~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Ehrmann, Michael; Ellison, Martin; Valla, Natacha

Working Paper
Regime-dependent impulse response functions in a
Markov-switching vector autoregression model

Bank of Finland Discussion Papers, No. 11/2001

Provided in Cooperation with:
Bank of Finland, Helsinki

Suggested Citation: Ehrmann, Michael; Ellison, Martin; Valla, Natacha (2001) : Regime-dependent
impulse response functions in a Markov-switching vector autoregression model, Bank of Finland
Discussion Papers, No. 11/2001, ISBN 951-686-723-5, Bank of Finland, Helsinki,
https://nbn-resolving.de/urn:nbn:fi:bof-20140807559

This Version is available at:
https://hdl.handle.net/10419/211889

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:fi:bof-20140807559%0A
https://hdl.handle.net/10419/211889
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

BANK OF FINLAND
DISCUSSION PAPERS

11 . 2001

Michadgl Ehrmann — Martin Ellison —
Natacha Vala

Research Department
3.8.2001

Regime-dependent impulse
response functions
In a Markov-switching vector
autoregression model

Suomen Pankin keskustelualoitteita
Finlands Banks diskussionsunderlag



http://www.bof.fi

Suomen PankKki
Bank of Finland

P.0.Box 160, FIN-00101 HELSINKI, Finland
Z + 35891831



BANK OF FINLAND
DISCUSSION PAPERS

11 . 2001

Michagel Ehrmann* — Martin Ellison** — Natacha VVala***

Research Department
3.8.2001

Regime-dependent impul se response
functions in a Markov-switching vector
autoregression model

The views expressed are those of the authors and do not necessarily reflect the views of the
Bank of Finland.

The paper was finalized while Martin Ellison visited the Bank of Finland. We would like to
thank Mike Artis, Stephen Cecchetti, Roger Farmer, Soren Johansen and Frank Smets for
helpful comments.

*  European Central Bank, michael.ehrmann@ecb.int. This paper has been written before the
author joined the ECB.

**  European University Institute, ellison@iue.it.

***  European University Institute, valla@iue.it.

Suomen Pankin keskustelual oitteita
Finlands Banks diskussionsunderlag



http://mww.bof fi

ISBN 951-686-723-5
ISSN 0785-3572

(print)

ISBN 951-686-724-3
ISSN 1456-6184
(online)

Suomen Pankin monistuskeskus
Helsinki 2001



Regime-dependent impul se response functions
In a Markov-switching vector autoregression model

Bank of Finland Discussion Papers 11/2001

Michael Enrmann — Martin Ellison — Natacha Valla
Research Department

Abstract

In this paper we introduce identifying restrictions into a Markov-switching vector
autoregression model. We define a separate set of impulse responses for each
Markov regime to show how fundamental disturbances affect the variables in the
model dependent on the regime. We go to illustrate the use of these regime-
dependent impulse response functions in a model of the U.S. economy. The
regimes we identify come close to the “old” and “new economy” regimes found in
recent research. We provide evidence that oil price shocks are much less
contractionary and inflationary than they used to be. We show furthermore that
the decoupling of the US economic performance from oil price shocks cannot be
explained by “good luck” aone, but that structural changes within the US
economy have taken place.

Key words: vector autoregression, regime switching, shocks, new economy



Tilasidonnai set impulssivasteet markovilaisessa
kahden regiimin autoregressiomallissa

Suomen Pankin keskustelual oitteita 11/2001

Michael Enrmann — Martin Ellison — Natacha Valla
Tutkimusosasto

Tiivistelma

Tutkimuksessa kehitetéan talouden toimintaa kuvaavia aikasarjamallgja siten, etta
niilla voidaan kasitella talouden rakenteiden tilamuutoksia. Tama tehdaan liitté
maélla identifioivia rajoitteita markovilaiseen usean tilan vektoriautoregressiomal-
liin. Kullekin talouden tilalle méaaritellaén omat impulssivasteensa, niin etta talou-
den reaktiot haridihin riippuvat tilasta, jossa talous on. Né&ita tilasidonnaisia im-
pulssivasteita havainnollistetaan Y hdysvaltain taloutta kuvaavalla mallilla. Tutki-
muksessa tunnistettavat talouden tilat vastaavat |8heisesti “vanhan talouden” ja
”uuden talouden” regiimejd, jotka ovat tulleet esiin viimeaikaisissa tutkimuksissa.
Tulosten mukaan 6ljyn hintasokkien vaikutukset eivét nykyisin ole yhta kontrak-
tilvisia ja inflatorisia kuin aiemmin. Tutkimuksessa osoitetaan myos, ettéa Y hdys-
pu pelkéastéén sattumasta, vaan johtuu tal oudessa tapahtunei sta rakennemuutoksis-
ta

Asiasanat: vektoriautoregressio, regiiminmuutokset, sokit, uus talous
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1 Introduction

Vector autoregression models have rapidly established themselves as the dom-
inant research methodology in empirical macroeconomics. Their popularity
rests partly on their attractiveness as a unifying framework in which to analyse
alternative theories and hypotheses but also in the significant theoretical de-
velopments which enhance the basic unrestricted model. One increasingly
popular and important advance is to allow for Markov switching effects in the
model. Since the seminal contribution of Hamilton (1989), it has become com-
mon to model economic time series as vector autoregressive processes subject
to regime switches.

In a Markov-switching vector autoregression there are many parameters
which can switch across regimes. Since means, intercepts, autoregressive para-
meters, variances or covariances may all be regime-dependent, the number of
switching parameters is potentially very high. For example, in a four-variable
two-lag model in which intercepts, autoregressive parameters, variances and
covariances all switch, there is a total of forty-six switching parameters. Inter-
preting the estimation results from such a model is inevitably difficult. Whilst
mean switches may have a natural interpretation such as the business cycle
(like in Hamilton, 1989, or Krolzig and Toro, 1999), there is often no obvious
explanation for switches in other parameters.

The problem of interpreting the parameter estimates from Markov-
switching models is analogous to that of interpreting the parameter estimates
from a simple unrestricted vector autoregression. A now standard approach
suggested by Sims (1980) to the latter problem is to impose identifying restric-
tions on the parameter estimates and derive a structural form for the model
that has economic intuition. Central to this structural vector autoregression
approach is the use of impulse response analysis, which traces out how funda-
mental disturbances affect the variables in the model.

In this paper we argue that imposing similar identifying restrictions on
Markov-switching models can give significant insights into the characteristics
of the economy.! Our tool is the regime-dependent impulse response func-
tion, which traces out how fundamental disturbances affect the variables in
the model dependent on the regime. Instead of one set of impulse response
functions we have a set for each regime. The regime-dependent impulse re-
sponse function conveniently summarises the information in the autoregressive
parameters, variances and covariances of each regime, making interpretation
much easier than solely on the basis of the switching of individual parameters.
Asymmetries in terms of magnitude, persistence and significance of the impulse
responses are easily revealed by comparing the regime-dependent functions.

Our approach combines Markov-switching and identification in a two-
stage procedure of estimation and identification. In the estimation stage a
Markov-switching unrestricted vector autoregression model is estimated, al-
lowing means, intercepts, autoregressive parameters, variances and covariances
to switch or be constant as desired. In the identification stage restrictions are

IFor lovers of acronyms we might say we take a Markov-switching structural vector
autoregression (MS-SVAR) approach.



imposed on the parameter estimates to derive a separate structural form for
each regime, from which the regime-dependent impulse response functions can
be calculated.

The possibility of regime-dependent impulse responses has recently been
recognised by Krolzig and Toro (1999). However, they emphasise the response
of the economy to changes in regime rather than the impulse responses within
regimes. Our approach is also similar in spirit to that of Koop, Pesaran and
Potter (KPP, 1996). Their Generalised Impulse Response Functions (GI) differ
from the usual impulse responses in several ways. Traditional impulse response
analysis reports the results of an experiment where a shock hits a system at
time ¢, with no further shocks hitting afterwards, compared to a benchmark
case where the system stays unperturbed all of the time. KPP, on the other
hand, treat the future differently by allowing for future shocks, which are av-
eraged out eventually. The GI do not represent the responses to a shock of
a certain size and sign, but instead treat the shock itself as a random vari-
able. The GI are therefore reported in terms of density functions, rather than
time trajectories as usual. Our approach sticks to the traditional definition of
impulse responses in these respects. We are much closer to KPP’s GI in the
treatment of history: both approaches recognise that the impulse response can
depend on the point in time and the state of the economy at which the shock
occurs (eg, whether the economy is hit during a recession or expansion). In
general, KPP therefore treat not only the disturbance, but furthermore the
history as a stochastic process, which again leads to a density function for the
impulse responses. They also mention (p. 130) the possibility to condition “on
particular subsets of the history or the shock. For example, one might con-
dition on all histories where the economy was in recession in the most recent
period.” This idea is very close to the approach suggested here, in that what
KPP call ‘history’ in our case is a Markov switching regime.

To illustrate the use of regime-dependent impulse response functions we ap-
ply our approach to a model of the US economy. We are able to identify regimes
that come close to the “old economy” and “new economy” regimes identified
in recent research. We analyse how oil price shocks affect the economy within
the two regimes, and find that they are much less contractionary and infla-
tionary than they used to be. We show furthermore that the decoupling of the
US economic performance from oil price shocks cannot be explained by “good
luck” alone, but that structural changes within the US economy have taken
place. The impact of the 1999 /2000 oil price increases on the current economic
slowdown can therefore not have been of major importance.

2 Procedure

2.1 A Markov-switching vector autoregression model

Equation (1) describes a general Markov-switching vector autoregression
model. The K endogenous variables X; are explained by an intercept v;, au-
toregressive terms of order p and a residual A;u;. In this general specification



all parameters of the autoregression are allowed to switch between regimes? so

each of the m regimes is characterised by an intercept v;, autoregressive terms
By, ..., By and a matrix A;.

V1 + Bllthl + ...+ Bplthp + Alut if St — 1
Xy = :
U A+ BimXi—1 + o A BomXi—p + Ay if 5, =m (1)

Ug ~ N(OQ IK)

uy is a K -dimensional vector of fundamental disturbances which are assumed to
be normally distributed and uncorrelated at all leads and lags. The variance
of each fundamental disturbance is normalised to unity to give the identity
variance-covariance matrix. However, in equation (1) the fundamental distur-
bances are premultiplied by a regime-dependent matrix A;. Equation (2) shows
how consequently the variance-covariance matrix X; of the residuals A;u; will
also be regime-dependent.

In Markov-switching models the regime s; is assumed to follow a hidden m-
state Markov chain. The probability of being in regime j next period condi-
tional on the current regime 7 is assumed to be exogenous and constant. In
an m-state model there are m x m such conditional transition probabilities.
Equation (3) defines the conditional transition probabilities and collects them
into an exogenous transition matrix P.

Pr(sip1 = jlse = 1) = pj

P11 P12 " Pim
.. (3)
p_ P'21 P?Q ' P2.m

Pmi Pm2 " Pmm

2.2 Estimation

Estimation of a Markov-switching model entails joint estimation of all the
parameters and the hidden Markov chain followed by the regime. Since the
Markov chain is hidden, the likelihood function has a recursive nature: optimal
inference in the current period depends on the optimal inference made in the
previous period. Under such conditions the likelihood cannot be maximised
using standard techniques. The model can however be estimated by apply-
ing the Expectations-Maximization (EM) algorithm, see Hamilton (1990) and
Krolzig (1997). The first expectations step optimally infers the hidden Markov

2In the terminology of Krolzig (1997) this is an MSIAH(m)-VAR(p) model.



chain for a given set of parameters. The second maximisation step then re-
estimates the parameters for the inferred hidden Markov chain. These steps
are continued until convergence.

Applying the EM algorithm to the Markov-switching vector autoregres-
sion in equation (1) gives estimates of the parameters associated with each
regime, the transition probability matrix and an optimal inference of the hid-
den Markov chain followed by the reglme The estimation results therefore
consist of parameters {?;; Bh, ..y Bpi; )y i} for i = 1,... m, transition matrix
P, and the optimal inference 52 ;= Pr(st =) fori= 1 ymandt=1,...,T.
The latter are known as smooth probabilities.

2.3 Identification

We are interested in deriving the relationship between the fundamental dis-
turbances and the endogenous variables for each regime. The identification
problem arises because the EM algorithm gives only estimates of the variance-
covariance matrices X1, ..., >, and not the matrices Ay, ..., A,,. To identify
these matrices we have to impose restrictions on the parameter estimates from
the unrestricted model. The choice of which restrictions to impose is the
subject of the structural vector autoregression literature, see inter alia Sims
(1980), Blanchard and Quah (1989) and King, Plosser, Stock and Watson
(1991). To derive the conditional impulse response functions we are free to
impose a variety of identification schemes. As an example we describe below
the recursive form identification by Sims (1980).

Each matrix A4; has K? elements to be identified so K? restrictions have
to be imposed. The identity A;A; = ¥, from equation (2) naturally imposes
K (K + 1)/2 restrictions because of the symmetry of the variance-covariance
matrix ¥,;. This leaves K (K — 1)/2 missing restrictions. Sims (1980) derives
the additional restrictions by imposing a recursive structure on the model.
The endogenous variables are ordered and it is assumed that the fundamental
disturbance to a variable has only contemporaneous effects on the variable itself
and on variables ordered below it. For example, in a four-variable system the
third disturbance has only contemporaneous effects on the third and fourth
endogenous variables. Under this identification procedure the matrix A; is
lower triangular and is exactly identified. It can be easily recovered from a
Choleski decomposition of the matrix ;.

2.4 Regime-dependent impulse response functions

Standard impulse response analysis shows how the endogenous variables in the
model react to the fundamental disturbances. The impulse response functions
summarise expected changes in the endogenous variables after a one standard
deviation shock to one of the fundamental disturbances. For the Markov-
switching model we introduce an analogous concept, the regime-dependent
impulse response function. This describes the relationship between endogenous

10



variables and fundamental disturbances within a regime. Regime-dependent
impulse response functions are conditional on a given regime prevailing at the
time of the disturbance and throughout the duration of the response.

The validity of regime conditioning depends on the time horizon of the im-
pulse response and the expected duration of the regime. As long as the time
horizon is not excessive and the transition matrix predicts regimes which are
highly persistent then the conditioning is valid and regime-dependent impulse
response functions are a useful analytical tool. For a longer time horizon or
frequently switching regimes, it would be more attractive to condition on the
expected path of the regime throughout the response. Such impulse responses
could be calculated for our model and are close to the Generalised Impulse
Response Functions of Koop, Pesaran and Potter (1996). However, the addi-
tional information they contain is limited when regime switches are exogenous
and regimes are persistent.

In our general model there are mK? regime-dependent impulse response
functions, corresponding to the reaction of K variables to K disturbances in
m regimes. Equation (4) mathematically defines the regime-dependent impulse
response functions for regime ¢. It shows the expected changes in endogenous
variables at time t+ h to a one standard deviation shock to the k-th fundamen-
tal disturbance at time ¢, conditional on regime 7. A series of K-dimensional

response vectors O, 1, ..., 0k, predict the response of the endogenous vari-
ables.
OFE, X,
St tth = gki,h for h 2 0 (4)
aukvt St:n-:st-i-h:i

Estimates of the response vectors can be derived by combining the parameter
estimates of the Markov-switching unrestricted vector autoregression with the
estimate of the matrix A; obtained through identification restrictions.?

The first response vector measures the impact effect on endogenous vari-
ables of the k-th fundamental disturbance and is easily estimated. A one
standard deviation shock to the k-th fundamental disturbance implies that
the initial disturbance vector is uo = (0,...,0,1,0,...,0), i.e. a vector of ze-
ros apart from the k-th element which is one. Premultiplying this vector by
the estimate of the regime-dependent matrix A; as in equation (1) gives the
impact responses.

The remaining response vectors can be estimated by solving forwards for
the endogenous variables in equation (1). Equations (5) and (6) show the
solution linking the estimated response vectors with estimated parameters.

ék’i,O = Aiuo (5)
min(h,p)
ka = Z Bh I Aug for h > 0 (6)

3Recall that in our example of the Sims (1980) recursive identification scheme the matrix
Aj; is identified by a Choleski decomposition of the estimated variance-covariance matrix 5.
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2.5 DBootstrapping

It is possible to gauge the precision of the estimated response vectors by em-
ploying standard bootstrapping techniques. The technique involves creating
artificial histories for the variables of the model and then submitting these his-
tories to the same estimation procedure as the data. The artificial histories are
created by replacing the parameters in the model with their estimated values,
drawing residuals whose moments are determined by the estimated variance-
covariance matrix, and then calculating the endogenous variables. Since the
artificial histories are typically short samples their estimates will not coincide
exactly with those from the original data. By creating a large number of ar-
tificial histories we can therefore make a bootstrapped approximation to the
distribution of the estimated parameters.

In Markov-switching the bootstrapping is complicated by the presence of
the hidden Markov-chain determining the regime. To create an artificial his-
tory it is first necessary to create a history for the regimes and to then use this
to continue with the endogenous variables. The full procedure consists of five
steps for each history.

1) Create a history for the hidden regime s;. This can be done
recursively using the definition of a Markov process (3) and replacing the
exogenous transition matrix with its estimated value P. At each time ¢ we
draw a random number from a uniform [0,1] distribution and compare it with
the conditional transition probabilities to determine whether there is a switch

in regime.

2) Create a history for the endogenous variables. Again this is done
recursively, on the basis of equation (1). All parameters are replaced by their
estimated values and new fundamental residuals are drawn from the normal
distribution u; ~ N (0; Ix). Equation (1) can then be applied recursively using
the artificial regime history created in step one.

3) Estimate a Markov-switching vector autoregression, using the
data from the artificial history. Estimation gives bootstrapped estimates of
the parameters {7;; By, . . ., Bm-; >} for i = 1,...,m, the transition matrix P,
and the smooth probabilities EM =Pr(§y=id)fori=1,... mandt=1,...,T.

4) Impose identifying restrictions. Applying the same restrictions as
to the data provides bootstrapped estimates of the matrices Ay, ..., A,,.

5) Calculate the bootstrapped estimates of the response vectors.

Substituting the new parameters By, ..., By and A; into equations (5) and
6) gives bootstrapped estimates of the response vectors 0y; o, . . ., O n, for each
g b b
regime 1 = 1,...,m.

Applying the above five steps for a sufficiently large number of histories
gives a numerical approximation to the distribution of the original estimates
01, . ..,0,. In impulse response analysis this distribution forms the basis for
adding confidence bands to the central estimate of the impulse response func-
tion.

12



3 An illustrative example

To illustrate the use of regime-dependent impulse response functions, we
analyse how oil price shocks are transmitted to output and inflation in the US
economy. Oil prices increased sharply during 1999 and 2000 to a level that had
not been reached since the Gulf war. Yet, unlike during other previous periods
of similar oil price increases, this time there was only little concern that the
effects of this oil price shock would impinge on the US economy. Three reasons
have been suggested why oil price shocks should be less of a concern nowa-
days than they used to be.! One explanation hinges on the “new economy” —
the recent increase in productivity due to the development in information and
production technologies is believed to have insulated the economy: the prof-
itability of production now seems to be much less dependent on labour and
non-labour input costs. The second reasoning proceeds in a similar way. The
oil price shocks of the 1970s have led to massive improvements in the energy
efficiency of the US economy. Therefore, overall economic performance is much
less vulnerable to oil price increases than it used to be. A third explanation
relates to the insulation of the economy by better monetary policy. With the
Fed acting more aggressively to keep inflation expecations under control, oil
price increases will not lead to a similar rise in inflation expectations, as has
already been seen during the Gulf war oil price shock of the 1990s.

However, at the moment there are signs of a considerable slowdown in the
US economy. It is therefore useful to investigate whether this could be a conse-
quence of the oil price increase, and thus whether the old relationship between
oil price increases and recessions has reappeared. To do so, we estimate a small
VAR model including capacity utilisation, the consumer price index excluding
energy prices and the spot price for Saudi Arabian light oil (in US$ per barrel).
The data are monthly and span 336 observations from 1973:1 to 2000:12.

We begin by estimating an unrestricted Markov-switching VAR.? We as-
sume the existence of two distinct regimes and allow intercepts, autoregressive
parameters, variances and covariances to all switch between regimes. The lag
length was chosen to be three, to ensure that the residuals are serially uncor-
related (see figures A1 and A2 in the appendix). This lag length is supported
by one of the specification tests.® The results of our analysis remain basically
unchanged, whether we use two or three lags.

AIC HQ SC
lag length =4 -4.418 -3.998 -3.364
lag length =3 -4.609 -4.271 -3.763
lag length =2 -4.572 -4.317 -3.933

The estimation results support the following transition matrix for the two
regimes.

4See, eg, Kliesen (2001).

5Estimations are performed using the MSVAR. 0.99 package for Ox 2.10.

6Non-stationarity of the variables does not impose problems with the estimations. Our
residuals are reasonably behaved, as shown in figures A1 and A2 in the appendix. The
interpretability of test statistics on the regression parameters is achieved by using bootstrap
techniques.
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5 [0.96 0.04
P= {0.03 0.97}

The regimes are estimated to be very persistent, with expected durations of 25
and 40 months respectively. The lower panel of Figure 1 reports the estimated
smooth probabilities of being in regime 1. The US economy appears to have
been in regime 1 up to 1986 and in regime 2 ever since. Whereas since 1986 no
regime switch has occured, the regimes have been switching somewhat more
frequently up to 1986.

1985 1990 1995 2000

—— smoothed prob,, regime1 |

i |—— commodity priceinflation |
.02

RIZTETEN N J\ e WM
AT e V

o

Figure 1: Capacity utilisation and smooth probabilities

The timing of the regimes already gives a first indication as to how they differ
from each other. It is well known that the US economy has been much less
volatile since mid 1980, and that oil prices themselves have increased their
variability around that time.” The upper panel of figure 1 plots capacity
utilisation, where the volatility of the series decreases strongly around 1985.
However, the estimated model allowed all other parameters to switch as well,
so it is not immediately obvious what other changes might have occured. A
simple first step towards characterising the regimes is therefore to investigate
which of the parameters in the model switch significantly between the regimes.
Table 1 lists all parameters that switch at a 95% level of significance.

"On the decreased volatility in the US economy, see McConnell and Perez-Quiros (2000)
and Kim and Nelson (1999). On the increased volatility of oil prices see, eg, Hamilton
(1996).
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Parameter state 1 state 2 t-statistic

bii 1.355 1.032 2.36
by —923.424 59.762 —1.98
bass 0.103 —0.338 2.43
bass —0.175 0.095 —2.19
bs1 —0.249 0.875 —2.48
b3z 9.032 412.83 —2.24
b3os —31.328  —571.636 3.29
baas 0.115 —0.107 2.13
67 0.449 0.169 3.85
63 53x107% 9.6 x 1077  4.97
63 0.449 5.665 —6.86

Table 1: Significantly switching parameters®

The most significant switches do indeed occur for the variances of all three
variables. Capacity utilisation and prices have a lower variance in regime 2,
but the variability of oil prices increases. On top of this, there are many
more autoregressive parameters which change markedly across regimes. This
makes us believe that regime dependent impulse responses will be a useful tool
to draw a more complete picture of the differences between regimes. As in
the example in Section 2.3., we identify the impulse responses by assuming
a recursive structure for the model. The variables are ordered as capacity
utilisation, CPI excluding energy, and the oil price. Positioning the oil price
last in the vector autoregression implies that it can react to all variables, but is
unable to affect capacity utilisation and prices within the same month. This is
in line with the general assumption that prices which are determined in highly
ligiuid markets like commodity exchanges react instananeously to the arrival
of news, whereas output and consumer prices react more sluggishly.

The responses of all variables to an oil price shock are shown in Figure 2.
Responses are regime-dependent: the left-hand diagrams correspond to regime
1 whilst the right-hand diagrams refer to regime 2. To make the two sets of
responses comparable, we have normalised the size of the oil price shock to
$1 for both regimes. The dashed lines are one standard deviation confidence
bands calculated on the basis of 1,000 bootstrap replications.’

8The notation is as follows: Eijk denotes the parameter in equation ¢, on variable j, with
lag k. bi2s therefore denotes the parameter on the third lag of CPI in the capacity utilisation
equation. The variances are written as 7.

9A program in Ox 2.10 to calculate the impulse response functions and associated confi-
dence bands is available from the authors on request.
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Figure 2: Responses to an oil price shock

In both regimes, the impulse responses show a significant effect of oil price
shocks on capacity utilisation and prices. An increase in oil prices leads to
a fall in production, and to inflationary pressures. A closer look reveals that
there are quite remarkable differences across regimes. Firstly, the scale of the
impulse responses differs strongly. An oil price shock of the same magnitude
has much lower effects on output and prices in regime 2 than in regime 1. The
maximum response of capacity utilisation is around 6 times as large in regime
1 than in regime 2, and approximately three times as large for prices.

Another difference in the responses across regimes is found in the timing of
the effects. Wheras an oil price shock in regime 1 contracts capacity utilisation
for nearly 20 months, the effects are much more short-lived in regime 2, where
capacity utilisation starts to recover already after 10 months. The timing of
the price response seems fairly similar across the two regimes. It is interesting
to see that prices tend to fall back towards their old level in regime 2. The
point estimates for regime 1 show a similar reversion, but due to the increasing
width of the error bands this effect cannot be verified.

Oil prices themselves show a different pattern in their return to baseline.
In regime 1, they are much more persistent than in regime 2. This might be
an explanation why the output response is more protracted in this regime.

In order to evaluate whether the regime-dependence of our impulse re-
sponses conveys additional information, it is helpful to compare the results to
those of a conventional VAR. Figure 3 reports the impulse responses to an oil
price shock, which have been calculated in exactly the same way as before, but
without allowing for Markov switching regimes. Obviously, the responses are
an average of those for the two separate regimes in figure 2. Several points are
worth mentioning here. Firstly, in order to gauge the effects of the 1999/2000
oil price shock on the US economy, a conventional VAR analysis would have
been misleading. Not accounting for the differences across regimes results in
impulse responses which underestimate the effects in regime 1, whereas they
overestimate the consequences of an oil price shock in regime 2, the current
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regime. In a conventional VAR estimate, Deravi and Hegji (1992, p. 1) found
that “a negligible percentage of inflation’s forecast error variance can be at-
tributable to increases in the price of 0il” — which can be due to mixed evidence
over their sample period 1970 to 1990.
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Figure 3: Responses to an oil price shock in a conventional VAR

Another interesting aspect of this figure is that the bootstrapped error bands
are not only highly asymmetric, but sometimes do not even wrap the point
estimate. This is a sign for seriously non-normal residuals in the estimation, a
suspicion which can be substantiated by looking at the residuals in figure A3
in the appendix. The residuals in the conventional VAR suffer from ARCH
effects and are by no means normally distributed. On the other hand, the
Markov switching residuals are much better behaved, as can be seen by the
much more symmetrically bootstrapped error bands and by looking at a plot
of the residuals and according test statistics in figures A1 and A2.

The results of our regime dependent impulse responses are very much in line
with earlier findings. Hutchinson (1993) estimates that an oil price shock of
identical magnitude has only one fourth of the contractionary effect on GDP in
the 1980s compared with the 1970s, and similarly so for inflation. Hutchinson
achieves these results by splitting the sample in two subperiods. This means
that he has to impose the regime shift, whereas we can identify it endogenously.
Also, he has to estimate two different models where no direct testing across
regimes is possible.

Additionally, our Markov-switching model allows for further regime shifts.
We do not a priori restrict the US economy to stay in regime 2, as is done by
splitting the sample. The fact that the model could not detect another regime
shift for the latest oil price shocks is in itself interesting, because it means that
(at least up to now) there are no signs that the US economy would react to
this shock in the way it used to do in the 1970s and early 1980s.

Estimating the VAR within one model allows us to perform some tests on
a very recent controversy around the stabilisation of the US economy. The
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marked reduction in volatility of many US macroeconomic variables in the
1980s has be supported by several explanations. On the one hand, it has been
argued that this is due to “good luck”, that the US economy has been hit
less by adverse structural shocks.!” Another explanation is that the volatility
reduction came about because of technological advances that allowed firms
to improve their inventory management (“good practices”).!! Thirdly, it has
been argued that “good macroeconomic policies” have reduced the business
cycle volatility.'?

In a first experiment, we test for the “good luck” theory, taking it at face
value. We use the actual identified shocks that were hitting the US economy,
and feed them through the VAR model of regime 1. This way, we assume a
constant structure of the economy, but allow for the reduced volatility of shocks
that affect the economy. Figure 3 reports the results of this experiment: the
solid line represents the actual time path of capacity utilisation, whereas the
dotted line shows its predicted time path for a constant economic structure.
Had it not been for the change in the structure of the economy, there would
have been a recession in 1999 equal in magnitude to that of 1991 — the last
official NBER recession. The economic structure we have estimated for regime
2 seems to be in a better shape to cope with the structural shocks that the US
economy actually experienced in the last years. Without another ingredient
from the “good macroeconomic policy” or “good practices” explanations, the
observed reduction in output volatility would at least not have been as strong
as it was.

[ |— actua (\
86| predicted I

82

781

761

1 1 1 1 1 1 1 1
1986 1988 1990 1992 1994 1996 1998 2000

Figure 4: Predicted and actual capacity utilisation

In a similar vein, we conduct a second experiment that forces the oil price
shocks in the regime 2 to be identical to those experienced in regime 1. The
shocks differ with respect to their persistency, with those in regime 1 being

¥or an overview of the various hypotheses, see Ahmed et al. (2001).
1See McConnell and Perez-Quiros (2000).
2Gee Clarida, Gali and Gertler (2000).
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much more persistent than those in regime 2. Assuming that the persistency
of shocks is exogenous (hence not determined by, eg, the monetary policy
response'®), what if one of these “bad”, persistent shocks would hit the US
economy today, in regime 27 Figure 5 answers this question. Naturally, the
response of output and prices would be more protracted than they are other-
wise in regime 2. However, the magnitude of responses still does not compare
to those found in regime 1. We can therefore conclude that the severe output
contractions and price increases that follow oil price shocks in regime 1 are
not only a consequence of the persistency of the shocks; shocks with the same
pattern in regime 2 do still cause much less disruption in output and prices.
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Figure 5: Effects of a regime 1-type oil shock hitting in regime 2

4 Conclusions

This paper has developed a tool for the analysis of Markov switching VAR
models. Very often, the Markov regimes in models where many parameters are
allowed to switch are very hard to interpret. Our regime dependent impulse
responses can help in this respect. By imposing structure spearately on each
regime, it is possible to derive two sets of impulse response functions that
characterise the different patterns of the economy when in different regimes.
Our illustrative example shows how regime-dependent impulse response
functions can give valuable insights into the characteristics of regimes in a
Markov-switching model. For the US economy, we are able to identify two
regimes which track the recently documented change in volatility of the US
economy. The two regimes do not only differ with respect to the variances
of variables, but also with respect to several autoregressive parameters. The
model shows that the two regimes are distinctly different as to how they absorb

13This might be a reasonable assumption for oil price shocks, which most probably depend
much more on OPEC’s behaviour.
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oil price shocks. Recently, these shocks have had a much less disruptive effect
on the US economy. Since we can estimate the two regimes within one model,
we can show that these effects cannot be explained by “good luck” alone.
Our approach is applicable to a wide variety of situations. If the estimated
regimes can be characterised directly in terms of individually switching pa-
rameters then regime-dependent analysis can give a deeper understanding of
the economy. For example, Ehrmann (2000) identifies business cycle regimes
in Germany and then uses regime-dependent analysis to demonstrate that
monetary policy tends to be more effective when the economy is in recession.
Alternatively, it may be almost impossible to characterise the regimes on the
basis of individual parameters. For example, Ellison and Valla (2000) find
evidence of persistent regimes in the G7 economies but the regimes have no
natural interpretation in terms of individual switching parameters. However,
the regime-dependent impulse response functions reveal that the regimes are
associated with periods of high and low monetary policy effectiveness.
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A Residual analysis
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Figure Al: Residuals in the Markov Switching VAR
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Figure Al: Residuals in the Markov Switching VAR
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