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Abstract

Abstract. In this note, I study the roles of value heterogeneity -
i.e., agents are heterogeneous in terms of values of nonrival information
thay they possessed - in determining the shapes of two-way flow Strict
Nash networks when small amount of decay is present. I do so by
extending the two-way flow network with small decay of De Jaegher
and Kamphorst (J ECON BEHAV ORGAN, 2015). Results of this
extension shows that the effects of value heterogeneity on Strict Nash
networks, when small decay is present, largely resemble the effects of
heterogeneity in link formation cost - without decay - found in the
literature. Another surprising finding is that value heterogeneity can
extend the diameters of Strict Nash networks without changing any
other properties. In the discussion section of this note, I relate this
finding to two well-known concepts in the studies of social networks -
small world and preferential attachment.

JEL Classification: C72, D85
Keywords: Network Formation, Strict Nash Network, Two-way Flow Net-
work, Branching Network

∗At Adams College, I thank my assistants - Yuk Sojeong, Youngjin Lee and Dohun
Kim - for their excellent help that substantially saved the time required for this research.
In the previous years I also had several other assistants beside these three. While not
being mentioned here by name, I nevertheless express my gratitude for their efforts.

1



1 Introduction

Nonrival information/resources refers to information/resources such that the
one agent’s access to the information does not negatively impact the benefits
from consuming the same information/resources by another agent. Each
piece of information that an agent possesses, though, is likely to vary in
terms of value. Such variation in terms of information value can depend
either on the identity of agent who possesses it (i.e., some agents may know
useful information that has higher values than others. We call this partner
heterogeneity) or the identity of agent who chooses to access it (i.e., the
same information may have less value and hence less appreciated from the
points of views of some agents compared to the points of views of other
agents, or we call this player heterogeneity) or both (henceforth, I call this
two-way heterogeneity).

In this note, I study how this heterogeneity in the value of nonrival in-
formation impacts the shapes of Strict Nash networks (SNNs, henceforth). I
do so by extending the work of De Jaegher and Kamphorst (2015), which is
a two-way flow model of network with small information decay. By allowing
for the presence of value heterogeneity in this model, I study the changes
in terms of shapes and other important properties of SNNs compared to
original result of De Jaegher and Kamphorst (2015) (Proposition 1 and 2)
in which value heterogeneity is absent as well as Galeotti, Goyal, and Kam-
phorst (2006) in which information decay is absent but value heterogeneity
is present.

Within this literature, the studies on the role of agent heterogeneity in
link formation cost have been quite extensive, both in terms of equilibrium
characterization and existence of SNN 1. Little is known, however, about
the role of agent heterogeneity in information value 2. To the knowledge of
the author, the only finding in the literature about the role of agent hetero-
geneity in information value on two-way network is that it does not change
the shape of SNN although disconnected components can emerge. This re-
sult is established as Proposition 3.1 in the work of Galeotti et al. (2006),

1See Galeotti et al. (2006), Billand, Bravard, and Sarangi (2011), Haller, Kamphorst,
and Sarangi (2007), Billand, Bravard, and Sarangi (2012), Charoensook (2015), Charoen-
sook (2019)

2While little is known about the role of value heterogeneity in Two-way flow network
of nonrival information, there are quite some studies on the role of value heterogeneity in
other types of network formation model. For works related to one-way flow network, see
Billand, Bravard, and Sarangi (2013), Galeotti (2006), and Derks and Tennekes (2009).
For works related to network formation model that requires mutual consent, see Persitz
(2009) and Cofre (2016)
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which assumes the absence of information decay. Intuitively, since there is
no information decay, information transmission is perfect and hence every
agent accumulates the same amount of information. Thus, heterogeneity in
information value cannot cause agents in the same components to be dif-
ferent from each other. Of course, if information decay is present this line
of reasonings can no longer holds. This raises the question of the extent to
which value heterogeneity can have impacts on SNN when information de-
cay is present. This present note, therefore, makes a small contribution to
this insufficient body of literature by answering this question. It studies the
roles of agent heterogeneity in information value in the presence of small
information decay rather than being completely absent as in the previous
literature, where the term ‘small’ here refers to the fact that no superfluous
link is worth establishing by an agent 3. Indeed, to my knowledge this note
is the first paper in the literature of two-way flow network with nonrival
information that reports that value heterogeneity has substantive effects on
the shapes of Strict Nash networks.

This paper proceeds as follows. I introduce notations and the models
in the next section. Then I establish the results concerning the equilibrium
characterizations in the third section, where the three equilibrium charac-
terizations here correspond to three types of agent heterogeneity - player
heterogeneity, partner heterogeneity, and free-flowing heterogeneity. In this
section, I also remark and explain why the roles of value heterogeneity when
small decay is present do by and large resemble the roles of heterogeneity in
link formation cost (without decay) reported in existing literature. In the
fourth section, based upon the comparison between my results and the re-
sults of De Jaegher and Kamphorst (2015) that assumes value homogeneity,
I point out some interestingly intricate interaction between value hetero-
geneity, small decay, and diameter of SNNs. To fast forward, I show that:
(i) a balanced SNN is no longer resilient to the change to decay level ( as de-
cay level reaches zero), (ii) indeed, neither balanced no unbalanced, shorter
or longer diameter SNN seems to be resilient to the change in decay level,
and (iii) consequently, for the two-way flow model to have properties that

3As mentioned in De Jaegher and Kamphorst (2015) (whose model assumes value
homogeneity) ‘...information decay has two effects. First, ex-ante homogeneous players
become heterogeneous by their position in the network...Second, decay may give the indi-
vidual player an incentive to sponsor links to players he is connected to, but indirectly’.
my focus on small decay as opposed to all levels of decay, therefore, make possible to
study the interaction between the first effect mentioned in De Jaegher and Kamphorst
(2015) with value heterogeneity in isolation of the second effect. This is the rationale for
the assumption of small decay in this paper
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resemble small-world network and serves as a micro-foundation of preferen-
tial attachment, it has to be the case that heterogeneity among information
value possessed by each agent is sufficiently small.

2 The Model

Since this work is an extension of De Jaegher and Kamphorst (2015)’s, most
notations will also follow De Jaegher and Kamphorst (2015).

Link establishment and individual’s strategy. Let N = {1, ..., n} be
the set of all agents. An agent i ∈ N can form a link with another agent
j without j’s consent. ij denotes such a link. The set of all possible links
that i forms is Li = {ij : j ∈ N\{i}}. Naturally, gi ⊂ Li is a strategy of i
and g = ∪i∈N gi is a strategy profile. A strategy space G is , of course, the
set of all possible g. Pictorially, a strategy profile g is also a network, where
an arrow from agent i to j indicates that ij ∈ gi.

Information flow. Let NS
i {g} denote the set of all agents i establishes

a link with and let N̄S
i {g} denote the set of all agents i establishes a link

with or receives a link from. Let īj, an undirected link, be a typical member
of the set N̄S

i {g}. Since we assume that information flow is two-way, the
collection of all undirected links, denoted by ḡ, represents the structure of
information flow in a network. Specifically, information flows between i
and j whenever there exists a path between i and j, which is defined as
Pij (g) =

{
i0i1, ..., ik−1ik

}
⊂ ḡ such that i0 = i, ik = j. A shortest path

between i and j is, of course, the path(s) between i and j with the least
amount of links. A distance between i and j is defined as the amount
of links of the shortest path(s). If j = i then we assume, following the
literature, that the distance of between i and himself is 0.

Value heterogeneity Let Vij denote the value of information of j that
arrives to i, given that the information flow is perfect. Let V = {Vij}ij∈N×N

be the value structure. V is said to satisfy value player heterogeneity if Vij

= Vi for every agent i, which means that Vij does not depend on the identity
of j. Similarly V is said to satisfy value partner heterogeneity if Vij = Vj for
every agent i, which means that Vij does not depend on the identity of j.
If there is no restriction on V, we say that V is free-flowing. Onwards, for
the sake of convenience I use Vplayer, Vpartner, Vfree to represent these three
types of heterogeneity.
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Cost heterogeneity Similarly, let cij denote the link formation that i
bears to form a link with j. Let C = {cij}ij∈N×N,i 6=j be the cost structure. If
cij = ci for every i ∈ N , then we say that C satisfies cost player heterogeneity.
Similarly if cij = cj for every i ∈ N , then we say that C satisfies cost partner
heterogeneity. If there is no restriction on C, we say that C is free-flowing.

Information quantity Let the decay factor σ ∈ [0, 1] represents the fact
that Vij decays per each link that information of j traverses to reach i. That
is, if the distance between i and j is k then the information that i receives
from j is σkVij , which is called ex-post value of information that i receives
from j.

Small decay Following the assumption above and assuming an ij-path
exists, an agent i can improve the flow of information from another agent
j by establishing a link that leads to a shorter ij-path. Of course i has
enough incentive to do so only if the benefit from so doing exceeds the
link establishment cost c. However, if the decay is sufficiently small, i.e.,
σ is sufficiently close to 1, then the decay incurred by each path becomes
nearly identical and the incentive to establish an extra path disappears. As
a result, there is at most only one path between any pair of agents. This
assumption is assumed in De Jaegher and Kamphorst (2015) and will be
assumed throughout this paper.

Better-informed agent Let Nd
i be the set of all agents whose distance

from i is d and Ni be the set of all agents whose path with i exists. We
set Ii (g) =

∑

j∈Ni
σd(i,j;g)Vij and call Ii (g) total ex-post information that i

received. Consider M ⊆ N that is connected, ie., there is a path between
any distinct pair of agents in M . Let gM = {ij ∈ g : i, j ∈ M}. i is better-
informed than j if Ii (gM ) ≥ Ij (gM ) and best-informed in gM if Ii (gM ) ≥
Ij (gM ) for all j ∈ M . Let Aij (g) be the set of agents that i observes
exclusively via the link ij. Of course, j has to be a best-informed agent in
Aij (g) if i is to play his best response.

Similarly, we define total ex-post information that i′ receives from the
perspective of i as:

Ii;i′ (g) =
n−1∑

k=0;k 6=i

σd(i′,k;g)Vik

Let i′, j′ ∈ g′ ⊂ g but i /∈ g′. i′ is said to be better-informed than j′ from
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the perspective of i if Ii;i′ (g
′) > Ii;j′ (g

′) and i′ is best informed in g′ from
the perspective of i if Ii;i′ (g

′) ≥ Ii;j′ (g
′) for every j ∈ N (g′).

Network-related notations. Let g′ ⊂ g be a subnetwork of g. g′

is said to be a component of g if there is a path between i and j for any
i, j inN (g′) and no path between i and j whenever either i /∈ N (g′) or
j /∈ N (g′) but not both. An agent who has no link with any other agent is
called a singleton. Note that a singleton is also a component. Specifically
we call a component that is a singleton an empty component. A network is
connected if it has a unique non-empty component that contains all agents in
the network. A non-empty component of a network or a network is minimal
if there is at most one path among any pair of agents in the network. A
minimally connected network is a rooted directed tree if every agent receives
exactly one link except one agent that receives no link. The agent that
receives no link is called root.

In a minimally connected network, let g′ ⊂ g be a subnetwork of g that
is also minimally connected. Let M ∈ N be the set of agents in g′. We say
that j ∈ M is the middle agent in g′ if for every k 6= j, k ∈ M it holds true
that more than half of the players in M (including j and k themselves) are
closer to j than k.

The payoffs. Let Vi (g) = f (Ii (g)) where f ′ > 0. The payoff of i :

Ui (g) = Vi (g) −
∑

j∈NS
i

cij.

A special case of this is the so-called linear payoff, which is:

Ui (g) = Ii (g)−
∑

j∈NS
i

cij

=
∑

j∈Ni

σd (i, j; g) Vij −
∑

j∈NS
i

cij .

Strict Nash Networks. Consider a network g∗ such that a strategy
of i is g∗i ∈ g. Let g∗−i = g∗\g∗i so that g∗ = g∗i ∈ g ∪ g∗−i. g∗i is said to
be a best response of i if Ui (g

∗) ≥ Ui (gi ∪ g∗\g∗i ) for every gi 6= g∗i . If the
inequality is strict, then g∗i is a unique best response of i. g is said to be a
Nash network (NN, henceforth) if every agent chooses his best response. A
Strict Nash network (SNN, henceforth) is a network such that every agent
chooses his unique best response. In the main analysis section, SNN is
used for equilibrium characterization rather than NN in order to allow for
the comparison between our models, which assume value heterogeneity, and
existing models that assumes cost heterogeneity such as Billand et al. (2011)
and Galeotti et al. (2006).
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2.1 Main Analysis: Equilibrium Characterization

In this section, we characterize SNNs given that value structure satisfies
player heterogeneity, partner heterogeneity and free-flowing heterogeneity.
Our motivation is to allow for the comparison with existing literature on the
roles of heterogeneity in link formation cost that assumes likewise, namely
(Galeotti et al. (2006) for player-based cost heterogeneity and free-flowing
heterogeneity and Billand et al. (2011) for partner-based cost heterogeneity).

Proposition 1 (Partner Heterogeneity and Player Heterogeneity: Con-
nectedness). If the value structure satisfies player heterogeneity or partner
heterogeneity, SNN has a unique non-empty component. Moreover, in case
of partner heterogeneity SNN is connected.

Proof. [Uniqueness of the non-empty component ] For Vij = Vj the proof is
identical to Lemma 6 of De Jaegher and Kamphorst (2015). For Vij = Vi

Lemma 6 of De Jaegher and Kamphorst (2015) needs the following modifi-
cation. Recall from Section 2 that Ii;i′ (g) denotes the quantity of ex-post
information arriving to i′ in g from the perspective of i. Note that if we have
i and j such that Vi

Vj
= ǫ then we have Vi = ǫVj and ǫIj;i′ (g) = Ii;i′ (g). Now

in Lemma 6 of De Jaegher and Kamphorst (2015), replace the inequalities
in the fourth line by Ii;i′ (g\ii

′) > Ii;j′ (g) > Ii;j′ (g\jj
′) and the inequalities

in the fifth line by Ij;j′ (g\jj
′) > Ij;i′ (g) > Ij;i′ (g\ii

′) ⇐⇒ ǫIj;j′ (g\jj
′) >

ǫIj;i′ (g) > ǫIj;i′ (g\ii
′) ⇐⇒ Ii;j′ (g\jj

′) > ǫIj;i′ (g) > Ii;i′ (g\ii
′). A contra-

diction.
[Connected/disconnectedness] Vij = Vj, the proof is identical to Lemma

5 of De Jaegher and Kamphorst (2015), allowing us to conclude that the
unique non-empty component of SNN contains all agents. Note that for
Vij = Vi, the proof of Lemma 5 of De Jaegher and Kamphorst (2015) does
not apply. Indeed, if there exists i such that (n− 1)Vi < c and Vi′ < c for
every i′ 6= i and the payoff is linear, then obviously i is a singleton.

Next we further characterize the shapes of SNN for player heterogeneity
case and partner heterogeneity case. Surprisingly, the shape of the unique
non-empty component of SNN can be described in the same way as that of
Proposition 1 of De Jaegher and Kamphorst (2015), which assumes value
homogeneity 4.

4Actually, Example 3 of Charoensook (2019) also partially points out this fact. The dif-
ference is that Charoensook (2019) uses the term Bi and branching network, and Charoen-
sook (2019) mentions only the case of partner heterogeneity.
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Proposition 2 (Partner Heterogeneity and Pure Player Heterogeneity:
Characterization). Let the value structure satisfies partner heterogeneity or
player heterogeneity and given decay being sufficiently small, the unique non-
empty component of SNN has similar characteristics with SNN that assumes
value homogeneity as in Proposition 1 of De Jaegher and Kamphorst (2015),
which we quote below:

1. g is a rooted directed tree with all links pointing away from its root: the
unique non-recipient player. Each best-informed player in g is either
the root player, or receives a link from the root player;

2. g is a directed tree with a unique multi-recipient player. Any link not
received by this player points away from him. Moreover, this player is
the unique best-informed player in g.

Proof. Lemmata 7, 8 and 9 apply directly to the extension such that Vij = Vj

or Vij = Vi without any modification.

Why does it turn out that the shapes of SNN for the cases of player het-
erogeneity and partner heterogeneity are similar to the case of homogeneity
as in De Jaegher and Kamphorst (2015)? First, let us compare player het-
erogeneity case with homogeneity case, both cases are actually similar in
the sense that every agent i perceives every other agent as identical in terms
of link formation cost and the level of decay factor associated with the link
that he plans to establishes. Second, let us compare partner heterogeneity
case with homogeneity case, both cases are also quite similar. Consider four
agents i, i′ and j. Let us assume that i and i′ are not the in the same com-
ponent that contains j. Then the quantities of information that i and i′

would receive if they establish a link with j are identical since the assump-
tion of partner heterogeneity necessitates that the identity of link sender
is irrelevant. These similarities are the intuitions that explains this result.
Naturally, if we allow for Vij to depend on both i and j so that player hetero-
geneity and partner heterogeneity are violated then these lines of reasonings
no longer apply. Clearly unlike the case of partner heterogeneity it becomes
possible that i earns a large quantity of information as he forms a link with
j while i′ could earn just a little quantity of information even if the same
agent j is the receiver of the link that he establishes.

While the Proposition 1 and 2 above tell us what kind of SNNs emerge
given a value structure, it does not answer as to what the set of all possible
SNNs are. Proposition 3 below answer this question.

8



Proposition 3 (Pure Partner Heterogeneity and Pure Player Heterogene-
ity: Reverse Characterization). Any minimally connected network whose
properties are as either in (i) or (ii) described in Proposition 2 above can be
supported as SNN by some Vpartner, c and σ.

The proof of this proposition is driven by a lemma, which is stated below

Lemma 1. In a network or subnetwork g such that Vij = Vj (Vij is free-
flowing). Any agent, say j, there exists V̄j (V̄ij) such that j can be set as
a unique best informed agent (from the perspective of i) by setting Vj > V̄j

(Vij > V̄ij) while holding Vk (Vik) constant for all k 6= j, k ∈ g for all
0 ≤ σ < 1.

proof of Lemma 1. For any i, k we have
dIj(g)
dVj

= 1 > dIk(g)
dVj

= σdkj . There-

fore, V̄j exists.
If Vij = Vij then recall that an agent j’s ex-post information in g from

the perspective of i is Ii;j (g) =
∑n−1

k=0;k 6=i σ
d(j,k;g)Vik. Therefore, the proof is

the same as the above paragraph except that we replace the above inequality

by
dIi;j(g)
dVij

= 1 >
dIi;k(g)
dVij

= σdkj .

This lemma is intuitive. Simply put, it says that any agent can become
a best informed agent if the value of this information is sufficiently high.
Naturally, it follows that given a minimally connected network we can set
any agent j to be best informed and well worth establishing a link with by
setting Vj (Vij) to be well above the link formation cost c as well and values
of information of other agents. This is the intuition behind the proof of
Proposition 3 below.

Proof of Proposition 3. [Proof for minimality and the existence of the cost
range c] The proof follows from the proof of Proposition 2 of De Jaegher
and Kamphorst (2015) except the last two lines, which are respect to the
balancing condition which is not related to this paper.

Let us assume σ < 1, let us assume minimality for now. Later on we will
prove it. For now we will prove only that every agent j that receives from i
is a unique best informed agent in Aij

[Rooted directed tree case]
First, note that the existence of σ is provided through Lemma 4 of De

Jaegher. Next, we introduce the following notation. Let d denote the the
distance between an agent and the agent i∗. Let id denote an agent whose
distance from i∗ is d. Let d̄ denote the longest distance between i∗ and an
agent in this network. Note that since this network is branching rooted at

9



i∗ we know that id receives exactly one link from id−1 unless d − 1 = 0
which means id−1 = i∗. Thus, beginning from the distance for every id̄−1

by Lemma 1 it suffices that we set V
i
¯
d−1

>> V
i
¯
d−1

so that i
¯d−2 finds that

accessing id̄−1 is a unique best informed agent in A
i
¯
d−1i

¯
d−2

. This algorithm
is repeated until the distance 1. The proof follows.

[Directed tree with a unique multi recipient Case] Let i∗ be the unique
multi receipient. The proof is nearly the same as the proof for the Rooted
Directed Tree Case above. The only additional sentence is that we need
to set Vi∗ >> Vj for every j 6= i∗. This warrants that those i1 who are
the periphery of i∗ who access i∗ finds that accessing i∗ are their unique
responses. The proof follows.

We compare the results of our equilibrium characterization in Proposi-
tion 1,2 and 3 above with those of other models in the literature as follows.
Surpringly, quite some similarities are shared with those models that assume
heterogeneity in link formation without decay. Put differently, the combi-
nation of value heterogeneity and information decay impacts SNN in the
same way that the combination of link formation cost heterogeneity without
decay does.

Remarks 1. The effects of Vij = Vi and small decay (Proposition 1 and
2 in this paper) on SNNs resemble the effects of cij = ci without decay on
SNNs (Proposition 3.2 in Galeotti et al. (2006)): they both result in the
disconnectedness of SNNs, while the shapes of each non-empty component
of SNNs are identical to the cases in which heterogeneity is absent.

More specifically, the shape of non-empty component of SNN assuming
Vij = Vi and small decay (Proposition 1 and 2 in this paper) is identical to
value heterogeneity is absent and small decay is present (Proposition 1 in
De Jaegher and Kamphorst (2015)). The only difference is that there can
be isolate agents Vij = Vi. This is why we conclude that Vij = Vi and small
decay result in disconnectedness of SNN. This is analogous to the model of
Galeotti et al. (2006) that assumes cij = ci but information decay is absent.
This leads to SNN being disconnected center-sponsored star instead of a
unique center-sponsored star that contains all agents, which is the result of
the model that assumes homogeneity in link formation cost (Proposition K
in Bala and Goyal (2000)).

Remarks 2. The effects of Vij = Vj and small decay (Proposition 3 in
this paper) on SNNs resemble the effects of cij = cj without decay on SNNs

10



(Proposition 2 in Billand et al. (2011)). Indeed, the set of possible SNNs
in Proposition 3 of this paper and Proposition 2 in Billand et al. (2011) are
identical 5.

While Remark 2 above compared our results with that of Billand et al.
(2011), it is also worth comparing our results in Proposition 2 and 3 with
those in Proposition 1 and 2 of De Jaegher and Kamphorst (2015) since it
assumes small decay without agent heterogeneity. Quite surprisingly while
Proposition 2 in our paper states that the shapes of SNNs in our model are
described precisely in the same way as the shapes of SNNs in Proposition
1 of De Jaegher and Kamphorst (2015), our Proposition 3 shows that the
diameter of SNN when value heterogeneity is present tends to be much longer
than the case in which value heterogeneity is absent as in De Jaegher and
Kamphorst (2015). Indeed, a corollary of our Proposition 3 is that SNN can
be a line network, which is the network with the longest diameter possible.
This is a contrast to the result of De Jaegher and Kamphorst (2015) since
they mentioned on page 225 that “...the diameter of SNNs will be small
compared to the total population size...” We formally state this comparison
as another remark below.

Remarks 3. A notable effect of Vij = Vj on SNN, compared to the case in
which value heterogeneity is absent as in De Jaegher and Kamphorst (2015),
is that the diameter of SNN becomes relatively longer. Indeed, SNN can also
be a line.

Finally, we turn to provide a full characterization in the general case
of value heterogeneity. Proposition 4 below shows that in such a case any
minimal network can be SNN.

Proposition 4. Any minimal network can be supported as SNN by some
σ, c, and V.

Proof. First, for now we assume that Vij = 0 whenever i and and j are not
from the same component. Thus, for any c > 0 there is no incentive for the
link ij or ji to be established.

Now gc be a typical non-empty component of g. for every ij in g, similar
to the proof of Proposition 3 and by Lemma 1, it suffices that we set Vij >>
Vik for every k ∈ N (Aij (g

c)). This allows j to be a unique best informed
agent in Aij (g

c). The proof follows.

5while our description of SNNs and the description of SNNs in Billand et al. (2011)
appear to be different, they are actually identical. This is a result of Lemma 3 of Charoen-
sook (2019)
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Next, the existence c and σ that allow each non-empty component to
be minimally connected is proven in Proposition 2 of De Jaegher and Kam-
phorst (2015). Finally, we relax the assumption (recall the first sentence of
this proof) that Vij = 0 whenever i and j are not from the same component
by noting that that f ′ () is continuous in Vij. Consequently there exists
ǭ > 0 such that if 0 < Vij < ǭ for all i, j not in the same component then i
and j have no incentive to establish a link with one another.

Remarks 4. The effects of the combination of V that is free flowing and
small decay on SNN resemble the effects of heterogeneity in link formation
cost that is free flowing without decay. Indeed, the classes of network that can
be supported as SNN in Proposition 4 above and Proposition L of Galeotti
et al. (2006), which assumes general heterogenety in link formation cost, are
identical.

Overall, our analyses above show that the combination of value hetero-
geneity and small decay impacts SNN in the same way as cost heterogeneity
(without decay) does. While this may appear to be surprising, the primary
intuition is quite simple. From value heterogeneity perspective, an agent
is a superior partner choice, and indeed the best choice of partner, if the
total ex-post value of information that he posseses is highest among other
agents. Similar, from cost heterogeneity perspective, an agent is the best
choice of partner if the link formation cost such that he is the link receiver
is the lowest among other agents. Thus, value heterogeneity and cost het-
erogeneity are much like reverse mirror images of each other. Of course,
this line of reasoning here holds true only if small decay is assumed to be
present together with value heterogeneity. Otherwise, there is no agent who
is superior as a partner choice from value heterogeneity perspective since
information quantity possessed by each agent becomes identical due to the
absence of decay.

3 Value Heterogeneity, decay, and network diam-

eter: relations between the three

3.1 Motivating Examples and Remarks

In this subsection, my intention is to examine an intricate interplay of three
elements - level of small decay, diameter of SNN, and value heterogeneity.
A primary motivation is, as stated in Remark X, once when partner-driven

12



value heterogeneity replaces value homogeneity diameters of SNNs can be-
come very long and indeed a line network can also be SNN. Another primary
motivation is that the equilibrium characterization in Proposition K does
not answer what happens to SNN as decay diminishes, i.e., σ → 1. This
means that our results cannot be compared directly to the result in Lemma
L and Prop X of De Jaegher, which asserts that a balanced SNN is resilient
to the change in the change in σ as σ → 1. In this section, we also wish to
find out that this very resilience of balanced SNN holds true in the extension
that replaces value homogeneity with partner-driver value heterogeneity. We
begin to explore these issues by stating one remark below.

Remarks 5. Assuming V satisfies partner heterogeneity and small decay is
present, consider a minimally connected network or subnetwork containing
two agents, say, j and k. Assuming value partner heterogeneity, let N1

denote all agents except j and k that are closer to j than k but are not located
within the undirected path between j and k, N2 denotes all agents except j
and k that are closer to k than j but are not located in the undirected path
between j and k, N3 denote all agents except j and k that are closer to j
than k and are located in the undirected path between j and k, N4 denotes
all agent except j and k that are closer to k than j and are located in the
undirected path between j and k. j is better informed than k iff:

Vj + σdj,kVk +
∑

l ∈N1

Vlσ
dj,l +

∑

l ∈N2

Vlσ
dj,l +

∑

l ∈N3

Vlσ
dj,l +

∑

l ∈N3

Vlσ
dj,l

>Vk+σdj,kVj+
∑

l∈=N1

Vlσ
dk,l+

∑

l∈N2

Vlσ
dk,l +

∑

l∈Nbtw˙jk˙cl˙j

Vlσ
dk,l +

∑

l∈N4

Vlσ
dk,l

Note that for l ∈ N1 dj,l + dl,k = dj,k and for l ∈ N2 dj,k + dk,l = dj,l so that
we have:

Vj

(

1− σdj,k
)

+
∑

l ∈N1

Vl

(

1− σdj,k
)

σdj,l +
∑

l ∈N3

Vl

(

σdl,j − σdl,k
)

> Vk

(

1− σdj,k
)

+
∑

l∈N2

Vl

(

1− σdj,k
)

σdk,l +
∑

l∈N4

Vl

(

σdl,k − σdl,j
)

iff:

Vj > Vk

(

1− σdj,k

)

+
∑

l∈N2

Vlσ
dk,l +

∑

l∈N4

Vl

(

σdl,k − σdl,j

)(

1− σdj,k

)−1

−
∑

l∈N1

Vlσ
dj,l +

∑

l∈N3

Vl

(

σdl,j − σdl,k
)(

1− σdj,k
)−1
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Now let us put on a few notation to help shorten the above inequality

Vj >

A
︷ ︸︸ ︷

Vk

(

1− σdj,k
)

+
∑

l∈N2

Vlσ
dk,l +

∑

l∈N4

Vl

(

σdl,k − σdl,j
)(

1− σdj,k
)−1

−

B
︷ ︸︸ ︷
∑

l∈N1

Vlσ
dj,l +

∑

l∈N3

Vl

(

σdl,j − σdl,k
)(

1− σdj,k
)−1

Note that we do not know if A − B is decreasing in σ as σ → 1, since
the first differentiation of A − B with respect to σ depends on σ as well
as Vl , l 6= j. Thus, given V and σ, it is possible that Vj > A − B but

Vj < lim
σ→1

A − B . Equivalently (since this is an iff condition), this means

that that j is better informed than k for a given V, σ. But k becomes better
than j as σ → 1. In example 1 and 2 below we use this result to show that
for the same set V, c it is possible that for a given level of σ a relative shorter
diameter network is SNN while a relative longer diameter network cannot
be SNN. But as σ → 1 the situation gets to be reversed: a relative longer
diameter network is SNN while a relative shorter diameter network cannot
be SNN.

Vj = 6.49

Vk = 3.5 V1 = 1

V2 = 3 V3 = 3 V4 = 1 V5 = 1

Figure 1: Example 1

Example 1. Consider the (undirected) network in Figure 1 above. Note
that j is the middle agent while k is not. Between j and k, which agents
are better informed? We claim that j be better informed than k given the
support V = {Vj = 6.49, Vk = 3.5, V1 = 1, V2 = 3, V3 = 3, V4 = 1, V5 =
1}, c = 0.98, σ = 0.99. However, as σ → 1 the converse holds, ie., k becomes
better than j. We prove this claim using the last inequality in the above
Remarks 1, j is better than k if and only if:

(1a)Vj > Vk + σV2 + σV3 −
(
σV1 + σ2V4 + σ2V5

)
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substituting the numbers (where σ = 0.99) we have

(1b)6.49 > 6.484

Hence, it holds true that j is better informed than k for this supporting
parametrs. However, if we try to find the limit of LHS and RHS as σ → 1
we have:

(1c)6.49 < 6.5

As a result, there exists
¯
σ > 0.99 such that k is better informed than j

for all σ ∈ (
¯
σ, 1). Indeed, a tedious computation similar to the above will

show that j is best informed in this network for σ = 0.99 but k becomes the
best informed agent for as σ → 1

Vj = 6.49

Vk = 3.5 V1 = 1

V2 = 3 V3 = 3 V4 = 1 V5 = 1

(a) 1©

Vj = 6.49

Vk = 3.5
V1 = 1

V2 = 3 V3 = 3 V4 = 1 V5 = 1

(b) 1©

Figure 2: Networks with six agents

Example 2. As a continuation of the above Example 1, consider the support
V = {Vi = 1, Vj = 6.49, Vk = 3.5, V1 = 1, V2 = 3, V3 = 3, V4 = 1, V5 = 1}, c =
0.98, σ = 0.99. Note that the only difference between the support in this
example and the support in Example 1 is the addition of Vi = 1. Obviously,
the balanced network g1 above is SNN given this support. However, as σ → 1
g1 ceases being SNN. Instead g2 becomes SNN. This fact requires that j is
best informed g1 − ij given this support and k is best informed in g2 − ik as
σ → 1 respectively. Indeed, the Example 1 above supports this claim, since
the undirected networks ḡ1 − ij = ḡ2 − ik are identical to the undirected
network in Example 1.

Using the same line of reasonings, it is quite straightforward to shows the
opposite of Examples 1 and 2 above can also take place. That is, a longer,
unbalanced network is SNN for a σ but is not resilient to σ → 1 while a
balanced SNN is. We show these examples below.
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Vj = 5

Vk = 7.45 V1 = 1.5

V2 = 1 V3 = 1 V4 = 1.5 V5 = 1.5

Figure 3: XXYY.

Example 3. Consider the undirected network similar to Example 1 above,
but we change the support to be V = {Vj = 5, Vk = 7.45, V1 = 1.5, V2 =
1, V3 = 1, V4 = 1.5, V5 = 1.5}, c = 0.98, σ = 0.99. A similar to computation
to Example 1 will show that k is best informed in this undirected network
given this support. However, as σ → 1 j is better informed in this network .

Example 4. As a continuation of the above Example 4, using the same
analogy as Example 2 it is straightforward to show that g2 is SNN but g1 is
not given the support V = {V1 = 1, Vj = 5, Vk = 7.45, V1 = 1.5, V2 = 1, V3 =
1, V4 = 1.5, V5 = 1.5}, c = 0.98, σ = 0.99. However, as σ → 1 g1 becomes
SNN and g2 ceases to be SNN.

3.2 Discussion 1: Does small decay - as opposed to high

decay - favor high diameter SNN?

First, let us recall that small decay in the absence of value heterogeneity
seems to favor SNNs that are of high diameters. According to De Jaegher
and Kamphorst (2015) “...especially the smaller amount of decay can result
in high diameter networks. It is rather for a larger amounts of decay that all
high diameter networks will fail to be SNNs.’ (De Jaegher and Kamphorst
(2015) p. 225).’ Once value heterogeneity is present as in this article, does
this fact continues to hold true?

Our examples in the above section show that the answer is no. Indeed,
as σ → 1 it could be the case that SNN’s diameter got longer or shorter.
In the example 1 and 2, it turn out that SNN became longer, an evidence
that supports the statement of De Jaegher and Kamphorst (2015) as shown
in the above paragraph. However, in the example 3 and 4, the result is the
opposite in the sense that SNN became short, an evidence that is against
the above statement of De Jaegher and Kamphorst (2015). In conclusion,
once value heterogeneity is present, its interaction with small decay neither
favors a longer diameter SNN or shorter diameter SNN.

16



What intuitions drive this result? The answers are quite simple. In the
absence of value heterogeneity, the level of information arrives to each agent
depends only on their location in the network. Thus, a middle agent turns
out to be the best informed agent as σ → 1, since the middle agent has a
position that is ‘optimal’ in the sense that he is not so far away from any
other agents. However, once the value heterogeneity is present it is no longer
the case that only what matters is the location. Instead, it is the location,
the decay level, and the value of information that an agent possesses as well
as the value of information of agents that are his neighbors that altogether
determine the identity of best informed agent in a network. Consider the
undirected network in the Example 1, we can observe that the agents who
are closer to j than k - namely 3, 4 and 5 - have information values that are
quite lower than the agents who are closer to k - namely 1 and 2. However,
the information that j possesses has a much higher value to k’s information.
Thus, for decay level that is sufficiently high j is best informed thanks to the
value of the information that he possesses. However, as σ → 1, k become
best informed due to the fact that values of information of agents that are
just one-link away from him - namely j, 1 and 2 - are quite high. Of course,
using the same line of reasonings it could also happen that j becomes better
informed than k as σ → 1. This is seen in the Example 3. 6

3.3 Discussion 2: Does small decay resemble the small-world

phenomena?

According to De Jaegher and Kamphorst (2015), the role of small decay
in their model provides a micro-foundation to the small-world properties of
network because ‘...preferential attachment is key to understanding small
world networks. Preferential attachment means that new players are more
likely to form links with players who have many links than with players who
have few links. The two-way ow model with decay offers a micro-foundation
for preferential attachment. Given that you care about the distance to other
players, it is typically more attractive to sponsor a link to a player with many
links, than to a player with few links’. Our finding is that the argument that
an agent would find that an agent with many links is more attractive as a

6Another interesting point is that this result is remarkably different from other works
that assume agent heterogeneity such as the in-dept analysis of the insider-outsider model
as in Billand, Bravard, and Sarangi (2010), which is a model that assumes heterogeneity
in link formation cost (as opposed to value in our model). In this model, they find that
SNN has a shorter diameter as σ → 1. Specifically a minimally connected SNN in the
insider-outsider model can have diameter of at most 5. But as σ → 1 SNN has a diameter
of at most 3.
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partner than a player with few links is no longer valid if value heterogeneity
is assumed. Simply put, even if an agent has only one link or even no link
but the value of information that he possesses is extremely high, he remains
more attractive than another agent who has multiple links with agents whose
information values are relatively much smaller.

Indeed, this very tradeoff - choosing between an agents with less links
but higher information values versus an agent with multiple links but smaller
information values - leads to the key feature in our model that SNN can have
a very long diameter and indeed SNN can even a line. As such, once value
heterogeneity is assumed, SNN will no longer have a feature that resembles
the small world phenomena, which is such that ‘the network diameter is
of an order substantially smaller than that of the population.’ (De Jaegher
and Kamphorst (2015), p.219 ) Hence, our results show that for the two-way
flow network with small decay to serve as a micro-foundation for preferential
attachment and also have small-world properties that resemble real-world
network, it has to be the case that the values of information/resources pos-
sessed by each agent are not very different from each other.

4 Conclusion

In this note, I study the roles of value heterogeneity on the properties of
Strict Nash networks when the presence of small decay is assumed. I pro-
vided equilibrium characterizations based on three types of heterogeneity -
player heterogeneity, partner heterogeneity, and free-flowing heterogeneity.
My results show that the effects of combination of value heterogeneity and
small decay on SNNs resemble those of link formation cost found in the
literature. I also draw a comparison between the effects of combination of
value heterogeneity and small decay on SNNs with the effects of small decay
alone on SNN as in De Jaegher and Kamphorst (2015). Interestingly, once
the assumption that information value depends on the identity of agent who
possesses it replaces the assumption of value homogeneity in De Jaegher and
Kamphorst (2015), the only property of SNN that changes is that SNNs now
can have long diameters compared to SNNs under the case of value homo-
geneity found in De Jaegher and Kamphorst (2015). Consequently, in the
discussion section above I conclude that for the two-way flow model with
small decay to serve as a microfoundation of preferential attachment, which
helps understand small world networks, the extent to which value hetero-
geneity is present in the network has to be sufficiently small.

This note can be extended in many ways, depending on how value hetero-
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geneity is specified. Interesting extensions would be to assume some specific
forms of value heterogeneity that are meant to reflect some intuitive ideas.
For example, one could assume a value structure such that Vij = Vji = VH

whenever i and j belong to the same group and Vij = Vji = VL < VH

whenever i and j does not belong to the same group. That is, information
has a high value only to agents who are from the same group where the
same group here could consist of agents who share the same interests. This
way, we have a value structure that mirrors the ‘insider-outsider’ model pi-
oneered by Galeotti et al. (2006), which is such that link formation cost
is lower whenever it is between two agents from the same group. Another
example is the value structure that mirrors the situation in which one group
of agents has ex-ante power over all other agents, so that a link with an
agent from this ‘power group’ always yields a higher value than a link with
an agent that is not from this group. This form of value structure has been
studied in-depth by Persitz (2009) in the setting where link formation re-
quires mutual consent. I expect that it would also be interesting to study
the same form of value structure in the setting where information is nonrival
and hence link formation is unilateral, as in this note.

Another interesting branch of extension is related the recent research
pioneered by Olaizola and Valenciano (2015) and Olaizola and Valenciano
(2018). These authors propose innovative models that unify the two seminal
models - one is Bala and Goyal (2000) whose link formation is unilateral
and the other one is Jackson and Wolinsky (1996) whose link formation
is bilateral - as one. Their models allow for both cases to happen in the
network, given that a link that is unilaterally formed is weaker, incurring
higher degree of information decay, than a link that is bilaterally formed.
It would be interesting to understand the effects of value heterogeneity on
equilibrium networks in this model, since this would provide insights on the
roles of value heterogeneity in a more general setting of network formation
than what this note provides.
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