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Noncausal vector autoregression 

Bank of Finland Research 
Discussion Papers 18/2009 

Markku Lanne – Pentti Saikkonen 
Monetary Policy and Research Department 
 
 
Abstract 

In this paper, we propose a new noncausal vector autoregressive (VAR) model for 
non-Gaussian time series. The assumption of non-Gaussianity is needed for 
reasons of identifiability. Assuming that the error distribution belongs to a fairly 
general class of elliptical distributions, we develop an asymptotic theory of 
maximum likelihood estimation and statistical inference. We argue that allowing 
for noncausality is of importance in empirical economic research, which currently 
uses only conventional causal VAR models. Indeed, if noncausality is incorrectly 
ignored, the use of a causal VAR model may yield suboptimal forecasts and 
misleading economic interpretations. This is emphasized in the paper by noting 
that noncausality is closely related to the notion of nonfundamentalness, under 
which structural economic shocks cannot be recovered from an estimated causal 
VAR model. As detecting nonfundamentalness is therefore of great importance, 
we propose a procedure for discriminating between causality and noncausality 
that can be seen as a test of nonfundamentalness. The methods are illustrated with 
applications to fiscal foresight and the term structure of interest rates. 
 
Keywords: elliptic distribution, fiscal foresight, maximum likelihood estimation, 
noncausal, nonfundamentalness, non-Gaussian, term structure of interest rate 
 
JEL classification numbers: C32, C46, C52, E62, G12 
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Ei-kausaalinen vektoriautoregressiivinen malli 

Suomen Pankin keskustelualoitteita 18/2009 

Markku Lanne – Pentti Saikkonen 
Rahapolitiikka- ja tutkimusosasto 
 
 
Tiivistelmä 

Tutkimuksessa tarkastellaan ei-kausaalista vektoriautoregressiivistä (VAR) mallia 
ja sen soveltuvuutta taloudellisten aikasarjojen analysointiin. Ei-kausaalinen 
VAR-malli ei ole identifioituva normaalisten aikasarjojen tapauksessa, joten mal-
lin soveltaminen vaatii virhetermin ei-normaalisuuden. Tutkimuksessa johdetaan 
mallin uskottavuusfunktio ja osoitetaan (approksimatiivisen) suurimman uskotta-
vuuden estimaattorin asymptoottinen normaalisuus, kun virhetermin jakauma kuu-
luu elliptisten jakaumien luokkaan. Samalla perustellaan uskottavuusteorian 
tavanomaisten testien soveltuvuus. Tutkimuksessa korostetaan ei-kausaalisuuden 
huomioon ottamisen tärkeyttä empiirisessä taloudellisessa tutkimuksessa. Vaikka 
ei-kausaalista VAR-mallia vastaakin aina samaa astetta oleva kausaalinen VAR-
malli, johtaa kausaalisen mallin käyttäminen oikean ei-kausaalisen mallin asemes-
ta epäoptimaalisiin ennusteisiin ja mahdollisesti virheellisiin johtopäätöksiin. Ei-
kausaalisuudella todetaan olevan läheinen yhteys ei-fundamentaalisuuteen eli 
tilanteeseen, jossa talouden rakenteellisia sokkeja ei voida johtaa kausaalisesta 
VAR-mallista. Tutkimuksessa esitetty menetelmä kausaalisen ja ei-kausaalisen 
VAR-mallin erottamiseksi voidaan tulkita testiksi ei-fundamentaalisuudelle. Tätä 
menetelmää ja ei-kausaalisen VAR-mallin soveltamista havainnollistetaan kahdel-
la esimerkillä, jotka käsittelevät finanssipolitiikan ennakoitavuutta ja korkojen 
aikarakennetta. 
 
Avainsanat: ei-fundamentaalinen, ei-kausaalinen, ei-normaalinen, elliptinen ja-
kauma, finanssipolitiikan ennakoitavuus, korkojen aikarakenne, suurimman uskot-
tavuuden estimointi 
 
JEL-luokittelu: C32, C46, C52, E62, G12 
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1 Introduction

In economic and financial applications, the vector autoregressive (VAR) model
is usually considered as an atheoretical summary of the dynamics of the
included variables. Especially when the model is used for forecasting its
error term is interpreted as a forecast error that should be an independent
white noise process in order for the model to capture all relevant dynamic
dependencies. Typically, the model is deemed adequate if its errors are
not serially correlated. However, unless the errors are Gaussian, this is
not sufficient to guarantee independence and, even in the absence of serial
correlation, it may be possible to predict the error term by lagged values of
the considered variables. This is a relevant point because diagnostic checks
in empirical analyses often suggest non-Gaussian residuals and the use of
a Gaussian likelihood has been justified by properties of quasi maximum
likelihood (ML) estimation. A further point is that, to the best of our
knowledge, only causal VAR models have previously been considered although
noncausal autoregressions, which explicitly allow for the aforementioned
predictability of the error term, might provide a correct VAR specification
(for noncausal (univariate) autoregressions, see eg Brockwell and Davis (1987,
Chapter 3) or Rosenblatt (2000)). These two issues are actually connected
as distinguishing between causality and noncausality is not possible under
Gaussianity. Hence, in order to assess the nature of causality, allowance must
be made for deviations from Gaussianity when they are backed up by the data.
If noncausality indeed is present, confining to causal VAR models may lead to
suboptimal forecasts and false economic interpretations.
Noncausality is closely related to nonfundamentalness that arises, in

particular, in rational expectations models. The issue of nonfundamentalness
was probably first pointed out by Hansen and Sargent (1980, 1991), who
showed that in its presence structural economic shocks cannot be recovered
from an estimated causal VAR model. Subsequently, a relatively large
literature has explored nonfundamentalness in various applications; for a recent
survey, see Alessi et al (2008).
To define nonfundamentalness, let us consider a dynamic rational

expectations model whose solution is typically a stationary stochastic vector
process yt that can be expressed as a vector autoregression. Thus, an
econometrician considers the specification

D(B)yt = t (1.1)

where the errors t are interpreted as (functions of) the random shocks to
agents’ information set and D(B) =

P∞
j=0DjB

j is a potentially infinite-order
lag polynomial in the backward shift operator B (ie, Bkyt = yt−k for k =
0,±1, ...). In the econometric analysis, t is usually assumed to be a sequence
of independent and identically distributed random vectors with zero mean and
positive definite covariance matrix, and the roots of detD(z), the determinant
of D(z), are assumed to lie outside the unit disc. The latter condition implies
that the process yt can equivalently be written as

yt = C(B) t (1.2)
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where C(B) is an infinite-order lag polynomial depending only on positive
powers of B. In other words, yt only depends on the past and present errors
t−j, j ≥ 0, which can be recovered by the employed autoregression and
interpreted as fundamental economic shocks. In this case the autoregression
(1.1) is referred to as fundamental.
The autoregression (1.1) is nonfundamental when some of the roots of

detD(z) lie inside the unit disc. As discussed by Hansen and Sargent (1991)
and Alessi et al (2008), this can happen because the underlying economic
model simply leads to such a nonfundamental autoregression or because some
relevant state variables are not observed by the econometrician and, therefore,
not included in the analysis. However, even in this case the process yt admits
an infinite-order moving average representation of the type (1.2) but, unlike
in the preceding fundamental case, the filter C(B) now depends on negative
powers of B, implying dependence of yt on future errors t+j, j ≥ 0. A similar
dependence on future errors also occurs in the noncausal VAR model to be
introduced in Section 2 so that nonfundamentalness shows up as noncausality
in the VAR representation of yt. However, in conventional causal VAR analysis
the infinite-order moving average representation only depends on past and
present errors. This means that, in the presence of noncausality, the analysis
is based on a misspecified model and, consequently, the errors recovered from
the employed VAR model cannot be interpreted as (functions of) the random
shocks to agents’ information set. Thus, checking for noncausality also serves
as a check for nonfundamentalness. Although we have here only discussed
rational expectations models, nonfundamentalness is also common in many
other kinds of economic models; one example being models with heterogeneous
information, exemplified in Section 4.2, and others can be found in Alessi et
al (2008) and the references therein.
The evaluation of dynamic stochastic general equilibrium (DSGE) models

by means of structural vector autoregressions is an application where ensuring
the fundamentalness (or causality) of the VAR representation is of great
importance. If such a representation is falsely assumed, the structural
shocks obtained have no economic meaning and validating a DSGE model
based on the impulse responses implied by the structural VAR model is
misleading. Therefore, it is in this field that some ways of checking for
fundamentalness have been devised although they should be more generally
applicable. Fernández-Villaverde et al (2007) derived conditions under which
the economic shocks of (a linearization of) a DSGE model match up with
those associated with a fundamental VAR model. This approach, however,
only works when there are as many economic shocks as there are observable
variables, which restricts its applicability to relatively small systems. Giannone
and Reichlin (2006) pointed out that nonfundamentalness can be detected by
augmenting the VAR model with additional variables and checking whether
they Granger cause the variables of interest. Under fundamentalness, there
should be no such Granger causality. The additional variables should be
‘potentially relevant’ and ‘likely to be driven by sources that are common
with the variables of interest’, but their selection seems, however, rather
arbitrary. Hence, we argue that checking for noncausality provides a viable
and potentially more general approach to detecting nonfundamentalness.
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A concept closely related to nonfundamentalness is indeterminacy
of equilibria in economic models, which is a highly topical issue in
macroeconomics, especially in studying monetary policy. Indeterminacy
allows structural shocks to be nonfundamental. Therefore, checking for
causality facilitates checking for determinacy in that detecting a causal
VAR representation of the data can be interpreted as evidence in favor of
determinate equilibria. Some tests for indeterminacy have been presented in
the previous literature, but it has turned out to be very difficult to discriminate
empirically between determinacy and indeterminacy. In particular, Beyer and
Farmer (2007) have shown that two DSGEmodels, one with a determinate and
the other with an indeterminate equilibrium, may be observationally equivalent
in that they generate the same likelihood function, rendering tests of parameter
restrictions (eg Lubik and Schorfheide (2004)), in general, futile. Also,
commonly used test procedures based on evaluating the amount of variation
in the residuals of rational expectations models that is left unexplained by
fundamentals (see eg Salyer and Sheffrin (1998)) are rather arbitrary as they
crucially depend on the variables that are included in the analysis. The
approach based on checking for noncausality, in contrast, is quite general as
it is based on unrestricted VAR models and there is no need to determine the
suitable set of additional fundamental economic variables.
The statistical literature on noncausal univariate time series models is

relatively small, and, to our knowledge, noncausal VAR models have not been
considered at all prior to this study (references to previous univariate work can
be found in Rosenblatt (2000), Lanne and Saikkonen (2008), and the references
therein). In this paper, the previous statistical theory of univariate noncausal
autoregressive models is extended to the vector case. Our formulation of
the noncausal VAR model is a direct extension of that used by Lanne and
Saikkonen (2008) in the univariate case. To obtain a feasible non-Gaussian
likelihood function, the distribution of the error term is assumed to belong to
a fairly general class of elliptical distributions. Using this assumption, we can
show the consistency and asymptotic normality of a local ML estimator, and
justify the applicability of usual likelihood based tests.
The remainder of the paper is structured as follows. Section 2 introduces

the noncausal VAR model. Section 3 presents the likelihood function and
properties of the ML estimator. Section 4 illustrates the use of the noncausal
VAR model in detecting potential nonfundamentalness in the context of fiscal
foresight and the term structure of interest rates. Section 5 concludes. A
mathematical appendix contains proofs of the results and some technical
derivations.
The following notation is used throughout. The expectation operator and

the covariance operator are denoted by E (·) and C (·) or C (·, ·), respectively,
whereas x d

= y means that the random quantities x and y have the same
distribution. By vec(A) we denote a column vector obtained by stacking the
columns of the matrix A one below another. If A is a square matrix then
vech(A) is a column vector obtained by stacking the columns of A from the
principal diagonal downwards (including elements on the diagonal). The usual
notation A⊗B is used for the Kronecker product of the matrices A and B. The
mn ×mn commutation matrix and the n2 × n (n+ 1) /2 duplication matrix
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are denoted by Kmn and Dn, respectively. Both of them are of full column
rank. The former is defined by the relation Kmnvec(A) = vec(A0) , where A is
any m× n matrix, and the latter by the relation vec(B) = Dnvech(B) , where
B is any symmetric n× n matrix.

2 Model

2.1 Definition and basic properties

Consider the n-dimensional stochastic process yt (t = 0,±1,±2, ...) generated
by

Π (B)Φ
¡
B−1

¢
yt = t (2.1)

where Π (B) = In−Π1B−· · ·−ΠrB
r (n× n) and Φ (B−1) = In−Φ1B−1−· · ·−

ΦsB
−s (n× n) are matrix polynomials in the backward shift operator B, and

t (n× 1) is a sequence of independent, identically distributed (continuous)
random vectors with zero mean and finite positive definite covariance matrix.
Moreover, the matrix polynomials Π (z) and Φ (z) (z ∈ C) have their zeros
outside the unit disc so that

detΠ (z) 6= 0, |z| ≤ 1, and detΦ (z) 6= 0, |z| ≤ 1 (2.2)

If Φj 6= 0 for some j ∈ {1, .., s}, equation (2.1) defines a noncausal vector
autoregression referred to as purely noncausal when Π1 = · · · = Πr = 0. The
corresponding conventional causal model is obtained when Φ1 = · · · = Φs = 0.
Then the former condition in (2.2) guarantees the stationarity of the model.
In the general set up of equation (2.1) the same is true for the process

ut = Φ
¡
B−1

¢
yt

Specifically, there exists a δ1 > 0 such that Π (z)−1 has a well defined
power series representation Π (z)−1 =

P∞
j=0Mjz

j = M (z) for |z| < 1 + δ1.
Consequently, the process ut has the causal moving average representation

ut =M (B) t =
∞X
j=0

Mj t−j (2.3)

Notice that M0 = In and that the coefficient matrices Mj decay to zero at a
geometric rate as j →∞. When convenient, Mj = 0, j < 0, will be assumed.
Write Π (z)−1 = det (Π (z))−1 Ξ (z) = M (z), where Ξ (z) is the adjoint

polynomial matrix of Π (z). Then, det (Π (B))ut = Ξ (B) t and, by the
definition of ut,

Φ
¡
B−1

¢
wt = Ξ (B) t

where wt = det (Π (B)) yt. Note that Ξ (z) is a matrix polynomial of degree at
most (n− 1) r and, because Π (0) = In, we also have Ξ (0) = In. By the latter
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condition in (2.2) one can find a 0 < δ2 < 1 such that Φ (z−1)−1 Ξ (z) has a
well defined power series representation Φ (z−1)−1 Ξ (z) =

P∞
j=−(n−1)rNjz

−j =
N (z−1) for |z| > 1− δ2. Thus, the process wt has the representation

wt =
∞X

j=−(n−1)r
Nj t+j (2.4)

where the coefficient matrices Nj decay to zero at a geometric rate as j →∞.
From (2.2) it follows that the process yt itself has the representation

yt =
∞X

j=−∞
Ψj t−j (2.5)

where Ψj (n× n) is the coefficient matrix of zj in the Laurent series expansion

of Ψ (z)
def
= Φ (z−1)−1Π (z)−1 which exists for 1 − δ2 < |z| < 1 + δ1 with Ψj

decaying to zero at a geometric rate as j → ∞. Clearly, the representation
(2.5) can be obtained bymultiplying both sides of (2.4) by det (Π (B))−1 so that
we also have Ψ (z) = det (Π (z))−1N (z−1). The representation (2.5) implies
that yt is a stationary and ergodic process with finite second moments. We
use the abbreviation VAR(r, s) for the model defined by (2.1). In the causal
case s = 0, the conventional abbreviation VAR(r) is also used.
In the noncausal case, Ψj 6= 0 for some j < 0, which shows the

connection of our noncausal VAR model and nonfundamentalness discussed in
the Introduction. To see further implications of noncausality, let Et (·) stand
for the conditional expectation operator with respect to the information set
{yt, yt−1, ...}. From (2.1) and (2.5) it is seen that

yt =
s−1X

j=−∞
ΨjEt ( t−j) +

∞X
j=s

Ψj t−j

In the conventional causal case, s = 0 and Et ( t−j) = 0, j ≤ −1, so that the
right hand side reduces to the moving average representation (2.3). However,
in the noncausal case this does not happen. Then Ψj 6= 0 for some j < 0,
which in conjunction with the representation (2.5) shows that yt and t−j are
correlated and, consequently, Et ( t−j) 6= 0 for some j < 0. Thus, future errors
can be predicted by past values of the process yt, which can be seen as an
alternative characterization of nonfundamentalness.
In addition to depending on expected future errors, the process yt can

also be interpreted as being dependent on its expected future values. To see
this, let us, for simplicity, concentrate on the purely noncausal model, where
Π (B) = In. In this case, model (2.1) can be written as

yt = Φ1yt+1 + · · ·+ Φsyt+s + t

and, taking conditional expectations with respect to the information set
{yt, yt−1, ...}, one obtains

yt = Φ1Et (yt+1) + · · ·+ ΦsEt (yt+s) + Et ( t) (2.6)
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This shows that the elements of the coefficient matrix Φj give the effect of the
expectation of yt+j on yt. In the general case (Π (B) 6= In), we obtain a similar
expression for yt with the exception that Et ( t) is replaced by Et (ut).
A practical complication with noncausal autoregressive models is that they

cannot be identified by second order properties or Gaussian likelihood. In the
univariate case this is explained, for example, in Brockwell and Davis (1987, p.
124—125)). To demonstrate the same in the multivariate case described above,
note first that, by well-known results on linear filters (cf. Hannan (1970, p.
67)), the spectral density matrix of the process yt defined by (2.1) is given by

(2π)−1Φ
¡
e−iω

¢−1
Π
¡
eiω
¢−1C ( t)Π

¡
e−iω

¢0−1
Φ
¡
eiω
¢0−1

= (2π)−1
h
Φ
¡
eiω
¢0
Π
¡
e−iω

¢0C ( t)
−1Π

¡
eiω
¢
Φ
¡
e−iω

¢i−1
In the latter expression, the matrix in the brackets is 2π times the spectral
density matrix of a second order stationary process whose autocovariances
are zero at lags larger than r + s. As is well known, this process can be
represented as an invertible moving average of order r + s. Specifically, by
a slight modification of Theorem 10’ of Hannan (1970), we get the unique
representation

Φ
¡
eiω
¢0
Π
¡
e−iω

¢0C ( t)
−1Π

¡
eiω
¢
Φ
¡
e−iω

¢
=

Ã
r+sX
j=0

Cje−iω
!0 Ã

r+sX
j=0

Cjeiω
!

where the n × n matrixes C0, ..., Cr+s are real with C0 positive

definite, and the zeros of det
³Pr+s

j=0 Cjeiω
´
lie outside the unique

disc.1 Thus, the spectral density matrix of yt has the representation

(2π)−1
³Pr+s

j=0 Cjeijω
´−1 ³Pr+s

j=0 Cje−ijω
´0−1

, which is the spectral density

matrix of a causal VAR(r + s) process.
The preceding discussion means that, even if yt is noncausal, its spectral

density and, hence, autocovariance function cannot be distinguished from
those of a causal VAR(r + s) process. If yt or, equivalently, the error term
t is Gaussian this means that causal and noncausal representations of (2.1)
are statistically indistinguishable and nothing is lost by using a conventional
causal representation. However, if the errors are non-Gaussian using a causal
representation of a true noncausal process means using a VAR model whose
errors are only guaranteed to be uncorrelated but not independent. Then the
errors can be predicted by past values of the considered series and, as discussed
above, one is faced with the problem of nonfundamentalness, implying that the
errors of the employed causal VAR model do not match up with fundamental
economic shocks. Thus, when fundamentalness is an issue, it is advisable
to first fit an (adequate) causal autoregression to the observed series by
standard least squares or Gaussian ML and check whether the residuals look
non-Gaussian. If deviations from Gaussianity are detected it is reasonable to
consider the noncausal VAR model (2.1) and check for nonfundamentalness by
the procedures to be developed in subsequent sections.

1A direct application of Hannan’s (1970) Theorem 10’ would give a representation with
ω replaced by −ω. That this modification is possible can be seen from the proof of the
mentioned theorem (see the discussion starting in the middle of p. 64 of Hannan (1970)).
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2.2 Assumptions

In this section, we introduce assumptions that enable us to derive the likelihood
function and its derivatives. Further assumptions, needed for the asymptotic
analysis of the ML estimator and related tests, will be introduced in subsequent
sections.
As already discussed, meaningful application of noncausal VAR models

requires that the distribution of t is non-Gaussian. In the following
assumption the distribution of t is restricted to a general elliptical form.
As is well known, the normal distribution belongs to the class of elliptical
distributions but we will not rule out it at this point. Other examples of
elliptical distributions are given in Fang et al (1990, Chapter 3). Perhaps the
best known non-Gaussian example is the multivariate t-distribution.

Assumption 1. The error process t in (2.1) is independent and identically
distributed with zero mean, finite and positive definite covariance matrix, and
an elliptical distribution possessing a density.

Results on elliptical distributions needed in our subsequent developments can
be found in Fang et al (1990, Chapter 2) on which the following discussion is
based. To simplify notation in subsequent derivations, we define εt = Σ−1/2 t.
By Assumption 1, we have the representations

t
d
= ρtΣ

1/2υt and εt
d
= ρtυt (2.7)

where (ρt, υt) is an independent and identically distributed sequence such
that ρt (scalar) and υt (n× 1) are independent, ρt is nonnegative, and υt
is uniformly distributed on the unit ball (so that υ0tυt = 1). The density of t

is of the form

fΣ (x;λ) = det (Σ)
−1/2 f

¡
x0Σ−1x;λ

¢
(2.8)

for some nonnegative function f (·;λ) of a scalar variable. In addition to the
positive definite parameter matrix Σ (n× n) the distribution of t is allowed
to depend on the parameter vector λ (d× 1). The parameter matrix Σ is
closely related to the covariance matrix of t from which it only differs by a
multiplicative scalar. Specifically, because E (υt) = 0 and C (υt) = n−1In (see
Fang et al (1990, Theorem 2.7)) one obtains from (2.7) that

C ( t) =
E (ρ2t )
n

Σ (2.9)

Note that the finiteness of the covariance matrix C ( t) is equivalent to E (ρ2t ) <
∞.
A convenient feature of elliptical distributions is that we can often work

with the scalar random variable ρt instead of the random vector t. Equality
(2.9) already illustrates this and for subsequent purposes we note that the
density of ρ2t , denoted by ϕρ2 (·;λ), is related to the function f (·;λ) in (2.8)
via

ϕρ2 (ζ;λ) =
πn/2

Γ (n/2)
ζn/2−1f (ζ;λ) , ζ ≥ 0 (2.10)
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where Γ (·) is the gamma function (see Fang et al (1990, p. 36)). Assumptions
imposed on the density of t can be expressed by using the function f (ζ;λ)
(ζ ≥ 0). These assumptions are similar to those previously used by Andrews
et al (2006) and Lanne and Saikkonen (2008) in so-called all-pass models and
univariate noncausal autoregressive models, respectively. Note, however, that
when our assumptions are specialized to the univariate case the first argument
in the density function on the right hand side of (2.8) will be the square of
that appearing in these previous papers.
We denote by Λ the permissible parameter space of λ and use f 0 (ζ;λ)

to signify the partial derivative ∂f (ζ, λ) /∂ζ with a similar definition for
f 00 (ζ;λ). Also, we include a subscript (typically λ) in the expectation operator
or covariance operator when it seems reasonable to emphasize the parameter
value assumed in the calculations. Our second assumption is as follows.

Assumption 2. (i) The parameter space Λ is an open subset of Rd and that
of the parameter matrix Σ is the set of positive definite n× n matrices.
(ii) The function f (ζ;λ) is positive and twice continuously differentiable on
(0,∞) × Λ. Furthermore, for all λ ∈ Λ, limζ→∞ ζn/2f (ζ;λ) = 0, and a finite
and positive right limit limζ→0+ f (ζ;λ) exists.
(iii) For all λ ∈ Λ,Z ∞

0

ζn/2+1f (ζ;λ) dζ <∞ and
Z ∞

0

ζn/2 (1 + ζ)
(f 0 (ζ;λ))2

f (ζ;λ)
dζ <∞

Assuming that the parameter space Λ is open is not restrictive and facilitates
exposition. The former part of Assumption 2(ii) is similar to condition (A1)
in Andrews et al (2006) and Lanne and Saikkonen (2008) although in these
papers the domain of the first argument of the function f is the whole real
line. The latter part of Assumption 2(ii) is related to condition (A2) in the
aforementioned papers. To see this, notice that, for all λ ∈ Λ,Z ∞

0

ζn/2f 0 (ζ;λ) dζ = ζn/2f (ζ;λ) |∞0 −
n

2

Z ∞

0

ζn/2−1f (ζ;λ) dζ = −nΓ (n/2)
2πn/2

Here the latter equality follows because, by the latter part of Assumption 2(ii),
the first term in the second expression is zero andZ ∞

0

ζn/2−1f (ζ;λ) dζ =
Γ (n/2)

πn/2

Z
f (x0x;λ) dx =

Γ (n/2)

πn/2
(2.11)

as in Fang et al (1990, p. 35). When n = 1 the last expression equals unity,
showing the aforementioned connection. In Andrews et al (2006) and Lanne
and Saikkonen (2008) the values of the parameter λ are only assumed to
belong to some (small) neighborhood of the true parameter value but we have
preferred to be slightly less general here (this also applies to some subsequent
assumptions).
The first condition in Assumption 2(iii) implies that Eλ (ρ4t ) is finite (see

(2.10)) and, taken together, this assumption guarantees finiteness of some
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expectations needed in subsequent developments. In particular, the latter
condition in Assumption 2(iii) implies finiteness of the quantities

j (λ) =
4πn/2

nΓ (n/2)

Z ∞

0

ζn/2
(f 0 (ζ;λ))2

f (ζ;λ)
dζ =

4

n
Eλ

"
ρ2t

µ
f 0 (ρ2t ;λ)
f (ρ2t ;λ)

¶2#
(2.12)

and

i (λ) =
πn/2

Γ (n/2)

Z ∞

0

ζn/2+1
(f 0 (ζ;λ))2

f (ζ;λ)
dζ = Eλ

"
ρ4t

µ
f 0 (ρ2t ;λ)
f (ρ2t ;λ)

¶2#
(2.13)

where the latter equalities follow from the expression of the density of ρ2t
(see (2.10)). The quantities j (λ) and i (λ) can be used to characterize
non-Gaussianity of the error term t. Specifically we can prove the following.

Lemma 2.1 . Suppose that Assumptions 1—3 hold. Then, j (λ) ≥ n/Eλ (ρ2t )
and i (λ) ≥ (n+ 2)2 [Eλ (ρ2t )]2 /4Eλ (ρ4t ) where equalities hold if and only if t

is Gaussian. If t is Gaussian, j (λ) = 1 and i (λ) = n (n+ 2) /4.

Lemma 2.1 shows that assuming j (λ) > n/Eλ (ρ2t ) gives a counterpart of
condition (A5) in Andrews et al (2006) and Lanne and Saikkonen (2008). A
difference is, however, that in these papers the variance of the error term is
scaled so that the lower part of the inequality does not involve a counterpart
of the expectation Eλ (ρ2t ). For later purposes it is convenient to introduce a
scaled version of j (λ) given by

τ (λ) = j (λ)Eλ
¡
ρ2t
¢
/n (2.14)

Clearly, τ (λ) ≥ 1 with equality if and only if t is Gaussian.
It appears useful to generalize the model defined in equation (2.1) by

allowing the coefficient matrices Πj (j = 1, ..., r) and Φj (j = 1, ..., s) to depend
on smaller dimensional parameter vectors. We make the following assumption.

Assumption 3. The parameter matrices Πj = Πj (ϑ1) (j = 1, ..., r) and
Φj (ϑ2) (j = 1, ..., s) are twice continuously differentiable functions of the
parameter vectors ϑ1 ∈ Θ1 ⊆ Rm1 and ϑ2 ∈ Θ2 ⊆ Rm2, where the permissible
parameter spaces Θ1 and Θ2 are open and such that condition (2.2) holds for
all ϑ = (ϑ1, ϑ2) ∈ Θ1 ×Θ2.

This is a standard assumption. The differentiability requirement guarantees
that the likelihood function is twice continuously differentiable. We will
continue to use to notation Πj and Φj when there is no need to make the
dependence on the underlying parameter vectors explicit.
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3 Parameter estimation

3.1 Likelihood function

ML estimation of the parameters of a univariate noncausal autoregression was
studied by Breidt et al (1991) by using a parametrization different from that
in (2.1). The parametrization (2.1) was employed by Lanne and Saikkonen
(2008) whose results we here generalize. Unless otherwise stated, Assumptions
1—3 are supposed to hold.
Suppose we have an observed time series y1, ..., yT . Denote

det (Π (z)) = a (z) = 1− a1z − · · ·− anrz
nr

Then, wt = a (B) yt which in conjunction with the definition ut = Φ (B−1) yt
yields⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

uT−s
wT−s+1
...
wT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1 − Φ1y2 − · · ·−Φsys+1
...

yT−s − Φ1yT−s+1 − · · ·− ΦsyT
yT−s+1 − a1yT−s − · · ·− anryT−s−nr+1

...
yT − a1yT−1 − · · ·− anryT−nr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=H1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1
...

yT−s
yT−s+1
...
yT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
or briefly

x =H1y

From the definition of ut and (2.1) it follows that Π (B)ut = t so that from
the preceding equality we find⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...
ur
r+1
...
T−s

wT−s+1
...
wT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...
ur

ur+1 −Π1ur − · · ·−Πru1
...

uT−s −Π1uT−s−1 − · · ·−ΠruT−s−r
wT−s+1
...
wT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=H2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
...
ur
ur+1
...

uT−s
wT−s+1
...
wT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

z =H2x

Hence, we get the equation

z =H2H1y

where the (nonstochastic) matrices H1 and H2 are nonsingular. The
nonsingularity ofH2 follows from the fact that det (H2) = 1, as can be easily
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checked. Justifying the nonsingularity of H1 is somewhat more complicated,
and will be demonstrated in Appendix B.
From (2.3) and (2.4) it can be seen that the components of z

given by z1 = (u1, ..., ur), z2 =
¡

r+1, ..., T−s−(n−1)r
¢
, and z3 =

( T−s−(n−1)r+1, ..., T−s, wT−s+1, ..., wT ) are independent. Thus, (under true
parameter values) the joint density function of z can be expressed as

hz1 (z1)

⎛⎝T−s−(n−1)rY
t=r+1

fΣ ( t;λ)

⎞⎠hz3(z3)

where hz1 (·) and hz3 (·) signify the joint density functions of z1 and z3,
respectively. Using (2.1) and the fact that the determinant of H2 is unity
we can write the joint density function of the data vector y as

hz1 (z1 (ϑ))

⎛⎝T−s−(n−1)rY
t=r+1

fΣ
¡
Π (B)Φ

¡
B−1

¢
yt;λ

¢⎞⎠hz3(z3 (ϑ)) |det (H1)|

where the arguments z1 (ϑ) and z3 (ϑ) are defined by replacing ut, t, and wt

in the definitions of z1 and z3 by Φ (B−1) yt, Π (B)Φ (B−1) yt, and a (B) yt,
respectively.
It is easy to check that the determinant of the (T − s)n× (T − s)n block

in the upper left hand corner ofH1 is unity and, using the well-known formula
for the determinant of a partitioned matrix, it can furthermore be seen that
the determinant of H1 is independent of the sample size T . This suggests
approximating the joint density of y by the second factor in the preceding
expression, giving rise to the approximate log-likelihood function

lT (θ) =

T−s−(n−1)rX
t=r+1

gt (θ) (3.1)

where the parameter vector θ contains the unknown parameters and (cf. (2.8))

gt (θ) = log f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢− 1
2
log det (Σ) (3.2)

with

t (ϑ) = ut (ϑ2)−
rX

j=1

Πj (ϑ1)ut−j (ϑ2) (3.3)

and ut (ϑ2) = In − Φ1 (ϑ2) yt+1 − · · · − Φs (ϑ2) yt+s. In addition to ϑ and λ
the parameter vector θ also contains the different elements of the matrix Σ,
that is, the vector σ = vech(Σ). For simplicity, we shall usually drop the word
‘approximate’ and speak about likelihood function. The same convention is
used for related quantities such as the ML estimator of the parameter θ or its
score and Hessian.
Maximizing lT (θ) over permissible values of θ (see Assumptions 2(i) and

3) gives an approximate ML estimator of θ. Note that here, as well as in the
next section, the orders r and s are assumed known. Procedures to specify
these quantities will be discussed later.
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3.2 Score vector

At this point we introduce the notation θ0 for the true value of the parameter
θ and similarly for its components. Note that our assumptions imply that
θ0 is an interior point of the parameter space of θ. To simplify notation we
write t (ϑ0) = t and ut (ϑ20) = u0t when convenient. The subscript ‘0’ will
similarly be included in the coefficient matrices of the infinite moving average
representations (2.3), (2.4), and (2.5) to emphasize that they are related to
the data generation process (ie Mj0, Nj0, and Ψj0). We also denote πj (ϑ1) =
vec(Πj (ϑ1)) (j = 1, ..., r) and φj (ϑ2) = vec(Φj (ϑ2)) (j = 1, ..., s), and set

∇1 (ϑ1) =
∙

∂

∂ϑ1
π1 (ϑ1) : · · · : ∂

∂ϑ1
πr (ϑ1)

¸0
and

∇2 (ϑ2) =
∙

∂

∂ϑ2
φ1 (ϑ2) : · · · :

∂

∂ϑ2
πs (ϑ2)

¸0
In this section, we consider ∂lT (θ0) /∂θ, that is, the score of θ evaluated
at the true parameter value θ0. Explicit expressions of the derivatives of
the log-likelihood function are given in Appendix A. Here we only present
the expression of the limit limT→∞ T−1C (∂lT (θ0) /∂θ). The asymptotic
distribution of the score is presented in the following proposition for which
additional assumptions and notation are needed. For the treatment of the
score of λ we impose the following assumption.

Assumption 4. (i) There exists a function f1 (ζ) such thatR∞
0

ζn/2−1f1 (ζ) dζ < ∞ and, in some neighborhood of λ0, |∂f (ζ;λ) /∂λi| ≤
f1 (ζ) for all ζ ≥ 0 and i = 1, ..., d.

(ii)

¯̄̄̄
¯
Z ∞

0

ζn/2−1

f (ζ;λ0)

∂

∂λi
f (ζ;λ0)

∂

∂λj
∂f (ζ;λ0) dζ

¯̄̄̄
¯ <∞, i, j = 1, ..., d

The first condition is a standard dominance condition which is needed to
guarantee that the score of λ (evaluated at θ0) has zero mean. The second
condition simply assumes that the covariance matrix of the score of λ
(evaluated at θ0) is finite. For other scores the corresponding properties are
obtained from the assumptions made in the previous section.
Recall the definition τ (λ) = j (λ)Eλ (ρ2t ) /n where j (λ) is defined in (2.12).

In what follows, we denote j0 = j (λ0) and τ 0 = j0Eλ0 (ρ2t ) /n. Define the n×n
matrix

C11 (a, b) = τ 0

∞X
k=0

Mk−a,0Σ0M 0
k−b,0

and set C11 (θ0) =
£
C11 (a, b)⊗Σ−10

¤r
a,b=1

(n2r × n2r) and, furthermore,

Iϑ1ϑ1 (θ0) = ∇1 (ϑ10)0C11 (θ0)∇1 (ϑ10)
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Notice that j−10 C11 (a, b) = Eλ0
¡
u0,t−au00,t−b

¢
. As shown in Appendix B,

Iϑ1ϑ1 (θ0) is the standardized covariance matrix of the score of ϑ1 or the (Fisher)
information matrix of ϑ1 evaluated at θ0. In what follows, the term information
matrix will be used to refer to the covariance matrix of the asymptotic
distribution of the score vector ∂lT (θ0) /∂θ. Thus, the true parameter value
θ0 as well as the standardization and (possible) limiting operation are not
necessarily mentioned.
Presenting the information matrix of ϑ2 is somewhat complicated. First

define

J0 = i0E
£
(vech(υtυ0t)) (vech(υtυ

0
t))

0¤− 1
4
vech (In) vech (In)

0

a square matrix of order n (n+ 1) /2. An explicit expression of the matrix J0
can be obtained from Wong and Wang (1992, p. 274) or Fang et al (1990,
Theorem 3.3). For later purposes we note that

E
£
(vec(υtυ0t)) (vec(υtυ

0
t))

0¤
=

1

n (n+ 2)

¡
In2 +Knn + vec (In) vec (In)

0¢ (3.4)
We also denote Πi0 = Π (ϑ10), i = 1, ..., r, and Π00 = −In, and define the
partitioned matrix C22 (θ0) = [C22 (a, b; θ0)]

s
a,b=1 (n

2s× n2s) where the n × n
matrix C22 (a, b; θ0) is

C22 (a, b; θ0) = τ 0

∞X
k=−∞
k 6=0

rX
i=0

rX
j=0

¡
Ψk+a−i,0Σ0Ψ0

k+b−j,0 ⊗Π0i0Σ
−1
0 Πj0

¢

+
rX

i=0

rX
j=0

³
Ψa−i,0Σ

1/2
0 ⊗Π0i0Σ

−1/2
0

´
(4DnJ0D

0
n −Knn)³

Σ
1/2
0 Ψ0

b−j,0 ⊗Σ
−1/2
0 Πj0

´
Now set

Iϑ2ϑ2 (θ0) = ∇2 (ϑ20)0C22 (θ0)∇2 (ϑ20)
which is the (limiting) information matrix of ϑ2 (see Appendix B). Notice that
in the scalar case n = 1 and in the purely noncausal case r = 0 the expression
of C22 (θ0) simplifies because the latter term in the definition of C22 (a, b; θ0)
vanishes (see equality (B.6) in Appendix B) and the former only depends on
the coefficient matrices Ψj0 with j < 0 (cf. Lanne and Saikkonen (2008)).
To be able to present the information matrix of the whole parameter vector

ϑ we define the n2 × n2 matrix

C12 (a, b; θ0) = −τ 0
∞X
k=a

rX
i=0

¡
Mk−a,0Σ0Ψ0

k+b−i,0 ⊗ Σ−10 Πi0

¢
+Knn

¡
Ψ0
b−a,0 ⊗ In

¢
and the n2r×n2s matrix C12 (θ0) = [C12 (a, b; θ0)] = C21 (θ0)

0 where a = 1, ..., r
and b = 1, ..., s. The off-diagonal blocks of the (limiting) information matrix
of ϑ are given by

Iϑ1ϑ2 (θ0) = ∇1 (ϑ10)0C12 (θ0)∇2 (ϑ20) = Iϑ2ϑ1 (θ0)0
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In the scalar case n = 1 and in the purely noncausal case r = 0 simplifications
again result because in the expression of C12 (a, b; θ0) the former term vanishes
(see equality (B.6) in Appendix B). Combining the preceding definitions we
now define the matrix

Iϑϑ (θ) =
£Iϑiϑj (θ)¤i,j=1,2

For the remaining blocks of the information matrix of θ, we first define

Iσσ (θ0) = D0
n

³
Σ
−1/2
0 ⊗Σ

−1/2
0

´
DnJ0D

0
n

³
Σ
−1/2
0 ⊗Σ

−1/2
0

´
Dn

and

Iϑ2σ (θ0) = −2
sX

j=0

∂

∂ϑ2
φj (ϑ2)

rX
i=0

³
Ψj−i,0Σ

1/2
0 ⊗Π0i0Σ

−1/2
0

´
DnJ0D

0
n

³
Σ
−1/2
0 ⊗Σ

−1/2
0

´
Dn

with Iϑ2σ (θ)0 = Iσϑ2 (θ). Note that in the scalar case n = 1 and in the purely
noncausal case r = 0 we have Iϑ2σ (θ0) = 0 (see equality (B.6) in Appendix
B). Finally, define

Iλλ (θ0) = πn/2

Γ (n/2)

Z ∞

0

ζn/2−1

f (ζ;λ0)

µ
∂

∂λ
f (ζ;λ0)

¶µ
∂

∂λ
f (ζ;λ0)

¶0
dζ

and

Iσλ (θ0) = −D0
n

³
Σ
−1/2
0 ⊗Σ

−1/2
0

´
Dnvech (In)

πn/2

Γ (n/2)Z ∞

0

ζn/2
f 0 (ζ;λ0)
f (ζ;λ0)

∂

∂λ0
f (ζ;λ0) dζ

with Iσλ (θ0)0 = Iλσ (θ0). Here the integrals are finite by Assumptions 2(iii)
and 4(ii), and the Cauchy-Schwarz inequality.
Now we can define

Iθθ (θ0) =

⎡⎢⎢⎣
Iϑ1ϑ1 (θ0) Iϑ1ϑ2 (θ0) 0 0
Iϑ2ϑ1 (θ0) Iϑ2ϑ2 (θ0) Iϑ2σ (θ0) 0

0 Iσϑ2 (θ0) Iσσ (θ0) Iσλ (θ0)
0 0 Iλσ (θ0) Iλλ (θ0)

⎤⎥⎥⎦
the information matrix of the whole parameter vector θ. As already noted, in
the scalar case n = 1 and in the purely noncausal case r = 0 the expressions
of Iϑ2ϑ2 (θ0) and Iϑ1ϑ2 (θ0) simplify and Iϑ2σ (θ0) becomes zero. The latter
fact means that then the parameters ϑ and (σ, λ) are orthogonal so that,
asymptotically, their ML estimators are independent.
Before presenting the asymptotic distribution of the score of θ we introduce

conditions which guarantee the positive definiteness of its covariance matrix.
These include conventional rank conditions on the first derivatives of the
functions in Assumption 3 and assumptions on the score of λ which are needed

20



because of the general nature of the parameter vector λ. Specifically, we assume
the following.

Assumption 5. (i) The matrices∇1 (ϑ10) (rn2 ×m1) and∇2 (ϑ10) (sn2 ×m2)
are of full column rank.

(ii) The matrix
∙ Iσσ (θ0) Iσλ (θ0)
Iλσ (θ0) Iλλ (θ0)

¸
is positive definite.

As already indicated, Assumption 5(i) is standard. Assumption 5(ii) is
analogous to what has been assumed in previous univariate models (see
Andrews et al (2006) and Lanne and Saikkonen (2008)). Note, however, that
unlike in the univariate case it is here less obvious that this assumption is
sufficient for the positive definiteness of the whole information matrix Iθθ (θ0).
The reason is that in the univariate case the situation is simpler in that the
parameters λ and σ are orthogonal to the autoregressive parameters (here ϑ1
and ϑ2). In the multivariate case the orthogonality of σ with respect to ϑ2
fails but it is still possible to do without assuming more than assumed in the
univariate case. We also note that, similarly to the aforementioned univariate
cases, Assumption 5(ii) is not needed to guarantee the positive definiteness
of Iσσ (θ0). This follows from the definition of Iσσ (θ0) and the facts that
duplication matrices are of full column rank and that the matrix J0 is positive
definite. The latter fact is established in Lemma B.2 in Appendix B even when
the errors are Gaussian.
Now we can present the limiting distribution of the score.

Proposition 3.1 Suppose that Assumptions 1—5 hold and that t is
non-Gaussian. Then,

(T − s− nr)−1/2
T−s−(n−1)rX

t=r+1

gt (θ0)
d→ N (0,Iθθ (θ0))

where the matrix Iθθ (θ0) is positive definite.

This result generalizes the corresponding univariate result given in Breidt et al
(1991) and Lanne and Saikkonen (2008). In the following section we generalize
the work of these authors further by deriving the limiting distribution of the
(approximate) ML estimator of θ. Note that for the usefulness of this result it
is crucial that t is non-Gaussian because in the Gaussian case the information
matrix Iθθ (θ0) is singular (see the proof of Proposition 3.1, Step 2).

3.3 Limiting distribution of the approximate ML estimator

The expressions of the second partial derivatives of the log-likelihood function
can be found in Appendix A. The following lemma shows that the expectations
of these derivatives evaluated at the true parameter value agree with the
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corresponding elements of −Iθθ (θ0). For this lemma we need the following
assumption.

Assumption 6. (i) The integral
R∞
0

ζn/2−1f 0 (ζ;λ0) dζ is finite,
limζ→∞ ζn/2+1f 0 (ζ;λ0) = 0, and a finite right limit limζ→0+ f 0 (ζ;λ0) exists.
(ii) There exists a function f2 (ζ) such that

R∞
0

ζn/2−1f2 (ζ) dζ < ∞ and, in
some neighborhood of λ0, ζ |∂f 0 (ζ;λ) /∂λi| ≤ f2 (ζ) and |∂2f (ζ;λ) /∂λi∂λj| ≤
f2 (ζ) for all ζ ≥ 0 and i, j = 1, ..., d.

Assumption 6(i) is similar to the latter part of Assumption 2(ii) except that it
is formulated for the derivative f 0 (ζ;λ0). Assumption 6(ii) imposes a standard
dominance condition which guarantees that the expectation of ∂gt (θ0) /∂λ∂λ

0

behaves in the desired fashion. It complements Assumption 4(i) which is
formulated similarly to deal with the expectation of ∂gt (θ0) /∂λ. Now we
can formulate the following lemma.

Lemma 3.2 If Assumptions 1—6 hold then −T−1Eθ0 [∂2lT (θ0) /∂θ∂θ0] =
Iθθ (θ0) .
Lemma 3.2 shows that the Hessian of the log-likelihood function evaluated at
the true parameter value is related to the information matrix in the standard
way, implying that ∂gt (θ0) /∂θ∂θ

0 obeys a desired law of large numbers.
However, to establish the asymptotic normality of the ML estimator more
is needed, namely the applicability of a uniform law of large numbers in some
neighborhood of θ0, and for that additional assumptions are required. As usual,
it suffices to impose appropriate dominance conditions such as those given in
the following assumption.

Assumption 7. For all ζ ≥ 0 and all λ in some neighborhood of λ0, the
functionsµ

f 0 (ζ;λ)
f (ζ;λ)

¶2
,

¯̄̄̄
f 00 (ζ;λ)
f (ζ;λ)

¯̄̄̄
,

1

f (ζ;λ)2

µ
∂

∂λj
f (ζ;λ)

¶2
1

f (ζ;λ)

¯̄̄̄
∂

∂λj
f 0 (ζ;λ)

¯̄̄̄
,

1

f (ζ;λ)

¯̄̄̄
∂2

∂λj∂λk
f (ζ;λ)

¯̄̄̄
, j, k = 1, ...,d

are dominated by a1 + a2ζ
a3 with a1, a2, and a3 nonnegative constants andR∞

0
ζn/2+1+a3f (ζ;λ0) dζ <∞.

The dominance means that, for example, (f 0 (ζ;λ) /f (ζ;λ))2 ≤ a1 + a2ζ
a3 for

ζ and λ as specified. The conditions in Assumption 7 are only slightly different
from those used in Andrews et al (2006) and Lanne and Saikkonen (2008).
Now we can state the main result of this section.

Theorem 3.3 Suppose that Assumptions 1—7 of hold and that t is
non-Gaussian. Then there exists a sequence of (local) maximizers θ̂ of lT (θ)
in (3.1) such that

(T − s− nr)1/2 (θ̂ − θ0)
d→ N

¡
0, Iθθ (θ0)−1

¢
Furthermore, Iθθ (θ0) can consistently be estimated by
− (T − s− nr)−1 ∂2lT (θ̂)/∂θ∂θ0.
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Thus, Theorem 3.3 shows that the usual result on asymptotic normality
holds for a local maximizer of the likelihood function and that the
limiting covariance matrix can consistently be estimated with the Hessian
of the log-likelihood function. Based on these results and arguments
used in their proof, conventional likelihood based tests with limiting
chi-square distribution can be obtained. It is worth noting, however, that
consistent estimation of the limiting covariance matrix cannot be based
on the outer product of the first derivatives of the log-likelihood function.
Specifically, (T − s− nr)−1

PT−s−(n−1)r
t=r+1 (∂gt(θ̂)/∂θ)(∂gt(θ̂)/∂θ

0) is, in general,
not a consistent estimator of Iθθ (θ0). The reason is that this estimator
does not take nonzero covariances between ∂gt(θ)/∂θ and ∂gk(θ)/∂θ, k 6= t,
into account. Such covariances are, for example, responsible for the term
Knn

¡
Ψ0b−a ⊗ In

¢
in Iϑ1ϑ2 (θ0) (see the definition of C12 (a, b; θ0) and the related

proof of Proposition 3.1 in Appendix B). For instance, in the scalar case n = 1
this estimator would be consistent only when the ML estimators of ϑ1 and ϑ2
are asymptotically independent which only holds in special cases.

4 Empirical applications

In this section, we consider two economic applications of the noncausal VAR
model. In each case, discriminating between causality and noncausality is
primarily seen as an indirect test of the economic hypothesis being considered.
In other words, the presence of noncausality per se would be seen as evidence
against the theory. Moreover, basing a test of the theory on the assumption
of causality, as is typically done, would be incorrect in the presence of
noncausality. It is only after ascertaining that the variables indeed have a
causal VAR representation that the economic theory can be evaluated by
testing restrictions on the parameters of such a VAR model. Hence, checking
for noncausality can be considered a pretest validating conventional testing
procedures.
In our applications, the specification of a potentially noncausal VAR model

is carried out along the same lines as in the univariate case in Breidt et al
(1991) and Lanne and Saikkonen (2008). The first step is to fit a conventional
causal VAR model by least squares or Gaussian ML and determine its order by
using conventional procedures such as diagnostic checks and model selection
criteria. Once an adequate causal model is found, we check its residuals for
Gaussianity. As already discussed, it makes sense to proceed to noncausal
models only if deviations from Gaussianity are detected. If this happens, a
non-Gaussian error distribution is adopted and all causal and noncausal models
of the selected order are estimated. Of these models the one that maximizes
the log-likelihood function is selected and its adequacy is checked by diagnostic
tests.
If a noncausal model is selected, it would often be of interest to proceed to

impulse response analysis to fully understand the effects of economic shocks
but, as the relevant methods are not readily available, that lies outside the
scope of this paper. The main difficulty with impulse response analysis is that
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prediction in noncausal autoregressions is, in general, a nonlinear problem and
no closed form of the forecast function is currently available (see Rosenblatt
(2000, Chapter 5) and the discussion in Lanne and Saikkonen (2008)).

4.1 Fiscal foresight

Our first application is concerned with fiscal foresight, ie, the phenomenon
that due to lags in implementation, agents receive signals about a future
change in the tax rate or government spending before they actually take place.
It can be shown that the presence of foresight leads to time series with a
non-invertible moving average component in equilibrium (for a survey of this
literature, see Leeper et al (2008)). In other words, if there is foresight, a
VAR model incorporating the key variables of the economy (including taxes
and government expenditure), is noncausal. Finding noncausality therefore
provides evidence in favor of fiscal foresight, which invalidates analyses based
on conventional causal VAR models common in the previous literature. This
was illustrated by Yang (2005) who showed by simulations of a standard
neoclassical growth model that relying on a causal VAR model in the presence
of foresight of only one quarter can yield very misleading estimates of tax
effects. This, of course, follows from the fact that the errors of the identified
VAR model are not the true fiscal shocks in this case.
The previous empirical evidence of fiscal foresight is mostly based on case

studies around major fiscal policy changes and not closely connected to theory
(see Poterba (1988), Auerbach and Slemrod (1997) Steigerwald and Stuart
(1997), and House and Shapiro (2006, 2008), inter alia). Indirect evidence in
favor of fiscal foresight not based on a single tax change was recently provided
by Yang (2007) who showed that in a VAR model augmented by variables
capturing expectations (such as prices and interest rates), the responses of
labor, investment, and output to a tax shock become weaker. Our approach of
checking for noncausality can be seen as a more direct test of fiscal foresight.
We consider a simple trivariate VAR model for the (demeaned) differences

of US GDP, total government expenditure, and total government revenue (all
in real per capita terms). The quarterly data from 1955:1 to 2000:4 (184
observations) were previously used byMountford and Uhlig (in press), who also
provide a detailed description of the construction of the variables. We start
the analysis by searching for an adequate Gaussian vector autoregression. The
AIC and BIC select VAR(3) and VAR(2) models, respectively, and according
to the diagnostic test results reported in Table 1, the second-order model is
deemed sufficient in capturing autocorrelation.2 However, the errors, especially
those of the equation for the government expenditure, exhibit conditional
heteroskedasticity. Also, the quantile-quantile (Q-Q) plots in the upper panel

2Note that, when the orders of the model are misspecified, the Ljung-Box and McLeod-Li
tests are not exactly valid as they do not take estimation errors correctly into account.
The reason is that a misspecification of the model orders makes the errors dependent.
Nevertheless, p-values of these tests can be seen as convenient summary measures of the
autocorrelation remaining in the residuals and their squares. A similar remark applies to
the Shapiro-Wilk test used to check the error distribution.
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Figure 1: Quantile-quantile plots of the residuals of the VAR(2,0)-N (upper
panel) and VAR(1,1)-t (lower panel) models for the changes in US GDP,
government expenditure and government revenue.

of Figure 1 suggest that the errors are not normally distributed3 with the
greatest discrepancies at the tails, suggesting that a fat-tailed error distribution
might be more appropriate.

Table 1 Results of diagnostic checks of the second-order
VAR models for examining the presence of fiscal
foresigt

Model
VAR(2,0)-N VAR(2,0)-t VAR(1,1)-t VAR(0,2)-t

Ljung-Box (4)
0.994
0.194
0.633

0.712
0.038
0.272

0.733
0.065
0.160

0.843
0.021
0.281

McLeod-Li (4)
0.084
0.103
1.66e—7

0.111
0.085
1.47e—9

0.767
0.762
0.969

0.940
0.687
1.80e—8

Log-likelihood —960.407 —967.489 —944.947 —949.472

3The p-values of the Shapiro-Wilk test are 0.005, 0.416 and 1.80e—6 for the residuals of
the equations for the GDP, government expenditure and government revenue, respectively.
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Instead of the normal distribution, we consider the multivariate
t-distribution for the errors. In this case, the second-order model that
best fits the data in terms of the log likelihood function, is the VAR(1,1)-t
model. It also seems to be the only model in Table 1 that produces
well-behaved residuals, with the other specifications exhibiting autocorrelation
or conditional heteroskedasticity in at least one of the equations. Hence, there
is evidence in favor of a noncausal VAR representation of the data, indicating
the presence of fiscal foresight. The Q-Q plots of the residuals of the preferred
model in the lower panel of Figure 1 attest to the good fit of the multivariate
t-distribution.4 Also, the estimated value of the degrees-of-freedom parameter
λ in Table 2 is relatively small (8.253), which lends further support to the need
for a fat-tailed error distribution.

Table 2 Estimation results of the VAR(1,1)-t
model for (∆GDP,∆Government
expenditure, ∆Government revenue)0

—0.064
(0.091)

0.107
(0.075)

—0.049
(0.016)

Π1
—0.046
(0.111)

—0.093
(0.104)

0.012
(0.024)

0.192
(0.315)

—0.065
(0.205)

—0.333
(0.071)

0.244
(0.104)

0.006
(0.060)

0.072
(0.022)

Φ1
—0.320
(0.167)

0.268
(0.093)

0.066
(0.045)

0.607
(0.278)

—0.045
(0.176)

0.389
(0.071)

0.165
(0.024)

0.071
(0.017)

0.346
(0.055)

Σ
0.071
(0.017)

0.305
(0.040)

0.156
(0.053)

0.346
(0.055)

0.156
(0.053)

2.141
(0.295)

λ
8.253
(0.954)

The figures in parentheses are standard errors based
on the Hessian of the log-likelihood function.

Because the noncausal model provides the best fit, analyses based on causal
VAR models are expected to be misleading as they fail to extract the correct
structural shocks. The presence of a noncausal VAR representation indicates

4The p-values of the Shapiro-Wilk test for the three residual series are 0.455, 0.295 and
0.186, respectively.
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the importance of expectations of future tax and government expenditure
changes that the conventional causal VAR model does not take into account.
The elements of the matrix Φ1 give the effect of a change in expected
next-period values of the variables on the current values, as discussed in
Section 2.1 (see, in particular, Equation (2.6) and the ensuing discussion).
In particular, the estimates in Table 2 suggest that expectations of future tax
increases tend to increase the GDP and government revenue.

4.2 Term structure of interest rates

As another application, we consider the expectations hypothesis of the term
structure of interest rates. According to this theory, the long-term interest
rate is a weighted sum of present and expected future short-term interest
rates. Campbell and Shiller (1987, 1991) suggested testing the expectations
hypothesis by testing the restrictions it imposes on the parameters of a VAR
model for the change in the short-term interest rate and the spread between
the long-term and short-term interest rates. Furthermore, they showed how
the theoretical spread satisfying these restrictions can be computed based on
the estimated VAR model. The expectations hypothesis is a special case of
the present value model, and similar techniques have been widely employed
in testing that model in the context of various applications, including stock
returns (Campbell and Shiller (1987)) and the net present value budget balance
(Roberds (1991)). Although this method is straightforward, it crucially
depends on the existence of a causal VAR representation, suggesting that
its validity can be assured by checking the causality of the related vector
autoregression.
Finding noncausality indicates nonfundamentalness that can arise because

the agents’ information set is larger than the econometrician’s. Although
the discrepancy between the information sets poses no problem in testing the
expectations hypothesis under the assumption of the existence of a causal VAR
representation maintained in most of the previous literature, the conclusions
can be misleading if this assumption is falsely imposed. One explanation for
nonfundamentalness and, hence, noncausality, in asset pricing models recently
put forth by Kasa et al (2007) are heterogenous beliefs. Indeed, they show
that if agents have different information, nonfundamental representations of
the data correspond to nonrevealing equilibria where the agents ‘forecast the
forecasts of others’. So, detecting noncausality in the term structure may
indicate that agents have heterogeneous information useful in predicting future
interest rates.
We concentrate on a bivariate VAR model for the (demeaned) change in

the three-month interest rate (∆rt) and the spread between the ten-year and
three-month interest rates (St) (quarter-end yields on US zero-coupon bonds)
from 1970:1—1998:4 (116 observations).5 AIC and BIC select Gaussian VAR(3)
and VAR(2) models, respectively, but only the third-order model produces

5The data were previously used by Duffee (2002). We thank Gregory Duffee for providing
them on his website.
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serially uncorrelated errors. However, the results in Table 3 show that the
residuals are conditionally heteroskedastic and the Q-Q plots is the upper
panel of Figure 2, indicate considerable deviations from normality.6 Because
the most severe violations of normality occur at the tails, a more leptokurtic
distribution, such as the multivariate t distribution, might prove suitable for
these data.

Table 3. Results of diagnostic checks of the third-order VAR models for
the term structure

Model
VAR(3,0)-N VAR(3,0)-t VAR(2,1)-t VAR(1,2)-t VAR(0,3)-t

Ljung-Box (4)
0.710
0.725

0.005
0.014

0.134
0.976

4.58e—5
0.002

0.003
0.155

McLeod-Li (4)
5.83e—5
3.85e—4

0.011
0.103

0.478
0.879

6.07e—5
0.001

0.058
0.199

Log-likelihood —261.443 —110.307 —93.960 —106.453 —106.012
VAR(r,s) denotes the vector autoregressive model for (∆rt, St)

0 with the rth and sth
order polynomials Π(B) and Φ(B−1), respectively. N and t refer to Gaussian and
t-distributed errors, respectively. Marginal significance levels of the Ljung-Box and
McLeod-Li tests with 4 lags are reported for each equation.

The estimation results of all four third-order VARmodels with t-distributed
errors are summarized in Table 3. By a wide margin, the specification
maximizing the log-likelihood function is the VAR(2,1)-t model. It also turns
out to be the only one of the estimated models that shows no signs of remaining
autocorrelation or conditional heteroskedasticity in the residuals. The Q-Q
plots of the residuals in the lower panel of Figure 2 lend support to the
adequacy of the multivariate t distribution of the errors; the p-values of the
Shapiro-Wilk test for the residuals of the equations for ∆rt and St equal 0.509
and 0.451, respectively. Moreover, the estimate of the degrees-of-freedom
parameter λ reported in Table 4 is small (8.187) and accurate, suggesting
inadequacy of the Gaussian error distribution. Thus, there is evidence of
noncausality, but not pure noncausality, ie, the term structure depends on
expectations of future interest rates as well as past values.

6The p-values of the Shapiro-Wilk test for the residuals of the equations of ∆rt and St
equal 4.09e—8 and 0.001, respectively.
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Figure 2: Quantile-quantile plots of the residuals of the VAR(3,0)-N (upper
panel) and VAR(2,1)-t (lower panel) models for the US term structure data.

Table 4. Estimation results of the VAR(2,1)-t model for (∆rt, St)
0

Π1
—0.532
(0.107)

0.464
(0.138)

0.248
(0.156)

0.257
(0.143)

Π2
—0.338
(0.055)

0.306
(0.097)

0.461
(0.094)

—0.018
(0.129)

Φ1
0.441
(0.076)

—0.136
(0.041)

—0.191
(0.201)

0.658
(0.096)

Σ
0.123
(0.023)

—0.095
(0.043)

—0.095
(0.043)

0.184
(0.074)

λ
8.187
(1.214)

The figures in parentheses are standard errors based on the
Hessian of the log-likelihood function. 29



The presence of a noncausal VAR representation of ∆rt and St invalidates
the test of the expectations hypothesis suggested by Campbell and Shiller
(1987, 1991). This may also explain the common rejections of the hypothesis
when testing is based on the assumption of a causal VAR model, which in
view of our results is likely to be misspecified. Indirectly these findings lend
support to the heterogeneous beliefs explanation of Kasa et al (2007) discussed
above although that is likely not to be the only possibility. The estimated
Φ1 matrix also seems to have an interpretation that goes contrary to the
expectations hypothesis: an expected increase of the short-term rate tends to
increase the current short-term rate while having no significant effect on the
spread. According to the expectations hypothesis, in contrast, an expected
future increase in the short-term rate should have no effect on the current
short-term rate, but it should increase the long-term rate and, therefore, the
spread. Furthermore, here an expected future increase of the spread tends
to decrease the short-term rate and increase the spread. This might be
interpreted in favor of (expected) time-varying term premia driving the term
structure instead of expectations of future short-term rates as implied by the
expectations hypothesis.

5 Conclusion

In this paper, we have proposed a new noncausal VAR model that contains
the commonly used causal VAR model as a special case. In the Gaussian case,
causal and noncausal VAR models cannot be distinguished which underlines
the importance of a careful specification of the error distribution of the
model. This may also be important in causal VAR models because in the
non-Gaussian case, absence of serial correlation does not necessarily guarantee
nonpredictability of the errors. While the new model is likely to be useful
in providing a more accurate description of the dynamics of economic time
series than the causal model, it is probably in checking for nonfundamentalness
that it is most valuable. Nonfundamentalness often invalidates the use of
conventional econometric methods and it arises, in particular, in rational
expectations models.
We have derived asymptotic properties of a (local) ML estimator and

related tests in the noncausal VAR model, and we have successfully employed
an extension of the model selection procedure presented by Breidt et al
(1991) and Lanne and Saikkonen (2008) in the corresponding univariate case.
The methods have been illustrated by means of two empirical applications.
Evidence in favor of fiscal foresight in the US was found, suggesting that shocks
identified by imposing structural restrictions on causal VAR models to study
the effects of fiscal policy, are not likely to carry any economic interpretation.
Likewise, a noncausal VAR model for the US term structure of interest rates
turned out to be superior to the causal model, invalidating the commonly
employed test procedures of the expectations hypothesis that explicitly assume
causality.
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While checking for nonfundamentalness is an important application of our
methods, it can only be considered as the first step in the analysis of economic
and financial data. Once noncausality is detected, it would be natural to
use the noncausal VAR model for forecasting and structural analysis. These,
however, require methods that are not readily available. Another issue of great
interest is the use of noncausal VAR models for modeling expectations and the
relation of noncausal VAR models to economic models involving expectations.
Regarding statistical aspects, the theory presented in this paper is confined to
the class of elliptical distributions. Even though the multivariate t-distribution
belonging to this class seemed adequate in our empirical applications, it would
be desirable to make extensions to other relevant classes of distributions. Also,
the finite-sample properties of the proposed model selection procedure and, in
particular, its performance in detecting indeterminacy in economic models
could be examined by means of simulation experiments. We leave all of these
issues for future research.
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Mathematical appendix

A Derivatives of the approximate
log-likelihood function

To simplify subsequent derivations, we first introduce some notation. We set
h (ζ;λ) = f 0 (ζ;λ) /f (ζ;λ) so that

h0
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
=

f 00
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢ −Ãf 0
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢ !2
(A.1)

Next, define

et (θ) = h
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
Σ−1/2 t (ϑ) and e0t = et (θ0) (A.2)

From (2.7) it is seen that

e0t
d
= ρth

¡
ρ2t ;λ0

¢
υt = ρth0

¡
ρ2t
¢
υt (A.3)

where the latter equality defines the notation h0 (·) = h (·;λ0).
First derivatives of lT (θ). It will be sufficient to consider the derivatives

of gt (θ). By straightforward differentiation one first obtains from (3.2)

∂

∂ϑi
gt (θ) = 2h

¡
t (ϑ)

0Σ−1 t (ϑ) ;λ
¢ ∂

∂ϑi
t (ϑ)Σ

−1
t (ϑ) , i = 1, 2 (A.4)

where, from (3.3),

∂

∂ϑ1
t (ϑ) = −

rX
i=1

∂

∂ϑ1
πi (ϑ1) (ut−i (ϑ2)⊗ In) (A.5)

and

∂

∂ϑ2
t (ϑ) =

rX
i=0

sX
j=1

∂

∂ϑ2
φj (ϑ2) (yt+j−i ⊗Π0i) (A.6)

with Π0 = −In = Π00. We also set Ut−1 (ϑ2) =£
(ut−1 (ϑ2)⊗ In)

0 · · · (ut−r (ϑ2)⊗ In)
0¤0 and Yt+1 (ϑ1) =£Pr

i=0 (yt+1−i ⊗Π0i)
0 · · · Pr

i=0 (yt+s−i ⊗Π0i)
0¤0. Then, using the notation

Ut−1 (ϑ20) = U0,t−1 and Yt+1 (ϑ10) = Y0,t+1,

∂

∂ϑ1
gt (θ0) = −2

rX
i=1

∂

∂ϑ1
πi (ϑ10) (u0,t−i ⊗ In)Σ

−1/2
0 e0t (A.7)

= −2∇1 (ϑ10)0 U0,t−1Σ−1/20 e0t
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and

∂

∂ϑ2
gt (θ0) = 2

sX
j=1

∂

∂ϑ2
φj (ϑ20)
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−1/2
0 e0t (A.8)

= 2∇2 (ϑ20)0 Y0,t+1Σ−1/20 e0t

As for the parameters σ = vech(Σ) and λ, straightforward differentiation yields

∂

∂σ
gt (θ) = −h ¡ t (ϑ)

0Σ−1 t (ϑ) ;λ
¢
D0

n

¡
Σ−1 ⊗Σ−1

¢
( t (ϑ)⊗ t (ϑ))

−1
2
D0

nvec
¡
Σ−1

¢
= −D0

n

¡
Σ−10 ⊗Σ−10

¢µ
t ⊗Σ

1/2
0 e0t +

1

2
vec (Σ0)

¶
(A.9)

and

∂

∂λ
gt (θ0) =

1

f
¡ 0

tΣ
−1
0 t;λ0

¢ ∂

∂λ
f
¡ 0

tΣ
−1
0 t;λ0

¢
(A.10)

Replacing θ0 by θ gives the corresponding derivatives evaluated at an arbitrary
θ.
Second derivatives of lT (θ). First note that

∂

∂ϑ0i
et (θ) = h

¡
t (ϑ)

0Σ−1 t (ϑ) ;λ
¢
Σ−1/2

∂

∂ϑ0i
t (ϑ) (A.11)

+2h0
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
Σ−1/2 t (ϑ) t (ϑ)

0Σ−1
∂

∂ϑ0i
t (ϑ) , i = 1, 2

By straightforward differentiation we now have

∂2

∂ϑ1∂ϑ
0
1

gt (θ) = −2
rX

i=1

¡
ut−i (ϑ2)

0 ⊗ et (θ)
0Σ−1/2 ⊗ Im1

¢ ∂

∂ϑ01
vec

µ
∂

∂ϑ1
πi (ϑ1)

¶
−2

rX
i=1

∂

∂ϑ1
πi (ϑ1) (ut−i (ϑ2)⊗ In)Σ

−1/2 ∂

∂ϑ01
et (θ) (A.12)

∂2

∂ϑ2∂ϑ
0
2

gt (θ) = 2
sX

j=1

rX
i=0

¡
y0t+j−i ⊗ et (θ)

0Σ−1/2Πi ⊗ Im2

¢ ∂

∂ϑ02
vec

µ
∂

∂ϑ2
φj (ϑ2)

¶

+2
sX

j=1

∂

∂ϑ2
φj (ϑ2)

rX
i=0

(yt+j−i ⊗Π0i)Σ
−1/2 ∂

∂ϑ02
et (θ) (A.13)

and

∂2

∂ϑ1∂ϑ
0
2

gt (θ) = −2
rX

i=1

∂

∂ϑ1
πi (ϑ1)

¡
In ⊗Σ−1/2et (θ)

¢ ∂

∂ϑ02
ut−i (ϑ2)

−2
rX

i=1

∂

∂ϑ1
πi (ϑ1) (ut−i (ϑ2)⊗ In)Σ

−1/2 ∂

∂ϑ02
et (θ)(A.14)
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where ∂ut−i (ϑ2) /∂ϑ02 = −
Ps

j=1(y
0
t+j−i ⊗ In)∂φj (ϑ2) /∂ϑ

0
2.

Next consider ∂2gt (θ) /∂σ∂σ0 and conclude from (A.9) that

∂2

∂σ∂σ0
gt (θ) = h

¡
t (ϑ)

0Σ−1 t (ϑ) ;λ
¢ ¡

t (ϑ)
0 ⊗ t (ϑ)

0 ⊗D0
n

¢
(In ⊗Knn ⊗ In)

× ¡Σ−1 ⊗ Σ−1 ⊗ vec ¡Σ−1¢+ vec ¡Σ−1¢⊗Σ−1 ⊗Σ−1
¢
Dn

+h0
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
D0

n

¡
Σ−1 ⊗ Σ−1

¢
× ¡ t (ϑ) t (ϑ)

0 ⊗ t (ϑ) t (ϑ)
0¢

× ¡Σ−1 ⊗ Σ−1
¢
Dn +

1

2
D0

n

¡
Σ−1 ⊗Σ−1

¢
Dn (A.15)

and furthermore that (see(A.4))

∂2

∂ϑi∂σ0
gt (θ) = −2h ¡ t (ϑ)

0Σ−1 t (ϑ) ;λ
¢µ

t (ϑ)
0 ⊗ ∂

∂ϑi
t (ϑ)

¶
(A.16)

× ¡Σ−1 ⊗ Σ−1
¢
Dn

−2h0 ¡ t (ϑ)
0Σ−1 t (ϑ) ;λ

¢ ∂

∂ϑi
t (ϑ)Σ

−1
t (ϑ)

¡
t (ϑ)

0 ⊗ t (ϑ)
0¢

× ¡Σ−1 ⊗ Σ−1
¢
Dn,

i = 1, 2

For ∂2gt (θ) /∂λ∂λ
0 it suffices to note that

∂2

∂λ∂λ0
gt (θ) = − 1

f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢2 ∂

∂λ
f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
× ∂

∂λ0
f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
+

1

f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢ ∂2

∂λ∂λ0
(A.17)

× f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
whereas

∂2

∂ϑi∂λ
0 gt (θ) = 2

∂

∂ϑi
t (ϑ)Σ

−1
t (ϑ)

∂

∂λ0
h
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
, i = 1, 2

(A.18)

and

∂2

∂σ∂λ0
gt (θ) = −D0

n

¡
Σ−1 ⊗Σ−1

¢
( t (ϑ)⊗ t (ϑ))

∂

∂λ0
h
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
(A.19)

where
∂

∂λ
h
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
=

1

f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢ ∂

∂λ
f 0
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
− f 0

¡
t (ϑ)

0Σ−1 t (ϑ) ;λ
¢¡

f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢¢2 ∂

∂λ0

× f
¡

t (ϑ)
0Σ−1 t (ϑ) ;λ

¢
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B Proofs for Sections 2 and 3

Proof of Lemma 2.1. For the former inequality, first consider the expectation

Eλ
£
ρ2th

¡
ρ2t ;λ

¢¤
=

πn/2

Γ (n/2)

Z ∞

0

ζn/2f 0 (ζ;λ) dζ = −n
2

(B.1)

where the definition of the function h (see the beginning of Appendix A),
density of ρ2t (see (2.10)), and Assumption 2(ii) have been used (see the
discussion after Assumption 2). The same arguments combined with the
Cauchy-Schwarz inequality and the definition of j (λ) (see (2.12)) yield

1 =

(
2πn/2

nΓ (n/2)

Z ∞

0

ζn/4
f 0 (ζ;λ)p
f (ζ;λ)

ζn/4
p
f (ζ;λ)dζ

)2
≤ 4πn/2

nΓ (n/2)

Z ∞

0

ζn/2
(f 0 (ζ;λ))2

f (ζ;λ)
dζ · πn/2

nΓ (n/2)

Z ∞

0

ζn/2f (ζ;λ) dζ(B.2)

= j (λ) · Eλ
¡
ρ2t
¢
/n

Thus, we have shown the claimed inequality.
From the preceding proof it is seen that equality holds if and only if

there is equality in (B.2). As is well known, this happens if and only if
ζn/4f 0 (ζ;λ) /

p
f (ζ;λ) is proportional to ζn/4

p
f (ζ;λ) or if and only if

f 0 (ζ;λ)
f (ζ;λ)

=
∂

∂ζ
log f (ζ;λ) = c for some c

This implies f (ζ;λ) = b exp (−aζ) with a > 0 and b > 0. From the fact
that f (x0x;λ), x ∈ Rn, is the density function of ρtυt (see (2.7) and (2.8))
it further follows that b = (a/π)n/2 and that ρtυt has the normal density
(2π)−n/2 exp (−x0x/2). Here the identity covariance matrix is obtained because
ρ2t ∼ χ2n, and hence from (2.9), C (ρ2tυt) = In (cf. the corollary to Lemma 1.4
and Example 1.3 of Fang et al (1990), p. 23). Thus, t is Gaussian as a
linear transformation of ρtυt. On the other hand, if t is Gaussian the equality
f 0 (ζ;λ) /f (ζ;λ) = c clearly holds with c = −1/2 and, because then ρ2t ∼ χ2n,
Eλ (ρ2t ) = n. This completes the proof for j (λ).
Regarding i (λ), first notice thatZ ∞

0

ζn/2+1f 0 (ζ;λ0) dζ =

µ
ζn/2+1f (ζ;λ) |∞0 −

n+ 2

2

Z ∞

0

ζn/2f (ζ;λ) dζ

¶
= −n+ 2

2
· Γ (n/2)

πn/2
Eλ
¡
ρ2t
¢
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where we have used Assumptions 2(ii) and (iii), and the expression of the
density of ρ2t (see (2.10)). Proceeding as in the case of the first assertion yields

1 =

Ã
2

(n+ 2)Eλ (ρ2t )
· πn/2

Γ (n/2)

Z ∞

0

ζn/4+1/2
f 0 (ζ;λ)p
f (ζ;λ)

ζn/4+1/2
p
f (ζ;λ)dζ

!2
≤

µ
2

(n+ 2)Eλ (ρ2t )

¶2
· πn/2

Γ (n/2)

Z ∞

0

ζn/2+1
µ
f 0 (ζ;λ)
f (ζ;λ)

¶2
f (ζ;λ) dζ

× πn/2

Γ (n/2)

Z ∞

0

ζn/2+1f (ζ;λ) dζ

=

µ
2

(n+ 2)Eλ (ρ2t )

¶2
· i (λ) · Eλ

¡
ρ4t
¢

(see the definition of i (λ) in (2.13)). This shows the stated inequality and
the condition for equality leads to the same condition as in the case of j (λ).
Finally, in the Gaussian case, Eλ (ρ2t ) = n and Eλ (ρ4t ) = 2n + n2, implying
i (λ) = n (n+ 2) /4. ¤

Proof of the nonsingularity of the matrix H1. We have not found a
simple way to show the nonsingularity of H1, so we demonstrate it when
s = 2. From the definition of H1 it is not difficult to see that the possible
singularity of H1 can only be due to a linear dependence of its last n (r + 2)
rows and, furthermore, that it suffices to show the nonsingularity of the lower
right hand corner H1 of order n (r + 2)× n (r + 2). This matrix reads as

H
(2,2)
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In −Φ1 −Φ2 0 · · · · · · p · · · 0

0
. . . . . . . . . . . . p ...

...
. . . . . . . . . . . . . . . p ...

... · · · 0 In −Φ1 −Φ2 p 0 0

... · · · 0 0 In −Φ1 p −Φ2 0
0 · · · 0 0 0 In p −Φ1 −Φ2
− − − − − − − −

−anrIn · · · · · · · · · · · · −a1In p In 0
0 −anrIn · · · · · · · · · · · · p −a1In In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
def
=

∙
B11 B12

B21 B22

¸
where the partition is as indicated. The determinant of B11 is evidently unity
so that from the well-known formula for the determinant of a partitioned
matrix it follows that we need to show the nonsingularity of the matrix
B11·2 = B22 − B21B

−1
11B12. The inverse of B11 depends on coefficients of

the power series representation of L (z) = Φ (z)−1 given by L (z) =
P∞

j=0 Ljz
j

where L0 = In and, when convenient, Lj = 0, j < 0, will be used. Equating
the coefficient matrices of z on both sides of the identity L (z)Φ (z) = In yields
Lj = Lj−1Φ1 + Lj−2Φ2. Using this identity it is readily seen that B−1

11 is an
upper triangular matrix with In on the diagonal and Lj, j = 1, ..., nr − 1,
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on the diagonals above the main diagonal. This fact and straightforward but
tedious calculations further show that

B11·2 =

∙
In −

Pnr
j=1 ajLj −Pnr

j=1 ajLj−1Φ2
−Pnr

j=1 ajLj−1 In −
Pnr

j=2 ajLj−2Φ2

¸
=

∙
In 0
0 In

¸
−

nrX
j=1

aj

∙
Lj Lj−1Φ2
Lj−1 Lj−2Φ2

¸
Next define the companion matrix

Φ =

∙
Φ1 Φ2
In 0

¸
and note that the latter condition in (2.2) implies that the eigenvalues of Φ
are smaller than one in absolute value. Also, the matrices Lj and Lj−1 (j ≥ 0)
can be obtained from the upper and lower left hand corners of the matrix
Φj, respectively. Using these facts, the identity Lj = Lj−1Φ1 + Lj−2Φ2, and
properties of the powers Φj it can further be seen that

B11·2 = I2n −
nrX
j=1

ajΦ
j = P

Ã
I2n −

nrX
j=1

ajD
j

!
P−1

where the latter equality is based on the Jordan decomposition of Φ so that
Φ = PDP−1. Thus, the determinant of B11·2 equals the determinant of
the matrix in parentheses in its latter expression. Because Dj is an upper
triangular matrix having the jth powers of the eigenvalues ofΦ on the diagonal
this determinant is a product of quantities of the form 1−Pnr

j=1 ajν
j where ν

signifies an eigenvalue of Φ. By the latter condition in (2.2) the eigenvalues of
Φ are smaller than one in absolute value whereas the former condition in (2.2)
implies that the zeros of a (z) lie outside the unit disc. Thus, the nonsingularity
of B11·2, and hence that of H

(2,2)
1 and H1 follow.

We note that in the case s = 1 the preceding proof simplifies because then
we need to show the nonsingularity of the matrix obtained from H

(2,2)
1 by

deleting its last n rows and columns and setting Φ2 = 0. In place of B11·2 we
then have In −

Pnr
j=1 ajΦ

j
1 and, because now the eigenvalues of Φ1 are smaller

than one in modulus, the preceding argument applies without the need to use
a companion matrix. ¤

Before proving Proposition 3.1 we present some auxiliary results. In the
following lemmas, as well as in the proof of Proposition 3.1, the true parameter
value is assumed, so the notation E (·) will be used instead of Eλ0 (·) and
similarly for C (·). In these proofs frequent use will be made of the facts that
the processes ρt and υt are independent and that E (υt) = 0 and E (υtυ0k)
equals 0 if t 6= k and n−1In if t = k. The same can be said about well-known
properties of the Kronecker product and vec operator, especially the result
vec(ABC) = (C 0 ⊗A)vec(B) which holds for any conformable matrices A, B,
and C. This and other results of matrix algebra to be employed can be found
in Lütkepohl (1996). We also recall the definition εt = Σ

−1/2
0 t (see (2.7)) and,

to simplify notation, we will frequently write f (·;λ0) = f0 (·) and similarly for
f 00 (·) and f 000 (·).
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Lemma B.1 Under the conditions of Proposition 3.1,

E (e0t) = 0 and C (e0t) =
j0
4
In (B.3)

and

C (εt, e0k) =
½

0, if t 6= k
−1
2
In, if t = k

(B.4)

Proof of Lemma B.1. By the definition of the function h0 (·) (see (A.3))
and the density of ρ2t (see (2.10)) we have

E
h
ρ2t
¡
h0
¡
ρ2t
¢¢2i

=
πn/2

Γ (n/2)

Z ∞

0

ζn/2
(f 00 (ζ))

2

f0 (ζ)
dζ =

n

4
j0

where the latter equality is due to (2.12). Thus, because E (υt) = 0 and
C (υt) = n−1In, the independence of the processes ρt and υt in conjunction
with (A.3) proves (B.3). The same arguments and (2.7) yield

E (εte00k) = E
£
ρtρkh0

¡
ρ2k
¢¤
E (υtυ0k)

where E (υtυ0k) = 0 for t 6= k. Thus, one obtains (B.4) from this and (B.1). ¤

Lemma B.2 . Under the conditions of Proposition 3.1,

C (εt−i ⊗ e0t, εk−j ⊗ e0k) =

⎧⎪⎪⎨⎪⎪⎩
DnJ0D

0
n, if t = k, i = j = 0

τ0
4
In2, if t = k, i = j 6= 0

1
4
Knn, if t 6= k, i = t− k, j = k − t
0, otherwise.

Moreover, the matrix J0 is positive definite even when t is Gaussian.

Proof. First notice that (see (2.7) and (A.3))

εt−i ⊗ e0t
d
= ρt−iρth0

¡
ρ2t
¢
(υt−i ⊗ υt) (B.5)

Consider the case t = k and i = j = 0. The preceding fact and independence
of ρt and υt yield

E (εt ⊗ e0t) = E
£
ρ2th0

¡
ρ2t
¢¤
E (υt ⊗ υt) = −1

2
Dnvech (In)

where the latter equality is due to (B.1) and E (υt ⊗ υt) = vec(E (υtυ0t)) =
n−1vec(In). By the same arguments we also find that

E [(εt ⊗ e0t)(εt ⊗ e0t)
0] = E

h
ρ4t
¡
h0
¡
ρ2t
¢¢2iE (υtυ0t ⊗ υtυ

0
t) = i0E (υtυ0t ⊗ υtυ

0
t)

where the latter equality follows from the definition of i0 (see (2.13)). Because

E (υtυ0t ⊗ υtυ
0
t) = E [(υt ⊗ υt) (υ

0
t ⊗ υ0t)] = DnE

£
(vech(υtυ0t)) (vech(υtυ

0
t))

0¤
D0

n
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the stated result is obtained from the preceding calculations and the definition
of the matrix J0.
To show the positive definiteness of the matrix J0, note first that J0 is

clearly symmetric. From the definition of i0 and (B.1) we find that, even when
t is non-Gaussian, i0 > {E [ρ2th0 (ρ2t )]}2 = n2/4 where the inequality is strict
because ρ2t has positive density. Now, let x be a nonzero n × 1 vector and
conclude from the preceding inequality and the definition of J0 that

4x0J0x > n2x0E
£
(vech(υtυ0t)) (vech(υtυ

0
t))

0¤
x− x0vech (In) vech (In)

0 x

= n2x0C (vech(υtυ0t))x

where the equality is justified by E [vech(υtυ0t)] = n−1vech(In) . Because the last
quadratic form is clearly nonnegative, the positive definiteness of J0 follows.
For the case t = k, i = j 6= 0 we have by independence, E (εt−i ⊗ e0t) =

E (εt−i)⊗ E (e0t) = 0. Thus, by (B.5) and arguments already used,
C (εt−i ⊗ e0t, εt−i ⊗ e0t) = E

¡
ρ2t−i

¢
E
h
ρ2t
¡
h0
¡
ρ2t
¢¢2i £E ¡υt−iυ0t−i¢⊗ E (υtυ0t)¤

The stated result is obtained from this by using definitions and E (υtυ0t) =
n−1In.
In the case t 6= k, i = t− k, and j = k− t we have i 6= 0 6= j and, as in the

preceding case, E (εk ⊗ e0t) = 0. We also note that εt ⊗ e0k = Knn(e0k ⊗ εt)
(see Result 9.2.2(3) in Lütkepohl (1996)). As before, we now obtain

C (εk ⊗ e0t, εt ⊗ e0k) = C (εk ⊗ e0t, Knn (e0k ⊗ εt))

= E
£¡
ρkυk ⊗ ρth0

¡
ρ2t
¢
υt
¢ ¡

ρkh0
¡
ρ2k
¢
υ0k ⊗ ρtυ

0
t

¢¤
K 0

nn

=
©
E
£
ρ2th0

¡
ρ2t
¢¤ª2 {E (υkυ0k)⊗ E (υtυ0t)}K 0

nn

=
1

4
Knn

where the last equality follows form (B.1), the symmetry of the commutation
matrix Knn, and the fact E (υtυ0t) = n−1In.
Finally, in the last case the stated results follows from independence. ¤

Now we can prove Proposition 1.
Proof of Proposition 3.1. The proof consists of three steps. In the first one
we show that the expectation of the score of θ at the true parameter value is
zero and its limiting covariance matrix is Iθθ (θ0). The positive definiteness
of Iθθ (θ0) is established in the second step and the third step proves the
asymptotic normality of the score.
Step 1. We consider the different blocks of Iθθ (θ0) separately and, to

simplify notation, we set N = T −s−nr. In what follows, frequent use will be
made of the identity

¡
f 0
¡ 0

tΣ
−1
0 t;λ0

¢
/f
¡ 0

tΣ
−1
0 t;λ0

¢¢
Σ−10 t = Σ

−1/2
0 e0t (see

(A.2)).
Block Iϑ1ϑ1 (θ0). From the definitions and (2.3) it can be seen that U0,t−1

and e0t are independent. Thus, (B.3), (A.7), and straightforward calculation
give E (∂gt (θ0) /∂ϑ1) = 0 and, furthermore,

C

⎛⎝N−1/2
T−s−(n−1)rX

t=r+1

∂

∂ϑ1
gt (θ0)

⎞⎠ = ∇1 (ϑ10)0C11 (θ0)∇1 (ϑ10) = Iϑ1ϑ1 (θ0)
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Block Iϑ2ϑ2 (θ0). Deriving Iϑ2ϑ2 (θ0) is somewhat complicated. From the
expression of ∂gt (θ0) /ϑ2 (see (A.8)) it may not be quite immediate that the
expectation of the score of ϑ2 is zero so that we shall first demonstrate this.
Recall that Φ (z)−1 = L (z) =

P∞
j=0 Ljz

j with L0 = In and, Lj = 0, j < 0.
Similarly to the notation Mj0, Nj0, and Ψj0 we shall also write Lj0 when Lj is
based on true parameter values. Equating the coefficient matrices related to
the same powers of z in the identity L (z−1) = Ψ (z)Π (z) (see the discussion
below (2.5)) one readily obtains

−
rX

i=0

Ψj−i,0Πi0 =

⎧⎨⎩ 0, j > 0
In, j = 0
L−j0, j < 0,

(B.6)

where, as before, Π00 = −In. To simplify notation we also denote

A0 (k, i) = Ψk0Σ
1/2
0 ⊗Π0i0Σ

−1/2
0 and B0 (d) =Md0Σ

1/2
0 ⊗Σ

−1/2
0

Notice that from (B.6) we find that

rX
i=0

A0 (a− i, i) vec (In) = vec

Ã
rX

i=0

Π0i0Ψ
0
a−i,0

!
= 0, a ∈ {1, ..., s} (B.7)

Now recall that the matrix Y0,t+1 consists of the blocks
Pr

i=0 (yt+a−i ⊗Π0i0) ,
a ∈ {1, ..., s}, and consider the expectation

E

Ã
rX

i=0

(yt+a−i ⊗Π0i0)Σ
−1/2
0 e0t

!
=

rX
i=0

∞X
k=−∞

E
³
(Ψk0 t+a−i−k ⊗Π0i0Σ

−1/2
0 )e0t

´
=

rX
i=0

∞X
k=−∞

A0 (k, i)E (εt+a−i−k ⊗ e0t)

where the former equality is based on (2.5) and the latter on the definition of
A0 (k, i) and the definition εt = Σ

−1/2
0 t. By Lemma B.1, the expectation in

the last expression equals zero if k 6= a− i and −1
2
vec(In) if k = a− i. From

this and (B.7) we find that

E

Ã
rX

i=0

(yt+a−i ⊗Π0i0)Σ
−1/2
0 e0t

!
= −1

2

rX
i=0

A0 (a− i, i) vec (In) = 0

This in conjunction with (3.1) and (A.8) shows that E (∂lT (θ0) /∂ϑ2) = 0, and
we proceed to the covariance matrix of the score of ϑ2.
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Let 1 (·) stand for the indicator function and, for a, b ∈ {1, ..., s}, consider
the covariance matrix

C

Ã
rX

i=0

(yt+a−i ⊗Π0i0)Σ
−1/2
0 e0t,

rX
j=0

(yk+b−j ⊗Π0i0)Σ
−1/2
0 e0k

!

=
∞X

c,d=−∞

rX
i,j=0

A0 (c, i)C ((εt+a−i−c ⊗ e0t), (εk+b−j−d ⊗ e0k))A0 (d, j)
0

=
τ 0
4

∞X
c=−∞
c6=0

rX
i,j=0

A0 (c+ a− i, i)A0 (c+ b− j, j)0 1 (t = k)

+
1

4

rX
i,j=0

A0 (t− k + a− i, i)KnnA0 (k − t+ b− j, j)0 1 (t 6= k)

+
rX

i,j=0

A0 (a− i, i)DnJ0D
0
nA0 (b− j, j)0 1 (t = k)

Here the former equality is again obtained by using (2.5) and the definition
of A0 (k, i) whereas the latter is justified by Lemma B.2. Summing the last
expression over t, k = r + 1, ..., T − s − (n− 1) r, multiplying by 4/N , and
letting T tend to infinity yields the matrix C22 (a, b; θ0) (see (A.8) and the
definition of Iϑ2ϑ2 (θ0)). Thus,

C22 (a, b; θ0) = τ 0

∞X
k=−∞
k 6=0

rX
i=0

A0 (k + a− i, i)
rX

j=0

A0 (k + b− j, j)0

+
∞X

k=−∞
k 6=0

rX
i=0

A0 (k + a− i, i)Knn

rX
j=0

A0 (−k + b− j, j)0

+4
rX

i=0

A0 (a− i, i)DnJ0D
0
n

rX
j=0

A0 (b− j, j)0 (B.8)

To see that the right hand side equals the expression given in the main text,
we have to show that the second term vanishes when the range of summation
is changed to k = 0± 1,±2, ..., or that

∞X
k=−∞

rX
i,j=0

³
Ψk+a−i,0Σ

1/2
0 ⊗Π0i0Σ

−1/2
0

´
Knn

³
Σ
1/2
0 Ψ0

−k+b−j,0 ⊗Σ
−1/2
0 Πj0

´
= 0

To see this, notice that (Ψk+a−i,0Σ
1/2
0 ⊗ Π0i0Σ

−1/2
0 )Knn = Knn(Π

0
i0Σ

−1/2
0 ⊗

Ψk+a−i,0Σ
1/2
0 ) (see Lütkepohl (1996), Result 9.2.2 (5)(a)). Thus, the left hand
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side of the preceding equality can be written as

Knn

∞X
k=−∞

rX
i,j=0

¡
Π0i0Ψ

0
−k+b−j,0 ⊗Ψk+a−i,0Πj0

¢
= Knn

∞X
l=−∞

rX
j=0

Ã
rX

i=0

Π0i0Ψ
0
−l+a+b−j−i,0 ⊗Ψl,0Πj0

!

= Knn

∞X
l=−∞

rX
j=0

¡
L0l−a−b+j,0 ⊗Ψl,0Πj0

¢
= Knn

∞X
k=0

Ã
L0k,0 ⊗

rX
j=0

Ψk+a+b−j,0Πj0

!
= 0

Here the second and fourth equalities are obtained from (B.6) (because a,
b > 0).
From (A.8), the definition of A0 (c, i), and the preceding derivations it

follows that the covariance matrix of the score of ϑ2 divided by N converges
to Iϑ2ϑ2 (θ0).
Block Iϑ1ϑ2 (θ0). Let a ∈ {1, ..., r} and b ∈ {1, ..., s}. Using (2.3)

and (2.5), and the previously introduced notation A0 (k, i) and B0 (k)
(B0 (k) = 0 for k < 0) we consider

C

Ã
(u0,t−a ⊗ In)Σ

−1/2
0 e0t,

rX
i=0

(yk+b−i ⊗Π0i0)Σ
−1/2
0 e0k

!

=
∞X
c=0

∞X
d=−∞

rX
i=0

B0 (c)C ((εt−a−c ⊗ e0t), (εk+b−i−d ⊗ e0k))A0 (d, i)
0

=
τ 0
4

∞X
c=a

rX
i=0

B0 (c− a)A0 (c+ b− i, i)0 1 (t = k)

+
1

4

rX
i=0

B0 (t− k − a)KnnA0 (k − t+ b− i, i)0 1 (t 6= k)

where the latter equality is based on Lemma B.2. Summing over t, k = r +
1, ..., T − s − (n− 1) r, multiplying by −4/N , and letting T tend to infinity
yields the matrix C12 (a, b; θ0) (see (A.7), (A.8) and the definition of Iϑ1ϑ2 (θ0)).
Thus,

C12 (a, b; θ0) = −τ 0
∞X
c=a

rX
i=0

B0 (c− a)A0 (c+ b− i, i)0

−
∞X
c=a

rX
i=0

B0 (c− a)KnnA0 (−c+ b− i, i)0 (B.9)
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It is easy to see that the first term on the right hand side equals the the
first term on the right hand side of the defining equation of C12 (a, b; θ0). To
show the same for the second term, we need to show that

−Knn

¡
Ψ0b−a,0 ⊗ In

¢
= −

∞X
c=a

rX
i=0

³
Mc−a,0Σ

1/2
0 ⊗ Σ

−1/2
0

´
×Knn

³
Σ
1/2
0 Ψ0−c+b−i,0 ⊗Σ

−1/2
0 Πi0

´
Using again Result 9.2.2 (5)(a) in Lütkepohl (1996) and the conventionMj0 =
0, j < 0, we can write the right hand side as

−Knn

∞X
c=−∞

rX
i=0

¡
Ψ0
−c+b−i,0 ⊗Mc−a,0Πi0

¢
= −Knn

∞X
k=−∞

Ã
Ψ0
k0 ⊗

rX
i=0

Πi0M−k−a+b−i,0

!
= Knn

¡
Ψ0
b−a,0 ⊗ In

¢
Here the latter equality can be justified by using the identity Π (z)M (z) = In
to obtain an analog of (B.6) with Ψj−i,0 and L−j0 replaced by Mj−i,0 and 0,
respectively.
The preceding derivations and the definitions (see (A.7) and (A.8)) show

that the covariance matrix of the scores of ϑ1 and ϑ2 divided by N converges
to Iϑ2ϑ1 (θ0).
Block Iσσ (θ0). First note that, by (A.9) and independence of t, we only

need to show that E (∂gt (θ0) /∂σ) = 0 and C (∂gt (θ0) /∂σ) = Iσσ (θ0). These
facts can be established by writing equation (A.9) as

∂

∂σ
gt (θ0) = −D0

n(Σ
−1/2
0 ⊗Σ

−1/2
0 )(εt ⊗ e0t +

1

2
vec (In))

using Lemma B.2 (case t = k and i = j = 0), and arguments in its proof.
Block Iλλ (θ0). As in the preceding case, it suffices to show that

E (∂gt (θ0) /∂λ) = 0 and C (∂gt (θ0) /∂λ) = Iλλ (θ0). For the former, conclude
from (A.10) and (2.7) that

Eλ0
µ

∂

∂λ
gt (θ0)

¶
= Eλ0

Ã
1

f (ρ2t ;λ0)
· ∂

∂λ
f
¡
ρ2t ;λ

¢¯̄̄̄
λ=λ0

!

=
πn/2

Γ (n/2)

Z ∞

0

ζn/2−1
∂

∂λ
f (ζ;λ)

¯̄̄̄
λ=λ0

dζ

=
πn/2

Γ (n/2)

∂

∂λ

Z ∞

0

ζn/2−1f (ζ;λ) dζ|λ=λ0
= 0

Here the second equality is based on the expression of the density function
of ρ2t (see (2.10)), the third one on Assumption 4(i), and the fourth one on
equation (2.11).
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That C (∂gt (θ0) /∂λ) = Iλλ (θ0) is an immediate consequence of
Assumption 4(ii), (A.10), (2.7), and the expression of the density function
of ρ2t .
Blocks Iϑ1σ (θ0) and Iϑ1λ (θ0). That these blocks are zero follows from

(A.7), (A.9), (A.10), independence of t, and the fact that U0,t−1 is independent
of t and has zero mean (see (2.3)).
Block Iϑ2σ (θ0). Consider the covariance matrix (cf. the derivation of

Iϑ2ϑ2 (θ0))

C

Ã
rX

i=0

(yt+a−i ⊗Π0i0)Σ
−1/2
0 e0t,

∂

∂σ
gk (θ0)

!

= −
∞X

c=−∞

rX
i=0

A0 (c, i)C ((εt+a−i−c ⊗ e0t), (εk ⊗ e0k)) (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn

= −
rX

i=0

A0 (a− i, i)DnJ0D
0
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn1 (t = k)

Here the former equality is based on (2.5), the definition on A0 (c, i), and
the expression of ∂gt (θ0) /∂σ given in the case of block Iσσ (θ0). The latter
equality is due to Lemma B.2. The stated expression of Iϑ2σ (θ0) is a simple
consequence of this, (A.8), and (A.9).
Block Iϑ2λ (θ0). Similarly to the preceding case we consider the covariance

matrix

C

Ã
rX

i=0

(yt+a−i ⊗Π0i0)Σ
−1/2
0 e0t,

∂

∂λ
gk (θ0)

!

=
∞X

c=−∞

rX
i=0

A0 (c, i)C
µ
(εt+a−i−c ⊗ e0t),

∂

∂λ
gk (θ0)

¶
=

∞X
c=−∞

rX
i=0

A0 (c, i)E
∙¡
ρt+a−i−cυt+a−i−c ⊗ ρth0

¡
ρ2t
¢
υt
¢ 1

f0 (ρ2k)

∂

∂λ0
f
¡
ρ2k;λ0

¢¸
=

∞X
c=−∞

rX
i=0

A0 (c, i)E (υt+a−i−c ⊗ υt)E
∙
ρt+a−i−cρth0

¡
ρ2t
¢ 1

f0 (ρ2k0)

∂

∂λ0
f
¡
ρ2k;λ0

¢¸
Here the first equality is justified by (2.5) whereas the remaining ones
are obtained from (A.10), (2.7), (A.3), the independence of the processes
ρt and υt, and the fact that ∂gt (θ0) /∂λ has zero mean. Thus, because
E (υt+a−i−c ⊗ υt) = n−1vec(In)1 (c = a− i),

C

Ã
rX

i=0

(yt+a−i ⊗Π0i0)Σ
−1/2
0 e0t,

∂

∂λ
gk (θ0)

!

=
1

n

rX
i=0

A0 (a− i, i) vec (In)E
µ
ρ2t

h0 (ρ
2
t )

f0 (ρ2t ; )

∂

∂λ0
f
¡
ρ2t ;λ0

¢¶
1 (t = k) ,

which in conjunction with (B.7) gives the desired result Iϑ2λ (θ0) = 0.
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Block Iσλ (θ0). The employed arguments are similar to those in the cases
of blocks Iσσ (θ0) and Iλλ (θ0). By the independence of t it suffices to consider

C
µ

∂

∂σ
gt (θ0) ,

∂

∂λ
gt (θ0)

¶
= −D0

n

³
Σ
−1/2
0 ⊗Σ

−1/2
0

´
E
∙
(εt ⊗ e0t)

∂

∂λ0
gt (θ0)

¸
where the expectation equals (see (2.7), (A.3), and (A.10))

E
∙¡
ρtυt ⊗ ρth0

¡
ρ2t
¢
υt
¢ 1

f0 (ρ2t )

∂

∂λ0
f
¡
ρ2t ;λ0

¢¸
= E (υt ⊗ υt)E

∙
ρ2t

h0 (ρ
2
t )

f0 (ρ2t ; )

∂

∂λ0
f
¡
ρ2t ;λ0

¢¸
Because E (υt ⊗ υt) = n−1vec(In) = n−1Dnvech(In), the stated expression of
Iσλ (θ0) follows from the definitions and the expression of the density function
of ρ2t (see (2.10)).
Thus, we have completed the derivation of Iθθ (θ0).
Step 2. From Assumption 5(i) it readily follows that it suffices to prove

the positive definiteness of Iθθ (θ0) when ∇1 (ϑ10) = Irn2 and ∇2 (ϑ20) = Isn2 .
First we introduce some notation. Define the sn2 × n2 and rn2 × n2 matrices

A0 (k) =

"
rX

i=0

A0 (k + j − i, i)

#s
j=1

and B0 (k) = [B0 (k − i)]ri=1

where, as before, A0 (k + j − i, i) = Ψk+j−i,0Σ
1/2
0 ⊗ Π0i0Σ

−1/2
0 , j = 1, ..., s, and

B0 (k − i) =Mk−i,0Σ
1/2
0 ⊗ Σ

−1/2
0 , i = 1, ..., r. We also set

F0 =
πn/2

Γ (n/2)

Z ∞

0

ζn/2
f 0 (ζ;λ0)
f (ζ;λ0)

∂

∂λ
f (ζ;λ0) dζ·vech (In)0 J−10

¡
d× 1

2
n (n+ 1)

¢
Let ηt = [η01t η02t η03t η04t]

0 be a sequence of independent and identically
distributed random vectors with zero mean. The covariance matrix of ηt as
well as the dimensions of its components will be specified shortly. We consider
the linear process

xt =
∞X
k=1

G0 (k) ηt

where xt = [x01t x02t x03t x04t]
0 and

G0 (k) =

⎡⎢⎢⎣
−B0 (k) 0 0 0
A0 (k) A0 (−k) 21 (k = 1)A0 (k − 1)Dn 0

0 0 −1 (k = 1)D0
n(Σ

−1/2
0 ⊗ Σ

−1/2
0 )Dn 0

0 0 1 (k = 1)F0 1 (k = 1) Id

⎤⎥⎥⎦
With an appropriate definition of the covariance matrix of ηt we have C (xt) =
Iθθ (θ0). This is achieved by assuming

C (ηt) = diag
µ∙

τ 0In2 Knn

K 0
nn τ 0In2

¸
: J0 : Iλλ (θ0)− F0J0F

0
0

¶
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where the first block defines the covariance matrix of [η01t η02t]
0. Thus,

[η01t η02t]
0, η3t, and η4t are uncorrelated and the dimension of both η1t and η2t

is n2×1 whereas the dimensions of η3t and η4t are (n (n+ 1) /2)×1 and d×1,
respectively. The dimensions of xit agree with those of ηit (i = 1, ..., 4). By
straightforward calculations one can check that the equality C (xt) = Iθθ (θ0)
really holds (with ∇1 (ϑ10) = Irn2 and ∇2 (ϑ20) = Isn2). Here we only note
that for Iϑϑ (θ0) the calculations yield the expressions given for C22 (a, b; θ0)
and C21 (a, b; θ0) in the derivation of Iϑ2ϑ2 (θ0) and Iϑ2ϑ1 (θ0) (see (B.8) and
(B.9)) and that for Iϑ2λ (θ0) equation (B.7) can be used.
From Lemma 2.1 and the fact that Knn is a permutation matrix it follows

that the first block of C (ηt) is positive definite. Indeed, this is implied by the
positive definiteness of τ 0In2 − τ−10 K 0

nnKnn = τ 0In2 − τ−10 In2, which clearly
holds because τ 0 > 1. That J0 is positive definite follows from Lemma
B.2 whereas the positive definiteness of the third block of C (ηt) holds in
view of Assumption 5(ii) and the identity Iλλ (θ0) − F0J0F

0
0 = Iλλ (θ0) −

Iλσ (θ0)Iσσ (θ0)−1 Iσλ (θ0), which can be checked by direct calculation. Thus,
the whole covariance matrix C (ηt) is positive definite.
The preceding discussion implies that we need to show that the covariance

matrix C (xt) is positive definite. This holds if the infinite dimensional matrix
[G0 (1) : G0 (2) : · · · ] is of full row rank. First note that the first block of rows
is readily seen to be of full row rank. Indeed, using the definition of B0 (k)
it is straightforward to see that the matrix [B0 (1) : · · · : B0 (r)] (rn

2 × rn2) is
upper triangular with diagonal blocks Σ−1/20 ⊗Σ

−1/2
0 and, therefore, of full row

rank. The last two block of rows are also linearly independent because the
covariance matrix of [x03t x04t]

0 equals that of the scores of σ and λ, which is
positive definite by Assumption 5(ii). It is furthermore obvious that these two
block of rows are linearly independent of the first block of rows. Thus, from
the definition of G0 (k) it can be seen that it suffices to show that the infinite
dimensional matrix [A0 (−1) : A0 (−2) : · · · ] is of full row rank. We shall
demonstrate that the matrix [A0 (−1) : · · · : A0 (−r − s)] (sn2 × s (s+ r)n2)
is of full row rank. For simplicity, we do this in the special case s = 2.
Consider the matrix product

[A0 (−1) : · · · : A0 (−r − 2)]

⎡⎢⎢⎢⎢⎣
Σ
−1/2
0 Π00 ⊗Σ

1/2
0 0

... Σ
−1/2
0 Π00 ⊗Σ

1/2
0

Σ
−1/2
0 Πr0 ⊗ Σ

1/2
0

...
0 Σ

−1/2
0 Πr0 ⊗ Σ

1/2
0

⎤⎥⎥⎥⎥⎦
(B.10)

=

∙ Pr
j=0

¡Pr
i=0Ψ−j−i,0Πi0 ⊗Π0j0

¢ Pr
j=0

¡Pr
i=0Ψ−1−j−i,0Πi0 ⊗Π0j0

¢Pr
j=0

¡Pr
i=0Ψ1−j−i,0Πi0 ⊗Π0j0

¢ Pr
j=0

¡Pr
i=0Ψ−j−i,0Πi0 ⊗Π0j0

¢ ¸
=

∙ Pr
j=0

¡−Lj0 ⊗Π0j0
¢ Pr

j=0

¡−Lj+1,0 ⊗Π0j0
¢Pr

j=0

¡−Lj−1,0 ⊗Π0j0
¢ Pr

j=0

¡−Lj0 ⊗Π0j0
¢ ¸

where the equalities follow from the definitions and from (B.6) by direct
calculation. We shall show below that the last expression, a square matrix
of order 2n2 × 2n2, is nonsingular. Assume this for the moment and note
that the latter matrix in the product (B.10) is of full column rank 2n2
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(because Π00 = −In ). Thus, as the rank of a matrix product cannot
exceed the ranks of the factors of the product, it follows that the matrix
[A0 (−1) : · · · : A0 (−r − 2)] has to be of full row rank 2n2.
To show the aforementioned nonsingularity, it clearly suffices to show the

nonsingularity of the matrix∙ Pr
j=0

¡−Lj0 ⊗Π0j0
¢ Pr

j=0

¡−Lj+1,0 ⊗Π0j0
¢Pr

j=0

¡−Lj−1,0 ⊗Π0j0
¢ Pr

j=0

¡−Lj0 ⊗Π0j0
¢ ¸ ∙

In2 −Φ10 ⊗ In
0 In2

¸
=

∙
In L10 − Φ10
0 In

¸
⊗ In −

rX
j=1

µ∙
Lj0 Lj+1,0 − Lj0Φ10

Lj−1,0 Lj,0 − Lj−1,0Φ10

¸
⊗Π0j0

¶

=

∙
In 0
0 In

¸
⊗ In −

rX
j=1

µ∙
Lj0 Lj−1,0Φ20

Lj−1,0 Lj−2,0Φ20

¸
⊗Π0j0

¶
As in the proof of proof of the nonsingularity of the matrix H1, we have here
used the identity Lj0 = Lj−1,0Φ10+Lj−2,0Φ20 with L00 = In and Lj0 = 0, j < 0,
as well as direct calculation. In the same way as in that proof, we can now
show the nonsingularity of the last matrix by using the fact that this matrix
can be expressed as

In2⊗In−
rX

j=1

¡
Φj
0 ⊗Π0j0

¢
= (P0 ⊗ In)

Ã
In2 ⊗ In −

rX
j=1

¡
Dj
0 ⊗Π0j0

¢!¡
P−10 ⊗ In

¢
where Φ0 is the companion matrix corresponding the matrix polynomial
In − Φ10z − Φ20z

2 and Φ0= P0D0P
−1
0 is its Jordan decomposition (cf. the

aforementioned previous proof). The determinant of the matrix on the right
hand side of the preceding equation is a product of determinants of the
form det

³
In −

Pr
j=1Π

0
j0ν

j
´
where ν signifies an eigenvalue of Φ0. These

determinants are nonzero because, by the latter condition in (2.2), the
eigenvalues of Φ0 are smaller than one in absolute value whereas the former
condition in (2.2) implies that the zeros of detΠ (z) lie outside the unit disc.
This completes the proof of the positive definiteness of Iθθ (θ0).
Step 3. The asymptotic normality can be proved in the same way as in

previous univariate models (see Proposition 2 of Breidt et al (1991)). The
idea is to use (2.3) and (2.5) to approximate the processes ut−i (ϑ10) and
yt+j−i (i = 1, ..., r, j = 1, ..., s) in ∂gt (θ0) /∂ϑ1 and ∂gt (θ0) /∂ϑ1, respectively,
by long moving averages. This amounts to replacing ∂gt (θ0) /∂θ by a finitely
dependent stationary and ergodic process with finite second moments. As
is well known, a central limit theorem holds for such a process. The stated
asymptotic normality can then be established by using a standard result to
deal with the approximation error (see, eg, Hannan (p. 242)). As in the
aforementioned univariate case, one can here make use of the fact that the
coefficient matrices in (2.3) and (2.5) decay to zero at a geometric. Details are
omitted. ¤

Proof of Lemma 3.2. In the same way as in the proof of Step 1 of Proposition
3.1 we consider the different blocks of Iθθ (θ0) separately. For simplicity, we
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again suppress the subscript from the expectation operator and denote E (·)
instead of Eθ0 (·) .
Block Iϑ1ϑ1 (θ0). Using the independence of u0,t−i (i > 0) and e0t along

with (B.3) it can be seen that the first term on the right hand side of (A.12)
evaluated at θ = θ0 has zero expectation. Thus, it suffices to consider the
expectation of the second term. To this end, recall the notation εt = Σ

−1/2
0 t

and define

W
(1)
ϑ1ϑ1

(a, b) = 2E
£
h0 (ε

0
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Using these definitions in conjunction with (A.11), (A.1), and (A.5) we can
write the aforementioned expectation (see (A.12)) as
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We need to show that the last expression equals −Iϑ1ϑ1 (θ0), which follows
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where the last two equalities are justified by Assumption 6(i). Thus, we can
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Block Iϑ2ϑ2 (θ0). The first term on the right hand side of (A.13) evaluated

at θ = θ0 has zero expectation by arguments entirely similar to those used to
show that the expectation of ∂gt (θ0) /∂ϑ2 is zero (see the proof of Proposition
3.1, Block Iϑ2ϑ2 (θ0)). Thus, it suffices to consider the second term for which
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where the last equality is justified by Assumption 6(i) and (B.1).
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Using these definitions in conjunction with (A.11) and (A.6) the expectation
of the second term on the right hand side of (A.13) evaluated at θ = θ0 can be
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Thus, to show that the last expression equals −Iϑ2ϑ2 (θ0) it suffices to show
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where the latter equality is again obtained from (2.7) and the fact C (υt) =
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n−1In. From (B.11) and (B.12) we can now conclude that
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Here the last equality follows from the definitions of τ 0, i0, and J0 (in the term
involving J0 (B.7) has also been used).
From the preceding derivations we find that
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Block Iϑ1ϑ2 (θ0). First conclude from (A.14), (A.11), (A.6), and (2.7) that
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where the last equality is due to (B.1). Next,
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P4
i=1W

(i)
ϑ1ϑ2

(a, b) = −C12 (a, b; θ0), as desired.
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Here the former equality is based on (B.1) and the fact E (υtυ0t) = n−1In
whereas the latter can be seen as follows. LetB1 andB2 be arbitrary symmetric
(n× n) matrices and consider the quantity
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Here the third equality follows from Lütkepohl (1996, Result 9.2.2(5)(c))
whereas the other equalities are due to definitions and well-known properties
of the Kronecker product and vec operator (especially the result vec(ABC) =
(C 0 ⊗A)vec(B)). BecauseB1 andB2 are arbitrary symmetric (n× n)matrices
the stated result follows and in the same way it can be seen that a similar result
holds for the second additive component obtained from the first term of the
preceding expression of ∂2gt (θ0) /∂σ∂σ0. Thus, we can conclude that
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0
t)

where the latter equality is based on (B.12) and the definition of i0 (see (2.13)).
Thus,

E
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¶
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Because E (υtυ0t ⊗ υtυ
0
t) = DnE ((vech(υtυ0t))(vech(υtυ0t))D0

n the right hand
side equals −Iσσ (θ0) if the expression in the brackets can be replaced by
vec(In)vec(In)

0. From (3.4) it is seen that this expression can be replaced by
vec(In)vec(In)

0 +Knn − In2 . Thus, the desired result follows because

(Knn − In2) (Σ
−1/2
0 ⊗ Σ

−1/2
0 )Dn = (Σ

−1/2
0 ⊗ Σ

−1/2
0 ) (Knn − In2)Dn = 0

by Results 9.2.2(2)(b) and 9.2.3(2) in Lütkepohl (1996).
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Block Iλλ (θ0). By the definition of Iλλ (θ0) and (A.17) it suffices to note
that

E
∙

1

f (ρ2t ;λ0)

∂2

∂λ∂λ0
f
¡
ρ2t ;λ0

¢¸
=

πn/2

Γ (n/2)

Z ∞

0

ζn/2−1
∂2

∂λ∂λ0
f (ζ;λ0) dζ = 0

where the former equality follows from (2.10) and the latter from Assumption
6(ii) (cf. the corresponding part of the proof of Proposition 3.1, Block Iλλ (θ0)).
Blocks Iϑ1σ (θ0) and Iϑ1λ (θ0). The former is an immediate consequence

of (A.16), the independence of t and ∂ t (ϑ0) /∂ϑ1, and the fact
E (∂ t (ϑ0) /∂ϑ1) = 0 (see (A.5)) which imply E (∂2gt (θ0) /∂ϑ1∂σ0) = 0.
As for Iϑ1λ (θ0), it is seen from (A.18), (A.1), and (A.5) that we need to

show that

E
∙

1

f0 (ε0tεt)
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¸
= 0, a = 1, ..., r

and similarly when 1/f0 (ε0tεt) is replaced by f
0
0 (ε

0
tεt) / (f0 (ε

0
tεt))

2. These facts
follow from the independence of u0,t−a and t and E (u0,t−a) = 0.
Block Iϑ2σ (θ0). From (A.16) and (A.6) we find that
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By independence of t and equation (2.5), y0t+b−a on the right hand side can
be replaced by Ψb−a,0 t when expectation is taken. Thus, using the definition
of et0 (see (A.2)) and straightforward calculation the expectation of the first
term on the right hand side becomes
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where, again, A0 (b− a, i) = Ψb−a0Σ
1/2
0 ⊗ Π0a0Σ

−1/2
0 and the latter equality is

due to E(e00t ⊗ εt ⊗ In) = E(εte00t ⊗ In) = −2−1In2 (see (B.4)).
The expectation of the second term in the preceding expression of

∂2gt (θ0) /∂ϑ2∂σ
0 can similarly be written as
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where, by (2.7) and (A.1), the expectation equals½
E
∙
ρ4t
f 000 (ρ

2
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f0 (ρ2t )

¸
− E

h
ρ4t
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4
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0
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Here we have used (B.12), the definition of i0 (see (2.13)), and straightforward
calculation. Combining the preceding derivations shows that
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where the last expression equals −Iϑ2σ (θ0) and the latter equality can be
justified by using the definition of J0, the identity (3.4), and arguments similar
to those already used in the case of block Iσσ (θ0) (see the end of that proof).
Block Iϑ2λ (θ0). From (A.18) and (A.6) it is seen that we need to show that

rX
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¸
= 0, a = 1, ..., r

The argument is similar in both cases and also similar to that used in the proof
of Proposition 3.1 (see Block Iϑ2λ (θ0)). For example, consider the former and
use (2.5) and independence of t to write the left hand side of the equality as

rX
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E
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where that equality is due to (2.7). Because E (υt ⊗ υt) = vec(E (υtυ0t)) =
n−1vec(In) the last expression is zero by (B.7). A similar proof applies to the
other expectation.
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Block Iσλ (θ0). One obtains from (A.19) that E (∂2gt (θ0) /∂σ∂λ) is a sum
of two terms. One is

−D0
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where the equality is based on (2.7) and, using (2.10), the last expectation can
be written as
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ζn/2f 0 (ζ;λ) dζ|λ=λ0 = 0

Here the former equality is justified by Assumption 6(ii) and the latter by (B.1).
By similar arguments it is seen that the second term of E (∂2gt (θ0) /∂σ∂λ)
becomes −Iσλ (θ0). ¤

Proof of Theorem 3.3. First note that our Proposition 3.1 and Lemma 3.2
are analogous to Lemmas 1 and 2 of Andrews et al (2006) so that the method of
proof used in that paper also applies here. That method is based on a standard
Taylor expansion and, an inspection of the arguments used by Andrews et al
(2006) in their proof of Theorem 1, shows that we only need to show that the
appropriately standardized Hessian of the log-likelihood function satisfies

sup
θ∈Θ0

°°°°°°N−1
T−s−(n−1)rX

t=r+1

µ
∂2

∂θ∂θ0
gt(θ)− ∂2

∂θ∂θ0
gt(θ0)

¶°°°°°° p→ 0 (B.13)

where Θ0 is some small enough compact neighborhood of θ0 (cf. Lanne and
Saikkonen (2008)). From the expressions of the components of ∂2gt(θ)/∂θ∂θ0

it can be checked that ∂2gt(θ)/∂θ∂θ
0 is stationary and ergodic, and, as a

function of θ, continuous. Hence, a sufficient condition for (B.13) to hold
is that ∂2gt(θ)/∂θ∂θ

0 obeys a uniform law of large numbers over Θ0, which is
turn is implied by

Eθ0
µ
sup
θ∈Θ0

°°°° ∂2

∂θ∂θ0
gt(θ)

°°°°¶ <∞ (B.14)

(see Theorem A.2.2 in White (1994)).
We demonstrate (B.14) for some typical components of ∂2gt(θ)/∂θ∂θ0 and

note that the remaining components can be handled along similar lines. Of
∂2gt(θ)/∂ϑi∂ϑ

0
j i, j ∈ {1, 2} we only consider ∂2gt(θ)/∂ϑ1∂ϑ02. In what follows,

c1, c2, ... will denote positive constants. From (A.14), Assumption 3, and the
definitions of the quantities involved (see (A.2), (A.11), (A.6)) it can be seen
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that
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The finiteness of the last two expectations can be established similarly, so we
only show the latter. First conclude from (A.1) and Assumption 7 that, with
Θ0 small enough,
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where the last equality is obtained from the definition of t (ϑ) (see (3.3)) and
Loeve’s cr—inequality (see Davidson (1994), p. 140). Thus, it follows that we
need to show the finiteness of Eθ0

¡kytk4+2a3¢ or, by (2.5) and Minkowski’s
inequality, the finiteness of
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where the former inequality is justified by (2.7) and the latter by Assumption
7.
From (3.3) and (A.15) it can be seen that the treatment of ∂2gt(θ)/∂σ∂σ0 is

very similar to that of ∂2gt(θ)/∂ϑ1∂ϑ
0
2 and the same is true for ∂

2gt(θ)/∂ϑi∂σ
0

(i = 1, 2) (see (A.16), (A.5), and (A.6)). Next consider ∂2gt(θ)/∂λ∂λ0. The
dominance assumptions imposed on the third and fifth functions in Assumption
7 together with the triangular inequality and the Cauchy-Schwarz inequality
imply that, with Θ0 small enough,
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where the finiteness of the right hand side was established in the case of
∂2gt(θ)/∂ϑ1∂ϑ

0
2. The treatment of the remaining components, ∂

2gt(θ)/∂ϑi∂λ
0

and ∂2gt(θ)/∂σ∂λ
0, involve no new features, so details are omitted.

Finally, because

− (T − s− nr)−1 ∂2lT (θ̂)/∂θ∂θ0 = − (T − s− nr)−1
T−s−(n−1)rX

t=r+1

∂2gt(θ̂)/∂θ∂θ
0

the consistency claim is a straightforward consequence of the fact that
∂2gt(θ)/∂θ∂θ

0 obeys a uniform law of large numbers. This completes the proof.
¤
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