0541)
(0.0979)∗

0.0037
(0.0012)
(0.0012)∗

0.0129
(0.0031)
(0.0073)∗

0.0247
(0.0009)
(0.0014)∗


, B̂ + Q̂2 + Q̂3 :=



0.0097
(0.0003)
(0.0004)∗

0.0000
(0.0027)
(0.0029)∗

0.0031
(0.0012)
(0.0016)∗

−0.1379
(0.1854)
(0.1465)∗

0.6006
(0.0605)
(0.1012)∗

−0.048
(0.1513)
(0.1585)∗

0.0037
(0.0012)
(0.0012)∗

0.0000
(0.0053)
(0.0071)∗

0.0247
(0.0009)
(0.0014)∗


Notes: Estimated structural parameters based on the non-recursive SVAR for Xt := (UMt, Yt, UFt)

′, Yt = ∆ipt (industrial production

growth), specified in eq. (17). Hessian-based standard errors in parenthesis; bootstrap standard errors are denoted with asterisks

‘∗’, see footnote 17 for details; ‘GI’=Great Inflation; ‘GM’=Great Moderation; ‘GR+SR’=Great Recession + Slow Recovery.
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TABLE 3a. IRFs estimated from the non-recursive SVAR, negative peaks (percentage points).

GI: 1960M8-1984M3 GM: 1984M4-2007M12 GR+SR: 2008M1-2015M4

f = 1 f = 12 f = 1 f = 12 f = 1 f = 12

SVAR for Xt := (UMt, Yt, UMt)
′

eMt → Yt −0.101(0) −0.067(8) −0.085(0) −0.069(2) −0.178(5) −0.174(5)

eFt → Yt −0.121(3) −0.101(3) −0.194(0) −0.173(0) −0.183(3) −0.123(3)

Notes: Highest negative (significant) responses of Yt = ∆ipt (industrial production growth) to

one standard deviation change in macroeconomic (eMt) and financial (eFt) uncertainty shocks

at the one-month (f = 1) and one-year (f = 12) uncertainty horizons, obtained from the non-

recursive SVAR for Xt := (UMt, Yt, UFt)
′ specified in eq. (17). In parenthesis the number of

months after the shock at which the highest negative peak is reached.

TABLE 3b. IRFs estimated from Cholesky-based SVARs, negative peaks (percentage points).

SVAR for XR
t := (UMt, Yt, UFt)

′ SVAR for XR′
t := (UFt, Yt, UMt)

′

f = 1 f = 12 f = 1 f = 12

eMt → Yt −0.110(0) −0.085(4) −0.073(3) −0.054(4)

eFt → Yt −0.071(3) −0.065(3) −0.091(3) −0.067(3)

Notes: Highest negative (significant) responses of Yt = ∆ipt (industrial production growth) to

one standard deviation change in macroeconomic (eMt) and financial (eFt) uncertainty shocks at

the one-month (f = 1) and one-year (f = 12) uncertainty horizons, obtained from two Cholesky

SVARs for XR
t := (UMt, Yt, UFt)

′ and XR′
t := (UFt, Yt, UMt)

′, respectively, on the whole sample:

1960M8-2015M4. In parenthesis the number of months after the shock at which the highest

negative peak is reached.
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Figure 1: Measures of one-month (f = 1) macroeconomic uncertainty UMt (top-panel) and financial uncertainty UFt (bottom-

panel). UMt is taken from Jurado et al. (2015); UFt is taken from Ludvigson et al. (2017). Dashed black lines denote the two break

dates TB1=1984M3 and TB2=2007M12 which separate the three volatility regimes used to identify the shocks. The shaded areas

correspond to the NBER recession dates. Overall sample: 1960M8-2015M4.
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Figure 2: Recursive (blue line), 10-years (red line) and 15-years (yellow line) rolling windows estimates of the error covariance

matrix of the VAR for Xt := (UMt, Yt, UFt)
′, Yt = ∆ipt (industrial production growth). Dashed black lines denote the two break

dates TB1=1984M3 and TB2=2007M12 which separate the three volatility regimes used to identify the shocks. Overall sample:

1960M8-2015M4.
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Figure 3: Estimated structural shocks êjt, j = M,Y, F where êt = B̂−1i ηt, i = 1, 2, 3, B̂1 = B̂, B̂2 = (B̂+Q̂2) and B̂3 = (B̂+Q̂2+Q̂3)

from the non-recursive SVAR for Xt := (UMt, Yt, UFt)
′, Yt = ∆ipt (industrial production growth), specified in eq. (17). The first

panel plots the estimated macroeconomic uncertainty shock êMt, the second panel the estimated real activity shock êY t and the

last panel the estimated financial uncertainty shock êFt. Vertical dashed black lines are the two break dates TB1=1984M3 and

TB2=2007M12. Horizontal dotted black lines correspond to 2 standard deviations above/below the unconditional mean of each

series. The shaded areas correspond to the NBER recession dates. Overall sample: 1960M8-2015M4.
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Figure 4: IRFs obtained from the beseline non-recursive SVAR for Xt := (UMt, Yt, UFt)
′, Yt = ∆ipt (industrial production growth)

specified in eq. (17). UMt and UFt refer to the one-month (f = 1) uncertainty horizon. The blue line refers to the first volatility

regime (Great Inflation, 1960M8-1984M3); the red line refers to the second volatility regime (Great Moderation, 1984M4-2007M12);

the yellow line refers to the third volatility regime (Great Recession + Slow Recovery, 2008M1-2015M4). Dashed and dotted black

lines plot the IRFs obtained with two Cholesky-based SVARs with XR
t :=(UMt, Yt, UFt)

′ and XR′
t :=(UFt, Yt, UMt)

′ respectively on

the whole sample 1960M8-1984M3. Responses are measured with respect to one standard deviation changes in structural shocks.
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Figure 5: IRFs obtained in the first volatility regime (Great Inflation, 1960M8-1984M3) from the baseline non-recursive SVAR for

Xt := (UMt, Yt, UFt)
′, Yt = ∆ipt (industrial production growth) specified in eq. (17). The blue lines refer to the one-month (f = 1)

uncertainty horizon and blue shaded areas denote the associated 90% bootstrap confidence bands; the red lines refer to the one-year

(f = 12) uncertainty horizon and red shaded areas denote the associated 90% bootstrap confidence bands; bootstrap confidence

bands are computed using Kilian’s (1998) method. Responses are measured with respect to one standard deviation changes in

structural shocks.
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Figure 6: IRFs obtained in the second volatility regime (Great Moderation, 1984M4-2007M12) from the baseline non-recursive SVAR

for Xt := (UMt, Yt, UFt)
′, Yt = ∆ipt (industrial production growth) specified in eq. (17). The blue lines refer to the one-month

(f = 1) uncertainty horizon and blue shaded areas denote the associated 90% bootstrap confidence bands; the red lines refer to

the one-year (f = 12) uncertainty horizon and red shaded areas denote the associated 90% bootstrap confidence bands; bootstrap

confidence bands are computed using Kilian’s (1998) method. Responses are measured with respect to one standard deviation

changes in structural shocks.
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Figure 7: IRFs obtained in the third volatility regime (Great Recession + Slow recovery, 2008M1-2015M4) from the baseline non-

recursive SVAR for Xt := (UMt, Yt, UFt)
′, Yt = ∆ipt (industrial production growth) specified in eq. (17). The blue lines refer to the

one-month (f = 1) uncertainty horizon and blue shaded areas denote the associated 90% bootstrap confidence bands; the red lines

refer to the one-year (f = 12) uncertainty horizon and red shaded areas denote the associated 90% bootstrap confidence bands;

bootstrap confidence bands are computed using Kilian’s (1998) method. Responses are measured with respect to one standard

deviation changes in structural shocks.
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TS.1 Introduction

This Technical Supplement develops/expands a number of topics only partly discussed in the

paper and provides additional empirical results.

Section TS.2 formalizes the assumptions and regularity conditions which permit standard

asymptotic inference in the reduced form VAR with breaks in the covariance matrix, which

is at the basis of our non-recursive SVAR specification and identification approach. Section

TS.3 presents an alternative but equivalent parametrization of the non-recursive SVAR, and

discusses the necessary and sufficient rank conditions for (point-)identification. Section TS.4

presents an alternative estimation approach to the quasi-maximum likelihood (QML) method

used in the paper, which re-interprets the estimation of the non-recursive SVAR as a classic

minimum distance (CMD) problem. Section TS.5 summarizes how the proxies of uncertainty

UMt and UFt used in the paper and taken from Jurado et al. (2015) and Ludvigson et al. (2017),

respectively, have been constructed. Section TS.6 investigates whether the VAR systems based

on Xt:=(UMt, Yt, UFt)
′ and X∗t :=(UFt, Yt, CSt)

′, where CSt is a measure of credit spreads, are

‘informational sufficient’ in the sense of Forni and Gambetti (2014). Section TS.7 investigates

whether the IRFs reported in the paper also support significant long-run effects as measured

by cumulated long-run multipliers. Finally, Section TS.8 provides the graphs and detailed

comments for three robustness checks which are only briefly mentioned in the paper.
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TS.2 Model assumptions

In this section we formalize the set of assumptions behind the QML estimation of our non-

recursive SVAR with breaks in the error covariance matrix. For simplicity, we focus on the case

of m = 2 breaks and m+ 1 = 3 volatility regimes in the data, which is the situation we face in

the empirical section of the paper.

Our reference model is the SVAR discussed in Section 3 of the paper. The reduced form

belongs to the class of ‘VAR models with structural changes in regression coefficients and in

covariance matrices’ considered in Bai (2000), the only difference being that throughout the

paper we treat, without limiting the scopes of our analysis, the two volatility change points

(break dates) TB1 and TB2 as known. Our identification and estimation approach, however,

can also be applied by relaxing the assumption that TB1 and TB2 are known because it is in

principle possible to infer these dates directly from the data along the lines suggested by e.g.

Qu and Perron (2007) (see also references therein); see instead Podstawski and Velinov (2016)

for a possible generalization of our approach to the case of Markov-Switching SVARs.

Let Ft:=σ(Xt, Xt−1, ..., X1) be the sigma-field generated by the sequence Xt, Xt−1, ..., X1

and let ‖·‖ be the Euclidean norm. Let (Π0
i ,Σ

0
η,i) be the true values of the VAR parameters

(Πi,Ση,i), i = 1, 2, 3 in eq.s (7)-(9) of the paper. T 0
Bi

= [Tτ0
i
], 0 < τ0

i
< 1, i = 1, 2 are the true

break dates.

Assumption 1 The sequence {ηt,Ft} is a MDS (E(ηt | Ft−1) = 0n×1) which, in addition,

satisfies the condition suptE(‖ηt‖4+δ) <∞.

Assumption 2 Σ0
η,i 6= Σ0

η,i+1, i = 1, 2, 3. In addition, each entry in Σ0
η,i is different from the

corresponding entry in Σ0
η,i+1. Each true regime parameter (Π0

i ,Σ
0
η,i) corresponds to that of a

stationary process so that unit roots and explosive roots are ruled out.

Assumption 3 T 0
Bi

= [Tτ0
i
], where τ0

i
is the true fraction of the sample, i = 1, 2, are known.

Assumption 1 is a relatively standard regularity condition which models the VAR distur-

bances as MDS (conditional on past information) and requires the existence of up to fourth

moments. The first part of Assumption 2 requires that the differences of unconditional co-

variance matrices across regimes involve all elements of the covariance matrix. Actually, for

the purposes of inference on the reduced form parameters, Assumption 2 could be relaxed by

simply requiring that there exists an entry in Σ0
η,i which is different from the corresponding

entry in Σ0
η,i+1. We impose the stronger condition that all elements of the covariance matri-

ces differ across volatility regimes to guarantee the identifiability of the non-recursive SVAR.

2



More precisely, Assumption 2 posits that the covariance matrices Σ0
η,1, Σ0

η,2 and Σ0
η,3 provide

enough information to identify shocks in a non-recursive framework. We refer to Magnusson and

Mavroeidis (2014) for a thorough discussion of the inferential issues, including weak identifica-

tion issues, that may arise when possible instabilities in the moments and certain heterogeneity

in the data generating process is assumed. The second part of Assumption 2 establishes that

each volatility regime is characterized by ‘asymptotically stable’ VAR processes. Assumption 3

posits that the break dates are known to the econometrician but, as already observed, could be

relaxed.

Under Assumptions 1-3, the inference on the parameters (Πi,Ση,i), i = 1, 2, 3 in the SVAR

is standard, see e.g. Bai (2000) and Qu and Perron (2007). Therefore, also the inference on the

IRFs stemming from the associated SVAR is of standard type.

TS.3 Identification analysis

In this Section we discuss the necessary order conditions and the necessary and sufficient rank

conditions for (local) identification of the structural parameters θ which define the matrices

B, (B +Q2) and (B +Q2 +Q3) of the non-recursive SVAR specified in Section 3 of the paper.

Also in this case, we focus on the case of m = 2 breaks and m+ 1 = 3 volatility regimes, which

is the situation we face in the empirical section of the paper. The three volatility regimes are

associated with the covariance matrices Ση,1, Ση,2 and Ση,3, respectively.

Before discussing identification, it is worth mentioning an alternative but equivalent parametriza-

tion of the non-recursive SVAR with changes in volatility regimes presented in Section 2 of the

paper. In Section 2 of the paper, the structural shocks have been specified by normalizing

their variance to the unit matrix, i.e. E(ete
′
t) = In, and the matrices of structural param-

eters B, (B +Q2) and (B +Q2 +Q3) does not incorporate particular ‘normalization’ restric-

tions. Actually, it is possible to consider an equivalent specification of our SVAR based on

E(ete
′
t):=Σe:=diag(σ2eM , σ

2
eY , σ

2
eF ), where σ2eM , σ

2
eY , σ

2
eF are the variances of the three structural

shocks. With this parametrization, eq. (10) in the paper must be adapted to allow for changes in

Σe across volatility regimes and, at the same time, the matrices B, (B +Q2) and (B +Q2 +Q3)

must be properly normalized. Let Σe,1, Σe,2 and Σe,3 be the three covariance matrices of the

structural shocks in the three volatility regimes, where we denote with ei,t the structural shocks

in the i-th volatility regime, where E(ei,t) = 03×1 and E(ei,te
′
i,t) = Σe,i, i = 1, 2, 3. Eq. (10) in
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the paper changes in the form

ηt = B∗Σ
1/2
e,1 e

∗
1t 1 ≤ t ≤ TB1

ηt = (B +Q2)
∗Σ

1/2
e,2 e

∗
2t TB1 < t ≤ TB2

ηt = (B +Q2 +Q3)
∗Σ

1/2
e,3 e

∗
3t TB2 < t ≤ T

where B∗, (B +Q2)
∗ and (B +Q2 +Q3)

∗ are the analogs of the matrices B, (B +Q2) and

(B +Q2 +Q3) in eq. (10), but with diagonal elements normalized to ‘1’ and e∗it:=Σ
−1/2
e,i ei,t,

i = 1, 2, 3. Thus, the moment conditions in eq.s (11)-(13) of the paper become

Ση,1 = B∗Σe,1B
∗′

Ση,2 = (B +Q2)
∗Σe,2 (B +Q2)

∗′

Ση,3 = (B +Q2 +Q3)
∗Σe,3 (B +Q2 +Q3)

∗′

and a possible parametrization for Σe,1, Σe,2 and Σe,3 can be given as follows:

Σe,1 := diag(σ2eM,1, σ
2
eY,1, σ

2
eF,1), Σe,2 = Σe,1+diag(%1,2, %2,2, %3,2) and Σe,3 = Σe,2+diag(%1,3, %2,3, %3,3),

where the non-zero parameters %s capture the changes, if any, in the variance of the struc-

tural shocks across volatility regimes.1 In this case, the vector of structural parameters in-

clude the non-zero off-diagonal elements of B∗, (B +Q2)
∗ and (B +Q2 +Q3)

∗ and the variances

σ2eM,1, σ
2
eY,1, σ

2
eF,1 and the non-zero %s. Once we account for these adjustments, the necessary

order conditions and the necessary and sufficient rank conditions for identification are exactly

the same we discuss below for the baseline parametrization used in the paper. Moreover, once

the system has been identified, and defined sj to be the j-th column of the identify matrix,

the dynamic response of Xt+h to a shock in variable j at time t of size ej,t = δj is in this case

summarized by the (population) IRFs:

IRFj(h):=


R′(A1)

hRB∗ 1
σ2
ej,1

Σe,1sjδj t ≤ TB1

R′(A2)
hR
(
B̃ + Q̃2

)∗
1

σ2
ej,2

Σe,2sjδj TB1 < t ≤ TB2

R′(A3)
hR(B̃ + Q̃2 + Q̃3)

1
σ2
ej,3

Σe,3sjδj t > TB2

h = 0, 1, ..., hmax

j = M,Y, F

(TS.1)

which, apart from the scaling, mimic the ones in eq. (14) of the paper. Hence, R is a selection

matrix, B̃∗,
(
B̃ + Q̃2

)∗
and

(
B̃ + Q̃2 + Q̃3

)∗
are the identified counterparts of B∗, (B +Q2)

∗

and (B +Q2 +Q3)
∗ , and hmax is the largest horizon considered.

Now we turn to the identification conditions of the non-recursive SVAR based on the system

1Bacchiocchi (2017) proposes a different parametization that allows both changes in the structural parameters

and in the variances of the shocks across different volatility regimes, without normalizing the diagonal elements

to ‘1’.
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of second-order moment conditions in eq.s (11)-(13) of the paper, here reported for convenience:

Ση,1 = BB′ (TS.2)

Ση,2 = (B +Q2) (B +Q2)
′ (TS.3)

Ση,3 = (B +Q2 +Q3) (B +Q2 +Q3)
′ . (TS.4)

Here B = B(θ), Q2 = Q2(θ) and Q3 = Q3(θ) are matrices that depend on the vector of structural

parameters θ which contains the non-zero elements contained in the matrices B, (B +Q2) and

(B +Q2 +Q3). Eq.s (TS.2)-(TS.4) link the reduced form to the structural parameters. Let

r = 3
2n(n+ 1) be number of free elements contained in the matrices Ση,1, Ση,2 and Ση,3. Under

Assumption 2, system (TS.2)-(TS.4) provides r = 3
2n(n + 1) identifying restrictions on B, Q2

and Q3 induced by symmetry. The total number of elements in B, Q2 and Q3 is 3n2, hence it is

necessary to impose at least 3n2− r additional constraints to achieve identification. The 3n2− r
constraints needed to identify the SVAR are provided by economic reasoning, which means that

our identification approach combines both data properties (i.e. the heteroskedasticity provided

by the data) and theoretical considerations reflected in the specification of the structure of the

matrices B, (B +Q2) and (B +Q2 +Q3).

Defined the vector ψ:=(vec(B)′, vec(Q2)
′, vec(Q3)

′)′, the set of theory-based linear identify-

ing restrictions on B, Q2 and Q3 can be represented compactly in explicit form by:

ψ̃ = Gθ + d (TS.5)

where G is a known 3n2 × dim(θ) selection matrix of full-column rank, d:=(d′B, d
′
Q2
, d′Q3

)′ is

a 3n2 × 1 vector containing known elements and ψ̃ := (vec(B̃)′, vec(Q̃2)
′, vec(Q̃3)

′)′, where we

denote with B̃ = B(θ), Q̃2 = Q2(θ) and Q̃3 = Q3(θ) the identified counterparts of B, Q2 and

Q3. Other than accounting for (possibly) non-homogeneous restrictions,2 eq. (TS.5) allows

for cross-regime constraints, i.e. simultaneous restrictions which involve the elements of the

matrices B, Q2 and Q3 like, for example, b12 + q2,12 = 0 or b12 + q2,12 + q2,12 = 1, where b12,

q2,12 and q3,12 are the (1,2) elements of B, Q2 and Q3, respectively.

The moment conditions in eq.s (TS.2)-(TS.4) along with the constraints in eq. (TS.5) can

be conveniently summarized in the expression

σ+ = g(θ) (TS.6)

where σ+:=(vech(Ση,1)
′, vech(Ση,2)

′, vech(Ση,3)
′)′ is r×1, and g(·) is a nonlinear (differentiable)

vector function, see Bacchiocchi and Fanelli (2015) for details. The necessary and sufficient rank

2This means that the vector d can be non-zero.
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condition for identification is that the Jacobian matrix J(θ) := ∂g(θ)
∂θ′ be regular and of full-column

rank, dim(θ), when evaluated in a neighborhood of the true parameter value θ0.

The necessary order condition is dim(θ) ≤ r. The Jacobian J(θ) can be derived analytically

or evaluated numerically. If the rank condition for identification is satisfied, the SVAR in eq.s

(7)-(13) of the paper generates regime-dependent IRFs.

TS.4 Alternative estimation approach

In this Section we sketch an alternative estimation approach to QML for our baseline non-

recursive SVAR. The alternative estimation method reads as classical minimum-distance (CMD)

approach.

The idea is that the relationship in eq. (TS.6), written here as

σ+ − g(θ) = 0r×1 (TS.7)

can be interpreted as a measure of distance between the reduced form parameters (error variances

and covariances) in σ+ and the structural parameters θ. Moreover, under Assumptions 1-3 we

can estimate σ+ consistently so that eq. (TS.7) forms the basis for the CMD estimation of θ.

Our starting point is the condition

T 1/2(σ̂+T − σ
+
0 )

d−→ N(0r×1, Vσ+)

which holds under Assumptions 1-3 of Section TS.2. Here σ̂+T :=(vech(Σ̂η,1)
′, vech(Σ̂η,2)

′, vech(Σ̂η,3)
′)

is a consistent (say, OLS) estimate of σ+, σ+0 is the true value of σ+, the symbol ‘
d−→’ denotes

converge in distribution as T → ∞, and Vσ+ is a block-diagonal asymptotic covariance matrix

with form

Vσ+ :=


Vσ+

1

Vσ+
2

Vσ+
3

 , Vσ+
i

:=2D+
3 (Ση,i ⊗ Ση,i)(D

+
3 )′ , i = 1, 2, 3 (TS.8)

where D+
3 :=(D′3D3)

−1D′3 is the Moore-Penrose inverse of the duplication matrix D3 (Magnus

and Neudecker, 2007); empty spaces denote zeros. Notice that Vσ+ can be estimated consistently

by V̂σ+ by simply replacing Ση,i with their consistent estimates Σ̂η,i := 1
Ti

∑Ti
t=1(Xt−Π̂iWt)(Xt−

Π̂iWt)
′, i = 1, 2, 3 in eq. (TS.8).

We have all the ingredients to define the CMD estimation problem:

min
θ

(
σ̂+T − g(θ)

)′ (
V̂σ+

)−1 (
σ̂+T − g(θ)

)
(TS.9)
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which provides a CMD estimate θ̂T of the structural parameters. When r >dim(θ), a test of

overidentification restrictions implied by the SVAR specification is immediately available after

estimation, because under the null hypothesis σ+0 = g(θ0) it holds:

T
(
σ̂+T − g(θ̂T )

)′ (
V̂σ+

)−1 (
σ̂+T − g(θ̂T )

)
d−→ χ2(r − dim(θ)). (TS.10)

TS.5 Measures of uncertainty

In this section we briefly review how the two proxies of uncertainty used in the paper have been

built.

Following Jurado et al. (2015) and Ludvigson et al. (2017), the time series that proxy the

uncertainty indexes Uit(f), i = M,F , where f denotes the uncertainty horizon (f = 1 one-month

uncertainty and f = 12 one-year uncertainty in the paper), are estimated as the average of the

time-varying volatility, as produced by stochastic volatility models, of the forecast error of each

series in a large panel of macroeconomic (UMt(f)) and financial variables (UFt(f)), conditional

on information available.

To keep presentation as simple as possible, consider the quantity:

Uit(f):= lim
Ni→∞

1

Ni

Ni∑
j=1

U ijt(f) , i = M,F (TS.11)

where Ni is the number of time series in category i = M,F for which individual indices of the

type

U ijt(f):=
(
E
[(
eijt+f

)2 | It])1/2 , i = M,F (TS.12)

are computed. In eq. (TS.12), eij,t+f :=vij,t+f − E(vij,t+f | It); vij,t+f is the individual time

series at time t + f that belongs to the category i = M,F ; It is the information set available

at time t; E(vij,t+f | It) is the conditional forecast of vij,t+f based on information It; eij,t+f
is the associated conditional forecast error. Eq. (TS.12) defines the uncertainty associated

with the jth variable in the category i = M,F as the square root of the conditional volatility

generated by the (unpredictable) forecast error associated with that variable. Eq. (TS.11)

aggregates all the individual uncertainties in the category i = M,F. In particular, NM = 134

‘monthly macroeconomic time series’ covering the sample 1960M7-2015M4 are used for UMt(f)

and NF = 147 ‘monthly financial indicators’ are used for UFt(f);see Ludvigson et al. (2017)

and references therein for details.

We now focus on how the individual measures of uncertainty that enter eq. (TS.12) are

estimated in practice. Jurado et al. (2015) use factor augmented autoregressive models to
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estimate the conditional forecasts E(vij,t+f | It) and the decomposition eij,t+f = γij,t+fε
i
j,t+f ,

where εij,t+f is iidN(0,1) and γij,t+f is driven by stochastic volatility models of the form

log
(
γij,t+f

)2
= αij + δij log

(
γij,t+f−1

)2
+ τ ijξj.t+f , ξj,t+f ∼ iidN(0, 1) , i = M,F

where the parameters (αij , δ
i
j , τ

i
j) are subject to standard regularity conditions. Given the

estimates of (αij , δ
i
j , τ

i
j) for the jth variable in the category i = M,F , one gets the dynamics of

U ijt(f) in eq. (TS.12) and from these the measures of uncertainty in eq. (TS.11) are obtained

by aggregation.

TS.6 Information sufficiency and omitted variables analysis

In this section we analyze the ‘informational sufficiency’ of the VARs used in the paper to

analyze the relationships between uncertainty and real economic activity. We also investigate

the properties of the structural shocks estimated from our baseline structural specification with

respect to some historical events. To do this, we divide the section into two parts. In the first

part, we analyze the information sufficiency of the reduced form VARs for Xt:=(UMt, Yt, UFt)
′,

X∗t :=(UFt, Yt, CSt)
′, and X∗◦t :=(UFt, Yt, CSt)

′. In the second part, we describe some properties

of the estimated structural shocks êt obtained from the non-recursive SVAR (see eq. (17) and

Table 2 of the paper) for Xt:=(UMt, Yt, UFt)
′, X∗t :=(UFt, Yt, CSt)

′, and X∗◦t :=(UFt, Yt, CSt)
′.

Informational sufficiency and omitted information

Given our small-scale system, a natural concern is whether the VAR for Xt := (UMt, Yt, UFt)
′

satisfies the necessary and sufficient conditions which permit to correctly recover the structural

shocks of interest. To do so, we follow Forni and Gambetti (2014) and test the ‘informational

sufficiency’ of the specified VAR. Indeed, in light of the small dimension of Xt, not rejecting the

informational sufficiency of Xt:=(UMt, Yt, UFt)
′ allows us to rule out problems of nonfundamen-

talness, so that we can correctly estimate the effects of uncertainty shocks through IRFs. In

practice, we estimate a FAVAR model for the vector Wt:=(X ′t, V
′
t )′ where Vt:=(v1, v2t, v3t, v4t)

′

contains orthogonal factors extracted from a large set of macroeconomic and financial variables

which jointly account for almost 90% of the entire variability, see McCracken and Ng (2015),

and then run simple Granger-causality tests of Vt on Xt. This allows to check whether there

exists a substantial discrepancy between the econometrician’s information set and the agent’s

information set which, if present, would compromise the recovering of the shocks. We estimate

the FAVAR for Wt on the Great Inflation, Great Moderation and Great Recession+Slow recov-

ery periods, respectively and on each macroeconomic regime test whether Vt Granger-causes Xt.
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The upper panel of Table TS.1 reports bootstrapped p-values3 associated with the test for the

null of absence of Granger-causality, equation-wise and at the system level. It can be noticed

that the null hypothesis is not generally rejected at the 5% level of significance.

The mid and lower panels of Table TS.1 repeat the same exercise for the two alternative VAR

specifications based on X∗t := (UFt, Yt, CSt)
′ and X∗◦t := (UMt, Yt, CSt)

′, respectively, CSt being

a measure of financial frictions proxied with the spread between yields on Baa- and Aaa-rated

long-term industrial corporate bonds (source FRED). As for the baseline specification, also in

this case there are no rejections of the null hypotheses.

The results reported in Table TS.1 refer to a FAVAR model with four lags for the dependent

variables and eight lags for the factors. The results, however, are robust to more parsimonious

specifications with respect to the number of factors included in the analysis.4

In addition to informational sufficiency, a further simple check can be directly based on

the structural shocks êjt, j = M,Y, F estimated from the baseline non-recursive SVAR for

Xt:=(UMt, Yt, UFt)
′ (see eq. (17) and Table 2 of the paper). The shocks are obtained through

êt = B̂−1i η̂t, i = 1, 2, 3, where B̂1 = B̂, B̂2 = (B̂ + Q̂2) and B̂3 = (B̂ + Q̂2 + Q̂3) are fixed

at the QML estimates reported in Table 2 of the paper. It is natural to analyze whether êt

still contains predictable information with respect to the inflation rate (πt) and the federal

fund rate (it) which are variables excluded from the baseline three-equation VAR. To do so,

we regress êt := (êMt, êY t, êFt)
′ on two lags of πt and it and then test whether the associated

regression coefficients are jointly significant equation-wise and at the system level. The results

of the tests are reported in the upper panel of Table TS.2 in the form of bootstrapped p-

values. It can be noticed that we do not reject the null hypothesis of irrelevant regressors at the

5% nominal significance level. We repeat the same exercise considering the structural shocks

estimated from the non-recursive SVARs for X∗t := (UFt, Yt, CSt)
′ and X∗◦t := (UMt, Yt, CSt)

′,

respectively, keeping the structural specification of the SVAR in eq. (17) of the paper fixed.

Results are summarized in the mid and lower panels of Table TS.2 and, again, suggest that the

structural shocks produced by our small-scale non-recursive SVARs are not seriously affected by

the omission of the inflation rate and the federal funds rate.

As a final check, we come back on the factors Vt := (v1, v2t, v3t, v4t)
′ considered before in the

informational sufficiency analysis. We first perform a regression of êt on the first two lags of

the first factor (i.e. v1t−1 and v1t−2), which account for more than 55% of the total variability.

Then, we repeat the analysis by regressing êt on the first two lags of all four factors which jointly

account for almost 90% of the entire variability. The non rejection of the null hypothesis that

3All the bootstrap exercises, in this section, refer to the ‘wild bootstrap’ technique. We use the wild bootstrap

to control for the heteroskedasticity of the shocks within regimes in small samples.
4The complete set of results is available from the authors upon request.
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Vt does not bear relevant information on êt is substantially confirmed and is also valid for the

two alternative SVARs containing the credit spread indicator. The complete set of results is

reported in Table TS.3.

Estimated structural shocks and important historical events

Having verified the ‘statistical’ properties of estimated structural shocks êjt, j = M,Y, F ,

plotted in Figure TS.1 for the baseline specification, we analyze qualitatively whether they

reproduce important historical events characterizing the US and global economy. The upper

panel of Figure TS.1 plots the estimated macroeconomic uncertainty shock, êMt, the mid panel

plots the estimated real activity shock, êY t, and the lower panel plots the estimated financial

uncertainty shocks êFt. The horizontal dotted black lines in the graphs correspond to 2 standard

deviations above/below the unconditional mean of each series, while the shaded areas summarize

NBER official recession dates. From the graphs, it clearly emerges that the estimated shocks

are systematically higher in coincidence of the NBER recession dates (the shaded areas in the

graphs). An interesting exception refers to the so-called Black Monday (October 19, 1987),

when stock markets crashed around the world. The crash, originating from Hong Kong, almost

immediately spreads to Europe, hitting also the U.S. The Dow Jones Industrial Average (DJIA)

fell more than 22%. Other interesting events are the IMF Crisis in the United Kingdom in

1976 which forced the government to borrow $3.9 billion from the International Monetary Fund

(IMF), generating instabilities on the US financial market too, and the reactions of US policy

authorities in late 1978 that, facing with a collapse in confidence in the dollar, announced the

mobilization of more than $20 billion to defend the currency’s value in foreign exchange markets.

TS.7 Long-run multipliers

As is known, IRFs provide short-run (transitory) dynamic causal effects. In addition, IRFs are

explicitly aimed at identifying ‘structural shocks’ rather than measuring causal links between

time series, see e.g. Dufour and Renault (1998), Bruneau and Jondeau (1999), Yamamoto and

Kurozumi (2006) and Dufour et al. (2006) for a thorough discussion. For instance, it can

be easily shown that zero on-impact responses may become non-zero after a certain number of

periods. In this section we complement the analysis based on the IRFs reported in the paper with

long-run total multipliers (or long-run cumulative impulse response matrix). These multipliers

capture the (cumulative) limit impact of the structural shocks on the variables, if statistically

significant, by taking into account all dynamic adjustments at work in the system.5

5Interestingly, while Granger-noncausality at all horizons implies a long-run multiplier equal to zero, the

converse does generally not hold, hence the condition of zero long-run effect is less stringent than the one of
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In our setup, long-run multipliers are given by

∞∑
h=0

IRFj(h):=


R′(I3 −A1)

−1Rb̃j t ≤ TB1

R′(I3 −A2)
−1R(b̃j + q̃2j) TB1 < t ≤ TB2

R′(I −A3)
−1R(b̃j + q̃2j + q̃3j) t > TB2

h = 0, 1, ..., hmax

j = M,Y, F

where we have used the same notation as in the paper. The structural specification of the SVAR

is that of eq. (17) of the paper. Estimates are summarized in Table TS.4 for f = 1 (one-month

uncertainty) and f = 12 (one-year uncertainty), respectively. The upper panel of Table TS.4

refers to the baseline non-recursive SVAR for Xt:=(UMt, Yt, UFt)
′, while the lower panel refers

to the non-recursive SVAR based on X∗t :=(UFt, Yt, CSt)
′, where CSt is proxied by considering

the spread between yields on Baa- and Aaa-rated long-term industrial corporate bonds. In both

cases the structural specification is summarized in eq. (17) of the paper. Each estimated long-

run multiplier is associated with a bootstrap-based standard error. Recall that since we consider

the long-run cumulative impulse response matrix, the estimates obtained in correspondence of

‘eMt → Yt’, ‘eFt → Yt’ and ‘eCSt → Yt’ capture the long-run effect of uncertainty shocks and

credit shocks on the industrial production level.

The multipliers in Table TS.4 confirm that regardless of macroeconomic regimes and the

length of the uncertainty horizon f , macroeconomic uncertainty shocks cause a permanent de-

cline in real economic activity. The long-run total multiplier associated with macroeconomic

uncertainty shocks is negative and strongly significant. Instead, the long-run multipliers asso-

ciated with the impact of financial uncertainty shocks are not statistically significant. Overall,

Table TS.4 leads one to rule out the hypothesis that a rebound takes place after uncertainty

shocks curb economic activity. Indeed, the long-run (permanent) effect of these shocks is ei-

ther negative and significant (macroeconomic uncertainty shocks), or not significant (financial

uncertainty shocks).

Focusing instead on the reverse causality issue, the long-run multipliers in Table TS.4 show

that there are no significant long-run effects of real economic activity shocks on macroeconomic

and financial uncertainty.

Finally, results in the lower panel of Table TS.4 confirm what the IRFs reported in the paper

already suggested about causality links between credit spreads and financial uncertainty: while

credit spreads shocks do not have permanent long-run effects on financial uncertainty, financial

uncertainty shocks trigger a strong deterioration of credit conditions. This result is particularly

evident on the Great Recession+Slow Recovery period.

absence of Granger-causality at all forecasting horizons, see e.g. Fanelli and Paruolo (2010).
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TS.8 Robustness checks

In this section we report a set of robustness checks that complement the results discussed in the

paper and above. In Section TS.8.1 we analyze the role of financial frictions. In Section TS.8.2

we evaluate the robustness of results to inverting financial and macroeconomic uncertainty in our

non-recursive SVAR, which implies a change in the Great Inflation period. In Section TS.8.3

we replace the original measure of macroeconomic uncertainty, UMt, with a measure of ‘real

uncertainty’, see Ludvigson et al. (2017), purged from the part of uncertainty which can be

ascribed to financial markets. Finally, in Section TS.8.4 we check whether results are robust to

the use of a different proxy of real economic activity, i.e. employment (growth).

TS.8.1 Financial frictions

The baseline empirical analysis reported in the paper considers macroeconomic and financial

uncertainty jointly but ignores financial frictions. As argued in Bachmann et al. (2013), the

prolonged negative response of production to a surprise increase in uncertainty might indicate

that channels other than ‘wait and see’ may be relatively more important in the United States.

A number of recent papers have brought attention to such alternative channels. Arellano et al.

(2012) build a quantitative general equilibrium model in which an increase in uncertainty, in

the presence of imperfect financial markets leads firms to downsize projects to avoid default;

this impact is exacerbated through an endogenous tightening of credit conditions and leads to

a persistent reduction in output. Similarly, Christiano et al. (2014) develop a large-scale New

Keynesian model with financial frictions in which risk shocks have persistent effects on output.

The role of financial frictions as amplifiers of the effects of uncertainty shocks and cause of

possible permanent decline in economic activity is also rationalized in Gilchrist et al. (2014),

Alessandri and Mumatz (2014) and Alfaro et al. (2016). Caldara et al. (2016) and Caggiano

et al. (2017) analyze the interaction between financial conditions and economic uncertainty

and find that uncertainty shocks have an especially negative impact in situations where they

trigger a tightening of financial conditions. Furlanetto et al. (2017) disentangle the role of

credit and uncertainty shocks and find that shocks originating in the credit markets have larger

and longer-lived effects than uncertainty shocks. A common element in these contributions is

that uncertainty interacts with financial frictions to generate sizable and persistent reductions

in production.

We check whether the omission of measures of financial frictions drive our main results by

estimating our non-recursive SVAR for two different vectors of endogenous variables: X∗t :=

(UFt, Yt, CSt)
′ and X∗◦t :=(UMt, Yt, CSt)

′, respectively, where CSt is the spread between yields
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on Baa- and Aaa-rated long-term industrial corporate bonds (source FRED).6 The reduced form

analyses of these systems, not reported here but available upon request to the authors, confirm

the existence of three broad volatility regimes in the data which can be associated with the Great

Inflation, Great Moderation and Great Recession+Slow Recovery, respectively. In both specifi-

cations we assume, in line with the specification in eq. (17) of the paper, that the uncertainty

measure is exogenous on the Great Inflation period, while it can also respond contemporaneously

to other shocks on the Great Moderation and Great Recession+Slow Recovery regimes.

Results are reported in Figures TS.1-TS3. The baseline findings on the contractionary effect

of uncertainty shocks is confirmed also in the case where we control for first-moment financial

shocks: industrial production reacts negatively to both macro and financial uncertainty, and it

does so by more in the Great Recession+Slow Recovery period. As far the reverse causality

issue is concerned, controlling for first-moment financial shocks reinforces our baseline result

of exogenous uncertainty: in none of the three macroeconomic regimes real economic activity

shocks trigger significant responses to financial uncertainty. In particular, Figure TS.2 shows

that also in the Great Moderation period, financial uncertainty UFt does no longer respond

significantly to real economic activity shocks.

TS.8.2 Macroeconomic and financial uncertainty inverted in the Great In-

flation period

The identification strategy discussed in Sections 2 and 3 of the paper does not depend on the

ordering of the variables. However, the specification of our non-recursive SVAR in eq. (17)

implies a fully non-recursive structure for the responses on-impact of the variables to the shocks

only for the second (Great Moderation) and third (Great Recession+Slow recovery) volatility

regimes. In the first regime, it is imposed a recursive identification scheme which assumes that

macroeconomic uncertainty is exogenous in this regime and that financial uncertainty shocks do

not contemporaneously affect macroeconomic uncertainty and real economic activity. Although

widely justifiable, we check whether this choice affects the main conclusions of the paper.

We replicate the same analysis presented in the paper by considering the non-recursive SVAR

for Xt := (UFt, Yt, UMt)
′, i.e. with financial and macroeconomic uncertainty inverted. This

particular ordering of the variables, combined with the lower triangular structure imposed in

the first regime in eq. (17), implies the exogeneity of financial uncertainty in the Great Inflation

period. This constraint, however, is removed starting from the Great Moderation regime onward.

6Also in these cases, the reduced form analysis does not lead us to reject the hypothesis that the data are

characterized by the three volatility regimes and that the reduced form systems can be considered informational

sufficient in the sense of Forni and Gambetti (2014).
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Figures TS.4-TS.6 plot the dynamic responses of the variables in Xt := (UMt, Yt, UFt)
′ to each

structural shock during the Great Inflation, Great Moderation and Great Recession + Slow

Recovery periods, respectively, for f = 1 (one-month uncertainty, yellow line) and f = 12

(one-year uncertainty, green line).

Results point out that there are not appreciable differences relative to the baseline case

neither in terms of the recessionary effect of uncertainty shocks, nor as concerns the exogeneity

of the two sources of uncrtainty in all macroeconomic regimes.

TS.8.3 Real uncertainty

As noticed in Ludvigson et al. (2017), with e.g. f = 1, the proxy of uncertainty UFt(1)

and UMt(1) (Section TS.5) display comovement but also have independent variations as the

correlation between them is ‘only’ 0.58. Part of this correlation might be simply due, however,

to the fact that UMt(f) includes by construction also the uncertainty from a category of financial

variables which potentially overlap with the variables used to build the index UFt(f). For this

reason, we proceed as in Ludvigson et al. (2017) and adopt a measure of macroeconomic

uncertainty which is extracted from a smaller dataset including only real activity indicators

(‘real uncertainty’, UpMt). We re-estimate our non-recursive SVAR by replacing UMt(f) with

UpM,t(f).

Figures TS.7-TS.9 plot the implied IRFs considering both f = 1 (one-month uncertainty,

yellow line) and f = 12 (one-year uncertainty, green line) and Yt = ∆ipt (industrial production

growth). All the results confirm the main findings of the paper. Both macroeconomic and finan-

cial uncertainty shocks induce recessionary, although regime-specific, effects on the real activity

indicator. These effects are qualitatively and quantitatively comparable to those reported in the

paper and obtained through the ‘extended’ indicator for macroeconomic uncertainty UMt. The

results are very similar for both one-month f = 1 and one-year f = 12 uncertainty horizons.

It turns out that, differently from Ludvigson et al. (2017), macroeconomic uncertainty is as

important as financial uncertainty in triggering a downturn in real activity.

Moreover, apart a slightly positive reaction of the financial uncertainty indicator to a real

activity shock during the Great Moderation regime, these results robustify the finding that

uncertainty, both macroeconomic and financial, can be approximated as exogenous sources of

decline of economic activity.

TS.8.4 Real economic activity: employment growth

In this section we reproduce the analysis presented in the paper for the baseline case Xt :=

(UMt, Yt, UFt)
′ by measuring real economic activity Yt with Yt = ∆empt, where empt is the log
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of the employment level (source: FRED database). The reduced form analyses of these systems,

not reported here but available upon request to the authors, confirm the existence of three

broad volatility regimes in the data which can be associated with the Great Inflation, Great

Moderation and Great Recession+Slow Recovery, respectively. The structural specification is

the same as in eq. (17) of the paper.

Figures TS.10-TS.12 plot the dynamic responses of the variables in Xt := (UMt, Yt, UFt)
′

to each structural shock in the Great Inflation, Great Moderation and Great Recession + Slow

Recovery periods, respectively. The response of employment to macroeconomic and financial

uncertainty shocks is negative and regime dependent. The effects of financial uncertainty shocks,

in general, are larger in magnitude than the macroeconomic uncertainty ones. Dynamic causality

results suggest that macroeconomic and financial uncertainty act as exogenous sources, not

endogenous responses, of decline in economic activity.

Overall, the analysis confirms qualitatively the results discussed in the paper using industrial

production growth for Yt.
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TABLE TS.1: Information sufficiency: Bootstrap p-values of the Granger causality tests for the

first four factors in the FAVAR model.

GI: 1960M8-1984M3 GM: 1984M4-2007M12 GR+SR: 2008M1-2015M4

VAR for XF
t := (UMt, Yt, UFt, v1, v2, v3, v4)

′

UMt 0.20 0.06 0.99

Yt 0.05 0.02 0.88

UFt 0.20 0.61 0.88

System 0.08 0.32 0.87

VAR for X∗Ft := (UFt, Yt, CSt, v1, v2, v3, v4)
′

UFt 0.12 0.49 0.20

Yt 0.01 0.02 0.05

CSt 0.01 0.17 0.13

System 0.07 0.26 0.08

VAR for X∗◦Ft := (UMt, Yt, CSt, v1, v2, v3, v4)
′

UMt 0.03 0.17 0.75

Yt 0.01 0.02 0.70

CSt 0.01 0.30 0.32

System 0.02 0.12 0.43

Notes: Upper panel: the FAVAR model contains the variables XF
t :=

(UMt, Yt, UFt, v1, v2, v3, v4)
′. Mid panel: the FAVAR contains the variables X∗Ft :=

(UFt, Yt, CSt, v1, v2, v3, v4)
′. Lower panel: the FAVAR model contains the variables

X∗◦Ft := (UMt, Yt, CSt, v1, v2, v3, v4)
′. In all specifications, vit, i = 1, . . . , 4 are the first

four factors described in Section TS.6, Yt = ∆ipt (industrial production growth) and CSt

is a proxy of credit spread. The p-values are obtained using the ‘wild’ bootstrap approach.

‘GI’=Great Inflation, ‘GM’=Great Moderation and ‘GR+SR’=Great Recession + Slow

Recovery.
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TABLE TS.2: Structural shocks and monetary policy stance: Bootstrap p-values of the Granger

causality tests for interest rate (it) and inflation rate (πt) on the estimated structural shocks.

two lags for eight lags

it and πt it and πt

SVAR for Xt := (UMt, Yt, UFt)
′

êMt 0.04 0.04

êY t 0.21 0.93

êFt 0.94 0.98

System 0.27 0.36

SVAR for X∗t := (UFt, Yt, CSt)
′

êFt 0.21 0.75

êY t 0.21 0.58

êCSt 0.48 0.03

System 0.42 0.19

SVAR for X∗◦t := (UMt, Yt, CSt)
′

êMt 0.05 0.19

êY t 0.39 0.77

êCSt 0.74 0.05

System 0.38 0.27

Notes: Upper panel: the structural shocks are estimated through a SVAR for Xt :=

(UMt, Yt, UFt)
′. Mid panel: the structural shocks are estimated through a SVAR for X∗t :=

(UFt, Yt, CSt)
′. Lower panel: the structural shocks are estimated through a SVAR form

X∗◦t := (UMt, Yt, CSt)
′. Yt = ∆ipt (industrial production growth) and CSt is a proxy of credit

spread. The p-values are obtained using the ‘wild’ bootstrap approach. Overall sample: 1960M8-

2015M4.
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TABLE TS.3: Structural shocks and factors: Bootstrap p-values of the Granger causality test

for the factors (v1, v2, v3, v4)
′ on the estimated structural shocks.

Shock two lags for two lags for eight lags for

v1t (v1, v2, v3, v4)
′ (v1, v2, v3, v4)

′

SVAR for Xt := (UMt, Yt, UFt)
′

êMt 0.09 0.15 0.60

êY t 0.48 0.14 0.48

êFt 0.40 0.84 0.82

System 0.32 0.50 0.38

SVAR for X∗t := (UFt, Yt, CSt)
′

êFt 0.16 0.39 0.69

êY t 0.02 0.02 0.43

êCSt 0.93 0.75 0.43

System 0.08 0.08 0.037

SVAR for X∗◦t := (UMt, Yt, CSt)
′

êMt 0.12 0.08 0.60

êY t 0.26 0.11 0.43

êCSt 0.35 0.46 0.42

System 0.07 0.06 0.57

Notes: Upper panel: the structural shocks are estimated through a SVAR for Xt :=

(UMt, Yt, UFt)
′. Mid panel: the structural shocks are estimated through a SVAR for X∗t :=

(UFt, Yt, CSt)
′. Lower panel: the structural shocks are estimated through a SVAR form

X∗◦t := (UMt, Yt, CSt)
′. In all specifications, vit, i = 1, . . . , 4 are the first four factors described in

Section TS.6. Yt = ∆ipt (industrial production growth) and CSt is a proxy of credit spread. The

p-values are obtained using the ‘wild’ bootstrap approach. Overall sample: 1960M8-2015M4.
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TABLE TS.4. Long-run total multipliers.

GI: 1960M8-1984M3 GM: 1984M4-2007M12 GR+SR: 2008M1-2015M4

f = 1 f = 12 f = 1 f = 12 f = 1 f = 12

SVAR for Xt := (UMt, Yt, UFt)
′

eMt → Yt −1.7257
(0.6564)

−2.2605
(0.7861)

−1.1188
(0.3801)

−1.4108
(0.4328)

−1.4640
(0.6535)

−1.3691
(0.6690)

eMt → UFt 0.3019
(0.3111)

0.1685
(0.1388)

0.3762
(0.3584)

0.164
(0.1781)

0.8957
(0.4479)

0.2299
(0.1517)

eY t → UMt 0.0800
(0.1394)

0.1639
(0.1640)

−0.0124
(0.0614)

0.0232
(0.0490)

−0.0919
(0.1975)

−0.0309
(0.1506)

eY t → UFt 0.2001
(0.1451)

0.0795
(0.0570)

0.4100
(0.2820)

0.1386
(0.1430)

−0.0746
(0.3507)

0.008
(0.1425)

eFt → UMt 0.3014
(0.2240)

−0.0409
(0.2590)

0.1044
(0.0876)

0.0255
(0.0696)

0.0317
(0.1859)

−0.0772
(0.1449)

eFt → Yt −1.6905
(0.5985)

−0.8816
(0.6286)

−0.5103
(0.3549)

−0.2140
(0.3959)

0.1138
(0.5766)

0.4796
(0.6573)

SVAR for X∗t := (UFt, Yt, CSt)
′

eFt → Yt −1.1617
(0.4609)

−1.2032
(0.4997)

0.0768
(0.3597)

−0.6527
(0.3888)

−0.7784
(0.6490)

−0.8860
(0.9849)

eFt → CSt 2.8209
(0.7482)

2.9894
(0.8366)

0.8467
(0.4988)

1.0349
(0.5046)

1.8272
(0.6168)

2.3013
(1.544)

eY t → UFt 0.1285
(0.1249)

0.0363
(0.0413)

−0.4678
(0.3228)

0.1451
(0.1365)

−0.1874
(0.3404)

−0.0398
(0.1875)

eY t → CSt −0.5685
(0.4756)

−0.4939
(0.4818)

−0.6899
(0.3890)

0.2397
(0.4517)

−0.6149
(0.5465)

−0.5714
(0.7878)

eCSt → UFt −0.3297
(0.2002)

−0.0930
(0.0668)

−0.1848
(0.4316)

−0.0773
(0.1991)

−0.2619
(0.3894)

−0.1568
(0.3329)

eCSt → Yt 0.2573
(0.3740)

0.2963
(0.4141)

−0.2527
(0.3933)

−0.2449
(0.3853)

−0.7506
(0.5099)

−0.6702
(0.7767)

Notes: Estimated long-run total multipliers produced by the non-recursive SVAR (see eq. 17

of the paper), for Xt := (UMt, Yt, UFt)
′ (top panel), and X∗t := (UFt, Yt, CSt)

′ (bottom panel),

at one-month (f = 1) and one-year (f = 12) uncertainty horizons, Yt = ∆ipt (industrial

production growth) and CSt is a proxy of credit spread. Bootstrap standard errors in

parenthesis. ‘GI’=Great Inflation, ‘GM’=Great Moderation and ‘GR+SR’=Great Recession +

Slow Recovery.
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TABLE TS.4: Estimated structural shocks êjt, j = M,Y, F where êt = B̂−1i ηt, i = 1, 2, 3, B̂1 = B̂, B̂2 = (B̂ + Q̂2) and B̂3 =

(B̂ + Q̂2 + Q̂3) from the non-recursive SVAR for Xt := (UMt, Yt, UFt)
′, Yt = ∆ipt (industrial production growth), specified in

eq. (17) of the paper. The first panel plots the estimated macroeconomic uncertainty shock êMt, the second panel the estimated

real activity shock êY t and the last panel the estimated financial uncertainty shock êFt. Vertical dashed black lines are the two

break dates TB1=1984M3 and TB2=2007M12. Horizontal dotted black lines correspond to 2 standard deviations above/below the

unconditional mean of each series. The shaded areas correspond to the NBER recession dates. Overall sample: 1960M8-2015M4.
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FIGURE TS.1: Robustness check: IRFs obtained in the first volatility regime (Great Inflation, 1960M8-1984M3) from the non-

recursive SVARs for X∗t := (UFt, Yt, CSt)
′ (yellow lines) and X∗◦t := (UMt, Yt, CSt)

′ (green lines), respectively, specified in eq. (17)

of the paper. The uncertainty horizon is one-year (f = 12); Yt = ∆ipt (industrial production growth); CSt is a proxy of credit

spread; the yellow and the green shaded areas denote the associated 90% bootstrap confidence bands; bootstrap confidence bands

are computed using Kilian’s (1998) method. Responses are measured with respect to one standard deviation changes in structural

shocks.
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FIGURE TS.2: Robustness check: IRFs obtained in the second volatility regime (Great Moderation, 1984M4-2007M12) from the

non-recursive SVARs for X∗t := (UFt, Yt, CSt)
′ (yellow lines) and X∗◦t := (UMt, Yt, CSt)

′ (green lines), respectively, specified in eq.

(17) of the paper. The uncertainty horizon is one-year (f = 12); Yt = ∆ipt (industrial production growth); CSt is a proxy of credit

spread; the yellow and the green shaded areas denote the associated 90% bootstrap confidence bands; bootstrap confidence bands

are computed using Kilian’s (1998) method. Responses are measured with respect to one standard deviation changes in structural

shocks.
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FIGURE TS.3: Robustness check: IRFs obtained in the third volatility regime (Great Recession + Slow recovery, 2008M1-

2015M4) from the non-recursive SVARs for X∗t := (UFt, Yt, CSt)
′ (yellow lines) and X∗◦t := (UMt, Yt, CSt)

′ (green lines), respectively,

specified in eq. (17) of the paper. The uncertainty horizon is one-year (f = 12); Yt = ∆ipt (industrial production growth); CSt is

a proxy of credit spread; the yellow and the green shaded areas denote the associated 90% bootstrap confidence bands; bootstrap

confidence bands are computed using Kilian’s (1998) method. Responses are measured with respect to one standard deviation

changes in structural shocks.
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FIGURE TS.4: Robustness check: IRFs obtained in the first volatility regime (Great Inflation, 1960M8-1984M3) from the non-

recursive SVAR for Xt := (UFt, Yt, UMt)
′, Yt = ∆ipt (industrial production growth) specified in eq. (17) of the paper. The yellow

lines refer to the one-month (f = 1) uncertainty horizon and yellow shaded areas denote the associated 90% bootstrap confidence

bands; the green lines refer to the one-year (f = 12) uncertainty horizon and green shaded areas denote the associated 90% bootstrap

confidence bands; bootstrap confidence bands are computed using Kilian’s (1998) method. Responses are measured with respect to

one standard deviation changes in structural shocks.
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FIGURE TS.5: Robustness check: IRFs obtained in the second volatility regime (Great Moderation, 1984M4-2007M12) from

the non-recursive SVAR for Xt := (UFt, Yt, UMt)
′, Yt = ∆ipt (industrial production growth) specified in eq. (17) of the paper.

The yellow lines refer to the one-month (f = 1) uncertainty horizon and yellow shaded areas denote the associated 90% bootstrap

confidence bands; the green lines refer to the one-year (f = 12) uncertainty horizon and green shaded areas denote the associated

90% bootstrap confidence bands; bootstrap confidence bands are computed using Kilian’s (1998) method. Responses are measured

with respect to one standard deviation changes in structural shocks.
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FIGURE TS.6: Robustness check: IRFs obtained in the third volatility regime (Great Recession + Slow Recovery, 2008M1-

2015M4) from the non-recursive SVAR for Xt := (UFt, Yt, UMt)
′, Yt = ∆ipt (industrial production growth) specified in eq. (17) of

the paper. The yellow lines refer to the one-month (f = 1) uncertainty horizon and yellow shaded areas denote the associated 90%

bootstrap confidence bands; the green lines refer to the one-year (f = 12) uncertainty horizon and green shaded areas denote the

associated 90% bootstrap confidence bands; bootstrap confidence bands are computed using Kilian’s (1998) method. Responses are

measured with respect to one standard deviation changes in structural shocks.
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FIGURE TS.7: Robustness check: IRFs obtained in the first volatility regime (Great Inflation, 1960M8-1984M3) from the non-

recursive SVAR for Xp
t :=

(
UpMt, Yt, UFt

)′
, Yt = ∆ipt (industrial production growth), specified in eq. (17) of the paper. UpMt is the

measure of real uncertainty of Ludvigson et al. (2017). The yellow lines refer to the one-month (f = 1) uncertainty horizon and

yellow shaded areas denote the associated 90% bootstrap confidence bands; the green lines refer to the one-year (f = 12) uncertainty

horizon and green shaded areas denote the associated 90% bootstrap confidence bands; bootstrap confidence bands are computed

using Kilian’s (1998) method. Responses are measured with respect to one standard deviation changes in structural shocks.
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FIGURE TS.8: Robustness check: IRFs obtained in the second volatility regime (Great Moderation, 1984M4-2007M12) from the

non-recursive SVAR for Xp
t :=

(
UpMt, Yt, UFt

)′
, Yt = ∆ipt (industrial production growth), specified in eq. (17) of the paper. UpMt is

the measure of real uncertainty of Ludvigson et al. (2017). The yellow lines refer to the one-month (f = 1) uncertainty horizon and

yellow shaded areas denote the associated 90% bootstrap confidence bands; the green lines refer to the one-year (f = 12) uncertainty

horizon and green shaded areas denote the associated 90% bootstrap confidence bands; bootstrap confidence bands are computed

using Kilian’s (1998) method. Responses are measured with respect to one standard deviation changes in structural shocks.
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FIGURE TS.9: Robustness check: IRFs obtained in the third volatility regime (Great Recession + Slow Recovery, 2008M1-

2015M4) from the non-recursive SVAR for Xp
t :=

(
UpMt, Yt, UFt

)′
, Yt = ∆ipt (industrial production growth), specified in eq. (17)

of the paper. UpMt is the measure of real uncertainty of Ludvigson et al. (2017). The yellow lines refer to the one-month (f = 1)

uncertainty horizon and yellow shaded areas denote the associated 90% bootstrap confidence bands; the green lines refer to the

one-year (f = 12) uncertainty horizon and green shaded areas denote the associated 90% bootstrap confidence bands; bootstrap

confidence bands are computed using Kilian’s (1998) method. Responses are measured with respect to one standard deviation

changes in structural shocks.
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FIGURE TS.10: Robustness check: IRFs obtained in the first volatility regime (Great Inflation, 1960M8-1984M3) from the

non-recursive SVAR for Xt := (UMt, Yt, UFt)
′, Yt = ∆empt (employment growth) specified in eq. (17) of the paper. The yellow lines

refer to the one-month (f = 1) uncertainty horizon and yellow shaded areas denote the associated 90% bootstrap confidence bands;

the green lines refer to the one-year (f = 12) uncertainty horizon and green shaded areas denote the associated 90% bootstrap

confidence bands; bootstrap confidence bands are computed using Kilian’s (1998) method. Responses are measured with respect to

one standard deviation changes in structural shocks.
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FIGURE TS.11: Robustness check: IRFs obtained in the second volatility regime (Great Moderation, 1984M4-2007M12) from

the non-recursive SVAR for Xt := (UMt, Yt, UFt)
′, Yt = ∆empt (employment growth) specified in eq. (17) of the paper. The yellow

lines refer to the one-month (f = 1) uncertainty horizon and yellow shaded areas denote the associated 90% bootstrap confidence

bands; the green lines refer to the one-year (f = 12) uncertainty horizon and green shaded areas denote the associated 90% bootstrap

confidence bands; bootstrap confidence bands are computed using Kilian’s (1998) method. Responses are measured with respect to

one standard deviation changes in structural shocks.
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FIGURE TS.12: Robustness check: IRFs obtained in the third volatility regime (Great Recession + Slow Recovery, 2008M1-

2015M4) from the non-recursive SVAR for Xt := (UMt, Yt, UFt)
′, Yt = ∆empt (employment growth) specified in eq. (17) of the

paper. The yellow lines refer to the one-month (f = 1) uncertainty horizon and yellow shaded areas denote the associated 90%

bootstrap confidence bands; the green lines refer to the one-year (f = 12) uncertainty horizon and green shaded areas denote the

associated 90% bootstrap confidence bands; bootstrap confidence bands are computed using Kilian’s (1998) method. Responses are

measured with respect to one standard deviation changes in structural shocks.
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