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Nonlinear dynamics of interest rate and inflation

Bank of Finland Discussion Papers 21/2002

Markku Lanne
Research Department

Abstract

According to several empirical studies, US inflation and nominal interest rates, as
well as the real interest rate, can be described as unit root processes. These results
imply that nominal interest rates and expected inflation do not move one-for-one
in the long run, which is not consistent with the theoretical models. In this paper
we introduce a nonlinear bivariate mixture autoregressive model that seems to fit
quarterly US data (1952 Q1 — 2000 Q2) reasonably well. It is found that the three-
month treasury bill rate and inflation share a common nonlinear component that
explains a large part of their persistence. The real interest rate is devoid of this
component, indicating one-for-one movement of the nominal interest rate and
inflation in the long run and thus stationarity of the real interest rate. Comparisons
with a linear vector autoregressive model reveal that in policy analysis the
consequences of neglecting nonlinearities can be substantial.

Key words: nonlinear models, interest rate, inflation, cointegration analysis

JEL classification numbers: C32, E43



Koron ja inflaation epélineaarinen dynamiikka

Suomen Pankin keskustelualoitteita 21/2002

Markku Lanne
Tutkimusosasto

Tivistelma

Useiden empiiristen tutkimusten mukaan Yhdysvaltojen inflaatiovauhti ja sekid
nimellis- ettd reaalikorko ovat kuvattavissa yksikkojuuriprosesseina. Tdma tar-
koittaa, ettd nimelliskorot ja odotettu inflaatio eivit pitkédlla aikavélilld vaihtelisi
yhden suhteessa yhteen, mika tulos on kuitenkin ristiriidassa teorian kanssa. Tadssd
tutkimuksessa otetaan kadyttoon epilineaarinen kahden aikasarjan autoregressiivi-
nen malli, joka néyttdisi sopivan varsin hyvin yhdysvaltalaiseen neljinnesvuosi-
aineistoon (1952:1-2000:1II). Osoittautuu, ettd 3 kuukauden valtionvekseleiden ko-
rolla ja inflaatiolla on yhteinen, epilineaarinen komponentti, joka selittdd suuren
osan niiden pitkdn aikavédlin vaihteluista. Tdma yhteiskomponentti ei vaikuta
reaalikorkoon, miké tarkoittaa, ettd nimelliskorko ja inflaatio vaihtelevat pitkalla
aikavililld yhden suhteessa yhteen niin, ettd reaalikorko on stationaarinen. Vertai-
lu lineaarisiin vektoriautoregressiivisiin malleihin osoittaa, ettd epédlineaarisuuk-
sien huomiotta jittamiselld voi olla huomattavia vaikutuksia politiikka-analyysiin.

Asiasanat: epdlineaariset mallit, korko, inflaatio, kointegraatioanalyysi

JEL-luokittelu: C32, E43
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1 Introduction

The ex ante real interest rate is the key variable in determining the dynamics
of asset prices over time, which explains the widespread interest in its time
series properties. According to several empirical studies (see, eg Rose (1988)
and Mishkin (1992)) the real rate has been found to be integrated of order
one, and this is puzzling from the point of view of economic theory. The
classical framework for studying the behavior the real rate is the Fisher identity
which states that the ex ante real rate is the difference between the nominal
rate and expected inflation. The unit root hypothesis cannot typically be
rejected for nominal interest rates or inflation, and thus, nonstationarity of
the real rate would, according to this identity, indicate that these variables
are not cointegrated such that they move one-for-one in the long run. In
addition to violating the predictions of economic theory, this outcome is also
counterintuitive, and therefore, some authors have offered nonlinearities as an
explanation.

Garcia and Perron (1996) estimated univariate Markov switching autore-
gressive models for the U.S. monthly and quarterly real interest rate and in-
flation from 1961 to 1986, allowing for three different regimes. They found the
real rate random with shifts in the mean and variance in 1973 and 1981, and
attributed the shifts to the rise in the oil price and the current and expected
federal budget deficits, respectively. Hence, according to their results, there
were three different consecutive regimes, each occurring once, and the shifts in
mean made the real rate series seem nonstationary. Because of this structure
and because the regimes are not linked to any observable variables, the model
does not necessarily lend itself to further applications such as forecasting or
impulse response analysis, although it provides an ex post characterization of
the statistical properties of the real rate.

Evans and Lewis (1995) suggested that the finding of less than one-for-one
movement of the nominal interest rate and inflation in the previous literature
may result from peso effects. They estimated a Markov switching model with
two regimes for inflation using U.S. data from 1947 to 1987; potential non-
linearity of the interest rate was not considered. They pointed out that the
presence of regime switching may cause problems for inference on the relation-
ship between the nominal interest rate and inflation if the shifts in inflation
occur less frequently in the observed sample than implied by the model (that
agents use to form expectations). This explanation was supported by the fact
that the forecast errors produced by their model were autocorrelated in spite
of rational expectations. To take account of this peso effect, Evans and Lewis
(1995) used Monte Carlo simulation to obtain appropriate finite-sample distri-
butions of cointegration test statistics, and could not reject the null hypothesis
of long-run one-for-one movement of the variables, ie stationarity of the ex ante
real rate. The basic assumption, namely nonstationarity of the nominal inter-
est rate and inflation, is however, difficult to square with economic theory.
It is more likely that these variables can be characterized as near unit root
processes, in which case also simulation methods may not be appropriate for
computing finite-sample distributions of test statistics (see, eg Stock (1997)).



Recently Bierens (2000) has studied the comovement of U.S. nominal inter-
est rate and inflation nonparametrically. His methods are designed for model-
ing highly persistent time series and testing for nonlinear cotrending, and they
are motivated by the fact that albeit the dynamics of many economic time
series can be approximated by unit root processes and their comovements re-
semble cointegration relations, the presence of unit roots in their DGPs is not
plausible. In the empirical application to U.S. data from 1954 to 1994 the
interest rate variable was the Federal Funds rate, and the results lend support
to the one-for-one movement of nominal interest rate and inflation in the long
run.

In this paper we also analyze the relationship between U.S. nominal interest
rate and inflation, employing a nonlinear model, but the approach is different
from that of Garcia and Perron (1996), Evans and Lewis (1995) or Bierens
(2000). As in Garcia and Perron (1996), the basic idea is to formulate a model
in which the apparent nonstationarity is brought about by shifts in the level
and conditional variance. However, instead of a univariate model for the ex
post real rate, we consider a bivariate model for the nominal interest rate and
inflation. If this kind of nonlinearity really lies behind the observed persistence
of these time series, there may exist a linear combination of them devoid of
the nonlinearities. Should the real rate be such a linear combination, then this
can be interpreted in favor of one-for-one movement of the nominal interest
rate and expected inflation in the long run. Our model is a bivariate gener-
alization of the mixture autoregressive model of Lanne and Saikkonen (2000),
where the regime switches are directly linked to observable variables. This
facilitates interpretation of the results in comparison to the Markov switch-
ing models discussed above. Moreover, the approach is akin to cointegration
analysis, yet avoids having to resort to simulation methods, as in Evans and
Lewis (1995), which are potentially invalid in the presence of near unit root
variables. As far as comovement is concerned, our conclusions are the same as
those of Bierens (2000), but the fact that we specify a fully parametric model,
is interpretationally more convenient and facilitates further analysis. If the
testing for one-for-one movement of nominal interest rate and inflation would
have been our sole target, the tests due to Anderson and Vahid (1998) that do
not require the exact form of nonlinearity to be specified, could potentially also
have been employed. Their tests are, however, derived for strictly stationary
variables and are, hence, not expected to work well for time series exhibiting
unit root type behavior.

The plan of the paper is as follows. In Section 2 the econometric model is
introduced and parameter estimation and testing, including diagnostic checks,
are discussed. In Section 3 the model is fitted to quarterly U.S. data from
1952 to 2000. In addition to the estimates, the results of tests for common
nonlinearity as well as several diagnostic checks are presented. In addition, the
performance of the model is compared to linear autoregressive models with and
without conditional heteroskedasticity. Finally, Section 4 concludes.



2 Econometric methodology

2.1 Bivariate mixture autoregressive model

In this section we introduce the multivariate mixture autoregressive model.
As the main emphasis of this paper is to model U.S. inflation and short-term
interest rate, we concentrate throughout on the bivariate case, which also sim-
plifies notation. The generalization to higher-dimensional models is, however,
straightforward. The model is a direct extension of the mixture autoregres-
sive (MAR) model of Lanne and Saikkonen (2000), and in the same way as
their model can be interpreted as a threshold autoregressive (TAR) model
with smooth switching between the regimes, our model can be seen as a corre-
sponding generalization of the multivariate TAR model (see Tong (1990) and
the references therein).

For interpretation, it is convenient to present the model in its error-
correction form (for simplicity, we assume throughout that there are only two
regimes),

Ayy = HOlye1—p— 061 (Vyira>c+n) +T1Aye (1)
+--- +Fp—1Ayt—p+1 + €,

where y¢ = (y1t,y2)', IL and I'y through I',_; are 4 x4 coefficient matrices, p, 6
and 7 are 2 x 1 vectors, and I(-) is the indicator function. The error term g; =
(e1¢,€9¢)" is assumed to follow the bivariate normal distribution with mean 0
and covariance matrix H, n, ~ N(0,07), and &; and 7, are independent for all ¢
and s. If 0727 equals zero, the model reduces to a multivariate TAR model where
the linear combination v'y;_, serves as the threshold variable determining the
regime to which observation ¢ belongs, and c is the threshold value. Hence,
in this special case, observations for which the value of 'y, 4 is less than c,
belong to the lower regime where the equilibrium value in the square brackets
is p, and the rest to the upper regime with equilibrium value g+ 6. The
switching between these regimes is abrupt, occurring whenever v'y,_,; crosses
c. If, on the other hand, 0727 > 0, the switching between the regimes becomes
smooth in that even with known threshold value ¢, regime classification is
unknown. For instance, observation ¢ may belong to the upper regime even if
vY'y:_a < ¢, provided 7, takes a sufficiently large positive value. In economic
applications this kind of additional flexibility is likely to be relevant, as it
allows the current regime to depend on (unmodeled) random external factors
as well. The presence of extra noise might also be interpreted as representing
the heterogeneity of the views held by economic agents.

Model (1) is designed specifically for near unit root processes that cannot
really be I(1) processes on theoretical grounds. The idea is that the regime
shifts make a stationary vector process resemble an I(1) process; it is well
known that in the univariate case regime shifts can have this effect (see, eg
Perron (1989))!. Then, supposing that the differences of the variables are

Model (1) could, of course, be extended to allow for different autoregressive coefficients
across the regimes, but such an extension would not have the simple interpretation enter-
tained in this paper.



not characterized by such persistence, so neither is the term in the square
brackets in equation (1), and the term causing the persistence in the series,
I (¥'yi q > c+mn,), can be considered their common nonlinear (”trend”) com-
ponent provided neither 6; nor 65 equals zero. Furthermore, the linear com-
bination &' y;_1, where & 8 = 0, is devoid of this common component, and
this linear combination of the variables parallels the notion of a cointegrating
relation for strictly I(1) processes. For instance, if §; = 89, the linear combina-
tion that is free of I(1) type variation brought about by the common nonlinear
component, is the difference y; ;1 — y2¢1.

Although y; can conveniently be interpreted as following a generalized mul-
tivariate TAR model, it is, in fact, a mixture of two conditional bivariate nor-
mal distributions, which can be seen by writing its conditional density function
conditional on information at time t — 1:

—n _ 1 ,
fiily) = (2n) /2 |H| 1/2 {exp [—56’“H 161,5} (1 —mq)+

1
exp [—55’%H_152t} Wt_d} , (2)

where e, = Ay, — I (yr1—p) — Zﬁ’j Ay, ; and ey = Ay, —
II(y, 1—p—96) — Zf;i I';Ay,;. The mixing proportion 7, 4 =
@ (v'y;—q —¢), with ®(-) the cumulative distribution function of the stan-
dard normal distribution, gives the conditional probability of the process be-
ing in the upper regime in period ¢. Hence, equation (1) defines a mixture of
two bivariate VAR(p) models in error-correction form with mixing proportions
1 —m_4 and m;_4 corresponding to the lower and upper regime, respectively.
The conditional mean and covariance are defined analogously:

p—1

Eia(y:) = I +1) yeo1 —II[(1 — m—a)pp + m—a (0 + 6)]‘1‘2 LAy, (3)

=1

Covia(ye) = H+(1—mq) I (p—F) (u—m)' IT] +
mi—a [T (p + 6—F) (u + 6—m) ' II'] (4)

where I is the identity matrix and @ = (1 — m_g)p+m_q (p+8). Tt is
noteworthy that in addition to the covariance matrix H of the innovation
€, the conditional covariance includes two terms dependent on the mixing
proportions. Thus, although &; in model (1) is assumed to be homoskedastic,
the model implies conditional heteroskedasticity (and correlation), which is
prominent when 7;_4 is not close to 0 or 1, ie when ~'y;_4 lies close to the value
of the threshold parameter c. Larger conditional variance near the threshold
reflects the uncertainty in the regime switches modeled by the random factor
M-

In most economic applications, including interest rates and inflation, the
heteroskedasticity inherent in specification (1) is likely to be inadequate. For-
tunately, the model can relatively easily be extended to allow for various forms
of conditional heteroskedasticity. The simplest kind of extension consists only

10



of letting the covariance matrix of the innovations, &;, to depend on the regime
in the same way as the equilibrium value of the error-correction term. In this
case the covariance matrix H would be replaced by H;, ¢ = 1,2 in the condi-
tional density function (2), giving

n _ 1 _
fialy)) = (2m) "2 [Hi| 7 Sexp | —sel Hlen| (1 — mi)
2
“n _ 1 7
+ (27) 2 [Ha |12 {eXP {—aslthz 154 7Ttd} ’ (5)

and in the conditional covariance matrix (4) (1 — m;_q)Hi+m_¢Hs would
replace H. Both H; and H, would still consist of constant parameters, but
the model also lends itself to extensions with autoregressive conditional het-
eroskedasticity. The simplest possible bivariate GARCH specification, con-
sidered also in the empirical application of this paper, is Bollerslev’s (1990)
constant conditional correlation model in which each component of y; follows
its own GARCH(r, q) specification. Coupled with model (1) this implies a
conditional density function of the form (5) but with H; and Hs replaced by
H,; and Hy; defined as

H, — ( hitne P/ Pit1,ehioa s ) i—=1.9 (6)
* pz\/m iga ¢ 7

where

hijig = i+ Brshijie1 + -+ Bpihijjor + 1jes, 1+ + agies_ o (7)
i o= 1,2

Thus the conditional correlation in regime ¢ is indeed constant, p,. Note that
we have here assumed that the GARCH dynamics are the same across the
regimes but the extension to regime-dependent alphas and betas is, of course,
straightforward. Likewise, even more general GARCH formulations instead of
the constant conditional correlation specification discussed here, are possible.
Henceforth the bivariate model defined by equations (1), (6) and (7) will be
called the BVMAR(m, p, d)-GARCH(r, ¢) model, where m is the number of
regimes.

Above we have assumed that there are only two regimes, but it is straight-
forward to extend the model by augmenting the expression in the square brack-
ets in equation (1) with additional indicator functions, each with a different
threshold parameter and coefficient vector. It is also assumed that equation
(1) defines a stationary vector process. However, even for vector TAR models
the conditions ensuring stationarity are only known in some special cases (see,
eg Chan et al (1985)), and for our multivariate MAR model such conditions are
not available. Therefore, in any empirical application the practical approach
of examining stability by simulation methods should be taken. In Section 3
we employ the methods suggested by Gallant et al (1993).

11



2.2 Parameter estimation and inference

Having fixed the number of regimes, m, the orders of the VAR and GARCH
parts, p, r and ¢, respectively, and the delay parameter d, the BVMAR(m, p, d)-
GARCH(r, q) model can be estimated by the method of maximum likelihood
(ML) assuming normality. It is, however, easy to see that without additional
parameter restrictions the model is not identified because infinitely many com-
binations of v and (7727 yield the same value of the likelihood function. Restrict-
ing (7727 to unity would guarantee identification, but, alternatively, restrictions
could be imposed on «. Suitable identification restrictions are often suggested
by the economic theory under study; for instance, in Section 3 we set v =(0, 1),
meaning that y»¢4 (the lagged inflation rate) acts as the threshold variable.
Letting 0 denote the vector of the parameters of the model, the conditional
log-likelihood function can be written as

T
12(6) = Infi_i(ys; 6)

and maximized numerically to obtain the ML estimates. It is clear that the
likelihood function is twice continuously differentiable so that, assuming sta-
tionarity and ergodicity, it seems a reasonable aproach to apply standard as-
ymptotic theory in statistical inference on the parameters. In particular, as-
ymptotic standard errors are given by the diagonal elements of the matrix

. -1 .
— (a%(e) / 8989’) where 0 denotes the ML estimate of 8. Also, the hy-

pothesis of 1 1—q¢ — y2+—q being devoid of the nonlinear component, ie §; = 02
in the two-regime model, that is of great interest in the current application to
the real rate, can be tested using the standard likelihood ratio test.

A problem common to all regime-switching models like our BVMAR-
GARCH model, is the inapplicability of standard asymptotic inference in test-
ing hypotheses that imply a reduced number of component distributions. This
is due to the fact that under such null hypotheses there are unidentified nui-
sance parameters (see Davies (1977)). For instance, assuming homoskedastic-
ity, parameters ¢ and (7727 do not appear in model (1) under the null hypothesis
é = 0 and, therefore, are not identified.? However, assuming conditional het-
eroskedasticity dependent on the regime, there is no reason to expect standard
inference not to work satisfactorily because the parameters included in the
conditional covariance matrices are sufficient to identify ¢ and (7727. Conversely,
it is not possible to formulate a hypothesis that would imply only a reduced
number of regimes in the conditional covariance but no corresponding reduc-
tion in the conditional mean because the conditional covariance depends on 9.
Hence, there is nonlinearity in the conditional covariance matrix whenever §
differs from zero. In addition to a formal test, informal checks discussed below
as well as information criteria can be used to select the number of component
models.

2Recently computer-intensive methods to attack this problem have been suggested for
certain nonlinear models (see, eg Hansen (1996)), but their implementation to higher di-
mensional models in the present context does not seem practically feasible.

12



2.3 Diagnostic checks

After estimation, diagnostic checks are required to assess the adequacy of the
model and reveal potential misspecification. Typically, such checks are based
on visual inspection of and formal diagnostic tests based on the residuals of the
fitted model. In the case of the BVMAR-GARCH model (and its special cases),
however, the computation of the residuals is not straightforward. Intuitively,
an empirical counterpart of ; would be needed, but it is clear that it cannot
be obtained by plugging in the estimates into equation (1) because &; depends
on the unobservable error term 7,. Therefore, we must be content with the
following residuals that are only useful for checking the capability of the model
to describe the first two conditional moments of the observed process y;. These
residuals are obtained as
oy = Yit — Etfl(yz't)7 i=1,2
Vm“tfl(yit)

where Et_l(yit) and @“t_l(yit) denote the empirical counterparts of the con-
ditional expectation and variance of the ith variable computed at the ML
estimates, respectively (cf. Wong and Li (2000)). If the model is correctly
specified, e; is a martingale difference sequence with unit variance so that
pronounced autocorrelation or heteroskedasticity in e;; indicate misspecifica-
tion of the first two conditional moments. Note, however, that even if the
model is correctly specified, e, = (ey;, €a;)" is not normally distributed.

Apart from visual inspection of the series e, diagnostic tests can be used.
LM type misspecification tests robust to deviations from normality can be
derived following the approach of Wooldridge (1990), and in this paper we
present results for three types of hypotheses. First,to examine the adequacy
of conditional mean, we consider, for each equation in the model, an alterna-
tive that has p — 1 + s lags of Ay; in equation (1). In the BVMAR-GARCH
model the lag length also affects the conditional variance, but otherwise it
is assumed to be correctly specified. Under the null hypothesis that the lag
length is p — 1 the LM test statistics asymptotically follows the 2, distribu-
tion. Second, a similar test for the adequacy of the conditional variance in the
BVMAR-GARCH model is devised by assuming that the conditional mean is
correctly specified, and testing for an augmented GARCH specification with
q+ s lags of 5?,5 in equation (7) for each j against the specification with ¢ lags.
The asymptotic null distribution of the LM test statistic is the x? distribu-
tion. Finally, in the same way as the GARCH equations can be augmented
with lags of e?t, they can also be augmented with dummy variables to test
whether the conditional variance is modeled adequately to take into account
known exceptional periods. Each of the test statistics can easily be computed
from a sequence of least squares regressions (for details, see Wooldridge (1990,
Example 3.3) and Lanne and Saikkonen (2000)).

In addition to the diagnostic tests and visual inspection of the residuals,
there are a number of informal procedures that can be employed to evaluate
the performance of the estimated BVMAR-GARCH model. Probably the most
important of these involve checking for stability, because no general conditions

13



are known. First, conditional moment profiles introduced by Gallant et al
(1993) give information concerning the dependence of the first two conditional
moments on initial values, and such strong dependences would, of course, imply
nonstationarity. Second, simulating long realizations gives an idea of whether
the model is capable of generating series resembling the observed data. Such
a capability is not important only as a descriptive measure of the fit of the
model but also because simulation methods may subsequently be employed
in computing measures such as impulse response functions and unconditional
moments implied by the model.

3 Empirical results

In this section we study the time series properties of the U.S. nominal inter-
est rate and inflation, and provide evidence for the stationarity of the real
rate. A BVMAR-GARCH model is estimated and compared to linear specifi-
cations. The data are quarterly observed and span the period from 1952:I until
2000:I1I (195 observations). The interest rate variable is the U.S. Treasury bill
rate extracted from the H.15 release of the Federal Reserve System, and the
annualized inflation rate is computed from the seasonally adjusted® consumer
price index (for all urban consumers) provided by the Bureau of Labor Statis-
tics. Subsequently the inflation and interest rate will be denoted by #; and 7y,
respectively.

To describe the time series properties of the variables, unit root and cointe-
gration test results are presented in Table 1. In accordance with the previous
literature, the unit root null cannot be rejected for i; or r; and is only barely
rejected for the ex post real rate r; — i; at the 5% level by the ADF test.
The results for the cointegration tests are less clear-cut. Johansen’s trace test
indicates the presence of one cointegrating relation, and the hypothesis of this
relation being r; — 4; (allowing for a nonzero constant) cannot be rejected at
any reasonable significance level. This kind of two-stage procedure may, how-
ever, lack power when it is not known that the variables are I(1) processes,
as pointed out by Elliott (1995). Theoretically, the nominal interest rate and
inflation are expected to be stationary, and therefore, we also consider a joint
test of the two hypotheses derived by Horvath and Watson (1995). In this
case the joint test is likely to be more powerful than the two-stage test or the
unit root test for r, — i, (see, Horvath and Watson (1995, 1004)). According
to this test, stationarity of the ex post real rate is rejected at the 10% level.
In general, this evidence motivates the application of the BVMVAR-GARCH
model to these data.

3Results obtained using data without seasonal adjustment turned out to be virtually
identical.

14



3.1 BVMAR-GARCH model

Because it is difficult to devise an algorithmic model selection strategy for the
mixture autoregressive models, we experimented with different specifications
and, using a combination of diagnostic tests and informal checks, finally se-
lected a BVMAR(2,4,1)-GARCH(1,1) model that adequately seems to describe
the dynamics in the data. The four lags in the conditional mean specification
seem to adequately capture all seasonalities in the data; specifications with
seasonal dummies were also considered but the dummies turned out to be in-
significant. To keep the model practically manageable, two assumptions were
made at the outset. First, to identify the model, it was assumed that the
inflation rate is the threshold variable, ie v = (0,1)". Although other identi-
fying restrictions for v and (7727 were also entertained, this seemed to produce
the most easily interpretable results, classifying the data into low and high
inflation regimes. Second, it was assumed that the o and ( coefficients of the
GARCH specifications are independent of the regime, ie only level shifts in the
conditional variance were allowed for. In addition, the value of the delay para-
meter d was set equal to 1 which seemed the most natural choice for quartely
data.

The estimation results are presented in Table 2. Where applicable, the
estimates and standard errors of the parameters of the equation for r; appear
on the left and those of the equation for 7; on the right side of the table. The
specification assumes that p; = 0 and 6; = 62, and these restrictions cannot
be rejected (in likelihood ratio tests the p-value for the first restriction equals
0.11 and that of the second 0.21). The support for the latter restriction is
important because it implies that r;, — i; is devoid of the nonlinear component
such that the real rate is the long-run equilibrium relation between r; and
;. Although not all the remaining parameters seem significant, judged by
standard significance tests, futher restrictions turned out to lead to inferior
performance in diagnostic checks. The 'nonlinearity’ parameters 01, 62, ¢ and
o, are accurately estimated. The estimated value of the threshold between
the low and high inflation regimes is 4.01 and the estimate of the standard
deviation of the extra error term 7,, 0.82, is small relative to the variation
of the inflation rate series. Hence, the asymptotic 95% confidence interval
for ¢ is [2.40, 5.62|, indicating rather clear regime classification. In the high
inflation regime also the conditional variance of both variables as well as the
conditional correlation are much higher. The long-run equilibrium levels of r;
and 7; are 3.87 and 2.74 in the low inflation regime and 7.44 and 6.31 in the
high inflation regime, respectively. The diagonal elements of the IT matrix are
highly significant and negative as expected, whereas the nondiagonal elements
do not siginificantly differ from zero. Thus, within the regimes, when either
ry or 1; lies below its equilibrium value, it tends to increase, and conversely,
when it lies above the equilibrium value, it tends to decrease. Moreover, the
probability of a switch to the other regime is the higher the closer #;_; is to
the threshold value 4.01.

The nonlinear component in the model can be computed as the condi-
tional expectation of the estimated indicator function I (i;_1 > ¢+ 1,), and it
can also be interpreted as the smoothed conditional probability of the upper
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regime. This time series is graphed in Figure 1. The advantage of our model is
that the regimes are linked to observable inflation unlike in the Markov switch-
ing models of Evans and Lewis (1995) and Garcia and Perron (1996), which
facilitates interpretation. In general, the probability of high inflation was par-
ticularly low before the year 1966 and again after the year 1991. In the period
from 1972-1981 this probability was very close to one with the exception of
the first quarter of 1976. In other periods the probabilities more or less tend
to switch between very low and very high values quite frequently. The same
pattern is discernible in Figure 2 which depicts the conditional variance of r,
7 and r; — i;. For both variables the conditional variance is highest during
the Fed experiment period 1979-1982, but for the interest rate the difference
between this period and the rest of the sample is conspicuous. The conditional
variance of inflation has been steadily declining since 1983 until the very late
1990’s where a slight increase is to be seen. The pattern of conditional vari-
ance of the real rate resembles that of the nominal interest rate, but the peak
supposedly caused by the Fed experiment is less distinguishable due to high
conditional correlation during this period.

We also computed two further specification tests. First, the null hypothesis
of linearity in the conditional mean, 6; = 82 = 0, was clearly rejected (p-value
equals 6.00e-6). Second, a MVMAR(3,4,1)-GARCH(1,1) model was estimated
to find out whether a third regime would be significant. The null hypothesis
that reduces this model to the simpler MVMAR(2,4,1)-GARCH(1,1) model
involves four restrictions (63 = 0, 019 = 013, 092 = 093 and p, = p5), and the
obtained value of the likelihood ratio test statistic, 1.53, clearly falls short of
the 95th percentile of the x4 distribution, 9.49. As discussed in Section 2.2,
using critical values from the x? distribution is not, in fact, valid because under
the null hypothesis the second threshold parameter is not identified. However,
the appropriate critical value necessarily exceeds that from the x? distribution,
and, therefore, nonrejection using the x3 distribution can definetely be inter-
preted in favor of the null hypothesis. Hence, a two-regime BVMAR-GARCH
model seems to be sufficient.

Some results of robust diagnostic LM tests are presented in Table 3. In
the first two tests, labeled AR(5) and AR(6), the sufficiency of the conditional
mean specification is considered by testing the significance of one and two
additional lags, respectively. In neither equation of the model can the null
hypothesis be rejected at reasonable significance levels which lends support to
the adequacy of the specification. The remaining tests consider the conditional
covariance specification. The GARCH(1,2) and GARCH(1,3) tests test for the
significance of one and two additional lags of the squared error term in each
equation, respectively, and the results favor the BVMAR(2,4,1)-GARCH(1,1)
specification. Finally, the purpose of the structural break test is to test whether
the model manages to capture the effect of the "new operating procedures”
of the Federal Reserve (1979:1V-1982:111), especially the increased conditional
variance of both variables. According to the test results there is no remaining
unmodeled shift in the conditional variance due to this period.

The model can be used to compute forecasts of inflation and interest rate,
but only forecasts one quarter ahed can be obtained in closed form. Of par-
ticular interest is the difference between the ex ante real rate implied by the
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model, ie r; — Et_lit where Et_l denotes conditional expecation evaluated at
the estimated parameter values, and the ex post real rate r; — i;. These series
are graphed in Figure 3. Contrary to the findings of Evans and Lewis (1995),
the differences are not consipicuously large, except, maybe in the late 70’s. In
particular, Evans and Lewis (1995) pointed out that for their Markov switch-
ing model the discrepancy became very wide during the period beginning in
1980 when their model kept giving high inflation forecasts although inflation
had turned down. Consequently, the forecast error turned out to be strongly
serially correlated, lending support to their peso effect explanation. For our
model, however, no such discrepancy is visible, and according to Ljung-Box
tests (up to 10th order) the forecast residual is not significantly autocorrelated
at the 5% level. Hence, rationality of inflation expectations is supported even
without having to resort to peso effect explanations once nonlinearities are
taken into account.

3.2 Dynamic properties

In addition to formal tests, informal checks are required to assess the ade-
quacy of the selected BVMAR-GARCH specification. First, simulation meth-
ods must be employed to examine the stability of the model because no theo-
retical results are available. Second, by comparing simulated realizations and
implied unconditional moments from the BVMAR-GARCH and linear alter-
native models, the potential advantages of introducing nonlinear dynamics can
be judged. Finally, differences in measures such as impulse responses accross
different models should reveal how tenable the implied dynamics really are.

In order to check the stability, long realizations of the estimated mod-
els were visually inspected, and no obvious deviations from stationarity were
detected. For a more systematic stability check Gallant et al (1993) have
suggested computing the conditional mean and volatility profiles with a large
range of initial values, each profile obtained by computing the mean at every
point ¢t (t =1,...,T) of the respective moment from a large number of realiza-
tions. By over-plotting all these profiles we obtain a profile bundle whose shape
should reveal potential excessive dependence on initial conditions. If the bun-
dle retains its thickness, instability of the model is suspected, while if it gets
narrower over the sequence, this lends support to stability. The conditional
profile bundles for r; and i; implied by the BVMAR(2,4,1)-GARCH(1,1) model
are graphed in Figure 4. Each bundle consists of 100 profiles with 7" = 100
corresponding to different initial values randomly drawn from the observed
inflation and interest rate series. For the conditional variance bundles, the ini-
tial values were drawn from the conditional variances given by the estimated
model. Regardless of the initial value, all the conditional moment profiles
relatively quickly converge, which implies stability of the model.

In addtion to checking stability, simulated long realizations can be used to
compute unconditional moments implied by models. This serves as a comple-
mentary check of the reasonableness of specification and gives information on
the existence of unconditional moments that cannot, in general, be established
analytically. Series with at least one million observations were required to
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nail down the first two digits of the unconditional expectation and variance of
the estimated BVMAR-GARCH model; for skewness and kurtosis no conver-
gence was reached at even much longer realizations which suggests that higher
moments do not exist for these models. The unconditional mean and vari-
ance of ¢, i; and r; — i; implied by the estimated BVMAR-GARCH, VAR(4),
VAR(4)-GARCH(1,1)* models as well as estimated from the observed sample
are presented in Table 4. Although the unconditional variance of r; or i; is
not most accurately matched by the BVMAR-GARCH model, its implied mo-
ments are still relatively close to the sample moments, and for the real rate it
provides by far the best match among the models considered. This suggests
that due to the common nonlinear component, the nonlinear model is superior
in modeling the comovements.

The differences between the BVMAR-GARCH and linear VAR model can
be highlighted by computing the impulse response functions implied by them.
Simulation methods are required to compute the impulse response functions
for the nonlinear model, and they can depend on both the sign and size of the
shock as well as the initial regime. Furthermore, it is important to ascertain
that the shocks to be considered are consistent with the historical range of the
data. In a bivariate model this means that, when tracing out the effects of a
shock in one variable, the shock to the other variable must be adjusted to take
account of their contemporaneous covariance. Gallant et al (1993) suggested
visually examining a scatter plot of the data to determine the shocks that
appear typical relative to the historical dispersion. For simplicity, and to be
able to compare the impulse response functions to those of the linear VAR, we
only consider one standard deviation shocks (positive and negative) to both
ry and 7;, and the scatter plot suggests that it is reasonable to accompany
such a shock by a zero shock to the other variable. For the linear VAR model
orthogonalized shocks obtained by setting r; the latter variable are computed,
but the ordering turned out to be irrelevant for the conclusions.

The impulse response functions of the BVMAR-GARCH model graphed
in Figure 5 are obtained as follows. First, 1,000 realizations of the estimated
model are simulated, using all the observed values in the sample as initial
values. Second, another 1,000 realizations are simulated, adding a one stan-
dard deviation shock to the value of either of the variables at time 0. Finally,
the functions are obtained by computing the mean of the differences between
these two realizations at each lead 1,2,...,24. In fact, the graphs in Figure 5
correspond to the low inflation regime (i.e. in their computation the initial
value is selected among those observations for which iy is less than the esti-
mated threshold value 4.01), but with one exception, the differences between
the regimes are negligible. In general, the impulse responses converge to zero
relatively fast, and the effects of positive and negative shocks only differ in
sign. However, the effect of a negative shock to the interest rate on inflation is
initially smaller than that of a positive shock. In the high inflation regime this
outcome is reversed, which is also the only noticeable difference in the impulse
response functions across the regimes. The corresponding orthogonalized im-

4The GARCH part of the VAR-GARCH model is Bollerslev’s (1990) constant conditional
correlation specification.
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pulse response functions for a positive one standard deviation shock for the
linear VAR model are graphded in Figure 6. The functions for correspond-
ing negative shocks, of course, only differ in sign. The most striking feature
in comparison to Figure 5 is the slow convergence of the effects of shocks to
zero, i.e. according to the VAR model the effects seem to persist for a very
long time. As a matter of fact, over 20 years are required for all the functions
to attain zero which seems very unrealistic, and suggests the inapplicability
of the VAR model for policy analysis. Thus, although there are only minor
difference between the regimes, ignoring regime switching can strongly affect
the conclusions drawn from further analyses.

4 Conclusion

In this paper we have introduced a bivariate mixture autoregressive model and
applied it to model the relationship between the nominal interest rate and in-
flation in quarterly U.S. data from 1952 to 2000. Two regimes, interpreted as
low and high inflation regimes, seemed to be adequate to capture the nonlinear-
ities in the system. The model seems to fit the data relatively well which lends
support to the conjecture that the time series are stationary and the apparent
nonstationarity, implied by unit root tests, is brought about by shifts in the
level and conditional variance. Furthermore, it could not be rejected that the
two variables share a common nonlinear component such that the real rate is
devoid of nonlinearities in the level. This, in turn, suggests stationarity of the
real rate contrary to some findings in the previous literature, but in accordance
with economic theory. The finding of a common nonlinear component in the
nominal interest rate and inflation is a long-run phenomenon, ie the variables
move one-for-one only in the long run. However, there is no such implication
for the short-run movements, which accords with much of recent literature; see
eg Lanne (2001) where support is found for the short-run comovement only for
the period prior to the 'new operating procedures’ of the Federal reserve that
started in November 1979.

The new BVMAR-GARCH model turned out to perform relatively well
compared to linear alternatives. In particular, simulated realizations closely
resembled the observed time series and the unconditional moments closely
matched those actually observed. Furthermore, the impulse response func-
tions implied by the nonlinear model display much quicker decay towards zero
than the ones implied by the corresponding linear VAR model which is an
intuitively appealing feature. Although the model is very reduced, these dif-
ferences suggest that neglecting nonlinearities can give misleading conclusion
even in larger models.
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Figure 1: Smoothed conditional probability of the high inflation regime of the
BVMAR(2,4,1)-GARCH(1,1) model.
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Figure 2: The conditional variance of ; (top panel) and i; (middle) and r; — i,
(bottom).
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Figure 3: Ex ante (solid line) and ex post (dashes) real rates.
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Figure 4: Profile bundles of conditional mean and variance of the
BVMAR(2,4,1)-GARCH(1,1) model for r; (upper panel) and i; (lower panel).
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Figure 5: Impulse response functions of one standard deviation shocks to r;
(upper panel) and i; (lower panel) implied by the BVMAR(2,4,1)-GARCH(1,1)
model. The solid and dashed lines correspond to positive and negative shocks,
respectively.
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Figure 6: Impulse response functions of one standard deviation shocks to r;
(upper panel) and i; (lower panel) implied by the VAR(4) model.

r=>r r=>i

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
—0.0 7O‘OV\/\/¥’\’—/
-0.2 -0.2
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
P> S
2.0 2.0
1.6 1.6
1.2 1.2
0.8 0.8
0.4/W\\ 04
0.0

0.0
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24

24



Table 1:

Unit root and cointegration tests

Unit Root Tests

Variable ADF* 5% Cricical Value

T -2.34 -2.88

1t -2.33 -2.88

e — by -2.90 -2.88

Cointegration Tests®

Hypothesis Test Statistic ~ Critical Values
5% 10%

rank = 0° 23.80 20.04 17.81

rank < 1¢ 9.07 9.11 7.51

Real Rate Restriction? 0.23 3.84 2.71

Joint Restriction® 9.32 10.18 8.30

?The lag length is determined by step-down testing (Ng and Perron
(1995)) using a 5% level for each lag.

"The results are based on a VAR(4) model.

¢Johansen’s trace test.

9Likelihood ratio test of the ex post real rate being the cointegra-

tion relation.

“Wald test for the cointegration rank being one and the ex post

real rate being the cointegration relation.
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Table 2: Estimation results of the BVMAR(2,4,1)-GARCH(1,1) model.

Parameter Estimate Std.err. Parameter FEstimate Std.err.
I, -0.109 0.022 Iy 0.002 0.080
115D 0.007 0.023 1% -0.237 0.089
INRE! 0.030 0.078 Iy 91 0.047 0.169
INRD 0.045 0.024 [y 99 -0.586 0.099
11 -0.116 0.062 ['01 -0.052 0.163
I's10 0.094 0.024 ['s90 -0.239 0.103
I3 11 0.035 0.056 ['301 0.142 0.152
[312 0.067 0.018 [392 0.050 0.079

1y 3.873 0.319 Lo 2.741 0.517
o1 3.571 0.867 02 3.571 0.867
c 4.013 0.353
oy 0.824 0.349
o1 0.015 0.009 091 0.072 0.070
O12 0.172 0.069 092 0.476 0.306
o 0.783 0.208 Qo 0.076 0.050
o 0.204 0.098 By 0.855 0.079
Po 0.409 0.104

The standard errors are computed from the inverse of the final Hessian matrix.



Table 3: Diagnostic tests for the BVMAR(2,4,1)-GARCH(1,1) model.

Hypothesis Equation

T o
AR(5)" 0.546 0.331
AR(6) 0.555 0.584
GARCH(1,2)" 0.660 0.503
GARCH(1,3) 0.291 0.356
Structural Break® 0.606 0.885

All figures are marginal significance levels. The numerical deriv-
atives required in the calculation of the test statistics are computed

by the gradp routine in GAUSS.
“In the tests labeled AR(]) the alternative model is the correspond-

ing BVMAR-GARCH(1,1) model with  lags in the conditional mean

equation in question.
’In the tests labeled GARCH(1,l) the alternative model is the

corresponding BVMAR-GARCH(1,1) model with { lags of the squared

error term in the conditional variance equation in question.
¢The alternative model is the BVMAR-GARCH model with a

dummy variable for the period of the "new operating procedures"
of the Fed (1979:1V-1982:I1I) entering the conditional variance equa-

tion in question.

Table 4: Comparison of the unconditional moments estimated from the sample

and implied by the different models.

I't in Iy-ig

Mean Variance Mean Variance Mean Variance

Sample 5.38 787  3.88 1026 1.50
VAR(4) 1.57 574 4.69 10.80 -3.12
VAR(4)-GARCH(1,1)  5.32 764  3.40 790  1.92

BVMAR(2,4,1)
-GARCH(1,1) 5.61 507  4.06 827 154

6.36
10.09
8.79

5.84

The unconditional moments implied by the models are computed from simulated

realizations of 1,000,000 observations.
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