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[rreversible investment under interest rate variability:
new results

Bank of Finland Discussion Papers 29/2003

Luis H.R. Alvarez — Erkki Koskela
Research Department

Abstract

The current literature on irreversible investment decisions usually makes the
assumption of a constant interest rate. We study the impact of interest rate and
revenue variability on the decision to carry out an irreversible investment project.
Given the generality of the valuation problem considered, we first provide a
thorough mathematical characterization of the two-dimensional optimal stopping
problem and develop some new results. We establish that interest rate variability
has a profound decelerating or accelerating impact on investment demand
depending on whether the current interest rate is below or above the long run
steady state interest rate, and that its quantitative size may be very large. Allowing
for interest rate uncertainty is shown to decelerate rational investment demand by
raising both the required exercise premium of the irreversible investment
opportunity and the value of waiting. Finally, we demonstrate that increased
revenue volatility strengthens the negative impact of interest rate uncertainty and
vice versa.

Key words: irreversible investment, variable interest rates, free boundary
problems

JEL classification numbers: Q23, G31, C61

AMS classification numbers: 91B76, 49K 15, 49J15



Peruuttamattomat investoinnit muuttuvalla korolla:
Uusia tuloksia

Suomen Pankin keskustelualoitteita 29/2003

Luis H.R. Alvarez — Erkki Koskela
Tutkimusosasto

Tiivistelma

Peruuttamattomia investointeja késittelevdssd kirjallisuudessa koron oletetaan
yleensd olevan vakio. Téssd tutkimuksessa selvitellddn ajassa muuttuvan koron ja
tulojen vaikutusta paatokseen toteuttaa peruuttamaton investointiprojekti. Tarkas-
teltavan arvostusongelman teknisen yleisyyden vuoksi luonnehditaan ensin muut-
tuvasta korosta ja tuloista johtuva kaksiulotteinen optimaalinen pysdytysongelma
ja kehitetddn uusia tuloksia. Tutkimuksessa kéy ilmi, ettd muuttavalla korolla on
suuri hidastava tai kiithdyttava vaikutus investointikysyntddn sen mukaan, onko
nykyinen korko pitkdn aikavilin tasapainokorkoa matalampi vai korkeampi, ja
ettd muuttuvan koron kvantitatiivinen vaikutus voi olla hyvin huomattava.
Korkoepavarmuuden huomioon ottaminen pienentdd investointikysyntdd, koska se
kasvattaa sekd vaadittua investointimahdollisuuden toteuttamispreemiota etti
odottamisen arvoa. Lopuksi osoitetaan, ettd kasvava tuloepdvarmuus voimistaa
korkoepdvarmuuden negatiivista vaikutusta ja pdinvastoin.

Avainsanat: peruuttamattomat investoinnit, muuttuvat korot
JEL-luokittelu: Q23, G31, C61

AMS-luokittelu: 91B76, 49K 15, 49J15
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1 Introduction

Most major investments are at least partly irreversible in the sense that firms
cannot disinvest. This is because most capital is industry- or firm-specific so
that it cannot be used in a different industry or by a different firm. Even though
investment would not be firm- or industry-specific, they still could be partly
irreversible because of the “lemons” problem meaning that their resale value
is often below their purchase cost (cf. Dixit and Pindyck 1994, 8-9). Since the
seminal work by Arrow 1968 and Nickell 1974, 1978, who analyzed irreversible
investments under certainty, decisions about irreversible investments in the
presence of various types of uncertainties have been studied extensively (see eg
Abel and Eberly 1996, Baldursson and Karatzas 1997, Baldwin 1982, Bertola
and Caballero 1994, Bertola 1998, Caballero 1991 and 1999, Demers 1991,
Hartman and Hendrickson 2002, Henry 1974, Hu and @Qksendal 1998, Kobila
1993, McDonald and Siegel 1986, Oksendal 2001, and Pindyck, 1998, 1991
and Sarkar 2000). In these studies option pricing techniques have been used
to show that in the presence of uncertainty and sunk costs the irreversible
investment is undertaken when the net present value is “sufficiently high”
compared with the opportunity cost. Bernanke 1983 and Cukierman 1980
have developed related models, where firms have an incentive to postpone
irreversible investment because doing this they can wait for new information
to arrive. The various approaches and applications are excellently reviewed
and extended in the seminal book by Dixit and Pindyck 1994.

The studies mentioned above, which deal with the impact of irreversibility
in a variety of problems and different types of frameworks, have used the
assumption of constant interest rate. A motivation for this assumption has
been to argue that interest rates are typically more stable and consequently
less important than the revenue dynamics. As Dixit and Pindyck 1994 state:

“Once we understand why and how firms should be cautious when
deciding whether to exercise their investment options, we can also
understand why interest rates seem to have so little effect on
investment. (p. 13)” “Second, if an objective of public policy
is to stimulate investment, the stability of interest rates may be
more important than the level of interest rates. (p. 50)”

Although this argumentation is undoubtedly correct to short-lived investment
projects, many real investment opportunities have considerably long planning
and exercise periods, which implies that the assumed constancy of the interest
rate is problematic. This observation raises several questions: Does interest
rate variability matter and, if so, in what direction and how much? What is
the role of stochastic interest rate volatility from the point of view of exercising
investment opportunities?

Ingersoll and Ross 1992 have studied the role of variability and stochasticity
of interest rate on investment decisions. While they also discuss a more
general case, in their model they, however, emphasize the role of interest rate
uncertainty and consequently specify the interest rate process as a martingale,
ie as a process with no drift. It is known on the basis of extensive empirical
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research both that interest rates fluctuate a lot over time and that in the
long run interest rates follow a more general mean-reverting process (for an
up-to-date theoretical and empirical surveys in the field, see eg Bjork 1998,
ch 17, and Cochrane 2001, ch 19). Since variability of interest rates may
be deterministic and/or stochastic, we immediately observe that interest rate
variability can in general be important from the point of view of exercising
real investment opportunities. Motivated by this argumentation from the
point of view of long-lived investments, we generalize the important findings by
Ingersoll and Ross 1992 in the following respects. First, we allow for stochastic
interest rate of a mean-reverting type and second, we explore the interaction
between stochastic interest rate and stochastic revenue dynamics in terms
of the value and the optimal exercise policy of irreversible real investment
opportunities.

We proceed as follows. We start our analysis in section 2 by considering
the case where both the revenue and interest rate dynamics are variable, but
deterministic. After providing a technical characterization of the considered
two-dimensional optimal stopping problem we demonstrate that when the
current interest rate is above (below) the long run steady state interest
rate, then investment strategies based on the usual assumption of constant
discounting will underestimate (overestimate) the value of waiting and the
required exercise premium of the irreversible investment policy. We also show
a new, though natural, result according to which differences between the
required exercise premiums with variable and constant discounting become
smaller as the rate of change of interest rate process over time diminishes. In
section 3 we extend our model to cover the situation, where the underlying
mean-reverting interest rate dynamics is stochastic and demonstrate that
interest rate uncertainty strengthens the effect of interest rate variability on
the value of waiting and optimal exercise policy. Section 4 further extends
the analysis by allowing the revenue dynamics to follow a geometric Brownian
motion. We demonstrate that revenue uncertainty strengthens the negative
impact of interest rate uncertainty and vice versa. Finally, there is a brief
concluding section.

2 Irreversible investment with deterministic interest
rate variability

In this section we consider the determination of an optimal irreversible
investment policy in the presence of deterministic interest rate variability. This
provides a good intuitive explanation for the simplest case of a non-constant
discount rate. We proceed as follows: First, we provide a set of sufficient
conditions under which the optimal exercise date of investment opportunity can
be solved generally and in an interesting special case even explicitly. Second, we
demonstrate the relationship between the optimal exercise dates with variable
and constant discounting when the interest rate is below or above the long-run
steady state interest rate. Finally, we show that the value of investment
opportunity is a decreasing and convex function of the current interest rate



which will be generalized later on for the stochastic interest rate case as well.
In order to accomplish these tasks, we describe the underlying dynamics
for the value of investment X, and the interest rate r; as

X =puX;, Xo=2u (2.1)
and
ry=ar(l—pr), ro=r, (2.2)

where p, a, and [ are exogenously determined positive constants. That is, we
assume that the revenues accrued from exercising the irreversible investment
opportunity increase at an exponential rate and that the interest rate dynamics
follow a logistic dynamical system which is consistent with the empirically
plausible notion that the interest rate is a mean-reverting process.

Given these assumptions, we now consider the optimal irreversible
investment problem

V(x,r) =sup e Jo (X, — )], (2.3)

t>0

where ¢ is the sunk cost of investment. As usually in the literature on real
options, the determination of the optimal exercise date of the irreversible
investment policy can be viewed as the valuation of a perpetual American
forward contract on a dividend paying asset. However, in contrast to previous
models relying on constant interest rates, the valuation is now subject to a
vartable interest rate and, therefore, constitutes a two-dimensional optimal

stopping problem. The continuous differentiability of the exercise payoff implies
that (2.3) can be restated as (cf. @Oksendal 1998, p. 199)

V(z,r)=(x—c)+ F(x,r), (2.4)

where the term

¢
F(x,r) = sup/ e~ o WX, —r (X, — c)]ds (2.5)
0

>0

is known as the early exercise premium of the considered irreversible investment
opportunity. It is worth observing that (2.4) can also be expressed as V (z, )+
¢ = x+ F(x,r) demonstrating how the full cost of investment, V' (z,7) + ¢, can
be decomposed into the sum of the value of the investment project = and the
early exercise premium F(z,7). We now establish the following.

Theorem 2.1 When the percentage growth rate p of the revenues Xy is below
the long run steady state 3~ of the interest rate 1, so that 1 > Bu, then the
project should be adopted whenever (ry — )Xy is greater than or equal to rc.
Moreover, the optimal adoption date exists and is finite.

Proof. See Appendix A. =



Theorem 2.1 states a set of sufficient conditions under which the optimal
investment problem (2.3) has a well-defined solution which can be expressed in
terms of the current states of the investment value and the interest rate and the
exogenous variables. In line with previous findings on irreversible investment,
Theorem 2.1 establishes that waiting is optimal as long as the value of the
project X falls short its full cost ¢ + V (X, 1), measured by the sum of the
direct sunk cost ¢ and the opportunity cost V' (X3, r;) (ie the lost option value;
cf. Dixit and Pindyck 1994, p. 153). Since ¢ + V(z,r) = x + F(z,r), we
observe that that waiting is optimal as long as the early exercise premium is
positive. Moreover, prior exercise we naturally have the no-arbitrage condition
dV (X, ry)/dt = rV (X, ) stating that the percentage growth rate of the
value of the project has to be equal to the risk-free rate of interest. The
non-linearity of the optimal investment rule stated in Theorem 2.1 implies that
it is typically very difficult, if possible at all, to provide an explicit solution for
the optimal exercise date of the investment opportunity in the general case.
Fortunately, there is an interesting special case under which we can solve the
investment problem explicitly. This case is treated in the following.

Corollary 2.2 Assume that 1 > Bu, u = «, and the current value of the
project falls short its full cost (that is, (r — p)x < rc). Then, the optimal
exercise date of the investment opportunity is

() = ~In (1 PRt Ut (T_“)x>

u ra(l — pp)

implying that t%(x,r) < 0 and t:(x,r) < 0. In this case, the value reads as

T —c if (r—p)x >re

z [ z—Pr(z—c 1-1/(uB)
Bz (ﬁ) if (r—p)x <re.

V(z,r)= (2.6)

Proof. See Appendix B. m

Corollary 2.2 shows that whenever the percentage growth rates at low values
of the revenue and interest rate process coincide, ie when 1 = «, then both the
value and the optimal exercise date of the irreversible investment policy can be
solved explicitly in terms of the current states and the exogenous variables of
the problem. The optimal exercise date is a decreasing function of the initial
states x and r. Interpretation goes as follows. Since the project value z is
independent of the interest rate and the value of the investment opportunity
is a decreasing function of the current interest rate, increased discounting
decreases the incentives to hold this option alive and, therefore, speed up
exercise and thereby investment. Analogously, we observe that although an
increase in the current project value increases the value of the investment
opportunity, it simultaneously increases the payoff accrued from exercising
the investment opportunity. Since the latter effect dominates the former, we
find that an increase in the current project value unambiguously speeds up
investment. Another important implication of our Theorem 2.1 demonstrates
how both the value and the optimal exercise date of our problem are related
to their counterparts under a constant interest rate. This relationship is
summarized in the following.
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Corollary 2.3 Assume that the conditions 1 > Bu and v > u are satisfied.
Then,

lim V(z,7) = 2"/* sup {y - C} =V(z,r), (2.7)

|0 vz | YH

and

lim (2, 7) = ~ In (ﬁ) — i(z,7), (2.8)

al0 1t T—p

where V (z,7) = sup;sole ™ (X — ¢)] denotes the value and t(xz,r) the optimal
exercise date under constant interest rate, respectively.

Proof. The alleged results are direct consequences of the proof of our
Theorem 2.1. m

According to Corollary 2.3 the value and the optimal exercise date of the
investment policy in the presence of interest rate variability tend towards their
counterparts in the presence of constant discounting as the growth rate of the
interest rate process tends to zero. This means naturally that if the interest rate
process evolves towards its long run steady state f~' at a very slow rate, then
the conclusions obtained in models neglecting interest rate variability will not be
grossly in error when compared with the predictions obtained in models taking
into account the variability of interest rates. In order to illustrate the potential
quantitative role of these qualitative differences we next provide some simple
numerical computations. In Table 1 we have used the assumption that ¢ =1,
1=1%, 7' = 3%, r = 5% and z = 0.1 (implying that #(0.1,0.05) = 91.6291)
so that in this case the long-run steady state of interest is below the current
interest rate. As Table 1 and Figure 1 illustrate, higher interest rate variability,
measured by «, increases both the exercise date and the value of waiting.

a | £(0.1,0.05) [ X(¢*(0.1,0.05)) — ¢
5% | 109.779 0.498761
1% | 102.962 0.4

0.5% | 98.3206 0.336506

106 | 91.6306 0.250019

Table 1. The optimal exercise date and required exercise premium

In Table 2 we illustrate our results under the assumption that the long-run
steady state interest rate is above the current interest rate. More precisely,
we assume that ¢ = 1, u = 1%, 87 = 3%, r = 1.5% and = = 0.1 (implying
that £(0.1,0.015) = 179.176). Naturally, in this case interest rate variability
has the reverse effect on the exercise date and the value of waiting than in the
case where the steady state interest rate is below the current rate of interest.
Now higher interest rate variability decreases both the exercise date and the
value of waiting.

11



Exercise date
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Figure 1: The Optimal Exercise Date (0.1, 0.05) as a function of «

Exercise date
180 |

160
140

120

0.02 004 006 008 0.1 012 0.14

Figure 2: The Optimal Exercise Date #(0.1,0.015) as a function of a

a ] ¢(0.1,0.015) | X(¢*(0.1,0.015)) — ¢
5% 110.065 0.503061
1% 125.276 0.75

05% | 138.629 1

106 | 179.158 1.99946

Table 2. The optimal exercise date and required exercise premium

After having characterized a set of conditions under which the optimal
investment problem with variable interest rate can be solved in terms of the
initial states of the system and exogenous variables and having provided new
explicit solutions in an interesting special case, we now ask the following
important but, to our knowledge, also thus far unexplored question: What
is the relationship between the optimal exercise policy and the value of the
investment opportunity with variable and constant interest rate. Given the
definitions of the optimal policy and its value under the deterministic evolution
of the interest rate, we are now in the position to establish the following new
results summarized in

Theorem 2.4 Assume that 1 > [u and that v > . Then,
t*(z,r) %f(a:,r), V(x,r) % V(x,r) and F(x,r) % F(z,r) when r % st

Proof. See Appendix C. m
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Exercise date r>0.03 Exercise date 0.02 <r<0.03
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““““ r = r
0.05 0.1 0.15 0.2 0.25 0.022 0.024 0.026 0.028 0.03

Figure 3: The optimal exercise date ¢ * (z,7)

Theorem 2.4 generalizes the finding by Ingersoll and Ross 1992 (p. 4-5) by
characterizing the differences of the optimal exercise policy and the value of
the investment opportunity with constant and variable discounting. First,
the required exercise premium and the value of the investment opportunity
is higher in the presence of variable than under constant interest rate when
the current interest rate is above the long-run steady state interest rate.
Second, the reverse happens when the current interest rate is below the
long-run steady state interest rate. More specifically, these findings imply
the following important finding: When the current interest rate is above
(below) the long run steady state value, then the investment strategies based
on the usual approach neglecting the interest rate variability will underestimate
(overestimate) both the value of waiting and the required exercise premium of
the irreversible investment policy. These findings are based on a plausible
parametric specification of the interest rate dynamics (2.2). An interpretation
goes as follows: if the current interest rate is below its long run steady state,
then the interest rate is known to dominate its current value at any future date
resulting, therefore, to a lower project value than in the constant discounting
case. Naturally, the reverse happens whenever the current interest rate is above
its long run steady state.

Theorem 2.4 characterizes qualitatively the differences of the optimal
exercise policy and the value of investment opportunities with constant and
variable discounting. In Figure 3, we illustrate these findings quantitatively
in an example where the steady state interest rate 7 is 3% and the current
interest rate is either above the steady state interest rate (the L.h.s. of Figure
3) or below the steady state interest rate (the r.h.s. of Figure 3). The other
parameters are ¢ = 1, = 1%, and ' = 3%. The solid lines describe the
exercise dates in the presence of variable interest rate while the dotted lines the
optimal exercise dates with constant interest rate. One can see from Figure 3
that when the current interest rate is above the steady state interest rate, the
difference between the exercise dates becomes larger the higher is the current
interest rate. Naturally, the reverse happens when the current interest rate
is below the steady state interest rate. These simple numerical computations
demonstrate that the differences between the exercise dates can be very large
if the variability of interest rate is big enough.

13



We also want to point out that if a = p, then the required exercise premium
in the presence of a variable interest rate reads as

Pler) = |14 7m0 g By ), (2.9)
re(B87 — )
where P(z,r) = pc/(r — p) denotes the required exercise premium in the

presence of constant interest rate. Since rc¢ > (r — u)x as long as the option is
worth keeping alive, we again find that the required exercise premium is higher
(lower) in the presence of variable discounting than in the presence of constant
discounting whenever the current interest rate is above (below) its long run
stationary steady state. Moreover, as intuitively is clear, the required exercise
premiums coincide at the long run asymptotically stable steady state of the
interest rate. As we can observe from (2.9) we have

opP B fic x
E([L’,T’)——B_I_M{Tzﬂc} < 0.

and
opP _pe  [1=pr) > < 5-1
ax(x’r)_ﬁl—,u{ 57’6 :| Zoa TSB )

Hence, the required exercise premium is a decreasing function of the current
interest rate v at all states, while the sign of the sensitivity of the required
exercise premium in terms of current project value x is positive (negative)
provided that the current interest rate r is below (above) the long run steady
state 3~'. Before proceeding further in our analysis, we prove the result
characterizing the monotonicity and curvature properties of the value of the
investment opportunity.

Lemma 2.5 Assume that the conditions of Theorem 2.1 are satisfied. Then,
the value of the investment opportunity V(x,r) is an increasing and convex
function of the current revenues x and a decreasing and convex function of the
current interest rate r.

Proof. See Appendix D. m

Later on we generalize these properties of the value V' (z,r) to cover the case
of stochastic interest rate and stochastic revenue. This turns out to be crucial
to explore the relationship between interest rate volatility and investment.

3 Irreversible investment with interest rate uncertainty

In the analyzes we have carried out thus far, the underlying dynamics for the
revenue X; and the interest rate r; has been postulated to be deterministic.
The reason for this was that we first wanted to show the impact of variable
discounting on the investment decisions in the simpler case in order to provide
an easy intuition. In this section we generalize our earlier analysis by exploring

14



the optimal investment decision in the presence of interest rate uncertainty.
We proceed as follows. First, we characterize a set of sufficient conditions for
the optimality of investment strategy and second, we show how under certain
plausible conditions the interest rate uncertainty has the impact of postponing
the optimal exercise of investment opportunity.

We assume that the interest rate process {r;;t > 0} is defined on a complete
filtered probability space (€2, P, {;}+>0,) satisfying the usual conditions and
that r; is described on R, by the (Ito-) stochastic differential equation of a
mean-reverting type

dry = ary (1 — Bry) dt + orydWy, 19 =T, (3.1)

where o > 0 is an exogenously determined parameter measuring the volatility
of the underlying interest rate dynamics and dW, is the increment of a Wiener
process driving the underlying stochastic interest rate dynamics. This kind
of specification — according to which r; will show a tendency toward some
predictable long-run level even though it will fluctuate in the short-run —
lies in conformity with empirics (see, eg Cochrane 2002, ch 19) and can also
be theoretically supported (cf. Merton 1975). Applying Ito’s lemma to the
mapping r— Inr yields that

. 1
e Jors = (H)F e Atm (), (3:2)
T

2
where M, = e o8 2t ig g positive exponential F;-martingale. According
to equation (3.2) the discount factor can be expressed in a path-independent
form which only depends on both the current interest rate r and the future
interest rate 7. It is worth emphasizing that if a > ¢2/2, then the interest rate
process r; converges towards a long run stationary distribution with density
(a x* — distribution, cf. Alvarez and Shepp 1998)

()_ 203 gr@e*%?
P=\" T(p/2)

where p/2 = 23 —1 > 0. Given this distribution, the expected long-run interest
rate reads as

smeie)=(1-5:) 5 <

and satisfies the intuitively clear condition

O i Bl = -2 <0
O t—oo «
meaning that higher interest rate volatility decreases the expected value of the
expected steady state rate.
Given these plausible technical assumptions, we now consider the valuation
of the irreversible investment opportunity in the presence of interest rate
uncertainty. More precisely, we consider the optimal stopping problem

Vy(z,7) = sup By |e” Jords (X, —¢)] (3.3)

T

15



where 7 is an arbitrary F;-stopping time and where we apply the notation
Vg(x,r) in order to emphasize the dependence of the value of the optimal
policy on the volatility of the underlying interest rate process. In line with
our results of the previous section, Dynkin’s theorem (cf. Dksendal 1998, p.
118-120) implies that the optimal stopping problem (3.3) can also be rewritten
as in (2.4) with the exception that the early exercise premium now reads as
E,(z,7) = supE, / e oW (X, —ry(X, —c))ds. (3.4)
T 0
This type of path-dependent optimal stopping problem is typically studied
by relying on a set of variational inequalities which characterizes the value
of the associated free boundary problem (cf. (Oksendal and Reikvam 1998).
Unfortunately, multi-dimensional optimal stopping problems of the type (3.3)
are extremely difficult, if possible at all, to be solved explicitly in terms of the
current states and the exogenous parameters of the problem.

However, given (3.2) and defining the equivalent martingale measure Q
through the likelihood ratio dQ/dP = M,; we now find importantly that
the two-dimensional path-dependent optimal stopping problem (3.3) can be
re-expressed in the more simple path-independent form

|)—‘

~

Vo(x,r) = o sup Bz |:€07 e

™

T

. -a. (35)

where 0 = % — % (1 + aiﬁ) and where the diffusion 7; evolves according to
the dynamics described by the stochastic differential equation
o2
d?:t = Oé?‘:t (1 — Tﬁ — 6ft> dt + O'?‘:tth, fo =T. (36)
o

It is worth pointing out that the associated valuation (3.5) and the underlying
stochastic dynamics (3.6) can in an alternative and complementary way be
motivated by making a change of variable resembling the change of numeraire
techniques familiar from the valuation of interest rate derivatives (cf. Bjork
1998, chapter 19). To see that this is indeed the case, we first observe that
prior exercise (ie on the continuation region where exercising the opportunity
is suboptimal) the value of the optimal investment policy has to satisfy the
familiar absence of arbitrage condition

1 2 262‘70' a‘A/O' a o ~ .
50 r 52 (z,r) +ar(l —pr) o (x,7) + px o (z,7) —rV,(z,r) = 0.

This states that the expected percentage rate of return from the project has to
coincide with the risk free rate of return. Therefore, by expressing the value as

~

1
Vy(x,r) =1 8 H(x,r) we observe that prior exercise the absence of arbitrage
condition can be re-expressed as

1 2 20°H A K O - _
o°r 57 (x,r)+ar (1 - Br r (a:,r)—i—,uxax (x,r)—0H(x,r) =0.

Adjusting the value matching condition accordingly then motivates the
problem (3.5) and the underlying stochastic dynamics (3.6). An
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important requirement (the so-called absence of speculative bubbles condition)
guaranteeing the finiteness of the considered valuation is that

1 o? 1 1

37 H " 2a8 ( i @) /
which is naturally a stronger requirement than the condition 1 > SBu of the
deterministic case.

We can now establish a qualitative connection between the deterministic
and stochastic stopping problems (2.3) and (3.3). This is summarized in
the following theorem which could be called the fundamental qualitative
characterization of the value of an irreversible investment opportunity in the
presence of interest rate uncertainty.

Theorem 3.1 Assume that the absence of speculative bubbles condition 6 > u,
where 0 = % — % (1 + a—lﬁ), guaranteeing the finiteness of the wvalue of
the optimal policy is satisfied. Then interest rate uncertainty increases both
the required exercise premium and the value of the irreversible investment
opportunity and, consequently, postpones the optimal exercise of investment

opportunities.

Proof. See Appendix E. m

This new result shows that under a set of plausible assumptions both the value
and the optimal exercise boundary of the investment opportunity is higher
in the presence of interest rate uncertainty than in its absence. The main
reason for this finding is that since increased interest rate volatility increases
the expected value of the claim it simultaneously increases the full cost of
investment while leaving the expected project value unchanged. Thus, interest
rate uncertainty unambiguously increases the required exercise premium and
postpones rational exercise of the investment opportunity. It would be of
interest to characterize quantitatively the difference between the optimal policy
in the absence of uncertainty with the optimal policy in the presence of
uncertainty. Unfortunately, stopping problems of the type (3.3) are seldom
solvable and, consequently, the difference between the optimal policies can
typically be illustrated only numerically.

Before establishing the sign of the relationship between interest rate
volatility and investment, we first present an important result characterizing
the form of the value function V,(z,r) as a function of the current revenues x
and the current interest rate r. This is accomplished in the following.

Lemma 3.2 The value function V,(xz,r) is an increasing and convex function
of the current revenues x and a decreasing and convex function of the current
interest rate r.

Proof. See Appendix F. m

Lemma 3.2 is very important since it implies that the sign of the relationship
between interest rate volatility and investment in unambiguously negative and
it suggests a generalization of the findings by Ingersoll and Ross 1992 where
they characterize the impact of riskiness of the interest rate path on the value
of waiting (see Theorem on p. 26). More precisely, we have
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Theorem 3.3 Increased interest rate volatility increases both the value and the
early exercise premium of the irreversible investment opportunity. Moreover,
it also expands the continuation region and, therefore, postpones the optimal
exercise of irreversible investment opportunities.

Proof. See Appendix G. =

According to Theorem 3.3, more volatile interest dynamics leads to
postponement of investment because of the convexity of the value function. An
economic interpretation goes as follows. Increased interest rate volatility that
the opportunity cost of not investing becomes more uncertain, which will move
the exercise date further into the future. While increased volatility increases
the expected present value of future revenues, it simultaneously increases the
value of holding the opportunity alive. Since the latter effect dominates the
former, the net effect of increased volatility is to postpone the optimal exercise
of investment opportunities (cf. Dixit and Pindyck 1994).

4 Irreversible investment with interest rate and
revenue uncertainty

After having characterized the relationship between the value and optimal
exercise of investment opportunities when the underlying interest rate
dynamics was assumed to be a stochastic mean-reverting process and the
revenue dynamics was deterministic, we extend the analysis of the previous
section. We now assume that the interest rate dynamics follow the diffusion
described by the stochastic differential equation (3.1) and that the revenue
dynamics, instead of being deterministic, is described on R by the stochastic
differential equation

dXt == ,LLXtdt + ’}/Xtth XO =T, (4.1)

where W, is a Brownian motion independent of W; and p > 0, v > 0 are
exogenously given constants.

Given the dynamics of the process (X, ;) we now consider the following
optimal stopping problem

Vory(x,7) =sup B,y (€ Jo nds(X, — ), (4.2)
where 7 is an arbitrary stopping time and where we apply the notation
Vgﬁ(x, r) to emphasize the dependence of the value of the optimal policy on
the volatility parameters o and . Again, we find that defining the equivalent
martingale measure Q through the likelihood ratio dQ/dP = M, implies that
the path dependent optimal stopping problem (4.2) can be re-expressed as

1
Vor(z,7) = r supE [60777?’3 (X, — c)} , (4.3)
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where 6 and 7; are defined as in the previous section. Observing finally that
X, = ze" M,, where M, = e?"i~37°% ig a positive exponential martingale again
implies that the value (4.2) is finite provided that the absence of speculative
bubbles condition § > p is satisfied (otherwise the first term of the value would
explode as t — o00). In line with our previous findings, we can establish the
following.

Lemma 4.1 The value of the investment opportunity is an increasing and
convex function of the current revenues and an increasing and convex function
of the current interest rate.

Proof. It is now clear that the solution of the stochastic differential
equation (4.1) is X; = ze* M,, where M, = "W -7"1/2 {5 a positive exponential
martingale. Consequently, all the elements in the sequence of value functions
Va(x,7) presented in the proof of Lemma 3.2 are increasing and convex as
functions of the current revenues x (cf. El Karoui, Jeanblanc-Picqué, and
Shreve 1998). This implies that the value function is increasing and convex as
a function of the current revenues x. The rest of the proof is analogous with
the proof of Lemma 3.2. m

The key implication of Lemma 4.1 is now presented in

Theorem 4.2 Assume that the absence of speculative bubbles condition 6 > 1
15 satisfied. Then, increased interest rate or revenue volatility increases both
the value and the early exercise premium of the optimal policy. Moreover,
increased interest rate or revenue wvolatility expands the continuation region
and, thus, postpones the optimal exercise of investment opportunities.

Proof. The proof is analogous with the proof of Theorem 3.1. m

Theorem 4.2 shows that revenue uncertainty strengthens the negative effect of
interest rate uncertainty and vice versa. Put somewhat differently, Theorem
4.2 shows that the combined impact of interest rate and revenue uncertainty
dominates the impact of individual interest rate and individual revenue
uncertainty.  Consequently, our results verify the intuitively clear result
that uncertainty, independently of its source, slows down rational investment
demand by increasing the required exercise premium of a rational investor.
It is also worth emphasizing that given the convexity of the value function,
combined interest rate and revenue volatility will increase the value and the
required exercise threshold compared with the case where the revenues are
deterministic.
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5  Conclusions

In this paper we have considered the determination of an optimal irreversible
investment policy with variable discounting and demonstrated several new
results. We started our analysis by considering the case of deterministic
interest rate variability. First, we provided a set of sufficient conditions under
which this two-dimensional optimal stopping problem can be solved generally
and in an interesting special case explicitly. Second, we demonstrated the
relationship between the optimal exercise dates with variable and constant
discounting when the interest rate can be below or above the long-run steady
state interest rate. More precisely, interest rate variability has a decelerating or
accelerating impact on investment depending on whether the current interest
rate is below or above the long run steady state interest rate and numerical
calculations show that its quantitative size may be very large. Third, we
showed that the value of the investment opportunity is an increasing and
convex function of the current revenues and a decreasing and convex function
of the current interest rate.

We have also generalized our deterministic analysis in two important
respects. First, we have explored the optimal investment decision in the
presence of interest rate uncertainty, i.e. when the interest rate process is of
a mean-reverting type, which lies in conformity with empirics, but fluctuates
stochastically, and second, we have allowed for revenue dynamics to follow
geometric Brownian motion. In this setting we characterized a set of sufficient
conditions which can be applied for the verification of the optimality of an
investment strategy. Moreover, we have showed how under certain plausible
conditions the interest rate uncertainty decelerates investment by raising the
required exercise premium of the irreversible investment opportunity and the
value of waiting. Finally, and importantly, we demonstrated that revenue
volatility strengthens the negative impact of interest rate uncertainty and vice
versa.

An interesting area for further research would be to examine the effects of
taxation in the presence of potentially stochastically dependent revenue and
interest rate uncertainty. Such an analysis has not been done, and, is out of
the scope of the present study and is, therefore, left for future research.
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A Proof of Theorem 2.1

Proof. It is a simple exercise in ordinary analysis to demonstrate that

re

1 + pr(et — 1)’

X, =ze't, 1

e fotrsds _ (1 + Br(eat i 1))*1/(065) 7
and that

d

S e = 0] = e B (X, - (X - o). (A1)

Given the solutions of the ordinary differential equations (2.1) and (2.2), we
observe that (A.1) can be rewritten as

(1+ Br(e™ —1)))els % e (X, — o)

= px(1 — Br) 4+ ree Mt — rg(1 — Bu)e™.
Consider now the mapping f : R, — R defined as
f(t) = pa(l — Br) +reel® M —rp(1 — Bu)e.

It is now clear that f(0) = rc—(r—p)z and that lim; .o, f(f) = —oo. Moreover,
since

F(8) = (o — pyree® " — ara(l — fu)e™,

we find that f'(t) < 0 for all ¢ > 0 whenever o < p and, therefore, that for any
initial state on C', the optimal stopping date t*(z, r) satisfying the optimality
condition f(t*(z,7)) = 0 exists and is finite (due to the monotonicity and
the boundary behavior of f(¢)). Assume now that o > p. Then, f'(0) =
(v — p)re — arx(1 — Bp) and limy_o f'(t) = —oo. Moreover, since

F'(t) = (= p)Pree@ " —aPra(l - fu)e,
we find that 0 = {f(¢)} provided that (o — p)rec < arz(l — Su) and that
-1 —
o1 (M)
po \ax(l—Bpu)
if (a — p)e > ax(1 — Bp). However, since
f1(8) = —ara(l — pB)ue < 0
we find that f'(t) < 0 for all (z,7) € R% in that case as well and, therefore,

that for any initial state on C', the optimal stopping date t*(z, ) satisfying the
optimality condition f(t*(z,7)) = 0 exists and is finite. =
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B Proof of Corollary 2.2

Proof. As was established in the proof of Theorem 2.1, the optimal exercise
date t*(x,r) is the root of uX(4r) = Tp(2) (X (2r) — €), that is, the root of
the equation

W;eut*(r,r)(l + 67’(6’“*(”) —1)) = rekt™ (@) (meut*(x,r) —0).
Multiplying this equation with e=#*"(®") and reordering the terms yields
ra(pB — et @) = pa(fr—1) — re

from which the alleged result follows by taking logarithms from both sides of
the equation. Inserting the optimal exercise date t*(z,r) to the expression

V(a:, 7’) — e fJ (z,r) TSdS(Xt*(:p,r) . C)

then yields the alleged value. Our conclusions on the early exercise premium
F(x,r) then follow directly from (2.4). Finally, the comparative static
properties of the optimal exercise date t*(x,r) can then be established by
ordinary differentiation. m

C Proof of Theorem 2.4

Proof. With a constant interest rate (ie when o = 0), the objective function
reads as

() = e "™(X; — ¢).
Standard differentiation of I1(t) now implies that #(z,7) = {II(t)} satisfies the
ordinary first order condition yuXg, ) = 7(Xj(,) —¢). Define now the mapping
f(t) = uX; — r(X; — ¢). We then find that

.~ > e >
f(t([lf, T)) = lqu(x,r)_rf(x,r) (Xf(x,r)_c) = (T_Tf) (Xf(x,r)_c) i 07 if r z ﬁ 1;
since 1y % r for all t > 0 when r § 371 However, since f(t*(z,r)) = 0 we find
that ¢*(z, ) % t(z,r) when r % st

Assume that r < gt and, therefore, that r, > r for all £ > 0. Since
ua:g—‘;(a:, r) < rV(x,r) and V(z,r) > g(z) for all z € R, we find by ordinary
differentiation that

%

d g~ ¢ -
E e fO TSdSV(Xt, T’) = e fO rsds [MXt%(Xt, T’) - T’tV(Xt, T’)

< e Jorsds [r—r) V(X;,r) <0

for all £ > 0. Therefore,
Ve, r)>e” fgrstf/(Xt,?") >e fot“dsg(Xt)

implying that V (z,r) > V(z,7) when r < 3. The proof in the case where 7 >
p71 s completely analogous. The conclusions on the early exercise premiums
F(z,r) and F(x,r) follow directly from their definitions. m
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D Proof of Lemma 2.5

reds

Proof. Consider first the discount factor e~ /o Since

e Jorsds = (14 pr(e — 1)) /7,

we find by ordinary differentiation that

d Tty s 1 o —(1/(@B)+1) , 4
5[6 Js }:—a(lqtﬁr(et—l)) (et —1) <0

and that

d2 t ]_ 1 — of
W |:€_f0 rsds} _ - (a_ﬂ + 1) (1 +BT(€at . 1)) a/( 5)+2)6(€at _ 1)2 >0

implying that the discount factor is a decreasing and convex function of the
current interest rate. Since the maximum of a decreasing and convex mapping
is decreasing and convex, we find that the value is a decreasing and convex
function of the current interest rate r. Similarly, since the exercise payoff
X; — c is increasing and linear as a function of the current revenues z, we find
by classical duality arguments of nonlinear programming that the maximum,
ie the value of the investment opportunity, is an increasing and convex function
of xz. m

E  Proof of Theorem 3.1

Proof. As was established in Lemma 2.5, the value of the investment
opportunity is convex in the deterministic case. Denote now as

0 0
A=pr— +ar(l — pr)—
e (1-5 )(37’
the differential operator associated with the inter-temporally time
homogeneous two-dimensional process (X, ;) in the presence of the
deterministic interest rate dynamics (2.2) and as
1 5 02 0 0
A= r— + ar(l — Gr
a o2 th or +ar(l -4 ) o
the differential operator associated with the two-dimensional process (X3, ;)
in the presence of the stochastic interest rate dynamics (3.1). We find that for
all (z,r) € C we have that

- 1 , ,0°V
(AV)(z,r) —rV(x,r) = —UQTQW( r) >0,
since (AV)(x,r) —rV(z,r) = 0 for all (z,7) € C by the absence of arbitrage
condition dV (X, ry)/dt = rV (X, 1¢). Let 7, be a sequence of almost surely
finite stopping times converging towards the stopping time 7* = inf{t >
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0: uXy < r(X; —c¢)}. Applying Dynkin’s theorem (cf. (Dksendal 1998, p.
118-120) then yields that

B [0 BV (X, mr,) | > Vi, 7),

Letting n — oo and invoking the continuity of the value V(x,r) across the
boundary 0C' then implies

V(z,r) < E@n [e* Jorreds(x c)} < Vy(z,r)

for all (z,7) € C. However, since V(z,7) = z—con R3\C and Vo(x,r) > z—c
for all z € R2, we find that V, (z,7) > V(z,r) for all z € R2.

Assume that (z,r) € C. Since Vo(x,7) > V(z,r) > (z — ¢), we find
that (z,r) € {(z,r) € R% : V,(z,r) > x — ¢} as well and, therefore, that
C c {(x,7) € R2 : V,(z,7) > x — ¢}, thus completing the proof. m

F  Proof of Lemma 3.2

Proof. To establish the monotonicity and convexity of the value function

Vy(z,7) as a function of the current revenues x, we first define the increasing
sequence {V,,(z,7)}nen iteratively as

Volz,r) =(x —c¢), Vhp(z,r) =supEgqy e o redsy (Xp,re) |

t>0

It is now clear that since Vj(x, r) is increasing and linear as a function of x and
X = zet, the value Vi(z,r) is increasing and convex as a function of x by
standard duality arguments from nonlinear programming. Consequently, all
elements in the sequence {V,,(z,7)},en are increasing and convex as functions
of z. Since Vj,(z,r) T Vy(x,7) as n — oo (cf. @ksendal 1998, p. 200) we find
that for all A € [0,1] and x,y € R, we have that

AV (2, 1)+ (1 =NV (y, 1) = AVolz, 7)+(1=N)Va(y, 7) > Vo(Az+(1=N)y, ).

Letting n — oo and invoking dominated convergence then implies that
MVo(z,r) + (1 = MNVo(y,7) = Vo(Az + (1 — Ay, r) proving the convexity of
Vo (x, 7). Similarly, if > y then

Vo(2,7) > Vi, 7) > Vi(y,7) T Vi (y,7), asn — oo

proving the alleged monotonicity of V,(z, r) as a function of x. Finally, as
was established in Alvarez and Koskela 2001, our assumptions imply that
the discount factor e~/ ™4 is an almost surely decreasing and strictly convex
function of the current interest rate r and, consequently, that the value function
is decreasing and strictly convex as a function of the current interest rate r. m
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G Proof of Theorem 3.3

Proof. We know from Lemma 3.2 that given our assumptions, the value
V,(z,7) is convex in 7. Consequently, we find that for all (x,r) € RZ we have
that

A A ~

(AVz)(x,r) — rVz(z,r) <

since

1 ~92 262‘75— a oz 8‘7& A
— _ — - — s <
20 r 52 (x,7r) + px e (z,r) +ar(l — pr) o (z,7) —rVs(z,r) <0

for all (z,7) € R by the r-excessivity of V&(x,r). Consequently, applying
Dynkin’s theorem (cf. @¥ksendal 1998, p. 118-120) yields that

E(z,r) |:€_ Jo" TSdsV&(XTna TTn):| < ‘A/&(x’ T)

where 7, = T An Ainf{t > 0: \/X2+r? > n} is an almost surely finite
stopping time and r; denote the interest rate process subject to the less volatile
dynamics. Reordering terms, invoking the condition Vj(z,7) > (2 — ¢), letting
n — 00, and applying Fatou’s theorem yields that

~

Va(z,7m) > B [e’ Jo ”ds(XT — c)}

proving that Vs (z,7) > V,(z,r) for all (z,7) € R?2 . The inequality Fy(z,r) >

~

Fy(z,r) then follows from the definition of the early exercise premiums.
Finally, if (z,7) € {(2,r) € R% : V,(2,7) > (x — ¢)}, then (z,7) € {(x,r) €
R? : Vy(x,7) > (x — ¢)} as well, since then Vj(z,7) > V,(z,7) > (z —¢). m
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