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On the Estimation of Euler Equations in the Presence
of a Potential Regime Shift

Bank of Finland Discussion Papers 6/99

Pentti Saikkonen
University of Helsinki

Antti Ripatti
Research Department

Abstract

The concept of a peso problem is formalized in terms of a linear Euler equation
and a nonlinear marginal model describing the dynamics of the exogenous driving
process. It is shown that, using a threshold autoregressive model as a marginal
model, it is possible to produce time-varying peso premia. A Monte Carlo method
and a method based on the numerical solution of integral equations are considered
as tools for computing conditional future expectations in the marginal model. A
Monte Carlo study illustrates the poor performance of the generalized method of
moment (GMM) estimator in small and even relatively large samples. The poor
performance is particularly acute in the presence of a peso problem but is also
serious in the simple linear case.

Keywords: peso problem, Euler equations, GMM, threshold autoregressive
models



Eulerin yhtaloiden estimoinnista mahdollisten
regiimin muutosten tapauksessa

Suomen Pankin keskustelualoitteita 6/99

Pentti Saikkonen
Helsingin yliopisto

Antti Ripatti
Tutkimusosasto

Tiivistelma

Tutkimuksessa muotoillaan peso-ongelma lineaarisen Eulerin yhtalon ja epéli-
neaarisen, eksogeenista ohjausprosessia kuvaavan marginaalimallin avulla. Ajassa
vaihteleva pesopreemio syntyy mm. silloin, kun marginaalimalli on muodoltaan
autoregressiivinen kynnysmalli. Tutkimuksessa tarkastellaan liséksi Monte Carlo
-menetelméa ja integraaliyhtéldiden numeeriseen ratkaisuun perustuvaa menetel-
maa laskea marginaalimallin ennusteet. Tutkimuksessa muotoiltuun malliin nojaa-
vat Monte Carlo -kokeet viittaavat siihen, ettd yleistettyyn momenttimenetel-
maan, GMM:aan, perustuvat estimaattorit toimivat huonosti pienissa otoksissa.
Tama patee paitsi peso-ongelmaisiin malleihin myo6s tavallisiin lineaarisiin
malleihin.

Asiasanat: peso-ongelma, Eulerin yhtéld, GMM, autoregressiiviset kynnysmallit
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1 Introduction

Euler equations appear in a variety of modern dynamic economic models
developed in areas such as consumption, investment and inflation to name a few.
Well-known examples are Hall's (1978) life cycle -permanent income model,
Abel's (1982) model of investment with adjustment costs and Cagan’s (1956)
hyperinflation model. In a simple special case an Euler equation states that the
current value of a variable of interest is a linear function of its future rational
expected value and the current value of a so called forcing variable. The
econometric analysis of an Euler equation often suffers from a problem
commonly referred to as a peso problem. This means a situation where the
potential of a regime shift in the forcing variable affects agents’ expectations.
From a statistical point of view the probability of such a regime shift has to be
small because it is assumed that no regime shift has actually occurred during the
sample period. However, if the potential of a regime shift has still affected agents’
expectations ignoring this in the econometric analysis means using a misspecified
model and, consequently, inefficient or even invalid econometric methods. This in
turn can lead to seriously misleading conclusions.

This paper is concerned with some econometric aspects related to Euler
equations in the presence of a peso problem. There are two conceivable
extensions of conventional linear time series models which could be entertained to
model the forcing variable and thereby expectations based on it in this situation.
The first one is an autoregressive model in which the mean value changes
between two regimes according to a Markov chain. This model, discussed by
Hamilton (1993, 1994, chapter 22), has recently been employed in various
contexts but, at least in its simplest form, turns out to be unsuitable for our
purposes. As a second model we shall therefore consider a threshold
autoregressive model in which the intercept term can switch between two regimes.
This model seems to be capable of allowing for the peso problem and will
therefore be explored in some detalil.

The plan of the paper is as follows. Section 2 introduces the problem and
discusses the above mentioned models. In order to make the main points easy to
follow several simplifying assumptions will be made. Section 3 deals with the
computation and properties of conditional expectations in the case where a
threshold autoregressive model is assumed for the forcing variable. These results
are employed in Section 4 where Gaussian maximum likelihood estimation of the
parameters in both the Euler equation and the threshold autoregressive model of
the forcing variable is discussed. The same set-up is used in Section 5 to study the
generalized method of moments (GMM) estimation of the parameters in the Euler
equation. Section 6 studies small sample properties of various GMM estimators
by Monte Carlo simulation. Conclusions are given in Section 7.



2 Model

Consider the two variables gnd x related by the simple Euler equation

yt :V+aEzyt+1+BXt (21)

where E; denotes the conditional expectation with respect to a information set

available to economic agents at time t. Assuming thattG<l equation (2.1) can
be solved as

. =m+By CEX,, (2.2)
2

where m =v/(1-a) and E,x, =X,. For econometric analysis we often have to

replace the information set used to deffeby a smaller counterpart available to

the econometrician. Since we assume that the two variapl@sdyx are only
observed this information set is here,{§, s<t}. Instead of (2.2) we then have

i =m+By AEX., +e (2.3)
2

where E is the conditional expectation with respect to the information set
{yu x; s<t}and

€ :BZGIEIXHJ _BZGJE'[XHJ' (2.4)
=1 =1
Clearly, & has the martingale difference property

Eg, =0. (2.5)

For simplicity, we also assume that there is no Granger causality from current and
lagged values ofiyo x so that

E(Xt+j

Yo Xg; SST) = E(xtﬂ.

Xs S<t), j=21. (2.6)

We are interested in modelling the effects of the peso problem so that the potential
of a regime shift affects the agents' expectations about the forcing variable x
although no regime shift has occurred during the sample periodt=1, ..., T. It is
fairly obvious that conventional linear models cannot be used to allow for this
feature. A conceivable possibility might be to assume that the forcing variable x
follows an autoregressive (AR) process whose mean value changes between two
regimes according to a (homogeneous) Markov chain in such a way that the



probability of a shift to the higher level regime is very small (see eg Hamilton
(1993) or (1994, chapter 22) for the this model). Specifically, one might specify

Xi =Hs, TZ, (2.7)

where zis a zero mean stationary AR process ansl & two-state Markov chain,
independent of the process. The transition probabilities pase

P{ss=1]s1=1}=pu
P{st=2]|s1=1} = pr2
Pls=1|s1=2}=pn
P{st=2|s1=2} =2

where s= 1 indicates the regime from which the observations have been obtained
and s = 2 indicates the higher level regime to which the process can potentially
shift. Thus,y, <p, and the probabilities;p and p» are close to one and zero,
respectively.

Even though the above model may look suitable for our purposes it does not
work because we assume that no regime shift has occurred during the sample
period and information of this is available. Indeed, under these assumptions the
conditional expectations in (2.3) have to be calculated conditional on the known
regime and, since we have assumed (2.6), the calculations in Hamilton (1993, p.
253) show that the infinite sum in (2.3) is the same as in the case whatews
a linear AR process except for an additive constaitis constant is induced by
the changing mean valug, in (2.7) and it describes the effect of the peso

problem in this model. However, this effect cannot be estimated or taken into
account because it cannot be separated from the intercept term m in (2.3). Thus, in
this approach the effect of the peso problem is not identified. The situation might
change if the homogeneity assumption of the Markov chain used to model the
potential regime shift were abondoned and the transition probabilities were made
dependent on observable variables. This would probably make the resulting model
and its application rather complex so that another approach will be considered
below.
We shall assume that follows the threshold autoregressive (TAR) process

Xt :u+(plxt—l+"'+(ppxt—p +6|(Xt—12C)+rlt (28)

where the indicator function I(.) takes the value one when the indicated statement
is true and zero otherwise andis a martingale difference sequence satisfying

E(n,|xs; s<t) =0. (2.9)

! Hamilton (1993) only considers a first order AR process but his treatment can easily be extended
to any finite order AR process.



It is also assumed that the zeros of the polynomigk-..—@,z° lie outside the

unit circle. This assumption and some reasonably mild additional conditions on
the error ternm imply that x is geometrically ergodic and strong mixing with
geometrically decaying mixing coefficients (see Masry and Tjgstheim (1995,
Lemma 3.1)). For instance, assuming tipais Gaussian white noise is sufficient

in this respect.

From (2.6), (2.8) and (2.9) one readily finds that:g{ Xs-1; S<t) = 0 which
in conjunction with (2.3) yields &« = 0, j > 0. On the other hand, since (2.5)
and (2.8) give En«; = 0, j= 0, our assumptions imply that the error tesnand
Ns are uncorrelated for all t and s.

In the TAR process (2.8) possible regime shifts are modelled by the indicator
function I(x-1 = c) and related paramet&mwhich is assumed to take on positive
values. Our previous assumption that the observations alf gome from one
regime means that the observed serigs..xxr and also the initial values
X-p+1,...,%o @re such thatpx c for all t =—p+1,...,T. Thus, within the sample the
TAR model (2.8) actually reduces to a conventional linear AR model. However,
at any point of time x; = ¢ could have occurred and, sinte 0, a jump to a
higher level regime could have occurred too. With suitable parameter values the
probability of such a regime shift can be small and, consequently, it is possible to
observe even fairly long realizations afwithout a shift to the higher regime.
This feature is illustrated in Figure 1 which shows realizations of the TAR process
(2.8) and related probabilities of a regime shift. Even though the probability of a
regime shift or the eventx > c is small it affects the conditional expectations
Ex:j and thereby the behavior af(gee (2.3)). In particular, it is intuitively fairly
obvious from (2.8) that when the value @f;xncreases close to ¢ the conditional
expectations of future values ofadso increase and, if the value of the parameter
0 is large, the effect of this can be substantial and it differs from an additive
constant. This fact can be seen in the simulated realizations of Figure 2 and it will
also be seen formally in the next section.

If d=0 a priori (2.8) reduces to a linear AR model and, as is well known, an
analytic expression can be obtained faruE and the infinite sum in (2.3).
However, whend > 0 the situation is much more complicated and no analytic
expressions are generally available. Computation of these conditional
expectations is required, however, if maximum likelihood (ML) estimation of the
parameters in (2.3) and (2.8), based on a chosen distributional assumption of the
errors, is considered. The same is true if one wants to generate simulated data to
see whether the idea used in the TAR model (2.8) appears reasonable. In the next
section these computational issues are discussed in more detail. For this purpose,
as well as for ML estimation, the martingale difference assumptions so far made
of the error terms; and n; are not sufficient. Unless otherwise stated it will
therefore be convenient to assume throughout the rest of this paper ijatd a
sequence of independent and identically distributed (iid) random vectors.
Sometimes a normal distribution will also be assumed to make the exposition
more concrete.

10



Figure 1. Threshold Autoregressive Model and the
Probability of Regime Shift

Xt Probability of Regime Shift

0.769 a

0.618 [

0.466 [

0.315 [

0.163 [

0.012

The left panel shows three realization of the processti n{N(0, 0.001) and T = 100.
The parameter values awve= 0,0 = 1/1.05,=1,u=0, ¢ = 1.1, = -0.28 (the roots
are 0.7 and 0.4} =0.25 and ¢ =0.193. The right panel reports the probability of a

regime shift before the period measured in horizontal axis. These probabilities are
obtained by simulation and graphed for various choices of the threshold value.
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Figure 2. Realizations of the xand the y and the Time-

Varying Peso Premia
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% process is simulated witlk(CN(0, 0.001) and T = 100. The parameter values are
v=0,a0=1/1.05B=1,u=0,¢=11,¢=-0.28,0={0, 0.5} and c =0.193. When
computing the yprocess, the simulation method proposed by Clements and Smith (1997)

is applied in the computation ofdg; (j = 1, ...).
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3 Computation of conditional expectations

Consider the TAR model (2.8) with given parameter values. A simple way to
compute the conditional expectations needed in (2.3) is to use the simulation
method proposed by Clements and Smith (1997). In this approageh iE
replaced by a simulated counterpart for j=1,...,J and the value of J so large that
the infinite sum can be truncated at j = J with only a negligible error. The first step
of this method is to simulate values of the error tggmwhich makes clear that

the distribution of the errors has to be specified. Of course, for j=1 it is not
necessary to use simulation because

Etxt+1 = U + (plxt ot (ppxt+1—p + 6' (Xt 2 C)! (31)

as is obvious from (2.8).

Even though the simulation method is simple to apply it is also reasonable to
consider analytic methods because it is useful to understand analytic properties of
the conditional expectations in (2.3). Here we assume that the initial values of x
are taken from the stationary distribution and employ the companion form of
(2.8). For simplicity, we also assume thet O a priori. This means no loss of
generality because in (2.8) we can use the transformations x, -, and

C » c—pywherep,=p/(1-@ —...—@, ) Thus, instead of (2.8) we can consider
X, O 0y @ - - (ppDD(t—lD a(x,,20)0 MmO
% - D]_ 0 - - OD 0 O BOD

1 - OO -2, 50 0y 070
% B 0 : SDB: B a 0 00

O O O 0 0,0

HKepud @ 0 - 1 00— 0O O O 00
or
X, =AX,, +oel(eX,,=c)+N, (3.2a)
X, = ellxt (32b)

where @ = [1 0 ... 0]' (px1) and the rest of the notation is obvious. To simplify,
write (3.2a) as

X =h(X; 1) +N,. (3.3)

Thus, since; is a sequence of iid random variablesisXa Markov chain oveRP.

Denoting E(%[X¢) = Kj(Xy) (j = 1) we can therefore conclude from the Chapman-
Kolmogorov relation the recursion

K,(X,) = IK]._l(z)prl‘xt(z)dz, j=2,3... (3.4)

13



where pxtﬂ‘xt(z) signifies the conditional density function of.Xgiven X (see

Tong, 1990, section 6.2.1)The relation of this to the conditional expectations
needed in (2.3) is seen from the identlyx,,; =€K,(X,),j= . Hor j=2 the

right hand side of (3.4) depends on
K. (2)=h(z) =Az+del(€z=c) (3.5

where the first equality is justified by (3.3) and the second one by (3.2a).

Equation (3.1) gives an expression gk for j = 1. Since we assume that
Xt < ¢ the result is the same as in the case of a linear AR model. To see what
happens when | = 2, note that from (3.4) and (3.5) it follows that

K,(X,) =Ah(X,)+de,[9(z, ~eh(X,))dz, (3.6)

where 2 signifies the first component of the vector z and g(.) is the density
function ofn; (cf. Tong, 1990, section 6.2.1). If we assume for concreteness that

ne ~ N(O,oﬁ) (3.6) yields

EX,., = AN(X,) +6¢W@ (3.7)
n

where @(.) is the cumulative distribution function of the standard normal
distribution. The assumption X ¢ implies that h(¥ = AX; and the first term on

the right hand side of (3.7) is the same as in the case whellws a linear AR
process. However, sin@> 0 is assumed the second term on the right hand side
of (3.7) is nonzero and gives an additional contribution #@.JEeven though
h(X) =AX; holds, as in the linear case. In particular, when
eh(X,) =@x, +...+@X,_,,, gets close to the value of the threshold parameter c

the value of Exw, gets larger than in the corresponding linear case. The larger the
value of the parametey the stronger this effect is and it is clearly nonconstant.
This provides a formal explanation for the similar intuitive conclusion given in the
previous section.

Above we have seen how the nonlinearity of the TAR model (2.8) affects the
conditional expectationspk; when j =1, 2. This can be pursued further to see a
similar effect on the infinite sum in (2.3). To this end, we first notice that the first
term on the right hand side of (3.6) equals;8&). This suggests the recursion

K (X)) =AK (X)) +0ek; (X)), [=23... (3.8a)
k;(X,) = ij—l(zl’ Xir o Xipa2)9(Z, —€N(X,))dz, (3.8Db)

2 Here, as well as later, the existence of the stated density function is assumed.

14



where K (X;) is obtained from (3.5) ank,(z) =1(€z=c (cf. (3.6)). The validity
of this recursion can be readily checked by induction (see the appendix). Equation
(3.8a) can be solved to yield

. 2 _
KJ-(Xt)=A"1K1(Xt)+5ZA'elk;_i(Xt), j22.

Since Ex,,; =€K;(X, ) and since K(X;) = AX; is assumed it follows from this
that

00

. © © 2
a'Ex,,; =€X, +tagAX +€ Y a'A'X, +3e Y o'y Alek (X))
]; toh t t ]; t ]; ; j t
=€ (l,-aA)"X,+3 S oa'A'Y a'ek (X,).
p t ; ; i t
Thus, we can write
> aEx,; =€(l, ~aA) X, +36(1, ~aA) e, S k(X)) (3.9)
1= B

The latter term on the right hand side is due to the nonlinearity of the TAR model

(2.8) and can be interpreted as a measure of the peso problem in model (2.3).
Arguments used to obtain (3.6) from (3.4) and (3.5) can also be used to obtain

eK;(X,) =ExX,; and furthermoregK (X,) = E;x,,; for j= 4. Obviously, these

results will get involved and cannot be given in closed form. However, even if the
above derivations are not used for practical computation they can be used to study
analytic properties of the infinite sum in model (2.3). This is needed to justify the
application of conventional ML estimation theory, as will be discussed in the next
section.

We close this section with a remark on the infinite sum on the right hand side
of (3.9). Multiplying both sides of equation (3.8b) &y summing over 2 and
using the definitiork,(z) = 1(€z>c )we find that

) ©

Zajkj(xt) =o [ ) k(X Xp.2)9(2 — €h(X,))dz,
” - (3.10)

+ o [9(z, ~€h(X,))dz

Thus, we have an integral equation for the infinite sum on the right hand side of
(3.9). One could try to solve this integral equation directly and, as equation (3.9)
shows, thereby be able to compute the infinite sum in model (2.3) without
computing the individual summandsxf. Finding out the feasibility of this
approach requires expertize on numerical solution of integral equations, a topic
outside the scope of this paper. For a comprehensive reference, see Baker (1977).

15



4 ML estimation

The discussion in the previous section shows that the infinite sum in (2.3) is a
function of the vector X;, the parameters of thg process in (2.8) and the
parameten. Thus, we can write

00

ZajEtxHj =f (X, 0,V,8,¢,07) (4.1)
£

where 0§:Er]f and the parameter vectoy=[u, @, ...,@] contains the

regression coefficients in (2.8) which can be estimated from this model even if
Xt < ¢ is assumed. We can thus consider (2.3) as a nonlinear regression model

Y =f(X W v, 00)+g, t=1..T (4.2)

where ¢ =[mBadcl and f(X, ;P y,00) =m+pf (X, ;;0,y,8,¢ 07 ) For

simplicity, we shall use the notation (X .) = f-1(.) and similarly for f(X; .)
when there is no need to be explicit about the vectar X

For ML estimation we have to supplement (4.1) by a model of tbeogess
and a distributional assumption. Singex is assumed in the data (2.8) implies

X, =zy+n,, t=1...,T (4.3)

where z, =[1X,,...X,_,]'=[1X{_, ] and observations of the presample values

X-p+1, .-, Xo @re supposed to be available. Note that, unlike in the linear case, the
regression function in (4.2) does not only depend on the regression coefficients in

(4.3) but also on the error variancrmfl. This means that there are rather

complicated cross equation restrictions in the model which have to be taken into
account in full ML estimation.

For concretness, the distributional assumption we make in the ML estimation
is that the error termg andn; have a joint normal distribution. (It is not difficult
to see how the subsequent discussion should be modified if other distributions are
employed.) Since we saw in the previous sectiongatdn, are uncorrelated the
normality assumption entails that they are independent Gaussian processes. Thus,
the conditional log-likelihood function of the data with., ..., % given is (apart
from a constant)

T 1 ¢
()=~ 10g0” ~2 5 (v, ~fia(W. v, o))
0° &
- i (4.4)
~-—logo? -—

5 (Xt - Z'ty)z

2
20, &

16



where 0° =Ee! and 8=[y'y o 6” |'is the vector of all unknown parameters.

When a procedure of computing the infinite sum in (2.3) is available it is possible
to compute the value of the functidp,({, v, oﬁ ahd hence the value of the log-

likelihood function +(8) for any given parameter values. Thus, numerical methods
can be used to find a ML estimator®fSince analytic derivatives of the function
f..(a,y,9d,c, oﬁ) are not available it is necessary to consider numerical methods
which do not require analytical derivatives (or all of them). That the log-
likelihood function has first and second order partial derivatives will be
demonstrated below.

Since we have assumed thgt~ N(0,07 ahd x<c for t=—p+1, ..., T it
follows from (3.1) and (3.7) that ¢&, j=1,2, are twice confinuously
differentiable with respect to the parametgrep, ..., @,, of], 0 and c. (Notice that

differentiability with respect to ¢ requires the assumptign «xc and that
differentiability with respect tqu in the case j=2 can readily be shown even
though (3.6) involves the a priori assumptjos 0.) From (3.8) it can further be
seen by induction that the same result holds Eox,,; = €K (X, with j>3.

Thus, the functionf_ (a,vy,d,c, Gf] )defined in (4.1) is twice continuously
differentiable from which the same result can be obtained foiy, v, oﬁ and

further for the log-likelihood function-(6).

Thus, since the likelihood function satisfies conventional smoothness
conditions and stationary variables are involved one would expect that usual large
sample results hold for the ML estimator @&f This, however, also requires
identifiability of the parameteB as well as more technical conditions, often
formulated in terms of uniform convergence of¥(6) and its Hessian. No
attempt is made to discuss technicalities of this kind here. From a practical point
of view the identifiability issue is of importance but not easy to deal with
precisely because no analytic expression of the infinite sum in (4.1) is available.
From equations (2.3) and (2.8) it can immediately be seen that identifiability fails
if any of the parameters, [3 or d takes the value zero. In the casexa@ndd this
has already been ruled out by assumption and the same can also be done in the

case of. The parametengand of] can be uniquely determined from (4.3) so that

they are identified while the identifiability @f, m, B, o> seems clear by equations
(4.1) and (4.2) and the fact that the conditional expectations in (4.1) do not depend
on a. The indentifiability of the parametércan be explained by equation (3.9)
and the definition of KX in (3.8b). By equation (3.9) and the fact
kK,(X,)=®(€AX,-c)/a,) there seems to be no reason to suspect that the

identifiability of the parameter ¢ would fail either. Thus, on the basis of these
informal considerations the identifiability of the whole parameter vécggems
credible.

The above discussion suggests that it is reasonable to apply standard large
sample estimation and hypothesis testing results to the model defined by
equations (4.2) and (4.3). In particular,f denotes the ML estimator &f its
distribution is approximately M((-0°+(6)/0600")™)) and Wald tests can be
constructed in the usual way after the Hessian(#) lat 6=0 has been
computed. (This again has to be done numerically.) Of course, corresponding
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likelihood ratio and Lagrange multiplier tests can also be used. Two things are
worth noting here, however. First, since the error varialﬁcalso appears in the

regression function (4.2) its ML estimator is not asymptotically independent of the
regression coefficient estimators, which is the case in ordinary nonlinear
regression models. Second, the null hypoth&si® cannot be tested in the usual
way. The reason is that the threshold parameter c is not identified under this null
hypothesis so that usual large sample results do not hold. Special measures are
therefore called for the develop a (likelihood based) test in this case (see Hansen,
1996, and the references therein). Of course, the same is also true for the null
hypothesesa =0 and3 =0 but they are hardly of any practical interest. The
reason why the hypothesd&= 0 could be of interest is that it implies that a
conventional linear AR model can be used to model the forcing varigdnhel xhe

more complicated TAR model (2.8) is not needed. When no likelihood based test
is available for this purpose one may consider the familiar RESET test and less
formal procedures like residual plots.

An interesting feature in the present estimation problem is that conventional
large sample results are justified even though a threshold model is considered.
This is due to the assumption «c (within the sample) which implies the
conventional smoothness of the likelihood function. In proper threshold models
the likelihood function is not differentiable with respect to the threshold parameter
so that the estimation problem becomes nonstandard (see Tong, 1990).

Since the full ML procedure discussed above is iterative it is desirable to have

good initial estimates for the parameters. As far as the paranyeﬂed:cﬁ are

concerned, an obvious way is to apply least squares to equation (4.3). Initial
estimates for the parameters mv(€l-a)), a andf are also easily obtained by a
simple GMM procedure to be discussed in more detail in the next section. If
initial estimates of the parametér@and c are also available an initial estimate of
the error variance?® can be obtained from the residuals of equation (4.2) in the
usual way. Unfortunately, however, there seems to be no simple estimation
procedure which could be used to obtain initial estimates for the paraterais

c, although some rough ideas will be discussed in the next section. If pure initial
guesses are employed any ideas of the possible valdesnof c should be made

use of. In the case of the parameter ¢ the condition ¢ > max{xp+1, ..., T}
should particularly be taken into account.

5 GMM estimation

Since the ML estimation discussed in the previous section is rather complicated
we shall here take a closer look at simpler alternatives based on the GMM
approach. The idea is to estimate the parametexsandf’ in (2.1) by applying
GMM or, equivalently, instrumental variables estimation to the equation

yt =v+ ayt+l + BXI + ut (51)

whereu, =-a(y,., — E,Y,., ) is a martingale difference sequence satisfying
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Elu, =0 (5.2)

Obviously, equation (5.1) is obtained from (2.1) by replacing the unknown
conditional expectatiorE,y,,, by the observable variabla.y Although (5.2)
implies that the errors in (5.1) are serially uncorrelated it does not rule out
conditional heteroskedasticity. In subsequent developments conditional
homoskedasticity would not be a necessary assumption but, since it simplifies
matters, it will be assumed. Thus, we make the additional assumption that
Eu’=EUu’ =0’, say.

Now consider the choice of instruments needed in the GMM estimation of the
parameters in (5.1). By (5.2) instruments are only needed for the variable y
Valid instruments include (xand y as well as their lagged values and any
functions of these. A general form of the GMM estimator can be defined as

follows. First, denote w=[1 w1 X' and lety,,,; be the least squares fit in an

auxiliary regression of ¢3¢ on chosen instruments collected in the vector q
Although not necessary it may be helpful in subsequent discussions to assume that
these instruments include 1, xand some additional variable(s). Now, if
A=[vap] is the parameter vector to be estimated from (5.1) and
W, =[1Y,,, X,]' GMM yields the estimator

_ T 71T
A :HZ vT/tW’tE Zv’\'/tyt (5.3)
t=1 t=1

(cf. Hamilton, 1994, p. 420). As is well known and easy to check, the estimator
can be obtained by minimizing the function

&)=Y 1, —w;A)q;Ethq; E > 0,07, W)

Under suitable reqularity conditions (including conditional homoskedasticity) the

estimatorA can be treated as approximately normally distributed with mean value
A and estimated covariance matrix

Cov(\) =5 T~~'Hl 5.4
ov(A) cyugzlwtwtD (5.4)

T ~
where G, :T‘lz(yt —)\'Wt)2 is an estimator of?. This result can be used to
t=

construct Wald type tests on the parameter vgatothe usual way.

Above the estimatoA implicitly assumed that the instruments used for y
were taken from the set {1;, %1, ..., %-h, Yt V-1, ---,» M-n}. Since the errors in
(5.1) are serially uncorrelated it is possible to use a result of Tauchen (1986) and
consider an optimal choice to instruments. Here optimality means obtaining a
GMM estimator whose limiting distribution has a minimum covariance matrix
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when the relevant information set is that of the econometrician, dexs{g< t}.
Since conditional homoskedasticity has been assumed Tauchen's (1986) result
implies that an optimal choice of instruments is given by the vectoy{l &]'.
From a practical point of view this result is of course infeasible because the
conditional expectation #4.1 depends on unknown parameters. However, it can
still be helpful when one tries to understand the estimation problem and also to
find good instruments.

The above discussion implies that an optimal instrument pisy

Etyt+1 = m+BZajEtXt+l+i (55)
]:

where the equality is based on (2.2). When the forcing varialideassumed to
follow the TAR process (2.8) the right hand side of (5.5) also depends on the
nonlinear paramete® and ¢ which, under our assumptions, cannot be estimated
from (2.8) alone. Trying to make the optimal instrumentof fgasible by using
an estimated counterpart is therefore not easy. However, if the values of the
parameter and c are fixed the optimal instrument can be made feasible by
replacing other parameters on the right hand side of (5.5) by estimates discussed
in the previous section and simulating the conditional expectations forj=1, ..., J
and J large. This could be repeated for various valudsantl ¢ and those giving
a minimum of the GMM objective functiont{d) could be chosen. In this way a
rough feasible version of the optimal instrument as well as rough initial estimates
of the parameterd and ¢ can be obtained.

In order to study the above optimal instrument given in (5.5) more closely,
suppose again that= 0 a priori and note that from (2.3) and (3.9) one readily
finds that

EYpi=m +§e’l(lp _GA)_lxt _gxt

o (5.6)
B ! - j

+aéel(lp -0aA) lel;oﬂkj(xt)

where the notation is as before. When the instruments usedifangude 1, x
and a third variable the GMM estimator in (5.3) is invariant to nonsingular linear

transformations of the vector,. From this fact and (5.6) it follows that in the
linear case (e d=0) it is optimal to choose the instruments as
{Lx,,€(l, -aA)™*X,}. (Note that this requires the conditiore2.) This choice

can easily be made feasible because the estimation of the paranaatdrs is not
required. Of course, these instruments are also applicable in the nonlinear case (ie
0 > 0) although they are then no more optimal because the last term on the right
hand side of (5.6) is erroneously ignored. This can be thought of as the effect of
the peso problem on the GMM estimation in our set-up. Since no analytic
expression of the infinite sum on the right hand side of (5.6) is available it is
difficult to give analytic results about this effect on estimation efficiency.
Apparently, the size of the parameté&s$s a major factor in this respect (to a
lesser extent maybe also the size of the parameter c). On the other hand, it is
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worth noting that, whend > 0, instruments of 4 better than given by
{1 x,, €, -aA)™X,} may also be found among “conventional” instruments. In

particular, since the variables gnd y.; also contain information about the
nonlinear features of the forcing variable they may provide such instruments.
Since the optimal intrument given by (5.6) is generally rather difficult to
apply we shall briefly discuss some simple alternatives which may be of interest.
One possibility is to replace the infinite series on the right hand side of (5.6) by an
approximation, like a truncated power series or trigonometric series, which is
linear in parameters. Terms of such an approximation could then be included in
the instrument set to supplement conventional instruments (a feasible version of

e, —-0aA)™X, may also be considered here). As the definition@f:xin (3.8b)
shows, this quantity depends on ofily through€AX, and X, ..., X-p+2 SO that

the above mentioned series approximation could also be based on these variables
or maybe only on the first one because, wheis assumed to be Gaussian, the
“leading” termk,(X,) = ®((eAX, —c)/ o, ) depends on ponly throughe AX .

The idea of using a series approximation to approximate optimal instruments
is well known and discussed by Newey (1993) in the iid case. Although it may
always be possible to find an accurate approximation the number of needed
instruments may increase so large that the finite sample properties of the resulting
estimator suffer (cf. the simulation results of Tauchen (1986)). Instead of
approximating the whole series on the right hand side of (5.6) one might therefore
consider using its first term only. Specifically, assuming normality @fe have

. AX, —c
;kj(xt):qag%cﬁogkj(xt). (5.7)

Replacing A ands, by estimates based on (4.3) the first term of the right hand
side of (5.7) becomes nonlinear in the parameter c only. Thus, if the latter term on
the right hand side of (5.7) is ignored and the value of c is fixed an instrument for

yw+1 can be based on constary, &(l -aA)™*X, and ®((EAX, —-c)/a, )) with

a, A anda, replaced by previously discussed estimates. Trying various values of

c one can then choose the one which minimizes the GMM objective function
Qr(A). Since a search over the values of the single parameter c is only needed here
the number of potential values may be larger than in the similar previously
discussed procedure where also the parameiters involved. Of course, obvious
modifications of this approach can be obtained by approximating the series on the
right hand side of (5.7) in the same way as discussed in the case of (5.6) or by
using also conventional instruments. To facilitate computations, a logistic
function or some other approximation may be used to approximate the cumulative
distribution function®d(.).

One would expect that the approach based on (5.7) is effective when the first
term on the right hand side can describe the essential or major part of the
nonlinearity in Byw.1. As a byproduct one also obtains a preliminary estimate for
the parameter c. From (5.6) and (5.7) it can be seen that one can also obtain an

estimate of%ée’l(lp—aA)‘lel. Sincea, B and A can here be replaced by
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estimates it is also possible to obtain a preliminary estimate @f course, these
preliminary estimates are not efficient and can be very poor if the second term on
the right hand side of (5.7) is not negligible. However, they can still be better than
purely guessed initial values.

Since the performance of the various GMM estimators discussed in this
section cannot be studied analytically the only possibility is to resort to
simulation. This is also of interest because the employed optimality arguments are
asymptotic and, as seen in Tauchen's (1986) simulation study, optimal instruments
may not be the best ones in finite samples. A further motivation for such
simulation experiments is to see how much the peso problem desribed by the TAR
process (2.8) actually affects conventional GMM estimators.

We close this section by noting that the discussion given of the GMM
estimation may be useful even if the TAR process (2.8) only provides a
reasonable approximation of the main characteristics of the peso problem. In
particular, the essential point may here be that the potential regime shifts in the
forcing variable are related to nonlinearity which is of such a type that the
conditional expectations in (2.3) behave roughly in the way implied by the TAR
process (2.8). Then optimal instruments ©f gre also nonlinear functions of the
forcing variable and the ideas used in the context of equations (5.6) and (5.7) may
prove useful even if the true nonlinearity is not precisely of the type implied by
the TAR process (2.8).

6 Simulation results

In order to study properties of the proposed estimators, we perform Monte Carlo
simulation experiments. The compufirdifficulties with the maximum likelihood
estimation are still unsolvédor the parameter set that we are studying. Hence,
we restrict the simulation experiments to study only the GMM estimators.

The processes studied are as follows:

y,=v+aEy,, +Bx, t=1..T (6.1)
X, =R+ QX+ @X,, +3l(X,, 2¢)+n, N, ~NID(0,0%). (6.2)

The parameters of the process take the following values= 0, a = 1/1.05,
B =1. The process; xs run with the following parameter valugs=0, @ =1.1,
@ = —0.28 (the roots are 0.7 and 03} {0, 0.5, 1}, ¢ = 0.193,0° = 0.001. We
vary the sample size as follows T = {50, 100, 1000}. We |eturn 100 extra

% The computations were done using Gauss 3.2.37 in 266 MHz Pentium Il with Windows NT 4.0
operating system.

4 Given the present computer technology and algorithms at hand, the maximum likelihood
estimation turned out to be too time consuming for Monte Carlo experiments.

> We use the following formula to determine L@ —@) +

0 52 o B_ofF . y
SD\/@ wzﬁf /%+ (‘02% (pzﬁ2 wf% Based on this value of c, the probability of

regime shift within 100 period is less than 10 per cent.
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observations to avoid the impact of the choice of initial values (in our case 0).
Note also that we study three choiceoThe first one, zero, corresponds to the
standard, simple linear case; the second one we label as a “mild” peso case and
the third one as a “strong” peso case.

In computing they, =v/(1-a) +[32i°°=00(iEtxt+i process we need to forecast

the future values ofixxWe follow the procedure suggested by Clements and Smith
(1997), which is based on Monte Carlo simulation of future paths of the x
process. At each point of we replicate the future path of.x(i = 1,...,400) 500
times® Note that within the sample the processes involve no regime shifts, ie
realizations with x< ¢ (t = 1,...,T) are only accepted. Regime shifts are, however,
possible in the forecasts of when the value of the parametein (6.2) differs
from zero. Hence future paths of may contain regime shifts. Our forecasting
procedure takes this possibility into account. Figure 2 illustrates well how the
existence of a peso problem of a TAR form produces time-varying peso premium.
The choice of the instrument set is a crucial part of GMM estimation. We vary
the instrument set in our simulations as follows:

1. Constant, X ;. Note that in the case 6f= 0 this instrument set is optimal,
since the yprocess is a linear combination of the above instruments. We call
thislinear instrument set

2. Constant, x x_1, x>, x2,, x>, x>,. In the second set we augment the first

set with second and third power of and x;. This is calledpolynomial
instrument set

3. Constant, x Eyi+1. This is anoptimal instrument seih each case, since it
contains the optimal instrument ofixk;. As described in the previous
sections it is computed from the solution (or numerical approximation of the
solution) of Euler equation (6.1). It is based on the true parameter values of
the processes and is therefore infeasible in practice.

4. Constant, x E[y.+; O information at t and estimated parameter values]. The
set is as above but the optimal instrument is not based on true parameter
values but values estimated from data. The parameters of equation (6.1) are
estimated using GMM and the parameters restricted to be between zero
and unity. A grid search is applied. The linear part of equation (6.2) is
estimated by OLS. The value of the parameter c is 0.0001 plus the maximum
value of x and that o® is computed as the absolute value of the difference of
the mean of yand x. This is labeled asstimated optimal instrument set

5. Constant, x approximated 1. In this case the computation of the
conditional expectation of.y is based on the equation (5.6) with the infinite
sum approximated by the first term of the right hand side of (5.7). This means
that instead of computing a large number of future values wexcompute
only two of them. This could give a reasonable approximation\te;Eeg
when the value ob is close to zero but not necessarily otherwise. This is
calledapproximated optimal instrument set

® This is the most time consuming part in the computations involved by this study.
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In the following simulations we vary four dimensions of the system: We have five
choices for instrument sets; T = {50, 100, 1008k {0, 0.5, 1}; a is estimated

freely or restricted between zero and one. Since the paraintikes the value

zero, our simulations also cover the non-peso case, ie the standard linear case. The
simulation results for non-restricted are summarized in Figures 3-5. In each
graph, a smoothed histogram, ie a kernel estimate of the empirical density
function of the parameter estimator is computed. This is repeated for different
values of the regime shift parametéy= {0, 0.5, 1}. The sample size

(T ={50, 100, 1000}) varies across the rows of the graphs and the instrument set
(as described above) across the columns.

The empirical density functions of the estimator of the intercept teriare
presented in Figure 3. The GMM estimate is fairly precise in the absence of peso
problem. The bias is also very small. However, in peso cases the bias may be
substantial and uncertainties are large. In these cases the differences between
instrument sets are small. It also seems that the use of polynomial instruments
(instrument set 2) leads in many cases to marginally smaller biases than the use of
other instrument sets.

The most interesting parameter is the discount faaorThe empirical
densities of its estimators are presented in Figure 4. Only in the standard linear
case the median is within the feasible raadgeé (0,1). Even in such a case there is
a high probability of estimating values above one. This demonstrates the failure of
achieving a reasonable estimate of the discount factor in many applications of
GMM to Euler equation estimation. In the peso case the results are very poor. The
median is above one regardless of the choice of the instrument set. This is true
even in the largest sample size, T = 1000. However, when the sample size is 50 or
100 and the polynomial instrument set is used, the median between zero and one
is obtained. The variance of the estimator based on the polynomial instruments is
also the smallest among the choices of instrument set. These features are not
without cost: They are not preserved in the largest sample size; The bias of the
GMM estimator off3 is larger with the polynomial instrument set than with other
instrument sets. The optimal instrument set (whether based on true or estimated
parameter values) has undesirable properties. The variance is large and a major
share of the probability mass is located in values above one. This finding is the
same as reported by Tauchen (1986). However, the consistency of the optimal
instrument is visible, particularly in the standard linear case: the larger the sample
size the smaller the variance and the smaller the bias of the estimator.

The problem of obtaining estimatescfibove unity might be due to the fact
that the GMM estimator, as applied here, does not punish the objective function
when the value of the discount factor exceeds unity. To overcome this problem
the value of the discount factor may be fixed to an appropriate level or restricted,
in course of optimization, into a feasible radg&e experimentetrestricting the
value of the discount factor between zero and one. This did not solve the problem
since typically more than 50 per cent of the probability mass was placed on the
(upper) boundary value.

The empirical densities of the estimator of "the fundament effect”, ie the
parameterB, are reported in Figure 5. The poor performance of the GMM

" This is an "infinite punishment” to the objective function.
8 We performed a grid search.
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estimator is demonstrated also here. The peso problem leads to a very high
variance of the GMM estimator compared to the standard linear case. In the

standard, non-peso case, the use of the polynomial instrument set leads to an
estimator with a low variance. However, the bias increases substantially. Note that
contrary to the other sets this instrument set contains more instruments than the
number of parameters. Consequently, this finding corresponds to that of Tauchen
(1986): The larger the number of instruments the smaller the variance of the

estimator but the larger the bias. The performance of the optimal instruments is

statisfactory in the non-peso case.

The results concerning the peso cases are generally not improved when the
value of the parameter is restricted to lie between zero and one. In the peso
cases the GMM estimator fBfhas still undesirable properties. The median is very
much higher than the true value. Even the first percentile is above unity. There is,
however, one interesting exception: In the standard linear case, the variance of the
estimator off3 is very low compared to the situation where the value ©f not
restricted. Hence, the estimation of param@terould benefit of restricting the
discount factorp. However, the bias is not a monotonic function of the sample
size.

The poor small sample properties of the GMM estimators are not due to the
poor choice of model. To measure the goodness of fit, we study the ratio between
the variance of the expectational erroe va (Y1 — Byis1) and the variance of.§

This variance ratio depends only on the values of the parameters of the system.
Our choice of parameter values implies the value 0.25 of this%atithe linear
case.

We may summarize the simulation results as follows: First of all, the small
sample properties of the GMM estimator — as applied here — are generally poor. It
may even be possible that the estimator does not have finite moments for any
finite sample sizé! A second feature is that it is very difficult to estimate the
discount factorg, even in the very simple linear case. This might explain results
of many empirical studies where GMM is applied to Euler equation estimation:
The value of the discount factor is usually fixed. The simulations illustrate that
one cannot only blame a wrong model, but rather the estimation method. The
restricted estimation leaks the problem into the estimates of parafneidre
third, slightly promising, feature is that the use of polynomial instruments might
marginally improve the generally hopeless results.

° Note that the multiple correlation coefficient is based on the same variance rfatid,-R
Var(uw)/Var(yy).

% This value corresponds®R 0.75. Note, however, that in these modefscBn be negative
becausey; and ycan be (negatively) correlated.

" The existence of moments of instrumental variable estimators attracted research up to early
1980s. The main results are summarized, eg, in Davidson—MacKinnon (1993) and Judge et al.
(1985). In the case of two-stage least squares, it is known that the number of finite moments (in
finite sample sizes) is one less than the number of instruments minus the number of explanatory
variables. Hence, in the case when the number of instruments equals the number of explanatory
variables, no finite moments exists.
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Figure 3. Estimated Density of GMM Estimator of v Based
on 500 Draws
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The true parameter values are 0,0 = 1/1.05, =1, T = {50, 100, 1000}u =0,¢, = 1.1, =

—0.28 (the roots are 0.7 and 0.3) {0, 0.5, 1}, ¢ = 0.193 and? = 0.001. The instruments sets

vary across columns and sample sizes across rows. Monte Carlo simulations are based on 500
draws on normal distribution.
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Figure 4. Estimated Density of GMM Estimator of a Based
on 500 Draws
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The true parameter values are 0,00 = 1/1.05, =1, T = {50, 100, 1000}p =0,@, = 1.1,@, =

—0.28 (the roots are 0.7 and 0.3) {0, 0.5, 1}, ¢ = 0.193 and? = 0.001. The instruments sets

vary across columns and sample sizes across rows. Monte Carlo simulations are based on 500
draws on normal distribution.
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Figure 5. Estimated Density of GMM Estimator of 3 Based
on 500 Draws
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The true parameter values are 0,0 = 1/1.05, =1, T = {50, 100, 1000}p =0, = 1.1,@, =

—0.28 (the roots are 0.7 and 0.8)s {0, 0.5, 1}, ¢ = 0.193 and?® = 0.001. The instruments sets

vary across columns and sample sizes across rows. Monte Carlo simulations are based on 500
draws on normal distribution.
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Table 1.

Descriptive Statistics wher is not Restricted,

Parameterv
Sample  Instru- F True Median Mean Std. dev. Bids RMSP Bia¥ MAD?
size ment set value

50 1 0 0.000 0.0060 0.0055 0.1598 0.0055 0.1598 0.0060 0.0218
50 2 0 0.000 0.0030 0.0035 0.0161 0.0035 0.0161 0.0030 0.0091
50 3 0 0.000 0.0060 0.0055 0.1598 0.0055 0.1598 0.0060 0.0218
50 4 0 0.000 0.0020 0.0044 0.0558 0.0044 0.0558 0.0020 0.0068
50 5 0 0.000 0.0018 0.0020 0.0084 0.0020 0.0084 0.0018 0.0056
50 1 05 0.000 -0.4002 -0.3780 6.9460 —-0.3780 6.9460 -0.4002 0.4663
50 2 05 0.000 0.2959 0.3149 0.4408 0.3149 0.4408 0.2959 0.3341
50 3 05 0.000 -0.4343 —-11.4700 267.6000 -11.4700 267.6000 —-0.4343 1.1980
50 4 05 0.000 -0.4002 -0.3780 6.9460 —-0.3780 6.9460 -0.4002 0.4663
50 5 05 0.000 -0.3430 —-16.6800 204.9000 -16.6800 204.9000 -0.3430 1.0830
50 1 1 0.000 -0.9077 -1.1210 12.6700 -1.1210 12.6700 -0.9077 1.0840
50 2 1 0.000 0.6887 0.8315 1.1850 0.8315 1.1850 0.6887 0.8038
50 3 1 0.000 -0.8934 -18.7600 339.4000 -18.7600 339.4000 -0.8934 2.9580
50 4 1 0.000 -0.9077 -1.1210 12.6700 -1.1210 12.6700 -0.9077 1.0840
50 5 1 0.000 -0.9476 -1.5420 74.6600 -1.5420 74.6600 -0.9476 3.2670
100 1 0 0.000 0.0088 0.0075 0.0718 0.0075 0.0718 0.0088 0.0134
100 2 0 0.000 0.0051 0.0064 0.0126 0.0064 0.0126 0.0051 0.0076
100 3 0 0.000 0.0088 0.0075 0.0718 0.0075 0.0718 0.0088 0.0134
100 4 0 0.000 0.0021 0.0042 0.0427 0.0042 0.0427 0.0021 0.0046
100 5 0 0.000 0.0021 0.0024 0.0050 0.0024 0.0050 0.0021 0.0034
100 1 05 0.000 -0.4537 -0.3008 9.5560 —0.3008 9.5560 -0.4537 0.4567
100 2 05 0.000 0.0534 0.0790 0.5075 0.0790 0.5075 0.0534 0.2845
100 3 05 0.000 -0.8614 -2.0970 93.9100 -2.0970 93.9100 -0.8614 1.3060
100 4 05 0.000 -0.4537 -0.3008 9.5560 —0.3008 9.5560 -0.4537 0.4567
100 5 05 0.000 -0.7170 5.8600 84.9500 5.8600 84.9500 -0.7170 1.6140
100 1 1 0.000 -1.0760 -2.5140 33.9000 -2.5140 33.9000 -1.0760 1.1020
100 2 1 0.000 0.1161 0.2309 1.2790 0.2309 1.2790 0.1161 0.7555
100 3 1 0.000 -2.3730 -2.7290 54.1800 -2.7290 54.1800 -2.3730 3.8000
100 4 1 0.000 -1.0760 -2.5140 33.9000 -2.5140 33.9000 -1.0760 1.1020
100 5 1 0.000 -2.3130 -5.2880 90.8800 -5.2880 90.8800 -2.3130 4.3730
1000 1 0 0.000 0.0101 0.0101 0.0043 0.0101 0.0043 0.0101 0.0101
1000 2 0 0.000 0.0093 0.0093 0.0040 0.0093 0.0040 0.0093 0.0093
1000 3 0 0.000 0.0101 0.0101 0.0043 0.0101 0.0043 0.0101 0.0101
1000 4 0 0.000 0.0026 0.0062 0.0794 0.0062 0.0794 0.0026 0.0033
1000 5 0 0.000 0.0026 0.0026 0.0155 0.0026 0.0155 0.0026 0.0032
1000 1 05 0.000 -0.5500 -0.5766 0.1971 -0.5766 0.1971 -0.5500 0.5499
1000 2 05 0.000 -0.5760 -0.5853 0.3162 -0.5853 0.3162 -0.5760 0.5795
1000 3 05 0.000 -1.7240 -3.3910 24.4100 -3.3910 24.4100 -1.7240 1.7240
1000 4 05 0.000 -0.5500 -0.5766 0.1971 -0.5766 0.1971 -0.5500 0.5499
1000 5 05 0.000 0.6296 0.5821 7.1660 0.5821 7.1660 0.6296 0.7324
1000 1 1 0.000 -1.2710 -1.3530 0.5015 -1.3530 0.5015 -1.2710 1.2710
1000 2 1 0.000 -1.5590 -1.5080 0.8179 -1.5080 0.8179 -1.5590 1.5530
1000 3 1 0.000 -4.9940 -6.5220 9.2720 -6.5220 9.2720 -4.9940 4.9980
1000 4 1 0.000 -1.2710 -1.3530 0.5015 -1.3530 0.5015 -1.2710 1.2710
1000 5 1 0.000 1.3420 2.0380 21.3800 2.0380 21.3800 1.3420 1.6400

%Mean — true value

PRoot mean square error

“‘Median — true value

YMedian absolute deviation from true value
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Table 2.

Descriptive Statistics wher is not Restricted,

Parametera
Sample Instru- S True Median Mean  Std. dev. Bias RMSE Bias MAD
size ment set value

50 1 0 0.952 0.9160 1.3590 7.2420 0.4065 7.2420 -0.0363 0.3208
50 2 0 0.952 0.3951 0.3781 0.2171 -0.5743 0.2171 -0.5572 0.5561
50 3 0 0.952 0.9160 13590 7.2420 0.4065 7.2420 -0.0363 0.3208
50 4 0 0.952  0.1097 0.1372 2.5980 -0.8151 2.5980 -0.8427 0.8595
50 5 0 0.952  0.0690 0.0688 0.0397 —-0.8835 0.0397 -0.8834 0.8833
50 1 05 0.952 15520 1.4930 10.2000 0.5411 10.2000 0.5997 0.7146
50 2 05 0.952  0.5897 0.5345 0.6283 —-0.4179 0.6283 -0.3627 0.4570
50 3 05 0.952 1.6430 18.1600 396.5000 17.2000 396.5000 0.6908 1.7640
50 4 05 0.952 15520 1.4930 10.2000 0.5411 10.2000 0.5997 0.7146
50 5 05 0.952 15100 22.3500 247.6000 21.3900 247.6000 0.5572 1.5860
50 1 1 0.952 1.6290 1.7780 8.7380 0.8260 8.7380 0.6764 0.8145
50 2 1 0.952 04982 03928 0.8494 -0.5596  0.8494 -0.4542 0.5553
50 3 1 0.952 1.6080 13.9700 232.1000 13.0200 232.1000 0.6551 2.1480
50 4 1 0.952 1.6290 1.7780 8.7380 0.8260 8.7380 0.6764 0.8145
50 5 1 0.952 1.7370 19530 50.2200 1.0010 50.2200 0.7843 2.3820
100 1 0 0.952  1.0080 1.2040 2.3280 0.2515 2.3280 0.0556 0.2097
100 2 0 0.952 0.5743 0.5925 0.1992 —-0.3599 0.1992 -0.3780 0.3790
100 3 0 0.952 1.0080 1.2040 2.3280 0.2515 2.3280 0.0556 0.2097
100 4 0 0.952 0.1435 -0.0818 3.8760 -1.0340 3.8760 -0.8089 0.8613
100 5 0 0.952  0.0700 0.0701 0.0257 -0.8822 0.0257 -0.8824 0.8822
100 1 05 0.952 1.6640 1.4440 13.3800 0.4920 13.3800 0.7114 0.7136
100 2 05 0.952 0.8910 0.8912 0.7029 -0.0611 0.7029 -0.0614 0.4080
100 3 05 0.952  2.2100 4.3210 134.7000 3.3690 134.7000 1.2570 1.8610
100 4 05 0.952 1.6640 1.4440 13.3800 0.4920 13.3800 0.7114 0.7136
100 5 05 0.952 2.0540 -6.6090 113.2000 -7.5610 113.2000 1.1020 2.3720
100 1 1 0.952  1.7390 2.7920 25.5700 1.8400 25.5700 0.7868 0.8106
100 2 1 0.952 0.9208 0.8218 09179 -0.1306 0.9179 -0.0316 0.5274
100 3 1 0.952 2.6430 29150 38.4700 1.9630 38.4700 1.6910 2.8230
100 4 1 0.952  1.7390 2.7920 25.5700 1.8400 25.5700 0.7868 0.8106
100 5 1 0.952 2.6370 4.6000 66.4500 3.6470 66.4500 1.6850 3.1540
1000 1 0 0.952 0.9966 1.0230 0.1275 0.0703  0.1275 0.0442 0.0747
1000 2 0 0.952  0.9070 0.9181 0.1037 —0.0343 0.1037 -0.0454 0.0795
1000 3 0 0.952 0.9966 1.0230 0.1275 0.0703  0.1275 0.0442 0.0747
1000 4 0 0.952 0.1076 0.6631 10.6400 -0.2893 10.6400 -0.8448 0.8779
1000 5 0 0.952 0.1151 0.1463 2.1100 -0.8061 2.1100 -0.8373 0.8795
1000 1 05 0.952 1.7790 1.8250 0.2743 0.8729 0.2743 0.8266 0.8286
1000 2 05 0.952 1.8220 1.8380 0.4477 0.8858  0.4477 0.8696 0.8716
1000 3 05 0.952  3.4880 5.7590 33.5300 48060 33.5300 2.5350 2.5360
1000 4 05 0.952 1.7790 1.8250 0.2743 0.8729 0.2743 0.8266 0.8286
1000 5 05 0.952 0.1034 0.1693 10.0100 -0.7831 10.0100 -0.8490 1.0100
1000 1 1 0.952  1.9050 1.9650 0.3550 1.0130 0.3550 0.9522 0.9524
1000 2 1 0.952 21100 2.0740 05800 1.1220 0.5800 1.1580 1.1580
1000 3 1 0.952 45580 5.6230 6.5400 4.6700 6.5400 3.6060 3.6200
1000 4 1 0.952  1.9050 1.9650 0.3550 1.0130 0.3550 0.9522 0.9524
1000 5 1 0.952 0.0489 —0.4388 15.0500 -1.3910 15.0500 -0.9035 1.1310
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Table 3. Descriptive Statistics wher is not Restricted,

Parameter 3
Sample Instru- S True  Median Mean  Std. dev. Bias RMSE Bias MAD
size ment value
set
50 1 0 1.000 1.3560 0.3724 20.2600 -0.6276  20.2600 0.3561 1.0740
50 2 0 1.000 2.8650 2.8840 0.5779 1.8840 0.5779  1.8650 1.8650
50 3 0 1.000 1.3560 0.3724 20.2600 -0.6276  20.2600 0.3561 1.0740
50 4 0 1.000 3.5410 3.5060 6.6810 2.5060 6.6810 25410 2.6160
50 5 0 1.000 3.6500 3.6560 0.1576 2.6560 0.1576  2.6500 2.6510
50 1 05 1.000 1.0120 0.6637 27.6200 -0.3363  27.6200 0.0121 1.8530
50 2 05 1.000 4.4080 4.6940 2.5670 3.6940 2.5670 3.4080 3.4130
50 3 05 1.000 0.9436 —-142.4000 3340.0000 —143.4000 3340.0000 -0.0564 4.0990
50 4 05 1.000 1.0120 0.6637 27.6200 -0.3363  27.6200 0.0121 1.8530
50 5 05 1.000 1.3340 -53.0200 552.0000 -54.0200 552.0000 0.3339 5.0260
50 1 1 1.000 1.5650 0.7685  46.4700 -0.2315 46.4700 0.5655 3.2230
50 2 1.000 6.2890 7.6140 5.5500 6.6140 5.5500 5.2890 5.3270
50 3 1 1.000 1.9000 -85.9300 1630.0000 -86.9300 1630.0000 0.8997 7.6130
50 4 1 1.000 1.5650 0.7685  46.4700 -0.2315 46.4700 0.5655 3.2230
50 5 1 1.000 1.2060 5.9110 219.3000 4.9110 219.3000 0.2062 9.1490
100 1 0 1.000 1.0290 0.4972 6.3970 -0.5028 6.3970 0.0291 0.7271
100 2 0 1.000 2.2300 2.1950 0.5721 1.1950 0.5721  1.2300 1.2310
100 3 0 1.000 1.0290 0.4972 6.3970 -0.5028 6.3970 0.0291 0.7271
100 4 0 1.000 3.4260 3.9670 9.8360 2.9670 9.8360 24260 2.4770
100 5 0 1.000 3.6000 3.5990 0.0939 2.5990 0.0939  2.6000 2.6000
100 1 05 1.000 0.1022 1.5540 61.9600 0.5535 61.9600 -0.8978 1.5270
100 2 05 1.000 3.0450 3.1590 3.0980 2.1590 3.0980 2.0450 2.3020
100 3 05 1.000 -1.6570 -2.1710 543.3000 -3.1710 543.3000 -2.6570 5.2070
100 4 05 1.000 0.1022 1.5540 61.9600 0.5535 61.9600 -0.8978 1.5270
100 5 05 1.000 -1.3210 33.7700 506.2000 32.7700 506.2000 -2.3210 7.3470
100 1 1 1.000 0.1039 —4.7910 113.5000 -5.7910 113.5000 -0.8961 2.4840
100 2 1.000 4.4010 4.8900 5.1730 3.8900 5.1730  3.4010 3.9060
100 3 1 1.000 -3.9380 —-3.5380 230.1000 -4.5380 230.1000 -4.9380 10.7700
100 4 1 1.000 0.1039 —4.7910 113.5000 -5.7910 113.5000 -0.8961 2.4840
100 5 1 1.000 -3.8270 -21.1500 334.2000 -22.1500 334.2000 -4.8270 12.6100
1000 1 0 1.000 0.9967 0.9307 0.3562  -0.0693 0.3562 —0.0033 0.1946
1000 2 0 1.000 1.2530 1.2200 0.2897 0.2204 0.2897  0.2532 0.2825
1000 3 0 1.000 0.9967 0.9307 0.3562  —0.0693 0.3562 —0.0033 0.1946
1000 4 0 1.000 3.4400 1.9420 29.1500 0.9416 29.1500 2.4400 2.5450
1000 5 0 1.000 3.4350 3.3550 5.8080 2.3550 5.8080 2.4350 2.5540
1000 1 05 1.000 -0.6619 -0.8179 1.1670 -1.8180 1.1670 -1.6620 1.6600
1000 2 05 1.000 -0.7828 -0.8681 1.8700 -1.8680 1.8700 -1.7830 1.8350
1000 3 05 1.000 -7.3260 -17.2200 145.3000 -18.2200 145.3000 -8.3260 8.3190
1000 4 05 1.000 -0.6619 -0.8179 1.1670 -1.8180 1.1670 -1.6620 1.6600
1000 5 05 1.000 5.9470 5.5510 43.0200 4.5510 43.0200 49470 5.3150
1000 1 1 1.000 -1.1230 -1.4500 1.9490 -2.4500 19490 -2.1230 2.1230
1000 2 1 1.000 -2.0830 —2.0690 3.2060 —3.0690 3.2060 -3.0830 3.2300
1000 3 1 1.000 -15.3000 -21.3600 35.5000 -22.3600 35.5000 -16.3000 16.3300
1000 4 1 1.000 -1.1230 -1.4500 1.9490 -2.4500 19490 -2.1230 2.1230
1000 5 1 1.000 8.8110 11.6500 80.8800 10.6500  80.8800  7.8110 8.4360
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7 Conclusions

This paper formalizes the concept méso problemn terms of a linear Euler
equation and a nonlinear marginal model. It turns out that the threshold
autoregressive model as a marginal model is able to produce time-varying premia
— contrary to the widely applied markov switching model. However, due to a
nonlinear marginal model, there is no closed form solution to the system of
equations. We discuss possible choices of computing the discounted sum of
conditional future expectations of the marginal model.

Two estimation strategies emerge. The maximum likelihood is one possibility,
but it leads to the numerical approximation of the conditional expectations of the
marginal model. This is computationally burdensome and we can not give any
Monte Carlo results of the properties of the ML estimator. The second choice is to
apply GMM directly to Euler equation estimation. A clear advantage is that no
assumption of the marginal model needs to be done. However, the simulation
experiments illustrate that the GMM estimator, as applied here, has poor small
sample properties in general and particularly so in the peso case.

The main problem with GMM lies in the estimation of the discount factor.
The standard way to apply GMM to Euler equation estimation does not punish the
GMM criteria when the discount factor gets unfeasible values, eg, values above
unity. According to our simulations restricting the discount factor to lie between
zero and unity does not solve the problem. The boundary value is attained in more
than half of the cases. Improvements in the pararfesee marginal and concern
only the non-peso case.
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Appendix

Justification of equations (3.8a) and (3.8b)

First note that, for j = 2, (3.8a) and (3.8b) follow directly from (3.5) and (3.6).
Now suppose that these equations hold foBjand observe that

Kj+1(xt) = J—KJ(Z)po\xt (Z)dZ
=A J’Kj_l(z)pxm‘xt (2)dz+ 5el'|'kj(z)pxm‘xt (z)dx.

Here the first equality is based on (3.4) The second one follows from the
induction assumption and the fact that, similarly to (3.5), also (3.6) and (3.8) hold
even if X is replaced by z. By (3.6) the first term is the last expression equals
AK;(Xy). As for the second one, notice that, conditional grthe first component

of Xw1 has the density functiog(z, —eh(X, )hile the remaining components

have a degenerate distribution at.[x X—p+2]'. Thus, the last integral equals
JKi(Z X Xipi2)9(Z — €NX )X, =K (X))

as required.
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