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A wavelet analysis of scaling laws and long-memory 
in stock market volatility 

Bank of Finland Research 
Discussion Papers 27/2005 

Tommi A. Vuorenmaa 
Monetary Policy and Research Department 
 
 
Abstract 

This paper investigates the dependence of average stock market volatility on the 
timescale or on the time interval used to measure price changes, which 
dependence is often referred to as the scaling law. Scaling factor, on the other 
hand, refers to the elasticity of the volatility measure with respect to the timescale. 
This paper studies, in particular, whether the scaling factor differs from the one in 
a simple random walk model and whether it has remained stable over time. It also 
explores possible underlying reasons for the observed behaviour of volatility in 
terms of heterogeneity of stock market players and periodicity of intraday 
volatility. The data consist of volatility series of Nokia Oyj at the Helsinki Stock 
Exchange at five minute frequency over the period from January 4, 1999 to 
December 30, 2002. The paper uses wavelet methods to decompose stock market 
volatility at different timescales. Wavelet methods are particularly well motivated 
in the present context due to their superior ability to describe local properties of 
times series. The results are, in general, consistent with multiscaling in Finnish 
stock markets. Furthermore, the scaling factor and the long-memory parameters of 
the volatility series are not constant over time, nor consistent with a random walk 
model. Interestingly, the evidence also suggests that, for a significant part, the 
behaviour of volatility is accounted for by an intraday volatility cycle referred to 
as the New York effect. Long-memory features emerge more clearly in the data 
over the period around the burst of the IT bubble and may, consequently, be an 
indication of irrational exuberance on the part of investors. 
 
Key words: long-memory, scaling, stock market, volatility, wavelets 
 
JEL classification numbers: C14, C22 
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Aallokeanalyysi osakemarkkinoiden volatiliteetin 
skaalauslaeista ja pitkämuistisuudesta 

Suomen Pankin tutkimus 
Keskustelualoitteita 27/2005 

Tommi A. Vuorenmaa 
Rahapolitiikka- ja tutkimusosasto 
 
 
Tiivistelmä 

Tässä työssä tutkitaan Helsingin pörssistä kerättyjen Nokian osakkeen hinta-
tietojen avulla osakemarkkinoiden keskimääräisen hintavaihtelun, volatiliteetin, ja 
sen mittaamisessa käytetyn aikavälin, osakemarkkina-aineiston aikaskaalan, välis-
tä riippuvuutta. Tätä riippuvuutta kutsutaan skaalauslaiksi ja siihen liittyvällä 
skaalauskertoimella tarkoitetaan käytetyn volatiliteettimittarin joustoa aikaskaalan 
suhteen. Tässä työssä tutkitaan erityisesti, onko osakemarkkina-aineiston skaa-
lauskerroin sopusoinnussa yksinkertaisen satunnaispolkumallin kanssa ja onko se 
pysynyt vakaana ajan mittaan. Tutkimuksessa pohditaan myös investoijien hetero-
geenisuuden ja päivänsisäisten vaihtelujaksojen merkitystä volatiliteettia selittävi-
nä tekijöinä. Aalloke- eli väreanalyysia käyttäen osakemarkkinoiden volatiliteetti 
hajotetaan aikaskaaloittain. Aallokeanalyysin käyttö on tässä yhteydessä perustel-
tua, mikä johtuu tämän menetelmän erinomaisesta kyvystä kuvata aikasarjan 
lokaalisia ominaisuuksia. Suomen osakemarkkinat ovat tulosten mukaan moni-
skaalaiset. Skaalaustekijä ja volatiliteetin pysyvyyteen liittyvät parametrit eivät 
ole pysyneet vakioina ajan kuluessa, eivätkä niiden estimaatit tue satunnaispolku-
mallia. Mielenkiintoista kyllä, osakemarkkinoiden volatiliteettiin vaikuttaa tulos-
ten mukaan erityinen päivänsisäinen vaihtelujakso, josta tutkimuksessa käytetään 
nimitystä New York -vaikutus. Volatiliteetin pitkän aikavälin ominaisuudet ilme-
nevät aineistossa selkeämmin IT-kuplan aikana kuin sen jälkeen, mikä saattaa olla 
todiste sijoittajien lyhytnäköisyydestä. 
 
Avainsanat: pitkämuistisuus, skaalaus, osakemarkkinat, heilahtelut, aallokkeet 
(väreet) 
 
JEL-luokittelu: C14, C22 
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1 Introduction

Stock market volatility exhibits jumps and clustering (see eg Cont (2001)).
For the last two decades the main emphasis has been put into the research
of volatility clustering, also known as the ‘ARCH-effect’. The seminal articles
of Engle (1982) and Bollerslev (1986) launched a huge interest in different
kinds of (generalized) autoregressive conditional heteroskedastic ((G)ARCH)
models (for a review, see eg Bollerslev et al (1992)).1 The huge interest in the
conditional variance stems from the fact that a correctly specified volatility
model is useful for example in valuation of stocks and stock options and in
designing optimal dynamic hedging strategies for options and futures.
The ARCH-models have still hard time explaining the stylized facts,

however. This is partly because they typically model only one time-scale
(usually a day) at time. But stock market data have no specific time-scale to
analyze. A notable exception in this respect is the heterogenous ARCH model
(Müller et al (1997)) which is based on the hypothesis of a heterogenous market
(Müller et al (1993)). According to this hypothesis the stock market consists
of multiple layers of investment horizons (time-scales) varying from extremely
short (minutes) to long (years). The short horizons are thought to be related
to speculation and the longer horizons to serious investing. Of course, the
players in the stock market form a heterogenous group with respect to other
reasons as well — such as perceptions of the market, risk profiles, institutional
constraints, degree of information, prior beliefs, and other characteristics such
as geographical locations — but as Müller et al (1993) argue, many of these
differences translate to sensitivity to different time-scales. In fact, Müller et
al (1997) show evidence that time-scale is one of the most important aspects
in which trading behaviors differ. This is convenient because high-frequency
data has made it possible to study scale dependent phenomena in the stock
markets.
The incorporation of multiple time-scales into the analysis should improve

the efficiency of risk management which requires scaling a risk measure
(standard deviation, say) of one time-scale to another. The industry standard
is to scale by the square-root of time, familiar from Brownian motion. But
such scaling implicitly assumes that the data generating process (DGP) is
made of identically and independently distributed (IID) random variables. This
assumption is not reasonable for financial time series where the persistance in
conditional second moments is universally found so strong and long-lasting that
volatility is said to exhibit long-memory. Under such non-IID circumstances
square-root scaling may be misleading (see Diebold et al (1997)).
Several authors have provided evidence of scaling laws in the FX markets

(eg Müller et al (1990, 1997), Guillaume et al (1997), and Andersen et al
(2000)). But a single scaling factor may not always be adequate. Gençay et
al (2001a) have found that a different scaling region exists in the FX markets
for intradaily time-scales and for larger time-scales. It is thus interesting to
see (i) if different scaling regions (known as multiscaling, see eg Fisher et al

1In 2003 Engle was given a (half of) Nobel Prize in Economic Sciencies ‘for methods of
analyzing economic time series with time-varying volatility’.
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(1997)) appear in a stock market which has smaller turnover, lower liquidity,
and higher transaction costs than the FX markets, (ii) if the scaling factor
systematically differs from the Brownian, (iii) if the scaling factor is constant
in time, and (iv) if the behavior can be explained by the heterogenuity of the
players in the market or by other means such as intraday volatility periodicity.
Moreover, because the scaling law is intimately related to the memory of the
DGP, and because high-frequency data allows for superior estimation of the
long-memory parameter (see Bollerslev and Wright (2000)), this paper sheds
light on the behavior of long-memory in volatility in time. The data used
are the 5-minute volatility series of Nokia Oyj at the Helsinki Stock Exchange
around the burst of the IT-bubble. Period one represents the era of ‘irrational
exuberance’ (Shiller (2001)) and another its aftermath.
This paper attempts to answer all these issues using wavelet analysis.

Wavelet analysis is a non-parametric method that allows for the study of
time-scale dependent phenomena. It is akin to Fourier analysis but does not
lose time dimension in the transformation which is useful for time-aligning.
Wavelet analysis is locally adaptive. Jumps and clusters of volatility do not
present a problem for its application and it is thus well-suited for the analysis
of stock market data. This gives the wavelet method a distinct advantage over
the standard frequency domain methods. In particular a wavelet-based OLS
method allows for consistent estimation of long-memory.
The structure of this paper is as follows. Section 2 shortly describes the

wavelet methodology and the concept of wavelet variance. In Section 3 a
locally stationary long-memory stochastic volatility model is reviewed. Section
4 describes the empirical results. Section 5 concludes.

2 Wavelet decomposition of variance

There are nowadays number of good accounts on wavelet methodology. The
reader could for example consult some of the following for more information
than given in the next subsections: An introduction for economists is given
by Schleicher (2002) and Crowley (2005). A more detailed description is
Vuorenmaa (2004). A short review of wavelets in statistical time series is Nason
and von Sachs (1999). A comprehensive treatment is Percival and Walden
(2000). The close relationship to Fourier analysis is discussed in Priestley
(1996). Mathematical proofs can be found in Härdle et al (1998).

2.1 Wavelet filters

A wavelet filter hl acts as a high-pass (or more precisely, a band-pass) filter.
This means that convolving a wavelet filter with data gives the (empirical)
wavelet coefficients, ie the details with low-frequencies filtered out. To qualify
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as a wavelet filter, hl of length L must satisfy:

L−1X
l=0

hl = 0,

L−1X
l=0

h2l = 1, and
L−1X
l=0

hlhl+2n = 0,

for all nonzero integers n (see Percival and Walden (2000, p. 69)).
An example of a compactly supported Daubechies wavelet filter is the Haar

wavelet of length L = 2,

hHaar0 = 1/
√
2 and hHaar1 = −1/

√
2,

for which the above conditions are easily checked to hold. In general,
however, the Daubechies filters have no explicit time-domain formulae.
The values are tabulated instead (see eg Percival and Walden (2000)).
Nevertheless, Daubechies filters are practical because they yield a discrete
wavelet transform (DWT) that can be described in terms of generalized
differences of weighted averages. This means that the Daubechies wavelet
filters are capable of producing stationary wavelet coefficient vectors from
‘higher degree’ non-stationary stochastic processes.
The choice of a proper width can be somewhat tricky. A wider width

wavelet filter prevents undesirable artifacts and results in a better match to
the characteristic features of a time series. However, as the width gets wider,
more coefficients are being unduly influenced by boundary conditions. This is
associated with an increase in computational burden. Thus one should search
for the smallest L that gives reasonable results. If one also wants to have the
DWT coefficients be alignable in time, the optimal choice in empirical studies
is often the least asymmetric wavelet filter of length 8 (LA(8)). This is the
wavelet filter used in this paper, as well.

2.2 Maximal overlap discrete wavelet transform

The maximal overlap discrete wavelet transform (MODWT) is a
non-orthogonal transform. With a proper algorithm the complexity of
the MODWT is of the same order as of the fast Fourier transform. This
is useful because in high-frequency finance the number of observations is
high. Percival and Walden (2000, pp. 159—60) list some properties that
distinguish the MODWT from the DWT. For the present needs, it is enough
to mention that the MODWT can handle any sample size N and that the
MODWT wavelet variance estimator (to be defined in the next subsection) is
asymptotically more efficient than the estimator based on the DWT.
TheMODWT is easily formulated using matrices (for details, see eg Gençay

et al (2002, Ch. 4.5)). The length (J + 1)N column vector of MODWT
coefficients ew is obtained by

ew = fWx,
9



where x is a length N column vector of observations and fW is a (J +1)N ×N

non-orthogonal matrix defining the MODWT. The vector ew and the matrix fW
consist of length N column subvectors ew1, ..., ewJ , evJ and N ×N submatricesfW1, ...,fWJ , eVJ , respectively. The level j wavelet coefficients ewj are associated
with changes on a scale of length λj

.
= 2j−1 and the scaling coefficients evJ

are associated with averages on a scale of length 2J .
= 2λJ . Only the wavelet

coefficients are going to play role in the subsequent analysis.
In what follows, I will rely on the fact that the MODWT is capable of

producing a scale-by-scale analysis of variance upon the energy decomposition:

kxk2 =
JX
j=1

kewjk2 + kevJk2 .
This can be used to analyze phenomena consisting of variations over a range of
different scales. In stock markets the usefulnes of a decomposition with respect
to time-scale was motivated in the introduction. The theoretical counterpart
of variance decomposition is discussed next in the context of long-memory
processes.

2.3 Wavelet variance

Consider an ARFIMA process {Xt} (see Appendix) whose dth order backward
difference Yt is a stationary process with mean µY (not necessarily zero). Then
a Daubechies wavelet filter ehl of width L ≥ d results in the jth wavelet
coefficient process wj,t

.
=
PLj−1

l=0
ehj,lXt−l being a stationary process. Now define

the (time-independent or global) wavelet variance for {Xt} at scale λj to be

ν2X(λj)
.
= V {wj,t} ,

which represents the contribution to the total variability in {Xt} due to changes
at scale λj. By summing up the time-scale specific wavelet variances, we get
the variance of {Xt}:

∞X
j=1

ν2X(λj) = V{Xt}.

The wavelet variance is well-defined for both stationary and non-stationary
processes with stationary dth order backward differences as long as the width
L of the wavelet filter is large enough. An advantage of the wavelet variance is
that it handles both types of processes equally well. An unbiased2 estimator
of ν2X(λj) is

eν2X(λj) = 1

Mj

N−1X
t=Lj−1

ew2j,t,
2Unbiasedness tells us that the distribution of the estimate is centered around the

unknown true value of the parameter.
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where Mj
.
= N − Lj + 1 > 0 and ewj,t

.
=
PLj−1

l=0
ehj,lXt−l modN are the

(periodically extended) MODWT coefficients. Here only coefficients unaffected
by the periodic boundary conditions are included in the sum; otherwise the
estimator would be biased.
A Fourier spectrum decomposes the variance of a series across different

frequencies. Because the scales that contribute the most to the variance of
the series are associated with those coefficients with the largest variance, it
is not surprising that the estimates of the wavelet variance can be turned
into SDF estimates. The approximation improves as the width L of the
wavelet filter increases because then ehj,l becomes a better approximation to
an ideal band-pass filter. Now, it is well-known that the periodogram is an
inconsistent3 estimator of the Fourier spectrum. It follows that the popularly
used GPH-estimator (Geweke and Porter-Hudak (1983)) based on the ordinary
least squares (OLS) regression of the log-periodogram for frequencies close to
zero is in general an inconsistent estimator of the long-memory parameter
from a fractionally integrated process with |d| < 1/2. And although
the GPH-estimator can be shown to be consistent under certain regularity
conditions (Gaussianity, in particular), these are not realistic with financial
data (volatility is not distributed normally).
Jensen (1999) has shown that a wavelet based OLS-estimator is consistent

when the sample variance of the wavelet coefficients is used in the regression.
Namely, using the wavelet variance of the DWT coefficients wj,t,

ν2X(λj) =
1

2j

2j−1X
k=0

w2j,k, (2.1)

we get that

V {wj,t} = ν2X(λj)→ σ22j(2d−1),

as j → ∞ (here σ2 is a finite constant). By taking logarithms on both sides,
we then obtain the (approximate) log-linear relationship

log ν2X(λj) = log σ
2 + (2d− 1) log 2j, (2.2)

from which the unknown d can be estimated consistently by OLS-regression
by replacing ν2X with its sample variance ν

2
X of Equation (2.1). Jensen has also

shown that inmean square error (MSE) sense the wavelet based OLS-estimator
fares significantly better than the GPH-estimator. The asymptotic efficiency
of this estimator can be further improved by using the MODWT coefficients
instead of the DWT coefficients.
Wavelet variance can be defined also locally. In this case only the wavelet

coefficients ”close” to the time point t are used. Namely, given L > 2d(u), an
unbiased estimator of local wavelet variance for {Xt} at scale λj based upon
the MODWT is

eν2X(u, λj) = 1

Kj

τj+KjX
s=τj

ew2j,t+s,T , (2.3)

3An estimator is said to be consistent if it gets closer and closer to the true value of the
parameter as the number of observations grow.
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where u = t/T represents a time point in the rescaled time domain [0, 1], Kj

is a ”cone of influence”, and τ j is an ”offset” (Whitcher and Jensen (2000, p.
98)). The Kj includes only those wavelet coefficients where the corresponding
observation made a significant contribution. An inconvenience of this approach
is that Kj varies across scales and different filters. The tabulated values for
the Daubechies family of wavelets are given in Whitcher and Jensen (2000) as
well as the the values of ‘offsets’ τ j for each wavelet filter L > 2.
Whitcher and Jensen (1999) have shown that when the MODWT is being

applied to a locally stationary (in the sense of Dahlhaus (1997)) long-memory
process {Xt,T}, then the level-j MODWT wavelet coefficients {ewj,t,T} form a
locally stationary process with mean zero and time-varying variance

V {ewj,t,T} = ν2X(u, λj)→ σ2(u)2j[2d(u)−1],

as j →∞ (σ2(u) is given in Whitcher and Jensen (2000)). Analogously, then,

log ν2X(u, λj) = log σ
2(u) + [2d(u)− 1] log 2j, (2.4)

from which the unknown d(u)’s can be estimated consistently by OLS by
replacing ν2X by its time-varying sample variance eν2X from Equation (2.3).
Using simulations Whitcher and Jensen have shown that in the case of a
globally stationary ARFIMA the median of bd(u) accurately estimates the true
value of d with a slight negative bias near the boundaries. They also found that
when disturbed by a sudden shift in the long-memory parameter (to imitate
local stationarity), the estimated d still performed well on both sides of the
change although with a slight bias and increase in the MSE at the boundaries.

3 Long-memory volatility modeling

A discrete-time stochastic volatility (SV) model may be written as

yt = σ exp(ht/2)εt,

where yt denotes the demeaned return process yt = log(Pt/Pt−1)− µ (here Pt

is the price of a stock and µ is the mean of returns), {εt} is a series of IID
random disturbances with mean 0 and variance 1, and the conditional variance
{σ2t} is modeled as a stochastic process {log σ2t} .

= {ht} and it is independent
of {εt}.
There exist many specifications for the volatility scheme {ht}, such as

ARMA or random walk. Recently a long-memory stochastic volatility (LMSV)
model proposed in Breidt et al (1998) has caught a lot of attention. In their
model {ht} (log-volatility) is generated by fractionally integrated Gaussian
noise,

(1−B)dht = ηt,

where |d| < 1/2, B is the lag operator, and ηt ∼ NID
¡
0, σ2η

¢
. This model

encompasses a ‘short-memory’ model when d = 0. But the LMSV model is a
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stationary model and it thus ignores for example intraday volatility patterns,
irregular occurances of market crashes, mergers and political coups as noted
by Jensen and Whitcher (2000). In particular, it may be that the long-memory
parameter d is not constant over time. This motivated Jensen and Whitcher to
introduce a non-stationary class of long-memory stochastic volatility models
with time-varying parameters. In their model, the logarithmic transform of
the squared returns is a locally stationary process that has a time-varying
spectral representation. This means that the level of persistance associated
with a shock to conditional variance — which itself is allowed to vary in time —
is dependent on when the shock takes place (the shocks themselves, of course,
still produce responses that persist hyperbolically).
More specifically, a locally stationary LMSV model is defined by

yt,T = exp (Ht,T/2) εt,

Φ(t/T,B)(1−B)d(t/T )Ht,T = Θ(t/T,B)ηt,

where |d(u)| < 1/2, εt ∼ NID(0, 1) and ηt ∼ NID(0, σ2η) are independent of
each other. The functions Φ(u,B) and Θ(u,B) are, respectively, order p and
q polynomials whose roots lie outside the unit circle uniformly in u and whose
coefficients functions, φj(u), for j = 1, ..., p, and θk(u), for k = 1, ..., q, are
continuous on R. The coefficient functions satisfy φj(u) = φj(0), θk(u) = θk(0)
for u < 0, and φj(u) = φj(1), θk(u) = θk(1) for u > 1, and are differentiable
with bounded derivatives for u ∈ [0, 1]. Notice that by settingΦ(u,B) = Φ(B),
Θ(u,B) = Θ(B), and d(u) = 0 for all u ∈ [0, 1], one gets the SV model of
Harvey et al (1994). If, on the other hand, one sets d(u) = d for all u ∈ [0, 1],
one gets the LMSV model.

4 Empirical analysis

4.1 Data description

The data consist of transactions of Nokia Oyj between January 4 (1999) and
December 30 (2002). There are at least two good reasons for choosing Nokia.
First, Nokia has been the market leader in the cellular phone industry for
many years now and is thus representative of the bubble times of the late
1990s. Second, Nokia is a highly liquid stock at the Helsinki Stock Exchange
(HEX) which in year 2003, for example, accounted for 62, 1% of the total
number of Nokia shares traded in the whole world. For comparison, the same
percentage for the New York Stock Exchange (NYSE) was only 20, 3% (the
HEX (May 4, 2004)) where (and the NASDAQ) Nokia has the largest trading
volume of cross-listed non-U.S. companies (Citigroup (June 23, 2004)).
The data were discretized by extracting the 5-minute prices Pt using the

closest transaction price to the relevant time mark. Discretizing is necessary
for the wavelet decomposition to be interpretable in terms of time-scales that
capture a band of frequencies. Theoretically discretizing can be justified by
assuming that the DGP does not vary significantly over short time intervals.
For a liquid stock this holds true (there is no ‘non-synchronous trading’). The
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Table 1: Periods I and III.
Time period Trading (I) AMT (I) Trading (II)
1/4/99− 8/31/00 10:30—17:30 17:30—18:00 —
4/17/01− 3/27/02 10:00—18:00 18:03—18:30 18:03—21:00

5-minute returns were then formed as

rt,n = 100 (lnPt,n − lnPt,n−1) ,

where rt,n denotes the return for intraday period n on trading day t, with
d ≥ 1 and t = 1, ..., T. The 5-minute interval has been often used in the
literature because it is usually the smallest interval that does not suffer badly
‘bid-ask bounce’ (see eg Campbell et al (1997, Ch. 3)). In the case of a
missing observation for a specific time mark, the previous price was always
used. Prices were adjusted for splits but not for dividends. Block trades were
not controlled for either. These omissions are not critical for the subsequent
analysis, however.
At the HEX an electronic trading system called Helsinki Stock Exchange

Automated Trading and Information System (HETI) has been in use since
1990. This means that brokers trade electronically, the smallest ‘tick-size’
being 0.01 (in euros). Notice that the HEX did not have constant trading
hours during 1999—2002. The changes in trading hours were mainly caused
by an international pressure towards harmonization of exchange open hours in
Europe. In particular, the long-run trend of longer trading days was suppressed
by the weak market conditions after the burst of the IT-bubble. In what
follows, I analyze subperiods I and III separately. This is because there is a
reason to believe that a structural break took place in between these periods.
For this reason I refer to the two periods as ‘I’ and ‘III’ instead of the more
logical ‘I’ and ‘II’.
In Period I, from January 4 (1999) to August 31 (2000), continuous trading

took place between 10:30 a.m. and 5:30 p.m. (total of 7 hours or 85 intraday
5-minute prices). Transactions between 5:30 and 6:00 p.m. were discarded
because they belonged to after market trading #1 (AMT (I)).4 Only one day,
namely April 20 (2000), was an incomplete day and the missing observations
were substituded by the last observed price. In total, there were 419 trading
days resulting in 35,615 price observations.
In Period III, from April 17 (2001) to March 27 (2002), continuous trading

included evening hours from 6:00 to 9:00 p.m (total of 11 hours or 133 intraday
5-minute prices). A technical break (no transactions), occured every trading
day between 6:00 and 6:03 p.m. After that continuous trading and AMT
(I) took place simultaneously. This simultaneity required careful filtering. I
decided to apply the following rule: prices that had a percentage price change of
more than 3% relatively to the last genuine price recorded (before the technical
break at 6:00 p.m.) were detected as artificial and replaced by the previous
genuine price. There were no incomplete trading days. In total, there were
237 trading days resulting in 31,521 price observations.

4During AMT the trading price can fluctuate between the trading range established
during continuous trading for round-lot trades (Http://www.porssisaatio.fi).
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Table 2: Key figures of Periods I and III.
Period I

Min. 1st Q. Med. Mean 3rd Q. Max. Std.
−11.61 −0.1118 0 +3.747e− 03 0.1161 10.97 0.3789

Period III

Min. 1st Q. Med. Mean 3rd Q. Max. Std.
−11.16 −0.1523 0 −6.798e− 04 0.1534 14.05 0.3869

4.2 Preliminary data analysis

Statistical key figures of Periods I and III are summarized below (Table 2).
Notice the following: First, Periods I and III are of approximately equal
size which is convenient from statistical inference point of view. Second,
Periods I and III represent turbulent and calm regimes, respectively: Period
I is representative of the ‘IT-bubble’ and Period III of its aftermath.5 The
volatilities of Periods I and III seem to differ from each other by simply glancing
at the return series (see the bottom plots of Figs. 1 and 2).6 This observation
is valuable because structural breaks can generate artificial long-memory (see
eg Granger and Hyung (1999)). In particular, Mikosch and Stărică (2004)
have argued that long-memory might be due to non-stationarity implying that
stationary models are inappropriate over longer horizons. It is thus safer to
analyze these two periods separately.
The sample autocorrelation functions (ACFs) of returns in Periods I and

III differ from each other in a non-trivial way (see the top plots of Figs. 3
and 4). The opening of the HEX as well the U.S. markets (in New York)
at 5:30 p.m. (Central European Time +1) has caused some statistically
significant linear dependence in Period I.7 Of course, this does not necessarily
imply arbitrage opportunities because transactions costs can be high. But
considering the slightly different results of Period III, it seems that when the
markets cooled down they in fact became ‘more efficient’ around the openings.
A bit surprisingly, though, in Period I no significant negative autocorrelation of
MA(1) type exists that is typically reported (Andersen and Bollerslev (1997b)
found it to be −0.04 in the FX markets with 5-minute data) and attributed to
bid-ask bounce. In Period III, a significant negative first-lag autocorrelation
(−0.08) does appear, however. In the subsequent analysis the lag one dynamics
have not been considered critical and therefore they have not been filtered out.
To proxy volatility, I use absolute returns instead of squared returns in

order to prevent big jumps in volatility. The sample ACFs of absolute returns

5Polzehl et al (2004) find that the ‘2001 Recession’ in the U.S. might have started as
early as October 2000 and ended as late as the Summer of 2003. This supports the division
to two periods.

6Counterintuitively, the standard deviation of returns of Period I is actually smaller than
that of Period III (0.3789 vs. 0.3869, respectively). Similarly, the means of absolute returns
are 0.1874 and 0.2287, respectively. Wavelet variance decomposition will shed more light on
this finding.

7The NYSE opens at 9:30 a.m. local time (Eastern Standard Time). When comparing
the figures to each other, recall that the length of the trading day was different in Periods I
and III.
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Figure 1: Price and return series of Period I (IT-bubble period)
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Figure 2: Price and return series of Period III (altermath period)

Period III (April 17, 2001 - March 30, 2002)
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stay significantly positive for a long time in both periods, statistically as well
as economically (see the bottom plots of Figs. 3 and 4). In Period III,
for example, the first-lag autocorrelation (0.32) is well above the confidence
interval (Andersen and Bollerslev (1997b) found 0.31). Clearly returns are not
independent. Although the pattern is quite similar in both periods, there are
some important differences here too. First, the ACF peaks higher in Period
I than in Period III. This peak is caused by the large (on average) overnight
return in Period I. The larger ‘overnight effect’ in Period I is most probably
due the frequent news arrivals, the irrational exuberance (the hype) that took
place during the bubble, and the shorter trading day at the HEX (so that
information had more time to accumulate over night). Second, in Period I the
first peak just prior to the highest peak is a reflection of the opening of the
New York stock markets, here referred to as the ‘New York effect’.8 In Period
III the New York effect in autocorrelations is smaller which is probably due
the weaker link between the U.S. and European markets after the burst of the
IT-bubble.

4.3 Multiresolution decomposition

In order to study volatility at different time-scales, the MODWT(J = 12)
is performed to absolute returns using LA(8) (with reflecting boundary).
The first 12 wavelet levels with the corresponding time-scales and associated
changes are listed below (see Table 3).9 Interpreting the time-scales in ‘calender
time’ requires carefulnes since the length of the trading day varied. So, for
instance, in Period I the first 6 levels correspond to intraday (and daily)
dynamics capturing frequencies 1/64 ≤ f ≤ 1/2, ie oscillations with a period
of 10− 320 (2 ∗ 5− 64 ∗ 5) minutes. In Period III, on the other hand, the first
7 levels correspond to intraday (and daily) dynamics capturing frequencies
1/128 ≤ f ≤ 1/2, ie oscillations with a period of 10− 640 minutes. In terms
of changes, then, the 6th level in Period I corresponds to approximately a half
of a trading day. In Period III this corresponds to the 7th level. These levels
thus serve as natural watersheds between intraday and interday dynamics.

4.4 Global scaling laws and long-memory

Most of the total energy of volatility is located at the smallest time-scales (the
highest frequencies). The relationship is approximately hyperbolic which is
observed as an approximate linear relationship on a double-logarithmic scale.
The Gaussian confidence interval for Period III suggests that there exist two

8Of course it is possible that other market places affect volatility at the HEX too but as
will be demonstrated later (in Sec. 4.6), the average intraday volatility peaks consistently at
the opening of the New York market. In the literature, volatility spillover effects — ‘meteor
showers’ — have been reported for example by Engle et al (1990).

9An unfortunate consequence of the dyadic dilation is that time-scales become coarse
rapidly so that not all of the potentially interesting scales are recovered. Thus the non-dyadic
extension (Pollock and Lo Cascio (2004)) might be worthwhile to look at.
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Figure 3: The sample ACFs of returns and absolute returns in Period I. The
95% confidence interval (dashed line) is for Gaussian white noise: ±1.96/√N .
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Figure 4: The sample ACFs of returns and absolute returns in Period III.
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Table 3: Wavelet levels and time-scales.
Level Scale Associated with changes of
1 1 5 min.
2 2 10 min.
3 4 20 min.
4 8 40 min.
5 16 80 min.
6 32 160 min. ≈ 3 h.
7 64 320 min. ≈ 5 h.
8 128 640 min. ≈ 11 h.
9 256 1280 min. ≈ 21 h.
10 512 2560 min. ≈ 43 h.
11 1024 5120 min. ≈ 85 h.
12 2048 10240 min. ≈ 171 h.

different scaling regions in Period I — a finding that is similar to Gençay et al
(2001a) in the FX markets. A break is located at the 7th level associated with
320-minute changes (see Fig. 5).
One might expect a similar break at the 8th level in Period III because of

its longer trading day (11 hours versus 7 hours), but this does not happen. The
difference between the scaling laws of Periods I and III is most evident at level
6. Period I experienced more middle-sized jumps in this particular time-scale
than Period III did. This observation is however not enough to explain the
extremely jumpy look of Period I. Because jumps are high-frequency events,
they should be well captured by the 1st level. This intuition is confirmed by
the 1st level wavelet variance of Period I which lies outside the 95% confidence
interval of Period III, as well. So the ‘more volatile’ outlook of Period I is
caused by the different dynamics at levels 1 and 6 corresponding to 5-minute
and approximately 3-hour changes, respectively.
As explained in the introduction, the difference in the overall level of

volatility can be attributed to specific time-scales that correspond to certain
type of players in the market. More precisely, the jumps at the 1st level
measure the flow of new information and the general level of nervousness.
This is the type of information short-run speculators find valuable. Because
most of the big jumps at this level are caused by overnight returns, short-run
speculators have probably rebalanced their positions at the market opening(s).
The difference at the 6th level is not so easily attributable to any specific group
of investors (such as speculators operating at a daily interval), however. This
is because the volatility seasonality that is particularly strong in Period I may
have affected the scaling law. This possibility will be studied more carefully
later (in Sec. 4.6).
As shown earlier (in Sec. 2.3), scaling laws are intimately related to

the memory of the DGP. The observed initial rapid decay of the sample
autocorrelation followed by a very slow rate of dissipation is characteristic of
slowly mean-reverting fractionally integrated processes that exhibit hyperbolic
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Figure 5: The wavelet variances of Periods I (cts line) and III (dashed) on a
double-logarithmic scale using LA(8) with reflecting boundary. The Gaussian
95% confidence interval (dotted) of Period III has been drawn to address the
significance.
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Table 4: OLS-regression results.
Period I

Levels Coeff. SE bd
2− 10 −0.6204 0.0502 0.1898
2− 6 −0.4443 0.0911 0.2778
7− 10 −0.3773 0.0227 0.3114

Period III

Coeff. SE bd
−0.6408 0.0206 0.1796
−0.5643 0.0440 0.2178
−0.5777 0.0400 0.2112

rate of decay (ie long-memory).10 Using Equation (2.2), the estimation of the
fractional differencing parameter d is done for Periods I and III by the OLS.
The same type of approach has been used by Jensen (2000) and Tkacz (2000),
for example. Following Ray and Tsay (2000) the standard errors obtained
from regression theory are used to judge the significance. The estimates of
d support the conjectured long-memory since they fall in the interval (0, 1/2)
(see Table 4). Period I has systematically a slightly larger value than Period
III. The coefficients using levels j1 = 2, ..., 6 and j2 = 7, ..., 10 in Period III
do not differ significantly but the coefficients in Period I may (and are to be
discussed later).
The relatively short time-span of the data (approx. 1.5 years) may be

criticized. But the recent evidence (eg Andersen and Bollerslev (1997a,b))
suggest that the performance of the long-memory estimate from the volatility
series may be greatly enhanced by increasing the observation frequency
instead of time-span (in contrast to estimating long-memory dependencies
in the mean). Bollerslev and Wright (2000) have for example argued that
high-frequency data allows for vastly superior and nearly unbiased estimation
of d.

4.5 Local scaling laws and long-memory

The assumption of a constant long-memory structure may not always be
reasonable. Bayraktar et al (2003) tackled the problem of time-varying
long-memory by segmenting the data before its estimation. But this scheme
might not always be sufficient. Whitcher and Jensen (2000) have argued that
the ability to estimate local behavior by applying a partitioning scheme to a
global estimating procedure is inadequate when compared with an estimator
designed to capture time-varying features.
I therefore apply the MODWT-based methodology laid out in Whitcher

and Jensen (2000) for estimating the local long-memory parameter d(t). But
in contrast to Jensen and Whitcher (2000) who used log-squared returns to
proxy volatility, I use absolute returns to prevent an ‘inlier problem’ (taking
a logarithm of a number close to zero would generate an outlier). In order
to let Equation (2.4) hold, I then implicitly assume that absolute results are
generated by a locally stationary process. Considering the jumps and the
clustering of volatility, this assumption seems more reasonable than covariance

10Most ARCH-models exhibit exponential rate of decay and thus fail in this respect (see
eg Breidt et al (1998)).
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Table 5: Key figures of time-varying long-memory.
Period I

Min. 1st Q. Med. Mean 3rd Q. Max.
−0.3426 0.2084 0.3117 0.3020 0.4056 1.0313

Jarque—Bera

X2 df p
5.5039 2 0.0638

Period III

Min. 1st Q. Med. Mean 3rd Q. Max.
−0.3287 0.1663 0.2505 0.2412 0.3262 0.6624

Jarque—Bera

X2 df p
3.6219 2 0.1635

stationarity. Only the results using the levels 2− 10 in the OLS-regression are
reported here because they gave the most stable results.
The local long-memory parameter estimates of Periods I and III behave

similarly (see Figs. 6 and 7): the estimate of d(t) tends to stay in the
long-memory interval (0, 1/2) although big jumps in the original series pull
the estimate downwards and ‘out of bounds’. Fortunately however, the visits
outside the stationary interval of (−1/2, 1/2) are short-lived and the process
is mean reverting. Moreover, the estimate stabilizes during less volatile
times. For example, a steady increase in the price increases the estimate
of long-memory consistently with the definition of long-memory. The median
of the local long-memory parameter estimate of Period I is again larger than
the median of Period III (see Table 5). The estimates are unconditionally
Gaussian which would help the modeling of the behavior of long-memory in
time. Although this idea is not yet explored further here, one may try to find
a stochastic structure for d(t). One would then have to consider the effect of
structural breaks more seriously.11 Here, however, no sign of a structural break
is visible in either period. In fact, one of the main reasons for the division of
the data to Periods I and III was to avoid this problem altogether.

4.6 Effects of volatility periodicity

On average, the shape of intraday volatility is similar in Periods I and III
(see Figs. 8 and 9). After the highly volatile first 5 minutes (when the
overnight returns are excluded) the average volatility calms down smoothly
and stabilizes. At afternoon hours, however, the behavior of volatility becomes
abrupt again. The first peak occurs at 3:35 p.m. and the next one at 4:35. The
former peak is most probably due to regular U.S. macro news announcements12

and the latter is the NewYork effect. There is also a small but distinct 5-minute
peak half an hour later at 5:05 which is probably caused by macro news, too.
In Period III the highest peak is at 6:05 p.m. (and right after it) when AMT
(I) begins. This is just an artifact of which the 3%-filter (see Sec. 4.1) was
unable to remove totally. The last 5 minutes of trading also experience a
sudden but small increase in volatility in both periods. In general, then, the

11This is because structural breaks might affect the estimate of d(t) upwards (see Granger
and Hyung (1999)). The timing and size of the breaks would then become an equally
important issue.
12The most important U.S. macro news announcements are released at 8:30 and 10:00 a.m.

Eastern Standard Time (see Andersen and Bollerslev (1998) and Bollerslev et al (2000)).
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Figure 6: Local long-memory parameter estimates of Period I. Return and
price series are plotted below to align the features in time.
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Figure 7: Local long-memory parameter estimates of Period III.
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Table 6: OLS-regression results of periodicity cleaned volatility.
Period I

Levels Coeff. SE bd
2− 10 −0.4483 0.0334 0.2758
2− 6 −0.3326 0.0955 0.3337
7− 10 −0.5429 0.0199 0.2286

Period III

Coeff. SE bd
−0.5468 0.0155 0.2266
−0.6218 0.0069 0.1891
−0.4692 0.0320 0.2654

average volatility pattern is an ‘inverse-J’.13

The wavelet method could be used to annihilate the intraday dependencies.
Unfortunately, by considering the interdaily and longer dynamics (ie the
wavelet smooth of level J ≥ 6) as proposed by Gençay et al (2001b), I was not
able to reproduce the hyperbolic decay in the sample autocorrelation function
of the filtered series. The intraday seasonalities were therefore removed by
the Fourier Flexible Form (FFF) (see Andersen and Bollerslev (1997c, 1998)),
instead. The FFF has been succesfully applied in the stock markets previously
(see eg Martens et al (2002)). I chose to settle for the minimum number of
sinusoids that gave a reasonable fit (3 and 4 for Periods I and III, respectively).
The regression results (not shown here) tell us that volatility for the market
opening (n = 1) and U.S. macro news (n = 61) in Period I increased by 3.14
and 1.85 percent, respectively. In Period III the effects were a bit weaker,
accounting for 2.25 and 1.45 percent, respectively. So markets reacted more
strongly in Period I than in Period III which is not surprising. By comparing
the average volatility patterns of Periods I and III, the New York effect is
relatively (although not absolutely) a bit larger in Period I, as well.
In order to compare the scaling laws of the periodicity filtered returns to

the original series, the overnight returns must first be omitted. This reduces
the total energy of the series but the form of the scaling laws remains similar
(see the upper subplots of Fig. 10). The removal of the intraday periodicity
has smoothed out the kink at the 6th level, however. In Period I, in particular,
the wavelet variances at larger than the 6th level have increased considerably.
The law is still not totally linear. The first region includes time-scales smaller
than an hour and the second one the rest up till 2560 minutes (approx. 43
hours). Almost all of the periodicity-filtered wavelet variances are significantly
different from the original (with the overnight returns excluded). In Period III,
the change in the distribution of energy across the scales is not that dramatic
but the slight kink at the 6th level has disappeared, as well.
The estimates of d increased significantly after the removal of the

seasonality in both periods (see Table 6). This is in contrast what Bayraktar et
al (2003) have found. They argued the OLS-based wavelet variance estimation
to be robust to seasonalities. Here the removal of the relatively stronger
intraday periodicity in Period I actually caused a larger change in the estimate
of d than in Period III; in Period I the change is from 0.1898 to 0.2758 while
in Period III the change is from 0.1796 to 0.2266.

13Similar patterns are found in the New York stock markets (see eg Wood et al (1985))
and the FX markets (see eg Andersen and Bollerslev (1997a,c)), although in the latter case
the periodicity is associated with the opening and closing of various financial centers around
the world.
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Figure 8: Average intraday volatility of Period I (cts line) and its FFF fit
(dashed).
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Figure 9: Average intraday volatility of Period III (cts line) and its FFF fit
(dashed).
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Figure 10: The scaling laws of the overnight return excluded series (cts line
in the top subplots) are below the original (dark), especially in Period I. The
removal of the volatility periodicity smooths out the level 6 kink (dark line in
the bottom subplots). The Gaussian 95% confidence intervals (dotted thin)
are also drawn.
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Table 7: Key figures of time-varying long-memory in periodicity cleaned
volatility.

Period I

Min. 1st Q. Med. Mean 3rd Q. Max.
−0.3737 0.2591 0.3464 0.3415 0.4300 1.1873

Jarque—Bera

X2 df p
12.322 2 0.0021

Period III

Min. 1st Q. Med. Mean 3rd Q. Max.
−0.3446 0.1992 0.2803 0.2682 0.3481 0.7073

Jarque—Bera

X2 df p
5.3449 2 0.0691

The removal of the intraday periodicity affected the local long-memory
estimates, as well. The median of d(t) increased by approximately 0.03 in
both periods (see Table 7): in Period I the increase is from 0.3117 to 0.3464
and in Period III from 0.2505 to 0.2803 — a more modest increase than in the
global analysis, though. Notice that in Period I the FFF method mistakingly
enlarged the amplitude of certain intraday jumps, thus making the range of
the estimates of d(t) wider and the unconditional distribution only nearly
Gaussian. But in between the jumps the path of bd(t) became steadier (see
the left-hand part of Fig. 11). The 1st and 3rd quantile confirm that the
unconditional distribution is more concentrated around the mean value. In
Period III the path of bd(t) has stabilized too (see the right-hand part of Fig.
11). The range of periodicity cleaned returns has there become only a bit wider
and the unconditional distribution remains Gaussian which is convenient from
the modeling point of view.

5 Conclusions

This paper has studied the time-varying behavior of scaling laws and
long-memory in volatility using wavelet analysis. In short, the results show
that (i) different scaling regions (multiscaling) may appear in stock markets
and not only in the FXmarkets, (ii) the scaling factor is systematically different
from the Brownian square-root, (iii) the scaling factor is not constant in time,
and that (iv) the behavior can be explained for a significant part by an intraday
volatility periodicity called the New York effect. And because the scaling law is
intimately related to the memory of the DGP, stock market volatility exhibits
long-memory (as claimed by many before), long-memory varies in time, and
that a significant part of this time-variation can be explained by the New York
effect. Long-memory appears to have been significantly stronger in the bubble
period than its aftermath.
In more detail, global analysis revealed differences between the turbulent

‘IT-bubble’ period and its calmer aftermath period. A break in the scaling
law occurs at a daily frequency in the bubble period. This means that
traditional time-scale invariant scaling (eg by square-root of time) across
relevant time-scales would then have been improper; intraday speculators and
longer-term investors faced different type — not just different magnitude — of
risks. Because such a break is not found in the aftermath period, the form of
the scaling law is able to evolve in time. The interpretation is as follows: The
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Figure 11: Unconditional distributions of the estimate of d(t).

Period I

Time

d(
t)

0 5000 15000 25000 35000

0.
0

0.
5

1.
0

d(t)

Fr
eq

ue
nc

y

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0
10

00
30

00
50

00

Period III

Time

0 5000 15000 25000

-0
.2

0.
0

0.
2

0.
4

0.
6

d(t)

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0
10

00
30

00
50

00

32



bubble period was characterized by stronger overnight and New York effects
as a consequence of ‘irrational exuberance’. The frenzy behavior of intraday
speculators can for a significant part explain the change in the form of the
scaling law. This is because after adjusting for the strong New York effect in
the bubble period, the scaling law tends to linearize (not totally, though).
Local analysis revealed that the magnitude (ie not only the shape) of

the scaling law is able to evolve in time, as well. The intimate relationship
between the scaling law and long-memory then implies that long-memory is
not constant over time. Because the local adaptiviness of wavelets allows for
the detection of the change points, a locally stationary LMSV model could be
applied in modeling. The usefulness of such a model is exemplified by the fact
that long-memory was found to be significantly stronger in the bubble period
than its aftermath. Before estimating such a model, however, the volatility
periodicity should first be taken care of by some suitable method. This is
because the removal of periodicity has the tendency to increase and stabilize
the local estimate of long-memory. In this paper the FFF was considered an
adequate method.
The reason for long-memory in volatility and its time-varying behavior

were not addressed in this paper in detail. It is however unlikely that in this
particular case the observed long-memory would be caused by structural breaks
because of the data division to two periods. It is therefore probable that the
bubble period experienced truly stronger long-memory caused by irrational
exuberance which, on the other hand, was driven by factors such as loose
monetary policy in the U.S. (for a good account on why the markets went crazy,
see Lee (2004)). The exact identification of structural breaks should however
prove to be useful in order to show this. This would also help the modeling of
long-memory in time. Structural breaks can be identified by wavelet methods
and it is left for future research.
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Recession Really Start? Chalmers University of Technology, Submitted.

Priestley, M.B. (1996) Wavelets and Time-Dependent Spectral
Analysis. Journal of Time Series Analysis 17, 85—103.

Ray, B.K. — Tsay, R.S. (2000) Long-Range Dependence in Daily Stock
Volatilities. Journal of Business and Economic Statistics 18, 254—262.

Shiller, R.J. (2001) Irrational Exuberance. Broadway Books, New York.

Schleicher, C. (2002) An Introduction to Wavelets for Economists.
Monetary and Financial Analysis Department, Bank of Canada, Working
paper 2002-3.

Tkacz, G. (2000) Estimating the Fractional Order of Integration of
Interest Rates Using a Wavelet OLS Estimator. Bank of Canada
Working Paper 2000-5.

Vuorenmaa, T. (2004) A Multiresolution Analysis of Stock Market
Volatility Using Wavelet Methodology. Licentiate Thesis, University of
Helsinki.

Whitcher, B. — Jensen, M.J. (2000)Wavelet Estimation of a Local Long
Memory Parameter. Exploration Geophysics 31, 94—103.

Wood, R.A. — McInish, T.H. — Ord, J.K. (1985) An Investigation of
Transaction Data for NYSE Stocks. Journal of Finance 40, 723—739.

37



Appendix

Fractional differencing and long-memory

A real-valued discrete parameter fractional ARIMA (ARFIMA) process {Xt}
is often defined with a binomial series expansion,

(1−B)dXt
.
=

∞X
k=0

µ
d

k

¶
(−1)kXt−k,

where B is the lag operator and
¡
a
b

¢ .
= a!

b!(a−b)! =
Γ(a+1)

Γ(b+1)Γ(a−b+1) . These models
were originally introduced by Granger and Joyeux (1980) and Hosking (1981).
In ARFIMA models the ‘long-memory’ dependency is characterized solely

by the fractional differencing parameter d. A time series is said to exhibit
long-memory when it has a covariance function γ(j) and a spectrum f(λ) such
that they are of the same order as j2d−1 and λ−2d, as j → ∞ and λ → 0,
respectively. For 0 < d < 1/2, an ARFIMA model exhibits long-memory, and
for −1/2 < d < 0 it exhibits antipersistance. In practice, the range |d| < 1/2
is of particular interest because then an ARFIMA model is stationary and
invertible (Hosking (1981)).
Details of long-memory can be found in Beran (1994), for example. Con-

cerning fractionally integrated processes in econometrics, see Baillie (1996).
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