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Expectational business cycles 

Bank of Finland Discussion Papers 19/2004 

Eran A. Guse 
Research Department 
 
 
Abstract 

I introduce Expectational Business Cycles where aggregate activity fluctuates due 
to learning, heterogeneous updating rules and random changes in the social norm 
predictor. Agents use one of two updating rules to learn the equilibrium values 
while heterogeneity is dictated via an evolutionary process. Uncertainty of a new 
equilibrium, due to a shock to the structure of the economy, results in a sudden 
decrease in output. As agents learn the equilibrium, output slowly increases to its 
equilibrium value. These business cycles arrive faster, are longer and more severe 
as agents possess less rationality. 
 
Key words: adaptive learning, aggregate fluctuations, heterogeneous expectations, 
multiple equilibria, rational expectations 
 
JEL classification numbers: C62, D84, E37 
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Odotuksiin perustuvat suhdannevaihtelut 

Suomen Pankin keskustelualoitteita 19/2004 

Eran A. Guse 
Tutkimusosasto 
 
 
Tiivistelmä 

Esittelen tässä työssä odotuksiin perustuvat suhdannevaihteluita, joissa taloudel-
listen suhdanteiden syinä ovat oppiminen, heterogeeniset odotusten päivityssään-
nöt ja oikean päätössäännön satunnainen vaihtelu. Mallissa kukin taloudentoimija 
käyttää yhtä kahdesta vaihtoehtoisesta päivityssäännöstä oppiessaan taloudellisten 
muuttujien tasapainoarvoja, ja toimijoiden jakauma eri päätössääntöjen käyttäjiin 
muuttuu evoluutioprosessin tuloksena. Talouden tasapainoa koskeva epävarmuus, 
joka seuraa talouden rakenteeseen kohdistuvaa häiriötä, aiheuttaa tuotannon äkilli-
sen vähenemisen. Tämän jälkeen tuotanto vähitellen palautuu tasapainotasolleen 
sitä mukaa kuin toimijat oppivat uuden tasapainon. Tällaiset suhdannevaihtelut 
ovat sitä jyrkempiä, pidempiä ja syvempiä mitä vähemmän rationaalisesti toimijat 
toimivat. 
 
Avainsanat: adaptiivinen oppiminen, suhdannevaihtelut, heterogeeniset odotukset, 
monikäsitteiset tasapainot, rationaaliset odotukset 
 
JEL-luokittelu: C62, D84, E37 
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1 Introduction

Uncertainty affects the daily decisions we make in our lives for if we knew all
our future lifetime events, we would certainly change our behavior in order
to maximize actual total lifetime utility. Unfortunately, we are uncertain
about events that affect our lives, the world and the economy in both the
micro and macro levels. This uncertainty affects each individual’s behavior of
consumption, investment, and employment. Better expectation mechanisms
can lead to smaller forecasting mistakes and less uncertainty and thus lead to
higher current and future benefits.

It is common knowledge among economists that there is more uncertainty
in a recession that there is during an expansion. The median forecast error
and the dispersion of GDP forecasts in the Survey of Professional Forecasters
tend to increase during a recession. In a period of higher uncertainty, agents
may be confused about whether there is a permanent or transitory shock to
their income and well being. As a result, agents may be unsure how to smooth
consumption and thus decrease it more than they would with greater certainty.
This is demonstrated in Cogley (2001) where consumption is more volatile
during a recession. Furthermore, firms may also be less certain about returns
to investments during a recession. Potter (1999) finds that investors may take a
stand of ‘wait and see’ during times of uncertainty, thus decreasing investment.

There has been several different types of literature that have focused on
the importance of learning as an endogenous propagation mechanism for the
business cycle. The first type of models, I call the ‘Good-Bad’ models, generate
a business cycle from a Markov process of good and bad times. These models
focus on providing explanation of the well known fact that the average business
cycle is asymmetric where the arrival of the recession is quite prompt and the
recovery is more drawn out. In Chalkley and Lee (1998), agents learn from their
predecessors on the state of the economy with some noise. These agents decide
whether to put in high or low effort based on their knowledge. If agents believe
that they are in a ‘bad’ state and see an aggregate increase, they may believe
that the increase was from a stochastic shock and not a shift to the ‘good’ state.
Therefore, agents will adjust quickly in the bad state, but, due to risk aversion,
the agents will slowly adjust in the ‘good’ state. In González (1997), agents
learn from others in good times creating informational economies of scale.
During bad times, agents focus on their microeconomic activity rather than
learning about macroeconomic activity. When there is a shock to the ‘bad’
state, agents see this shock due to the informational economies of scale and
react to the shock quickly. When the shock to the ‘good’ state occurs, agents
are unaware of this shock due to the loss of the informational economies of scale.
The author suggests that in order for others to believe that they are back in
the ‘good’ state, some agents must experiment which could further increase
aggregate activity. Finally, Nieuwerburgh and Veldcamp (2003) consider an
RBC-like model with a Markov technology shock and informational economies
of scale through production. They conclude that low production creates noisy
estimates of recovery leading to a slower recovery.

The second type of models in the literature are those of learning or
changes in expectations producing the business cycle. Farmer and Guo (1994)
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investigate a model with an aggregate technology that is subject to increasing
returns. They demonstrate that the model can display fluctuations at business
cycle frequencies due to sunspots even when there are no shocks to the
fundamentals of the economy. Evans, Honkapohja, and Romer (1998) consider
a model with multiple equilibria and produce a business cycle from a change in
expectations via a Markov process.1 They find that the equilibrium of ‘growth
cycles’ is stable under a simple learning rule. Kasa (1995) considers a model
where firms forecast the forecasts of other firms. He discovers that forecast
errors can make a significant contribution to the propagation of business cycles.

Finally, the third type of literature is including learning in RBC models.
Williams (2003a) finds that learning does not substantially change the
volatility and the persistence of key economic variables. However, when agents
learn about the structural features of the economy, there are much greater
effects to volatility and persistence. This suggests that a less rational form of
learning may work as a stronger propagation mechanism for the business cycle.

In this paper, I examine a model in which a Markov process or
technology shocks do not directly create a business cycle. Following Williams
(2003a), there is a less rational type of learning mechanism produced from
heterogeneous learning mechanisms. I use the model discussed in Guse (2003b)
and define a utility function based on uncertainty to describe the cyclical
fluctuations. In this case, learning and changing learning behavior acts as
a propagation mechanism of the business cycle. Furthermore, this model gives
the same results of asymmetry in the business cycle as discussed in the
literature.

2 The validity of adaptive learning

One of the main conclusions of the adaptive learning literature is that a
rational expectations equilibrium (REE) is relevant only when agents can
learn the solution when their initial beliefs are off the equilibrium path. If
the equilibrium is not learnable, then one should not consider it a possible
solution when studying economic policy as an alternative result will occur
when off the equilibrium path. If a REE is stable under learning, then when
agents continue to learn the equilibrium using least squares or a closely related
algorithm, ceterus peribus, the agents will learn the REE.

One objection to adaptive learning is, ‘why have we yet not learned the
(stable) rational expectations equilibrium?’ Those who feel this way must
believe that the economy is static and forget that the world is always changing.
Over the past thirty plus years, we have seen many structural changes to the
world economy from an oil crisis to the development of the internet to the post
September 11, 2001 economy. If people continued to form expectations in the
same manner over these years, would this not be considered naive? This paper

1Farmer and Guo (1994) and Evans, Honkapohja, and Romer (1998) have the same basic
idea: a non-convex economy that leads to stationary sunspot equilibria (SSE). In Farmer
and Guo, there are SSE’s near a single steady state, while in Evans, Honkapohja and Romer
there are multiple steady states each with states of SSE’s near them.
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demonstrates an important fact that some economists maybe ignoring; people
will change the way they form expectations due to ‘expectational shocks’ to
the economy.

In Guse (2003b), agents could differ in the way they formed expectations
in the short run. Under certain situations, some agents using the ‘inefficient’
predictor decided to switch to the ‘efficient’ predictor. This process continued
until all of the agents were using the same efficient predictor creating a ‘social
norm’ for forming expectations. This paper will show how a business cycle may
occur due to a change in a ‘social norm’ for forming expectations. Suppose
that the economy is experiencing a period of expansion and there is a shock
to the structure of the economy. This shock may be a change in preferences,
monetary or fiscal policy, technology, or a major event that effects the world
economy. From this shock, there may be another predictor that is now more
efficient than the current ‘social norm’ predictor. With agents now using a
relatively inefficient predictor, there may be less investment and a decline in
consumer confidence due to an increase in uncertainty. This may lead to a
decline in growth and an increase in unemployment moving the economy into
a recession. During this time, a small amount of agents may discover that the
current predictor is inefficient and switch to using the new efficient predictor.
Agents using the inefficient predictor may see this and decide to change to the
other predictor while others will follow later. This process will lead to a new
‘social norm’ for forming expectations and bring the economy into another
expansion from agents now using an efficient predictor.

The goal of this paper is to introduce the concept of Expectational Business
Cycles where aggregate fluctuations are produced from such a change in
the social norm predictor. When this new predictor is introduced, agents
slowly move to the efficient predictor and learn the new parameter values.
Evolutionary dynamics and learning act as a propagation mechanism for the
business cycle. When individuals learn, they tend to make large initial mistakes
and then learn how to minimize these mistakes. As a result, learning is a prime
candidate for an explanation of asymmetry in the business cycle.
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3 The model

The model discussed in this paper is a version of Taylor (1977).2 It is a self
referential linear stochastic model with real balance effects consisting of four
parts

Aggregate Demand : yt = −κ1(it − E∗

t−1pt+1 + E∗

t−1pt) + κ2(mt − pt)

+ κ3 ln

(
Ct

1

σ2

)
Aggregate Supply : yt = φ1(mt − pt) + εt

Money Demand : mt = yt + pt − λ1it + λ2(mt − pt)

Money Supply : mt = m,

where yt is the logarithm of real output, Ct is the current level of confidence,
it is the nominal interest rate, pt is the logarithm of the price of output, mt is
the logarithm of the stock of nominal money balances, and εt is a persistent
random shock variable3

εt = ρεt−1 + ξt

where

ξt ∼ N
(
0, σ2ξ

)
.

σ2 represents the variance of the stochastic shock variable, ξ̃t, defined below.
All greek letters represent positive coefficients and λ2 ≤ 1. E∗

t−1 represents
the not necessarily rational expectation operator at t− 1.

This model now includes a confidence effect on real output that was not
present in Taylor (1977). The confidence level is determined by how well
the average agent can predict current and future prices. In this economy,
agents will consume and invest more if they feel comfortable about their
own predictions of the future. Therefore, the confidence coefficient can be
motivated by precautionary savings by consumers and firms. Predictability
will be determined by the average mean squared error (MSE). As the average
MSE increases, the uncertainty of the future increases. Agents will choose not
to consume and invest as much as before thus decreasing real GDP.

This model can be written in its reduced form as the following

pt = αt + β0E
∗

t−1pt + β1E
∗

t−1pt+1 + ρvt−1 + ξ̃
t

(3.1)

2This model is not used in business cycle literature but is a current workhorse for the

learning literature. I use this model as it is the simplest model with multiple stationary and

learnable rational expectations equilibria. Future work will consider more commonly used

models where multiple updating rules may be used.
3The original Taylor model has separate shocks to aggregate demand and money demand

as well as to aggregate supply. Including three shocks complicates the model, but does not

change the results below.
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where4

αt = m−
β
0
κ3

κ1
ln

(
Ct

1

σ2

)

β0 = −
λ1κ1

λ1 (κ2 − φ
1
)− κ1 (φ1 − (1− λ2))

β
1
= −β

0

vt = β
0
∗

(
(λ1 + κ1)

λ1κ1

)
εt

ξ̃t = β
0
∗

(
(λ1 + κ1)

λ1κ1

)
ξt

and

ξ̃t ∼ N

(
0, σ2 = β2

0
∗

(
(λ1 + κ1)

λ1κ1

)2

σ2

ξ

)
.

With the inclusion of the confidence variable, the rational expectations
equilibria does not change, so the MSE of each predictor and E-stability
conditions are the same as in Guse (2003b).

3.1 Choice of predictors

Assume that agents have the choice of using one of two predictors
corresponding to two possible REE discussed below

PLM1 : pt = a1 + ρvt−1 + ξ̃
t

(3.2)

PLM2 : pt = a2 + b2pt−1 + ρvt−1 + ξ̃
t
. (3.3)

where agents recursively estimate the coefficients of their PLM to form
expectations. If a proportion of µ agents uses PLM1 and the remaining (1− µ)
agents use PLM2, then the actual law of motion (ALM) is

pt = α + µa1(β0 + β1) + (1− µ)a2(β0 + β1 (1 + b2))

+ [(1− µ)b2(β0 + β1b2)]pt−1 + ρvt−1 + ξ̃
t

(3.4)

The above system defines a mapping from the PLM to the ALM as follows

T

⎛
⎝ a1

a2
b2

⎞
⎠ =

⎛
⎝ α+µa1(β0+β1)+(1−µ)a2(β0+β1(1+b2))

1−(1−µ)b2(β0+β1b2)

α + µa1(β0 + β1) + (1− µ)a2(β0 + β1 (1 + b2))
(1− µ)b2(β0 + β1b2)

⎞
⎠ (3.5)

4The solutions for the reduced form in Taylor (1977) are incorrect, however, this does
not affect his results.
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The resulting equilibria are expressed as5

a1 =
α

1− β
0
− β

1

a2 = a1 (1− b2) (3.6)

b2 =
1− (1− µ)β

0

(1− µ)β1

or

a1 =
α

1− β0 − β1

a2 =
α

1− β
0
− β

1

(3.7)

b2 = 0

Equilibrium (3.6) is referred to as the AR(1) mixed expectations equilibria
(MEE).6 In this equilibrium, the proportion of agents using PLM1 are
underparameterizing the model when they are forming their expectations.
PLM2 will be referred to as the AR(1) predictor since these agents believe that
the actual equilibrium will be equilibrium (3.6). Equilibrium (3.7) is referred
to as the minimum state variable (MSV) MEE. Although the equilibria
expectations in the MSV solution are homogenous, it will be considered
heterogeneous expectations since two predictors are used to form expectations.
PLM1 will be referred to as the MSV predictor as these agents believe the true
equilibrium is equilibrium (3.7).

Learnability of the two equilibria can be determined by the E-stability
principle.7 Consider the following ordinary differential equation (ODE)

dφ

dτ
= T (φ)− φ,

where τ denotes notional, or artificial time. An equilibrium, or fixed point
of the ODE, is E-stable if it is locally stable under the ODE. The following
proposition, from Guse (2003a), presents the E-stability conditions for both
equilibria under the above model.

Proposition 1: Assume that β
0
+β

1
< 1. If β

0
< 1

1−µ
, then the MSV MEE is

E-stable and the AR(1) MEE is E-unstable. If β0 >
1

1−µ
, then the MSV MEE

is E-unstable and the AR(1) MEE is E-stable.

One key result in Guse (2003a) is that the equilibria exchange stability at
β
0
= 1

1−µ
where the mean squared error of the MSV predictor under the AR(1)

solution is minimized. This relationship will be important when considering
predictor choice dynamics.

5One restriction is that the AR(1) MEE must be stationary for the first component of
the T-map to be well-defined.

6Each equilibrium is referred to as ‘mixed’ because it may be generated from two
expectations predictors.

7For a detailed presentation of the E-stability Principle, see Evans and Honkapohja
(2001).
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3.2 Predictor choice dynamics

Assume that there is a continuum agents where each agent’s decision does
not affect the state of the economy. Let ([0, 1] ,B) be the underlying space
where [0, 1] is the player set and B is the Borel subsets of [0, 1]. Let Si =
{PLM1, PLM2} be the set of strategies for each player i. Suppose that each
player receives a payoff from choosing either strategy in the following manner

vi (si, µ) =
1

MSE1

−K1 = U1 if Si = PLM1

=
1

MSE2

−K2 = U2 if Si = PLM2

whereKj ≥ 0 is the cost parameter for using the jth predictor discussed further
below.

When considering predictor choice dynamics in such a model, one must
consider when each solution is evolutionary E-stable. To theoretically evaluate
an equilibrium for evolutionary E-stability, I assume Fast-Slow dynamics which
is a process where agents learn the corresponding parameter equilibria prior
to each period when µ is updated using some form of a selection criterion.
Therefore, the speed of parameter learning is infinitely faster than the speed
of the population dynamics.

Definition 1: Assume that the model is updated using Fast-Slow dynamics. An
MEE or REE, φ∗ (µ∗), is Evolutionary E-stable if for all µ ∈ [0, 1] sufficiently
close to µ∗ (1) µt → µ∗ under the replicator dynamics and (2) φ (µt) is E-stable
for all µt.

Here, φ (µ) refers to an E-stable MEE that is determined by the level of
heterogeneity, µ, and φ∗ (µ∗) is the MEE determined by a Nash solution of
µ∗. Under evolutionary E-stability, if a mutation occurs to change the level of
heterogeneity, then the system will return to the evolutionary E-stable MEE
or REE. Furthermore, at each µ in the neighborhood of µ∗, the corresponding
MEE is E-stable. Like E-stability, this is a local condition, but unlike
E-stability, the boundary of attraction may be determined under the replicator
dynamics for each Nash solution.

The selection criterion used in this paper will be the replicator dynamics
which is commonly used in evolutionary game theory. The replicator dynamics,
in discrete time, is defined as follows

µt =

(
ζ + U1

ζ + µt−1 ∗ U1 + (1− µt−1) ∗ U2

)
∗ µt−1. (3.8)

Equation (3.8) directs the population to use the more efficient predictor at
time t−1. In the game, there is the possibility of convergence to homogeneous
expectations due to the exponential nature of the replicator dynamics.
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3.3 Evolutionary E-stability

The MSV predictor is always efficient if the AR(1) predictor is relatively more
expensive and the AR(1) solution is never stable under learning (β < 1). A
version of the proposition found in Guse (2003b) shows that for some parameter
values, the MSV REE can always be evolutionary E-stable

Proposition 2: For the above model, the MSV REE is evolutionary E-stable and
the AR(1) REE is not evolutionary E-stable for all µ ∈ (0, 1], when K1−K2 <

0, and β0 < 1.

The proof is given in Appendix A.When the MSVREE is evolutionary E-stable
for all µ ∈ (0, 1], the model is said to be MSV dominant. Here, as long as
µ0 > 0, the replicator dynamics will direct the entire population to use the
MSV predictor. Furthermore, the resulting learned equilibrium will be the
MSV REE.

Guse (2003b) does not consider the case where the cost of using the MSV
predictor is greater than the cost of using the AR(1) predictor. This is
presented in the following proposition

Proposition 3: For the above model, the AR(1) REE is evolutionary E-stable
and the MSV REE is not evolutionary E-stable for all µ ∈ [0, 1), when K1 −
K2 > 0, β0 > 1, and β0 + β1 < 1.

The proof is given in Appendix B. Since the MSE for the AR(1) predictor is
always less or equal to the MSE of the MSV predictor, a larger relative cost for
using the MSV predictor will make the AR(1) predictor the efficient predictor
for all levels of heterogeneity. When the AR(1) solution is evolutionary E-stable
for all µ

0
∈ [0, 1), I will refer to the model as being AR(1) dominant. This

result is not found in Guse (2003b) as a non-zero cost for using the MSV
predictor was not considered.

With the possibility of MSV and AR(1) dominance, the above model can
be presented in such a manner where the efficient predictor may randomly
change due to some structural shock to the economy. For instance, the model
may switch from being MSV dominant to AR(1) dominant. I will compare
the results of this mechanism using: rational expectations (RE), evolutionary
game theory with no econometric learning, and evolutionary game theory with
econometric learning.

3.4 The Markov process

Assume that a Markov process occurs within the above model. This process
will cause a change of predictor efficiency due to a structural shift to the
economy. For example, we may see a change in monetary policy, fiscal policy,
technology, or a change in consumer or firm behavior. The most efficient
predictor may change from such a shock to the economy.
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The time invariant Markov chain presented in this paper will follow
Ljungqvist and Sargent (2000). It is defined by a triple of objects

x̄ ∈ Rn,

P

π0

where x̄ records the possible values of the states of the system, P is the
transition matrix, and π0 records the probabilities of being in each state i
at time 0. I make the two standard assumptions below that are also made by
Ljungqvist and Sargent (2000).

Assumption 1: For i = 1,...,n, the matrix P satisfies

n∑
j=1

Pij = 1

Assumption 2: The vector π0 satisfies

n∑
i=1

π0i = 1.

Matrix P is a stochastic matrix which defines the probabilities from moving
from one state to any other in one period. It has the interpretation

Pij = Prob (xt+1 = x̄j|xt = x̄i) .

The vector π0 has the interpretation

π0i = Prob (x0 = x̄i) .

In the case of the Taylor model with only two predictors, the Markov chain is
the following

x =
[(
βA
0 , β

A
1 , K

A
1 , K

A
2

)
,
(
βB
0 , β

B
1 , K

B
1 , K

B
2

)]
P =

[
P11 P12
P21 P22

]
π0 = [π0,1, (1− π0,1)]

where

KA
1 = KB

2 = 0

KA
2 = KB

1 = k

k > 0.

To follow the Taylor model, assume that

βA
0 = −βA

1

βB
0 = −βB

1 .
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3.4.1 State A: The MSV evolutionary E-stable state

In state A, the MSV REE is evolutionary E-stable since the MSV updating
rule is the efficient predictor. Here there is some cost, KA

2 for using the AR(1)
updating rule such that all of the agents will asymptotically choose the MSV
predictor for any µ0 ∈ (0, 1]. For this to occur, it must be that βA

0 < (1− µ0)
−1.

A natural choice is βA
0 < 1 and βA

1 = −βA
0 where the MSV REE is E-stable

for any level of heterogeneity.

3.4.2 State B: The AR(1) evolutionary E-stable state

State B is the AR(1) evolutionary E-stable state where the AR(1) updating
rule is the efficient predictor for all µ ∈ [0, 1). With the new relative costs,
the AR(1) REE will always be evolutionary E-stable if µ �= 1 and the AR(1)
REE is E-stable. A natural choice for the parameters here are βB

0 > 1 and
βB
1 = −βB

0 where either the MSV or AR(1) MEE is E-stable for all µ ∈ [0, 1],
and the AR(1) REE is E-stable when µ = 0.

3.4.3 Intuition for state changes and costs

Although the states represent one of the two predictors being the efficient
predictor, a more interesting interpretation is to assume each state brings a
new efficient predictor into the economy. Assume that agents receive their
predictions from one of two existing forecast agencies. One agency provides
predictions from an AR(1) process with learned parameter values while the
other provides the predictions from the MSV process with learned parameter
values. In every state, one of the two predictors is known as the ‘new’ predictor.
In order for the agency with the new predictor to attract new customers, they
will charge a lower cost than the other agency. At a state change, the old
agency will go out of business leaving room for another to enter the market.
Those using the exiting agency’s predictor will then be forced to use the only
existing agency’s predictor. Then, a new agency will enter the market with
the exiting agency’s predictor with some new initial priors. A very small
proportion of agents will see this agency enter the market and will use this
new predictor.8

8Although the new agency always provides the most efficient predictor, this is only

asymptotically. In the short run, as this agency learns, the MSE for this predictor may

be higher than that of the old agency’s prediction. Therefore, it would not be beneficial for

all agents to use the new predictor at the initial state change.
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4 Necessary conditions for evolution and E-stability

In order for the above system to be stable, the resulting parameter equilibrium
must be stable under learning and the replicator dynamics must asymptotically
direct the population to use the efficient predictor. To achieve this, the
parameter estimates, a1t, a2t, and b2t, and the population, µ

t
, must always be

contained within the domain of attraction of the current evolutionary E-stable
REE, φ (µ∗). Consider the following restrictions that must be made in order
to ensure stability within the two states.

Assume that the model switches from state B to state A at time t = T .
If no agents are using the new MSV predictor at this time, then the level of
heterogeneity will never change by the replicator dynamics. When the model
moves to state A, let

µ
T
= µ

L
> 0

where µ
L
denotes the proportion of intelligent agents who instantaneously

discover that the MSV predictor is efficient at the time of the state switch. This
allows some agents a larger degree of intelligence than others. Assume that
there is a subset of agents who do not posses RE, but they are able to determine
the (asymptotic) efficiency of each updating rule at any time, t. All agents
may be able to witness a structural change in the economy, but only these
agents see that this change affects the efficiency of each predictor. Therefore,
these agents rationally change their predictor to the efficient predictor at time
T .

Now suppose the model switches from state A to state B at time t =
T . Once again, if no agents use the new AR(1) predictor, then the level of
heterogeneity will never change by the replicator dynamics. Therefore, the
more intelligent agents choose the AR(1) updating rule at the state change
such that

µ
T
= µ

H
< 1.

Note that at the time of the state change, the AR(1) predictor may receive
new priors. Since the AR(1) solution is not globally stable under learning, it
must be that the new priors are inside the basin of attraction of the E-stable
equilibrium. As discussed in chapter 6 of Evans and Honkapohja (2001), a
reasonable set of priors, within the basin of attraction, and shocks with a
relatively small support should be enough to ensure stability.9

9A projection facility may alternatively be used, however, it has been criticized in
Grandmont and Laroque (1991), Grandmont (1998), and Moreno and Walker (1994) as
being inappropriate for decentralized markets.
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5 Learning within and between states

As in previous literature, agents will learn the parameter values of the model
using recursive least squares within each state. Evans and Honkapohja (2001)
show that this system of learning can be written as a stochastic recursive
algorithm (SRA)

θt = θt−1 + γ
t
H (θt−1, Xt) ,

where θt is a vector of parameter estimates:10

θt = vec (φ
t
St MSEt) ,

φ
t
= (a1t, a2t, b2t)

′

, St is the moment matrix for AR(1) estimation, MSEt =
(MSE1t,MSE2t)

′, Xt is the state vector, H (.) is a function describing how
the vector θ is updated, and γ

t
is a deterministic positive, nonstochastic,

nonincreasing sequence of ‘gains’. Previous literature has assumed that

∞∑
t=1

γ
t
= ∞ and

∞∑
t=1

γ2
t
< ∞.

As time goes by, the present becomes less important in the updating of
parameter values. This causes parameter values to converge asymptotically
as long as the initial conditions are contained within the basin of attraction of
the equilibrium.

Learning within a state will be very similar to previous literature. Agents
will continue to update the parameter estimates using recursive least squares.
This system can be written using the above SRA. Within a state, E-stability
conditions will hold since the gain parameter will diminish over time.

At a state change agents using the new efficient updating rule should not
emphasize the past as they did with the other updating rule.11 The gain
parameter will not converge to zero when the model switches between equilibria
between states. In this way, once agents learn of the switch, they will no longer
put such a large emphasis on the past data since they are aware of the recent
structural change to the economy.12

10vec is a matrix operator which stacks, in order, the columns of the matrix (φ
t
St MSEt)

into a column vector.
11Agents are not aware of the state change until they switch to the efficient predictor.

Since they do not know when the economy is in each state, they can not use information
from past states to form expectations.

12This process, with a decreasing gain parameter, produces results similar to ‘escape
dynamics’ discussed in Sargent (1999), Williams (2003b) and Cho, Williams, and Sargent
(2002) who assume a constant gain parameter.
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5.1 Updating the gain parameter between states

Updating the gain parameter at each state change will be similar to the
restarting gain technique used by Timmermann (1996). When a state switch
occurs, at t = T , agents who use the new efficient predictor, i, will adjust the
gain parameter to

γ
iT =

1

ω
.

The gain sequence will follow like recursive least squares

γi,t+1 =
γi,t

1 + γi,t

,

however, at any time before another state change, if

MSEit < (1 + κ) ∗ σ2

where κ > 0, then the gain sequence will be restarted to

γi,t+1 =
1

ω
.

With the introduction of the confidence variable in aggregate demand, even a
small increase in the average MSE (decrease in confidence) can lead to a large
change in output and prices.13 Those using the new predictor are aware of this
and therefore, they aggressively learn using a constant gain learning algorithm.
Aggressive learning will continue until the agents are convinced that they have
learned the equilibrium. Agents using the old predictor are not aware of the
state change and therefore, do not restart their gain sequence and continue to
use an infinite memory learning algorithm.

At any time t, there exists a gain vector,

γt = (γ1t, γ2t)

where

γ1t < γ2t

in state A and

γ2t < γ1t

in state B.14,15 The new SRA becomes

θt = θt−1 + γtH (θt−1, Xt) .

13Too large of a κ3 can destabilize the system in which an increase in the average MSE
can lead to larger and larger values for the intercept term, αt from equation (3.1). The
system seems to be stable given my choice of κ3.

14Using the E-stability results from Giannitsarou (2003) and Guse (2004a), it can be
inferred that the E-stable equilibrium will be stable under learning even when agents have
different gains and different PLM’s.

15Here, the gain parameters are random. Random gains have been discussed in Evans,
Honkapohja, and Marimon (2001) and Honkapohja and Mitra (2003).
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Within a state (assuming that there is no switch to the other state), each gain
sequence has the same asymptotic property as the previous literature where

lim
t→∞

γit = 0.

Therefore, learning has the same asymptotic ‘feel’ in each state, but this
property will not appear between states. The probability of staying in the
same state forever in the Markov chain is zero, therefore, within the entire
model

lim
t→∞

γit �= 0

since

prob
(
γit = ω−1|S (t− 1) = j

)
= pji > 0

and

prob
(
γi,t+1 = ω−1|S (t− 1) = i

)
= pijpji > 0

Now, within the model, there will not be convergence to a single equilibrium,
but there will be a tendency of convergence to a single equilibrium within each
state.

6 Dynamics

Next, I analyze the dynamics of the model under three conditions. First, the
dynamics will be discussed under rational expectations. This is the case where
at the time of the state change, all of the agents instantaneously change to
the new efficient predictor. Next, I will discuss the dynamics of the case of
‘fast-slow’ learning. This is the case where the variables of the MEE are learned
infinitely fast compared to the replicator dynamics. Finally, I consider the case
of econometric learning with replicator dynamics. I show that a less rational
system accentuates asymmetry in an Expectational Business Cycle.

6.1 Confidence

In order to show a business cycle, from a change in uncertainty, output must
be negatively dependent upon uncertainty. Assume that agents receive utility
based upon how well they form expectations. Agents who are more certain
about the status of the current economy will consume and invest more than
those less certain of the status of the economy. More informed agents will be
able to distinguish between permanent and transitory shocks and thus will be
able to make better decisions than less informed agents. The Mean Squared
Error will be used as a proxy for ability to form expectations.

The average level of confidence in the economy will be the average of the
inverses of MSE’s realized in the previous period

Ct = µt

1

MSE1,t−1

+ (1− µt)
1

MSE2,t−1

.
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As agents learn the REE, confidence will tend to increase, so at a state change,
the level of confidence will tend to decrease and then increase as agents learn
the REE.

6.2 Rational expectations

Consider the case of Rational Expectations where all agents know that the state
switch occurred and instantaneously start using the corresponding efficient
predictor at time t = T . In this case, confidence will be

Ct =
1

σ2

in either state at all times. In this case, real GDP, besides white noise, will
remain constant throughout time. This demonstrates that the Markov process
is not creating any fluctuations in output, so if business cycle-like dynamics are
to occur, then it must be from agents changing the way they form expectations.
I will show this in both the case of replicator dynamics without learning and
the case of replicator dynamics with learning.

6.3 Replicator dynamics without learning

Next, consider the case where agents learn parameter values infinitely fast
compared to the replicator dynamics. At every period, the agents know the
MEE, but will not necessarily know which of the two predictors is efficient.
Predictor choice will be dictated by the replicator dynamics directing agents to
use the efficient predictor. Because agents know the MEE, GDP is determined
by confidence and the stochastic shocks.

First, consider the dynamics in state A where the MSV REE is evolutionary
E-stable. Each predictor produces the following MSE:16

MSE1 = MSE2 = σ2.

Therefore, the level of confidence in the economy is

Ct = µ
t

1

σ2
+ (1− µ

t
)
1

σ2
=

1

σ2
.

With no learning, the level of confidence does not change through time, so real
GDP will only change from white noise and no business cycle-like dynamics
are produced.

Next, consider the dynamics in state B where the AR(1) REE is
evolutionary E-stable. When the MSV MEE is E-stable, confidence is the
same as it is in state 1 because the MSE’s are the same for each predictor.
However, when the level of µ moves to the point where

µ < 1−
1

β
0

,

16Theoretical MSE′s are presented in appendix C.
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Figure 1: Expectational business cycle -AR(1) replicator dynamics with no
learning

then the AR(1) MEE becomes the E-stable solution andMSE1 > MSE2. The
level of confidence in the economy for µ < 1− 1

β
0

in state B is the following

Ct = (1− µ
t
)
1

σ2
+ µ

t

(
1

σ2

(
1−

(1− (1− µ
t
)β0)

2

(1− µ
t
)2 β2

1

))
<

1

σ2
.

For µ ∈
[
0, 1− 1

β
0

)
, the level of confidence has a local minimum at

µM =
1 + 2β

0
−
√
1 + 8β

0

2β
0

.

When µ is still relatively high, confidence will decrease as µ falls since MSE1

is increasing. However, average confidence will begin to increase as less agents
use the MSV predictor. Therefore, as µ decreases with the replicator dynamics,
confidence first stays constant at Ct =

1

σ2
, then decreases, and then returns to

Ct =
1

σ2
.

The results for y are expressed on figure 1. Since agents know the MEE
for all time periods, y is entirely determined by the level of confidence (and
an error term in which I leave out for presentation). At time zero, there is
a state change from A to B. The level of heterogeneity, µ, decreases when
the intelligent agents switch to using the AR(1) updating rule. GDP does
not initially decrease as confidence does not initially decrease. However, when
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µ < 1 − 1

β
0

, output begins to decline as confidence declines. When µ < µM ,
output increases with confidence and asymptotically returns to the REE level
(y = 0). By simple inspection, one can see that the expectational business
cycle is only slightly asymmetric and the decline in output is rather small.
When agents learn the parameters, it turns out that this asymmetry becomes
much more obvious and the decline in output becomes much larger.

With no learning, the state change from A to B first has no affect on
confidence, but confidence changes as the AR(1) MEE becomes the E-stable
equilibrium. A change in the efficient predictor led to an ‘expectational
business cycle’ within the state from the replicator dynamics and a change
in the learnable equilibrium. This type of ‘business cycle’ exists because of the
replicator dynamics and not the Markov process.

6.4 Replicator dynamics with learning

In the previous section, a change to state A did not produce an ‘expectational
business cycle.’ This was due to agents having rational expectations. A more
interesting result would be the possibility of a decrease in confidence from such
a state change. Econometric learning creates such properties for this model.
This section will show that the existence of learning may create a further
possibility of an ‘expectational business cycle.’

Consider the following learning algorithm

θt = θt−1 + γ
t
H (θt−1, Xt)

where θt = vec (φ
t
St MSEt) and MSE′

t
= (MSE1t,MSE2t). The first two

components of this SRA are

φ1t = φ1,t−1 + γ1t
(
yt − φ1,t−1 − ρvt−1

)
(6.1)

φ2t = φ2,t−1 + γ2tS
−1

t−1zt−1
(
yt − z′t−1φ2,t−1 − ρvt−1

)
(6.2)

St = St−1 + γ2t(ztz
′

t − St−1) (6.3)

where

φ1t = a1t

φ′2t = (a2t, b2t)

z′t = (1, yt).

The MSE component of the SRA is the following

MSEt = MSEt−1+

γm ∗

(( (
pt − φ1,t−1 − ρvt−1

)2(
pt − z′t−1φ2,t−1 − ρvt−1

)2
)

−MSEt−1

)
(6.4)

where γm > 0 is a fixed gain parameter. MSEt demonstrates how well the
learned parameters, for each predictor, have predicted pt. It is important since
the confidence variable, Ct, is based upon the ability to predict. The agents do
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Figure 2: Expectational business cycle-MSV replicator dynamics with learning

not learn this value, but they do receive the corresponding level of uncertainty
from it. Since this value is not learned by the agents, it will be generated by
a finite memory algorithm. Equation (6.4) will provide different dynamics of
confidence and output in state A than what was shown with no learning.

6.4.1 State B to state A

First, consider the dynamics from a change from state B to state A. Recall
that at this change, the MSV updating rule becomes the efficient predictor
over the AR(1) updating rule. For simplicity, assume that at t = T1 − 1, the
agents have learned the AR(1) REE, and µ = 0. This means that MSE2 = σ2,
so the level of confidence is equal to

Ct =
1

σ2
.

At time t = T1, assume that a small amount of agents, µ = µL, see the state
change and decide to use the MSV predictor and

MSET1 =

(
σ2

σ2

)

as it is in the case with no learning.
Learning will now change the dynamics of the level of confidence through

time. Consider the replicator dynamics at t = T1

µT1+1 = µL

(
1

σ2

µL
(
1

σ2

)
+ (1− µL) ∗

(
1

σ2
−KA

2

)
)
.
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Since KA
2 > 0, there will be more agents using the MSV predictor at t =

T1+117. The agents will continue to choose the MSV predictor over the AR(1)
predictor until all agents are using the MSV predictor. Those using the MSV
predictor are updating their estimates with a larger gain. Therefore, a2 and
b2 parameters will be updated relatively slowly and thus the updated MSE2

will increase. As long as the learned parameters for a2 and b2 are not equal
to a1 and 0 respectively, the MSE2 will continue to increase. An increase
in the MSE2 will decrease Ct and thus increase αt in equation (3.1). This
then increases MSE1 and further increases αt. With aggressive learning, the
agents using the efficient updating rule prevent αt from diverging to infinity.
As more agents use the efficient predictor, and the agents are more certain of
the updating rule, the value of αt decreases and converges to αt = m, the REE
value.

Figure 2 presents the dynamics of output and µ when the MSV updating
rule becomes the efficient predictor. It is a result of average of 1000 simulation
results where the economy is in state B for the first 5000 periods and is in
state A for the next 5000 periods. The values used for all the simulations
are: κ2 = 2, κ3 = 20, φ1 = 3.2, λ2 = .6, ζ = 20, and σ2 = 1. Since β0 is
homogeneous of degree 1 with respect to λ1 and κ1 and the coefficients on the
error terms are homogeneous of degree zero with respect to the same variables,
I change only λ1 and κ1 between the two states. In state A, κ1 = λ1 = 2 so
that βA

0
= 0.5, and in state B, κ1 = λ1 = 12, so that βB

0
= 3.

In figure 2, output decreases for the first 150 periods with a small increase
in agents using the efficient predictor. This large change in output comes from
an increase in both MSE′s as agents are learning the new equilibrium. The
replicator dynamics direct all the agents towards using the MSV updating rule.
As more agents use this rule, Ct increases and thus output increases as well.
However, since agents are still learning, the expansion back to equilibrium is
slower than the initial recession. Therefore, the combination of learning and
replicator dynamics produce an asymmetric Expectational Business Cycle.

17Since I am looking at real-time dynamics, there is a possibility that U1 < U2 from the
estimated MSE’s. In this case, assume that the agents using the MSV predictor know their
future utility will be greater than the utility of using the AR(1) predictor, thus they will
choose to keep using the asymptotically ‘efficient’ predictor.
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Figure 3: Expectational business cycle-AR(1) replicator dynamics with
learning

6.4.2 State A to state B

Next, I examine the dynamics from a change to state B where the AR(1)
updating rule becomes the efficient predictor. Assume that the economy has
reached the equilibrium levels prior to this state change so that µ = 1 and
Ct =

1

σ2
. At time T2, assume that a small proportion of agents, (1− µH) see

the state change and switch to using the AR(1) updating rule. Here,

MSET2 =

(
σ2

σ2

)

as it is in the case with no learning.
Next consider the replicator dynamics when there is a cost for using the

MSV predictor of KB
1 > 0 at t = T2

µT2+1 = (1− µL)

(
1

σ2

(1− µL)
(
1

σ2
−KB

1

)
+ µL ∗

(
1

σ2

)
)
.

The proportion of agents using the AR(1) predictor will increase as times goes
by. Those now using the AR(1) updating rule are learning more aggressively
than the agents using the MSV updating rule. Small shocks to the system can
lead to those using the AR(1) updating rule to believe that b2 �= 0 even though
the MSV MEE is E-stable for µ > 1 − 1

β0
. As a result, MSE2 may increase

leading to an increase in αt. This will then in turn increase MSE1 as these
agents are not learning as aggressively as the AR(1) learners. The process of
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learning thus leads to an overall decrease in the level of confidence, Ct and
a decrease in output. As less agents use the MSV learning rule, the level of
confidence and output will increase back to their equilibrium levels.

Figure 3 shows that the real-time learning dynamics of the model in state
B are much different than the dynamics without learning. After the state
change, there is a rather short period small increase in output. This occurs
due to the empirical MSE’s being smaller than σ2. However, as this goes away,
output reduces rather quickly when the majority of agents are still using the
MSV updating rule. Using learning and an estimated MSE results in a faster
arrival of a recession than with RE and replicator dynamics. The expected
arrival time of the recession is shown by the first vertical gray line in figure
3. Learning also extends the length of the recession. In figure 3, the expected
length of the recession is the distance between the first and second gray lines.
However, one can see that the length between the first peak and the valley is
much greater. By comparing figure 3 with figure 1, one can see how learning
greatly accentuates the asymmetry in the Expectational Business Cycle. In
figure 1, the recovery is just a little longer than the decline, but with learning,
figure 3 shows that the recovery is approximately 3 times longer than the
decline.

6.4.3 The Markov process

Next, figure 4 shows the dynamics of the system under a Markov Process.
The parameter values in states A and B are the same as above and the model
arbitrarily initially starts in state A. Within each state, the probability of
entering the other state is .03% meaning that 3 state changes should occur on
average for a simulation of 10,000 periods. A simulation of the Markov process
was first run for 10,000 periods. Then, using this process, 1000 simulations
each consisting of 10,000 periods was run to smooth the data as was done
above.

Figure 4 shows that the Markov process can affect the length of both the
expansions and the recessions. There is a long period of expansion after the
recession caused by the first state change due to a long period of staying in
state B. When there is no change in the efficient predictor, learning allows
agents to unknowingly coordinate to the REE. When the agents learn the
REE, they become quite confident about their ability to forecast and thus the
random i.i.d. shocks are dictating the dynamics of the economy.

There is a substantially smaller time period between the second and third
state changes. After the second state change, agents do not have enough time
to learn the new social norm predictor and do not learn the REE before the
third state change. As a result, agents are quite confused about which predictor
is efficient. A recession may last quite a long time on the unlikely result of
several state changes over a short time period.

The recessions as a result of a switch to state B are on average much larger
than those from state A. This results from the fact that the price level is not a
stationary system in the short run due to the change in MSE’s. At the change
to state B, the initial proportion of agents who use the MSV updating rule is
set at .99. A small shock to the economy can lead to a higher average MSE. The
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Figure 4: The full system

average MSE feeds back into the system making it no longer stationary since
the constant is now dependent on the average MSE. This further increases
the MSE for using the MSV rule.18 The replicator dynamics directs agents
using the MSV updating rule to use the AR(1) rule. As more agents us the
AR(1) rule, the effect from the higher MSE diminishes and the process becomes
stationary again. This process does not typically occur during the transition
dynamics in state A because most of the agents initially use an updating rule
that can learn a non-stationary equilibrium. During these dynamics, when
most of the agents are using the MSV rule, the recession has ended and thus
the system is again stationary.

6.4.4 Discussion of results

I have shown that as rationality decreases, the effect from a state change to
aggregate output is greatly magnified. First, the arrival time of the decline
in output is shortened when agents learn the parameters of the model and
the cycle takes longer to return to the equilibrium value. Second, the overall
decline itself is much greater than it is without learning and only the replicator
dynamics. These results show how limited information can negatively affect
the economy. Uninformed, risk-averse agents will tend to produce and consume
less than what they would with more information. In the model above,
suppose that there was an outside agent that provided additional (correct)

18A large value of κ3 can lead to the process becoming highly unstationary in the short

run and thus a non-stable system. Assuming a small enough κ3 is equivalent to assuming a

stationary solution.
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information. With this additional information, agents can learn and discover
the best way to learn faster than without the information. By providing the
additional information, the outside agent could prevent such large downswings
of aggregate output due to uncertainty.

7 Conclusions

This paper has developed a model of business cycles through the process of
learning and replicator dynamics. The model used is a simple self referential
linear stochastic model discussed in Taylor (1977). This model is provided as
a starting point to introduce the concept of Expectational Business Cycles. I
assumed a stationary process for the model for any µ, the proportion of agents
who use the MSV predictor, such that stability properties will always occur in
the model. From this assumption, it follows that the results in Guse (2003b)
can be used to determine stability under learning and evolutionary dynamics
of the equilibria in the model. The efficient predictor in the model changes
randomly via a two-state Markov process.

The stability properties of the model are dependent upon the initial value of
µ, so the initial values of certain parameters are restricted after a state change.
These changes arise from an assumption that agents change their guess of the
‘efficient’ predictor when they see a state change, and some ‘intelligent’ agents
can see every state change instantaneously. Next, I allow the gain parameter
used for learning to adjust in order to have stable learning dynamics within
each state.

I discuss the theoretical dynamics of the model within three frameworks.
To do this, the confidence level is defined such that it will change through
time with changes in uncertainty. The case of rational expectations is first
considered which shows that aggregate output does not change between each
state change. This means that the Markov process alone does not generate
any business cycles. Next, the case of replicator dynamics without learning
is considered. Here, the transitional dynamics provide aggregate fluctuations
like that of a business cycle in one of the two state changes. When learning
is included in the model, these aggregate fluctuations are further accentuated.
The arrival time of the expectational business cycle is shortened and the overall
decrease in output due to uncertainty is greatly increased. These results suggest
the importance of providing information to agents who make decisions based
on uncertainty. If the overall uncertainty is minimized, then the decrease of
output due to uncertainly should be minimized as well.
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Appendix 1

Proof of Proposition 2

Guse (2003a) shows that the MSV MEE is E-stable for all µ ∈ (0, 1] when
β0 < 1 and β0 = −β1. Here, the AR(1) MEE is never E-stable. Without loss
of generality, assume that K1 = 0 and K2 > 0. When the cost for using the
AR(1) predictor is K2 > 0, the replicator dynamics is (assuming ζ = 0)

µ
t
=

1

σ2

1

σ2
−
(
1− µt−1

)
K2

µt−1.

For µ ∈ (0, 1), this is an increasing function, so with the nature of the replicator
dynamics, it follows that:

lim
t→∞

µt = 1.

Therefore, the MSV REE is evolutionary E-stable and the AR(1) REE is never
evolutionary E-stable for all µ ∈ [0, 1), when β

0
< 1 and K1 −K2 < 0.
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Appendix 2

Proof of Proposition 3

Guse (2003a) shows that for β
0
+ β

1
< 1, the AR(1) mixed expectations

equilibrium (MEE) is E-stable for all µ ∈ [0, 1 − 1

β0
) and the MSV MEE is

E-stable for all µ ∈
[
1− 1

β0
, 1
]
. If µ = 1− 1

β0
, the MSV and AR(1) MEE are

equivalent at:

a1 = α

a2 = α

b2 = 0.

Here, there is a natural exchange of E-stability from MSV to AR(1) when µ

decreases from 1 to 0. Guse (2003a) shows that at this point of E-stability
exchange,

MSE1 = MSE2

Without loss of generality, assume that K2 = 0 and K1 > 0. For µ > 1− 1

β
0

,

assume that ζ = 0. The replicator dynamics becomes

µt =
1

σ2
−K1

1

σ2
− µt−1K1

µt−1.

It can be easily seen that this is a decreasing function for µ ∈
(
1− 1

β0
, 1
)
, so

µt will tend to decrease as t → ∞.
For µ < 1− 1

β0
, it turns out that

MSE1 > MSE2

for all µ ∈ [0, 1 − 1

β0
). Here, the replicator dynamics is also a decreasing

function. From the nature of the replicator dynamics, it turns out that

lim
t→∞

µt = 0.

Therefore, for any µ
0
∈ [0, 1) the AR(1) REE is evolutionary E-stable and the

MSV REE is never evolutionary E-stable.
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Appendix 3

Calculation of the MSE for both of the PLM’s

MSE for the first PLM

PLM1:

MSE1 = E (y − a1)
2

= E (y − E (y))2

= V ar (y)

=
σ2

v

1− b2

If b=0 then the MSE from the first predictor becomes:

MSE1 = σ2

v
(7.1)

When we enter the MEE values in for the MSE1 we get the following solution:

MSE1 =
(1− µ)2σ2

v
β2

1

(1− µ)2β2

1
− (1− (1− µ)β0)

2
(7.2)

MSE for the second PLM

PLM2:

MSE2 = E(y − a2 − b2yt−1)
2

= E(Ta2 + Tb2yt−1 + vt − a2 − b2yt−1)
2

= σ2

v
(7.3)

The mean square error for the second predictor will always be σ2 as long as y
follows a stationary process. This means that the MSE1 ≥ MSE2 for all E-
stable stationary values of α, β0, and β1. This intuitively makes sense because
the AR(1) predictor is always unbiased while the MSV predictor is unbiased
only when b2 = 0.
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