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On the Use of Spectral VValue Decomposition for the
Construction of Composite Indices

Luca Farnia, Fondazione Eni Enrico Mattei, Venice, Italy

Abstract. High dimensional composite index makes experts’ preferences in set-
ting weights a hard task. In the literature, one of the approaches to derive weights
from a data set is Principal Component or Factor Analysis that, although concep-
tually different, they are similar in results when FA is based on Spectral Value
Decomposition and rotation is not performed. This works motivates theoretical
reasons to derive the weights of the elementary indicators in a composite index
when multiple components are retained in the analysis. By Monte Carlo simula-
tion it offers, moreover, the best strategy to identify the number of components
to retain.

Keywords: Composite Index, Weighting, Correlation Matrix, Principal Com-
ponent, Factor Analysis.

1 Introduction

Every composite index involves an initial effort by the developer to specify the phe-
nomenon under analysis throughout the choice of the dimensions and underlying ele-
mentary indicators belonging to them. Apart this initial step, two polar typologies of
composite index could be defined, based on the degree of involvement of one or more
decision makers in its construction, namely in the data normalization and criteria
weighting step: fully unsupervised and fully supervised composite index.

Most composite indices existing in the literature belong to the first category since that
data driven normalization techniques (the most common min-max, or z-score), equal
weighting or geometric mean or no weights (Mazziotta and Pareto, 2016) have been
applied to construct such measure; fully supervised composite indices are strongly the
minority; a non-exhaustive example can be found in Pinar et al. (2014) and Campagnolo
etal. (2018).

There is no agreement on the best strategy to use for its construction despite the hand-
book of composite indicators developed by OECD in 2008 in collaboration with the
Joint Research Centre COIN of the European Commission. Indeed, on one side some
scholars criticize it because of its weak theoretically nature; they consider it an ideo-
logical statement rather than practically functional indicator; on the other side, there is
a continuous effort by researchers in overcoming some implicit issues due to the tech-
niques used to build them.

The weighting approach is one of the major disputes; at its root there is the debate
between uniform and not uniform weights. In many cases there are not scientific rea-
sons to choose equal weights, because communicating in a straightforward and easy



way the results of a composite index is the priority. Hag (2003) argued that, if there is
insufficient reason to discriminate among the indices, equal weights should be used.
Chowdhury and Squire (2006) referred to equal weighting as “obviously convenient
but also universally considered to be wrong”.

Weights, moreover, have a straightforward economic and social interpretation in linear
aggregation functions. Ravallion (1997) for example, strongly criticized both the first
edition of Human Development Index* and the Multidimensional Poverty Index (Akire
and Foster, 2007) in 2011 because, focusing on the marginal rates of substitution (MRS)
between the indices’ dimensions, argued that they were questionable. MRS introduces
a second debate on the use of compensatory approach in the construction of composite
index. This issue can be solved using specific aggregation function such as the constant
elasticity of substitution or the most advanced and non-additive technique, i.e. Choquet
integral and fuzzy measures (Ishii and Sugeno, 1985; Grabisch, 1996, 1997, 2000; Mar-
ichal 2000a, 2000b; Meyer and Roubens, 2005), pushing the construction of composite
indices towards the border between a fully supervised approach and modelling, namely
Structural Equation Model (Kline, 1988).

However, high dimensional index makes experts’ preferences in setting weights a hard
task and obliges the developer to adopt a fully unsupervised approach. Referring again
to Haqg (2003) this paper argues that discriminating among indicators should be done
whenever blocks of correlated indicators are detected and the latter are unevenly dis-
tributed among them. The reason is that the dimension with the highest number of in-
dicators within it will have the highest influence on the composite index, not because it
is explicitly more important than other dimensions, but implicitly for construction. This
is hence an undesirable consequence and a valid reason to discriminate among varia-
bles. This work proposes the use of Spectral VValue Decomposition (SVD) as a tool to
differentiate weights. SVD is the fundamental mathematical properties of a covari-
ance/correlation matrix and it is at the bases of Principal Component (PC) and Factor
Analysis (FA). Since neither the components nor the factors are used to construct di-
rectly composite indices (for the reasons explained in section 3), but instead the rescaled
eigenvectors or loadings, | voluntarily prefer citing the latter to avoid entering the field
of formative/reflective models (see Simonetto, 2102 for a state of art) that is unneces-
sary and beyond the scope of this work.

The paper is organized as follows: section 2 describes the main approaches to weigh
indicators; section 3 describes some existing procedures to derive weights by means of
PC or FA and explain some theoretical reasons to derive the weights; Section 4 shows
the results of Monte Carlo simulation for the special cases when blocks of independent
indicators are generated. Section 6 concludes.

2 Weighting Techniques

Three macro typologies of weighting system exist: equal weighting, weighting based
on experts’ preferences and those based on the statistical properties of the data. There

1 Human Development Report (1990)



is no weighting system above criticism (see Greco et al. 2013 for a review of issues on
weighting). Each approach has its benefits and drawbacks. Probably there will be no
end word on which approach is the best because most depends on the scope of the
composite index and on the number of elementary indicators belonging to it.

This last point is the most binding one when weights are derived according to experts’
preferences: when the number of indicators considered is relevant (see for example the
list of indicators suggested by United Nations for measuring Sustainable Development
Goals), approaches based on expert’s preferences become a severe challenge, not only
because it would be excessively time consuming for decision makers but also because
the results could be biased by the complexity required. As mentioned in the introduc-
tion, the application of fuzzy measures and Choquet Integral would be the most pow-
erful and brilliant approach to solve the problem of criteria weighting and data aggre-
gation simultaneously, allowing to model both compensatory and non-compensatory
preferences; indeed, they can exactly replicate the arithmetic mean, weighted average,
min-max operator and Ordered Weighting Average (OWA) operator (Yager, 1988).
The Achille’s heel is the exponential complexity as the number of indicators used in-
creases: the most simplified version, the so called 2-additive model (Grabisch, 1997)
requires the elicitation of n(n+1)/2 parameters where n represents the number of in-
dicators analysed. Other approaches based on experts’ preferences are Budget Allo-
cation Process, Analytic Hierarchy Process (Saaty, 1977) and its generalization Ana-
lytic Network Process (Saaty, 2004) and Conjoint analysis (Green et al. 2001; Wind
and Green 2013); they allow for compensatory data aggregation only.

On weights derived by statistical properties of data, | mention Correlation Analysis,
Data Envelopment Analysis (Charnes et al., 1978); Principal Component (Pearson,
1901; Hotelling, 1933) and Factor Analysis (Spearman, 1904) are the special focus of
the next chapters.

3 Principal Component and Factor Analysis in Composite
Indices

In Principal Components (PC) latent and orthogonal dimensions are linear function
of observed variables; in Factor Analysis (FA) instead, observed variables are linear
function of latent and orthogonal dimensions. Even though they are conceptually dif-
ferent, their utilization in the construction of composite indices is the same: nor in PC
and in FA, indeed, the estimates of the components and factor themselves are used
directly to compute the synthetic measure but, instead, as a device to derive the weights
of the elementary indicators. This happens to avoid cases in which an indicator, ad-
justed for its polarity, has a direct impact that is discordant in sign with the synthetic
measure we are computing. The results between PC and FA are identical whenever both
eigenvectors and eigenvalues of the covariance or correlation matrix of the indicators
(hence SVD) are used to estimate the linear parameters and factors are not rotated.
Other techniques could be used in FA to extract factors, two of them still rely on SVD
such as the Principal Factor method and Iterated Principal Factor method, the last is
based on Maximum Likelihood method.



SVD is the fundamental property of symmetric matrices in general and of covariance
and correlation matrix in statistics. The covariance matrix of a random vector x (p X 1),
can be decomposed by SVD as Cov(x) = £, = AAA’ where A is the eigenvector ma-
trix and A the eigenvalue matrix. If we partition both the eigenvector matrix and the
eigenvalue one into two submatrices representing the first k components and the last
(p — k), then Cov(x) = A;A;A’; + A,A,A’,. Both PC and FA (based on unrotated
principal component) uses SVD to estimate the linear parameters of the first k compo-
nents:inPCz = A’;x;inFAx = A1A11/2f + €. The coefficients of the FA are therefore
proportional to those of PC and these makes identical the derived weights for composite
indices.

Many approaches exist in the literature to derive the weights and to construct a com-
posite index by means of PC or FA, but other that, there is ho consensus on which is
the best one to use. Generally speaking these could be split into two main approaches:
in the first one, the developer uses only the first component (the one explaining most
of the variance in the data) to build an index; in the second one, the developer, conscious
that the first component represents an unsatisfactory portion of the total variance, uses
additional components and then merges the components weighting them according to
the proportion of variance explained by each. To the first approach belong the studies
of Ram (1982), Ayanso et al. (2011) and Nguefack et al. (2011) who rescaled the coef-
ficients to sum one, because they were all concordant in sign. Other authors (Avanzini,
2011; Man et al., 2015) retained the first component and squared the coefficient to de-
rive the weights; in this case the weights represent the proportion of variance explained
for the first component. To the second approach, with different techniques, belong the
studies of Berlage (1988), Dialga et. Al (2016) and Nicoletti et al. (2000); by means of
FA, some of them used the squared loadings in the selected components, others kept
only those with highest value among factors and them rescaled them. In all cases factors
are weighted according to their proportion on explained variance.

In the following | will motivate why retaining only the first component could be
wrong and why weighting components/factors according to their explained variance is,
instead, always wrong; | will explain some theoretical remarks to give a rationality for
a correct approach. On one side retaining only the first component could be unsatisfac-
tory because other components would be discharged even if important. This is espe-
cially true when the covariance matrix and not the correlation one is used in SVD, be-
cause the first component will be formed essentially by the variables with highest var-
iance. Moreover, suppose of having p statistically independent random variables with
unit variance; each component will explain 1/p of the total variance. If we retain the
first component, we would discharge (p — 1) equally important variables. Second;
weighting components proportionally to their explained variance is conceptually
wrong: this is very clear in FA since the columns of AlAll/2 are proportional to their
eigenvalues. In doing that, we overweigh indicators that are correlated penalizing those
that are independent, leading consequently to unbalanced composite index. The follow-
ing example, although extreme, will better explain the above issue: suppose we are
going to construct a composite index with three indicators, two of which are perfectly
positive correlated, while the third is statistically independent from the others. One of
the two correlated variable is redundant and could be dropped in the composite index.



If we impose equal weights among variables, the composite index is unbalanced be-
cause one dimension, formed by the two correlated variables, is weighted twice with
respect the second one, formed by the independent variable. The reader can see that
weighting each component according to the proportion of explained variance leads to
the same undesirable result. In the construction of composite indices, it is not recom-
mended the technique that fits the data best but, instead, it is to prefer the one that best
fits the dimensions the data are explaining, in which indicators that are statistically in-
dependent are weighted proportionally more than those that are correlated. To this aim,
when using PC/FA technique, each component/factor should have the same weight.

If we form, from the matrix A;, the matrix B where b;; = afj represents the portion
of variance explained by variable i-th to the j-th component, then each column sums to
1; the optimal weight vector is:

w =-1B 1)

where k represents the number of components retained. Hence the weight assigned
to the variable i-th represents its average contribution on the total variance explained
by the components. Using equation 1), in the above example the two correlated varia-
bles have weights 1/4 and the third 1/2.

Regarding the number of components to retain, some guidelines have been proposed
(see Rencher, 2002); the leading one is to retain enough components to account for a
specified percentage of the total variance, say 80% or those components whose eigen-
values are greater than the average. The above remarks suggest for merging the two: let
A; the i-th eigenvalue and

¢ = {d|argmingf(d) = [T, 2 - 0.8p|}, d = {1,..., p} 2

D={wlra, =1}, v={1,..,p} (3)
the optimal number of components to retain d* is given by:

k* = max(d, v) 4)

Monte Carlo simulation (see Section 4) shows however that the best strategy, at least
to identify potential blocks of independent variables in the composite index, is to retain
components whose eigenvalue is greater than average.

4 A Special Case — Blocks of Independent Variables

Consider for simplicity 5 indicators with zero mean; the first 3 belong to a first latent
dimension; the other 2 to a second dimension independent from the first one. We can
model the above setting in the following:
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or, compactly as:
x=%f+e (6)

with Cov(e) = I, = diag(a?,02,02,02,02) and Cov(f) = diag(af,07) for
construction. Hence

Cov(x) =X, =WX¥Y+X @)

Cor(x) = R, = DX,D (8)
with diag (D) = diag(Z,)~ /2. It follows for example that:

Cov(x;, x;) = a;a;0f 9)

a0
ajajof,

(10)
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Cov(x;,y;) =0 fori =1,23andj = 1,2 (11)
For each observation i = 1, ...n we have x;" = f;'®¥ + ;" and:
X=F¥Y+E (12)

Equation 12) allows us to simulate any set of cantered random variables with the prop-
erties given in equation 6), 7) or 8).

The following results have been found simulating 11 random variables; the first 6 be-
long to the fist dimension, the next 3 to a second one and the last two to a third dimen-
sion. In every simulation we allow some parameters to vary: a;~U[—1,1] with i =

1,..,11; fi~N (0, afzj) where g; ~U[1,6] with j = 1, ...,3. In all cases let £;~N(0,1).

Scope of the exercise is to check whether Spectral VValue Decomposition can correctly
identify the true structure of sample data and weigh the variables in such a way that the
overall weight of each block is the same, hence one third.

Two techniques are compared to retain the correct number of components: Method
A - many components as the number of eigenvalues greater than average; Method B -
many components to ensure a total explained variance of 80%. The extraction is done
using both the covariance (Table 1 to Table 3) and correlation matrix (Table 4 to

Table 6).



Table 1 - Overall weight for each block on a given percentile. Extraction based on covari-
ance matrix. Sample size n=50

Method B

95° 5° 50° 95°
0.048 0.496 0.996
0.001 0.333 0.500
0.001 0.251 0.497

Method A

Block  5° 50°
1° 0.290 0.489 0.995
2° 0.002 0.333 0.500
3° 0.001 0.326 0.497

Table 2 - Overall weight for each block on a given percentile. Extraction based on covari-
ance matrix. Sample size n=100

Method B

95° 5° 50° 95°
0.031 0.497 0.998
0.001 0.333 0.500
0.000 0.255 0.498

Method A

Block 5° 50°
1° 0.324 0.495 0.998
2° 0.001 0.333 0.500
3° 0.000 0.329 0.498

Table 3 - Overall weight for each block on a given percentile. Extraction based on covari-
ance matrix. Sample size n=300

Method B
5° 50° 95°
0.010 0.499 0.999
0.000 0.333 0.500
0.000 0.260 0.499

Method A
Block  5° 50° 95°
1° 0.329 0.498 0.999
2° 0.000 0.333 0.500
3° 0.000 0.332 0.499

Table 4 - Overall weight for each block on a given percentile. Extraction based on correla-
tion matrix. Sample size n=50

Method B

95° 5° 50° 95°
0.293 0.427 0.595
0.201 0.322 0.460
0.158 0.248 0.341

Method A

Block  5° 50°
1° 0.332 0.381 0.546
2° 0.238 0.326 0.413
3° 0.188 0.279 0.332

Table 5 - Overall weight for each block on a given percentile. Extraction based on correla-
tion matrix. Sample size n=100

Method A
Block 5° 50° 95°

Method B
5° 50° 95°

1° 0.332 0.357 0.523
2° 0.245 0.331 0.418
3° 0.200 0.305 0.333

0.263 0.421 0.602
0.198 0.325 0.480
0.164 0.250 0.372




Table 6 - Overall weight for each block on a given percentile. Extraction based on correla-
tion matrix. Sample size n=300

Method A Method B
Block  5° 50° 95° 5° 50° 95°
1° 0.333 0.340 0.504 | 0.254 0.406 0.621
2° 0.249 0.333 0.399 | 0.173 0.328 0.494
3° 0.229 0.326 0.333 | 0.165 0.250 0.391

As it can be seen from the results, latent dimension extraction based on the covari-
ance matrix leads to biased results even in large sample cases. On the other hand, ex-
traction based on correlation matrix and eigenvalues greater than 1 is the optimal solu-
tion guaranteeing unbiased and consistent estimates at a higher rate of convergence
respect the method based on explained variance.

There is one more particularity on Method B that makes method A preferable. The
following second simulation explains the issue. For each simulation, let a; = 1 Vi =
1,..,11, afzj = 1Vj = 1,2,3 and we choose crgzi in such a way that the correlation among

variables is fixed and equal for all combinations within blocks. Figure 1 shows, for a
sample size n = 50, the overall block weight for any correlation values between 0.05
and 1. While with method A the trajectories converge to the equal weights case, with
method B they converge only below a certain threshold and then explode to undesirable
values. The reason is the following: for low level of correlations, more components are
necessary to explain 80% of total variance; above a certain threshold instead, only few
components are enough to explain the same amount of variance and the dimension
formed by the fewest number of indicators is penalized.

A second characteristic is that the weights of the blocks converge at their desired
values at a higher rate with method A respect method B as correlation increases. These
results, at least for this special case, seems to slightly modify the conclusion made in
equation 4 and opting for the eigenvalues criterion to retain components.
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Figure 1 - Overall block weight given different correlation values; 50° percentile and sample
size n = 50. Method A (top); Method B (bottom)

5 Conclusions

This works explains some theoretical reason to derive weights when multiple compo-
nents or factors are retained in the analysis. Future works however are necessary to test
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the validity of such approach when the variables among blocks are at least weakly cor-
related. However, most will depend on the strength of such blocks as the preliminary
results of this work have shown: indeed, in the special case of independent variables
among blocks, the higher the difference of correlation among blocks, the easier the
identification of such structure and more reliable the derived weights as a consequence.
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