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Abstract

This paper contains a set of tests for nonlinearities in economic time series. The
tests correspond both to standard diagnostie tests for revealing nonlinearities
and some new developments in modelling nonlinearities. The latter test
procedures make use of models in chaos theory, so-called long-memory models
and some asymmetric adjustment models. Empirical tests are carried out with
Finnish monthly data for ten macroeconomic time series covering the period
1920-1994. Test results support unambiguously the notion that there are strong
nonlinearities in the data. The evidence for chaos, however, is weak.
Nonlinearities are detected not only in a univariate setting but also in some
preliminary investigations dealing with a multivariate case. Certain differences
seem to exist between nominal and real variables in nonlinear behaviour. Also
in terms of short and long-term behaviour some differences can be detected.

Tiivistelmä

Tässä tutkimuksessa testataan taloudellisiin aikasarjoihin liittyviä epälineaari­
suuksia. Testit koostuvat sekä tavanomaista diagnostisista testeistä että eräistä
uusista epälineaarisuuksien olemassaoloa selvittävistä testimenetelmistä. Jälkim­
mäiset testit liittyvät kaaosteorian sovellutuksiin, ns. pitkän muistin malleihin ja
epäsymmetrisen sopeutumisen malleihin. Empiiriset analyysit tehdään kymme­
nellä Suomea koskevalla kuukausisarjalla, jotka kattavat ajanjakson 1920-1994.
Testit tulevat kiistatta sitä oletusta, että aikasarjoissa on epälineaarisuuksia.
Epälineaarisuudet eivät kuitenkaan välttämättä heijasta determinististä kaaosta.
Näitä ominaisuuksia ilmenee sekä yksittäisten muuttujien suhteen, mutta myös
tutkittaessa muuttujien välisiä riippuvuuksia. Nimellisten ja reaalisten aika­
sarjojen välillä näyttää olevan jonkin verran eroja epälineaarisuuksien määrässä
ja luonteessa. Myös lyhyen ja pitkän aikavälin käyttäytymisen suhteen ilmenee
eroavaisuuksia.
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1 Introduction

Even though economic relationships are thought to be fundamentally nonlinear,
most modelIing practices start with linear tests and modelling. The most
apperent reason for this has been the difficulty to choose from numerous
nonlinear alternatives. Economic theory rarely helps the researcher with
anything else than maybe giving the assumed sign the between two variables.
Given the amount of tests and statistical theory based on linear spaces, it has
been almost too easy to attention to linear models. However, the poor
performance of these models in forecasting ego business cycles has alerted that
maybe things are not that simple.

Apart from some almost self-evident nonlinear functions like the
production function or the utility function, nonlinearities have rerely been
treated satisfactory in economics. Although the state of art in nonlinear
economics has started to get more attention, the biggest problem is that we do
not have any clear cut procedure to approach these nonlinearities. So far we do
not have any better advise than just to begin with linear testing and try to limit
the nature of nonlinarities to some well specified class of models.

This paper examines several long Finnish macroeconomic time series. The
purpose of the examination is to find out whether indeed there are any signs of
nonlinearities in these series. Thus, we carry out a set of tests analogously to
Lee, White and Granger (1993). At this stage, most of these tests are applied to
univariate models although a multivariate application would obviously be more
interesting. When scrutinizing the series we pay special attention to the
distinction between nominal and real series. This can be motivated by the fact
that nonlinearities are presumably quite different with nominal and real
variables. (por an extensive survey to the literature, see MulIineux and Peng
(1993).) Thus, it is of some interest of compare a typical real series, say
industrial production, and a nominal series, say stock prices, in this respect.

Most monetary series - like relative prices, changes in price level and
money aggregates - show some form of nonlinear behaviour. Prices are often
more volatile than the real series, since they have a role of clearing device in
the market. Monetary phenomenon are based upon valuations that could be
adjusted without any relevant cost. In the market clearing situation it is often ­
but not necessarily always - easier to change the price than the quantity.
Although prices could easily move into both directions, crises in the market
produce excessively large negative (positive) changes. Nominal price rigidities
would also have similar effects. Therefore it may be no surprise that real
exchange rate, stock prices or inf1ation seem to adjust asymmetrically to shocks.

This affects the volatility of these series. Another major observation about
the origin of "price shocks" relates to their unstable variance in time. It has
been verified that in many cases price changes - e.g. in the stock market ­
cluster significantly. Forecasting price changes is therefore a harder task for
economic agents than forecasting smoother real variables.

Nowadays, a general response to situations of changing volatility
(heteroskedasticity) is to use an ARCH model specification. It may well be,
however, that the ARCH model is not the proper framework. It could be the
case that prices have the so-called long memory property, thus containing
permanent components. In particular, the long memory property shows up in

7



high and persistent serial correlation over long lags between absolute values of
the (linearly filtered) series. It also shows up in so-called rescaled range
analysis which provides estimates of the persistence of time series. Obviously,
this kind of long memory phenomenom is at variance with a linear structure
and therefore it may be useful to consider it also here.

However, in many cases also real economic variables vary in a nonlinear
way. Obvious evidence of nonlinear adjustment could be seen e.g. from the
apparent and persistent tendency to cycles in most important production
variables (see, e.g., Pfann and Palm (1993) for details). Whether these
nonlinearities in real series araise from the generating process of aseries itself
or random shocks is largely an empirical question. So far no agreement has
emerged on the subject whether real or monetary phenomenon are responsible
about business cycles. We hope that our estimates about the nonlinearity of
these series could shed some light on this issue as well.

One general class of explanations for nolinearities is chaotic behavior.
Quite recently, there have bee numerous theoretical and empirical applications
of "chaos theory". In particular, the behavior of financial variables have been
analyzed from this point of view (see, e.g., the books by DeGrauwe, et al
(1993), Greedy and Martin (1994), Peters (1993) and Vaga (1994». The
analyses have concentrated on testing the existence of chaos; theoretical
analyses have mainly been presented as examples of various possibilities in
which (determinisitic) chaos might arise. Here, we leave the theoretical
developments aside and concentrate solely on empirical testing. It is easy not
derive a theoretical model which would easily apply to all macroeconomic
series which are in our disposal.

Although the analysis mainly deals with univariate models, some
preliminary work is done to identify nonlinear relationships between variables.
In this context, we do not follow any specific hypothesis concerning the
relationships between variables. By contrast, we simply make use of a cross­
correlation analysis with respect different moments of our variables. Thus, the
analyses represent some sort of first step towards a generalized Granger tests
for nonlinear relationships. This analysis gives us a general idea of the
magnitude and nature of these relationships. An obvious next step is to go back
to theory and think about how the findings coincide with different theoretical
approaches.

The structure of the paper is very straightforward. First, we have a look at
the data in section 2, then we briefly present the test statistics and illustrate
their properties with some simulated data in section 3 and in section 4 we go
through the test results for univariate models. The results deal with various
diagnostic tests procedures and with a set of analyses with correlation
dimension, rescaled range, time irreversibility, nonlinear adjustment, parameter
stability and long memory. In section 4, we scrutinize the results from a cross­
correlation analyses between different moments of these series and, finally, in
section 5 we present some concluding remarks.
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2 The data

The data are monthly Finnish data covering the period 1920Ml-1994M10.
After data transformations the period 1992M5-1994M10 is covered. Thus, there
are 893 observations in each series. The following ten series are analyzed in
this connection.

Industrial production (ip)
Banlauptcies (bank)
Terms of trade (tt)
The real exchange rate index (fx)
Yield on long-terms government bonds (r)
The consumer price index (cpi)
The wholesale price index (wpi)
Banks' total credit supply (credit)
Narrow money (Ml)
The UNITAS (Helsinki) stock exchange index (sx)

The first four series are real and the subsequent six nomina1. The data are
presented in Figure 1. For presentational convenience, most of the series have
been presented in logs. To get some idea of the timing of changes in these
variables the recession periods are marked by shaded areas.

Otherwise, the details of the data are presented in Viren (1992). We only
point out that ip, bank, credit and Ml series are seasonally adjusted. This is
simply because of data reasons - only seasonally adjusted data were available
for the prewar period 1920-1938. As for the World War II (1939-1945), the
data are treated in the same way as for the peace years.

The overall quality of the time series is rather good. Only money and
interest rate series are somewhat deficient which is apparent on the basis of also
Figure 1. The money, Ml, series for 1922Ml-1948M12 is based on rather
crude assumptions on banks' cash holdings and hence the series is "too smooth"
for this period. The interest rate series, in turn, suffers from the fact that banks'
borrowing and lending rates were administratively fixed from mid 1930s to
early 1980s and, therefore, the bond yields were not genuinely market-based but
they were indirectly rationed, too. Because of these frictions with Ml and r, we
leave them out from more sophisticated econometric analyses.

3 The test statistics

Data transformations

Testing nonlinearities is preferred to be started by estimating linear model and
analysing the respective residuals. Although economic relationships are most
likely to be nonlinear, there is also danger of unnecessary complication, if the
difference to a linear model is small.

The need for nonlinear model depends also on the purpose of the mode!.
For short-run forecasting linear models may do the thing, but for long-run

9



forecasts or explanation of apparent nonlinear features a more proper modelling
is needed. Since testing linearity is widely covered in Granger and Teräsvirta
(1993), we give here only few basic standpoints. The linearity tests could be
divided into two groups, depending on whether a specific nonlinear alternative
exists or not. Since our data does not refer to any specific nonlinear
formulation, we concentrate on testing against the general nonlinear alternative.

As it was mentioned above, we analyze only univariate models. A some
sort of basic specification is a linear AR(4) which turned out to a reasonably
good approximation for all time series. 1n specifying the order of the
autoregressive models, we used mode! selection criterions (SC, HQ, AlC). 1n
order to study the dynamic dependencies between variables, we though that in
the first place it would be best to filter the original series with the linear
autoregressive model of the same order. Thus, the residuals are not severely
(linearly) autocorrelated. A few exceptions do exist, however, for higher order
autocorrelation (for the lag 12, for instance). Anyway, we prefer the
parsimonious AR(4) model to more sophisticated specifications.1 In fact, we
also used first log differences for all relevant variables instead of AR(4)
residuals. The residuals were qualitatively very similar suggesting that the
AR(4) transformation is not that crucial. For space reasons, the results with the
first difference data are not reported here.

Log transformations was applied to most of the series. Thus, only the terms
of trade, the real exchange rate and the interest rate series were left
untransformed. To assess the validity of this transformation we made use of the
Box-Cox transformation. The results of this procedure generally supported to
the above mentioned choice. Only in the case of consumer prices and the terms
of trade, one could not sure whether or not to make the log transformation.

Dealing with nonlinearities is often easier after the linear dependencies in a
time series have already taken care of. Therefore nonlinear adjustment can be
found from a series property filtered with autoregressive (linear) model.
However, empirical problems do emerge at this point. 1t often happens,
especially in multivariate analysis, that filtering is almost too effective, since all
the significant relationships between variables are removed. Therefore too long
autoregressive lag models that also affect the asymmetricity in the series should
be avoided.

Standard diagnostie tests

Given the autoregressive model, we compute the following sets of tests: First
some basic statistics on residuals of this linear AR(4) model (see Table 1).
These statistics include the coefficients of skewness and kurtosis in addition to
the median. Quite obviously, we intend to discover possible asymmetries with
these data. The second set of tests consist of traditionaI specification tests for
functional misspecification/nonlinearity. The tests (reported in Table 2) consists
of Engle' s (1982) ARCH test in terms of lagged squared residuals, Ramsey's

1 We are well aware that the remalmng higher-order autocorrelation might invalidate the
subsequent test statisties which are related to the measure of correlation dimension (see Ramsey
(1990) for details).
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(1969) RESET test in terms of higher-order powers of the forecast value of Xt'

White's (1980) heteroskedasticity/functional form misspecification test in terms
of all squares and cross products of the original regressors, The Jarque and Bera
(1980) test for normality of residualsand Tsay's (1986) nonlinearity test in
terms of squared and cross-products of lagged values x/ Finally, the Hsieh
(1991) third order moment coefficients are computed. They should detect
models which are nonlinear in mean and hybrid models which are nonlinear in
both mean and variance but not models which are nonlinear in variance only.

BDS-test for chaotic process

In addition to these "traditional" test statistics we also computed the BDS
(Brock, Dechert and Scheinkman) test statistic (see Table 4) and Ramsey's
(1990) irreversibility G12 test. BDS tests is designed to evaluate hidden patterns
of systematic forecastable nonstationary in time series. The test was originally
constructed to have high power against deterministic chaos, but is was find out
that it can be used to test other forms of nonlinearities as well (see, e.g., Brock,
Scheinkman and LeBaron (1991) Frank and Stengos (1988) and Medio (1992)
for details).

BDS test could be applied also as a test for adequacy of a specified
forecasting model. This could be accomplished by calculating the BDS test for
the standardized forecast errors. Then BDS test is used as a specification test. If
no forecastable structure exists among forecast errors, the BDS test should not
alarm. BDS test has been found useful as a general test for detecting
forecastable volatility. The key concept here is the correlation dimension, which
could be applied in finding the topological properties of series. For purely
random variable, the correlation dimension increases monotonically with the
dimension of the space and the correlation dimension remains small even when
the topological dimension of the space (embedding dimension) increases
(Brock, Hsieh and LeBaron (1991».

For a single series xt for which xt,m is the set of m adjacent values of this
time series ~+j' j=O, ..., m-1 the m-correlation integral Cm(e) is defined as

where T = N - m + 1, N is the length of the series.
The idea is that for chaotic series, the subsequent values of Xi and ~ will

be very close. If the time series is a stochastic sequence, this does not happen.
Now defining the correlation dimension dem) as

2 As for the properties of these test statistics see e.g. Petruccelli (1990) and Lee, White and
Granger (1993).
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ologCm(E)
d(m) =lim

E~OO ologE

it will be seen, that for truly ehaotic process Cm(e) .... ed
, if e is smalI. This

means that eorrelation dimension is independent of m if the proeess is ehaotie.
Otherwise, if the proeess is truly stoehastie the eorrelation dimension will
inerease linearly with m.

The purpose of the eorrelation measure is to deseribe the eomplexity of the
true series and measure the nonlinear dimension (degrees of freedom) of the
proeess. Tests of ehaos eoneentrate on low-dimensional deterministie ehaos
prosesses, sinee there is no efficient way to tell the differenee between high­
dimensional ehaos and randomness.

Although the eorrelation dimension ean be ealculated and interpreted rather
easily, there are some major problems with the estimation of this measure,
mainly due to faet that economie data are relatively noisy and there too few
observations available (see Ramsey (1990) and Ramsey, Rothman and Sayers
(1991) for more details). It ean be shown that when the dimension of the data
set is based on this Grossberger-Proeaecia measure, the estimate of it is
neeessarily biased beeause of the following small sample problem: With finite
data set the value of E eannot be too small beeause otherwise Cm(E) will be zero
and thus d(m) is not defined. By eontrast, with large values of E, Cm(E) saturates
at unity so that the regression of 10g(Cm) on 10g(E) is simply zero. Thus, the
smaller the number of observations, the larger E has to be, and the more biased
the estimate of the dimension will be.

Although theory eoneems the properties of Cm(E) as E~ 0, the reality is
that the range of E used in estimating d(m) is far from zero and inevitably
inereases away from zero as the embedding dimension is inereased. Smaller
values of E require substantial inereases in sample size in order to determine a
linear relationship between 10g(Cm(E)) and 10g(E). In faet, the relationship is
linear only for a narrow range of values for E. Thus, one should be very eareful
in evaluating single point estimates of d(m). By serutinizing the entire path of
d(m) with respeet to E one may obtain a more reliable estimate of the true
dimension. Altematively, one may use the test proeedure suggested by Broek,
Hsieh and LeBaron (1991) in ealeulating the following BDS test statistie:

Where a(m,e) is an estimate of the standard deviation. BDS tests whether
Cm(e) is signifieantly greater than C1(e)m, and when this happens nonlinearity
is present. Under the null hypothesis of Xl following Li.d., and for fixed m and
e, Cm,ie)~C(e)m, as T~oo, and SDB(m,e) has the standard normal
distribution. (Notiee, however, that Cm(e) =C(e)m does not imply Li.d..) The
power of the test will depend eritieally on the ehoiee of e.

BDS test statistie is eomplieated sinee it depends on the embedding
dimension (m) and the ehosen distanee (e) related to standard deviation of the
data. The seleetion of m is important in small samples especially when m is
large, sinee inereasing m means that the number of nonoverlapping sequenees
will beeome smaller. And when sample is less than 500 the asymptotie
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distribution may be different than the sampling distribution of the BDS statistic.
The selection of e is even more crucial and a failure to detect non-normality in
calculating BDS with small e is a consequence of too few observations. Brock,
Hsich and LeBaron (1991, p. 52) suggests that for 500 or more observations,
the embedding dimension m should be smaller or equal to 5, whereas e should
be 0.5-2 times the standard deviation of the data. In the empirical application,
some alternative values of the dimension parameter m and the distance
parameter e are used.

The problem with BDS test is however, that it does not have a simple
interpretation. Nonlinearity based on BDS test could be a result from chaos or
nonlinear stochastic process. However, BDS test was originally designed to test
whether data generating process of aseries is deterministic (chaotic) or not
(Granger & Teräsvirta (1993), p. 63). Since the BDS test is based on the null
hypothesis that the observations (here AR(4) residuals) are i.i.d., a rejection
merely reveals that this is not the case. The specific form of nonlinearity is
therefore an open question.

As for the practical implementation of the test, it is here done by using the
residuals of the AR(4) model as inputs. The use of the autoregressive filter is
based on the invariance property of chaotic equations shown by Brock (1986).
Brock showed that if one carried out a linear transformation of chaotic data,
then both the original and the transformed data should have the same
correlation dimension and the same Lyapunov exponents. Some alternative
values for the dimension parameter m and distance parameter e are applied.

In order to get some idea of implications of deterministic chaos we
illustrate the case by comparing a truly deterministic chaos series to a random
N(O,l) series. A logistic map model which takes the form xt =4*xt_ 1(1-xt_1) is
used to generate the chaotic series. Both series contain 2000 observations; the
initial value of the logistic map series is 0.3.3 The figure on the following
pages illustrates the time paths of these two series (only the first 200
observations are graphed), the respective autocorrelations for 60 lags, two
dimensional plots in terms of the current and lagged vaIue of the variable,
correlation dimension estimates with an embedding dimension 2-5 and the BDS
test statistics with the the embedding dimension 2 over the e values 0.5-3.0.

3 The first value of the series is .300. The series are very sensitive with respect to this initial
value. If the initial value is changed to .30001, the new series diverges from the original series
after 14 observations and never converges. In addition to the logistic map specification we used
the Henon map (which is equally often used a benchmark example). Here, the Henon map takes
the following parametrization: xt+1 =1 + Yt + 1.4*x; and Yt+1 =.3"t with x(O) =.1 and y(O) =.lo
Needless to say, also these series depend very much on the initial values.
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Figure 1. Comparison of logistic map and random series
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Correlation dimensions of logistic map and random normal processes

BDS(2) statistics for e =0.5-3.0
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Lyapunovexponents
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The purpose of Figure 1 is to show that the time series and the autoeorrelations
are quite similar. In faet, one might at first glanee eonsider the logistie map
series to be random walk series. The dimension plots show, however, that there
is a fundamental differenee between these two series. The random N(O,l) series
is spread quite evenly over the plane while the logistie map series do not fill
enough spaee at a sufficiently high embedding dimension whieh is a generie
property of ehaotie proeesses. The clustering of two-dimensional plots also
shows up in the dimension estimates (and in the BDS test statisties). The
estimate for the logistie map series is about one irrespeetive of the embedding
dimension (it ean be shown that the eorrelation dimension for the logistie map
is 1.00 ±0.02, see, e.g., Hsieh (1991». Finally, the BDS test statisties clearly
diseriminates these two series. Thus, the statistie for random normal series
typieally fails to exeeed the eritieal value while the test statistic for the logistie
map exeeeds the eritieal value by many hundreds.

Lyapunov exponents

The Lyapunov exponents measure the average stability properties of the system
on the attraetor. Frequently the presenee of at least one positive Lyapunov
exponent is taken to be the definition of ehaos. For a fixed point attraetor, the
Lyapunov exponents are the absolute numbers of the eigenvalues of the
Jaeobian matrix evaluated at the fixed point. Thus, the Lyapunov exponents ean
be eonsidered as generalizations of eigenvalues (see, e.g. Medio (1992) and
Frank and Stengos (1988a) for further details).

To define the Lyapunov exponents eonsider the following dynamieal
system:

dx
-=F(x),
dt

where x is a veetor with N eomponents. Consider a trajeetory x*(t) that satisfies
this equation and an arbitrarily small positive initial displaeement from the start
of x*(t) denoted by D(t). Now, it ean be shown under fairly general eonditions
that, for given D(O), the following limit exists:

Notiee that the Lyapunov exponents are not loeal properties as one might think.
Thus, the values if Li are independent of the ehoiee of D(O). In faet, one may
interpret that the exponent(s) measures the average rate of separation over the
entire strange attraetor.

A positive Lyapunov exponent measures how rapidly nearby points diverge
from eaeh other. A negative Lyapunov exponent, in turn, measures how long it
takes for a system to reestablish itself after it has been perturbated. Basieally,
this is the reason why the Lyapunov exponents offer a way to classify
attraetors.
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The problem is that it is not easy to estimate Lyapunov exponents from
experimental data. Wolf, et al (1985) have developed a FORTRAN program
which estimates the largest exponent LI from these kinds of data but it has been
shown (see, e.g., Brock (1986) and Brock and Sayers (1988)) that the estimates
are very sensitive with respect to the nuisance parameters used in the context of
the program. Thus, for instance, large positive Lyapunov estimates may be
obtained for pure noise data. Our own experience points to the same direction.
Therefore we are reluctant to use the Wolf, et al (1985) estimates to
characterize our real data.

Quite recently, McCafferty, et al (1991) and Dechert and Genacay (1993)
have proposed an alternative algorithm using the so called multilayer
feedforward networks which appears to have superior properties with respect to
the Wolf, et al (1985) algorithm. This will allow us to rescrutinize the values of
the Lyapunov exponents in a more affirmative way. Although we do not go
through the analysis of Lyapunov exponents with the real data we may refer to
Figure 1 in text where the largest Lyapunov exponent is presented for random
normal and logistic map time series.4 1n the case of logistic map series, the
exponent is large and positive while with random noise series the exponent
converges to a (smalI) negative value.

The Hurst exponent (rescaled range analysis)

The Hurst exponent is a new measure which can classify time series in terms of
persistence (or, "antipersistence"), stability of the data generating mechanism
and the importance of outlier-type observations. Thus, it can distinguish
between a random series from a non-random series, even if the random series is
non-Gaussian. The Hurst exponent was first applied to natural systems (first, in
analyzing water reservoir control within the Nile River Dam project in early
1900) but recently there have numerous applications to financial data (see, e.g.,
DeGrauwe, et al (1993) and Peters (1993)).
Computing the Hurst exponent (H) requires the following steps:
First, compute the cumulative deviation Xt't over't periods:,

t

X =L(e. -M)t,'t 1 't
i=1

where ei is the infiow in year i and ~ is the recursive average of ei over N
periods. Second, compute the recursive range between the maximum and
minimum of X so that:

4 Lyapunov exponents have been estimated in several empirical studies, see, e.g., Frank and
Stengos (1988c), Frank, et al (1988) and Peters (1993). The results have been somewhat mixed,
partly depending on the algorithm (thus, for instance, Frank and Stengos (1988) do not find
support to the existence chaos while Peters's results point to the opposite direction). There are,
however, aIot of ambiguity with the results because of convergence problems and
computational sensitivity.
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Finally, compute the exponent estimating the parameter H from the following
modeI for the "rescaIed range" R/S:

where S is the (recursive) standard deviation of the originaI observations and a
a scaIing constant (for further detaiIs, see., e.g., DeGrauwe, et al (1993) and
Peters (1993)).

According to the statisticaI mechanics, H shouId equal to 0.5 if the series is
a random walk. In other words, the range of cumuIative deviations shouId
increase with the square root of time. With many (most?) time series from
natural system, the vaIue of H has turned out be much higher than 0.5. In
surprisingIy in many cases the vaIue of 0.73 is obtained (see DeGrauwe et aI).

When H is different from 0.5, the observations are no more independent in
sense that they carry a memory of all preceding events. This memory can be
characterized as "Iong-term memory". Theoretically, it Iasts forever. Thus, the
current data refIects everything which has been in the past. Notice that this is
something which cannot be taken into account in standard econometrics in
which time invariance is assumed.5

Now, consider the case in which H < Y2 and H > Y2. In the former case, the
system is antipersistent or "mean reverting". Thus if the system has been up in
the previous period, it is more likeIy to be down in the next period. By contrast,
when 0.5 < H < 1, the system is persistent or "trend-enforcing". If the series has
been down in the last period, then the changes are that is it will continue to be
down in the next period.

A R/S pIot 'for random N(O,I) and a logistic map series is presented in
Figure 1 in text. Notice, the estimated sIope (i.e., the Hurst exponent) is 0.59
which is quite close to the theoreticaI vaIue of 0.5. The estimated sIope of the
Iogistic map series is instead 0.43 (as for the Henon map, an estimate of .38 is
obtained) which says (in statisticaI terms) that this series have no popuIation
mean and the distribution of variance is undefined. ObviousIy, there is nothing
we can forecast with these series.

5 The values of Hurst exponent can to related to a correlation (C) measure in the following way:
C = 2(2H-I) - 1. Thus, when H =V2, C =0, and we are dealing with random series. Hs
probability density function can be the normal curve but is does not have to be. By contrast, if
H is different from V2, the distribution is not normal.
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The Ramsey irreversibiIity test

The irreversibility test, which has been derived by Ramsey and Rothman (1988)
and Rothman (1993), deals with the concept of time reversibility.6 Time
irreversibility is concept which is useful in analyzing possible asymmetries
(nonlinearities) in economic time series, for instance, in output series.
According to conventional Mitchell-Keynes business cycle hypothesis cyclical
upturns are longer, but less steep, than downturns (see also the "plucking
model" of Friedman (1993)) If one traces out the behaviour of cycles in reverse
time it can be seen that the symmetric cycle is time reversible and the
asymmetric cycle is time irreversible.

Ramsey and Rothman (1988) propose that the presence of time
irreversibility is checked by estimating a symmetric bicovariance function in
terms of Xt. The test statistic which is obtained from this bicovariance function
is of the following type:

k=1,2, ...,K.

If the time series is time reversible, Gi~ =0 for all k. As for the choice of
exponents, i and j, we assume here that i =2 and j =1 (here we just follow
Ramsey (1990)). In addition, we experiment with the pair i =3 and j = 1. The
maximum lag length K is set at 120. To ensure stationarity, we use also here
AR(4) residuals instead of the original time series. The significance of the G
statistic is tested by computing the confidence limits according to the following

formula for the variance of G~2:,

where flz =~x~] and #4 =1x~]' Assuming that the data are independent and
identically distributed N(O,o ), the right hand side of the above formula can be

simplified 10 he ((T~1) )[~]. This is clearly a crude approximation becanse the

normality assumption does not hold, nor are the variables uncorrelated.
However, it is not all clear how the variance terms should be computed when x t

is not LLd. but follows e.g. some general ARMA(p,q) model (see Ramsey and
Rothman (1988) for various experiments). Here the test statistics and the
respective confidence limits are displayed in Figure 6.

6 A stationary time series {xt} is time reversible if for any positive integer n, and for every t1,

t2> ..., to' E z, where z is the set of integers, the vectors (xt1, xt2> ..., xtJ and (x_tl' x_t2' •••, x_tJ
have the same joint probability distributions. A stationary time series which is not time
reversible is said to be irreversible. Notice, that by definition, a non-stationary series is time
irreversible. See e.g. Tong (1983) for further details.
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A nonlinear adjustment equation

Instead of just computing test statistics for nonlinearity, it would be tempting to
estimate a general nonlinear time series model and compare its properties with
a linear model. Unfortunately, such general nonlinear model does not exist nor
is there any agreement of a reasonable approximation which could be used to
capture the possible nonlinear elements of the data. Still, the situation is not
completely hopeless. There some interesting candidates for a nonlinear
specification. The first which deserves to be mentioned is the threshold model
specification introduced by Tong (see e.g. Tong (1983)). Another specification
which is clearly worth mentioning is the nonlinear employment (output)
equation introduced by Pfann (1992). This (estimating) equation takes the
folIowing form:

where fl is the random term. According to Pfann (1992) and Pfann and Palm
(1993), the parameter of the nonlinear terms can be unambiguously signed in
the case employment equations. Thus, a4 should be positive (if hiring costs are
larger than firing costs, or in general, if the cycle spends more time rising to a
peak than time falling to a trough). Moreover, parameter as is expected to be
negative if the asymmetry (skewness) of magnitude (Le. the magnitude of
troughs exceeds the magnitude of peaks) is negative and parameter a6 also
negative if the asymmetry (skewness) of duration is negative (Le., it takes
longer for a series to rise from a trough to a peak than to falI from a peak to a
trough).

Although this model may make more sense with (productive) input and
output series we also apply it to alI ten (here, in fact, thirteen) Finnish series
partly to see whether the real and nominal series can be discriminated on the
basis of this equation. The results are reported in Table 4. This table also
includes a comparison of this model with a linear altemative.7

4 Test results with univariate models

4.1 Results from diagnostic tests

The message of the empirical analyses is quite clear and systematic: the data do
not give much support to linear models. Thus, alI tests statistics in reported in

7 Here, we merely replicate the experiments by Pfann (1992). Thus, we take the same
detrending procedure (see the second term on the right hand side) and the same lag structure.
Obviously, extending the lag length beyond 2 would enormously complicate the mode1.
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Table 2 and 3 indieate that at least a linear AR(4) model is trouble.8 Aeeording
to Table 2, the residuals from the AR(4) model suffer from heteroskedasticity
and non-normality. The ARCH(7) statistie signifieant for all variables (perhaps
excluding the interest rate). Thus, even with real series like industrial output an
autoregressive eonditional heteroskedasticity effeet ean be diseemed. This is
something new. Nobody is surely surprised to find an ARCH effeet in stoek
priees but here a similar result applies to other variables as well.

Nonnormality is clearly a severe problem. It is quite obvious that normality
is violated beeause of outlier observations. Clearly, some observations ean
classified as outliers and it might well be that these observations eontribute to
the rejeetion of linearity. This ean be seen from Figures 2 and 3 whieh eontain
the time series and frequeney distributions for the AR(4) residuals. In
aeeordanee with Table 1, the main problem seems to be exeess kurtosis, not so
mueh exeess skewness. Although the normality assumption is rejeeted, the
graphs suggest that the distributional problems are not, after all, so severe as the
Jarque-Bera normality test statistie suggests.

Unfortunately, there is no obvious remedy to non-normality and outlier
observations. One alternative is, of eourse, to use robust estimators and examine
whether the results (e.g., the properties of residuals) ehange importantly due to
the ehange in estimators. In faet, we did do this but it tumed out that the results
with the least absolute deviations estimator were qualitatively very similar to
the OLS results. Another possibility is to reconsider the relevant sampling
distributions of the nonlinearity tests statisties in the light of observed behaviour
of OLS residuals. Here, we have not yet worked out this altemative.

After these eonsiderations, some eomments on the RESET and TSAY
nonlinearity test statistics merit note. Both tests do suggest that the (linear)
funetional form is misspecified for most of the variables. The results are,
however, very systematic. Thus, for instanee, industrial produetion and
bankruptcies, on the one hand, and narrow money and eredit supply, on the
other hand, behave in a different way in these tests. Moreover, the test results
do not allow from drawing a dear line between real and nominal variables. As
far as the Hsieh's (1991) third order moment eoefficients are eoneemed, one
ean see that with some variables the eoefficients are very high. Some of the
highest eoefficients are in faet quite similar to those of the logistie map series!
High eoefficient values are obtained for the real exehange rate, eonsumer and
wholesale priees, money and - somewhat surprisingly - stoek priees. By
eontrast, the values for industrial produetion, bankruptcies and terms and trade
are somewhat lower although all of them are not "dean". Thus, nonlinearities
do exist and nonlinearities are not only a problem for real variables. Beeause
the third order moment eoefficients are not intended to test models whieh are
nonlinear in varianee one may conclude that the high eoefficient values for the
nominal series do not (only) refleet some ARCH effeets but other sorts of
nonlinearities (say GARCH-in-Mean effeets or long memory behaviour).

8 In addition of the test statistics reported in Table 2 we also computed the Keenan (1985) and
McLeod-Li (1983) test statistics. Both of these tumed out to be highly significant. Thus the
marginal significance levels were in all cases well below 5 per cent. The test statistics were also
computed for the post Second Word War period. Results were quite similar to those reported in
Table 2. Thus the war itself cannot explain why the results are favourable to nonlinearities.
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4.2 Results from analyses of correlation dimension

Next, turn to results from the analysis of the correlation dimension. Those
results are presented in the following way: First, the two-dimensional plots of
the AR(4) residuals are presented in Figure 5, then the correlation dimension
estimates are presented in Figure 6 (Figure 6 consists of two plots showing the
correlation integral and the derivative of C(E) in terms of E; the respective
numerical values are reported in Table 3) and, finally the BDS test statistics are
reported in Table 4.

Unfortunately, the results from these exercises are somewhat different.
First, the dimension plots are not consistent with the existence of low­
dimensional chaotic behavior (notice, however, that we just look at thing very
informally in two dimensions). Although there are some differences between
variables none of variables behaves in a chaotic manner. Stock prices may best
correspond to a random variable (observations are evenly distributed over the Xt'

xt- 1 plane) while some clustering takes place in consumption and wholesale
prices.

As one might expect on the basis of the dimension plots, the estimates of
the correlation dimension (the embedding dimension running from 2 to 5) lend
very little support to model of chaotic behavior. The estimate of dem) increases
almost linearly with the embedding dimension m. Only wholesale prices
represent an opposite result. The estimate of dem) remains in the neighbourhood
of one even if the embedding dimension is increased to 5. Figure 2 may explain
why this result emerges. The behaviour of prices in the 1920s and 1930s was
completely different from the rest of the sample period (Le. the price level was
practically stationary for the pre-war period while after the outbreak the Second
World War the rate of infiation turned out to be stationary). If the 1920s and
1930s are dropped from the sample the correlation dimension estimates behave
well in accordance with the other variables.9

Somewhat contrary to these results, the BDS statistics turn out to be very
high and suggesting that the data generating mechanism is not linear. The null
hypothesis that the series are random LLd variates is rejected in all cases with
standard significance levels. II the series are shuffled, Le. the observations are
arranged in a random order, the null hypotheses of independent observations is
typically not rejected which suggests that the distributional assumptions are not
very critical in terms of the outcome of the BDS statistics. By contrast, the
time-series structure is the important thing which produces the very high values
of the BDS statistics.

But how should we interpret this conflicting evidence? Should stress more
the correlation dimension estimates or the BDS test statistics. The answer is not
easy. Perhaps, the best way to summarize this evidence is to conclude that there
are definitely some signs of nonlinearity but not necessarily of deterministic
chaos.

9 For the period 1939M9-1993M8 the folIowing set of dimension estimates were obtained:
m =2: 1.901 (1.02); m =3: 2.709 (1.30); m =4: 3.617 (1.94) and m =5: 4.226 (1.01). These
values are clearly in accordance with the other values in Table 3 and hardly consistent with the
existence of deterministie chaos.
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4.3 Resu1ts from the rescaled range analysis

Tum next to the analysis of Hurst exponents. The estimates are presented in
Table 5 and the corresponding graphs in Figure 7. The results are derived for
the AR(4) residuals. In addition to these residuals we have also used shuffled
residuals where the order of observations is based on random drawing. By
shuffling the order of observations we destroy the memory of the observations
and effectively make the series random series (obviously, the distribution
function stays invariant).

The OLS estimates or H are all well above 0.5 suggesting that the long­
memory property indeed holds for the data. It can be argued that, for instance,
economic crises have some systematic pattems. This may induce correlations
that seem to repeat themselves. With shuffled residuals, the estimates are,
however, quite close to benchmark value 0.5. Thus, the critical feature of the
data is just the time-dependency of observations.

An interesting question is how long is the long-memory phenomenon. Is
there certain time span - say one year - in which observations are not
independent. One could for instance argue that for various reasons (see, e.g.,
Peters (1993» the stock market is not efficient in the short run but efficient in
the long runo In other words, we have some cycles which just reflect these
inefficiencies (or, more generally market imperfections). This might show up in
a change of the R/S slope. In fact, this kind of reasoning seems to apply to the
Finnish stock price series. There is quite clear change in the slope after 200
data points corresponding the period of about 16 years. In the short run, stock
prices are very persistent (H equals to .70) while in the long run stock prices
can be characterized as independent or even antipersistent. Thus, an estimate of
.11 is obtained for the data points exceeding 200 (see Figure 7).

After these comment we may turn to the analysis of shuffled series, Le.
series in which the observations are arranged in a random order. As point out
above, the values of the Hurst exponent should now converge towards 0.5. The
results in Table 5 show that this is indeed the case. In all cases, the values of
the Hurst exponent decrease. They do not necessarily go to 0.5 but to some
value between 0.5 and 0.6. Thus, it is clear that the order in which the
observations originally are is crucial for the analysis. This order must be
maintained in order to preserve the memory of the data, by destroying the order
one destroy also the memory and the data look like genuine random series
generated with nonbiased random walk. After all, when dealing with time series
the time dimension is important. It is possibly also unidirectional, as we see in
the next section.

4.4 Resu1ts from the time irreversibility analysis

A similar result emerges with Ramsey's (1990) irreversibility tests statistics
reported in Figure 8.1. Although, the confidence limits are only indicative some
signs of nonlinearities can be discemed with all series. Somewhat surprisingly,
stock prices do not seem to be the most striking example of this sort of
nonlinearities. Thus, for instance, the test results for industrial production tell
more about nonlinearities than the results for the stock index (see Figure 8.2).
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AIso bankruptcies and banks' total credit supply seem to be more obvious
candidates. Perhaps, this is something which is in accordance with the observed
nature of indebtedness and the relationship between indebtedness, credit supply
and bankruptcies (see, for instance, Stiglitz and Weiss (1981) and Bemanke
(1983)).

Recently, Rothman (1993) has shown that the Ramsey-Rothman
irreversibility tests is relatively powerful against the threshold model. Thus, our
findings could also be interpreted from this point of view. In other words, there
are nonlinearities but not of deterministic chaos type but rather resulting from
nonlinear model structure or parameter instability. In the subsequent sections,
we deal with these altematives.

4.5 Estimates of adjustment equations

Can anything else be said about the nature of nonlinearities? Tables 2 and 6
suggest that this is the case.10 Table 1 indicates that the real series and the
nominal series behave in a very different way. The nominal series do not show
up any signs of negative skewness. Moreover, the nonlinear adjustment
equations (reported in Table 6) behave very badly, for instance, in terms of
stationarityY It is particularly interesting to compare the behaviour of
industrial production and stock prices. Industrial output is characterized by clear
negative skewness (in magnitude) while there is no apparent skewness in stock
prices. With industrial production, positive residuals are much smaller and
obviously more numerous than negative residuals. Intuitively, this makes sense
since capacity constraints limit increasing production while a decrease in orders
or bankruptcies may lower production more rapidly. With stock prices, there is
no difference between positive and negative residuals. Thus, adjustment of
stock prices does not contain significant asymmetries. See Figure 9 for details;
notice that positive and (absolute values of) negative AR(4) residuals are
presented here in an ascending order.

10 Here, we have introduced three additional real variables: the real interest rate and the
(inverses of) money and credit velocities.

11 With consumer and wholesale prices there seems to be positive skewness indicating that
prices tend to increase faster than to decrease, which obviously makes sense. The behaviour of
long-term interest rate may only ret1ect this same fact. The real exchange rate, in turn, is
characterized by gradual deterioration of competitiveness and once-for-all devaluations of the
currency. Money and credit seem to behave in the same way as stock prices in terms of
skewness although the estimations results are somewhat different. With bankruptcies, the results
represent some sort of puzzle. Industrial output and bankruptcies do not seem to be just mirror
images - quite the contrary. Thus, there are some (although not very significant) signs of
negative skewness indicating that peaks in bankruptcies are smaller than the corresponding
troughs. This clearly indicates that bankruptcies are perhaps more related to financial and
institutional variables than just to demand and output.
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4.6 Results from stabiIity analysis

The adjustment properties could, of course, be scrutinized in a straightforward
way by looking at the parameter stability over depressions and booms. Table 7
contains some indicators of parameter stability for the univariate AR(4) which
is used as some sort of point of departure in this study. Thus, we have
computed the average lag length for depression (the shaded areas in Figure 1)
and non-depression periods, the Chow stability test statistic in terms of the
sample split and a F-test statistic for the significance of multiplicative
(xt_i*depression dummy) terms. It turns out that the stability property is at
variance with the data. Moreover, there is some, although not very strong,
evidence of asymmetric adjustment in the sense that the average lag length is
shorter in depressions than in "normal years".

The stability measures are to some extent consistent with the evidence
from the nonlinear adjustment model but also some clear inconsistencies arise.
Por instance, somewhat conflicting results are obtained for bankruptcies and
stock prices. It should be noticed, however, that the classification of
observations is based on output behaviour and the cyclical behaviour of other
variables, such as stock prices, do no coincide with output movements and,
therefore, the results cannot be identica1.

Thus, if anything can be learned from this exercise, it is the fact that
nonlinearities do seem to exist with the long Finnish times but there are clear
differences between nominal and real variables. Thus, it is perhaps futile to
analyze all sorts of nonlinearities using a single model as a frame of reference.

4.7 Evidence on Iong-memory properties

In time series, a long-term memory property is said to be present if absolute
values of a stationary variable rt has significant autocorrelations for long lags
Le. p( Irt_k 1, Irt1) ;z! 0, when k is large. This property was first noted for
speculative price series by Taylor (1986) and called thereafter also the Taylor
effect (see Granger and Ding (1993)). In practice, this property implies that the
simple random walk model does not hold for stock prices, even if the price
changes are serially uncorrelated. This phenomenon also shows up in the
rescaled range analysis with the Hurst exponents. As pointed out earlier, high
(H > 0.5) values of the Hurst exponent imply strong persistence - the fact that
the observations (residuals) are independent but they have a memory. Thus, the
data are not generated with random walk but, instead, with biased random walk
or, with other words, with fractional brownian motion.

For instance if we consider stock price changes, it seems intuitively
appealing to observe that they are uncorrelated, but this does not explain
anything about the heteroskedasticity found in them. Statistically stock prices
could be martingales with non-constant innovation variance (see e.g. Spanos
(1986)). However, from the economic point of view the problem is to find out
whether residual variance from linear model follow conditional
heteroscedasticity (ARCH), generalized version of it (GARCH), asymmetric
power ARCH (A-PARCH as defined in Ding, Granger and Engle (1993)) or
some other form of heteroskedasticity appropriate for the particular time series.
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However, univariate models could be helpful in identification and prediction of
the type of heteroskedasticity, but likely insufficient for understanding these
prosesses.12

Heteroskedasticity in residuals shows already that stronger forms of
rational expectations rationality, which imply efficient use of all information,
does not hold for higher moments of the process. In fact expectation error are
not white noise, but rather innovation processes with non-constant variance. The
long-memory phenomenon puts emphasis also to the long-term cyclical swings
often accounted in economic time series. These cyclical swings could relate to
business cycles or even Kutznets and Kontrajev cycles or tendency to generate
serious financial crises as those withnessed in 1930's and 1980's. However, as
Granger and Ding (1993) emphasize, that caution in interpretation should be
maintained, since it is not the series themselves but their absolute values, that
have the long-memory property.

If the efficient market hypothesis would hold strictly, the random walk
property implies that rt is an LLd process. In addition any transformation of rt,
like Irti or r; should also be Li.d process (Ding, Granger, Engle (1993), s. 87).
The sample autocorrelations of Li.d process will have finite variance l/V(1) and
larger correlations for Irti will indicate long-memory property. Ding, Granger
and Engle (1993) show that, if Irtl d is taken for yardstick in measuring the
strengthness of autocorrelation for long lags, the long-memory property is
strongest around d = l.

In the same way as Ding, Granger and Engle (1993), we found out that all
variables in our data set showed clear evidence of long-memory, thus the
sample autocorrelations for absolute values of residuals were greater than the
autocorrelations of squared residuals. This resemblance could indicate that
economic time series have characteristics of models, not fully described and
understood so far.

Series, which had Irti well above r; were industrial production,
bankruptcies, bank loans and both price price indexes. (Clearly, this is
consistent with results from the rescaled range analysis, Le. with the estimates
of the Hurst exponents). A little bit different were series like terms of trade and
real exchange rate, money supply and stock prices, which mostly shared the
same characteristics. This could due to rare, but large discrete changes in these
series e.g. like the effects of devaluations. The results from these long-memory
tests performed to AR(4)-residuals of our time series are presented in Table 8
below. Figures of sample autocorrelation functions for the absolute values of
the AR(4) residuals are shown in Figures 8.

In this connection we also applied the fractional differencing model
approach proposed by Geweke and Porter-Hudak (1983). Thus, we estimated
the differencing parameter d for the AR(4) residual series. The results are
presented in Table 8 (see the last column). Except for two cases, the estimates
are positive suggesting the time series processes do indeed exhibit long memory
(in the case of negative estimates, the processed could be said to have
intermediate memory; see Chung and Ballie (1993». Summing up, one can say

12 Granger and Teräsvirta (1993, p. 51-53) note that aseries may have short-memory in mean,
and long-memory in variance, but not so likely the opposite Le. long-memory in mean with
short-memory in variance. Short-memory in mean is often found in stationary series, whereas
long-memory is present in integrated "leveI" series.
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that al1 the test we have applied thus far c1early suggest that a dominant feature
of the data is just this long memory property.

Among other things these results indicate that linear filtering with AR(4)
model is not sufficient to remove dependence on faraway past in these series,
even though model selection criteria would suggest in most times 4th order
autoregressive polynomial should be long enough. Despite the fact that these
series have dominant long-run features like unit roots and trends, parsimonous
linear models seem unable to account for this task. Observations refer therefore
to conc1usion that trends in economic time series are most likely stochastic
rather than deterministic. Nonlinearities are hereby faced again.

The main message is however, that long-memory property is very
persistently present in al1 of the real and monetary series. ln addition there
seems to be no difference between real and monetary variables about how fast
autocorrelations would die out for long lags.

5 Testing dependencies between residual moments

The purpose of applying first an autoregressive model to the series is to remove
the potential trend component from series. Removing deterministic or stochastic
long term trend could be done by other means as well e.g. differencing or
modelling by structural time series models and thereafter eliminating the trend
component. We proceed by calculating dependency measures of different
transformations of these AR(4) residuals.13 Different moments of residual
series and absolute values of residuals are considered as transformations.
Therefore we calculate dependence tests from cross-autocorrelations between
these univariate residuals as a first step in searching for dynamic relationships.

As could be seen this procedure looks like an extension of the Granger
causality test. However, we start by calculating Portmanteau test statistics
without conditioning on past observations of the transformed residuals of the
series itself. Portmanteau tests give us potential evidence about the direction
and strengthness of the dynamic dependencies between variables. If relationship
is one-sided it simplifies greatly the identification of the sources of shocks in
these series.

To test whether residuals of the autoregressive model satisfies properties of
independent white noise series could be accomplished with calculating
Portmanteau (Q) statistic. This test is designed to pick up departures from
randomness among the k first auto- or crosscorrelations. Test has the following
form

M

Q =T(T+2) L (T-krlr~,
k=l

where Ii are the squared correlation of the residuals.

13 We also computed the same measures with respect to the ARCH-model residuals. The results
turned out to be so close to the results with squared OLS residuals that we do not report them.
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This modification of the basic Box-Pierce statistic was first presented in
Ljung and Box (1978). The test statistic is asymptotically :x;2(M) distributed
when the original residuals are independent. There is no c1ear solution in
choosing M, but in our case a too small values could result in a failure to detect
dependencies between important higher order lags. As could be guessed,
increasing M will on the other hand lead to lower power of the test (Harvey
(1981), p. 211).

The Portmanteau statistic could be applied also to the higher moments or
absolute values of stationary series as a general test against non-randomness.
McLeod and Li (1983) have shown that for squared residuals have the same
standard asymptotic variance (1fT) as the original series if the residuals are
random. In the following tests we assumed lag order to be 24 (2 years) to be
large enough to pick up long term dependencies between different moments of
residuals. In our application economic theory has rather little to say about the
lags between shocks leading to variation in other variables.

Table 9 presents a summary of the estimated Q test statistics. Only the
number of significant cases is reported here. The test statistics have been
computed both for leads and lags to get some idea of causality. A more detailed
report of the results from cross-correlation analysis is available upon request
from the authors.

With reference to the table we point out that in general the number of
significant values is very high. Almost two third of the coefficients are
significant at the 5 per cent level of significance. Particularly in the case of
absolute values of the AR(4) residuals, the dependencies are very strong. In
accordance with the results from univariate long-memory tests, the results in
Table 9 suggest that the long-memory phenomenon also applies to co­
movements of different variables - and not only within real and nominal
variables but between all macroeconomic variables.

As for the role of different variables, one may note that the bankruptcy
variable is very important in terms of the correlation structure. In fact, the
number of significant correlations for bankruptcies is bigger than with all other
variables. By contrast, the interest rate and Ml series are only moderately
correlated with other variables.

The test results do not tell very much of causation. In general, the cross­
correlation coefficients are of the same magnitude with respect to leads and
lags. Therefore, it is very hard to draw any far-reaching conc1usions on this
matter. Perhaps one may still point out that industrial production looks like an
exogenous variable while money supply is rather an endogenous than an
exogenous variable.

Calculating the contemporaneous correlations between variables does not
have any dynamic causal interpretation as it indicates only instantaneous linear
co-movement (positive or negative) within a month. As could be seen from
table 9, about one third of the off-diagonal correlations are significant at 5 per
cent level. The interpretation of (significant) correlations is in most cases rather
straightforward. Thus, for instance, consumer prices correlate in an expected
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way with, wholesale prices, monetary variables like credit, money aggregate,
stock prices and the real exchange rate but not with other real variables.14

Altogether, the correlations between higher moments of the AR(4) residuals
- in the same way as between the absolute values - are so strikingly high that
further analysis in a multivariate nonlinear set-up is clearly required. The first
step is simply to find out why volatility changes are so much related. 1n
addition, one has to think about a possible explanation to the observed strong
co-skewness between variables. Finally, one has also to take into account the
fact that the long-memory property seems to apply also to the co-movements of
different series - both nominal and rea!. It seems at least that a (multivariate)
ARCH model is not a sufficient or a proper specification to account for these
features of the data.

6 Concluding remarks

The empirical analyses which are presented in this paper have given strong and
unambiguous support to the existence of nonlinearities in Finnish historical time
series. The univariate case is very clear but it seems that nonlinearities may be
even stronger and more important in the multivariate set-up. Obviously this
calls for further research in this area.

It is surely not surprising that the exact nature of non-linearities cannot be
identified. We are inclined to conclude that deterministic chaos is not the
probable explanation. It is noticeable that Brock and Potter (1993) arrive at
similar conc1usion when they review some recent evidence from
macroeconomic and financial data. Another explanation which is often
mentioned in this context concems ARCH and GARCH effects. It typically
found that after these effects are accounted for the evidence for nonlinearity and
chaos is weakened (see, e.g., Hsieh (1991)). 1n this study, we found the ARCH
effects of minor importance. Thus, the explanations for nonlinearities must be
looked for elsewhere. Nonlinearities may, for instance, reflect neglected
nonstationarities but in this connection we would rather argue in favour of the
specific (asymmetric) properties of short-run (cyclical) adjustment process.
There can well be various institutional arrangements and constraints,
informational deficiencies, capacity constraints and so on which prevent
immediate and symmetric adjustment and which, in turn, explain the empirical
findings. Finally, various stability tests clearly indicate that the behaviour of
macroeconomic variables is quite different in recession and expansion periods.

It seems well possible that nonlinearities may change some widely
accepted assumptions or results. Thus, for instance, the neutrality of money may
not be so good approximation as is looks like in the context of linear models. It
may also be that the conventional symmetric adjustment mechanisms represent
a very poor framework for dynamic specification. Also the short and long run

14 On the other hand it is interesting to note that wholesale prices do correlate with both real and
monetary variables. Industrial production correlates only with wholesale prices and bankruptcies,
but in both cases the sign of the correlation seems to be the opposite than expected. It is also
hard to interpret why interest rate correlates positively with stock prices. According to present
value formulae, the relation should be just opposite.
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properties of different time series and the way in which the corresponding
markets function need to carefully rethought in the light of, for instance, the
long-memory results which have been obtained in this study. Finally, it may be
that the importance of certain variables (and unimportance of the other
variables) in the propagation mechanism of nominal and real shocks in the
economy will change aIot if nonlinearities are taken into account. The Finnish
data suggest that, for instance, bankruptcies is such a neglected variable.
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Table 1. Descriptive statistics for the residuals of a linear
AR(4) model

skewness kurtosis median med(-) med(+) stand.dev.

ip -0.65 5.16 .274 -.008 .587 .056
bank -0.59 4.57 .237 -1.154 2.424 .309
tt 0.67 27.13 .034 -.081 .146 2.261
fx 4.15 68.34 -.139 -.214 -.081 3.044
r 0.44 17.73 -.000 -.157 .157 .272
cpi 3.31 29.67 -.123 -.178 -.092 .013
wpi 3.01 20.92 -.117 -.181 -.069 .013
credit 0.06(1) 8.34 .016 -.033 .062 .011
Ml 0.89 17.02 .040 -.129 .129 .025
sx -0.12(1) 5.40 .063 -.262 .290 .049

Skewness and kurtosis denote the coefficients of skewness and kurtosis, respectively. Median
denotes the sample median, med(-) and med(+) denote the endpoints of the confidence intervaI
for the median. In the case of log transformation, the values of the median, med(-) and med(+)
have been multiplied by 100. ip denotes (log) industrial production, bank (log) bankruptcies, tt
terms of trade, fx the real exchange rate index, r yield on long-terms government bonds, cpi the
(log) consumer price index, wpi the (log) wholesale price index, credit the (log) banks' total
credit supply, Ml the (log) narrow money and sx the (log) UNITAS stock price index. The
sample period is 1922M5-1994MlO. (1) Not significant at the 5 per cent level.

Table 2. Diagnostic test statistics for a linear AR(4) model
1920MS-1993M3

ARCH RESETl RESETI Func. WHITE J-B TSAY
form

ip 19.15 0.42 2.18 13.11 10.88 272.1 7.53
bank 17.61 4.59 7.34 14.98 24.17 237.1 33.41
tt 10.25 8.77 8.62 3.90 5.21 2645.6 30.07
fx 7.98 4.07 8.68 4.55 2.81 1066.4 83.10
r 2.79 0.57 0.79 2.10 1.00 1698.0 16.55
cpi 40.26 2.78 3.72 22.42 13.17 461.0 101.21
wpi 7.78 3.84 5.15 8.84 9.13 550.4 100.50
credit 21.99 13.99 7.02 13.70 6.90 722.3 33.16
Ml 27.67 7.70 6.60 34.28 14.36 1362.5 163.31
sx 46.19 0.04 0.23 43.56 7.08 403.9 44.76
5% 2.02 3.85 1.70 2.61 1.65 3.8 18.31
1% 2.66 6.66 2.10 3.80 2.01 6.0 22.21

ARCH denotes the Engle's ARCH test statistic (with 7 lags), RESETl test statistic adds the
second power of the fitted value as an additional regressor RESETI includes both the second
and third powers of y. Func. form is the F-test of the second power of the explanatory variables
and their cross-terms included into the regression. White denotes White' heteroskedasticityl
functional form test statistic, J-B the Jarque-Bera test statistic for residual normality and TSAY
Tsay's nonlinearity test statistic for 4 lags. 1 % and 5 % denote the critical values of the
respective test statistics.
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Table 2. continued

r(1,1) r(1,2) r(I,3) r(1,4) r(2,2) r(2,3) r(2,4) r(3,3) r(3,4) r(4,4)

ip -.142 .112 -.011 -.119 .114 -.006 .031 -.144 .019 .086
bank .194 .005 -.101 .021 .115 -.115 -.049 .206 -.019 .192
tt -.237 -.002 -.123 -.041 .106 .032 .018 -.262 -.083 -.027
fx -.494 -.370 -.404 .152 -.560 .345 -.634 -.547 .193 -.351
fr -.237 -.049 .013 .038 -.039 -.056 -.046 -.142 -.121 -.418
cpi .619 .393 -.498 -.598 -.042 -.019 .353 .007 .796 .796
wpi -.353 .113 -.118 .001 .137 .052 .302 -.378 .124 .044
credit .124 -.147 -.212 .055 .112 -.113 .148 .069 .198 .009
Ml -.495 -.089 .313 .134 -.837 -.040 .266 -.638 .035 -.297
sx .298 .188 -.038 .015 -.429 -.133 .148 .058 .115 -.031
logistic map .669 .536 .556 .558 .848 .544 .561 .833 .669 .536
random N(O,I) -.040 -.015 -.011 -.016 -.005 .020 -.050 -.055 -.039 -.015

rij's are Hsieh's (1991) third order moment eoefficients [LXtXt_jXt_JTJ/[LX~rrJl.5.

Table 3. Estimates of correlation dimension with AR(4) residuaIs

Embedding dimension

2 3 4 5

ip 1.97 2.78 3.60 4.47
(0.05) (0.08) (0.08) (0.09)

bank 1.84 2.68 3.68 4.62
(0.45) (0.57) (1.16) (1.61)

tt 1.86 2.59 3.19 3.78
(0.31) (0.30) (0.21) (0.27)

fx 1.68 2.42 3.28 4.08
(0.52) (1.02) (2.08) (2.67)

epi 1.87 2.67 3.32 3.53
(0.43) (0.57) (0.38) (2.29)

wpi .84 1.04 1.19 1.24
(1.59) (4.50) (9.08) (11.36)

eredit 1.77 2.54 3.35 4.12
(0.33) (0.46) (0.69) (0.80)

sx 1.81 2.66 3.49 4.19
(0.43) (0.60) (0.59) (0.43)

random N(O,l) 2.03 2.93 3.87 4.81
(0.06) (0.05) (0.04) (0.15)

henon map 1.28 1.29 1.27 1.30
(3.55) (2.69) (0.36) (0.92)

logistie map 0.91 0.98 1.01 1.03
(0.10) (0.37) (0.88) (1.67)

Numbers inside parentheses are ehi-square test statisties for the goodness of fit.
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Table 4. BDS test statistics for the residuaIs of a linear AR(4)
model

m=2 m=3 m=4 m=lO m=2 m=5
E=O.5 E=O.5 E=O.5 E=O.5 E=1.0 E=1.0

Original AR(4) residuals

ip 12.3 17.7 22.3 29.5 10.7 20.6
bank 9.0 11.2 13.0 15.3 10.3 16.2
tt 11.5 14.4 17.7 26.3 8.7 15.0
fx 15.7 17.7 19.5 22.3 17.1 16.8
r 13.4 16.4 18.4 20.0 8.6 11.1
cpi 10.7 14.6 16.1 20.9 11.3 14.6
wpi 8.1 10.4 12.5 15.8 10.7 12.9
credit 10.7 14.4 18.3 23.5 11.4 18.5
Ml 22.6 34.1 54.3 86.3 13.7 22.2
sx 7.8 8.5 9.7 10.9 9.1 13.3
random N(O,l) 0.6 0.2 -0.3 -0.4 0.7 0.1
Henon map 165.9 280.8 428.9 717.7 76.0 91.3
logistic map 669.1 881.1 1152.1 1570.0 282.0 250.3

ARCH(4) residuals of an AR(4) model

ip 10.0 13.9 15.8 17.7 4.6 10.1
bank 11.5 14.2 16.3 18.1 9.9 12.0
tt 3.0 4.3 5.9 6.3 1.8 5.1
fx 6.1 9.1 9.2 9.2 1.7 4.6
r 5.5 5.5 5.5 6.0 3.8 4.3
cpi 13.7 14.5 14.3 14.3 8.8 9.3
wpi 10.2 10.4 10.2 9.6 10.8 9.7
credit 14.1 15.9 16.7 17.4 11.6 13.1
Ml 12.8 13.4 14.0 14.1 9.3 9.6
sx 10.4 13.6 15.7 17.4 9.5 13.7

Shuffled AR(4) residuals

ip -2.2 -1.4 -1.0 0.4 -2.5 -1.3
bank -0.8 -0.2 -0.3 0.4 -0.9 1.1
tt 1.6 2.1 2.0 1.9 1.9 1.7
fx 0.4 1.0 0.7 0.5 1.4 1.5
r 1.9 1.6 1.3 1.2 1.7 1.0
cpi 2.7 2.6 2.3 0.2 0.7 1.2
wpi -1.0 -1.6 -1.5 -1.2 -1.3 -1.6
credit 0.4 -0.1 -0.6 -0.4 -0.6 -0.8
Ml 1.9 1.1 0.5 0.2 2.5 1.1
sx -0.5 0.0 0.5 0.5 -0.7 1.0
Henon map 0.6 0.3 0.2 0.3 0.1 -0.0
logistic map 1.0 1.3 2.2 0.2 -0.2 1.2

The test statistic is BDS = T~[Cm(E)-Cl(E)mJ/Om(E), where T = N - m + 1 and N = the number
of obselVations, Cm(e) = the correlation integral = T 2*[number of pairs (i,j) such that
I Yi - Yj I < E, I Yi+l - Yj+l I < E, ..., I Yi+m-l - Yj+m-l I < EJ so that Yi"",Yi+m-l and Yj""'Yj+m-l
are two segments of the series Yt of length m and 0m(E) is the respective standard deviation.
Under the null that the series is independently and identically distributed, BDS has a limiting
standard normal distribution. Here, E = 0.5 corresponds to E = 0.5*{the standard deviation of the
residual series}. E = 1.0 is defined in the same way. ip denotes (log) industrial production, bank
(log) bankruptcies, tt terms of trade, fx the real exchange rate index, r yield on long-terms
government bonds, cpi the (log) consumer price index, wpi the (log) wholesale price index,
credit the (log) banks' total credit supply, Ml the (log) narrow money and sx the (log) UNITAS
stock price index. The shuffled series are obtained by sampling randomly with replacement from
the data until one obtains a shuffled series of the same length as the original. The sample period
is 1922M5-1994MlO.
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Table 5. Estimates of the Hurst exponent

AR(4) residuals Shuffled AR(4)
residuals

ip
bank
tt
fx
epi
wpi
eredit
sx
random N(O,l)
Henon map
10gistie map

.592

.586

.567

.659

.765

.768

.716

.698 (.105)

.588

.381

.426

.593

.620

.607

.428

.516

.595

.651

.614

.519

.355

.565

Estimates correspond to the whole range of data. The graphs of the
R/S series are presented in Figure 7. On the basis of this figure, one
may conc1ude whether the slope (Le., the estimate of the Hurst
exponent) is eonstant over all data points. In the case of stoek priees
(sx) instability is obvious. Therefore, two estimates are presented,
first for the time span 0-200 observations (months) and the seeond
(inside parentheses) for the time span of 200 and more observations.
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Table 6. Estimation results of a nonlinear AR model

ao a1 ~ a3 a4 as a6 SEE DW F3

ip .319 .098 .580 .157 .055 -.771 -.525 .056 2.09 2.68
(3.21) (2.89) (10.33) (2.42) (2.74) (2.63) (0.59)

bank .926 .070 .271 .156 .097 -.744 -.013 .325 2.23 3.70
(3.64) (1.30) (3.24) (1.20) (2.74) (2.24) (0.35)

tt .218 .689 1.103 -.619 .343 -.499 -.570 .023 2.06 10.31
(2.71) (1.26) (13.57) (4.88) (2.76) (3.06) (4.08)

fx .211 -.966 1.132 -.598 .295 -.301 -.230 .038 1.89 15.28
(2.97) (1.51) (16.46) (5.38) (3.19) (3.91) (4.77)

r .458 .062 .894 .274 -.016 .031 .029 .259 1.95 1.47
(0.70) (1.36) (9.66) (1.65) (0.69) (0.50) (1.40)

cpi -.132 .025 1.408 -.406 -.003 .048 1.168 .014 2.13 3.80
(0.81) (2.57) (34.48) (9.88) (2.66) (2.12) (0.44)

wpi -.161 .024 1.553 -.487 -.007 .020 -13.560 .015 2.13 10.83
(3.09) (2.33) (37.24) (10.63) (3.13) (2.83) (3.54)

credit -.017 .020 1.460 -.454 -.001 .001 -102.35 .011 2.16 11.60
(0.94) (2.04) (34.58) (10.66) (1.26) (0.93) (4.88)

Ml -.030 .058 .738 .278 -.002 .006 6.256 .025 2.00 8.20
(1.44) (2.21) (17.43) (6.35) (2.19) (1.71) (3.54)

sx .000 .001 1.284 -.309 .000 .000 .158 .049 1.97 0.53
(0.05) (4.08) (32.04) (7.70) (0.32) (0.07) (0.17)

rr .009 -.000 1.193 -.194 -.001 .000 -.022 .484 2.069 1.15
(0.17) (0.14) (33.80) (5.47) (1.07) (1.42) (1.43)

c/y .006 .000 .740 .147 .557 -.004 -15.005 .010 2.032 4.22
(1.26) (1.05) (15.35) (2.42) (1.89) (2.65) (0.83)

m/y .001 .000 .805 .147 .659 -.041 -410.62 .003 1.960 1.35
(0.82) (0.64) (15.22) (2.47) (0.78) (1.11) (1.35)

The estimating equation is of the form: xt =ao+a1t +azXt-l +a3xt_2 +aixt_lxt_Z> +aS(x~-lXt_Z> +
aixt_l -Xt_z>3 +I'v where p is the random term. If we restrict a4 =as =a6 =0, we end up with a
standard linear model. F3 represents a F test statistic for this restriction. The corresponding 5 %
(1 %) critical value(s) is 2.64 (3.86). ip denotes (log) industrial production, bank (log)
bankruptcies, tt terms of trade, fx the real exchange rate index, r yield on long-terms
government bonds, cpi the (log) consumer price index, wpi the (log) wholesale price index,
credit the (log) banks' total credit supply, Ml the (log) narrow money and sx the (log) UNITAS
stock price index. In this case, we also consider three additional real variables which are rr the
five-year real interest rate, c/y banks' credit supply in relation to nominal output (Le., ip*wpi)
and mly the corresponding measure in terrns of money supply. The sample period is (with some
exceptions) 1922M5-1994MlO. Coefficient as has been divided by 1000.
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Table 7. Some stability test results

Average lag length Stability tests

1 II Chow Dummy test

ip 1.44 1.80 5.08 5.18
bank 2.12 2.12 0.68 0.30
tt 0.42 0.74 3.06 3.24
fx 0.88 0.89 3.05 3.03
r 0.79 1.01 1.32 1.55
epi 0.30 0.83 8.14 10.10
wpi 0.33 0.46 3.64 3.77
eredit 0.48 0.38 2.51 2.41
Ml 0.68 1.52 8.92 11.75
sx 0.72 0.68 3.77 4.52
5% 2.22 2.38
1% 3.04 3.34

The average lag length is computed for the depression periods (1) and non-depression periods
(II). Chow notes a Chow test statistie for the hypothesis that the eoefficients of the AR(4) model
are the same for these two subperiods. Dummy test denotes a F test for the multiplieative
dummy*xt_1 -terms.

Table 8 Long-memory tests for AR(4) residuals of the
historical time series, Period: 1922/Ml-1993/M6

Significance level of the First order autoeorrelation Geweke and
Ljung-Box 0(60) statistie eoefficients for residual Porter-Hudak
for residual transformations differenting
transformation parameter

estimates

Variable rt Irti 2 rt Irti 2 ar t r t

ip .000 .000 .000 -.006 .289** .137** .249
bank .000 .000 .000 -.000 .208** .084* .212
tt .004 .000 .000 .016 .187** .036 -.026
fx .528 .000 .027 -.013 .392** .095* .134
r .037 .000 .000 -.002 .247** .058 .020
epi .000 .000 .000 -.013 .388** .302** .338
wpi .003 .000 .000 -.007 .324** .180** .132
eredit .000 .000 .000 -.008 .351** .317** .386
Ml .000 .000 .000 -.004 .423** .346** .439
sx .001 .000 .000 .000 .268** .182** -.244

* =signifieant at 5 per cent level (z.2/VT) =0.068
** =significant at 1 per eent level (2.58/VT) =0.088
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Table 9. Number of significant Box-Ljung test statistics for the
cross-correlation coeflicients of different powers of
AR(4) residuals

ip
bank
tt
fx
r
cpi
wpi
credit
Ml
sx

u

3(7)
6(8)
7(2)
5(6)
2(1)
7(6)
7(8)
8(7)
6(2)
6(6)

6(8)
8(8)
9(7)
5(6)
5(4)
7(9)
8(8)
7(7)
4(4)
7(6)

1(6) 7(10)
8(8) 10(9)
5(4) 10(5)
2(5) 8(9)
6(4) 6(5)
6(5) 8(9)
7(7) 9(9)
6(6) 8(9)
5(2) 8(9)
6(5) 8(8)

o
1
3
3
2
5
4
3
3
5
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The first number indicates the number of significant Box-Ljung test
statisties at the 5 per cent level of significance for the first 24
positive lags of the other variable. The second column (inside
parentheses) indicates the corresponding number for the same number
of leads. u indicates untransformed residuals, u2 squared residuals, u3

third power of residuals, /u I absolute values of residuals and ~

contemporaneous values of residuals (these values are computed from
simple correlation coefficients).



Figure 2. Historical Finnish time series

Industrial production
INDUS1rRL<\L PPRODUCTION

120 .,.-.....".-.,.,,.,,,--f i-!lf#~0!tl.:..-1!!!l/!1!tlli10L,.,,,,,_--,,.,,,--,

100

80

80

40

20

Terms of trade

180,---"---"",,,--

180

140

120

100

80

Yield on long-terms government bonds

Bankruptcies

The real exchange rate index

The consumer price index

-1

The wholesale price index Bank's total credit supply

10

39



Narrow money (Ml)
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Nominal variables (except for the interest rate) are expressed in logs.
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Figure 3. Time series of AR(4) residuals
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Figure 4. Frequency distribution of AR(4) residuals
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Figure 5. Two-dimensional plots of AR(4) residuals
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Figure 6. Correlation dimension estimates
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Figure 7. Hurst exponents calculated for range 1.0-2.8
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Bank's total credit supply The Unitas stock exchange index
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Figure 8.1 Ramsey irreversibility test statisties
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Figure 8.2 Ramsey irreversibility test statisties for ip and sx
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Figure 9. Residuals for industrial production and stock prices
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Figure 10.

Industrial production
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