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The stability of electricity prices: estimation and 
inference of the Lyapunov exponents 

Bank of Finland Research 
Discussion Papers 9/2006 

Mikael Bask –Tung Liu – Anna Widerberg 
Monetary Policy and Research Department 
 
 
Abstract 

The aim of this paper is to illustrate how the stability of a stochastic dynamic 
system is measured using the Lyapunov exponents. Specifically, we use a 
feedforward neural network to estimate these exponents as well as asymptotic 
results for this estimator to test for unstable (chaotic) dynamics. The data set used 
is spot electricity prices from the Nordic power exchange market. Nord Pool, and 
the dynamic system that generates these prices appears to be chaotic in one case. 
 
Key words: feedforward neural network, Nord Pool, Lyapunov exponents, spot 
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Lyapunovin eksponenttien estimointi ja siihen 
liittyvän tilastollisen inferenssin käyttö sähkön 
hintadynamiikan luonnehdinnassa 

Suomen Pankin tutkimus 
Keskustelualoitteita 9/2006 

Mikael Bask –Tung Liu – Anna Widerberg 
Rahapolitiikka- ja tutkimusosasto 
 
 
Tiivistelmä 

Tässä tutkimuksessa havainnollistetaan Lyapunovin eksponenttien käyttöä stokas-
tisesti kehittyvän dynaamisen järjestelmän vakauden arvioinnissa. Työssä käyte-
tään myötäkytkentäneuroverkkoa näiden eksponenttien estimoinnissa. Tämän esti-
maattorin asymptoottista jakaumateoriaa käyttäen testataan, voidaanko kaoottista 
dynamiikasta koskeva hypoteesi hylätä Pohjoismaiden sähkömarkkinoiden 
käteishinnoista koostuvassa aineistossa. Tulosten mukaan sähkön hinnan generoi-
va prosessi Pohjoismaiden yhteisillä sähkömarkkinoilla on dynamiikaltaan 
kaoottinen. 
 
Avainsanat: myötäkytkentäneuroverkko, Nord Pool, Lyapunovin eksponentit, 
sähkön käteismarkkinahinnat, stokastisesti kehittyvä dynaaminen järjestelmä 
 
JEL-luokittelu: C12, C14, C22 
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1 Introduction

The aim of this paper is to illustrate how the stability of a stochastic dynamic
system is measured using the Lyapunov exponents. Specifically, we use a
feedforward neural network to estimate these exponents as well as asymptotic
results for this estimator to test for unstable (chaotic) dynamics, where a
positive exponent is an operational definition of chaos. The data set used is
spot electricity prices from the Nordic power exchange market, Nord Pool.
The estimation of the Lyapunov exponents using the feedforward neural

network can be found in earlier studies such as Dechert and Gencay (1992),
Gencay and Dechert (1992), McCaffrey et al (1992) and Nychka et al (1992).
The empirical estimation of these exponents has been proved to be quite
accurate when applying chaotic series with additive noise in simulations.
However, the statistical properties of the Lyapunov exponent estimator
were unknown until Shintani and Linton’s 2004 paper (see Shintani and
Linton (2004)), and without the statistical distribution for this estimator, no
statistical conclusion can be drawn on the dynamic structure of the empirical
data.
This paper applies the statistical distribution derived in Shintani and

Linton (2004) to test the stability of spot electricity prices from Nord Pool,
and the stochastic dynamic system that generates these prices appears to be
chaotic in one case.
The rest of this short paper is organized as follows: The Lyapunov

exponents are in focus in Section 2, the empirical illustration is carried out
in Section 3, and Section 4 concludes the paper.

2 The Lyapunov exponents

The aim of this section is fourfold: (i) to define the Lyapunov exponents of
a stochastic dynamic system; (ii) to motivate why these exponents provide a
measure of the stability of a stochastic dynamic system; (iii) to demonstrate
how the Lyapunov exponents can be estimated from time series data; and (iv)
to demonstrate how hypothesis tests of these exponents can be constructed.

2.1 Definition of the Lyapunov exponents

As argued in Bask and de Luna (2002) and (2005), and to be further explained
in Section 2.2, the Lyapunov exponents can be used in the determination of
the stability of a stochastic dynamic system. Specifically, assume that the
stochastic dynamic system, f : Rn → Rn, generating, for example, asset
returns is

St+1 = f (St) + εst+1, (2.1)

where St and εst are the state of the system and a shock to the system,
respectively, both at time t ∈ [1, 2, . . . ,∞]. For an n-dimensional system
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as in (2.1), there are n Lyapunov exponents that are ranked from the largest
to the smallest exponent

λ1 ≥ λ2 ≥ ... ≥ λn, (2.2)

and it is these exponents that provide information on the stability properties
of the dynamic system f in (2.1).
Now, how are the Lyapunov exponents in (2.2) defined? Temporarily,

assume that there are no shocks to the dynamic system f in (2.1), and consider
how the system amplifies a small difference between the initial states S0 and
S00

Sj − S0j = f j (S0)− f j (S00) ' Df j (S0) (S0 − S00) , (2.3)

where f j (S0) = f (· · · f (f (S0)) · · · ) denotes j successive iterations of the
dynamic system starting at state S0, and where Df is the Jacobian of the
system

Df j (S0) = Df (Sj−1)Df (Sj−2) · · ·Df (S0) . (2.4)

Then, associated with each Lyapunov exponent, λi, i ∈ [1, 2, . . . , n], there are
nested subspaces U i ⊂ Rn of dimension n+ 1− i with the property that

λi ≡ lim
j→∞

loge kDf j (S0)k
j

= lim
j→∞

1

j

j−1X
k=0

loge kDf (Sk)k , (2.5)

for all S0 ∈ U i − U i+1. Due to Oseledec’s multiplicative ergodic theorem,
the limits in (2.5) exist and are independent of S0 almost surely with respect
to the measure induced by the process {St}∞t=1.1 Then, allow for shocks to
the dynamic system f in (2.1), meaning that the aforementioned measure is
induced by a stochastic process.

2.2 Motivation of the Lyapunov exponents

The reason why the Lyapunov exponents provide a measure of the stability of
a stochastic dynamic system may be seen by considering two different starting
values of the system, where the difference is an exogenous shock at time t = 0.
The largest Lyapunov exponent, λ1, measures the slowest exponential rate of
convergence of two trajectories of the dynamic system starting at these two
different values at time t = 0, but with identical exogenous shocks at times
t > 0. Indeed, λ1 measures the convergence of a shock in the direction defined
by the eigenvector corresponding to this exponent. If the difference between
the two starting values lies in another direction of Rn, then the convergence is
faster. Thus, λ1 measures the ‘worst case scenario.’2 In particular, when λ1 >

1 See Guckenheimer and Holmes (1983) for a careful definition of the Lyapunov exponents
and their properties.

2 An extensive discussion of the Lyapunov exponents as a measure of the stability of
a stochastic dynamic system is provided in Bask and de Luna (2002). For example, it is
argued therein that the average of the Lyapunov exponents, λ ≡ 1

n

Pn
i=1 λi, is useful as a

measure of an “average scenario.”
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0, the two trajectories diverge from each other, and for a bounded stochastic
dynamic system, a positive exponent is an operational definition of chaotic
dynamics.

2.3 Estimation of the Lyapunov exponents

Since the actual functional form of the dynamic system f in (2.1) is not known,
it may seem like an impossible task to determine the stability of the system.
However, it is possible to reconstruct the dynamics of the system using only
a scalar time series, and, then, measure the stability of this reconstructed
system. Therefore, associate the dynamic system f in (2.1) with an observer
function, g : Rn → R, that generates observed asset returns

st = g (St) + εmt , (2.6)

where st ∈ St and εmt are the asset return and a measurement error,
respectively, both at time t. Thus, (2.6) means that the asset return series

{st}Nt=1 , (2.7)

is observed, which is used to reconstruct the dynamics of the system f in (2.1),
where N is the number of consecutive returns in the time series.
Specifically, the observations in a scalar time series, like the asset return

series in (2.7), contain information about unobserved state variables that can
be used to define a state in present time. Therefore, let

T = (T1, T2, . . . , TM)
0 , (2.8)

be the reconstructed trajectory, where Tt is the reconstructed state at time
t and M is the number of states on the reconstructed trajectory. Each Tt is
given by

Tt = {st+m−1, st+m−2, . . . , st} , (2.9)

where m is the embedding dimension, and time t ∈ [1, 2, . . . , N −m+ 1].
Thus, T is an M ×m matrix and the constants M , m and N are related as
M = N −m+ 1.
Takens (1981) proved that the map

Φ (St) =
©
g
¡
f0 (St)

¢
, g
¡
f1 (St)

¢
, . . . , g

¡
fm−1 (St)

¢ª
, (2.10)

which maps the n-dimensional state St onto the m-dimensional state Tt, is an
embedding ifm > 2n. This means that the map is a smooth map that performs
a one-to-one coordinate transformation and has a smooth inverse. A map that
is an embedding preserves topological information about the unknown dynamic
system, like the Lyapunov exponents, and, in particular, the map induces a
function, h : Rm → Rm, on the reconstructed trajectory

Tt+1 = h (Tt) , (2.11)
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which is topologically conjugate to the unknown dynamic system f in (2.1).
That is

hj (Tt) = Φ ◦ f j ◦ Φ−1 (Tt) . (2.12)

Thus, h in (2.11) is a reconstructed dynamic system that has the same
Lyapunov exponents as the unknown dynamic system f in (2.1).
Now, in order to estimate the Lyapunov exponents of the dynamic system

generating asset returns, one has to estimate h in (2.11). However, since

h :

⎛⎜⎜⎜⎝
st+m−1
st+m−2
...
st

⎞⎟⎟⎟⎠ −→
⎛⎜⎜⎜⎝

v (st+m−1, st+m−2, . . . , st)
st+m−1
...

st+1

⎞⎟⎟⎟⎠ , (2.13)

the estimation of h reduces to the estimation of v

st+m = v (st+m−1, st+m−2, . . . , st) . (2.14)

Moreover, note that the Jacobian of h at the reconstructed state Tt is

Dh (Tt) =

⎛⎜⎜⎜⎜⎜⎝
∂v

∂st+m−1
∂v

∂st+m−2
∂v

∂st+m−3
· · · ∂v

∂st+1
∂v
∂st

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎠ . (2.15)

We use a feedforward neural network to estimate the above derivatives and
to derive the Lyapunov exponents in (2.5) (see Dechert and Gencay (1992),
Gencay and Dechert (1992), McCaffrey et al (1992) and Nychka et al (1992)).
A neural network model with q hidden units, uit, and m inputs, xjt, can be
represented as⎧⎨⎩

st = β0 +
Pq

i=1 βiuit + εt
uit =

1
1+exp(−wit)

wit = γ0t +
Pm

j=1 γijxjt

, (2.16)

where εt is a random error, and time t ∈ [1, 2, . . . , N −m+ 1]. The input
variable xjt in the estimation of a dynamic system are the lagged dependent
variables, st−1, st−2, . . ., st−m. The parameters to be estimated in the model
are βi, γij and the variance of εt, and we use nonlinear least squares to estimate
these parameters.
Hornik et al (1990) show that the mapping and its derivatives of any

unknown functional form can be approximated by the neural network model
in (2.16). This universal approximation property enables us to apply the
estimates of the derivatives from the neural network for the estimates of the
derivatives in (2.15), and the estimation of the Lyapunov exponents in (2.5)
can be derived. In choosing the best model, we use the Schwarz Information
Criterion (SIC) as in Nychka et al (1992) to determine the numbers of hidden
units and inputs.
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2.4 Inference of the Lyapunov exponents

Shintani and Linton (2004) derive the asymptotic distribution of a neural
network estimator of the Lyapunov exponents. Specifically, given some
technical conditions (see Shintani and Linton (2004) for details), they show
that

√
M
³bλiM − λi

´
=⇒ N (0, Vi) , (2.17)

where bλiM is the estimator of the i:th Lyapunov exponent, based on the M
reconstructed states on the trajectory, Vi is the variance of the i:th Lyapunov
exponent, and i ∈ [1, 2, . . . , n]. The stability of a stochastic dynamic system
can be measured by the estimates of these exponents, and if the value of the
largest exponent is positive, then the system appears to be chaotic.
Therefore, to test the stability of a dynamic system, we consider the

following null and alternative hypotheses

H0 : λi ≤ 0, H1 : λi > 0, (2.18)

and the test statistics is

bti = bλiMq
Vi
M

, (2.19)

where bVi is a consistent estimator of Vi (see Andrews (1991)), and i ∈
[1, 2, . . . , n]. Thus, the null hypothesis is rejected when

bti ≥ zα, (2.20)

where the significance level is

Pr [Z ≥ zα] = α, (2.21)

where Z is the standard normal random variable, and i ∈ [1, 2, . . . , n].

3 Illustration: stability of electricity prices

The Nordic power exchange market and the data set used are described in
Section 3.1, and the empirical results are found in Section 3.2 that also includes
a sensitivity analysis of the results.

3.1 Nord Pool and data set used

Nord Pool is a multi-national exchange for trade in power, joining the Nordic
countries. Norway was, in 1991, the first of the Nordic countries to deregulate
the power market, and Nord Pool ASA was established in 1993, then under the

11



name Statnett Marked AS. Sweden started the deregulation process in 1991,
and went step-wise to a deregulated power market. January 1, 1996, was the
start-up of the joint Norwegian-Swedish power exchange market, renamed to
Nord Pool ASA.
Finland started a power exchange market of its own, EL-EX, in August

1996, and joined Nord Pool in 1997. In 1999, Elbas is launched as a separate
market for power balance adjustments in Sweden and Finland, giving a fully
integrated market between Norway, Sweden and Finland. Denmark Nord Pool
Consulting is established in 1998, and Western Denmark joins the market in
1999 as a Nordic power exchange price area. When Eastern Denmark joins in
2000, the Nordic power exchange market becomes fully integrated. See Table
1 for the specific dates in the integration process.

Country Date for affiliation
Norway January 1, 1993
Sweden January 1, 1996
Finland December 29, 1997
Western Denmark July 1, 1999
Eastern Denmark October 1, 2000

Table 1: The dates in the integration process in the power market.

The data set used is spot electricity prices from Nord Pool. Specifically, it
is the daily average of the system price for the period January 1, 1993, to
December 31, 2005. The data are analyzed split in parts with the natural
breakpoints when a new country is joining the common market. Since the
prices are not stationary, we use the returns, which is the logarithm-difference
of the prices, in the empirical analysis. See Tables 2a—b for the results of the
stationarity tests of the time series.

Countries t statistic Significance
Norway -0.70 No
Norway and Sweden -0.44 No
Norway, Sweden and Finland -1.30 No
Norway, Sweden, Finland and Western Denmark -0.36 No
Norway, Sweden, Finland and Denmark -1.19 No

Table 2a: The Dickey-Fuller unit root test for the system price at Nord Pool.

Countries t statistic Significance
Norway -10.67 1 per cent
Norway and Sweden -9.59 1 per cent
Norway, Sweden and Finland -8.67 1 per cent
Norway, Sweden, Finland and Western Denmark -6.13 1 per cent
Norway, Sweden, Finland and Denmark -15.66 1 per cent

Table 2b: The Dickey-Fuller unit root test for the logarithmic-difference of the
system price at Nord Pool.
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3.2 Empirical results

For each time series, we estimated the Lyapunov exponents making use of 4, 8
and 12 inputs, respectively, to the feedforward neural network. Moreover, the
number of hidden units in the neural network in each case runs from 1 unit
to 12 units.3 The specific estimate chosen for each number of inputs is when
SIC is minimized. In Tables 3a—e, the estimates of the Lyapunov exponents
that minimizes SIC in each sub-period in the integration process in the power
market is reported, including standard errors.4

LE Newey-West SE Parzen SE Quad. Spect. SE
λ1 -0.0606 0.00452 0.00473 0.00444
λ2 -0.0743 0.00442 0.00447 0.00437
λ3 -0.130 0.00661 0.00664 0.00660
λ4 -0.160 0.00651 0.00652 0.00650
λ5 -0.169 0.00709 0.00708 0.00709
λ6 -0.199 0.00811 0.00811 0.00812
λ7 -0.211 0.00872 0.00869 0.00882
λ8 -0.231 0.00847 0.00837 0.00865
λ9 -0.253 0.00928 0.00941 0.00968
λ10 -0.286 0.0112 0.0110 0.0114
λ11 -0.367 0.0146 0.0145 0.0148
λ12 -1.07 0.0355 0.0360 0.0336

Table 3a: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period January 1, 1993, to December 31, 1995, ie, when only
Norway participates in the power market. The Lyapunov exponents are
estimated for 12 inputs and 5 hidden units in the neural network when SIC is
minimized, and the number of significant figures is 3.

3 We have used NETLE 4, a computer program developed by C-M Kuan, T Liu and
R Gencay, when estimating the Lyapunov exponents (see Gencay and Dechert (1992) and
Kuan and Liu (1995) for details).

4 Detailed results of the estimations are available on request from the authors.
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LE Newey-West SE Parzen SE Quad. Spect. SE
λ1 -0.0623 0.00776 0.00782 0.00787
λ2 -0.116 0.00840 0.00844 0.00858
λ3 -0.148 0.0110 0.0109 0.0111
λ4 -0.183 0.0109 0.0109 0.0109
λ5 -0.235 0.0130 0.0129 0.0131
λ6 -0.291 0.0151 0.0149 0.0153
λ7 -0.423 0.0177 0.0172 0.0178
λ8 -1.41 0.0265 0.0312 0.0331

Table 3b: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period January 1, 1996, to December 28, 1997, ie, when only
Norway and Sweden participate in the power market. The Lyapunov exponents
are estimated for 8 inputs and 2 hidden units in the neural network when SIC
is minimized, and the number of significant figures is 3.

LE Newey-West SE Parzen SE Quad. Spect. SE
λ1 -0.0421 0.00740 0.00753 0.00685
λ2 -0.0588 0.00821 0.00840 0.00731
λ3 -0.0994 0.00495 0.00533 0.00556
λ4 -0.107 0.00508 0.00558 0.00585
λ5 -0.124 0.00750 0.00741 0.00732
λ6 -0.135 0.00778 0.00807 0.00816
λ7 -0.145 0.00790 0.00789 0.00791
λ8 -0.166 0.00850 0.00850 0.00849
λ9 -0.267 0.0135 0.0132 0.0141
λ10 -0.284 0.00935 0.0117 0.0133
λ11 -0.290 0.00978 0.0132 0.0145
λ12 -0.296 0.0139 0.0139 0.0140

Table 3c: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period December 29, 1997, to June 30, 1999, ie, when only Norway,
Sweden and Finland participate in the power market. The Lyapunov exponents
are estimated for 12 inputs and 3 hidden units in the neural network when SIC
is minimized, and the number of significant figures is 3.
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LE Newey-West SE Parzen SE Quad. Spect. SE
λ1 -0.0664 0.00134 0.00321 0.00376
λ2 -0.0677 0.00172 0.00323 0.00378
λ3 -0.0988 0.00609 0.00539 0.00531
λ4 -0.102 0.00682 0.00582 0.00573
λ5 -0.171 NA NA NA
λ6 -0.174 NA NA NA
λ7 -0.281 0.00283 0.00393 0.00418
λ8 -1.23 0.00480 0.00645 0.00707

Table 3d: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period July 1, 1999, to September 30, 2000, ie, when only Norway,
Sweden, Finland and Western Denmark participate in the power market. The
Lyapunov exponents are estimated for 8 inputs and 1 hidden unit in the neural
network when SIC is minimized, and the number of significant figures is 3.

LE Newey-West SE Parzen SE Quad. Spect. SE
λ1 -0.0319 0.00568 0.00525 0.00504
λ2 -0.101 0.00426 0.00420 0.00431
λ3 -0.125 0.00439 0.00439 0.00460
λ4 -0.157 0.00517 0.00512 0.00520
λ5 -0.176 0.00580 0.00580 0.00581
λ6 -0.277 0.00707 0.00707 0.00706
λ7 -0.323 0.00901 0.00898 0.00903
λ8 -1.01 0.0169 0.0166 0.0190

Table 3e: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period October 1, 2000, to December 31, 2005, ie, when Norway,
Sweden, Finland and Denmark participate in the power market. The Lyapunov
exponents are estimated for 8 inputs and 5 hidden units in the neural network
when SIC is minimized, and the number of significant figures is 3.

Clearly, there is no unstable (chaotic) dynamics in the time series since all
estimates of the largest Lyapunov exponent are negative.
When inspecting the time series, its clear that there are some extreme

values, outliers. In order to see their impact on the result, we eliminated the
outliers from the time series and performed the same analysis as above.5 See
Tables 4a—e for the results.

5 The excluded outliers are from February 28, 1994, to March 2, 1994, December 8, 1998,
January 24, 2000, February 5, 2001, from December 5, 2002, to January 14, 2003. In total,
44 outliers are excluded.
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LE Newey-West SE Parzen SE Quad. Spect. SE
λ1 -0.0806 0.00410 0.00408 0.00398
λ2 -0.0855 0.00435 0.00432 0.00432
λ3 -0.118 0.00545 0.00544 0.00541
λ4 -0.134 0.00521 0.00515 0.00550
λ5 -0.176 0.00653 0.00648 0.00667
λ6 -0.201 0.00715 0.00704 0.00719
λ7 -0.213 0.00789 0.00783 0.00793
λ8 -0.237 0.00875 0.00860 0.00878
λ9 -0.284 0.00956 0.00943 0.00961
λ10 -0.330 0.00937 0.00982 0.0105
λ11 -0.400 0.0115 0.0121 0.0124
λ12 -1.86 0.0710 0.0675 0.0535

Table 4a: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period January 1, 1993, to December 31, 1995, ie, when only
Norway participates in the power market. The Lyapunov exponents are
estimated for 12 inputs and 4 hidden units in the neural network when SIC is
minimized, and the number of significant figures is 3.

LE Newey-West SE Parzen SE Quad. Spect. SE
λ1 -0.0623 0.00776 0.00782 0.00787
λ2 -0.116 0.00840 0.00844 0.00858
λ3 -0.148 0.0110 0.0109 0.0111
λ4 -0.183 0.0109 0.0109 0.0109
λ5 -0.235 0.0130 0.0129 0.0131
λ6 -0.291 0.0151 0.0149 0.0153
λ7 -0.423 0.0177 0.0172 0.0178
λ8 -1.41 0.0265 0.0312 0.0331

Table 4b: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period January 1, 1996, to December 28, 1997, ie, when only
Norway and Sweden participate in the power market. The Lyapunov exponents
are estimated for 8 inputs and 2 hidden units in the neural network when SIC
is minimized, and the number of significant figures is 3.
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LE Newey-West SE Parzen SE Quad. Spect. SE
λ1 -0.0215 0.00554 0.00548 0.00551
λ2 -0.0482 0.00594 0.00600 0.00594
λ3 -0.0734 0.00663 0.00665 0.00665
λ4 -0.0940 0.00650 0.00650 0.00663
λ5 -0.100 0.00769 0.00769 0.00769
λ6 -0.124 0.00724 0.00717 0.00743
λ7 -0.143 0.00875 0.00875 0.00918
λ8 -0.148 0.00931 0.00925 0.00944
λ9 -0.175 0.0102 0.0102 0.0103
λ10 -0.206 0.0132 0.0132 0.0134
λ11 -0.319 0.0182 0.0185 0.0188
λ12 -0.506 0.0318 0.0329 0.0278

Table 4c: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period December 29, 1997, to June 30, 1999, ie, when only Norway,
Sweden and Finland participate in the power market. The Lyapunov exponents
are estimated for 12 inputs and 3 hidden units in the neural network when SIC
is minimized, and the number of significant figures is 3.

LE Newey-West SE Parzen SE Quad. Spect. SE
λ1 0.0670 0.0169 0.0167 0.0168
λ2 -0.0193 0.00852 0.00862 0.00843
λ3 -0.0451 0.00762 0.00769 0.00761
λ4 -0.0757 0.00811 0.00806 0.00822
λ5 -0.130 0.0113 0.0114 0.0113
λ6 -0.148 0.0118 0.0117 0.0119
λ7 -0.271 0.0195 0.0196 0.0197
λ8 -1.12 0.0576 0.0589 0.0562

Table 4d: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period July 1, 1999, to September 30, 2000, ie, when only Norway,
Sweden, Finland and Western Denmark participate in the power market. The
Lyapunov exponents are estimated for 8 inputs and 5 hidden units in the neural
network when SIC is minimized, and the number of significant figures is 3.
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LE Newey-West SE Parzen SE Quad. Spect. SE
λ1 -0.0386 0.00294 0.00286 0.00306
λ2 -0.0775 0.00336 0.00336 0.00336
λ3 -0.119 0.00400 0.00395 0.00405
λ4 -0.131 0.00413 0.00408 0.00420
λ5 -0.147 0.00468 0.00460 0.00473
λ6 -0.170 0.00534 0.00532 0.00537
λ7 -0.196 0.00621 0.00617 0.00625
λ8 -0.263 0.00679 0.00689 0.00706
λ9 -0.300 0.00768 0.00781 0.00788
λ10 -0.344 0.00863 0.00878 0.00913
λ11 -0.471 0.0108 0.0113 0.0115
λ12 -0.593 0.0165 0.0164 0.0160

Table 4e: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period October 1, 2000, to December 31, 2005, ie, when Norway,
Sweden, Finland and Denmark participate in the power market. The Lyapunov
exponents are estimated for 12 inputs and 4 hidden units in the neural network
when SIC is minimized, and the number of significant figures is 3.

When eliminating the outliers, the dynamic system appears to be chaotic for
the period July 1, 1999, to September 30, 2000, since the null hypothesis in
(2.18) is rejected for the largest Lyapunov exponent at the 1 per cent level.
For all other time series, there is no chaotic dynamics.

4 Concluding remarks

We should also mention impulse-response functions as another tool to measure
the stability of a stochastic dynamic system. Specifically, Koop et al
(1996) and Potter (2000) extend, in an appealing way, the linear technique
of impulse-response functions to the non-linear case, although they show
that there is no unique definition of such a function when a non-linear
dynamic system is considered. Certainly, impulse-response functions are useful
graphical tools in the non-linear case, even if they are less appropriate when
inference needs to be performed on a change in the stability. It is, therefore,
we recommend the estimation and inference of the Lyapunov exponents to
measure the stability of a stochastic dynamic system.
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