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1 Introduction 

The Indian economy has grown enormously over the last twenty-five years, averaging real output 
growth of 7 per cent per year.1 At the same time, the poverty headcount rate has decreased rapidly 
from 49 per cent in 1987/88 to 21 per cent in 2011/12. In absolute numbers, around 400 million 
Indians lived in extreme poverty in 1987/88, while that number had fallen to about 270 million 
people in 2011/12.2  

The consequences of growth for overall income inequality are less clear. There is no consensus 
about the prevailing level of inequality or about inequality developments in the past decades. The 
main survey-based estimate for India as a whole is a Gini coefficient of 0.36 for the year 2011/12, 
and a figure of 0.38 for urban India (Himanshu, 2015). These values are comparable to estimates 
for neighbours Bangladesh and Pakistan, which had Gini coefficients of 0.32 and 0.31 respectively 
in 2010 and 2011/12. Nevertheless, inequality is low in comparison to countries like Brazil (0.53 
in 2012), China (0.42 in 2012), and South Africa (0.63 in 2010). Except for Brazil, all these estimates 
give the dispersion of consumption expenditures instead of income inequality. Empirically, income 
inequality tends to be higher than consumption inequality. With India growing richer, some 
households are likely to save a larger part of their income. This means that the difference between 
consumption and income inequality could become larger. 

Another possible limitation of this estimate is that it is survey-based. Several studies have shown 
that richer households are more likely to be missing or not covered by surveys. This can be due to 
non-response, underreporting, or a combination of both (see for example Korinek et al., 2006). 
The consequence is that inequality may be underestimated. 

One alternative approach is to rely on tax data to estimate the incomes of the richest households, 
as has been done for India by Chancel and Piketty (2017). They estimate that the share of income 
that goes to the richest 1 per cent of households has increased to 22 per cent of total national 
income – the highest number since the start of availability of tax data in 1922. The figures they 
present have become part of the Indian debate on inequality and are not undisputed. 

Furthermore, reliable tax data may not always be available. With the aim of including the richest 
households absent in surveys, van der Weide et al. (2018) developed a method that allows for the 
re-estimation of inequality by combining survey data with a second database containing predictors 
of income or consumption. Using the information from this second database, the distribution of 
top incomes can be estimated and added to the distribution inferred from the survey. New 
inequality measures, such as the Gini coefficient, mean log deviation and Theil index can 
subsequently be estimated. Van der Weide et al. illustrate the method by applying it to Egypt, using 
a database of house prices to estimate the top tail of the income distribution.  

The aim of this paper is to re-estimate household consumption inequality in Mumbai, the most 
populous Indian city, following the method proposed by van der Weide et al. (2018). In addition, 
I will compare the resulting new figure to existing estimates based on survey data alone. In doing 
so, the paper also attempts to assess the feasibility of applying this method more broadly to 
inequality in urban India.  

                                                 

1 World Development Indicators – annualized growth rate based on GDP in constant rupees 1993–2017. 

2 Poverty and inequality data in this introduction are from the World Bank PovcalNet database. 
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Following this method, I find that there is no indication that the National Sample Survey (NSS) 
data lead to underestimation of inequality in Mumbai. This stands in contrast with the empirical 
application to Egypt, where income inequality was estimated to be much higher than based on 
survey data alone, with Gini coefficients of 0.52 for the combined distribution and 0.39 for the 
survey-based estimate. Some challenges and practical obstacles arose during analysis. These issues 
need to be investigated further before we can assess if it is useful to apply the method to urban 
India as a whole. 

The outline of this paper is as follows: the next section will explain the methodology used, also 
indicating where I deviate from the method proposed by van der Weide et al. (2018). Section 3 
will give a brief overview of the two data sets used. In Section 4, I discuss the results of the 
empirical application to India. Finally, Section 5 provides concluding remarks and areas for further 
investigation. 

2 Methodology 

This section summarizes the approach by van der Weide et al. (2018), as applied in the current 
paper. I start by discussing the proposed distribution function of household income and its 
components, based on one database of actual observations (DB 1) and another of predictors (DB 
2).3 I will finish by describing how a new Gini coefficient can be estimated based on this combined 
distribution. 

 The complete income distribution can be characterized as follows: 

𝐹(𝑦) = {
(1 − 𝜆) 𝐹1(𝑦), 𝑦 ≤ 𝜏

 (1 − 𝜆) + 𝜆 𝐹2(𝑦), 𝑦 > 𝜏
 

where household income is denoted by y and its cumulative distribution function by F(y). The 

income threshold for a top income is given as 𝜏.4 A household with income above τ has a ‘top 

income’. The proportion of households with a top income is then described as 𝜆. The cumulative 

distribution of their incomes is given by 𝐹2(𝑦), which is derived from the predictors of income in 

DB 2 and starts at 𝜏. In contrast, the cumulative distribution of households with an income of at 

most 𝜏 will be estimated based on the observations in DB 1 and denoted as 𝐹1(𝑦). 

One challenge of this approach is that DB 2 contains predictors of household income, not 
observations of the variable of interest itself. Van der Weide et al. (2018) propose a two-step 

approach that allows for estimation of 𝐹2(𝑦). First, we need to describe the relationship between 
income and its predictor. A log-linear model is suited to that task, although the approach can be 
generalized to other functional forms. Thus we assume that the relationship can be given as: 

log(𝑌ℎ) = 𝛽0 +  𝛽1 log(𝑥ℎ) + 𝜀ℎ  

                                                 

3 In this section I will discuss how to obtain a combined distribution of income, following van der Weide et al. (2018). 

However, the available NSS data contain consumption expenditures, not income. Since consumption and income are 
expected to be highly correlated, the assumption is that the method can be applied, mutatis mutandis, to consumption 
expenditures as well. 

4 The value of tau obviously depends on the case at hand and can be set independently. I will return later to the 

implications of varying the value of tau for the result of the re-estimation procedure in this empirical application. 
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𝑌ℎ and 𝑥ℎ denote household income and a predictor of household income respectively, with 𝜀ℎ 

being an error with expectation zero. 𝛽1 is the parameter of interest, as it is used to transform the 
distribution of predictors into a distribution of income. It is estimated, however, by means of a 
regression using survey data from DB 1. In the application to Egypt and also for India, we are 
dealing with a database of house prices, although usually a household survey does not record the 
value of the house in which the household lives. Consequently, imputed rental values need to be 
used as predictor, which requires the additional assumption that these are proportional to actual 
house values. 

Next we move to the top tail of the distribution of predictors, that is for values of predictor 𝑥 

larger than 𝑥0, denoted by cumulative distribution function 𝐺2(𝑥). It is assumed that this top tail 
follows a Pareto distribution that can be characterized as: 

𝐺2(𝑥) = 1 −  ( 
𝑥

𝑥0
 )

−𝛼

 for 𝑥 > 𝑥0 

α being the Pareto tail index, also known as its shape parameter. Van der Weide et al. (2018) then 
show that this implies that also top incomes, i.e. those above τ, follow a Pareto distribution that 
can be written as 

𝐹2(𝑦) = 1 −  ( 
𝑦

𝜏
 )

−𝜃

 

where the Pareto tail index 𝜃 is defined as α/𝛽1. This parameter is the crucial element in the re-
estimation procedure, since it defines the thickness of the tail of the income distribution. A smaller 

𝜃 indicates that there are more households in the tail, meaning more households with a top income. 

This in turn implies that inequality is higher compared to a distribution with a larger 𝜃. 

Having discussed how 𝐹2(𝑦) can be estimated, the remaining unknown elements in our overall 

distribution function are 𝐹1(𝑦) and λ. Since DB 1 contains actual observations of income, we 

simply use these to estimate 𝐹1(𝑦) for incomes up to and including τ. In practice, it is quite possible 
that DB 1 will also include some observations above τ. These will be excluded from the estimation 

of 𝐹1(𝑦). Finally, λ can be estimated by assuming that the probability density functions that 

correspond to 𝐹1(𝑦) and 𝐹2(𝑦) are continuous. The former are denoted by 𝑓1(𝑦) and 𝑓2(𝑦) 
respectively. Evaluating the estimated density functions at point τ gives the following estimator for 
λ: 

λ̂ =  
f̂ 1(𝜏)

f̂ 1(𝜏) + f̂ 2(𝜏) 
 

The combined distribution function 𝐹(𝑦) consists of two non-overlapping sub-groups, which 
means we can decompose the Gini coefficient as follows (see for example Alvaredo, 2011): 

Gini =  𝑃1𝑆1Gini1 +  𝑃2𝑆2Gini2 +  𝑆2 − 𝑃2 

Gini = (1 − 𝜆)(1 − 𝑠) Gini1 +  𝜆 𝑠 Gini2 + 𝑠 − 𝜆 

𝑃𝑘 and 𝑆𝑘 denote the population share and income share respectively of group 𝑘. Going back to 

our distribution function 𝐹(𝑦), 𝑃2  is equal to λ and, conversely, 𝑃1 equals 1 −  λ . If we define 𝑆2 

as 𝑠, 𝑆1 equals 1 − 𝑠. The income share of the top incomes, 𝑠, is estimated as:  
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s = λ 
ӯ2

ӯ
 

where y̅ denotes mean income of the overall distribution, and y̅2 the mean top income, given as:  

ӯ2 =
θ τ

θ − 1
 

which is the expected value of a Pareto distribution. 

Gini1 can be computed by using the survey data at hand. Gini2 can be estimated on the basis of 
the shape parameter of the Pareto distribution, using the formula for the Gini coefficient of a 
Pareto distribution. This gives  

Gini2 =  
1

2𝜃 − 1
 

The paper continues in the next section by describing the data I have used for the empirical 
application of this method to India.  

3 Data 

This paper utilizes two databases. The first set of data, used to derive the distribution 𝐹1(𝑦), is 
survey data collected by the Indian National Sample Survey Office. It contains data that is 
representative both on the national and district level. I use observations from the NSS Round 68, 
held in 2011/12, which are the most recent data available. The main variables of concern are 
monthly household consumption and imputed rent. In contrast to the survey setup, I include 
imputed rent in the consumption variable.5 

For households in urban districts, the survey data include an estimate of imputed rent if the 
household lives in a property it owns. The value of imputed rent is an estimate that the enumerator 
and respondent arrive at by considering rental prices for similar properties in the neighborhood. I 
limit the analysis to Mumbai for practical reasons. The NSS contains 788 observations for the 
Mumbai district – for a subset of 499 households imputed rent was recorded.  

The second database, on house prices in Mumbai, was obtained from public listings on the online 
platform Makaan in August 2018. The data set contains information on location, asking price, date 
of availability and type of property for 132,773 listings. A subset of these properties was not built 
yet, but was already offered for sale. 

The two databases contain data collected at different points in time. I have not made a correction 
for temporal price differences, but assume instead that the Pareto tail index of the distribution of 
the highest house prices has not changed in the period 2011–18. 

                                                 

5 For 103 households, both actual rent expenditures and imputed rent are recorded, one could imagine that the 

household rents an additional apartment next to the one it owns, or a parking space. In calculating total consumption 
expenditures, both categories of rent were included.  
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4 Application and results 

Before I analyse how inequality estimates in India are influenced by the re-estimation method 
described above, I discuss a number of assumptions that are required. First, we assume that the 
quoted house prices in DB 2 are proportional to imputed rents. This is necessary because we will 
link the distribution of house prices to the distribution of consumption expenditures through a 
regression of consumption on imputed rents. Second, as noted above, we assume that the upper 
tail of the house prices distribution is constant over the period 2011/12 to 2018, which is when 
the data in DB 1 and DB 2 respectively were collected. A third assumption is that one house 
constitutes one household. It is quite possible that richer households own multiple properties, 
which would lead our method to underestimate inequality. Fourth, we also assume that all houses 
are domestically owned.  

A Distribution of survey data top consumption 

This subsection discusses the distribution of survey consumption found in DB 1. Although the 
method proposed by van der Weide et al. (2018) is generalizable to other types of distributions, 
the application to Egypt is based on (top) consumption and house prices being Pareto distributed. 
I verify whether this holds for Mumbai as well by plotting log consumption against the standard 

exponential quantiles (− log(1 − 𝑝) , where 𝑝 = 𝐹1(𝑦)) using the top ten per cent of 
observations (Figure 1). We observe that the points are mostly close to the dashed line with slope 

parameter 1/𝜃, i.e. the inverse of the estimated Pareto tail index, except for the highest 
observations. This leads to the conclusion that top survey consumption is approximately Pareto 
distributed. 

Figure 1: Quantile plot consumption 

 

Notes: A plot of log consumption against − 𝑙𝑜𝑔(1 − 𝐹1(𝑦)), 𝑦 being survey consumption for Mumbai households. 

The dashed line has a slope equal to 1/𝜃.  

Source: Author’s illustration based on NSS Round 68. 
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Table 1 provides estimates of the Pareto tail index when using different numbers of top 
observations, starting from the 85th percentile upwards to the 95th percentile and up. The index 
seems reasonably stable, with an estimated value between 1.7 and 2.0 for most cases. As reference 
value I select the median value of these estimates, which gives a Pareto tail index of 1.855 for the 
upper part of the survey-based distribution of consumption expenditures. This value will be used 
to compare the re-estimated parameter against. 

Table 1: Tail index survey consumption Mumbai 

percentile tail_index st_error N 

85 1.970 0.218 118 

86 1.895 0.207 110 

87 1.942 0.224 102 

88 1.766 0.184 94 

89 1.855 0.209 86 

90 1.831 0.210 78 

91 1.865 0.225 72 

92 1.698 0.186 63 

93 1.747 0.201 55 

94 1.788 0.196 47 

95 2.159 0.285 39 

Source: Author’s calculation based on NSS Round 68. 

B Distribution of house price data at the top 

Next, I examine the distribution of house prices in DB 2. Analogous to the consumption 
observations, Figure 2 shows a plot of the log of house prices against standard exponential 
quantiles, now for the 2.5 per cent highest observations. We observe that linearity holds for the 
lower end, but that the observations toward the higher end depart further from the dashed line 

with slope parameter 1/𝛼. This implies that, compared to the Pareto distribution, there are fewer 
extremely expensive houses in the tail of the actual distribution, i.e. the actual tail is thinner. This 
may lead us to underestimate the Pareto tail index, which would then lead to a higher inequality 
estimate. Nevertheless, the majority of observations lies reasonably close to the dashed line. 
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Figure 2: Quantile plot house prices 

 

Notes:  A plot of log house price against − 𝑙𝑜𝑔(1 − 𝐶𝐷𝐹(𝑥)), x being house price. The dashed line has a slope 

equal to 1/𝛼.   

Source: Author’s illustration based on house price data from Makaan. 

Figure 3 graphs the values of the estimated Pareto tail index based on different subsamples, from 
the 75th to the 99th percentile and up. It shows that the estimates do not vary much between the 
75th and 96th percentile, remaining in between 1.6 and 1.8. For the most expensive houses, the 
value of the tail index shoots up, indicating that the tail is getting thinner. As input for the re-
estimation exercise, I take the median value for the 75th to 96th percentile estimates, which is a 

Pareto tail index α̂ of 1.676. 
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Figure 3: Pareto tail index house prices 

 

Notes: Estimated Pareto tail index using different upper parts of the house price sample.  

Source: Author’s compilation based on house price data from Makaan. 

This estimate of α is robust to what upper part of the sample is used for estimation. Nevertheless, 
other factors may have a large effect on the estimate. One such factor is the selection of 
neighbourhoods included. Another is whether properties that still need to be built are included in 
the estimate. The current estimate includes all subdivisions of Mumbai and both readily available 
as well as future dwellings. This is an important area for further robustness checks. 

C The relationship between consumption and rent 

This subsection investigates the relationship between consumption expenditures and imputed rent, 
which is necessary to link the two distributions discussed above. First, I examine the functional 
form of the relationship between these two variables. I perform a locally-weighted regression of 
log consumption on log rent, which gives the curve displayed in Figure 4.6 In addition, Figure 4 
plots the observations and a line of linear fit obtained through a univariate OLS regression. For 

the full sample, the line with slope β̂1 derived from the linear regression is close to the locally-
weighted regression. I conclude that the log-linear specification is adequate to predict consumption 
for the richer households. 

  

                                                 

6 The bandwidth of the lowess regression is 0.5. 
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Figure 4: Lowess against log-linear regression 

 

Notes: Scatter plot and fitted values of regressions of log consumption on log imputed rent for Mumbai 
households.  

Source: Author’s compilation based on NSS Round 68. 

However, further analysis brings to light one complication, as illustrated by Figure 5. That figure 
shows the ordinary least squares (OLS) estimator of the log-linear regression based on different 
parts of the distribution, from the 80th percentile and up to the 95th percentile upwards. The shaded 
area gives the 95 per cent confidence interval, which is widening towards the upper end. We 
observe that the estimator tends towards zero if fewer observations are used. This also holds if a 
subset of observations from the middle of the distribution is used. At the same time, the precision 

of the estimate and the 𝑅2 of the regression decrease fast. 
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Figure 5: Estimates of beta at different percentiles 

 

Notes: Estimated values of 𝛽1 from a OLS regression of log consumption on log imputed rent, based on 
increasingly fewer observations, starting at the 80th percentile and up.  

Source: Author’s illustration based on NSS Round 68. 

Another problem is that the locally-weighted regression seems to indicate that the slope parameter 
is increasing towards the higher end of the consumption distribution. This also makes sense in 
practice: a one per cent increase in rent is associated with larger increases in consumption for 
higher amounts of rent paid. Turning this around, it means that—let's say at the 80th percentile of 
consumption—the amount of rent paid will increase more slowly than at the median. However, 
as Figure 5 shows, the OLS estimator becomes smaller when using fewer and fewer top 
observations.  

This seems to be in contradiction and may indicate that the OLS regression suffers from 
attenuation bias. One possible explanation is that this is caused by disturbances in the 
measurement of the independent variable, imputed rent. During the survey that variable is 
estimated by the enumerator and respondent together. They compare the house of the respondent 
to similar rental properties in the neighbourhood and attribute a rental value based on that 
comparison.  

This obviously requires further investigation. For the current purpose, however, I will stick to the 
log-linear regression, in strict keeping with the approach by van der Weide et al. (2018). To illustrate 

to what extent the final re-estimates of inequality depend on the value of 𝛽1, I will compare two 
estimates: 1) an estimate obtained by using only the top 20 per cent of observations, which gives 

β̂1 =  0.472; and 2) an estimate based on the full sample, which yields  β̂1 = 0.614 . 

As pointed out above, further analyses are needed regarding the specification of the relationship 
between consumption and rent. One option is to swap the dependent and independent variable, 
as this may prevent the attenuation bias. 
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D Distribution of top consumption based on house prices 

The estimation procedures discussed above yield the inputs needed to characterize the top end of 

the consumption distribution on the basis of the predictors in DB 2. These parameters, β̂1 and α̂, 

are displayed in Table 1. Together, they give rise to θ̂mix (defined as α̂/ 

β̂1 ), the Pareto tail index of the distribution of top incomes. We can compare this estimate to the 

index that we find for observed survey consumption, given in the table by  θ̂svy . For both 

estimates of 𝛽1, θ̂mix  is larger than θ̂svy , indicating a thinner tail for the top end of the 

distribution. This already provides some indication that the re-estimated inequality indices will not 
be affected much by adding top incomes to the survey-based distribution. 

Table 1 - Estimated parameters used in the re-estimation 

𝛽1 estimated with: β̂1  α̂ θ̂svy θ̂mix 

Full sample 0.614 1.676 1.855 2.730 

Upper 20% 0.472 1.676 1.855 3.548 

Notes: These are  𝛽̂1  from an OLS regression of log consumption on log rent, the Pareto tail index of the top 

house price distribution (𝛼)̂ and the Pareto tail index for the top income distribution (𝜃 ). The latter is given both 

for the survey-based estimate and the combined distribution.  

Source: Author's calculations based on NSS Round 68 and house prices Makaan. 

E Re-estimating inequality in Mumbai 

After having obtained estimates for 𝛼, 𝛽1 and 𝜃, the starting point for further analysis is selecting 
an appropriate value of τ, the threshold for a top income. A practical choice is to select one of the 
highest percentile values in the consumption survey. As a consequence, the observations in the 
survey above this value are excluded from the overall distribution, because, by construction, the 

distribution for consumption expenditures exceeding τ is given by 𝐹2(𝑦), which is based on the 
distribution of house prices. 

Since we started from the assumption that the household survey is missing the richest households, 
it makes sense to focus on only the highest three percentiles.7 For comparison, however, I present 

estimates for the 95th to 99th percentiles, separately for the two values of β̂1 estimated earlier. 

Utilizing the lower value of β̂1, Table 2 gives two estimates each for the consumption share of the 
top incomes (s) and the Gini coefficient – one set based on the survey only, and another set based 

on our re-estimated overall distribution. Table 3 does the same for the higher value of β̂1, which 
was estimated above using the full sample of survey observations. The tables also provide an 
estimate for λ, the proportion of households with a top income. Obviously, its value depends on 

the value selected for τ. In addition, we need the probability density functions of 𝐹1(𝑦) and 𝐹2(𝑦) 

to estimate λ. For 𝑓1(𝑦), I considered two methods, kernel density estimation and fitting a 
lognormal distribution. However, the kernel density estimates do not produce a smooth, non-
increasing distribution of λ, while the estimates based on the lognormal distribution do. Another 
advantage of the lognormal distribution is that it uses all observations in the dataset to estimate 
the parameters needed to estimate λ. Therefore, I am presenting results obtained on the basis of a 

                                                 

7 Theoretically, we would expect that none of the top consumption households is present in the survey. This is perhaps 

too strict an assumption, so I focus on the 97th, 98th and 99th percentile value to set tau. 



 

12 

fitted lognormal distribution of the survey data.8  For the estimation of 𝑓2(𝑦), I made use of the 
probability density function of the estimated Pareto distribution. 

We observe that all ten re-estimated Gini coefficients, for both estimated 𝛽1, are below the survey-
based Gini of 0.447. 9 The differences between the estimated consumption shares are rather large, 

notably for the lower β̂1. The smallest difference is observed when I set τ to the consumption 

value observed at the 99th percentile and use the higher β̂1.10 Here, the difference between the two 
estimated income shares of the top incomes is around five per cent, which implies a re-estimated 
Gini that is only about two and a half percentage points lower.11  

Table 2 - Estimates of income share and Gini (for  𝛽̂1 = 0.472). 

perc_svy τ λ̂ s_svy s_mix Gini_svy Gini_mix 

95 69,161 0.020 0.229 0.091 0.447 0.386 

96 75,802 0.016 0.198 0.078 0.447 0.391 

97 91,592 0.009 0.162 0.054 0.447 0.396 

98 101,744 0.007 0.120 0.042 0.447 0.407 

99 148,183 0.002 0.070 0.016 0.447 0.418 

Notes: τ and perc_svy give the threshold value for a household top income (in INR per month) at the survey 

percentile at which it was obtained. 𝜆̂ gives the estimated population share of households with a top income, 

while s gives the corresponding consumption share and Gini the Gini coefficient. The latter two measures are 
given both based on the survey alone and on the combined distribution.  

Source: Author's calculations based on NSS Round 68 and house prices Makaan. 

Table 3  - Estimates of income share and Gini (for  β̂1 = 0.614) 

perc_svy τ λ̂ s_svy s_mix Gini_svy Gini_mix 

95 69,161 0.025 0.229 0.129 0.447 0.404 

96 75,802 0.020 0.198 0.110 0.447 0.407 

97 91,592 0.012 0.162 0.077 0.447 0.407 

98 101,744 0.008 0.120 0.061 0.447 0.416 

99 148,183 0.002 0.070 0.023 0.447 0.421 

Notes: τ and perc_svy give the threshold value for a household top income (in INR per month) at the survey 

percentile at which it was obtained. 𝜆̂ gives the estimated population share of households with a top income, 
while s gives the corresponding consumption share and Gini the Gini coefficient. The latter two measures are 
given both based on the survey alone and on the combined distribution. 

Source: Author's calculations based on NSS Round 68 and house prices Makaan. 

                                                 

8 Estimating λ using kernel density estimation did generally produce higher estimates for the Gini coefficient. 

However, given the erratic behaviour of the estimated λ, I consider the estimates based on the lognormal distribution 
more reliable. 

9 The standard error of this estimated Gini coefficient is 0.020 based on a bootstrap method, and 0.029 when using a 

linearization method. 

10 The 99th percentile is a monthly household consumption expenditure of 148,183 Indian rupees, which is equivalent 

to around USD 7500 in purchasing power parity terms. 

11 Further investigation is needed into the precision of these results, for example using bootstrapping methods. Van 

der Weide et al. (2018) discuss the precision of the estimates obtained for Egypt by investigating what happens to the 

estimates if the most conservative estimates for 𝛼 and 𝛽1 are used. 
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In consequence, this re-estimation method does not indicate that the survey-based Gini is 
underestimating consumption inequality. Note, however, that the results are sensitive to a number 
of choices. Hence, they depend on what value of τ is chosen, on what method is selected to 
estimate λ and on which subset of the survey sample is taken to estimate the relationship between 
consumption and imputed rent. However, there is no set selection procedure. In the application 
to Egypt, for example, it is not clear how the value of τ was selected. 

This finding for Mumbai stands in contrast with the empirical application to Egypt, where income 
inequality was estimated to be much higher than based on survey data alone, with Gini coefficients 
of 0.52 for the combined distribution and 0.39 for the survey-based estimate. 

5 Conclusion 

This paper has applied a novel method that could be used for the re-estimation of inequality in 
India, given the discussion around prevailing estimates. Combining survey data and information 
about the distribution of house prices, the method represents an alternative to survey-only or tax 
data-based estimates. Nonetheless, for the district of Mumbai I find that this method does not 
indicate that the survey-based Gini coefficient of household consumption is underestimated. 
Employing ten different scenarios, none of the re-estimated Gini coefficients is higher than the 
survey-only estimate of 0.447.  

Nevertheless, the application of this method to Mumbai brought up a number of challenges and 
entailed making a number of practical decisions not all of which were encountered in the original 
application to Egypt (van der Weide et al., 2018). These require further investigation. First, the 
method hinges on being able to determine a good estimator for the relationship between 
consumption or income and (imputed) rent. That was not straightforward in this case.  The log-
linear relationship between consumption and rent is sensitive to the number of top observations 
included in the regression. This may be due to the nature of the imputed rent variable, which 
enumerator and interviewee estimate together based on a comparison with rental properties in the 
neighbourhood. The regression estimator may suffer from attenuation bias due to too much noise 
in this imputed rent variable. This requires further investigation into the regression specification. 
Second, the distribution of house prices warrants further research. Subsets of house prices, based 
for instance on availability or neighbourhoods, may follow a different distribution. Third, there is 
no clear criterion to set the threshold value for a top income. The choice of such threshold 
influences the final results of the re-estimation exercise. As a practical choice, I selected the highest 
percentile values observed in the survey data. 

With these caveats in mind, the conclusion remains that there is no indication that the NSS survey 
data underestimate household consumption inequality in Mumbai. Further analysis is necessary 
before a decision can be made regarding the usefulness of applying this method to re-estimate 
inequality in urban India as a whole.   
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