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Consumption and Uncertain Access
to the Asset Market

Bank of Finland Discussion Papers 23/2000

Leena Rudanko
Research Department

Abstract

This paper presents a new approach to modelling credit restrictions by considering
uncertain access to the asset market. The asset market and the stochastic process
governing access are considered fully exogenous and independent of income. The
model generates stable debt trajectories for a broader array of interest rate levels
than the one corresponding to the agent’s rate of time preference. The agent
exhibits excess sensitivity of consumption to current period income, even for low
probabilities of constraints. Because this sensitivity is inversely related to the
maturity of debt contracts, the availability of long-term debt contracts reduces the
income-sensitivity of consumption. A very tractable approximative Euler equation
for the model is presented.

Key words: consumption, liquidity constraints, permanent income hypothesis



Kulutus ja epdvarma péasy rahoitusmarkkinoille

Suomen Pankin keskustel ual oitteita 23/2000

Leena Rudanko
Tutkimusosasto

Tiivistelma

Tutkimuksessa esitetddn uusi, epdvarmaan rahoitusmarkkinoille paasyyn perustu-
vatapa mallintaa luottorajoitteiden vaikutusta kulutuskysyntaan. Rahoitusmarkki-
noita ja niille padsya maérittelevaa stokastista prosessia kasitelldan téysin ekso-
geenisina ja tuloista riippumattomina. Mallin mukaan velkaantumisurat ovat sta-
biilgja silloinkin, kun korkotaso ei ole tdsmalleen sama kuin kuluttgjan aikaprefe-
renssi. Jos on pienikin epavarmuus rahoitusmarkkinoille paasysta, kuluttajaylirea-
goi tulojen muutoksiin. Tama ylireagointi riippuu negatiivisesti velkasopimusten
maturiteetistac mita pitemmét velkasopimukset, sitéd véahemman kulutuksella yli-
reagoidaan tulojen muutoksiin. Tutkimuksessa johdetulle mallille esitetdan myds
hyvin kayttokel poinen likimaaréinen Eulerin yhtal o.

Asiasanat: kulutus, likviditeettirgjoitteet, pysyvaistulohypoteesi
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1 Introduction

The permanent income hypothesis of consumption, developed by Friedman
(Friedman 1957) is based on the assumption that individuals can optimize with
respect to their consumption expenditure subject only to the constraint that
the present value of their expenditure cannot exceed their total wealth, defined
as the present value of their expected future resources. Hall (Hall 1978) formal-
ized the permanent income hypothesis in the rational expectations context and
showed that, under certain assumptions,! this implies that unexpected changes
in consumption must result from revisions of expectations of the present value
of future income. Consumption expenditure thus follows a martingale. Fur-
thermore, transitory changes in current income should have only a very small
impact on current consumption.

The failure of this implication of the permanent income theory to hold
in empirical data is referred to as the excess sensitivity of consumption.
Changes in consumption seem to depend on current and previous income (see
eg (Flavin 1981); (Campbell and Mankiw 1991)). As the assumptions in Hall’s
version of the permanent income model are quite restrictive, there has been
room to generalize the model in several directions in order to reconcile the
theory with the excess sensitivity and other anomalies. In this paper, we will
consider one such generalization, namely credit restrictions which may hinder
the individuals’ ability to move their lifetime resources over time.

Credit restrictions have been considered before (see eg. (Deaton 1991)).The
usual way to incorporate credit restrictions to the theory of consumption is to
assume that lenders impose some given maximum on the amount of debt the
individual may incur. Deaton considers a model where the debt maximum
is set to zero. He finds that in such a models, the reaction of consumption
to income "news” depends on the relative impatience of consumers and the
time series properties of income in a complicated way. Saving may behave
countercyclically in some cases, or procyclically in others, or there might even
be no saving at all (the last case is obtained when income follows a random
walk).

In empirical work attempting to take credit restrictions into account, the
most common approach has been to assume that households are heterogeneous
in such a way that a fraction of the population is permanently excluded form
the credit markets, and the rest are free to operate as assumed in permanent
income theory (see (Campbell and Mankiw 1989), (Campbell and Mankiw
1991); (Hall and Mishkin 1982)). The consumption of the credit constrained
households is assumed to equal their income. If the fraction of the credit
constrained households is 7, aggregate consumption is given by ¢ = (1 —
) ey + mc.. Consumption of the unconstrained households ¢, would follow the
permanent income hypothesis, and the consumption of the credit constrained

!The assumptions are (Muellbauer 1994): 1)no credit restrictions or other nonlinearities
in the budget constraint, 2) separable lifetime utility with quadratic periodic utility, 3)no
habits or adjustment costs, 4) non-durable goods, 5)the subjective discount rate is constant
across consumers, 6)no measurement errors or transitory shocks to consumption, 7)coinci-
dence of the frequency of consumers’ decision making with the the frequency of the data,
8)constant real interest rate, 9)rational expectations.



would be simply equal to their income ¢, = y.. While this kind of an auxiliary
hypothesis may serve to reconcile the permanent income theory to aggregate
data, it is highly arbitrary and lacking in theoretical justification.

Our paper explores another way of including credit constraints to the in-
tertemporal theory of consumption. We do not divide the households into
permanently different categories regarding their access to the credit market
(that would be theoretically unwarranted in any case, if the households are
equal in other respects). Instead, we study the possibility that credit con-
straints are stochastic: In each period any individual has a fixed probability of
being unable to borrow. For simplicity, we consider the symmetric case that
the same stochastic restriction applies also to saving. Therefore, our model
actually describes a situation in which there is exogenous uncertainty concern-
ing access to the asset markets. The probability of restrictions is constant and
independent over time. It is also independent of income changes.

The assumption of stochastic access to the assets market might be justi-
fied by arguing on the basis of some exogenous noise in the operation of the
markets. Unless there is symmetric information on the creditworthiness of in-
dividuals and on the quality of assets, there is always a possibility that some
individuals may be classified as not creditworthy even though they themselves
would see scope for further borrowing. Similarly, some assets may be occa-
sionally difficult to sell. Our model, then, looks at the saving and borrowing
behavior of individuals who take these risks prudently into account.

It turns out that our approach yields simple and tractable first order con-
ditions, at least as approximations (exact first order conditions are also simple
for the basic case when the period length of the model is the same as the ma-
turity of the debts and investments considered). Therefore, due to tractability,
the model may be a promising starting point for theoretical macroeconomic
analyses.

We find that for even small probabilities of constraints occurring, the model
produces strong excess sensitivity of consumption to transitory income shocks.
Another finding is that the stochastic credit constraints approach yields stable
debt trajectories even when the interest rate and the rate of time preference of
the consumers are constant but different. This is a property which is lacking
from the basic permanent income model of Hall (Hall 1978). Finally, our
model has the interesting property that the maturity of available debt matters
for saving and the demand for debt. The longer is the maturity (in the sense
that the ratio of amortizations to debt is low), the larger amounts of debt (or
assets) the individuals are willing to have in equilibrium.

In what follows we begin by introducing the model and discussing the an-
alytical properties of the resulting asset positions. This is mainly done by
considering the respective Euler equation or an approximation of it. For the
general case a simple exact Euler equation cannot be found but a tractable
approximation is readily available. We then explore the implications of the
model in the case of logarithmic utility with the help of numerically solved
value functions for the (exact) corresponding Bellman equation. In the case
of stochastic income we compute resulting correlations of current period con-
sumption and income for the representative agent, obtaining values in the range
of 0.17-0.76 for the parameter values considered. Finally we go on to inspect



the goodness of the approximate Euler equation compared to the numerically
obtained solution of the exact Bellman equation. We find that the goodness
of the approximation depends on parameter values so that a small probability
of restricted periods occurring appears to make the approximation better.

2 The life cycle model: an extension

In the basic infinite horizon life cycle model, the consumer chooses his con-
sumption ¢; each period based on the available knowledge about his present
and future income yy, t = o, t1,. .., (y: > 0), interest rates R; and his own pref-
erences. Instead of having to spend what he earns each period, the consumer
can use the asset market to redistribute his income between time periods. We
denote by a; the asset position (i.e. net wealth) of the consumer at the begin-
ning of period ¢. If a; > 0 the consumer has savings and if a; < 0 the consumer
is in debt.

Preferences over consumption streams are modeled with an intertempo-
ral utility function U : {¢;}2,, — R, where ¢, € R, ¢; > 0 Vt. The con-
sumption decisions are made to maximize the utility function U(c), where
¢ = {¢, ¢y, - .-} and in the presence of uncertainty, to maximize expected
utility Ey,U(c). By Ei, we refer to the expected value conditional on the in-
formation available in the present period t = ty3. The consumption decision is
restricted by the requirement that the discounted value of future consumption
must equal the expected discounted wealth of the consumer. In the absence of
borrowing restrictions the consumer is free to distribute his income over time
as long as consumption remains positive for each period.

To this basic model we add the feature, that in each future period, there
is a possibility of the consumer not having access to the asset market. This
means that the amount consumed in those periods will be predetermined and
not subject to optimization. We denote by s; the stochastic variable governing
market access. Let s; = 0 if access is free, and s; = 1 if access is restricted.
Furthermore assume s; to be independently and identically distributed, with
a constant probability p(> 0) of restrictions occurring each period.

Since there are periods when the consumer cannot enter into new contracts
on the asset market, it becomes relevant how the previous contracts are im-
plemented. We will assume that the implementation is such that a constant
percentage d - 100% of debts or savings is paid back each period (0 < d < 1).
Whether or not the consumer has the possibility to take part in the asset mar-
ket this period, he will either receive or have to pay ”that, where Ry = 1+ 1y,
depending on whether a; is positive or negative. This means that for a re-
stricted period ¢ we have a;;1 = (1 — d)as, but for unrestricted periods, as new
asset contracts are available, a;; can be more freely chosen.

We will consider a time separable utility function with a constant rate of
time preference p = (3, = lip = [ and a constant real gross interest rate
R = 1+ r. The consumer’s optimization problem can then be written as
follows:




sup Ey, Z B u(ey),

¢ t=to
where a;11 = R(y + ap — ¢),
Ai41 = (1 — d)CLt7 if St = 1,

Cy > 0,
d 1 ay
and lim —; = 0. (1)

The function u is the utility function for one period, v : ¢; — R, where
¢t € R, ¢g > 0. We assume that u € C?(0,00), v/ > 0 and u” < 0. Typically
the utility function is formulated so that lim., o ¢v/(¢;) = oo, implying that
the positivity constraint ¢; > 0 is not binding. We will assume this to hold.
For the parameters § and R it is assumed that R > 1 and 0 < § < 1.

To write this in the form of an optimal control problem we introduce as the
control variable v, the asset position at the end of a period, after consumption
has taken place. Between periods there holds the relationship a;,; = Rv;. The
choice of v each period depends on the realization of s. If the asset market
is not accessible, then v is predetermined. Otherwise, v can be chosen to
maximize utility.

Let income follow a given process y+1 = F'(y, €:41), where ¢ is a stochastic
disturbance, independently and identically distributed for each period. We
particularly assume y and s to be independent of each other. We then have
for the state variables a; , y; and s; and the control variable v;:

sup Fi, Zﬂt’tou(yt +ap — vy),
vt t=to

where a;.1 = Ry,

Yi+1 = F(ym €t+1)a
vy € T'(ag, yt, 5¢)
and lim R ‘a; =0, (2)

t—>00
where T'(a,y,0) = {v € R} and I'(a,y,1) = {v € Rjv = Z4a}. The
positivity of consumption also restricts v as negative consumption can never

be optimal for our utility function.
The Bellman equation for the problem is:

~

Via,y,s)= sup {u(y+a—v)+BEEV(Rv,F(y,e),s)}. (3)

vel(a,y,s)

As market restrictions and income are assumed independent, we write the
equation for the expected value of the value function with respect to the market
restrictions V(a,y) = EsV (a,y, s), in the form:

r+d

V(a,y) =plu(y + a) + BEV((1 —d)a, F(y,€))]
+(1 —p) sgp{u(y +a—v)+ BEV(Rv, F(y,€))}. (4)

10



This gives the value function V for time periods ¢t > ;. The corresponding
value function for the beginning of the planning period is then given by:

Vola,y) =supiu(y +a —v) + SEV(Rv, F(y, )}, (5)

since we can assume that for the planning period the asset market is open.
Still it is clear from (4) and (5) that the maximization problems in both cases
are equivalent. From this point on all references to the value function will refer
to the solution of equation (4), assuming that it exists and is unique.

Restricting consumption, ¢; = y; +a; — v, to be positive, the model implies
a lower bound for possible asset positions a; and therefore an upper bound for
possible v;. Since yt+”dat must always be positive, we must have a; > —WRdyt.

R
Considering that the consumer may not have access to the asset market in

the following periods either, if d < 1 we must also have a; > —Tf y (ftjdgn
for n = 1,2,.... In the deterministic case the process y;+1 = F(y;) thus

determines, along with parameter values, the lower bound on a;.

In the case of stochastic income, the consumer cannot allow for any such ay,
where there is a possibility that the income level is so low that ¥, + %at <0.
Assuming that every period there exists a lowest possible value of income g,
which may depend on the income attained the previous period, he must always
have: a; > _T%@t' In addition, if d < 1 we must have: a; > —Tf i (fji’;n for
n=1,2,..., for positive consumption in the future.

Thus the decision of v;_1; made in the previous period is restricted from
below since a; = Rwv;_1. It also follows that v;_; is restricted from above,
because we must have v; 1 < y;_1 + a;_1. Therefore the optimization problem
of the consumer on each period is such that there is a restricted feasible set,
depending partly on the current state. If the utility function is such that zero
consumption implies an infinite marginal utility of consumption, the optimum
will be an interior point.

We consider the case where income is constant or has a constant lowest
possible value g, which may be reached from any previous state of income
from one period to the next. If d < 1, for positive consumption in the future
we must have: a; > —T%# forn=0,1,2,.... This lower bound decreases
as n grows so that the n = 0 condition is sufficient. If d = 1 we obtain the
same condition. This implies that the value function is in this case defined for
a > —:Rdg].

It follows that for the control variable v; we have the bounds: —Hid <y <
y:+az, where a; determined the previous period may be anything above —:Rdyf.
The value of y; is either the constant level of income or given by the stochastic
process and for both cases there holds: y; > y. Examining the bounds on v,
closer, we see that the set of possible values of v; will not be empty for any
allowed a; as long as d > 0. In the case of the market being closed v, is fixed

at: vy = 1;Rdat, which can easily be seen to lie within the bounds.

11



Considering the previous discussion, to formulate the feasible set for opti-
mization including the constraint ¢; > 0 V¢, we have

1
['(a,y,0) ={v e R| - T d min{F(y,e)} <v < y+a}, (6)

['(a,y,1) ={veRp= ! g a}, (7)

where we assume that F'(y, €) has a fixed lower bound and that each outcome
may be attained from any previous state of income from one period to the
next.

In this model the asset position cannot become one of ever increasing in-
debtedness, because the consumer must always make sure that he will survive
through ”"bad” periods. Because of this we know that the value function that
solves the Bellman equation is defined only for values of the state variable a
larger than a lower bound that depends on the values of R, d and the process
{e}-

In characterizing the solutions of the model we will consider both the Euler
equation and the Bellman equation approaches because in general we only have
an approximative Euler equation in use. It turns out that we are not able to
derive a neat and exact Euler equation except for the case when d = 1. This
is because each choice of v will have a positive probability of having direct
effects on consumption indefinitely far in the future and these possible effects
will have to be considered in the decision making. If optimization were free in
every period this direct effect would not be present and as we will see in the
following section, all relevant information about the future could be expressed
in next period’s optimal control value. In the case of d = 1, this period’s choice
will only directly affect next period’s consumption and the problem is avoided.
For the general case however, an approximate Euler equation can be derived.
In the Bellman equation approach we do not have similar problems, but the
nonlinear functional equation can only be solved numerically.

2.1 Deriving an approximate euler equation

From the Bellman equation we can for the d = 1 case derive a simple Euler
equation. We will begin with a general d so that the analytical problems
resulting from d < 1 become evident. We will assume in the following that
the value function solving the Bellman equation is smooth enough to be at
least twice continuously differentiable. This may restrict, for example, possible
income processes. The value function is also assumed to be increasing and
concave in a so that V, > 0, V,, < 0.

We first differentiate the right hand side of the Bellman equation (4) to
find the maximizing v:

—u'(y +a—v) + BREV,(Rv, F(y,¢)) = 0. (8)

Since both the utility and value functions are twice continuously differ-
entiable and strictly concave, (8) determines v as a differentiable function of

(a,y), v = h(a,y).

12



Differentiating V' (a, y) in the Bellman equation (4) with respect to a along
the maximizing curve v = h(a,y) and using (8) we have:

Vila,y) = ol 0y + T 4 (L= dYFEYL((1 ~ d)a, Fly, o)
(= Py +a—v) )

Combining (8) and (9) we obtain:

u'(y +a—v) = BE[p[(r + d)u'(F(y, €) + (r + d)v)
+ (1 = d)BREV,((1 — d)Rv, F(F(y,€),€))]
+ (1 — p)Ru/(F(y,e€) + Rv — v)]. (10)

If we let d = 1, thus assuming that debts taken in each period must be
paid back in full the following period (and for savings respectively), we have
the following Euler equation on the optimal path:

u'(y+a—v) =BRE]pu' (F(y,€) + Rv) (11)
+ (1 —p)u'(F(y,€) + Rv — )],

where ¥ is the optimal control value for next period.

When d # 1 (and p # 0) we are in (10) left with the term containing the
value of the function V,(a,y) at a point (1 — d)Rv which is generally not on
the optimal path Ro as specified by the first order condition (8). We don’t
know the value of V,((1 — d)Rv) and can’t use equation (8) to substitute for
it in equation (10). (We could use equation (9) repeatedly, but this would not
simplify matters.)

To find an approximate form of the Euler equation for the more general case
we use a linear approximation of the value function in a around the optimal
path:

Vo((1 = d)a,y) = V,(Ro,y),

where (1 — d)a is the state the consumer is in after a market restriction and
Ruv is the state the consumer is in after optimizing v.
Using this and the first order condition (8) we can write (10) in the form:

u(y+a—v) = BE][p(r+ d)u'(F(y,e) + (r+ d)v)
+ (R —p(r+d)u'(F(y,e) + Rv — 9], (12)

obtaining an approximate Euler equation.
Writing this with time indices we have:

u/(yt +ap — Ut) - ﬁEyt+1[p(r + d)ul(yt-‘rl + (T + d)vt)
+ (R —p(r + d)u' (yer1 + Rog —ve1)]. - (13)

The qualitative effects of the linear approximation on the chosen control
values for the constant income case can be deduced since we assumed for the
value function: V, > 0 and V,, < 0. Since income is held constant we denote
in the following V'(a,y) = V(a).

13



Given an initial asset position a, assume that v is the optimal control
value this period, defined by the equation (10). Consider the effects of using
the linear approximation of the value function, assuming the resulting value
function is has a third derivative with respect to a in the relevant neighborhood.
We may write:

V'((1 = d)a) = V'(Rv) + V"(Rv)((1 — d)a — Rv) + Err((1 — d)a — Rv),

where it is known that the error term Err is smaller in absolute value than
the second term on the right hand side if |[(1 — d)a — Rwv| is small enough.
Since V" < 0, the sign of the term ((1 — d)a — Rv) determines whether we
overestimate or underestimate V'((1 — d)a).

If for the optimal control v there holds Rv < (1 — d)a, we approximate
V'((1 — d)a) to be larger (or equal) than it is for each a. From equation
(10) we see that we then overestimate the size of the right hand side and since
v (y+a—w) is increasing in v, we therefore choose the control parameter vapproz
too large (Vgppros is the solution of the approximate Euler equation whereas v
is the true solution). It follows that from the approximate Euler equation we
obtain a control value vgppro, Which is larger then the true v. Respectively, if
Rv > (1—d)a, we obtain a value vgppr0p smaller than v. This means that if the
optimal next period’s state is further from zero than (1 — d)a we approximate
it closer to zero than it is and if the optimal state is closer to zero than (1—d)a,
we approximate it to be further from zero than it is. The approximation thus
brings the asset position a little closer to (1 — d)a, the asset position after a
liquidity constraint.

In the constant income case it may be expected that there exists a fixed
optimal asset level, towards which the consumer moves whenever he is free
to optimize. The optimal level may be very large, but not arbitrarily small,
because of the possibility of market restrictions. Since in some periods the
consumer’s asset position is forced towards zero, it can be assumed that in the
long run the consumers asset position is typically increasing in absolute value
whenever the consumer may optimize. If we then use the approximate Euler
equation to estimate chosen asset position, we will estimate is to be closer to
zero than it really is.

2.2 Undisturbed steady-state solutions

In this subsection we consider a steady-state solution to the consumer’s maxi-
mization problem. By the undisturbed steady-state we mean a constant asset
position solution of the approximate FEuler equation resulting in the constant
income case when restricted periods do not realize. We thus now set both
stochastic variables, income and access to the asset market, to fixed values.
Considering the case of fixed income, the development of the asset position
(in time) in the model is such that during some periods the consumer optimizes
his asset position and in some periods he is forced to take a position which is a
fixed proportion closer to zero than the previous position was. If the market is
closed to the consumer for an infinite sequence of periods the asset position will

14



converge to zero. We can therefore expect that whatever the consumer initially
had, at some point he will have reached a situation where his asset position
fluctuates between some ideal value and zero. The position may be generally
increasing or decreasing, but depending on the market conditions, from time
to time it will be reduced toward zero by a proportion. Since we know that the
forced limit is zero, we would also want to find the upper/lower limit, if one
exists, where the consumer would be happiest at being, if he avoided restricted
periods. We therefore consider the case where the ever present possibility of
not having access to the asset market never realizes, so that the Euler equation
holds in all periods. Ideally we would then expect the asset position to converge
to this steady-state, when restrictions are avoided.
Solving the approximate Euler equation for a constant v we have:

u'(y 4+ rv) = Blp(r + d)u'(y + (r + d)v)
+ (R —p(r + d)u'(y + rv)], (14)

u'(y + 1v) _ pB(r +d)
u(y+ (r+dv) 1—BR+pB(r+d)’

assuming 1 — SR + pB(r + d) # 0.

From the shape of the utility function (v > 0, v” < 0) and (15) it follows
that for the existence of a steady-state solution we must have: 1 — SR +
pB(r+d) > 0. It also follows that for a steady-state solution v there holds:
bR<1<v<0,fR>1<v>0and fR=1<v=0.

Considering the logarithmic utility function u(c) = Ilnc we obtain from
(15):

1-08R
1— B8R+ pdi

|— (16)

v=—] td)

We therefore find that a steady-state solution exists iff R < % + pd. If this
holds the solution is of the form (16), which is for SR < 1 negative, for R =1
zero and for 1 < SR < 1+ pdf positive, approaching infinity as R approaches
the upper limit % + pd.

Note that we are assuming p to be positive. Considering the standard p =0
case we can directly see from (14) that a steady-state solution exists only if

AR =1.
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To consider the effects of income y, interest rate R, probability of not
having access to the asset market p and the length of asset contracts d, on the
resulting constant asset position v, we compute partial derivatives of v. For
all CRRA utility functions we find all the derivatives have definitive signs.?

For the effects of the interest rate we have: % > 0, which implies that as
we would expect a higher interest rate always makes the optimal asset position
higher: debts become smaller and savings larger.

For income we have: g—; = % Increasing income therefore increases both
savings and debts moving the asset position further away from zero. Particu-
larly we see that unit elasticity holds for v with respect to income. If R =1,
the asset position of zero is not affected by changes in income.

For x = p,d we have the result that if SR < 1, then % > 0, if BR > 1,
then % < 0 and if BR = 1, then & = 0. This means that an increased risk

of not having access to the asset rflmarket brings the undisturbed steady-state
asset position closer to zero. Similarly an increase in the amount of debt and
savings to be paid back each period makes debts and savings smaller.?

The effects of changes in parameters y, p and d do not include changing
the asset position from debt to savings or from savings to debt, only the level
adjusts. Changes in the interest rate however always cause a nonzero effect on
the asset position, thus being able to change the quality of the position from

savings to debt or debt to savings.

2For other utility functions of the CRRA type u(c) = 57;1, where v < 1, v # 0, the
steady-state is:

1- BT
d+r(1— BT)

v = Y,

_ _ pB(r+d) _ BR—1
where B = ppnsiray = 1+ Tormmera-
When SR < 1 this gives a non-positive steady-state, but the case where SR > 1 we must

set a stronger constraint than 1 — SR + pB(r 4+ d) > 0 to have v > 0. The requirements for
the existence of the steady-state in this case can, after simple manipulation, be seen to be:

r

1—BR+pB(r+d) >pﬁR(T+d

o

3For the CRRA functions the previous also holds for z = ~.
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3 Numerical solution for the logarithmic utility function

3.1 The value function iteration

To explore the implications of our model on the consumer’s behavior, we use
the value function iteration (18) to find a numerical approximation of the value
function solving the Bellman equation (4).

V(a,y,t) =pluly + %) + BEV((1 - dya, F(y, ), ¢ + 1)

+ (1= p)max{u(y + a —v) + BEV (Rv, F(y,¢),t + 1)},

fort < T,
V(aay>T) :VT(aay)' (18)

We present no analytical convergence results of the algorithm for this sto-
chastic setting, but find that in practice the iteration does typically converge in
the parameter range described in the following, particularly if the interest rate
is not too high. The implementation of the algorithm is described in Rudanko
(Rudanko 2000).*

In the following we will always consider p > 0, which gives the problem the
specific structure that has been discussed previously. The essential difference
to the p = 0 case is the boundedness of the asset position from below, which
makes it possible to have optimal control sequences that stay inside a bounded
region. In the p = 0 case it appears to be the case that the optimal paths tend
to grow out of any region (except for R = 1), which means that we would
need an infinite grid for the value function iteration.

Of the CRRA utility functions we choose to use the logarithmic one in
order to be able to compare results more easily with the ones presented for the
Euler equation. The basic case of parameter values which we will consider in
the following is such that: g = 0.95, d = 0.1, p = 0.05 and R = 1.05. The
consumer has a rate of time preference of about 5.26% and faces a slightly
lower market interest rate. The probability of access to the asset market being
denied is 5% per period and 10% percent of asset positions will resolve by
contract in all periods. We will also consider ceteris paribus changes in the
three latter parameters one by one.

In the calculations we consider the cases of constant income and stochastic
income which has two possible values. In the following sections we show the
resulting behavior of the optimal control. We will see that for some para-
meter values consumption will tend to converge to a constant level if market
restrictions are avoided.

4The computations were done with Matlab. The level of fineness of the used state grid
(distance between grid points) in assets was from 0.05 to 0.125. As initial value function
Vr(a,y) = In(a — % min{y}) was used and for each maximization problem a linear in-
terpolant of V; was used. In particular the algorithm would dismiss state values (a) which
would lead to following period state values outside the state grid. As references for writing
the algorithm Kirk (Kirk 1970), Judd (Judd 1998) and Bazaraa (Bazaraa et al. 1993) were
used.
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3.2 Constant income
3.2.1 Value functions

We use the income level y = 20 for the constant income computations. In
running the iteration we see that the interest rate has a clear effect on the
convergence: for high interest rates we do not obtain a value function estimate.
Specific values of R are considered in section 3.2.3.

The value function iteration typically converges at a speed of ¢*, where

q ~ 0.95 and is run until % < 10755 As they should, the resulting
mi( Vg

functions appear continuous, monotonically increasing and concave.

Considering the effects of the parameters p, d and R on the shape of the
value function in the basic case p = 0.05, d = 0.1 and R = 1.05, it seems that
the effects of p and d are similar. A decrease in these parameters makes the
function less curved, raising the value of extreme asset positions compared to
mid value positions. The effects of R seem to be that an increase in the interest
rate will make the whole value function more steep. The value of debt becomes
smaller as it becomes more costly and the value of savings increases. This
implies that the optimal control values determining asset positions become
larger.

In addition to these changes in shape, the parameters R and d also effect
the asset range over which the function is defined. For large R or d the low-
est allowable asset position is higher than for smaller values, as the cost of
restricted periods will be higher.

3.2.2 Effects of the probability of credit restrictions

We now consider the effects of varying the probability of market restrictions
occurring when the other parameters are held fixed. We let R = 1.05 and
d = 0.1, which imply a negative net asset position. In figure 1 we see the effect
of p on the development of the optimal asset position given zero initial assets.

In the figure the paths have been plotted for values of p ranging from
1% to 30% with even intervals. The upper limit has been set at 30% since
it would not be expected that the probability of disturbances taking place
be any larger, even 30% may be quite extreme. The lowest probability of
restrictions occurring corresponds to the largest debt position and the larger
the probability of not obtaining credit, the smaller the debt position on which
the curve settles. The corresponding path for p = 1 would be the path where
the asset position always remains at zero.

51Ve—Vigalls
Vii—Vall. ~ ¢
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Path of Optimal Asset Position with Different p (R=1.05,d=0.1)
0 T T T T T T T

-100 -

-120 1 1 1 1
0 50 100 150 200 250 300 350 400

period
Figure 1. Path of asset position in time for p=[0.01 : 0.01 :0.3] from zero
wmitial value, when the consumer is not subject to borrowing or saving
restrictions. The lowest path corresponds to p=0.01 and as p grows the paths
settle higher. Parameter values are: d=0.1, R=1.05.

Steady-state Solutions of Assets for Different p (R=1.05,d=0.1)
0 T T T T

-120 L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3

p
Steady-state Solutions of Consumption for Different p (R=1.05,d=0.1)
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Figure 2: Steady-states of asset position and consumption for different p,
when the consumer is not subject to borrowing or saving restrictions.
Parameter values are: d=0.1, R=1.05.
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Note in the figure the difference in the speed of adjustment of the asset
position for different levels of debt. Clearly the speed of adjustment toward
the steady-state is much faster when the debt position is small.

Plotting the reached steady-states from figure 1 we have figure 2. The
optimal level of asset in p appears increasing and concave. Below the steady-
state for assets in the figure we have plotted the corresponding steady state
for consumption, which is a linear function of assets a. Consumption is only
affected by p through the asset position, so the shape of the two curves in the
figure is the same. Consumption is reduced from the income level (y = 20)
since debt is held and interest must be paid.

3.2.3 Effects of interest rate

We now consider the effects of varying the interest rate when the other para-
meters are held fixed. We let p = 0.05 and d = 0.1. When R is given values
R = {1,1.0025,1.0050, ...,1.05,1.0505,1.051,...,1.06}, in the value function
iteration, we find that solutions are obtained only for R < 1.054. For interest
rates higher than this the optimal control values for high initial assets would
exist above the upper limit of the grid. Since we must fix the upper limit on
some level, here set at a = 300 units, it must be that the undisturbed optimal
level of assets for larger interest rates, if one exists, lies above the upper limit.
As a result of the optimal control leading outside of the state grid, we are not
able to determine the value function value for the asset position in question.

Path of Optimal Asset Position for Different R (p=0.05,d=0.1)
200 T T T T T

150 - b

100 - b

50 b

-50

-100 b

-150 b

-200 I I I I I
0 1000 2000 3000 4000 5000 6000

period
Figure 3: Path of asset position in time for interest rates
R =1[1:0.0025 : 1.05] and [1.05 : 0.0005 : 1.054] from zero initial value, when
the consumer is not subject to borrowing or saving restrictions. The lowest
path corresponds to R = 1 and as R grows the paths settle higher.
Parameter values are: d = 0.1, p = 0.05.
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Steady-state Solutions of Assets for Different R (p=0.05,d=0.1)
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100

-100
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1
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R
Steady-state Solutions of Consumption for Different R (p=0.05,d=0.1)
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30 *
025+ f
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R

Figure 4: Steady-states of asset position and consumption for different
interest rates R, when the consumer is not subject to borrowing or saving
restrictions. Parameter values are: d = 0.1, p = 0.05.

In figure 3 we see the effect of the interest rate on the optimal asset path
given zero initial assets. In the figure, the zero net interest rate R = 1 corre-
sponds to the asset path that settles lowest, with the greatest speed of conver-
gence. As the interest rate rises the debt levels that are optimal when market
restrictions are avoided are smaller. Debt becomes more expensive. In choos-
ing the interest rates plotted in the figure, the larger values were chosen closer
together in order to obtain positive steady-states in the figure. This change
in frequency is apparent in the figure. Considering that the upper limit of the
grid was set at a = 300 it is acceptable in light of the figure that the next level
of interest rates was not solvable.

Note again in the figure the difference in the speed of adjustment of the
asset position for different levels of interest rate. The speed of adjustment
toward the steady-state appears to be much faster when the interest rate is
very low.

The steady-states that are reached in figure 3 are plotted in figure 4 as
a function of the interest rate. These are the asset positions that would be
optimal for the consumer and ones he will aim for whenever he is not restricted.
We see that as we would expect, the level of asset position increases along with
the interest rate. Note that the asset position a plotted is the position after
interest has been added: a = Rv, where v is the amount borrowed or saved at
the end of the previous period. Multiplication with R somewhat increases the
curvedness of the relationship of the steady-state with R.

Below the steady-state for assets in the figure, is presented the correspond-
ing steady-state of consumption: ¢ =y + (1 — %)a. Obviously debt leads to
consumption below the income level as interest must be paid. In the figure
we have the case where, for low interest rates, even though debt decreases as
interest rate increases, the amount of interest paid still increases. This means
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that an increasing interest rate decreases consumption. As higher levels of R
(> 1.04) are reached, the effect is in the opposite direction. An increase in the
interest rate increases the steady-state level of consumption.

3.2.4 Effects of the length of debt contracts

Since the restriction on R from above generally implies that we obtain solutions
mainly for negative asset positions and since the focus in the model is on
them, we may call the parameter d as describing the length of debt contracts
available in the model. Recall that d comes into effect only with the possibility
of not having access to new debt contracts during a period in the future and it
determines the relative size of the restriction. On those periods the consumer
is forced to choose v = LRd)ao, which means paying back %ao. This means
that consumption for the period can not be affected during the period and the
consumer has to have previously made sure that consumption will be adequate
in this case as well. We will see that the effects of varying d are similar to
those of varying p.

Figure 5 shows the time paths of asset positions from an initial position of
zero with different debt parameter values. Here the curve that corresponds to
ten percent of debts being paid back each period is the one that settles lowest
and the curves above is correspond to evenly increasing pay back parameters
15%,20%, . .., 100%. The resulting steady-states show the effect of debt length
on the optimal long term asset position and corresponding consumption in
figure 6. As debt decreases with an increasing d in the figure, consumption
increases with the reduction in interest payments. Here consumption is only
affected by d through the asset position, so the shape of the two curves in the

figure is the same.
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Path of Optimal Asset Position for Different d (p=0.05,R=1.05)

-60 1 1 1 1 1 1
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period
Figure 5: Path of asset position in time for d = [0.1 : 0.05 : 1] from zero
initial value, when the consumer is not subject to borrowing or saving
restrictions. The lowest path corresponds to d = 0.1 and as d grows the paths
settle higher. Parameter values are: p = 0.05, R = 1.05.

Steady-state Solutions for Different d (p=0.05,R=1.05)
0 T T T T

| | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
d

Steady-state Solutions of Consumption for Different d (p=0.05,R=1.05)
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Figure 6: Steady-states of asset position and consumption for different d,
when the consumer is not subject to borrowing or saving restrictions.
Parameter values are: p = 0.05, R = 1.05.

This concludes the investigation of the effects of the parameter values on
the constant income case. We have seen that in general the impatient consumer
who has more freedom in his consumption choices (d and p are small), will have
more debt for the pair of interest rate and rate of time preference considered.
As a result of this he will also in the long run pay more interest leading to
lower levels of consumption and suffer larger reductions in his consumption as
result of occurring market restrictions.
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3.3 Stochastic income

We now add a second source of stochastic shocks for the consumer to come
to terms with, namely an uncertain income level. We consider the simplest
possible case of two possible income levels, yo and y; and a constant probability
of attaining either one in all periods, independent of other variables. The
probability of enjoying either the higher income y; = 22 or the lower income
yo = 18 during a period is set to 50%, so that the mean value of income is
y = 20, as considered in the previous subsections, and the variance in income
is relatively large.

The effects of stochastic income on consumption have been considered in
eg. Caballero (Caballero 1991), Skinner (Skinner 1988), Zeldes (Zeldes 1989),
where the implications entail precautionary savings. Here asset positions con-
sidered are negative, but similar buffering of consumption from income changes
by changes in the asset position can be seen.

In figure 7 we plot the development of both assets and consumption over a
longer time interval when restricted periods do not occur (but the consumer
expects them with probability p). Clearly consumption fluctuates from pe-
riod to period, but less than income. The asset position is used to smooth
consumption over time, but not not fully.

Asset Path
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Figure 7: Paths of asset position and consumption over 2500 periods after
500 iterations from an initial asset position of zero. Parameter values are:

d=0.1,p=0.05, R=1.05.

24



Asset Path

220 + 4

> .40 ¥ |
-60 4
-80 1 1 1 1
0 500 1000 1500 2000 2500
period
Consumption Path
25 T T
201 N
©015n N
10 N
5 L L L L
0 500 1000 1500 2000 2500

period
Figure 8: Paths of asset position and consumption over 2500 periods after
500 iterations from an initial asset position of zero. Asset market access
denied with probability p each period. Parameter values are: d = 0.1,
p = 0.05, R =1.05.

To see the effects of the occurrence of restricted periods in figure 8 we have
added stochastic market restrictions corresponding to p = 0.05. The downward
spikes in the figure correspond to the restricted periods. The size of the spikes
changes since it depends on the asset position at the beginning of the period
and the current income. FEven though the general level of consumption in
unrestricted periods is not seemingly much affected by the restrictions, we will
find that in some periods consumption will be much lower than if they didn’t
occur.

We then go on to explore the relationship between income and consumption
further by computing correlations between current period income and resulting
current period consumption. In table 1 we have a matrix of correlation coef-
ficients between current period income and consumption resulting in the case
where restricted periods never occur. The correlations have been computed
over 2500 periods with the initial asset position first being allowed to adjust
for 500 periods from zero. All correlation coefficients are positive, so that a
good outcome of the income process generally implies increased consumption
for the current period and a bad outcome decreased consumption.

We see that a larger debt parameter d implies a larger correlation regardless
of the value of p. The shorter the available debt contracts are, the more closely
consumptions follows income. Here market restrictions never realize, so that
the effect of d is completely implicit in the consumer’s optimization decisions.
In the constant income case we had a larger d imply smaller debts. Here the
correlation can be explained by the fact that a large d implies that when good
income periods occur, increases in the asset position are relatively smaller,
so that consumption suffers less from the change in asset position. A good
income period implies a higher consumption. When debts are available for
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longer time periods, a good income period causes a larger change in assets, so
that consumption increases less. For a bad income period respectively, if debt
contracts are short the increase in debt is smaller than if longer debts were
available so that consumption decreases more.

Correlation of income and consumption
d=0.1 d=0.2 d=0.5 d=1.0
p=0.3 0.2410 0.3458 0.5531 0.7529
p=0.2 0.2249 0.3252 0.5171 0.7115
p=0.1 0.2044 0.2905 0.4574 0.6344
p=0.05 0.1954 0.2568 0.4026 0.5622

Table 1: Correlation between current income and consumption calculated over
2500 periods, after allowing asset position to develop for 500 periods from an
initial position of zero. R = 1.05.

Correlation of income and consumption
d=0.1 d=0.2 d=0.5 d=1.0
p=0.3 0.5416 0.5879 0.6533 0.7426
p=0.2  0.4252 0.4854 0.5905 0.6672
p=0.1  0.2586 0.3552 0.4771 0.5767
p=0.05 0.1676 0.2520 0.3572 0.4786

Table 2: Correlation between current income and consumption calculated over
2500 periods, after allowing asset position to develop for 500 periods from
an initial position of zero. Access to market is stochastic with corresponding
probability p of access being restricted during a period. R = 1.05.

A large probability of market restrictions occurring will also increase the
correlation between current income and consumption regardless of the value of
d. This may be understood by similar reasoning since a large p will make both
large debts and saving less attractive for any d(> 0). A large p makes changes
in the asset position corresponding to the current income outcome smaller thus
allowing consumption to fluctuate more.

Considering similar correlations when restricted periods occur with fre-
quency corresponding to p, we obtain table 2. We would expect the difference
to show mostly for large values of p since there will be more market restrictions
taking place. Also a small d may mean that the restrictions would be more
severely felt since levels of debt may be expected to be higher. What we see
in the table is that correlation is clearly increased for small d and a large p
and decreased for large d combined with a small p. The effects are clearly the
strongest for large p and small d in the upper left corner.

The effect of a restriction taking place whatever the income outcome may
be can be expected to be to reduce consumption considering the debt levels
presented in the previous figures. The size of the reduction depends on the
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size of d and amount of assets, which in turn is affected by both p and d. The
asset position is also directly affected by income levels of previous periods.

For a fixed small level of p it may be expected that longer debts (small
d) imply consumption which is less dependent on income. The consumer is
relatively free to borrow to satisfy his consumption needs whatever income
outcomes realize since debts are only paid back in small portions and the
risk of not being able to borrow during the next period is small. Here the
effect of the market restrictions realizing is then to increase the dependence
of consumption on income, as the asset position is not freely adjustable. The
consumer is therefore made more dependent on the income process.

If however debts are short and the probability of not being able to borrow
is relatively large, we would expect income to influence consumption quite
much. Then the realization of disturbances is likely to disturb the positive
relationship between income and consumption, since restricted periods may
be expected to typically cause a withdrawal in consumption whatever income
level realizes.

It is table 2 that presents the true implications of the consumer behavior
resulting from the model discussed in this paper. In these parameter ranges
and with R = 1.05, § = 0.95, u(c) = In(c), correlation coefficients between
current period income and consumption vary between 0.17 and 0.74. The
prediction for correlation between current income and consumption based on
our model and the parameter values of d = 0.1 and p = 0.05 thought realistic,
is only 0.17.

As these results have been obtained for a single consumer they could there-
fore be considered incomparable with macro level consumption data. However,
it happens in this case that as income is independently distributed for each
period, if we consider a group of similar consumers (with all the considered
parameters taking on equal values) the resulting correlations for aggregated
consumption and income levels for the group will be the same as for one con-
sumer. This can easily be verified analytically (and seen in numerical results).
For groups of dissimilar consumers or ones with more general income processes
such a result cannot be expected. Interesting further experiments would be
to consider several groups of consumers with dissimilar properties and the re-
sulting correlations of income and consumption on aggregate level or the case
where income processes of individuals were correlated with each other.

4 Bellman and Euler equation solutions compared

4.1 Comparison of steady-states

In this final section we inspect the difference between asset paths resulting
from the Bellman equation approach and the approximative Euler equation
approach. We will consider only the constant income case. As previously
mentioned, for d = 1 we have an exact Euler equation. The asset paths solving
it should therefore completely correspond to ones obtained through the exact
value function solving the Bellman equation. This turns out to be true for
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our computations on the scale of discretization. We will therefore consider the
numerical solutions of the Bellman equation as representing the true solution
to the consumer’s optimization problem in order to use them to assess the
goodness of the approximate Euler equation derived in section 2.1.

We begin by comparing undisturbed steady-state solutions and in the next
subsection examine the adjustment of the asset paths resulting from both
approaches.

Numerical and Approximate Euler Steady-state Solutions

.60 I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d

Figure 9: Steady-states of asset position for different d. Values obtained
from the Bellman equation are plotted with -” and those from the approximate
FEuler equation with -.”. Parameter values are: p = 0.05, R = 1.05.
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Figure 10: Steady-states of asset position for different P. Values obtained
from the Bellman equation are plotted with -” and those from the approximate

Euler equation with -.”. Parameter values are: d = 0.1, R = 1.05.

Letting p = 0.05 and R = 1.05, figure 9 shows the growing difference in
the steady-states as d is reduced from one, where the curves coincide. On the

28



level of accuracy of the figure, the difference is caused by the local linearization
used in deriving the approximate Euler equation. The difference grows as d is
reduced, which is acceptable in view of the linearization made. When d reaches
10%, the optimal level of debt is about 20% larger than what the approximate
Euler equation forecasts for these parameter values.

Considering the effects of changes in p on the steady-states we have fig-
ure 10. As d = 0.1 and R = 1.05, the figure implies that the difference in
steady-states would decline as p decreases. This is in line with the fact that
the approximation made to obtain the used Euler equation concerns only the
outcomes from market restrictions. If the probability of disturbances occur-
ring is small, it is understandable that the error caused by the approximation
becomes smaller. As mentioned previously, a small p has the effect of making
the value function less curved and therefore closer to linearity, which also sup-
ports the finding. This decreasing of the error as p decreases is quite fortunate
if the probability of market restrictions occurring is not expected to be large.
The figure would imply an error of only about 5% for p in the range of 1 — 2%,
when d is as small as 10%.

Concluding the comparison of steady-states we note that, in both figures
presented comparing the results of approximate Euler equation to those of the
numerical value function, the Euler equation levels have been closer to zero.
This corresponds with our expectations based on the analytic properties of the
approximation discussed in subsection 2.1.

In considering the steady-states we have obtained some information on the
asset paths, but as the problem is of a stochastic nature, the adjustment of
the asset position after market restrictions has a central role. The larger p
is the more often restriction will be expected and the asset position will be
shifted away from the steady-state. On the other hand for smaller p the level
of debt tends to be larger so that the effects of the restriction will be larger and
may take longer to even out. We shall next turn to viewing the adjustment
differences between the two solutions.

4.2 Comparison of adjustment properties

To be able to view the adjustment properties of the asset paths solving approx-
imate Euler equation, we first need to solve them. For the logarithmic utility
functions considered here, this involves solving a second order, nonlinear dif-
ference equation, so that it has to be done numerically. We use the Newton
iteration method to solve the problem.

Figure 11 shows the development of the asset position a in time from the
initial value of zero and with the parameter values p = 0.05, d = 0.1, R = 1.05.
The asset path obtained from the approximate Euler equation is seen to settle
closer to zero than the true solution. Below in the figure we have plotted
for both solutions the asset position each period relative to the corresponding
steady-state value. We see that initially the asset path resulting from the
approximative equation converges slightly faster then the true solution.

The goodness of the approximate Euler equation will depend on the para-
meter values used. This means that it will be more suitable for some circum-
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stances than others. We have assumed in this paper that a probable range
for the parameters were around d = 0.1, p = 0.05, R = 1.05 and # = 0.95 so
that the annual interest rate is 5% compared to a rate of time preference of
1/0.95 — 1 =~ 0.0526, debts are repaid 10% annually and the consumer faces
each year a 5% chance of not having access to the asset market. The implica-
tions of the computations are that a small d will increase errors and a small
p reduce them. If we have the case where the probability of facing restricted
periods is small and debts are paid back relatively quickly, we can expect the
approximate Euler equation to give relatively good results for the constant
income case.

Asset Paths: Appr. Euler Eq. and Value Func.(d=0.1,p=0.05)
0 \ \ \ \ \ \
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Figure 11: Adjustement of assets for Fuler equation and Bellman equation
solutions from initial position of zero. Values obtained from the Bellman
equation are plotted with -’ and those from Fuler equation with -.’.
Parameter values are: d = 0.1, p = 0.05, R = 1.05.

5  Conclusions

This paper has considered the idea of modeling credit restrictions through
a stochastic process governing the representative agent’s access to the asset
market. With the simplified implementation of this idea considered here, we
have obtained promising results. An important implication of stochastic access
to the asset market is that the resulting debt trajectories remain bounded by
a fixed level depending on the model parameters.

For the simple stochastic income process considered in section 3.3 it was
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seen that the model induces notable levels of correlation between current pe-
riod consumption and income even for small probabilities of credit restrictions
occurring. This sensitivity of consumption to current period income was also
seen to be strengthened when the maturity of available debt contracts was
reduced and conversely.

In addition to having a well-behaved form for numerical solving by the
value function iteration, a tractable Euler equation could also be derived by a
local linearization of the value function. In comparisons of the results of this
approximate equation to those obtained in the value function iteration, it was
seen that the approximate Euler equation seemed more suitable for use when
the probability of constraints occurring was small and the debt contracts fairly
short.
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