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Long cycles in growth: explorations using new 
frequency domain techniques with US data 

Bank of Finland Research 
Discussion Papers 6/2010 

Patrick M Crowley 
Monetary Policy and Research Department 
 
 

Abstract 

In his celebrated 1966 Econometrica article, Granger first hypothesized that there 
is a ‘typical’ spectral shape for an economic variable. This ‘typical’ shape implies 
decreasing levels of energy as frequency increases, which in turn implies an 
extremely long cycle in economic fluctuations and therefore in growth. Spectral 
analysis is however based on certain assumptions that render these basic 
frequency domain techniques inappropriate for analysing non-stationary economic 
data. In this paper three recent frequency domain methods for extracting cycles 
from non-stationary data are used with US real GNP data to analyse fluctuations 
in economic growth. The findings, among others, are that these more recent 
frequency domain techniques neither provide evidence to support the ‘typical’ 
spectral shape, nor an extremely long growth cycle following Granger. 
 
Keywords: business cycles, growth cycles, frequency domain, spectral analysis, 
long cycles, Granger, wavelet analysis, Hilbert-Huang Transform (HHT), 
empirical mode decomposition (EMD), non-stationarity 
 
JEL classification numbers: C13, C14, O47 
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Ovatko Yhdysvaltain talouden pitkät kasvujaksot vain 
tilastollisten menetelmien synnyttämiä mielikuvia? 

Suomen Pankin keskustelualoitteita 6/2010 

Patrick M. Crowley 
Rahapolitiikka- ja tutkimusosasto 
 
 

Tiivistelmä 

Taloustieteen nobelisti Clive Granger esitti reilut 40 vuotta sitten, että taloudel-
lisen aikasarjan vaihtelu syntyy taloudellisille muuttujille ominaisten jaksottaisten 
komponenttien vaikutuksesta. Tällä Grangerin ajatuksella taloudellisen sarjan 
spektrin tyypillisestä muodosta on ollut huomattava vaikutus aikasarjaekonomet-
riassa. Spektrin tyypillinen muoto tarkoittaa, että trendi hallitsee aikasarjan vaihte-
lua ja että lyhyen aikavälin vaihteluiden merkitys on suhteellisesti pienempi. 
Spektraalianalyysin soveltaminen epästationaaristen taloudellisen aikasarjojen 
vaihtelun hajotelmaan ei kuitenkaan ole perusteltua. Tässä tutkimuksessa sovelle-
taan kolmea suhteellisen uutta taajuusalueen menetelmää Yhdysvaltain brutto-
kansantuotteen kasvujaksojen estimointiin. Näillä menetelmillä saadut tulokset 
eivät tue Grangerin väitettä spektrin tyypillisestä muodosta eivätkä näin ollen tästä 
seuraavia äärimmäisen pitkiä talouskasvun trendejä. 
 
Avainsanat: suhdannevaihtelut, kasvujaksot, taajuusalue, spektraalianalyysi, 
Granger, väreanalyysi, Hilbertin-Huangin muunnos, empiirisen tyyppiarvon hajo-
telma, epästationaarisuus 
 
JEL-luokittelu: C13, C14, O47 
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The existence of a typical spectral shape suggests the following law (stated

in nonrigorous but familiar terms): The long-term fluctuations in economic

variables, if decomposed into frequency components, are such that the

amplitudes of the components decrease smoothly with decreasing period. (page

155)

Granger (1966)

1 Introduction

Of all macroeconomic variables, perhaps the most important in our discipline

is that of economic growth, and as macroeconomists we still think of growth in

cyclical terms, particularly in reference to the ‘business cycle’. But there are

many other fluctuations apparent in growth, perhaps emanating from specific

sectors or industries ( — an idea that originated in the real business cycle

literature), with the strength of the linkages between industries or sectors

assumed to determine when these cycles might spillover, as they have done

in the current economic downturn, to affect the entire macroeconomy. These

shorter cycles are not recognized as important in the orthodox macroeconomics

literature, which instead focuses on (mostly productivity) ‘shocks’. Conversely,

there is a tacit assumption in economics that a longer cycle exists ( — sometimes

referred to as a ‘medium term cycle’: see Comin and Gertler, 2003), a cycle

that is assumed to be driven by technological change which occurs over several

decades. At the extreme, some economists still argue that a very long cycle in

growth exists with periodicity of at least 50 years.

In the economics literature frequency domain techniques were first

introduced in a celebrated paper by Granger (1966), and the techniques used in

his paper are still practiced by most economists. Indeed the quote which begins

this paper is taken from Granger’s original 1966 contribution, and implies that

as period decreases ( — in other words frequency increases), the amplitude

or strength of fluctuations should decrease. Granger went much further than

just stating this as a general rule, and thought that this pattern could be

thought of as a ‘law’, which gives rise to a ‘typical’ shape for the spectrum of

any economic variable. The implication from Granger’s work is that there is

an extremely long cycle at work in macroeconomic fluctuations. Indeed even

recent work in economics has continued to make this assumption, and yet if

more recent frequency domain techniques are used, as shown in this paper,

Granger’s results appear to no longer hold true.

This paper seeks to explore some of the above issues using the simple metric

of the growth in US real GNP. To preview the general conclusions reached

in the paper (among others), they are three-fold: firstly the business cycle

does not appear to reside in one particular frequency mode in the frequency

domain; secondly, the assumptions about the existence of a long cycle in growth

(suggested in the opening quote from Granger’s paper) are not borne out by

the results obtained here; and thirdly, the transformation of real GNP reveals

very different results in terms of identifiable cycles in the frequency domain.
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The paper is organized into eight sections. Section 2 gives a short overview

and presents the data used in the paper. Section 3 introduces spectral analysis,

while section 4 introduces some of the more recent frequency domain techniques

now in wide usage. Section 5 outlines both the discrete and continuous wavelet

analysis approaches, while section 6 introduces and applies the empirical mode

decomposition technique. Section 7 discusses and compares the findings of the

different frequency domain techniques and lastly section 8 concludes.

2 Overview and data

2.1 Overview

Identifying the different frequencies at work in economic variables was

pioneered by economists working in the early part of the last century.

Economists such as Kitchin (1923), Keynes (1936), Schumpeter (1939),

Mitchell (1946), and Burns and Mitchell (1946) studied the cycles in real

GDP to determine how these cycles might interact and to assess what was

driving these cycles. Zarnowitz and Moore (1986) (p. 522) neatly summarizes

Schumpeter (1939)’s lengthy discussion (in volume 1, chapter 4) of the different

types of cycles that early business cycle theorists hypothesized, namely:

i) the Kitchin (about 2 to 4 years), which were supposedly related to inventory

investment;

ii) the Juglar (about 7 to 10 years), which roughly correspond to our current

business cycle;

iii) the Kuznets (about 15 to 25 years), which purportedly relates to changes

in factor growth and infrastructure cycles; and

iv) the Kondratieff (about 48 to 60 years), which was originally related to

large swings in prices and perhaps technology (see Kondratieff, 1984).

Schumpeter (1939) even went as far as to construct a cyclical scheme such

that there would be 3 Kitchin’s per Juglar and 6 Juglars per Kondratieff.

Nevertheless, other economists (notably Burns and Mitchell, 1946) could find

little evidence for such a scheme and settled on a specific form of the Juglar

cycle which he labelled the ‘business cycle’ and this terminology of the phases

of the business cycle (expansion and recession) persists to this day. Other

cycles have also been proposed, most notably the Wardwell, Spiethoff and

Hicks cycles (see Hicks, 1950).

The first systematic frequency domain analysis of cycles in growth data

was by Granger and Hatanka (1964)1 with commentary by Adelman (1965)

and then the celebrated article by Granger (1966) appeared in Econometrica.

1Crum’s 1923 spectral analysis of monthly New York commercial paper rates is mentioned

in Schumpeter (1939), where it was found that a prominent 40 month cycle appeared to exist

so frequency domain analysis has a long lineage in economics.
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Figure 1: ‘Typical’ spectral shape of an economic variable (taken from

Granger, 1966)

This article claims that ‘moreover, the same basic (spectral) shape is found

regardless of the length of data available, the size of the truncation point used

in the estimation procedure, or the trend removal method used’. The ‘typical’

spectral shape, in terms of the frequency of cycles detected in data in Granger’s

original article, is shown below in figure 1.

Granger’s ‘law’, which serves as the quote at the beginning of this

paper, follows directly. Granger’s research was updated by Levy and

Dezhbakhsh (2003b) and Levy and Dezhbakhsh (2003a), who state that

‘Granger emphasizes that any peak of the spectrum of level series is at a very

low frequency, and that the spectrum does not include peaks of decreasing

size corresponding to cycles of different lengths’. This result seems at odds

with economic growth data mainly because we would expect to be able to

identify ‘peaks’ which correspond to the business cycle in the power spectrum

for macroeconomic data.

Back when Granger’s 1966 contribution was made, the notion of

stationarity was not widespread — this is clearly obvious as Granger appears

to be uncertain in his 1966 paper as to how best to detrend economic data and

also notes in a subsequent plot of US bank clearing data that the ‘peaks’ in

the spectrum correspond to seasonal variations and their harmonics, which is,

given the frequencies corresponding to these peaks, unlikely to be the case. The

notion of detrending by first differencing data was not widespread, so Granger’s

paper is largely based on the usage of level data. Interestingly the later papers

updating the Granger results and generalizing them to international output

growth apparently use level data to confirm what Granger found, which is

beguiling to say the least.

By using simple data transformations (first differencing) of log output data,

we can show that there are many other frequency cycles evident in growth data

apart from the business cycle. Indeed once the empirical ‘stylized facts’ of US

growth cycles were documented and measured by Zarnovitz (1985), Kontolemis

(1997) and Zarnowitz and Ozyildirim (2002), theorists have set about trying to
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explain why there are periods of different rates of growth during the expansion

phase — see for example Evans, Honkapohja and Romer (1998) and Boldrin

(2005).

2.2 Data

The data used in this paper is obtained from two sources: the early segment

up until 1946Q1 is sourced from Balke and Gordon (1986) and from this date

onwards the data is sourced from the Bureau of Economic Analysis (BEA)

of the US Department of Commerce. The data used is US real GNP on a

quarterly basis from 1881 quarter 1 through 2009 quarter 1, which gives 513

observations.2

Three different versions of the data are used throughout most of the

analysis, as follows:

i) level data (1881Q1—2009Q1);

ii) log quarterly differenced data (1881Q1—2009Q1); and

iii) log annually differenced data (1881Q1—2009Q1).

The data is shown in figures 1 to 3. Clearly the most volatile version of

the series is the log annual version, and the least volatile is the level data. It

is also notable how the current downturn in economic growth is evident in all

3 series, but is clearly not as prominent as downturns in the economy in the

pre-World War II period.

3 Spectral analysis

3.1 The Fourier transform and basic spectral analysis

Spectral analysis had its origins in 1807 when Joseph Fourier published a

paper3 in which he used trigonometric functions to model the loss of heat

in solid bodies. Although LaGrange, Bernoulli and Euler played significant

roles in developing the Fourier transform, the principle workhorse of spectral

analysis bears Fourier’s name.

A primer on spectral analysis can be found in Koopmans (1995). Apart

from the references already cited in the previous section, there are many studies

in economics which refer to the use of spectral analysis but few which actually

employ it — exceptions are Hughes Hallett and Richter (2008), Hughes Hallett

and Richter (2006a), Hughes Hallett and Richter (2006b), Hughes Hallett and

Richter (2004), Valle e Azevedo (2002), Berry (2001), Camba Mendez and

2In fact the Balke and Gordon (1986) data starts in 1876, but because the beginning part

of the series starts in a particularly volatile period, the first 5 years of the series are ignored.
3‘Mémoire sur la propagation de la chaleur dans les corps solides’.
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Figure 2: US real GNP data: 1881—2009

Kapetanios (2001), Conway and Frame (2000), Collard (1999), and Baxter

and King (1999).

Simply put, spectral analysis uses trigonometric functions to fit to time

series to determine the periodicity of cycles evident within the time series.

As such it requires that all series be linearly generated and stationary (both

globally and locally when using windowed analysis). In mathematical terms,

spectral analysis is based on the Fourier series, which expresses a time series

as the sum of an infinite series of harmonic functions

() = 0 +
∞X
=1

( cos() +  sin()) (3.1)

where

 =
1



+Z
−

() cos() (3.2)

and

 =
1



+Z
−

() sin() (3.3)
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With finite time series the next step is to note that the autocovariance function

of a covariance stationary process () is

() = [(+ − )( − )] (3.4)

where  is the mean of the process. The spectrum of the series () is defined
as the Fourier transform of its autocovariance function, and is given by

() =
1

2

+∞Z
−∞

()− (3.5)

with − ≤  ≤ , where the frequency  is measured in cycles per period (in

radians). Here the autocovariance function is the inverse Fourier transform of

the spectrum. That is

() =
1

2

+∞Z
−∞

()
− (3.6)

which, after setting  = 0 implies that (0) = 2 =
+∞R
−∞

(). So the

integral of the spectrum is the total unconditional variance of the series. Thus

the spectrum plotted at each frequency, , represents the contribution of that

frequency to total variance.

The simplest form of spectral analysis comprises the periodogram, which

uses basic sine and cosine functions without further refinement. For US real

GNP data the periodograms are shown as figures 3 to 5

The periodograms are quite different. In figure 3 the ‘typical’ spectral shape

is apparent, which matches what Granger found, but in figures 4 and 5 this

‘typical’ spectral shape is clearly not apparent in the spectral features, with

clear peaks at frequencies of around 10 years, 25 and 35 years, with a smaller

peak at around a 55 year cycle. The 10 year cycle is clearly more prominent

than the 25 and 35 year cycles in the quarterly change data, whereas this

is reversed for the annual change data. There are other surprising features in

figures 4 and 5. The first notable feature is that with the quarterly change data

there is a prominent cycle at roughly 0.325 cycles per year, which corresponds

to roughly a 3 year cycle, but this barely registers with the annual change

data. The second notable feature is that there are no cycles apparent between

0.2 and 0.3 cycles per year ( — which corresponds to between roughly 3 and 5

years) with the annual change data.

3.2 Modified spectral analysis

One of the problems of using simple periodograms is that there is leakage

of frequencies into other frequency bands, and the shorter the time series

12
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Figure 5: Periodogram for log annual change in US real GNP

under consideration the more notable this problem becomes. There are three

solutions for dealing with the problem of leakage, and these are i) tapering, ii)

padding the series and iii) spectrally smoothing the series by using a window.

Most economists (for example Levy and Dezhbakhsh, 2003b) tend to opt for

smoothing the series (Levy and Dezhbakhsh, 2003b, uses the Bartlett method

with a Hanning window), so similar methods are adopted here. In this instance

the Welch4 method is used with three different types of windows and this leads

to different results compared with the simple periodograms as shown in figures

6 to 8. It should be noted that the y axis nowmeasures the average power under

the spectral density curve (ie the integral) to give the so-called ‘power spectral

density’ or PSD. The PSD should display peaks at the same frequencies as the

basic spectrum.

The modified periodogram in figure 6 shows much the same ‘typical’

spectral shape as the basic periodogram, although the Hamming and Bartlett

windows clearly give side artifacts compared to the Chebyshev window.

Interestingly there is a peak in the spectrum, at around a 64 year cycle.

This peak is also evident in the quarterly and annual log change data spectra

which are plotted in figures 7 and 8. The next peak in the data for both the

quarterly and annual data occurs at a frequency of 0.1406, which corresponds

to cycles of 7.1 years in length, roughly the average of what one might expect

for the business cycle. There are two further peaks in the spectra, which are

particularly noticeable in the case of the quarterly data (also depending on

the window used) at around a 3 year cycle and a 2 year cycle. Of course with

4A Welch window uses averaged periodograms of overlapped, windowed segments over

the time series.
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annual change data any annual cycles are likely filtered out, particularly as

these data are seasonally adjusted, but the quarterly data seems to suggest

that there are cycles at just over a year and one at around 3 quarters as well.

Figure 8 is useful in other ways as it shows the problems with the modified

periodogram. The problems are manifest in the windowing needed to deal

with the leakage of frequencies in the basic periodogram which gives rise to

i) different results dependent on which windows are used; ii) the elimination

of a large number of spectral peaks as the windows average over a range of

frequencies — this is seen by a) the low density around the annual frequency

in figure 8 and the disappearance of the 25 and 35 year cycles in the

basic periodogram as these do not appear when averaged with neighboring

frequencies and b) the disappearance of the gap between 0.2 and 0.3 in the

basic periodogram (in figure 5) for the annual change data. Clearly even with

modified spectral methods, there are substantial problems with their usage,

and this has led to the development of new techniques in frequency domain

analysis.

4 New frequency domain techniques

One of the basic problems with spectral analysis is the assumptions underlying

its usage. Spectral analysis assumes that the series being analyzed is both

locally and globally stationary — locally stationary in the sense of being

intra-cyclical stationary — so that cycles should repeat in a deterministic way

without any trend between the cycles, unless the intra-cyclical non-stationarity
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is due to further cyclical activity (for example a long cycle). This must be

the case as the harmonic functions underlying the method are both locally

and globally stationary given that we have at least one cycle to analyze. This

implies that analyzing level real GNP data by using spectral methods as above

is inappropriate as the trend in level GNP will be interpreted as the beginning

of another very long cycle, leading to the strongest cycle being detected

as at least 4 times the length of the series being analysed. As differenced

series are usually stationary, it implies that analyzing growth using spectral

analysis either by taking quarterly or annual differences will thus be the most

appropriate way to proceed, but as outlined above, there are still problems

with spectral leakage and also any local instationarities.that may arise.

One further innovation in spectral analysis is to pass a window through

the series but instead of assuming (as conventional spectral analysis does) that

cycles at certain frequencies persist throughout the series, do spectral analysis

piecewise along the series and then observe the strengthening and weakening

of certain frequencies through time. This is known as ‘time-varying spectral

analysis’ and it falls under the general ‘time-frequency’ analysis category of

methods. Of course if there are level shifts in the data, within a window, this

can still be interpreted as a longer cycle in the data, which can lead to spurious

results in the analysis.

As macroeconomic time series are non-deterministic (unlike harmonic

functions) and largely stochastic in nature, it is instructive to use less

well-known irregular functions for the analysis — functions that might not even

be symmetric, for example, and to use functions that are finite in length rather

than the infinite harmonic functions used by spectral analysis. This is the main

innovation incorporated by wavelet analysis, which has several variants, but

essentially involves the usage of wavelet functions — functions that are of finite

length and have ‘compact support’ — which once selected are convolved with the

data being analysed. By using functions of finite length this allows for global

non-stationarity as if a trend can be extracted from the series as a whole,

segment by segment, then each segment will automatically be stationary. The

results of applying 2 types of wavelet analysis are presented in the next section

of the paper.

A further development in ‘time-frequency’ analysis took place with the

introduction of the Hilbert-Huang transform (HHT), which coupled with

empirical mode decomposition (EMD) allows the researcher to extract

the different frequencies (or ‘modes’) driving any variable in the time

domain. This allows separation of the different frequency ‘modes’ driving

the economic variable, which can then be analysed individually using time- or

frequency-domain techniques.

Typical frequency domain techniques used in analysis of economic variables

are summarized in table 1 in terms of their characteristics. For time series

analysis, the basis is a priori in the sense that any mode of analysis assumes

fitting some kind of equation. Time series analysis clearly requires stationarity,

there is the assumption series are linearly generated, econometric theory

underpins the analysis and asymmetric cycles can be modelled using time series

techniques. Traditional spectral analysis analyses variables in the frequency

domain, assumes stationarity, linear generation of time series, Fourier analysis
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underpins the analysis, but spectral methods do not account for cycle

asymmetry. Both variants of wavelet analysis (discrete and continuous) use an

a priori basis, analyse time series in both the time and frequency domain, do

not require stationarity, but do assume that time series are linearly generated,

have mathematical underpinnings from signal processing and lastly some of the

compact functions allow for asymmetry in cycles ( — this is more the case with

dicrete rather than continuous wavelet analysis). Lastly the Hilbert-Huang

transform combined with empirical mode decomposition (HHT/EMD) by

employing a spline function with a sifting mechanism to identify cycles uses

an a posteriori adaptive basis, which is implemented in the time domain,

does not require stationarity or linear generation of the series, and makes no

assumptions about the symmetry or otherwise of cycles. The big disadvantage

to the HHT/EMDmethodology is that unlike time-series, spectral, and wavelet

analysis, there is no theoretical mathematical underpinning to the approach,

so it can appear rather ad-hoc.

5 Wavelet analysis

Wavelet analysis first came into being due to a collaboration between a

mathematician (Ingrid Daubechies) and a signal processor, (Stephane Mallat),

although as Daubechies (1996) points out, the development of wavelets is

an example where ideas from many different fields combined to merge into

a whole that was more than the sum of its parts. The subject area of wavelets,

developed since the mid-1980s, is connected to older ideas in many other

fields, including pure and applied mathematics, physics, computer science, and

engineering. The original theoretical background for wavelets can be found in

Debauchies (1992), and the first applications using wavelet analysis can be

located in Mallat (1989). Wavelet analysis (like Fourier analysis) has two

versions, one which assumes continuous time functions (continuous wavelet

analysis), and another which assumes sampling at discrete equally spaced

points in time (discrete wavelet analysis). Both are presented below.

5.1 Discrete wavelet analysis

Consider a double sequence of functions

() =
1√



µ
− 



¶
(5.1)
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where  is a sequence of scales, where scale here corresponds to a particular

frequency range. The term 1√

ensures that the norm of () is equal to one.

The function () is then centered at  with scale . In the language of

wavelets, the energy of () is concentrated in a neighbourhood of  with
size proportional to , so that as  increases the length of support in terms of 

increases For example, when  = 0, the support of () for  = 1 is [−]. As
 is increased, the support widens to [−]. Dilation (ie changing the scale)
is particularly useful in the time domain, as the choice of scale indicates the

‘stretching’ used to represent any given variable or signal. A broad support

wavelet yields information on variable or signal variations on a large scale,

whereas a small support wavelet yields information on signal variations on a

small scale. As projections are orthogonal, wavelets at a given scale are not

affected by features of a signal at scales that require narrower support. Lastly,

if a wavelet is shifted on the time line, this is referred to as translation or

shift of . Any series () can be built up as a sequence of projections onto
father and mother wavelets indexed by both  the scale, and , the number of

translations of the wavelet, where  is often assumed to be dyadic. As shown

in Bruce and Gao (1996), if the wavelet coefficients are approximately given

by the integrals

 ≈
Z

()() (5.2)

 ≈
Z

()() (5.3)

 = 1 2  such that  is the maximum scale sustainable with the data to

hand, then a multiresolution representation of the signal () is can be given
by

() =
X


()+
X


()+
X


−1−1()++
X


11()

(5.4)

where the basis functions () and () are assumed to be orthogonal,
that is

R
()0 () = 0R
()0 () = 0R

()
0

0 () = 00

(5.5)

where  = 1 if  =  and  = 1 if  6= . The multiresolution decomposition

(MRD) of the variable or signal () is then given by the set of coefficients ( —
known as ‘crystals’)

{    −1 1} (5.6)

The interpretation of the MRD using the DWT is of interest as it relates to

the frequency at which activity in the time series occurs. For example with
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Scale

crystals

Quarterly

frequency

resolution

d1 2—4 quarters

d2 4—8=1—2yrs

d3 8—16=2—4yrs

d4 16—32=4—8ys

d5 32—64=8—16yrs

d6 64—128=16—32yrs

d7 etc

Table 2: Frequency interpretation of MRD scale levels

a quarterly time series table 2 shows the frequencies captured by each scale

crystal

Note that as quarterly data is used in this study, to capture the conventional

business cycle length scale crystals need to be obtained for 5 scales. This

requires at least 64 observations, but to properly resolve at the longest

frequency it would help to have 128 observations, and as we have 513

observations this is easily accomplished — in fact we can easily resolve to 6

scales which should then provide evidence of cycles of up to 32 years in length.

If conventional business cycles are usually assumed to range from 12 quarters

(3 years) to 32 quarters (8 years),5 then crystals d3 and d4 will be assumed to

contain the business cycle.

In the wavelet literature there are various methods that can be used for

decomposing a series or signal. The first transform to be used extensively in

applications was the Discrete Wavelet Transform (DWT). Although extremely

popular due to its intuitive approach, the DWT suffers from two drawbacks:

dyadic length requirements for the series to be transformed and the fact that

the DWT is non-shift invariant. In order to address these two drawbacks, the

maximal-overlap DWT (MODWT)6 was introduced by Shensa (1992) and a

phase-corrected version was added and found superior to other methods of

frequency decomposition7 by Walden and Cristan (1998). The MODWT gives

up the orthogonality property of the DWT to gain other features, given in

Percival and Mofjeld (1997) as:

• the ability to handle any sample size regardless of whether the series is
dyadic or not;

• increased resolution at coarser scales as the MODWT oversamples the
data;

5This is given our discussion above, and as assumed by Levy and Dezhbakhsh (2003a)

when evaluating output growth rate spectra.
6As Percival and Walden (2000) note, the MODWT is also commonly referred to by

various other names in the wavelet literature such as non-decimated DWT, time-invariant

DWT, undecimated DWT, translation-invariant DWT and stationary DWT. The term

‘maximal overlap’ comes from its relationship with the literature on the Allan variance (the

variation of time-keeping by atomic clocks) — see Greenhall (1991).
7The MODWT was found superior to both the cosine packet transform and the short-time

Fourier transform.
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• translation-invariance — in other words the MODWT crystal coefficients
do not change if the time series is shifted in a ‘circular’ fashion; and

• a more asymptotically efficient wavelet variance estimator than the
DWT.

Both Gençay, Selçuk, and Whicher (2001) and Percival and Walden (2000)

give a thorough and accessible description of the MODWT using matrix

algebra. Crowley (2007) also provides a good ‘intuitive’ introduction to

wavelets, written specifically for economists, and references the (limited)

contributions made by economists using discrete wavelet analysis.8 The first

real usage of wavelet analysis in economics was by James Ramsey (NYU) and

can be found in Ramsey and Lampart (1997), and the first application of

wavelets to economic growth (in the form of industrial production) was by

Gallegati and Gallegati (2007) and in the form of GDP in a working paper by

Crowley and Lee (2005) and then more recently in a published article by Yogo

(2008).

In figures 9 to 12 the MODWT using a tap 8 Daubechies wavelet9 is

presented for US growth data,10 together with plots of the energy breakdown

by scale crystal. In the quarterly data (figures 9 and 10) the strongest cycle

occurs in crystal d1 which corresponds to 2 to 4 quarter cycles, but if most

of this cycle is attributed to noise, then the d2 crystal corresponding to 1

to 2 year cycles in growth is the strongest cycle detected in the data, with

progressively lower variance attributed to each detail crystal increment. In the

annual data (figures 11 and 12) the quarterly changes are filtered out, with

the results showing the strongest cycle occurs in the d3 crystal, corresponding

to 2—4 year cycles. Figures 9 and 11 also clearly show two moderations in

volatility in cycles — one in higher order (lower frequency) crystals in 1950,

and the ‘great moderation’ in lower order (higher frequency) cycles only in the

early 1980s, with longer cycles remaining largely intact with similar variances.

These results might be a little surprising to most macroeconomists, not only

because they give completely different results from traditional and modified

spectral analysis, but also because they show different results, depending on

whether quarter-on-quarter data or year-on-year data is used. As stated above,

the reason for the dramatic difference with spectral methods is simply due to

the inappropriate assumptions for macroeconomic data that spectral analysis

requires. The reason for the results being dependent on whether the series is

transformed by taking quarterly or annual changes is not entirely clear.

The most important results are that i) there is no long cycle apparent in

the data; and ii) the energy distribution (which is equivalent to the spectrum)

does not appear to be similar to the results obtained by Granger, that is, the

‘typical’ spectral shape.

8An up to date list of contributions in economics using

frequency domain techniques can also be accessed online at

http://faculty.tamucc.edu/pcrowley/Research/frequency_domain_economics.html
9Note that this is a wavelet function that covers 8 observations for the basic d1 crystal.

It therefore does not emphasize short-term fluctuations (unlike a 4 tap wavelet basis function

would).
10No results are presented for level data but the interested reader can find the results in

an appendix.
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Figure 9: MODWT decomposition for quarterly log change in US real

GNP
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Figure 10: Variance decomposition by scale for log quarterly change

in US real GNP
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Figure 11: MODWT decomposition for annual log change in US real

GNP
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Figure 12: Variance decomposition by scale for log annual change in

US real GNP
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5.2 Continuous wavelet analysis

As wavelet analysis is a form of time-frequency analysis, it is quite natural that

wavelet applications can produce measures associated with spectral analysis.

Continuous wavelet transforms (CWTs), rather than looking at a range of

frequencies (which are included in each detail crystal) to increase the time

resolution, have the ability to look at greater frequency resolution (but with less

certainty as to time resolution). This is equivalent to temporal narrow-band

filtering. Perhaps the best introduction into the theoretical CWT literature

can be found in Lau and Weng (1995), Holschneider (1995) and Chiann and

Morettin (1998), while Torrence and Compo (1998) probably provides the most

illuminating examples of empirical applications to time series frommeteorology

and the atmospheric sciences.

In brief, a representation of a covariance stationary process in terms of its

frequency components can be made using Cramer’s representation, as follows

 = +

Z 

−
() (5.7)

where  =
√−1  is the mean of the process,  is measured in radians and

() represents a complex orthogonal increment processes with variance

(), where it can be shown that

() =
1

2

Ã
(0) + 2

∞X
=1

() cos()

!
(5.8)

where () is the autocorrelation function. () is also known as the spectrum
of a series as it defines a series of orthogonal periodic functions which represent

a decomposition of the variance into an infinite sum of waves of different

frequencies. Given a large value of (), say at a particular value of ,b, this implies that frequency b is a particularly important component of the

series.

Given a time series () and an analysing wavelet function (), then the
continuous wavelet transformation (CWT) is given by

 ( ) =

Z ∞

−∞




1
2

∗
µ
 − 



¶
() (5.9)

For an easier computation making use of FFT algorithms this can be rewritten

in Fourier space. For a discrete numerical evaluation we get

() =
X
=0


1
2bb∗()

 (5.10)

where b is the discrete Fourier transform of 

b = 1

( + 1)

X
=0

 exp

½−2
 + 1

¾
(5.11)

25



Here we use a Morlet wavelet, which is defined as

() = −
2

2 (5.12)

This is a symmetric wavelet, and is widely used for CWT analysis in the

wavelet literature. Given our analysis above, it is also then possible to calculate

conventional spectral measures, such as the spectral power

( ) = { ( ) ( )∗} (5.13)

Wavelet power spectra measures the strength of cycles at various frequencies

— it is the analogue measure of energy for a DWT or variance in a time series

context.

Figures 13 and 14 plot the power spectrum against an AR1 background,

where thin black contours indicate significant departures at the 90% level from

an AR1 process. The vertical axis (labelled ‘Scale’) shows the frequency in

years. Maraun and Kurths (2007) have shown that some of supposedly small

significant areas might simply be ‘artifacts’, and so they conduct an ‘areawide’

test which averages power over scale and time and then rejects 90 per cent

of the ‘artifact’ areas of the plot. In other words, the black contours can be

interpreted as indicating a highly significant ‘zone’ rather than a few significant

points. The arch drawn in the plot shows the ‘cone of influence’,11 so points

outside the cone are to be interpreted as being less reliable than those placed

within the cone (because of instabilities that can result from fitting wavelets

to fluctuations at the end of the series).

Figures 13 and 14 give similar results to discrete wavelet analysis, but there

are also some differences as well. The color plots display the log intensity

(power) of cycles at each frequency, with black lines denoting statistically

significant power, and the thicker black lines denoting area-wise significance.

Here in figure 13 there is clearly a large amount of volatility in growth between

3 and 20 year cycles from 1920 to 1950, and then in 1950 shorter cycles up to

roughly a 6 year periodicity wane, and then from around 1970 onwards longer

cycles also wane. The ‘great moderation’ is apparent at cycles up to around

12 years but is clearly not as dramatic as the change in 1950. The plot for

the annual change in real GNP shown in figure 14, and once again there are

significantly powerful cycles from around an 18 month to 8 year frequency, but

the ‘great moderation’ now shows up much more clearly in the data.

The power spectra are plotted relative to the strongest fluctuations in the

data, and as these occurred in the first part of the data span, the wavelet power

spectra are repeated using only the post-World War II data in figures 15 and

16. Several interesting features appear in the power spectra. First, the ‘great

moderation’ is now clearly shown in the data (but only in 1985), but similarly

to the results for the discrete wavelet analysis, the waning of cycles is only at

higher frequencies.below around a 4 year periodicity. Secondly, there are three

distinct cycles (which are particularly apparent in the annual data) which have

11This indicates the central area of the graph where the full length wavelets are applied

to the data, so are free of any bias resulting from the use of boundary coefficients to enable

wavelet application.
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collectively been lengthening since the ‘great moderation’ — these are shown

as red bars. Although these red bars move out of the ‘cone of influence’ and

therefore we are not so certain about their resolution, the current frequencies

of these cycles are at 6, 16, and 32 years.

Note here that the CWT approach does not provide a residual (as no ‘father

wavelet’ equivalent) is used in the analysis, so no assessment of cycles longer

than 32 years is possible. It is clear, nevertheless, that continuous wavelet

analysis does not support the notion of a ‘typical’ spectral shape for growth

in US real GNP.
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Figure 13: Wavelet power spectrum for quarterly log change in US

real GNP

6 EMD/HHT

One of the problems with wavelet analysis and traditional spectral analysis

is that it is not always clear how many frequencies are at work driving a

particular variable. Although wavelet analysis is an improvement over spectral

analysis as it can handle non-stationarity due to the localized nature of wavelet

functions, it still requires a linear generating process, and also suffers from

leakage between scales.

A completely different approach called the Empirical mode decomposition

(EMD)/Hilbert-Huang transform (HHT) method appeared in the signal

processing literature about a decade ago, introduced by Huang, Shen, Long,

Wu, Shih, Zheng, Yen, Tung, and Liu (1998). The method has subsequently

been applied to many areas in physics, mechanics, engineering, astronomy and
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Figure 14: Wavelet power spectrum for annual log change in US real
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Figure 16: Wavelet power spectra for post-WWII annual log change

in US GNP

the environmental sciences, and yet to date there are only two applications of

the technique in economics and finance, one applied to US mortgage rates by

the originators of the technique (see Huang, 2003) to highlight the advantages

of using it over traditional spectral methods, and now a couple of other papers

by the author (see Crowley, 2009 and Crowley and Schildt, 2009).

Unlike traditional spectral analysis and wavelets, the EMD/HHT method

is entirely empirically based — it has no formal mathematical foundation, but

rather attempts to break down the series according to how many frequencies

are apparent in the data — in other words it let’s the data speak for itself rather

than imposing certain a priori beliefs about which frequencies are present at

any time within a series. It relies on a sifting process based around extrema

or the curvature of movements in the data. The sifting process is as follows:

i) identify maxima and minima of time series ()
ii) generate upper and lower envelopes with cubic spline interpolation

min() and max()
iii) calculate point by point mean of upper and lower envelopes

() = (max() + min())2 (6.1)

iv) take mean away from time series

() = ()−() (6.2)

v) if it is an ‘intrinsic mode function’ (IMF) ( — that is, it satisfies certain

stopping criteria), denote () as ith IMF and replace () with residual ()
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() = ()− () (6.3)

if it is not an IMF, replace () with ()
vi) repeat steps i) to v) until residual satisfies stopping criterion.

To summarize this sifting procedure, see figure 17, taken from Huang, Shen,

Long, Wu, Shih, Zheng, Yen, Tung, and Liu (1998).

Figure 17: Flow diagram of EMD sifting procedure to obtain IMFs.

Once the IMFs have been extracted from the series, the Hilbert spectrum

can be applied to the series — this spectrum enables an estimate of the

instantaneous frequency of each IMF from the series and then these can be

combined in a marginal spectrum, mimicking the spectral density from Fourier

analysis.

In mathematical terms, for any function () of  class, its Hilbert

transform () is

() =
1




Z +∞

−∞

()

− 
 (6.4)

where  is the Cauchy principal value of the singular integral. The Hilbert

transform () of any real-valued function () will yield the analytic function
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() = () + () = () exp [()] (6.5)

where  =
√−1, () represents the amplitude and () the phase (() =

arg(())). () is then given by

() =
¡
2 + 2

¢12
(6.6)

and

() = tan−1
h


i
(6.7)

Instantaneous frequency, , then is given by

 =



(6.8)

The instantaneous frequency introduced here is physical and depends on the

differentiation of the phase function, which is fully capable of describing not

only interwave frequency changes due to nonstationarity but also the intrawave

frequency modulation due to nonlinearity. The Hilbert transform as applied

to each IMF can now be expressed as

() =
X

=1

() exp

∙


Z
()

¸
(6.9)

so that the instantaneous amplitude () can be separately extracted from
the instantaneous phase () for each IMF and combined into a Hilbert

(amplitude) spectrum, ( ). The power (or energy) spectrum is given by

[( )]2 so accordingly the marginal average power spectrum is

() =
1



Z 

0

2( ) (6.10)

With EMD/HHT we first start with level data. Figure ?? shows the original

level GNP data with the residual superimposed ( — these both rise through

time), plus all the IMFs superimposed on one another ( — these are all

stationary). There is clearly one IMF ( — the IMF that appears to be sine

wave-like), IMF7, that is required when combined with the residual to mimic

the exponential nature of the trend in real GNP, so both the residual and this

IMF are excluded from what follows.
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Figure 18: IMFs for level real US GNP

The other IMFs are now separated out in figure 19, with IMFs 1 through 6

clearly showing downturns which coincide with recessions. What is particularly

interesting about the IMFs is that none of them appear to show the ‘great

moderation’ and if anything IMFs 3, 4 and 5 show increased volatility, rather

than less, as would be expected.

1880 1900 1920 1940 1960 1980 2000

USGNP IMFs

Figure 19: Level US real GNP IMFs 1—6

Having obtained the IMFs for level US real GNP we can evaluate the

instantaneous frequency of each IMF using the Hilbert spectrum. This is
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shown in figure 20 where the degree of separation of instantaneous frequencies

is clearly not good, indicating some difficulties in resolving the cycles extracted

in each IMF.12
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Figure 20: Instantaneous frequency for level US real GNP IMFs

Now assuming that IMF1 is white noise, we can test whether the other

IMFs carry significantly more energy than what would be found with a white

noise signal. Figure 21 shows that all the other IMFs are highly significant at

the 95% level compared with white noise, with the highest amount of energy

in the longest cycle.

12To do this decomposition, ensemble EMD (see Wu and Huang, 2008) was applied ( —

with 0.2 variance and n=200), and these results were better than those obtained with simple

EMD or with other parameters.
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Figure 21: Significance test of level US real GNP IMFs against white

noise

Lastly, we can combine the IMFs to calculate, as in equation 29 above, the

marginal spectrum by combining all the IMFs together. The result of doing

this is shown in figure 22. Here cycles are clearly concentrated at frequencies

below 0.5, or 2 year cycles, and there are essentially 313 prominent peaks in

the spectrum — the main one at 0.114, which implies cycles of 8.77 years, one

at a frequency of 0.137, implying 7.3 year cycles, one at frequencies of 0.00965,

implying 100 year cycles and one at 0.2 or 5 year cycles.

13Apparently there is a very long cycle in growth here as well, but appears to be due to

the fact that certain of the IMFs appear to drop to a frequency of zero, so here it is ignored.
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Figure 22:Marginal spectrum for level US real GNP

When EMD/HHT is applied to the log change US real GNP data, we obtain

the following IMFs, displayed in figure 23. In the figures the original data is

shown in the first row, then 6 IMFs are found for both the quarterly and annual

log change data, and then the residual is plotted in red in the last row of the

plot. The residual clearly doesn’t contain any remaining cycles and is virtually

constant for the quarterly data. The ‘great moderation’ is only apparent in

IMFs 1 and 2, but is hardly apparent in the other IMFs. Particularly in the

annual data, the longer cycles represented by IMFs 3 and 4 continue beyond

the 1980s with similar levels of volatility.
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Figure 23: IMFs for quarterly and annual log change in US real GNP

Given the IMFs obtained above, the instantaneous frequencies of these

IMFs can then be plotted in each case — these plots appear in figure 24. The

frequency plots overlap occasionally, indicating that the frequency resolution

of individual IMFs might not be optimal,14 but what is most revealing is

that the longest cycle detected after removing the trend in the level data has

around a 10 year periodicity in the quarterly data, and a 40 year periodicity

in the annual data (although this cycle is very weak according to figure 23).

Although there is some ‘mode mixing’ after 2000 in the annual data, there is

strong indication of a cycle at around 10 years and another at around 5 years.

14This problem has been addressed by a recent variant of the EMD, known as Ensemble

EMD — details can be found in Wu and Huang (2008) and accompanying MATLAB code is

located at http://rcada.ncu.edu.tw/research1_clip_program.htm. Ensemble EMD did not

appear to resolve the problem in this instance though.
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Figure 24: Instantaneous frequency for IMFs of US quarterly and

annual change in real GNP

Next, on the assumption that IMF1 is ‘white noise’, it is possible to test

the ‘energy’ or ‘power’ of the remaining IMFs against what would be found

at the same frequencies if the whole series were indeed white noise and was

then decomposed using the EMD/HHT method. This is done in figure 25

where the green lines denote the 75 and 95 per cent significance levels while

the black line represents the 90 per cent level. The results are clearly all

significant when cast against a background spectra of white noise, with perhaps

the exception of IMF3 for the quarterly series, which has an average period

of 16 years. The most significant cycles appear in the annual data, and have

average periodicities of 9, 16 and 30 years.
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Figure 25: Significance test of IMFs against white noise for quarterly

and annual log change in US GNP

As shown in equation (5.6) the amplitude spectra can also be extracted

from each IMF, giving some idea of the energy contained in each IMF through

time. These amplitude spectra are plotted for both quarterly and annual log

change data in figure 26. In the upper part of the plot it is clear that the

major reduction in volatility took place between 1945 and 1955 with IMFs 1

to 5 becoming much less volatile, but IMF6’s amplitude is virtually unchanged.

This is even more obvious when looking at the lower panel which shows the

annual change: here IMFs 1, 3, 4 and 6 become noticeably less volatile between

1945 and 1955, but IMFs 2 and 5 although moving to slightly lower amplitudes

during this time, do not move decisively until the ‘great moderation’ in the

mid-1980s. The ‘great moderation’ itself can be seen most clearly in IMFs 1

to 3 in the upper panel around 1985 which uses the quarterly data, but IMFs

4 to 6 do not change ( — which mirrors the result we obtained with discrete

wavelet analysis).
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Figure 26: Amplitude spectrum for quarterly and annual log change

US real GNP data

Another way of presenting this data is to calculate the Hilbert marginal

spectrum for the entire series, which then ignores the time aspect of the data

but allows a comparison with the spectra obtained from traditional Fourier

analysis by combining the spectra obtained from all the different IMFs obtained

from EMD/HHT into one figure.

Figure 27 provides the marginal spectra for the IMFs derived from both

quarterly and annual log changes. The first thing that is striking about the

spectra is that once again neither has what Granger referred to as a ‘typical’

spectral shape. The second thing that is striking about the two spectra is that

they look quite different — the quarterly change spectrum increases in marginal

density from very long cycles up to frequencies of roughly 0.45 (or a single cycle

every 2.22 years), whereas the annual change spectrum does not display this

pattern at all.

The two highest peaks in each marginal spectrum are marked and it is clear

that the quarterly change spectrum has peaks at roughly 20 year and 2.22 year

cycles, with other peaks occurring at 5, 4.5 and 2.7 year cycles. The annual

change panel on the right hand side shows peaks at around 11, 3.33 and 1.85

year cycles.with a fair amount of variation around both the 3.33 and 1.85 year

cycles.

At first sight these results seem puzzling as the quarterly and annual change

results are quite different, but partly this will be due to the different IMFs

that are derived from the different fluctuations in growth when measured on

a quarterly compared with an annual difference basis. Despite the substantial
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differences, three results remain though, one being that there are many

frequency cycles at work in the US real GNP growth data, and not just those

reported at business cycle frequencies, and the others being that the ‘typical’

spectral shape does not appear evident using the EMD methodology, and that

the longest strong cycle detected is only slightly longer than 20 years — beyond

this there is little detected.
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Figure 27: Marginal spectra for log quarterly and annual change in

US real GNP

As with wavelet analysis, one of the main benefits of using HHT/EMD is

that it highlights the non-static nature of the frequency of different cycles

at work in the data. Unlike wavelet analysis, however, these IMFs are

approximations to the actual frequencies at work, and unlike wavelet crystals,

which because of ‘leakage’ might contain too much information, IMFs might

miss frequency information because of the way in which cycles are identified (

— ie not by an approximating function but by a spline function coupled with a

sifting mechanism).

7 Discussion

As with time-series econometrics, each new method applied to the same set of

data uncovers new aspects of the data and usually brings some commonalities

with existing techniques and some differences in results, often with some

conflicting elements that then prompt further research. It is no different

here with frequency domain methods. Clearly the limitations of basic spectral

analysis require usage of more modern frequency domain techniques that can
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deal with local and global non-stationarities, but also these new techniques

suffer from other problems which then need to be understood and addressed.

Certainly wavelet analysis is widely recognized as a major technological

advance over traditional spectral analysis, particularly when dealing with

non-stationary and stochastic rather than stationary and deterministic

time-series. Choices still have to be made with regard to the wavelet function

and whether to use discrete or continuous wavelet analysis, plus statistical

inference is not impossible but poses challenges. EMD/HHT is also an

important innovation that will hopefully be further developed as a frequency

domain tool, but there are still problems regarding frequency resolution due

to mode mixing and the sifting procedure used in the decomposition of the

series into IMFs. Nevertheless both wavelet analysis and EMD/HHT offer

new insights into irregular cyclical activity in macroeconomic variables and

their usage could shed new light on economic issues. Such is the advancement

of knowledge, and strong resistance to these new techniques would not serve

any great purpose.

From conventional time-domain macroeconomics, if nothing else we would

expect to see clear indications of cycles in growth at business cycle frequencies

of between roughly 3 and 8 years in periodicity. But, as shown below in table

3 cycles between 3 and 8 years in periodicity are not always the dominant

cycles selected by these methods, and for many of the methods the strongest

cycle does not lie within the expected business cycle frequency bandwidth.

For reasons already explained, this is not surprising for the level data, but it

is surprising for both the quarterly and annual data. It is instructive to note

that with the exception of the level data, the quarterly and annual growth

data all have cycles within the recognized business cycle frequency range of 3

to 8 years.

In the frequency domain, with the exception of spectral analysis, it clearly

makes a substantial difference whether quarterly or annual changes are used

to calculate growth rates. In one sense this is a suprising result, as one

might expect more conformity between the quarterly and annual results, but

it is obvious that quarterly differencing emphasises short-term movements and

annual differencing emphasises longer term movements. This is particularly

apparent with basic spectral analysis and both types of wavelet analysis, but

it is interesting that this expected finding is reversed with EMD/HHT, where

annual change data has shorter cycles than quarterly data.

Level Quarterly Annual

Trad Spectral Almost infinite 10,25,35,3yrs 35,25,10yrs

Mod Spectral 64yrs 64,7.1,3,2yrs 64,7.1yrs

DWT NA 2—4Q, 1—2,2—4yrs 2—4,4—8,8—16yrs

CWT NA Currently 2—4, 6, 16, 32yrs Currently 6, 16, 32yrs

EMD/HHT 8.8,7.3,100yrs 20,2.2,5yrs 11,3.3, 1.8yrs

Table 3: Summary of Results: 3 most dominant cycles
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8 Conclusions

In this paper the assertions made in Granger (1966) of a ‘typical’ spectral shape

regarding long-term fluctuations of macroeconomic data were re-evaluated

using US real GNP with four generally available frequency domain methods.

There are several economic conclusions from the research and these are

summarized below:

i) the cycles that drive economic growth in the US are at a variety of different

frequencies, and not just the business cycle frequency range;

ii) Granger’s original ‘law’ regarding the ‘typical’ spectral shape appears to

be the result of an artifact of the methodology being used rather than

a stylized fact of frequency domain analysis. Granger’s ‘typical’ spectral

shape suggested very long cycles with large amounts of energy, with

shorter cycles possessing less energy — none of the frequency domain

methods used here except spectral analysis indicates that this is the

case;

iii) the longest cycle evident in US real GNP data is of around 35 years, so

there is no evidence of a Kondratieff cycle in the US data (this confirms

results already obtained by Adelman, 1965, and Howrey, 1968);

iv) the ‘great moderation’ is only evident in shorter cycles, it does not seem

to have significantly affected the amplitude of longer cycles;

v) unlike the time domain, quarterly and annual change data do not generally

yield the same results in the frequency domain.

In terms of the methodologies used, there are also some important

conclusions:

a) spectral analysis assumes stationary linearly generated processes, so it is

not appropriate to use level data with this method;

b) even when transforming the data, if using spectral windowed analysis

(ie for smoothing purposes or for time-varying spectral analysis), local

non-stationarities can introduce long cycles into the data;

c) even when using methodologies that allow for non stationarities (either

global or local), different results can be obtained ( — for example with

wavelet analysis and HHT/EMD); and

d) given non-stationary level data, HHT/EMD appears to be the most

promising approach for extracting cycles, although because of

mode-mixing and frequency resolution more research needs to be done

to.refine the method so that it more effectively isolates the different

inherent frequencies.
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In terms of future research, obviously the frequency domain approach holds

promise and could emerge as an alternative methodology for analyzing

economic growth to the usual time-series approach taken in the standard

economics literature. Nevertheless there needs to be much more research

undertaken to analyze the interaction between the variables which cause

growth, as well as the components of real GDP and how they interact in

terms of cyclical fluctuations.
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Appendix

A. MODWT of level real GNP
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Figure 28: MODWT for level US real GNP
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