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Abstract
This paper presents a weighted optimization framework that unifies the binary,

multi-valued, continuous, as well as mixture of discrete and continuous treatment, un-
der unconfounded treatment assignment. With a general loss function, the framework
includes the average, quantile and asymmetric least squares causal effect of treatment
as special cases. For this general framework, we first derive the semiparametric effi-
ciency bound for the causal effect of treatment, extending the existing bound results
to a wider class of models. We then propose a generalized optimization estimator for
the causal effect with weights estimated by solving an expanding set of equations. Un-
der some sufficient conditions, we establish the consistency and asymptotic normality
of the proposed estimator of the causal effect and show that the estimator attains the
semiparametric efficiency bound, thereby extending the existing literature on efficient
estimation of causal effect to a wider class of applications. Finally, we discuss esti-
mation of some causal effect functionals such as the treatment effect curve and the
average outcome. To evaluate the finite sample performance of the proposed proce-
dure, we conduct a small-scale simulation study and find that the proposed estimation
has practical value. To illustrate the applicability of the procedure, we revisit the liter-
ature on campaign advertising and campaign contributions. Unlike the existing proce-
dures, which produce mixed results, we find no evidence of campaign advertising on
campaign contribution.
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1 Introduction

Modeling and estimating the causal effect of treatment has received considerable atten-
tion from both the econometrics and statistics communities (see, e.g., Hirano, Imbens, and
Ridder, 2003, Imbens, 2004, Abadie, 2005, Heckman and Vytlacil, 2005, Angrist and Pis-
chke, 2008, Imbens and Wooldridge, 2009, Fan and Park, 2010, Chernozhukov, Fernández-
Val, and Melly, 2013, Rothe, 2017, Athey, Imbens, and Wager, 2018, Słoczyński and
Wooldridge, 2018, Wager and Athey, 2018). Most existing studies focus on the binary treat-
ment where an individual either receives the treatment or does not, ignoring the treatment
intensity. In many applications, however, the treatment intensity is a part of the treatment,
and its causal effect is also of great interest to decision makers. For example, in evaluat-
ing how financial incentives affect health care providers, the causal effect may depend on
not only the introduction of incentive but also the level of incentive. Similarly, in studying
how taxes affect addictive substance usages, the causal effect may depend on the imposi-
tion of tax as well as on the actual tax rate. In finance, there are many plausible examples
of interest. For example, in evaluating the effect of corporate bond purchase schemes on
market quality, the causal effect may depend not just on whether the bond is selected into
the scheme but on how much of it is purchased (see Boneva, Elliott, Kaminska, Linton,
McLaren, and Morley, 2018). In recognition of the importance of the treatment intensity,
the binary treatment literature has been extended to the multi-valued treatment (e.g., Im-
bens, 2000, Cattaneo, 2010) and continuous treatment (e.g., Hirano and Imbens, 2004, Imai
and van Dyk, 2004, Florens, Heckman, Meghir, and Vytlacil, 2008, Fong, Hazlett, and
Imai, 2018, Yiu and Su, 2018). The parameter of primary interest in this literature is the
average causal effect of treatment, defined as the difference in response to two levels of
treatment by the same individual, averaged over a set of individuals. The identification and
estimation difficulty is that each individual only receives one level of treatment. To over-
come this difficulty, researchers impose the unconfounded treatment assignment condition,
which allows them to find statistical matches for each observed individual from all other
treatment levels.

The main objective of this paper is to present a weighted optimization estimation
framework that unifies the binary, multi-valued, continuous, as well as the mixture of dis-
crete and continuous treatments, and allows for a general loss function (causal effect param-
eter) under the unconfounded treatment assignment condition. The weights are called the
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stabilized weights by Robins, Hernán, and Brumback (2000) and are defined as the ratio of
the marginal probability distribution of the treatment status over the conditional probability
distribution of the treatment status given covariates. We first compute the semiparamet-
ric efficiency bound, Bickel, Klaassen, Ritov, and Wellner (1993), of the causal effect of
treatment, extending the results of Hahn (1998), Firpo (2007), and Cattaneo (2010) from
the binary treatment to a variety of treatments and to a general loss function. Our bound
reveals that the weighted optimization with known stabilized weights does not produce
efficient estimation since it fails to account for the information restricting the stabilized
weights. This observation was made by Hirano, Imbens, and Ridder (2003) in the binary
treatment case; here we show that their observation holds true for a much wider class of
treatment models. We exploit the information that the stabilized weights satisfy certain mo-
ment conditions (an expanding number thereof) by estimating the stabilized weights from
those equations by a novel entropy maximization method; we then estimate the causal ef-
fect by the generalized optimization method with the true stabilized weights replaced by the
estimated weights. Under some sufficient conditions, we show that our proposed estimator
is consistent and asymptotically normally distributed and, more importantly, it attains our
semiparametric efficiency bound. We also propose consistent standard errors based on the
same sieve methodology. We propose a tuning parameter selection methodology to guide
the practical implementation. We also discuss estimation of the effect curve and establish
its pointwise asymptotic normality and uniform consistency. We next present some simu-
lation evidence that our estimation and inference methodology works well in finite samples
and is robust to misspecification, whereas the Fong, Hazlett, and Imai (2018) is fragile. We
apply our methodology to the study of the effect of political advertisements on campaign
contributions using data considered by Urban and Niebler (2014) and Fong, Hazlett, and
Imai (2018). We find that the evidence obtained by the Fong, Hazlett, and Imai (2018)
method depends on the specification, and for some choices yields significant parameter es-
timates, whereas our method unambiguously finds effects that are economically small and
statistically insignificant.

Literature Review. In the binary treatment case with unconfounded treatment as-
signment, the average causal effect is estimated by the difference of the weighted aver-
age responses with the propensity scores as weights (see, e.g., Rosenbaum and Rubin,
1983, Hirano, Imbens, and Ridder, 2003, Busso, DiNardo, and McCrary, 2014). Other
popular methods include regression adjustment (Rubin, 1977, Angrist and Pischke, 2008),
matching (Imbens, 2004, Abadie and Imbens, 2006, 2011, 2012, 2016) , imputation (Heck-
man, Ichimura, and Todd, 1998, Cattaneo and Farrell, 2011), and hybrid method (Farrell,
2015, Słoczyński and Wooldridge, 2018, Chernozhukov, Escanciano, Ichimura, Newey, and
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Robins, 2018). The efficiency bound of the average causal effect in this model is derived
by Robins, Rotnitzky, and Zhao (1994) and Hahn (1998), and efficient estimation is pro-
posed by Robins, Rotnitzky, and Zhao (1994), Hahn (1998), Hirano, Imbens, and Ridder
(2003), Bang and Robins (2005), Qin and Zhang (2007), Cao, Tsiatis, and Davidian (2009),
Tan (2010), Vansteelandt, Bekaert, and Claeskens (2010), Graham, Pinto, and Egel (2012),
and Chan, Yam, and Zhang (2016). Of particular interest in this literature is the study
by Hirano, Imbens, and Ridder (2003) which shows that the weighted average difference
estimator attains the semiparametric efficiency bound if the weights are estimated by the
empirical likelihood estimation. In the multi-valued treatment case, Imbens (2000) gener-
alizes the propensity score, and Cattaneo (2010) derives the efficiency bound and proposes
an estimator that attains the efficiency bound. In the continuous treatment case, Hirano and
Imbens (2004) and Imai and van Dyk (2004) parameterize the generalized propensity score
function and propose a consistent estimator of the average causal effect. Their estimators
are not efficient and could be biased if the generalized propensity score function is misspec-
ified. Florens, Heckman, Meghir, and Vytlacil (2008) use a control function approach to
identify the average causal effect in the continuous treatment and propose a consistent es-
timation. It is unclear if their estimation is efficient. Galvao and Wang (2015) estimate the
continuous treatment effects through stabilized weighting. They do not study how to con-
struct the stabilized weights such that their estimation is efficient. Kennedy, Ma, McHugh,
and Small (2017) propose a nonparametric kernel estimator for the treatment effects curve,
again the efficient estimation is still unclear. Fong, Hazlett, and Imai (2018) propose an
estimator of the average causal effect of continuous treatment but do not establish consis-
tency of their estimation. In fact, their simulation results indicate their estimation could be
seriously biased. Yiu and Su (2018) study the average causal effect of both discrete and
continuous treatment by parameterizing the propensity score. Their estimator is generally
biased if their parameterization is incorrect.

In addition to the average causal effect of treatment (ATE), it is also important to in-
vestigate the distributional impact of treatment. For instance, a decision maker may be
interested in the causal effect of a treatment on the outcome dispersion or on the lower tail
of the outcome distribution. Doksum (1974) and Lehmann (1975) introduce the quantile
causal effect of treatment (QTE). Firpo (2007) computes the efficiency bound and proposes
an efficient estimation of QTE for the binary treatment. For additional studies on QTE, we
refer to Abadie, Angrist, and Imbens (1998), Chernozhukov and Hansen (2005), Angrist
and Pischke (2008), Frölich and Melly (2013), and Donald and Hsu (2014).

To the best of our knowledge, we are unaware of any previous work that computes the
efficiency bound and proposes efficient estimation of the causal effect in the continuous or
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mixture of discrete and continuous treatment under a general loss function that permits ATE
and QTE.

The paper is organized as follows. Section 2 sets up the basic framework, Section 3
computes the semiparametric efficiency bound of the causal effect of treatment, Section
4 presents the generalized optimization estimator, Section 5 establishes the large sample
properties of the proposed estimator, while Section 6 presents a consistent covariance ma-
trix. In Section 7 we propose two data-driven approaches for selecting tuning parameters.
In Section 8 we discuss some extensions. Section 9 reports on a simulation study, while
Section 10 presents an empirical application, followed by some concluding remarks in Sec-
tion 11. All technical proofs and extra simulation results are relegated to the supplemental
material Ai, Linton, Motegi, and Zhang (2019).

2 Basic framework and notation

Let T denote the observed treatment status variable with support T ⊂ R, where T is either
a discrete set, a continuum or a mixture of discrete and continuum subsets, and T has a
marginal probability distribution function FT (t). Let Y ∗(t) denote the potential response
when treatment T = t is assigned. Let L(·) denote a known convex loss function whose
derivative, denoted by L′(·), exists almost everywhere. For the leading part of the paper, we
shall maintain that there exists a parametric causal effect function g(t; β) with the unknown
value β∗ ∈ Rp (with p ∈ N) uniquely solving the minimization problem below, i.e.,

β∗ = arg min
β

∫
T
E [L (Y ∗(t)− g(t;β))] dFT (t). (2.1)

The parameterization of the causal effect is restrictive. Some extensions to the unspecified
causal effect function shall be discussed later in the paper (see Section 8).

The generality of model (2.1) permits many important already considered models.
For example, it includes: the average causal effect of binary treatment studied in Hahn
(1998) and Hirano, Imbens, and Ridder (2003) (i.e., T ={0, 1}, L(v) = v2 and g(t; β) =

β0 + β1t), the quantile causal effect of binary treatment studied in Firpo (2007) (i.e.,
T ={0, 1}, L(v) = v(τ − I(v ≤ 0)) is an almost everywhere differentiable function with
τ ∈ (0, 1) and g(t;β) = tβ1 + (1 − t)β0), the average causal effect of multi-valued treat-
ment studied in Cattaneo (2010) (i.e., T ={0, 1, . . . , J} for some J ∈ N, L(v) = v2 and
g(t;β) =

∑J
j=0 βjI(t = j)), and the average causal effect of continuous treatment stud-

ied in Hirano and Imbens (2004) (i.e., L(v) = v2 and E[Y ∗(t)] = g(t;β) is a parametric
model indexed by β for the potential outcome means, which is also termed by marginal
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structural model in Robins, Hernán, and Brumback (2000). Examples include the linear
marginal structure model E[Y ∗(t)] = β0 +β1 ·t, and the nonlinear marginal structure model
E[Y ∗(t)] = β0 · t + 1/(t + β1)2 studied in Hirano and Imbens (2004)). It also includes the
quantile causal effect of multi-valued (i.e., L(v) = v(τ − I(v ≤ 0)) with τ ∈ (0, 1) and
g(t;β) =

∑J
j=0 βjI(t = j)) and continuous treatment (i.e., L(v) = v(τ − I(v ≤ 0)) and

inf {q : P(Y ∗(t) ≥ q) ≤ τ} = g(t;β) is a parametric model indexed by β for the potential
outcome quantiles. Examples include the linear model inf {q : P(Y ∗(t) ≥ q) ≤ τ} = β0 +

β1 · t and the Box-Cox transformation model inf {q : P(Y ∗(t) ≥ q) ≤ τ} = hλ (β0 + β1 · t)
studied in Buchinsky (1995), where hλ(z) = (λz + 1)−1/λ). The latter has so far not been
covered by the existing literature. Moreover, with L(v) = v2 |τ − I(v ≤ 0)|, it covers
asymmetric least squares estimation of the causal effect of (binary, multi-valued, continu-
ous, mixture of discrete and continuous) treatment. The asymmetric least squares regression
received attention from some noted econometricians (see Newey and Powell, 1987) but zero
attention in the causal effect literature. Our framework can also accommodate non-scalar
treatment by introducing a dummy variable. For example, when studying the treatment ef-
fect of gender on salary, we can consider a dummy variable T ∈ {0, 1} to describe gender,
where T = 1 denotes male while T = 0 denotes female.

The problem with (2.1) is that the potential outcome Y ∗(t) is not observed for all t. Let
Y := Y ∗(T ) denote the observed response. One may attempt to solve the following:

min
β

E[L(Y − g(T ;β))].

However, if there exists a selection into treatment, the true value β0 does not solve the
above minimization problem. Indeed, in this case, the observed response and treatment as-
signment data alone cannot identify β∗. To address this identification issue, most studies in
the literature impose a selection on observable condition (e.g., Hirano, Imbens, and Ridder,
2003, Imai and van Dyk, 2004, Fong, Hazlett, and Imai, 2018). Specifically, let X denote
a vector of covariates. The following condition shall be maintained throughout the paper.

Assumption 1 (Unconfounded Treatment Assignment). For all t ∈ T , given X , T is inde-
pendent of Y ∗(t), i.e., Y ∗(t) ⊥ T |X, for all t ∈ T .

Let FT |X denote the conditional probability distribution of T given the observed covari-
ates X and let dFT |X denote the probability measure. In the literature, dFT |X is called the
generalized propensity score (Hirano and Imbens, 2004, Imai and van Dyk, 2004). Suppose
that dFT |X(T |X) is positive everywhere and let

π0(T,X) :=
dFT (T )

dFT |X(T |X)
.
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The function π0(T,X) is called the stabilized weight in Robins, Hernán, and Brumback
(2000). Under Assumption 1, we obtain

E[π0(T,X)L(Y − g(T ;β))] =

∫
E [L(Y ∗(t)− g(t;β))] dFT (t) (2.2)

(see Appendix A), and hence the true value β∗ solves the weighted optimization problem:

β∗ = arg min
β

E[π0(T,X)L(Y − g(T ;β))]. (2.3)

This result is very insightful. It tells us that the selection bias in the unconfounded treatment
assignment can be corrected through covariate-balancing. More importantly, it says that the
true value β∗ can be identified from the observed data. The weighted optimization (2.3)
provides a unified framework for estimating the causal effect of a variety of treatments,
including binary, multi-level, continuous, and mixture of discrete and continuous treatment,
and under a general loss function. The goal of this paper is to compute the semiparametric
efficiency bound and present an efficient estimation of β∗ under this general framework.

Although the parametric specification of g(t;β) is somewhat restrictive, it is useful
from a practical point of view. First, if T is a discrete variable, model misspecification is
not an issue since the coefficient β∗ has a clear causal interpretation. Second, if T is a
continuous variable, usually a parametric specification may suffer from the model misspec-
ification problem. Since T is univariate, the true response model can be well approximated
through several polynomials of t. Third, a parametric specification of g(t;β) allows us
to infer the parameters at

√
N -consistent rate and construct the most efficient estimator.

Fourth, the proposed framework (2.1) is more general than the existing literature of con-
tinuous treatment (Hirano and Imbens, 2004, Fong, Hazlett, and Imai, 2018), where either
a regression model E[Y |T,X] or a response model E[T |X] is often required. In Section
8, we also consider fully nonparametric estimation of g(t) under several important cases.
The fully nonparametric estimation of g(t) within the general framework (2.1) is beyond
the scope of this article, and it will be pursued in a future work.

3 Efficiency bound

We begin by applying the approach of Bickel, Klaassen, Ritov, and Wellner (1993) to com-
pute the semiparametric efficiency bound of the parameter β∗ defined by (2.1) under As-
sumption 1. This gives the least possible variance achievable by a regular estimator in the
semiparametric model. The result is presented in the following theorem.
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Theorem 1. Suppose that g(T ;β) is twice differentiable with respect to β in the param-
eter space Θ ⊂ Rp, with m(T ;β∗) := ∇βg(T ;β∗), and E [L′(Y − g(T ;β))|Y,X] is dif-
ferentiable with respect to β ∈ Θ. Denote ε(T,X;β∗) := E[L′(Y − g(T ;β∗))|T,X],
H0 := −∇βE [π0(T,X)L′(Y − g(T ; β))m(T ;β)]

∣∣
β=β∗

, and

ψ(Y, T,X;β∗) := π0(T, X)m(T ;β∗)L′(Y − g(T ;β∗))− π0(T,X)m(T ;β∗)ε(T,X;β∗)

+ E [ε(T,X;β0)π0(T,X)m(T ;β∗)|T ] + E [ε(T,X;β0)π0(T,X)m(T ;β∗)|X] .

Suppose that H0 is nonsingular and E
[
ψ(Y, T,X;β∗)ψ(Y, T,X; β∗)>

]
exists and is fi-

nite. Under Assumption 1, namely Y ∗(t) ⊥ T |X for all t ∈ T , and model (2.1), the
efficient influence function of β∗ is given by

Seff (Y, T,X;β∗) = H−1
0 ψ(Y, T,X;β∗).

Consequently, the efficient variance bound of β∗ is

Veff = E
[
Seff (Y, T,X;β∗)Seff (Y, T,X;β∗)>

]
.

The proof of Theorem 1 is given in the supplemental material Ai, Linton, Motegi, and
Zhang (2019, Section 2.1). We can rewrite the influence function ψ(Y, T,X;β∗) defined in
Theorem 1 in a more intuitive form. Letting % (Y, T,X; β) := π0(T,X)m(T ;β)L′(Y −
g(T ;β)), we have

ψ(Y, T,X;β∗) = % (T,X, Y ;β∗)− resadd% (T,X, Y ;β∗) ,

where the operator resadd(·) is defined by

resaddf (Y, T,X) := E [f (T,X, Y ) |T,X]− Eadd [f(T,X, Y )|T,X] ,

Eadd [f(T,X, Y )|T,X] := E [f(T,X, Y )|T ] + E [f(T,X, Y )|X] .

where the operator Eadd[·] projects a random variable on to the space of additive functions

{g(T,X) : g(T,X) = hT (T ) + hX(X)}

inside the space generated by T,X , except that the projection is with respect to product
measure dFT (t)× dFX(x) (Nielsen and Linton, 1998).

In the continuous case, π0(T,X) can be written as

π0(T,X) =
fT (T )fX(X)

fT,X(T,X)
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and we know that −E[log π0(T,X)] is the Kullback-Leibler divergence of the joint density
from the product of the marginals. The property of π0(T,X) in Theorem 1 can also be
stated as that for any function g(T,X):

E [π0(T,X)g(T,X)] =

∫ ∫
g(t,x)fT (t)dtfX(x)dx,

which is the expectation of g(T,X) taken with respect to the product measure fT (t)fX(x)dtdx.
In the case where g(T,X) is separable the resulting moment factorizes, that is,

E [π0(T,X)u(T )v(X)] = E [u(T )]E [v(X)] .

Kernel estimators will not satisfy the sample version of this property but they will satisfy
the smoothed empirical version, that is:∫

π̂0(t,x)u(t)v(x)dFN(t,x) 6=
∫
u(t)dFN(t)

∫
v(x)dFN(x),

where FN(t,x) is the joint empirical measure and FN(t) and FN(x) are the marginals, but∫
π̂0(t,x)u(t)v(x)dF ∗N(t,x) =

∫
u(t)dF ∗N(t)

∫
v(x)dF ∗N(x),

where F ∗N(t,x) is the smoothed empirical distribution function (i.e., dF ∗N(t,x) is the kernel
density estimator used in constructing π̂0(t,x)).

It is worth noting that our bound Veff is equal to: the bound of Hahn (1998) for the case
of binary average treatment, the bound of Cattaneo (2010) for the case of multi-valued aver-
age treatment, and the bound of Firpo (2007) for the case of binary quantile treatment (see
Ai, Linton, Motegi, and Zhang, 2019, Sections 2.2-2.4). Moreover, our bound applies to a
much wider class of models, including quantile causal effect of multi-valued, continuous,
and mixture of discrete and continuous treatment as well as the asymmetric least squares
estimation of the causal effect of all kinds of treatments.

Based on the expression of the efficient influence function, many papers construct
an efficient estimator by solving the estimated efficient score equation (Athey, Imbens,
Pham, and Wager, 2017, Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and
Robins, 2018) . Such estimators typically have the double or multiple robustness prop-
erty. However, in our case the efficient influence function Seff (T, X, Y ;β) involves five
unknown functionals fT (T ), fT |X(T |X), ε(T,X;β), E[π0(T,X)ε(T,X;β)m(T,β)|T ],
and E[π0(T,X)ε(T,X;β)m(T,β)|X]. Estimation of these functionals is quite difficult in
practice, and we expect that the finite sample performance of the estimated β∗ would be
poor. Instead of explicitly estimating the efficient influence function Seff , we propose a

9



simple weighted optimization estimator based on (2.3) by estimating the stabilized weights
π0(T,X). This procedure is remarkably stable numerically and performs well statistically
in small samples as we demonstrate in the Monte Carlo section.

It is also worth noting that, if the stabilized weights are known and g(t;β∗) is correctly
specified, one can estimate β∗ by solving the sample analogue of the weighted optimization
(2.3). The asymptotic variance of this estimator is

Vineff = E
[
Sineff (Y, T,X;β∗)Sineff (Y, T,X;β∗)>

]
,

with
Sineff (Y, T,X;β∗) = H−1

0 · π0(T,X)m(T ;β∗)L′ {Y − g(T ;β∗)} .

It is easy to show that Vineff > Veff (see Proposition C.1 of Appendix C), implying that
the weighted optimization estimator is not efficient. This follows because the weighted
optimization does not account for the restriction on the stabilized weight π0(t,x) that

E [π0(T,X)u(T )v(X)] = E[u(T )] · E[v(X)] (3.1)

holds for any suitable functions u(t) and v(x). Incorporating restriction (3.1) into the es-
timation of the causal effect can improve efficiency. A similar observation was made by
Hirano, Imbens, and Ridder (2003) in the binary treatment. Exactly how to incorporate
restriction (3.1) into the estimation is the subject of the next section.

4 Efficient estimation

One way to incorporate (3.1) into the estimation is to estimate the stabilized weights from
(3.1) and then implement (2.3) with the estimated weights. But before doing so, we must
verify that (3.1) uniquely identifies π0(T,X).

Theorem 2. For any integrable functions u(T ) and v(X), E [π(T,X)u(T )v(X)] = E[u(T )]·
E[v(X)] holds if and only if π(T,X) = π0(T,X) a.s..

The proof is presented in Appendix B. Therefore, condition (3.1) identifies the stabi-
lized weights. The challenge now is that (3.1) implies an infinite number of moment con-
ditions. With a finite sample of observations, it is impossible to solve an infinite number of
equations. To overcome this difficulty, we approximate the (infinite dimensional) function
space with the (finite dimensional) sieve space. Specifically, let uK1(T ) = (uK1,1(T ), . . .

, uK1,K1(T ))> and vK2(X) = (vK2,1(X), . . . , vK2,K2(X))> denote the known basis func-
tions with dimensions K1 ∈ N and K2 ∈ N respectively, and let K := K1 · K2. The
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functions uK1(t) and vK2(x) are called the approximation sieves that can approximate any
suitable functions u(t) and v(x) arbitrarily well (see Newey, 1997, Chen, 2007, for more
discussion on sieve approximation). Since the sieve approximating space is also a subspace
of the function space, π0(T,X) satisfies

E
[
π0(T,X)uK1(T )vK2(X)>

]
= E[uK1(T )] · E[vK2(X)]>. (4.1)

Unfortunately, it is not the only solution. Indeed, for any monotonic increasing and globally
concave function ρ(v), with

Λ∗K1×K2
= arg max

Λ∈RK1×K2

E
[
ρ(uK1(T )>ΛvK2(X))

]
− E[uK1(T )]>ΛE[vK2(X)], (4.2)

π∗K(T,X) = ρ′
(
uK1(T )>Λ∗K1×K2

vK2(X)
)

also solves (4.1), where ρ′(v) denotes the first
derivative. Let πK(T,X) = ρ′

(
uK1(T )>ΛK1×K2vK2(X)

)
denote the best approximation

of π0(T,X) under L∞ norm and suppose that ‖πK − π0‖∞ = O(K−α) for some α > 0.
Then, ‖π∗K − π0‖L2 = O (K−α) (see Ai, Linton, Motegi, and Zhang, 2019, Lemma 3.1).

Let {Ti,Xi, Yi}Ni=1 denote an independently and identically distributed sample of ob-
servations drawn from the joint distribution of (T,X, Y ). We propose to estimate the stabi-
lized weights πi = π0(Ti,Xi) by solving the entropy maximization problem: max

{
−
∑N

i=1 πi log πi

}
subject to 1

N

∑N
i=1 πiuK1(Ti)vK2(Xi)

> =
(

1
N

∑N
i=1 uK1(Ti)

)(
1
N

∑N
j=1 vK2(Xj)

>
)
.

(4.3)
Noting

∑N
i=1N

−1πi = 1 (since both uK1(T ) and vK2(X) contain the constant 1) and

max

{
−

N∑
i=1

πi log πi

}
= −min

{
N∑
i=1

{N−1πi} · log
N−1πi
N−1

}
,

the formulation (4.3) can be interpreted as the minimization of the Kullback-Leibler di-
vergence between the estimated weights {N−1πi}Ni=1 and the empirical frequencies {N−1}
subject to the empirical moment constraints (4.1). This idea is similar to the exponential
tilting (ET) idea developed in Kitamura and Stutzer (1997) and Imbens, Spady, and John-
son (1998). The difference is that they consider a parametric problem and we consider a
nonparametric problem.

The primal problem (4.3) is difficult to compute. We instead consider its dual problem,
which can be solved by numerically efficient and stable algorithms. Specifically, let ρ(v) :=

−e−v−1 for any v ∈ R, by Tseng and Bertsekas (1991), we can show that the dual solution
is given by

π̂K(Ti,Xi) := ρ′
(
uK1(Ti)

>Λ̂K1×K2vK2(Xi)
)
, (4.4)
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where Λ̂K1×K2 is the maximizer of the strictly concave function ĜK1×K2 defined by

Λ̂K1×K2
= arg max

Λ
ĜK1×K2

(Λ) :=
1

N

N∑
i=1

ρ
(
uK1(Ti)

>ΛvK2(Xi)
)
−

(
1

N

N∑
i=1

uK1(Ti)

)>
Λ

 1

N

N∑
j=1

vK2(Xj)

 .

(4.5)

By the first order condition, the constraints of (4.3) are automatically satisfied by {π̂K(Ti,Xi)}Ni=1.
The duality between (4.3) and (4.5) is shown in Appendix D. By Ai, Linton, Motegi, and
Zhang (2019, Corollary 3.3), we have∫

T ×X
|π̂K(t,x)− π∗K(t,x)|2 dFT,X(t,x) = Op

(√
K

N

)
.

Having estimated the weights, we now estimateβ∗ by solving the generalized optimization,
that is,

β̂ = arg min
β

N∑
i=1

π̂K(Ti,Xi)L (Yi − g(Ti;β)) . (4.6)

Remarks:

1. Alternatively, one can estimate the stabilized weights by estimating the generalized
propensity score function as well as the marginal distribution of the treatment variable
nonparametrically (e.g., kernel estimation). But these alternatively estimated weights
do not satisfy the empirical moment in (4.3) and may not result in efficient estimation
of the causal effect.

2. The primal problem (4.3) is different from the empirical likelihood (Smith, 1997,
Imbens, 2002). Notice that ρ(v) = −e−v−1 satisfies the invariance property (i.e.,
−ρ′′(v) = ρ′(v)). It turns out that this invariance property is critical for establishing
consistency of the generalized optimization estimator. Any other choice of ρ(·) that
does not have the invariance property may result in biased causal effect estimation.

3. The proposed estimation (4.6) is a semiparametric estimation problem that contains
both finite dimensional and infinite unknown parameters. The general semiparamet-
ric estimation problems have been studied by Ai and Chen (2003) and Chen, Linton,
and Van Keilegom (2003). Ai and Chen (2003) study the large sample properties
under smooth objective functions, and Chen, Linton, and Van Keilegom (2003) ex-
tend those to nonsmooth criterion functions. Equation (4.6) is a special case of the
general setting of Chen, Linton, and Van Keilegom (2003), and we will indeed ap-
ply their Theorem 2 (page 1594) to derive the asymptotic properties of β̂. There is
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a major difference between the present paper and Chen, Linton, and Van Keilegom
(2003), however. Our focus is on the efficiency bound derivation and efficient esti-
mation, whereas their focus is on deriving the asymptotic properties of the sequential
estimator under high level conditions (e.g., Condition 2.6, page 1594). These high
level conditions are nontrivial to verify. Most of our derivations are indeed verifying
those high level conditions, see Section 4.2 of the supplemental material Ai, Linton,
Motegi, and Zhang (2019).

Related methods

In the binary treatment effect model with T ∈ {0, 1}, the propensity score is defined by
π(X) := P (T = 1|X). Then the stabilized weight reduces to π0(T,X) = Tπ−1(X) ·
P (T = 1) + (1 − T ){1 − π(X)}−1 · P (T = 0). By setting u(T ) = (T, 1 − T )> in (3.1),
we obtain the covariate balancing equation of propensity score:

E
[
T · π(X)−1v(X)

]
= E[v(X)] = E

[
{1− T} · {1− π(X)}−1v(X)

]
. (4.7)

Our proposed estimator of stabilized weights (4.4) becomes

π̂K(Ti,Xi) = Tiρ
′
(
λ̂>1KvK(Xi)

)
+ (1− Ti)ρ′

(
λ̂>2KvK(Xi)

)
,

where

λ̂1K = arg max
λ1

{∑N
i=1 Tiρ

(
λ>1 vK(Xi)

)∑N
i=1 Ti

− 1

N

N∑
i=1

λ>1 vK(Xi)

}
,

λ̂2K = arg max
λ2

{∑N
i=1{1− Ti}ρ

(
λ>2 vK(Xi)

)∑N
i=1{1− Ti}

− 1

N

N∑
i=1

λ>2 vK(Xi)

}
.

Based on the covariate balancing moment (4.7), various estimators of average treat-
ment effects have been proposed in the existing literature. Hirano, Imbens, and Ridder
(2003) propose a nonparametric sieve MLE for the propensity score, which is denoted
by π̂(X) = π(λ̂>vK(X)), where π(z) = exp(z)/{1 + exp(z)} and λ̂K maximizes the
log-likelihood function

∑N
i=1{Ti log π(λ̂>vK(Xi)) + (1 − Ti) log(1 − π(λ̂>vK(Xi)))}.

Their estimator attains the efficiency bound of ATE developed by Hahn (1998). From
the first order condition, the covariates between treated and control groups are balanced,
i.e.

∑N
i=1 Ti · π̂−1(X)vK(X) =

∑N
i=1{1 − Ti} · {1 − π̂(X)}−1vK(X), but the covariate

balance between treated and combined groups is not guaranteed. In contrast, our proposed
estimator of stabilized weights does not require the estimation of propensity score, and it
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satisfies the empirical moment of (4.7) that balances the covariate among the treated, control
and combined groups simultaneously. Moreover, in the continuous treatment framework,
the ratio function π0(T,X) does not produce the likelihood function, hence the application
of nonparametric MLE method in the general treatment framework is not straightforward.

Graham, Pinto, and Egel (2012) parametrically model the propensity score π(X) =

π(γ>v∗(X)) by a finite dimensional parameter γ and known v∗(X). They estimate γ by
solving the empirical moment of (4.7) with v(X) = v∗(X). Their estimator attains the
efficiency bound if both the propensity score function is correctly specified and the condi-
tional potential outcomes {E[Y ∗(t)|X], t ∈ {0, 1}} are linear function of v∗(X). Imai and
Ratkovic (2014) parametrically model the propensity score by π(X; γ) and consider the
overidentified moment condition with v(X) = vK(X) being a specified K-dimensional
vector of covariates, where K is possibly larger than the dimension of γ. They propose to
estimate γ through generalized method of moments (GMM) and empirical likelihood (EL).
We note neither GMM nor EL leads to the empirical moment of (4.7) because both of them
are defined to be the maximizer of certain criteria function rather than directly solving the
empirical moment of (4.7). In addition, the estimation of Imai and Ratkovic (2014) is not
guaranteed to attain the efficiency bound of ATE developed by Hahn (1998).

5 Large sample properties

To establish the large sample properties of the generalized optimization estimator, we first
show that the estimated weight function π̂K(t,x) is consistent and compute its convergence
rates under both the L∞ norm and the L2 norm. The following conditions shall be imposed.

Assumption 2. (i) The support X of X is a compact subset of Rr. The support T of the
treatment variable T is a compact subset of R. (ii) There exist two positive constants η1 and
η2 such that

0 < η1 ≤ π0(t,x) ≤ η2 <∞ , ∀(t,x) ∈ T × X .

Assumption 3. There exist ΛK1×K2 ∈ RK1×K2 and a positive constant α > 0 such that

sup
(t,x)∈T ×X

∣∣(ρ′−1 (π0(t,x))− uK1(t)
>ΛK1×K2vK2(x)

∣∣ = O(K−α).

Assumption 4. (i) For every K1 and K2, the smallest eigenvalues of E
[
uK1(T )uK1(T )>

]
and E

[
vK2(X)vK2(X)>

]
are bounded away from zero uniformly in K1 and K2. (ii) There

are two sequences of constants ζ1(K1) and ζ2(K2) satisfying supt∈T ‖uK1(t)‖ ≤ ζ1(K1)

and supx∈X ‖vK2(x)‖ ≤ ζ2(K2), K = K1(N)K2(N) and ζ(K) := ζ1(K1)ζ2(K2), such
that ζ(K)K−α → 0 and ζ(K)

√
K/N → 0 as N →∞.
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Assumption 2 (i) restricts both the covariates and treatment level to be bounded. This
condition is restrictive but convenient for computing the convergence rate under L∞ norm.
It is commonly imposed in the nonparametric regression literature. This condition can
be relaxed, however, if we restrict the tail behavior of the joint distribution of (X, T ).
Assumption 2 (ii) restricts the weight function to be bounded and bounded away from zero.
Given Assumption 2 (i), this condition is equivalent to dFT |X(T |X) being bounded away
from zero, meaning that each type of individual (denoted by X) always have a sufficient
portion participating in each level of treatment. This restriction is important for our analysis
since each individual participates only in one level of treatment and this condition allows us
to construct her statistical counterparts from all other treatments. Although Assumption 2
(ii) is useful in causal analysis and establishing the convergence rates, it is not essential and
could be relaxed by allowing η1 (resp. η2) to depend on N and to go to zero (resp. infinity)
slowly, as N → ∞. Notice that uK1(t)

>ΛvK2(x) is a linear sieve approximation to any
suitable function of (X, T ).

Assumption 3 requires the sieve approximation error of ρ′−1 (π0(t,x)) to shrink at
a polynomial rate. This condition is satisfied for a variety of sieve basis functions. For
example, if both X and T are discrete, then the approximation error is zero for sufficient
large K and in this case Assumption 3 is satisfied with α = +∞. If some components
of (X, T ) are continuous, the polynomial rate depends positively on the smoothness of
ρ′−1 (π0(t,x)) in continuous components and negatively on the number of the continuous
components; indeed, for power series and B-splines, α = −s/r, where s is the smoothness
of approximand and r is the dimension of X . Hence, the proposed method still suffers
from the curse of dimensionality that typically occurs in nonparametric estimation. We will
show that the convergence rate of the estimated weight function (and consequently the rate
of the generalized optimization estimator) is bounded by this polynomial rate.

Assumption 4 (i) essentially ensures the sieve approximation estimator is non-degenerate.
Similar conditions are common in the sieve regression literature (Andrews, 1991, Newey,
1997). If the approximation error is nonzero, Assumption 4 (ii) requires it to shrink to zero
at an appropriate rate as the sample size increases. Newey (1994, 1997) show that if uK1(t)

(resp. uK2(x)) is a power series then ζ1(K1) = O(K1) (resp. ζ2(K2) = O(K2)), and if
uK1(t) (resp. uK2(x)) is a B-spline then ζ1(K1) = O(

√
K1) (resp. ζ2(K2) = O(

√
K2)).

Under these conditions, we are able to establish the following theorem:

Theorem 3. Suppose that Assumptions 2-4 hold. Then, we obtain the following:∫
T ×X
|π̂K(t,x)− π0(t,x)|2dFT,X(t,x) = Op

(
max

{
K−2α,

K

N

})
,
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1

N

N∑
i=1

|π̂K(Ti,Xi)− π0(Ti,Xi)|2 = Op

(
max

{
K−2α,

K

N

})
.

The proof of Theorem 3 immediately follows from the supplemental material Ai, Lin-
ton, Motegi, and Zhang (2019, Lemma 3.1 & Corollary 3.3).

The following additional condition is needed to establish the consistency of the pro-
posed estimator β̂.

Assumption 5. (i) The parameter space Θ ⊂ Rp is a compact set and the true param-
eter β0 is in the interior of Θ , where p ∈ N. (ii) L (Y − g(T ;β)) is continuous in β,
supβ∈Θ E [|L (Y − g(T ;β)) |2] <∞ and E

[
supβ∈Θ |L (Y − g(T ;β)) |

]
<∞.

Assumption 5 (i) is commonly imposed in the nonlinear regression literature, but can
be relaxed if g(t;β) is linear in β. Assumption 5 (ii) is an envelope condition that is
sufficient for the applicability of the uniform law of large numbers. A similar condition is
also imposed in Newey and McFadden (1994, Lemma 2.4).

Under these and other conditions, we establish the consistency of the generalized op-
timization estimator. The proof of Theorem 4 is given in the supplemental material Ai,
Linton, Motegi, and Zhang (2019, Section 4.1)

Theorem 4. Suppose that Assumptions 1-5 hold. Then, ‖β̂ − β∗‖ p−→ 0.

To establish the asymptotic distribution of the proposed estimator, we need some smooth-
ness condition on the regression function and some under-smoothing condition on the sieve
approximation (i.e., larger K than needed for consistency). We also have to address the
possibility of a nonsmooth loss function. These conditions are presented below.

Assumption 6.

(i) The loss function L(v) is differentiable almost everywhere, g(t;β) is twice contin-
uously differentiable in β ∈ Θ and we denote its first derivative by m(t;β) :=

∇βg(t;β);

(ii) E [π0(T,X)L′(Y − g(T ;β))m(T ;β)] is differentiable with respect to β and H0 :=

−∇βE [π0(T,X)L′(Y − g(T ;β))m(T ; β)]
∣∣∣
β=β∗

is nonsingular;

(iii) ε(t,x;β∗) := E[L′(Y − g(T ;β∗))|T = t,X = x] is continuously differentiable in
(t,x);

(iv) Suppose that N−1
∑N

i=1 π̂K(Ti,Xi)L
′
(
Yi − g(Ti; β̂)

)
m(Ti; β̂) = op(N

−1/2) holds
with probability approaching one.
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Assumption 7. (i) E
[
supβ∈Θ |L′(Y − g(T ;β))|2+δ

]
< ∞ for some δ > 0; (ii) The func-

tion class {L′(y − g(t; β)) : β ∈ Θ} satisfies:

E

[
sup

β1:‖β1−β‖<δ
|L′(Y − g(T ; β1))− L′(Y − g(T ;β))|2

]1/2

≤ a · δb

for any β ∈ Θ and any small δ > 0 and for some finite positive constants a and b.

Assumption 6 (i) imposes sufficient regularity conditions on both regression function
and loss function. These conditions permit nonsmooth loss functions and are satisfied by
the example loss functions mentioned in previous sections. Assumption 6 (ii) ensures that
the efficient variance to be finite. Assumption 6 (iv) is essentially saying that the almost sure
first order condition is approximately satisfied, see Pakes and Pollard (1989). Assumption 7
is a stochastic equicontinuity condition, which is needed for establishing weak convergence,
see Andrews (1994). Again, it is satisfied by widely used loss functions such as L(v) = v2,
L(v) = v{τ − I(v ≤ 0)}, and L(v) = v2 · |τ − I(v ≤ 0)| discussed in Section 2.

Under the above sufficient conditions, we have the following theorem.

Theorem 5. Suppose that Assumptions 1-7 hold, and strengthen Assumption 4 (ii) to

Assumption 4 (ii)′ ζ(K)
√
K2/N → 0 and

√
NK−α → 0.

Then,
√
N
(
β̂ − β0

)
d−→ N (0, Veff ), where Veff = E

[
Seff (T,X, Y ;β0)Seff (T,X, Y ;β0)>

]
.

Therefore, β̂ attains the semi-parametric efficiency bound of Theorem 1.

Assumption 4 (ii)′ imposes further restrictions on the smoothing parameter (K) so that
the sieve approximation is under-smoothed. This condition is stronger than Assumption
4 (ii) but it is commonly imposed in the semiparametric regression literature. The proof
of Theorem 5 is given in the supplemental material Ai, Linton, Motegi, and Zhang (2019,
Section 4).

6 Variance estimation

In order to conduct statistical inference, a consistent covariance matrix estimator is needed.
Theorem 1 suggests that such consistent covariance can be obtained by replacing H0 and
ψ(Y, T,X;β∗) with some consistent estimates. Since the nonsmooth loss function may
invalidate the exchangeability between the expectation and derivative operator, some care
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in the estimation of H0 is warranted. Using the tower property of conditional expectation,
we rewrite H0 as:

H0 =−∇βE [π0(T,X)E [L′(Y − g(T ;β))|T,X]m(T ;β)]
∣∣∣
β=β∗

=− E
[
π0(T,X)∇βE [L′(Y − g(T ;β))|T,X]

∣∣∣
β=β∗

m(T ;β∗)>
]

− E [π0(T,X)E [L′(Y − g(T ;β∗))|T,X]∇βm(T ;β∗)] .

Applying integration by parts (see Appendix E), we obtain

∇βE [L′(Y − g(T ;β))|T = t,X = x]
∣∣∣
β=β∗

=E
[
L′(Y − g(T ;β∗))

∂

∂y
log fY,T,X(Y, T,X)

∣∣∣∣T = t,X = x

]
m(t;β∗) (6.1)

and consequently

H0 = −E
[
π0(T,X)L′(Y − g(T ;β∗))

{
∂

∂y
log fY,T,X(Y, T,X)m(T ;β∗)m(T ;β)> +∇βm(T ;β∗)>

}]
.

The log density log fY,T,X(y, t,x) can be estimated via the widely used sieve extremum
estimator (Chen, 2007, Example 2.6, page 5565):

f̂Y,T,X(y, t,x) :=
exp

(
â>K0

rK0(y, t,x)
)∫

Y×T ×X exp
(
â>K0

rK0(y, t,x)
)
dydtdx

,

where âK0 ∈ RK0 (K0 ∈ N) maximizes the following concave objective function:

âK0 := arg max
a∈RK0

1

N

N∑
i=1

[
a>rK0(Yi, Ti,Xi)− log

∫
Y×T ×X

exp
(
a>rK0(y, t,x)

)
dydtdx

]
,

and rK0(t, y,x) is a K0-dimensional sieve basis. Then H0 can be estimated by

Ĥ := − 1

N

N∑
i=1

π̂K(Ti,Xi)L
′(Yi−g(Ti; β̂))

{
â>K0

∂

∂y
rK0

(Yi, Ti,Xi)m(Ti; β̂)m(Ti; β̂)> +∇βm(Ti; β̂)

}
.

Also, ψ(Y, T,X;β∗) can be directly estimated by the plug-in sieve estimator

ψ̂(Y, T,X; β̂) = π̂K(T,X)L′(Y − g(T ; β̂))m(T ; β̂)− π̂K(t,x)Ê
[
L′(Y − g(T ; β̂))|T,X

]
m(T ; β̂)

+ Ê
[
π̂K(T,X)L′(Y − g(T ; β̂))|T

]
m(T ; β̂) + Ê

[
π̂K(T,X)L′(Y − g(T ; β̂))|X

]
m(T ; β̂),

Ê[π̂K(T,X)L′(Y − g(T ; β̂))|T,X] is the least square regression of π̂K(T,X)L′(Y −
g(T ; β̂)) on a sieve basis wK0(T,X), Ê[L′(Y − g(T ; β̂))|T ] and Ê[π̂K(T,X)L′(Y −
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g(T ; β̂))|X] are similarly defined. Finally, the asymptotic covariance matrix of the esti-
mator is estimated by

V̂ := Ĥ−1

{
1

N

N∑
i=1

ψ̂(Yi, Ti,Xi; β̂)ψ̂(Yi, Ti,Xi; β̂)>

}
(Ĥ>)−1. (6.2)

The sieve extreme estimator is uniformly strong consistent (in the almost sure sense), see
Chen (2007, Theorem 3.1). Also from Theorems 3 and 4, we have sup(t,x)∈T ×X |π̂K(t,x)−
π0(t,x)| = op(1) and ‖β̂ − β∗‖ → 0. With these results, we obtain the consistency of V̂ .

Theorem 6. Suppose that Assumptions 1-5 hold. Then, V̂ converges to Veff in probability.

7 Selection of tuning parameters

The large sample properties of the proposed estimator permit a wide range of values of K1

and K2. This presents a dilemma for applied researchers who have only one finite sample
and would like to have some guidance on the selection of smoothing parameters. Several
data-driven methods of selecting tuning parameters in series estimation have been discussed
in Li (1987) and Li and Racine (2007, Section 15.2). Based on that background, we present
two data-driven approaches to select K1 and K2. The first one is simply minimizing a
(penalized) loss function. Define L̄(K1, K2) := N−1

∑N
i=1 π̂K(Ti,Xi)L(Yi − g(Ti; β̂)).

There are several ways to penalize using large K1 or K2:

No penalty. L(K1, K2) = L̄(K1, K2).

Additive penalty. L(K1, K2) = (1 + 2(K1 +K2)/N)× L̄(K1, K2).

Multiplicative penalty. L(K1, K2) = (1 + 2K1K2/N)× L̄(K1, K2).

Choose (K∗1 , K
∗
2) that minimizes L(K1, K2) in some choice sets (K1, K2) ∈ K1 ×K2.

The second approach is the J-fold cross-validation (CV), which proceeds as follows.

1. Divide N samples into J groups, (say J = 5 or 10), and let n = N/J . The data in
the jth group is denoted by Sj = {X(j)

i , T
(j)
i , Y

(j)
i : i = 1, ..., n} for j ∈ {1, .., J}.

2. For each j ∈ {1, ..., J}, we denote the dataset S(−j) = {Xi, Ti, Yi}Ni=1/Sj . We
compute the following quantities based on S(−j):

Λ̂
(−j)
K1×K2

= arg max
Λ

Ĝ
(−j)
K (Λ)

=
1

N − n
∑

i∈S(−j)

ρ
(
u>K1

(Ti)ΛvK2
(Xi)

)
−

 1

N − n
∑

i∈S(−j)

u>K1
(Ti)

Λ

 1

N − n
∑

i∈S(−j)

vK2
(Xi)

 ,
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π̂
(−j)
K (T,X) = ρ′

(
u>K1

(T )Λ̂
(−j)
K1×K2

vK2(X)
)
,

β̂
(−j)
K = arg min

∑
i∈S(−j)

π̂
(−j)
K (Ti,Xi) {Yi − g(Ti;β)}2 .

3. Choose optimal K1 and K2 so that the following cross-validation criterion is mini-
mized:

CV (K1, K2) =
J∑
j=1

∑
k∈Sj

π̂
(−j)
K (Tk,Xk)

{
Yk − g

(
Tk; β̂

(−j)
K

)}2

 .
When J = 1, the second approach coincides with the leave-out cross-validation (Stone,
1974). Li (1987) shows that the above procedures to select K1 and K2 are asymptotically
optimal in the sense of minimizing a weighted loss function for regression.

It should be noted that the K1 and K2 chosen by the above criteria are not guaranteed
to satisfy the undersmoothing conditions Assumption 4 (ii′), which has been pointed out by
Li and Racine (2007, Section 15.2). Linton (1995) and Donald and Newey (2001) develop
second order theory to determine the optimal tuning parameters with respect to higher order
MSE for a class of semiparametric estimation problems. In general, the optimal rates for
K1 and K2 according to this criterion are larger reflecting the need for undersmoothing.
This suggests that in practice one should take the K1 and K2 determined by CV or L as a
lower bound.

8 Some extensions

The condition (2.1) that the causal effect is parameterized may be restrictive for some ap-
plications. To relax this condition, we can consider the nonparametric specification:

min
g(·)

∫
T
E [L (Y ∗(t)− g(t))] dFT (t).

Under Assumption 1, the above optimization is equivalent to

min
g(·)

E [π0(T,X)L(f(Y )− g(T ))] .

We can estimate g(·) through the weighted nonparametric sieve regression:

min
g(·)∈HK1

N∑
i=1

π̂K(Ti,Xi)L(f(Yi)− g(Ti)),
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where HK1 :=
{
g(·) : T → R, g(t) = λ>uK1(t) : λ ∈ RK1

}
is a specified sieve space.

The extension to the general loss function requires considerable derivation and shall be
dealt with in a separate paper. In this section, we only consider three specific cases: first, the
treatment effect curve θt := E[Y ∗(t)], which corresponds to L(v) = v2; second, the average
treatment effects (ATE), which is defined by θt1,t0 := E[Y ∗(t1) − Y ∗(t0)] for t1 6= t0;
third, the average treatment effects on the treated (ATT), which is defined by θt1,t0|t0 :=

E[Y ∗(t1)− Y ∗(t0)|T = t0] for t1 6= t0.

8.1 Estimation of effect curve and average treatment effects

We begin with estimation of θt. Note that, for all t ∈ T and under Assumption 1, we can
rewrite θt as

θt := E[Y ∗(t)] = E [π0(T,X)Y |T = t] .

With π0(T,X) replaced by π̂K(T,X), we estimate θt by regressing π̂K(T,X)Y on uK1(t):

θ̂t :=

[
N∑
i=1

π̂K(Ti,Xi)YiuK1(Ti)
>

][
N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1

uK1(t).

To aid presentation of the asymptotic properties of θ̂t, we define: ΦK1×K1 := E[uK1(T )u>K1
(T )],

and

bK1(Ti,Xi, Yi) : = π0(Ti,Xi)Yi · uK1(Ti)− E [π0(Ti,Xi)Yi · uK1(Ti)|Ti,Xi]

+ E [π0(Ti,Xi)Yi · uK1(Ti)|Xi]− E [π0(Ti,Xi)Yi · uK1(Ti)] ,

and

Vt :=E
[{
u>K1

(t)Φ−1
K1×K1

bK1(Ti,Xi, Yi)
}2
]

=u>K1
(t) · Φ−1

K1×K1
· E
[
bK1(Ti,Xi, Yi)b

>
K1

(Ti,Xi, Yi)
]
· Φ−1

K1×K1
· uK1(t).

Theorem 7. Suppose supt∈T |θt − (γ∗)>uK1(t)| = O(K−α̃1 ) holds for some α̃ > 0 and
γ∗ ∈ RK1 , λmin

{
E
[
bK1(T,X, Y )b>K1

(T,X, Y )
]}
≥ c > 0, and Assumptions 1-4 hold.

Then:

1. (Consistency)∫
T
|θ̂t − θt|2dFT (t) = Op

(
ζ(K)2

{
K

N
+K−2α

}
+K−2α̃

1

)

sup
t∈T
|θ̂t − θt| = Op

(
ζ1(K1)

{
ζ(K)

(√
K

N
+K−α

)
+K−α̃1

})
.
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2. (Asymptotic Normality) suppose Assumption 4’ and
√
NK−α̃1 → 0 hold. Then for

any fixed t ∈ T , √
NV

−1/2
t

[
θ̂t − θt

]
d−→ N(0, 1).

See Ai, Linton, Motegi, and Zhang (2019, Section 5.1) for a proof of Theorem 7.
The proposed estimation procedure can also be used to estimate the average treatment

effects (ATE) which is defined by

θt1,t0 := E[Y ∗(t1)− Y ∗(t0)] = θt1 − θt0 for t1 6= t0.

The estimator of θt1,t0 is defined by θ̂t1,t0 := θ̂t1 − θ̂t0 . Let

Vt1,t0 := E
[{
u>K1

(t1)Φ−1
K1×K1

bK1(Ti,Xi, Yi)− u>K1
(t0)Φ−1

K1×K1
bK1(Ti,Xi, Yi)

}2
]

= {uK1(t1)− uK1(t0)}>Φ−1
K1×K1

E
[
bK1(Ti,Xi, Yi)b

>
K1

(Ti,Xi, Yi)
]

Φ−1
K1×K1

{uK1(t1)− uK1(t0)} .

Similar to prove Theorem 7, we have the following corollary:

Corollary 8. Suppose supt∈T |θt − (γ∗)>uK1(t)| = O(K−α̃1 ) holds for some α̃ > 0 and
γ∗ ∈ RK1 , λmin

{
E
[
bK1(T,X, Y )b>K1

(T,X, Y )
]}
≥ c > 0, Assumptions 1-4’ hold, and√

NK−α̃1 → 0. Then √
NV

−1/2
t1,t0

[
θ̂t1,t0 − θt1,t0

]
d−→ N(0, 1).

Feasible versions of the above CLT’s are implemented using plug-in sieve estimation
of the unknown quantities. For example, Vt can be estimated by

V̂t =
1

N

N∑
i=1

{
u>K1

(t)Φ̂−1
K1×K1

b̂K1(Ti,Xi, Yi)
}2

,

where Φ̂K1×K1 := N−1
∑N

i=1 uK1(Ti)u
>
K1

(Ti),

b̂K1(Ti,Xi, Yi) : = π̂K(Ti,Xi)Yi · uK1(Ti)− Ê [π̂K(Ti,Xi)Yi · uK1(Ti)|Ti,Xi]

+ Ê[π̂K(Ti,Xi)Yi · uK1(Ti)|Xi]− Ê[π̂K(Ti,Xi)Yi · uK1(Ti)]

is the plug-in estimates of bK1(Ti,Xi, Yi), and Ê[π̂K(T,X)Y uK1(T )|T,X] is the least
square regression of π̂K(T,X)Y uK1(T ) on a sieve basis wK0(T,X), and Ê[π̂K(T,X)Y

uK1(T )|X] is the least square regression of π̂K(T,X)Y uK1(T ) on a sieve basis vK0(X).
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8.2 Average treatment effects on the treated

Another important parameter for program evaluation is the average treatment effects on the
treated (ATT), which is defined by

θt1,t0|t0 := E [Y ∗(t1)− Y ∗(t0)|T = t0] ≡ θt1|t0 − θt0|t0 for t1 6= t0.

Note that θt0|t0 = E[Y ∗(t0)|T = t0] = E[Y |T = t0], so it can be estimated by regressing Y
on uK1(t0):

θ̂t0|t0 :=

[
N∑
i=1

Yi · u>K1
(Ti)

][
N∑
i=1

uK1(Ti)u
>
K1

(Ti)

]−1

uK1(t0).

The difficulty is to estimate θt1|t0 = E[Y ∗(t1)|T = t0] owing to that Y ∗(t1) cannot be
observed under the treatment level T = t0. Under Assumption 1, θt1|t0 can be identified as
follows:

θt1|t0 =E [Y ∗(t1)|T = t0] = E [E[Y ∗(t1)|X, T = t0]|T = t0]

=E [E[Y ∗(t1)|X, T = t1]|T = t0] (by Assumption 1)

=

∫
E[Y |X = x, T = t1] ·

fX|T (x|t0)

fX|T (x|t1)
· fX|T (x|t1)dx

=

∫
E[Y |X = x, T = t1] ·

fT (t1)/fT |X(t1|x)

fT (t0)/fT |X(t0|x)
· fX|T (x|t1)dx

=E
[
π0(T,X)

π0(t0,X)
· Y
∣∣∣∣T = t1

]
=E

[
π0(T,X)

π0(T − δ,X)
· Y
∣∣∣∣T = t1

]
, (8.1)

where δ := t1− t0. Based on (8.1), we replace π0(·) by the estimator π̂K(·) then apply sieve
regression on uK1(t1), so that θt1|t0 can be estimated by

θ̂t1|t0 :=

[
N∑
i=1

π̂K(Ti,Xi)

π̂K(Ti − δ,Xi)
· Yi · u>K1

(Ti)

][
N∑
i=1

uK1(Ti)u
>
K1

(Ti)

]−1

uK1(t1).

Therefore, θt1,t0|t0 can be estimated by

θ̂t1,t0|t0 := θ̂t1|t0 − θ̂t0|t0 .

To aid presentation of the asymptotic properties of θ̂t1|t0 , we define:

b1,K1(Ti,Xi, Yi) :=
fT |X(Ti + δ|X)

fT |X(Ti|Xi)

π0(Ti,Xi)
2

π0(Ti − δ,Xi)2
· E[Yi|Ti,Xi] · uK1(Ti)
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− E
[
fT |X(Ti + δ|X)

fT |X(Ti|Xi)

π0(Ti,Xi)
2

π0(Ti − δ,Xi)2
· Yi · uK1(Ti)

∣∣∣∣Xi

]
− E

[
fT |X(Ti + δ|X)

fT |X(Ti|Xi)

π0(Ti,Xi)
2

π0(Ti − δ,Xi)2
· Yi · uK1(Ti)

∣∣∣∣Ti]
+ E

[
fT |X(Ti + δ|X)

fT |X(Ti|Xi)

π0(Ti,Xi)
2

π0(Ti − δ,Xi)2
· Yi · uK1(Ti)

]
,

and

b2,K1(Ti,Xi, Yi) :=
π0(Ti,Xi)

π0(Ti − δ,Xi)
· Yi · uK1(Ti)− E

[
π0(Ti,Xi)

π0(Ti − δ,Xi)
· Yi · uK1(Ti)

∣∣∣∣Ti,Xi

]
+ E

[
π0(Ti,Xi)

π0(Ti − δ,Xi)
· Yi · uK1(Ti)

∣∣∣∣Xi

]
− E

[
π0(Ti,Xi)

π0(Ti − δ,Xi)
· Yi · uK1(Ti)

]
,

and

b3,K1(Ti, Yi) := uK1(Ti) · {Yi − E[Yi|Ti]} .

Note that the expectation of b1,K1 , b2,K1 and b3,K1 are zeros. Let

Vt1,t0|t0 :=E
[{
u>K1

(t1)ΦK1×K1(b1,K1 + b2,K1)− u>K1
(t0)ΦK1×K1b3,K1

}2
]

= w>Σ2K1×2K1w,

where w :=
(
u>K1

(t1) · ΦK1×K1 , u
>
K1

(t0) · ΦK1×K1

)> ∈ R2K1 and

Σ2K1×2K1 := E

[
{b1,K1 + b2,K1}{b1,K1 + b2,K1}>, −{b1,K1 + b2,K1}b>3,K1

−b3,K1{b1,K1 + b2,K1}>, b3,K1b
>
3,K1

]
.

Theorem 9. Suppose supt∈T |E[π0(T,X)Y/π0(T−δ,X)|T = t]−(γ∗)>uK1(t)| = O(K−α̃1 )

holds for some α̃ > 0 and γ∗ ∈ RK1 , λmin (Σ2K1×2K1) ≥ c > 0, Assumptions 1-4’ hold,
and
√
NK−α̃1 → 0. Then

√
NV

−1/2
t1,t0|t0

[
θ̂t1,t0|t0 − θt1,t0|t0

]
d−→ N(0, 1).

See Ai, Linton, Motegi, and Zhang (2019, Section 5.2) for a proof of Theorem 9.
Feasible versions of the above CLT’s are implemented using plug-in sieve estimation of the
unknown quantities.

9 Monte Carlo simulations

The large sample properties established in previous sections do not indicate how the gener-
alized optimization estimator behaves in finite samples. To evaluate its finite sample perfor-
mance, we conduct a simulation study on a continuous treatment. We present a simulation
design in Section 9.1 and results in Section 9.2.
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9.1 Simulation design

Let Xi = (X1i, X2i)
> be covariates, and assume that Xi

i.i.d.∼ N(0, I2). Error terms are
drawn mutually independently as ξi

i.i.d.∼ N(0, 1) and εi
i.i.d.∼ N(0, 1). We consider four data

generating processes (DGPs):

DGP-L1 T = 1 + 0.2X1 + ξ and Y = 1 +X1 + T + ε. ( X2 does not play any role,
and X1 affects T and Y linearly.)

DGP-NL1 T = 0.1X2
1 + ξ and Y = X2

1 + T + ε. (X2 does not play any role, and
X1 affects T and Y non-linearly.)

DGP-L2 T = 1 + 0.2
∑2

j=1 Xj + ξ and Y = 1 + (1/2)
∑2

j=1 Xj + T + ε. (X1 and
X2 affect T and Y linearly.)

DGP-NL2 T = 0.1(
∑2

j=1 Xj)
2 + ξ and Y = 1/2 + [(1/2)

∑2
j=1Xj]

2 + T + ε. (X1

and X2 affect T and Y non-linearly.)

For each DGP, the true link function is E[Y (t)] = 1 + t, a simple linear function with
β∗1 = β∗2 = 1. Below we use a linear link function g(Ti; β) = β1 + β2Ti, compute the
generalized optimization estimator β̂ = (β̂1, β̂2)>, and examine its performance.

To compute the generalized optimization estimator, two approximating basis functions
uK1(T ) and vK2(X) need to be specified. For uK1(T ), K1 ∈ {2, 3, 4} ≡ K1 is considered:

u2(T ) = (1, T )>, u3(T ) = (1, T, T 2)>, u4(T ) = (1, T, T 2, T 3)>.

For vK2(X), the choice set K2 depends on the number of covariates. For DGP-L1 and
DGP-NL1, K2 ∈ {2, 3, 4} ≡ K1

2 is considered:

v2(X1) = (1, X1)>, v3(X1) = (1, X1, X
2
1 )>, v4(X1) = (1, X1, X

2
1 , X

3
1 )>. (9.1)

For DGP-L2 and DGP-NL2, K2 ∈ {3, 6, 10} ≡ K2
2 is considered:

v3(X) = (1, X1, X2)>, (9.2)

v6(X) = (1, X1, X2, X
2
1 , X

2
2 , X1X2)>,

v10(X) = (1, X1, X2, X
2
1 , X

2
2 , X1X2, X

3
1 , X

3
2 , X

2
1X2, X1X

2
2 )>.

In addition to fixed pairs of (K1, K2) ∈ K1 ×K2, the data-driven selections described
in Section 7 are employed. First, the (penalized) loss function approaches are implemented
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with L(Yi − g(Ti; β̂)) = (Yi − β̂1 − β̂2Ti)
2. Second, the J-folder cross validation is imple-

mented with J ∈ {5, 10}.
We also compute Fong, Hazlett, and Imai’s (2018) covariate balancing generalized

propensity score estimator with a linear model specification and the quadratic loss function.
The linear specification is correct under DGP-L1 and DGP-L2, while it is incorrect under
DGP-NL1 and DGP-NL2. By comparing our estimator and the parametric estimator of
Fong, Hazlett, and Imai (2018), we can highlight the robustness of the former to non-linear
DGPs. Fong, Hazlett, and Imai (2018) also propose a nonparametric estimator in their
Section 3.3. In their simulation study, the parametric and nonparametric estimators exhibit
similar performance for each DGP considered (Fong, Hazlett, and Imai, 2018, Figure 2).
Hence, the present paper focuses on the parametric version of their estimator to save space.

Our proposed estimator and the parametric version of Fong, Hazlett, and Imai’s (2018)
estimator are computed in a simulated sample with size N ∈ {100, 500, 1000}, after which
another sample is generated and both estimators are computed again. This exercise is re-
peated M = 1000 times.

To evaluate the performance of point estimation, the bias, standard deviation, and root
mean squared error (RMSE) of β̂1 and β̂2 are calculated from (a subset of) M = 1000

simulations. In a small portion of the M = 1000 samples, π̄N ≡ (1/N)
∑N

i=1 π̂K(Ti,Xi),
which should be equal to 1 in theory, takes a value far from 1 due to numerical instability
in the computation of Λ∗K1×K2

. The numerical maximization with respect to Λ should lead
to a global maximizer Λ∗K1×K2

in theory, but optimizing the K1 ×K2 elements of Λ all at
once is often hard in practice. Hence, we calculate the bias, standard deviation, and RMSE
from Monte Carlo samples such that π̄N ∈ [0.5, 2]. Other few samples having π̄N /∈ [0.5, 2]

are simply discarded. (We admit that this computational problem becomes worse as the
dimension ofX becomes larger.)

The performance of the variance estimation is evaluated as follows. The true covari-
ance matrix of β̂ is written as

Veff =

[
V11 V12

V12 V22

]
.

Different DGPs have different true values of (V11, V12, V22), and they are computed in Sec-
tion 6.2 of the supplemental material Ai, Linton, Motegi, and Zhang (2019). For each
DGP, we compute β̂ based on (K1, K2) that leads to sharp point estimation. Then we
use other sieve bases of dimension (K ′1, K

′
2) ∈ K1 × K2 to re-estimate the propensity

score πK′(T,X). We allow (K1, K2) and (K ′1, K
′
2) to be different from each other since

π̂K(T,X) that leads to sharp point estimation might be different from the π̂K′(T,X) that
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leads to sharp variance estimation.
Using π̂K′(T,X) and variance-specific sieve bases vM0(X) and wK0(T,X), the vari-

ance estimator V̂eff is computed. For vM0(X), M0 ∈ {2, 3} is used for DGP-L1 and
DGP-NL1 and M0 ∈ {3, 6} is used for DGP-L2 and DGP-NL2 (see (9.1) and (9.2)). For
wK0(T,X), K0 ∈ {3, 5} is used for DGP-L1 and DGP-NL1:

w3(T,X1) = (1, T,X1)>, w5(T,X1) = (1, T,X1, T
2, X2

1 )>.

K0 ∈ {4, 8} is used for DGP-L2 and DGP-NL2:

w4(T,X) = (1, T,X1, X2)>, w8(T,X) = (1, T,X1, X2, T
2, X2

1 , X
2
2 , TX1)>.

(Data-driven selection of (K ′1, K
′
2,M0, K0) is beyond the scope of the present paper.)

9.2 Simulation results

We discuss point estimation first, and then discuss variance estimation. Since the slope
parameter β2 is economically more important than the intercept β1, we only report the
point estimation results of β2 in order to conserve space. (Results of β1 are available upon
request.) See Tables 1-4 for the results under each of the four DGPs considered.

In Figure 1, we draw bar charts that depict the share of (K1, K2) selected by each
data-driven method. To conserve space, we focus on the large sample case N = 1000.
Results with N ∈ {100, 500} are nearly identical to the results with N = 1000 for each
method and DGP. Besides, we focus on the MSE-minimization with the additive and mul-
tiplicative penalties as well as the 5-folder cross validation in order to save space. (The
MSE-minimization without penalty logically prefers the larger values of (K1, K2) than that
with the penalties. Results with the 10-folder cross validation are almost identical to the
results with the 5-folder cross validation. These omitted results are available upon request.)

Under DGP-L1, the generalized optimization estimator (labeled as GOE) has small
enough RMSE for any fixed (K1, K2) (Table 1). It is not a surprising result since DGP-L1
has a simple linear structure. The data-driven methods often choose (K∗1 , K

∗
2) = (2, 2), the

simplest possible approximation basis (Figure 1). The RMSE of the parametric version of
the covariate balancing generalized propensity score estimator (labeled as CBGPS) is even
smaller than the RMSE of GOE. It is not surprising since CBGPS has a correct parametric
specification under DGP-L1.

Under DGP-NL1, GOE dominates CBGPS. GOE leads to small enough RMSE as long
as K2 ≥ 3. The relatively large RMSE under K2 = 2 suggests that X2

1 needs to be included
in vK2(X1) (see (9.1)). That is a reasonable result since DGP-NL1 has a quadratic structure.
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As desired, any data-driven method considered often selects pairs with K2 ≥ 3 (Figure 1).
CBGPS, in contrast, fails with the bias being around 0.2. The bias arises from the fact that
the linear specification of CBGPS is incorrect under DGP-NL1. This result highlights that
GOE performs well for both linear and nonlinear scenarios while CBGPS performs well for
linear scenarios only.

The two-covariate scenarios yield similar implications to the single-covariate scenar-
ios. Under DGP-L2, GOE with any fixed (K1, K2) has small RMSE (Table 3). The data-
driven methods often choose (K∗1 , K

∗
2) = (2, 3), the simplest possible approximation basis

(Figure 1). The RMSE of CBGPS is even smaller than the RMSE of GOE due to the linear
structures of DGP-L2.

Under DGP-NL2, GOE withK2 ≥ 6 leads to small RMSE, and any data-driven method
considered often selects pairs with K2 ≥ 6 as desired (Table 4 and Figure 1). CBGPS, in
contrast, fails with substantial bias of around 0.17. This result again highlights the remark-
able advantage of GOE relative to CBGPS.

To summarize the point estimation, the generalized optimization estimator performs
well in finite samples, and its performance is still good even when the true DGP is nonlinear;
in contrast, the existing parametric estimator of Fong, Hazlett, and Imai (2018) is sensitive
to model misspecification.

We now discuss the variance estimation results. The values of the true covariance
matrix, Veff , are also provided in Tables 5-8. See Ai, Linton, Motegi, and Zhang (2019,
Section 6) for how to compute the true values. For each DGP, we compute β̂ via (K1, K2) =

(2, 2) for DGP-L1, (2, 3) for DGP-NL1, (2, 3) for DGP-L2, and (2, 6) for DGP-NL2. Recall
from Tables 1-4 that those values are optimal values that lead to one of the smallest MSEs in
point estimation. Then we present in Tables 5-8 the bias, standard deviation, and RMSE of
V̂eff with respect to Veff , where (K ′1, K

′
2,M0, K0) = (3, 3, 3, 5) for DGP-L1, (3, 3, 3, 5) for

DGP-NL1, (3, 3, 6, 8) for DGP-L2, and (2, 10, 3, 4) for DGP-NL2. Under those values, we
observe desired results that V̂eff converges to Veff as sample size N increases. When N =

1000, the bias and standard deviation are small enough. Under DGP-NL1 and DGP-NL2,
CBGPS suffers from large bias in variance estimation (Tables 6 and 8). That is reasonable
since the point estimation is already biased (Tables 2 and 4).

10 Empirical application

We revisit the U.S. presidential campaign data analyzed by Urban and Niebler (2014) and
Fong, Hazlett, and Imai (2018). The motivation of the original study, Urban and Niebler
(2014), is well summarized in Fong, Hazlett, and Imai (2018, Section 2):
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Urban and Niebler (2014) explored the potential causal link between advertis-
ing and campaign contributions. Presidential campaigns ordinarily focus their
advertising efforts on competitive states, but if political advertising drives more
donations, then it may be worthwhile for candidates to also advertise in non-
competitive states. The authors exploit the fact that media markets sometimes
cross state boundaries. This means that candidates may inadvertently advertise
in noncompetitive states when they purchase advertisements for media markets
that mainly serve competitive states. By restricting their analysis to noncom-
petitive states, the authors attempt to isolate the effect of advertising from that
of other campaigning, which do not incur these media market spillovers.

The treatment of interest, the number of political advertisements aired in each zip code,
can be regarded as a continuous variable since it takes a range of values from 0 to 22379
across N = 16265 zip codes. Urban and Niebler (2014) restricted themselves to a binary
treatment framework, and they dichotomized the treatment variable by examining whether
a zip code received more than 1000 advertisements or not. Their empirical results suggest
that advertising in non-competitive states had a significant impact on the level of campaign
contributions.

Dichotomizing a continuous treatment variable requires an ad-hoc choice of a cut-off
value, and it makes an empirical result hard to interpret. Fong, Hazlett, and Imai (2018) an-
alyzed the continuous version of the treatment variable, taking advantage of their proposed
CBGPS method. Their empirical results suggest, contrary to Urban and Niebler (2014),
that advertising in non-competitive states did not have a significant impact on the level of
campaign contributions (cf. Fong, Hazlett, and Imai, 2018, Table 2).

As shown in Section 9, our generalized optimization estimator has a better performance
than Fong, Hazlett, and Imai’s (2018) parametric CBGPS estimator. Our estimator exhibits
a solid performance even if a DGP of treatment Ti or outcome Yi is nonlinear in covariate
Xi. It is thus of interest to apply our approach to the continuous version of the treatment
variable in order to see how the results change.

10.1 Fong, Hazlett, and Imai’s (2018) CBGPS approach

We begin with Fong, Hazlett, and Imai’s (2018) parametric CBGPS estimator as a bench-
mark. It requires a choice of pre-treatment covariates Xi in a generalized propensity score
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model. There are eight covariates

X1 =



log(Population)

%Over 65

log(Income + 1)

%Hispanic

%Black

Population Density

%College Graduates

Can Commute


. (10.1)

Subscript i is omitted for brevity, but (10.1) is defined for each zip code i ∈ {1, . . . , N}.
The definition of each covariate is almost self-explanatory (see Fong, Hazlett, and Imai,
2018, Sec. 5 for more details). Following Fong, Hazlett, and Imai (2018, Table 1), we add
squared terms to construct a 15× 1 vector of pre-treatment covariates:

X =



X1

{log(Population)}2

{%Over 65}2

{log(Income + 1)}2

{%Hispanic}2

{%Black}2

{Population Density}2

{%College Graduates}2


. (10.2)

The square of “Can Commute” is not added since it is a binary indicator of whether it
is possible to commute to zip code i from a competitive state so that Can Commute =

{Can Commute}2.
Let Ti be the treatment of interest (i.e. the number of political advertisements aired in

each zip code). The CBGPS approach assumes that the standardized treatment variable

T ∗i = s
−1/2
T (Ti − T̄ ) (10.3)

follows the standard normal distribution, where T̄ = (1/N)
∑N

i=1 Ti and sT = (1/(N −
1))
∑N

i=1(Ti − T̄ )2. Given the data of political advertisements, the normality assumption is
far from satisfied (see Panel 1 of Figure 2). Fong, Hazlett, and Imai (2018) therefore run
a Box-Cox transformation T ′i = {(Ti + 1)λ − 1}/λ with λ = −0.16 and then standardize
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T ′i according to (10.3). They choose λ = −0.16, since it yields the greatest correlation
between the sample quantiles of the standardized treatment and the corresponding theoret-
ical quantiles of the standard normal distribution. As Fong, Hazlett, and Imai (2018, p.15)
admit, the Gaussian approximation is very poor even after running the Box-Cox transforma-
tion (see Panels 2-3 of Figure 2). This result suggests that the normality of a standardized
treatment is often a too strong assumption to make in practice.

For an outcome model, we consider four cases for covariates Zi:

Case #1. Zi = (Ti, T
2
i , 1)>.

Case #2. Zi = (Ti, T
2
i ,SD

>
i )>.

Case #3. Zi = (Ti, T
2
i , 1,X

>
1i)
>.

Case #4. Zi = (Ti, T
2
i ,SD

>
i ,X

>
1i)
>.

Note that SDi = (SD1i, SD2i, . . . , SD24i)
>, where SDji is a binary indicator that

equals 1 if zip code i belongs to state j and equals 0 otherwise. Any zip code contained
in the dataset belongs to one and only one of 24 states (e.g., Alabama, Arkansas, . . . ,
Wyoming).

For each of Cases #1–#4, we compute the parametric CBGPS estimator and its asymp-
totic 95% confidence bands (see Fong, Hazlett, and Imai, 2018, Sec. 3.2 for procedures).
Our main interest lies in the parameters of (Ti, T

2
i ) and their statistical significance. See Ta-

ble 9 for results. It is evident that the empirical results depend critically on a specification
of Zi. In Case #2, Ti has a significantly positive impact on Yi and T 2

i has a significantly
negative impact on Yi. In the other three cases, both Ti and T 2

i have insignificant impacts
on Yi.

10.2 Generalized optimization approach

A practical advantage of our proposed approach over the CBGPS approach is that we do
not require the normality assumption for the treatment variable T . As indicated in Figure 2,
the normality assumption is too strong for the number of political advertisements aired in
each zip code whether or not the Box-Cox transformation is implemented. The generalized
optimization approach allows us to work with the original treatment variable (Panel 1 of
Figure 2).

We assume that the link function is quadratic with p = 3, i.e.,

g(T,β) = β1 + β2T + β3T
2.
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Our covariatesX are chosen to be identical to Eq. (10.2). Given that the dimension ofX is
as large as 15, we use simple polynomials with K1 = 3 and K2 = 16 to compute π̂K(T,X)

and β:
uK1(T ) = (1, T, T 2)>, vK2(X) = (1,X>)>.

To compute the variance estimator V̂eff , we use the same propensity score π̂K(T,X)

and variance-specific polynomials with M0 = 3 and K0 = 17:

vM0(X) = (1,X>)>, wK0(T,X) = (1, T,X>)>.

See Table 10 for results. Neither β̂2 nor β̂3 is different from 0 at the 5% level. Hence
there do not exist statistically significant impacts of the political advertisements on the level
of campaign contributions Y .

11 Concluding Remarks

The weighted optimization framework provides a unified approach towards estimation of
treatment effects, under the condition of unconfounded treatment assignment. We estab-
lished the semiparametric efficiency of our methodology, but perhaps the main advantage
is its relatively simple form and good finite sample properties.

There are several extensions worth pursuing in future projects. First, estimation of the
nonparametric causal effect function under general loss function has not been completely
dealt with in this paper. But this is an important extension since it removes the burden of
parameterizing the causal effect. Second, the extension of the current setting to allow for
high dimensional covariates is also an important project. Third, panel data are common
in the empirical literature. Our approach is readily applicable to those data, although the
efficiency issue is more difficult. All these extensions shall be taken up in future studies.
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Appendix

A Proof of (2.2)

Using the law of iterated expectation and Assumption 1, we can deduce that

E [π0(T,X)L (Y − g(T ;β))]

=E [E[π(T,X)L(Y ∗(T )− g(T ;β))|T,X]]

=

∫
π0(t,x) · E[L(Y ∗(T )− g(T ;β))|T = t,X = x] dFT |X(t|x)dFX(x)

=

∫
E [L(Y ∗(t)− g(t;β))|T = t,X = x] dFT (t)dFX(x)
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=

∫
E [L(Y ∗(t)− g(t;β))|X = x] dFT (t)dFX(x) (using Assumption 1)

=

∫
E [L(Y ∗(t)− g(t;β))] dFT (t).

B Proof of Theorem 2
The sufficient part is obvious. We prove the necessary part. Let u(T ) = exp(a · T · i) and
v(X) = exp(b>X · i) be the test functions, where a ∈ R and b ∈ Rr. By assumption,

E
[
{π(T,X)− π0(T,X)} exp

{
a · T · i+ b>X · i

}]
+ E

[
π0(T,X) exp

{
a · T · i+ b>X · i

}]
=E [exp(a · T · i)] · E

[
exp(b>X · i)

]
.

By definition E
[
π0(T,X) exp

{
a · T · i+ b>X · i

}]
= E [exp(a · T · i)]·E

[
exp(b>X · i)

]
.

Then E
[
{π(T,X)− π0(T,X)} exp

{
a · T · i+ b>X · i

}]
= 0 for all a ∈ R and b ∈ Rr.

Dues to the uniqueness of Fourier transform we can obtain π(T,X) = π0(T,X) a.s..

C Asymptotic result when π0(T,X) is known
Suppose the stabilized weight function π0(T,X) is known, the weighted optimization esti-
mator of β∗, denoted by β̂known, is

β̂known = min
β

N∑
i=1

π0(Ti,Xi)L(Yi − g(Ti; β)).

We also assume the asymptotic first order condition

1

N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti; β̂known))m(Ti; β̂known) = oP (N−1/2) (C.1)

holds with probability approaching to one.

Proposition B.1 Suppose Assumptions 5, 6 (i-ii), and 7 hold, and (C.1) holds, then we have

1. β̂known
p−→ β∗;

2.
√
N(β̂known − β∗)

d−→ N (0, Vineff ), where

Vineff := H−1
0 · E

[
π0(T,X)2L′(Y − g(T ;β∗))2m(T ;β∗)m(T ;β∗)>

]
·H−1

0 ;

3. furthermore, if E [L′(Y (t)− g(t;β∗))] = 0 holds for all t ∈ T , then Vineff ≥ Veff
in the sense of that c> · Vineff · c ≥ c> · Veff · c for any vector c ∈ Rp.
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Proof. By Assumption 5 and the uniform law of large number, we obtain

1

N

N∑
i=1

π0(Ti,Xi)L {Yi − g(Ti;β)} → E [π0(T,X)L {Y − g(T ;β)}] in probability uniformly overβ,

which implies the consistency result ‖β̂known − β∗‖
p−→ 0.

The first order condition (C.1) holds with probability approaching to one. Note that
L′(·) may not be a differentiable function, e.g. L′(v) = τ − I(v < 0) in quantile regres-
sion, we cannot simply apply Mean Value Theorem on (C.1) to obtain the expression for√
N(β̂known − β∗). To solve this problem, we resort to the empirical process theory in

Andrews (1994). Define

f(β) := E [π0(T,X)L′(Y − g(T ;β))m(T ;β)] ,

which is a differentiable function in β and by (2.3) f(β∗) = 0. Using Mean Value Theorem,
we can obtain

0 =
√
Nf(β∗) =

√
Nf(β̂known)−∇βf(β̄) ·

√
N(β̂known − β∗) ,

where β̄ lies on the line joining β̂known and β∗. Because ∇βf(β) is continuous in β at β∗,
and ‖β̂known − β∗‖

p−→ 0, then we have
√
N(β̂known − β∗) = [∇βf(β∗)]−1 ·

√
Nf(β̂known) + oP (1).

Define the empirical process

νN(β) =
1√
N

N∑
i=1

{π0(Ti,Xi)L
′(Yi − g(Ti;β))m(Ti;β)− E [π0(T,X)L′(Y − g(T ;β))m(T ;β)]} .

By (C.1) and the definition of νN(β), we have
√
N(β̂known − β∗)

=∇βf(β∗)−1 ·

{
√
Nf(β̂known)− 1√

N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti; β̂known))m(Ti; β̂known)

+
1√
N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti; β̂known))m(Ti; β̂known)

}
=−∇βf(β∗)−1 · νN(β̂known) + op(1)

=H−1
0 ·

{(
νN(β̂known)− νN(β∗)

)
+ νN(β∗)

}
+ op(1) .
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By Assumptions 6, 7, Theorems 4 and 5 of Andrews (1994), we have that νN(·) is stochas-
tically equicontinuous, which implies νN(β̂known)− νN(β∗)

p−→ 0. Therefore,

√
N(β̂known − β∗) = H−1

0

1√
N

N∑
i=1

π0(Ti,Xi)L
′(Yi − g(Ti;β

∗))m(Ti;β
∗) + op(1) ,

then we can conclude that the asymptotic variance of
√
N(β̂known − β∗) is V

ineff
.

We next show Vineff ≥ Veff . From Theorem 1, we have

Veff = H−1
0 ·

{
E
[
π0(T,X)2L′(Y − g(T ;β∗))2m(T ;β∗)m(T ;β∗)>

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X]>

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]>

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T ] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T ]>

]
− 2 · E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)>

]
− 2 · E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]>

]
− 2 · E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T ]>

]
+ 2 · E

[
π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗) · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]>

]
+ 2 · E

[
π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗) · E[π0(T,X)L′(Y − g(T ;β0))m(T ;β∗)|T ]>

]
+ 2 · E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T ] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]>

]}
H−1

0

=H−1
0

{
E
[
π0(T,X)2L′(Y − g(T ;β∗))2m(T ;β∗)m(T ;β∗)>

]
− E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X]>

]
+ E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]>

]}
H−1

0 ,

where the last equality holds by noting

E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T = t] = E [L′(Y ∗(t)− g(t;β∗))] ·m(t;β∗) = 0 ,

since the model is correctly specified, i.e. E [L′(Y ∗(t)− g(t;β0))] = 0 for t ∈ T . There-
fore,

Vineff − Veff

=H−1
0

{
E
[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|T,X]>

]
− E

[
E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X] · E[π0(T,X)L′(Y − g(T ;β∗))m(T ;β∗)|X]>

]}
H−1

0 ≥ 0 ,

where the last inequality holds by using Jensen’s inequality:

E
[
E[π0(T,X)(Y − g(T ;β∗))m(T ;β∗)|X] · E[π0(T,X)(Y − g(T ;β∗))m(T ;β∗)|X]>

]
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=E
[
E [E[π0(T,X)(Y − g(T ;β∗))m(T ;β∗)|T,X]|X] · E [E[π0(T,X)(Y − g(T ;β∗))m(T ;β∗)|T,X]|X]

>
]

<E
[
E[π0(T,X)(Y − g(T ;β∗))m(T ;β∗)|T,X] · E[π0(T,X)(Y − g(T ;β∗))m(T ;β∗)|T,X]>

]
.

D Duality of primal problem (4.3)

We first introduce some notation:

• Let mK(T,X) = vec
(
uK1(T )v>K2

(X)
)

denote a K-dimensional column vector
formed by the elements of the matrix uK1(T )v>K2

(X). LetMK×N = (mK(T1,X1), . . . ,
mK(TN ,XN)), which is a K ×N matrix.

• Let uK1,k(T ) (resp. vK2,k′(X)) denote the kth (resp. k′th) component of uK1(T )
(resp. vK2(X)), and denote

uK1,k =
1

N

N∑
i=1

uK1,k(Ti) and vK2,k′ =
1

N

N∑
i=1

vK2,k′(Xi).

Let bK be aK dimensional column vector whose elements are formed by {ūK1,kv̄K2,k′ ; k =
1, ..., K1, k

′ = 1, ..., K2}.

• Denote π = (π1, ..., πN) and F (π) =
∑N

i=1 πi log πi.

The primal optimization problem (4.3) can be written as minπ F (π)

subject to MK×N · π = N · bK
(D.1)

By Tseng and Bertsekas (1991), the conjugate convex function of F (·) is

F ∗(z) = sup
π

N∑
i=1

{ziπi − πi log πi} =
N∑
i=1

{ziπ∗i − π∗i log π∗i } ,

where π∗j satisfies the first order condition:

zj = log π∗j + 1⇒ π∗j = ezj−1 = ρ′(zi).

By substitution, we obtain

F ∗(z) =
N∑
i=1

{
zie

zi−1 − ezi−1(zi − 1)
}

=
N∑
i=1

ezi−1 =
N∑
i=1

−ρ(−zi).

42



By Tseng and Bertsekas (1991), the dual problem of (D.1) is

max
λ∈RK

{
λ> (N · bK)− F ∗

(
λ>MK×N

)}
= max

Λ∈RK1×RK2

N∑
i=1

{
u>K1

ΛvK2 + ρ
(
−uK1(Ti)

>ΛvK2(Xi)
)}

= max
Λ∈RK1×RK2

N∑
i=1

{
ρ
(
uK1(Ti)

>ΛvK(Xi)
)
− u>K1

ΛvK2

}
= max

Λ∈RK1×RK2

ĜK1×K2(Λ). (D.2)

Therefore, the dual solution of (4.3) is given by

π̂K(Ti,Xi) = ρ′
(
uK1(Ti)

>Λ̂K1×K2vK2(Xi)
)
,

where Λ̂K1×K2 is the maximizer of the strictly concave objective function ĜK1×K2 .

E Proof of (6.1)

∇βE [L′(Y − g(T ;β))|T = t,X = x]
∣∣∣
β=β∗

=∇β

[∫
R
L′(y − g(t;β))fY |T,X(y|t,x)dy

] ∣∣∣
β=β∗

=∇β

[∫
R
L′(z)fY |T,X(z + g(t;β)|t,x)dz

] ∣∣∣
β=β∗

(use z = y − g(t;β))

=

∫
R
L′(z) · ∂

∂y
fY |T,X(z + g(t;β∗)|t,x)dz ·m(t;β∗)

=

∫
R
L′(y − g(t;β∗)) · ∂

∂y
fY |T,X(y|t,x)dy ·m(t;β∗)

=

∫
R
L′(y − g(t;β∗)) ·

∂
∂y
fY |T,X(y|t,x)

fY |T,X(y|t,x)
fY |T,X(y|t,x)dy ·m(t;β∗)

=

∫
R
L′(y − g(t;β∗)) ·

∂
∂y
fY,T,X(y, t,x)

fY,T,X(y, t,x)
fY |T,X(y|t,x)dy ·m(t;β∗)

=E

[
L′(Y − g(T ;β∗))

∂
∂y
fY,T,X(Y, T,X)

fY,T,X(Y, T,X)

∣∣∣∣T = t,X = x

]
m(t;β∗).
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Table 1: Simulation results on point estimation of slope β2 under DGP-L1 (β∗2 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 2) −0.002 0.185 0.185 −0.000 0.081 0.081 −0.001 0.056 0.056

GOE (2, 3) 0.010 0.178 0.178 −0.001 0.080 0.080 0.004 0.057 0.057

GOE (2, 4) −0.000 0.196 0.196 −0.005 0.083 0.083 −0.001 0.057 0.057

GOE (3, 2) −0.002 0.185 0.185 −0.001 0.081 0.081 0.002 0.057 0.057

GOE (3, 3) −0.001 0.190 0.190 0.000 0.080 0.080 −0.003 0.057 0.057

GOE (3, 4) −0.007 0.201 0.201 −0.011 0.085 0.086 −0.011 0.060 0.061

GOE (4, 2) −0.005 0.184 0.185 −0.002 0.080 0.080 −0.000 0.055 0.055

GOE (4, 3) −0.007 0.205 0.205 −0.006 0.083 0.084 −0.011 0.060 0.061

GOE (4, 4) −0.020 0.207 0.208 −0.012 0.084 0.084 −0.013 0.062 0.064

GOE MSE (none) 0.002 0.171 0.171 −0.008 0.079 0.080 −0.006 0.057 0.058

GOE MSE (add) −0.013 0.169 0.170 −0.005 0.076 0.076 −0.002 0.057 0.057

GOE MSE (multi) 0.003 0.165 0.165 −0.001 0.079 0.079 −0.003 0.056 0.056

GOE CV (J = 5) 0.006 0.191 0.191 0.004 0.080 0.080 0.001 0.058 0.058

GOE CV (J = 10) 0.005 0.182 0.182 0.001 0.079 0.079 0.001 0.057 0.057

CBGPS - −0.002 0.102 0.103 −0.002 0.045 0.046 −0.002 0.032 0.032

DGP-L1: T = 1 + 0.2X1 + ξ and Y = 1 + X1 + T + ε, where X1 ∼ N(0, 1). “GOE” is the proposed generalized

optimization estimator. K1 and K2 are the dimensions of the polynomials of T and X1, respectively. “MSE (none)”

signifies that we pick (K1,K2) that minimizes MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti, X1i)(Yi − β̂1 − β̂2Ti)

2. “MSE

(add)” signifies that we pick (K1,K2) that minimizes (1+2(K1 +K2)/N)×MSE(K1,K2). “MSE (multi)” signifies

that we pick (K1,K2) that minimizes (1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that

minimizes the loss function of the J-folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs

listed in the table. “CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity

score estimator. The number of Monte Carlo iterations is M = 1000.
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Table 2: Simulation results on point estimation of slope β2 under DGP-NL1 (β∗2 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 2) −0.029 0.171 0.174 −0.020 0.075 0.078 −0.021 0.055 0.059

GOE (2, 3) 0.001 0.175 0.175 −0.003 0.074 0.074 −0.000 0.054 0.054

GOE (2, 4) −0.004 0.177 0.177 −0.001 0.080 0.080 −0.000 0.057 0.057

GOE (3, 2) −0.042 0.168 0.173 −0.021 0.075 0.077 −0.021 0.054 0.058

GOE (3, 3) −0.017 0.186 0.187 −0.001 0.081 0.081 0.002 0.056 0.056

GOE (3, 4) −0.025 0.180 0.182 −0.004 0.080 0.080 −0.000 0.058 0.058

GOE (4, 2) −0.063 0.170 0.181 −0.028 0.076 0.081 −0.023 0.053 0.058

GOE (4, 3) −0.015 0.197 0.197 −0.002 0.087 0.087 0.001 0.058 0.058

GOE (4, 4) −0.044 0.187 0.192 −0.011 0.081 0.082 −0.003 0.058 0.058

GOE MSE (none) −0.061 0.175 0.185 −0.021 0.078 0.081 −0.013 0.057 0.058

GOE MSE (add) −0.075 0.164 0.180 −0.021 0.079 0.081 −0.015 0.054 0.056

GOE MSE (multi) −0.057 0.171 0.181 −0.017 0.077 0.079 −0.013 0.055 0.056

GOE CV (J = 5) −0.035 0.174 0.177 −0.010 0.079 0.079 −0.006 0.055 0.056

GOE CV (J = 10) −0.026 0.171 0.173 −0.013 0.077 0.078 −0.006 0.055 0.055

CBGPS - 0.189 0.186 0.266 0.190 0.080 0.206 0.195 0.055 0.203

DGP-NL1: T = 0.1X2
1 +ξ and Y = X2

1 +T+ε, whereX1 ∼ N(0, 1). “GOE” is the proposed generalized optimization

estimator. K1 and K2 are the dimensions of the polynomials of T and X1, respectively. “MSE (none)” signifies that we

pick (K1,K2) that minimizes MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti, X1i)(Yi − β̂1 − β̂2Ti)

2. “MSE (add)” signifies

that we pick (K1,K2) that minimizes (1 + 2(K1 +K2)/N) ×MSE(K1,K2). “MSE (multi)” signifies that we pick

(K1,K2) that minimizes (1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that minimizes

the loss function of the J-folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs listed

in the table. “CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score

estimator. The number of Monte Carlo iterations is M = 1000.
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Table 3: Simulation results on point estimation of slope β2 under DGP-L2 (β∗2 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 3) −0.004 0.163 0.163 −0.003 0.075 0.075 0.003 0.053 0.053

GOE (2, 6) −0.019 0.178 0.179 −0.013 0.078 0.079 −0.010 0.056 0.057

GOE (2, 10) −0.036 0.196 0.199 −0.031 0.076 0.082 −0.030 0.056 0.064

GOE (3, 3) −0.005 0.178 0.178 −0.004 0.078 0.079 −0.001 0.054 0.054

GOE (3, 6) −0.038 0.190 0.194 −0.027 0.084 0.088 −0.025 0.060 0.065

GOE (3, 10) −0.036 0.207 0.210 −0.033 0.082 0.088 −0.028 0.058 0.065

GOE (4, 3) −0.014 0.188 0.188 −0.006 0.081 0.081 −0.007 0.058 0.058

GOE (4, 6) −0.037 0.202 0.205 −0.034 0.082 0.089 −0.028 0.058 0.065

GOE (4, 10) −0.026 0.213 0.215 −0.025 0.083 0.086 −0.027 0.058 0.065

GOE MSE (none) −0.028 0.162 0.165 −0.019 0.072 0.075 −0.014 0.052 0.054

GOE MSE (add) −0.009 0.160 0.161 −0.014 0.072 0.073 −0.010 0.052 0.053

GOE MSE (multi) −0.006 0.163 0.163 −0.002 0.073 0.073 −0.006 0.052 0.052

GOE CV (J = 5) 0.003 0.161 0.161 0.001 0.075 0.075 0.001 0.052 0.052

GOE CV (J = 10) 0.003 0.164 0.164 −0.001 0.071 0.071 −0.002 0.053 0.053

CBGPS - −0.003 0.114 0.114 −0.001 0.050 0.050 −0.001 0.036 0.036

DGP-L2: T = 1 + 0.2
∑2

j=1Xj + ξ and Y = 1 + (1/2)
∑2

j=1Xj + T + ε, where X1, X2
i.i.d.∼ N(0, 1).

“GOE” is the proposed generalized optimization estimator. K1 and K2 are the dimensions of the polynomi-

als of T and X = (X1, X2)
>, respectively. “MSE (none)” signifies that we pick (K1,K2) that minimizes

MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti,Xi)(Yi − β̂1 − β̂2Ti)

2. “MSE (add)” signifies that we pick (K1,K2) that

minimizes (1 + 2(K1 + K2)/N) ×MSE(K1,K2). “MSE (multi)” signifies that we pick (K1,K2) that minimizes

(1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that minimizes the loss function of the J-

folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs listed in the table. “CBGPS” is

Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score estimator. The number of

Monte Carlo iterations is M = 1000.
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Table 4: Simulation results on point estimation of slope β2 under DGP-NL2 (β∗2 = 1)

N = 100 N = 500 N = 1000

(K1,K2) Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE (2, 3) −0.037 0.125 0.130 −0.036 0.054 0.065 −0.036 0.037 0.052

GOE (2, 6) −0.008 0.141 0.141 0.005 0.062 0.062 0.007 0.045 0.045

GOE (2, 10) −0.022 0.136 0.138 −0.007 0.059 0.060 −0.007 0.043 0.044

GOE (3, 3) −0.045 0.123 0.131 −0.036 0.052 0.063 −0.037 0.037 0.052

GOE (3, 6) −0.031 0.132 0.135 −0.012 0.060 0.061 −0.005 0.045 0.045

GOE (3, 10) −0.031 0.147 0.151 −0.016 0.061 0.063 −0.014 0.043 0.045

GOE (4, 3) −0.049 0.128 0.137 −0.039 0.055 0.068 −0.037 0.038 0.053

GOE (4, 6) −0.032 0.148 0.151 −0.014 0.060 0.061 −0.009 0.044 0.045

GOE (4, 10) −0.046 0.155 0.162 −0.016 0.059 0.061 −0.016 0.044 0.047

GOE MSE (none) −0.056 0.134 0.146 −0.023 0.057 0.061 −0.018 0.042 0.045

GOE MSE (add) −0.044 0.128 0.136 −0.022 0.056 0.060 −0.021 0.041 0.047

GOE MSE (multi) −0.048 0.121 0.130 −0.022 0.054 0.058 −0.017 0.040 0.043

GOE CV (J = 5) −0.027 0.123 0.125 −0.013 0.056 0.058 −0.007 0.043 0.044

GOE CV (J = 10) −0.030 0.125 0.129 −0.013 0.058 0.059 −0.009 0.044 0.044

CBGPS - 0.168 0.139 0.218 0.177 0.058 0.186 0.183 0.041 0.188

DGP-NL2: T = 0.1(
∑2

j=1Xj)
2 + ξ and Y = 1/2 + [(1/2)

∑2
j=1Xj ]

2 + T + ε, where X1, X2
i.i.d.∼

N(0, 1). “GOE” is the proposed generalized optimization estimator. K1 and K2 are the dimensions of the poly-

nomials of T and X = (X1, X2)
>, respectively. “MSE (none)” signifies that we pick (K1,K2) that minimizes

MSE(K1,K2) = N−1 ∑N
i=1 π̂K(Ti,Xi)(Yi − β̂1 − β̂2Ti)

2. “MSE (add)” signifies that we pick (K1,K2) that

minimizes (1 + 2(K1 + K2)/N) ×MSE(K1,K2). “MSE (multi)” signifies that we pick (K1,K2) that minimizes

(1 + 2K1K2/N) ×MSE(K1,K2). “CV” signifies that we pick (K1,K2) that minimizes the loss function of the J-

folder cross validation with J ∈ {5, 10}. The choice set of (K1,K2) is the nine pairs listed in the table. “CBGPS” is

Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score estimator. The number of

Monte Carlo iterations is M = 1000.

47



Table 5: Simulation results on variance estimation under DGP-L1

N = 100

V11 (truth: 3.142) V12 (truth: −1.097) V22 (truth: 1.097)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE 0.172 1.273 1.285 −0.117 0.725 0.735 0.109 0.573 0.584

CBGPS −1.109 1.298 1.707 0.113 0.421 0.436 −0.124 0.365 0.385

N = 500

V11 (truth: 3.142) V12 (truth: −1.097) V22 (truth: 1.097)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE 0.025 0.458 0.458 −0.021 0.283 0.284 0.037 0.253 0.256

CBGPS −1.043 0.318 1.091 0.038 0.212 0.215 −0.037 0.187 0.190

N = 1000

V11 (truth: 3.142) V12 (truth: −1.097) V22 (truth: 1.097)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE 0.026 0.333 0.334 −0.007 0.201 0.201 0.018 0.164 0.165

CBGPS −1.013 0.244 1.042 0.013 0.173 0.174 −0.012 0.162 0.162

DGP-L1: T = 1 + 0.2X1 + ξ and Y = 1 + X1 + T + ε, where X1 ∼ N(0, 1). “GOE” is the proposed
generalized optimization estimator. (K1,K2) = (2, 2) is used to compute π̂K(T,X1), which is used to
estimate β. (K ′1,K

′
2,M0,K0) = (3, 3, 3, 5) is used to compute π̂K′(T,X1), which is used to estimate Veff .

“CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score
estimator. We report the bias, standard deviation, and RMSE of each element of the variance estimator V̂eff
across M = 1000 Monte Carlo samples.
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Table 6: Simulation results on variance estimation under DGP-NL1

N = 100

V11 (truth: 3.043) V12 (truth: −0.118) V22 (truth: 1.074)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.427 0.812 0.917 0.054 0.582 0.584 0.214 0.615 0.651

CBGPS −0.273 1.149 1.181 0.381 0.713 0.809 1.644 1.252 2.067

N = 500

V11 (truth: 3.043) V12 (truth: −0.118) V22 (truth: 1.074)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.249 0.439 0.505 0.078 0.260 0.271 0.027 0.188 0.190

CBGPS −0.205 0.338 0.395 0.501 0.387 0.633 2.147 0.885 2.323

N = 1000

V11 (truth: 3.043) V12 (truth: −0.118) V22 (truth: 1.074)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.235 0.309 0.389 0.071 0.191 0.204 0.005 0.136 0.136

CBGPS −0.205 0.229 0.307 0.507 0.268 0.574 2.172 0.660 2.270

DGP-NL1: T = 0.1X2
1 + ξ and Y = X2

1 + T + ε, where X1 ∼ N(0, 1). “GOE” is the proposed generalized
optimization estimator. (K1,K2) = (2, 3) is used to compute π̂K(T,X1), which is used to estimate β.
(K ′1,K

′
2,M0,K0) = (3, 3, 3, 5) is used to compute π̂K′(T,X1), which is used to estimate Veff . “CBGPS”

is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized propensity score estimator.
We report the bias, standard deviation, and RMSE of each element of the variance estimator V̂eff across
M = 1000 Monte Carlo samples.
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Table 7: Simulation results on variance estimation under DGP-L2

N = 100

V11 (truth: 2.840) V12 (truth: −1.236) V22 (truth: 1.236)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.098 1.016 1.021 0.037 0.619 0.620 0.002 0.544 0.544

CBGPS 0.091 16.173 16.173 −0.159 7.307 7.308 −0.039 3.464 3.464

N = 500

V11 (truth: 2.840) V12 (truth: −1.236) V22 (truth: 1.236)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.096 0.533 0.541 0.035 0.346 0.348 −0.021 0.300 0.301

CBGPS −0.652 0.429 0.780 0.124 0.296 0.320 −0.122 0.259 0.287

N = 1000

V11 (truth: 2.840) V12 (truth: −1.236) V22 (truth: 1.236)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.098 0.429 0.440 0.029 0.285 0.287 −0.012 0.240 0.241

CBGPS −0.582 0.423 0.720 0.072 0.283 0.292 −0.071 0.271 0.280

DGP-L2: T = 1 + 0.2
∑2
j=1Xj + ξ and Y = 1 + (1/2)

∑2
j=1Xj + T + ε, where X1, X2

i.i.d.∼ N(0, 1).
“GOE” is the proposed generalized optimization estimator. (K1,K2) = (2, 3) is used to compute π̂K(T,X),
which is used to estimate β. (K ′1,K

′
2,M0,K0) = (3, 3, 6, 8) is used to compute π̂K′(T,X), which is used

to estimate Veff . “CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized
propensity score estimator. We report the bias, standard deviation, and RMSE of each element of the variance
estimator V̂eff across M = 1000 Monte Carlo samples.
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Table 8: Simulation results on variance estimation under DGP-NL2

N = 100

V11 (truth: 1.867) V12 (truth: −0.476) V22 (truth: 1.458)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.104 0.602 0.610 0.309 0.474 0.566 −0.056 0.730 0.732

CBGPS −0.499 0.284 0.574 0.410 0.272 0.492 −0.104 0.496 0.507

N = 500

V11 (truth: 1.867) V12 (truth: −0.476) V22 (truth: 1.458)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.058 0.326 0.331 0.132 0.304 0.331 0.048 0.466 0.468

CBGPS −0.426 1.294 1.363 0.434 0.175 0.468 0.155 0.643 0.662

N = 1000

V11 (truth: 1.867) V12 (truth: −0.476) V22 (truth: 1.458)

Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

GOE −0.015 0.301 0.301 0.085 0.288 0.300 0.094 0.376 0.388

CBGPS −0.467 0.134 0.486 0.438 0.123 0.455 0.185 0.307 0.358

DGP-NL2: T = 0.1(
∑2
j=1Xj)

2 +ξ and Y = 1/2+[(1/2)
∑2
j=1Xj ]

2 +T +ε, whereX1, X2
i.i.d.∼ N(0, 1).

“GOE” is the proposed generalized optimization estimator. (K1,K2) = (2, 6) is used to compute π̂K(T,X),
which is used to estimate β. (K ′1,K

′
2,M0,K0) = (2, 10, 3, 4) is used to compute π̂K′(T,X), which is used

to estimate Veff . “CBGPS” is Fong, Hazlett, and Imai’s (2018) parametric covariate balancing generalized
propensity score estimator. We report the bias, standard deviation, and RMSE of each element of the variance
estimator V̂eff across M = 1000 Monte Carlo samples.
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Table 9: Empirical results of Fong, Hazlett, and Imai’s (2018) CBGPS approach

Covariates Parameter of Ti Parameter of T 2
i

Case #1 Zi = (Ti, T
2
i , 1)>

0.088

(0.456)

[−0.804, 0.981]

−8.5× 10−6

(2.3× 10−5)

[−5.4× 10−5, 3.7× 10−5]

Case #2 Zi = (Ti, T
2
i ,SD

>
i )>

1.333

(0.444)

[0.462, 2.204]

−8.6× 10−5

(2.0× 10−5)

[−1.3× 10−4,−4.6× 10−5]

Case #3 Zi = (Ti, T
2
i , 1,X

>
1i)
>

−0.545

(0.423)

[−1.373, 0.284]

−2.2× 10−5

(2.2× 10−5)

[−6.6× 10−5, 2.1× 10−5]

Case #4 Zi = (Ti, T
2
i ,SD

>
i ,X

>
1i)
>

−0.216

(0.422)

[−1.044, 0.611]

2.7× 10−5

(2.1× 10−5)

[−1.4× 10−5, 6.8× 10−5]

X1i is a vector of eight covariates used in the generalized propensity score model (cf. Eq. (10.1)). SDi =

(SD1i, SD2i, . . . , SD24i)
>, where SDji is a binary indicator that equals 1 if zip code i belongs to state j and

equals 0 otherwise. Any zip code contained in the dataset belongs to one and only one of 24 states. In this table we

report the CBGPS estimates for the parameters of Ti and T 2
i as well as their standard errors in round brackets and

95% confidence bands in square brackets.
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Table 10: Empirical results of the generalized optimization approach

β1 β2 β3

Point estimate 22.09 −4.7× 10−4 1.5× 10−8

Standard error 1.214 0.001 4.3× 10−8

95% confidence band [19.71, 24.47] [−0.002, 0.001] [−7.0× 10−8, 1.0× 10−7]

The link function is g(T,β) = β1 + β2T + β3T
2. Covariates X are defined in Eq. (10.2).
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Figure 1: Share of (K1, K2) selected via data-driven methods (N = 1000)
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Results of the MSE-minimization with additive and multiplicative penalties as well as the 5-folder cross validation are

presented. The choice set of (K1,K2) is the nine pairs put on the horizontal axis.
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Figure 2: Empirical densities of political advertisements

1. Original T 2. Box-Cox 3. Box-Cox & Std.

In this figure, we draw empirical densities of the treatment variable studied in Fong, Hazlett, and Imai (2018)
(i.e., the number of political advertisements aired in each zip code). Panel 1 plots the original treatment T ;
Panel 2 plots T ′, namely the treatment after running the Box-Cox transformation with λ = −0.16; Panel 3
plots T ∗, namely the standardized version of T ′. The vertical axis of each panel is normalized so that each
empirical density integrates to 1.
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1 Assumptions
Assumption 1.1 (Unconfounded Treatment Assignment) For all t ∈ T , given X , T is

independent of Y ∗(t), i.e., Y ∗(t) ⊥ T |X, for all t ∈ T .

Assumption 1.2 (i) The support X of X is a compact subset of Rr. The support T of the

treatment variable T is a compact subset of R. (ii) There exist two positive constants η1 and η2

such that

0 < η1 ≤ π0(t,x) ≤ η2 <∞ , ∀(t,x) ∈ T × X .

Assumption 1.3 There exist ΛK1×K2 ∈ RK1×K2 and a positive constant α > 0 such that

sup
(t,x)∈T ×X

∣∣(ρ′−1 (π0(t,x))− uK1(t)
>ΛK1×K2vK2(x)

∣∣ = O(K−α).

Assumption 1.4 (i) For every K1 and K2, the smallest eigenvalues of E
[
uK1(T )uK1(T )>

]
and

E
[
vK2(X)vK2(X)>

]
are bounded away from zero uniformly in K1 and K2. (ii) There are two se-

quences of constants ζ1(K1) and ζ2(K2) satisfying supt∈T ‖uK1(t)‖ ≤ ζ1(K1) and supx∈X ‖vK2(x)‖ ≤
ζ2(K2), K = K1(N)K2(N) and ζ(K) := ζ1(K1)ζ2(K2), such that ζ(K)K−α → 0 and ζ(K)

√
K/N →

0 as N →∞.

Assumption 1.5 (i) The parameter space Θ ⊂ Rp is a compact set and the true parameter β∗

is in the interior of Θ , where p ∈ N. (ii) L (Y − g(T ;β)) is continuous in β, supβ∈Θ E[|L(Y −
g(T ;β))|2] <∞ and E[supβ∈Θ |L (Y − g(T ;β)) |] <∞.

Assumption 1.6

(i) The loss function L(v) is differentiable almost everywhere, g(t;β) is twice continuously

differentiable in β ∈ Θ and we denote its first derivative by m(t;β) := ∇βg(t;β);

(ii) E [π0(T,X)L′(Y − g(T ;β))m(T ;β)] is differentiable with respect to β and H0 := −∇βE[π0(T,X)

L′(Y − g(T ;β))m(T ; β)]
∣∣∣
β=β0

is nonsingular;

(iii) ε(t,x;β0) := E[L′(Y − g(T ;β0))|T = t,X = x] is continuously differentiable in (t,x);

(iv) Suppose that N−1
∑N

i=1 π̂K(Ti,X i)L
′
(
Yi − g(Ti; β̂)

)
m(Ti; β̂) = op(N

−1/2) holds with prob-

ability approaching one.
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Assumption 1.7 (i) E
[
supβ∈Θ |L′(Y − g(T ;β))|2+δ

]
< ∞ for some δ > 0; (ii) The function

class {L′(y − g(t;β)) : β ∈ Θ} satisfies:

E

[
sup

β1:‖β1−β‖<δ
|L′(Y − g(T ;β1))− L′(Y − g(T ;β))|2

]1/2

≤ a · δb

for any β ∈ Θ and any small δ > 0 and for some finite positive constants a and b.

Assumption 1.8 ζ(K)
√
K2/N → 0 and

√
NK−α → 0.

2 Efficiency Bound

2.1 Proof of Theorem 1

Without loss of generality, we only consider the distribution of (T,X, Y ) to be absolutely

continuous with respect to Lebesgue measure, i.e., there exists a density function fT,X,Y (t,x, y)

such that dFT,X,Y (t,x, y) = fT,X,Y (t,x, y)dtdxdy. For discrete cases, the proof can be established

by using a similar argument.

We follow the approach of Bickel, Klaassen, Ritov, and Wellner (1993, Section 3.3) to derive the

variance bound of β∗, see also Tchetgen Tchetgen and Shpitser (2012). Let
{
fαY,T,X(y, t,x)

}
α∈R

denote a one dimensional regular parametric submodel with fα=0
Y,T,X(y, t,x) = fY,T,X(y, t,x). By

definition, β∗ solves following equation:∫
T
E [m(t;β∗)L′ (Y ∗(t)− g (t;β∗))] fT (t)dt = 0 . (1)

By Assumption 1.1, (1) is equivalent to∫
T

∫
X
E [m(T ;β∗)L′ (Y − g (T ;β∗)) |T = t,X = x] fX(x)fT (t)dxdt = 0 .

Therefore, the parameter β(α) induced by the submodel fαY,T,X(y, t,x) satisfies:∫
T

∫
X
m(t;β(α)) · Eα [L′ (Y − g (t;β(α))) |T = t,X = x] fαT (t)fαX(x)dxdt = 0 , (2)

where Eα [·|T = t,X = x] denotes taking expectation with respect to the submodel fαY |T,X(·|t,x).

Differentiating both sides of (2) with respect to α, evaluating at α = 0 and using the condition
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Y ∗(t) ⊥ T |X, we can deduce that

0 =

∫
T

∫
X

∂

∂α

∣∣∣∣
α=0

{m(t;β(α))Eα [L′(Y − g(t;β(α)))|T = t,X = x] fαT (t)fαX(x)} dxdt

=

∫
T

∫
X
E [L′(Y − g(t;β∗))|T = t,X = x] fT (t)fX(x)∇βm(t;β∗)dxdt · ∂

∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β∗))|T = t,X = x]m(t;β∗) · ∂
∂α

fαX(x)

∣∣∣∣
α=0

fT (t)dxdt

+

∫
Y×X×T

m(t;β∗)L′(y − g(t;β∗)) · ∂
∂α

fαY |T,X(y|t,x)

∣∣∣∣
α=0

fX(x)fT (t)dydxdt

+

∫
X×T

m(t;β∗) · ∇βE[L′(Y ∗(t)− g(t;β))|T = t,X = x]

∣∣∣∣∣
β=β∗

· ∂
∂α

∣∣∣∣
α=0

β(α) · fT (t)fX(x)dxdt

+

∫
X×T

E[L′(Y − g(t;β∗))|T = t,X = x]m(t;β∗) · ∂
∂α

fαT (t)

∣∣∣∣
α=0

fX(x)dxdt

=

∫
T

∫
X
E [L′(Y ∗(t)− g(t;β∗))|X = x] fT (t)fX(x)∇βm(t;β∗)dxdt · ∂

∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β∗))|T = t,X = x]m(t;β∗) · ∂
∂α

fαX(x)

∣∣∣∣
α=0

fT (t)dxdt

+

∫
Y×X×T

m(t;β∗)L′(y − g(t;β∗)) · ∂
∂α

fαY |T,X(y|t,x)

∣∣∣∣
α=0

fX(x)fT (t)dydxdt

+

∫
X×T

m(t;β∗) · ∇βE[L′(Y ∗(t)− g(t;β))|X = x]

∣∣∣∣∣
β=β∗

· fT (t)fX(x)dxdt · ∂
∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β∗))|T = t,X = x]m(t;β∗) · ∂
∂α

fαT (t)

∣∣∣∣
α=0

fX(x)dxdt

=

∫
T
E[L′(Y ∗(t)− g(t;β∗))] · fT (t)∇βm(t;β∗)dt · ∂

∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β∗))|T = t,X = x]m(t;β∗) · ∂
∂α

fαX(x)

∣∣∣∣
α=0

fT (t)dxdt

+

∫
Y×X×T

m(t;β∗) · L′(y − g(t;β∗)) · ∂
∂α

fαY |T,X(y|t,x)

∣∣∣∣
α=0

fX(x)fT (t)dydxdt

+

∫
T
∇βE[L′(Y ∗(t)− g(t;β))]

∣∣∣∣
β=β∗

m(t;β∗) · fT (t)dt · ∂
∂α

∣∣∣∣
α=0

β(α)

+

∫
X×T

E[L′(Y − g(t;β∗))|T = t,X = x]m(t;β∗) · ∂
∂α

fαT (t)

∣∣∣∣
α=0

fX(x)dxdt

=∇β

{∫
T
E[L′(Y ∗(t)− g(t;β))] ·m(t;β)fT (t)dt

} ∣∣∣∣∣
β=β∗

· ∂
∂α

∣∣∣∣
α=0

β(α)
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+

∫
X×T

E[L′(Y − g(t;β∗))|T = t,X = x]m(t;β∗) · ∂
∂α

fαX(x)

∣∣∣∣
α=0

fT (t)dxdt

+

∫
Y×X×T

m(t;β∗) · L′(y − g(t;β∗)) · ∂
∂α

fαY |T,X(y|t,x)

∣∣∣∣
α=0

fX(x)fT (t)dydxdt

+

∫
X×T

E[L′(Y − g(t;β∗))|T = t,X = x]m(t;β∗) · ∂
∂α

fαT (t)

∣∣∣∣
α=0

fX(x)dxdt.

Since H0 = −∇β

{∫
T E[L′(Y ∗(t)− g(t;β))] ·m(t;β)fT (t)dt

} ∣∣∣∣∣
β=β∗

is invertible, we get

∂

∂α

∣∣∣∣
α=0

β(α) = H−1
0 ·

{∫
X×T

E[L′(Y − g(t;β∗))|T = t,X = x]m(t;β∗) · ∂
∂α

fαX(x)

∣∣∣∣
α=0

fT (t)dxdt

+

∫
Y×X×T

m(t;β∗) · L′(y − g(t;β∗)) · ∂
∂α

fαY |T,X(y|t,x)

∣∣∣∣
α=0

fX(x)fT (t)dydxdt

+

∫
X×T

E[L′(Y − g(t;β∗))|T = t,X = x]m(t;β∗) · ∂
∂α

fαT (t)

∣∣∣∣
α=0

fX(x)dxdt

}
.

The efficient influence function of β∗, denoted by Seff (Y, T,X;β∗), is a unique function satisfying

the following equation:

∂

∂α

∣∣∣∣
α=0

β(α) = E
[
Seff (Y, T,X;β∗)

∂

∂α

∣∣∣∣
α=0

log fαY,X,T (Y,X, T )

]
. (3)

Therefore, to justify our theorem, it suffices to substitute Seff (Y, T,X;β∗) = H−1
0 ψ(Y, T,X;β∗)

into (3) and check the validity. Note that

E
[
Seff (Y, T,X;β∗)

∂

∂α

∣∣∣∣
α=0

log fαY,X,T (Y,X, T )

]
=H−1

0

∫
X×T ×Y

ψ(y, t,x;β∗)
∂

∂α

∣∣∣∣
α=0

fαY |X,T (y|x, t)fT,X(t,x)dydxdt (4)

+H−1
0

∫
X×T ×Y

ψ(y, t,x;β∗)fY |X,T (y|x, t) ∂
∂α

∣∣∣∣
α=0

fαT |X(t|x)fX(x)dydxdt (5)

+H−1
0

∫
X×T ×Y

ψ(y, t,x;β∗)fY |X,T (y|x, t)fT |X(t|x)
∂

∂α

∣∣∣∣
α=0

fαX(x)dydxdt. (6)

For the term (4), we have

(4) =H−1
0

∫
X×T ×Y

{
fT (t)

fT |X(t|x)
m(t;β∗) · L′(y − g(t;β∗))− fT (t)

fT |X(t|x)
m(t;β∗) · ε(t,x;β∗)
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+ E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X = x] + E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|T = t]

}
× ∂

∂α

∣∣∣∣
α=0

fαY |X,T (y|x, t)fT,X(t,x)dydxdt

=H−1
0

∫
X×T ×Y

fT (t)

fT |X(t|x)
m(t;β∗) · L′(y − g(t;β∗)) · ∂

∂α

∣∣∣∣
α=0

fαY |X,T (y|x, t)fT,X(t,x)dydxdt

=H−1
0

∫
X×T ×Y

m(t;β∗) · L′(y − g(t;β∗)) · ∂
∂α

∣∣∣∣
α=0

fαY |X,T (y|x, t)fT (t)fX(x)dydxdt.

For the term (5), we have

(5) =H−1
0

∫
X×T ×Y

{
fT (t)

fT |X(t|x)
m(t;β∗) · L′(y − g(t;β∗))− fT (t)

fT |X(t|x)
m(t;β∗) · ε(t,x;β∗)

+ E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X = x] + E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|T = t]

}
× fY |X,T (y|x, t) ∂

∂α

∣∣∣∣
α=0

fαT |X(t|x)fX(x)dydxdt

=H−1
0

∫
X×T

{
E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X = x] + E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|T = t]

}
· ∂
∂α

∣∣∣∣
α=0

fαT |X(t|x)fX(x)dxdt

=H−1
0

∫
X×T

E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|T = t] · ∂
∂α

∣∣∣∣
α=0

fαT |X(t|x)fX(x)dxdt

=H−1
0

∫
X×T

E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|T = t] · ∂
∂α

∣∣∣∣
α=0

fαT (t)dt

=H−1
0

∫
X×T

ε(t,x;β∗)
fT (t)

fT |X(t|x)
m(t;β∗) · ∂

∂α

∣∣∣∣
α=0

fαT (t) · fX|T (x|t)dxdt

=H−1
0

∫
X×T

ε(t,x;β∗)m(t;β∗) · ∂
∂α

∣∣∣∣
α=0

fαT (t) · fX(x)dxdt,

where the first equality holds in accordance with the definition of
∫
Y L
′(y−g(t;β∗))fY |X,T (y|x, t)dy =:

ε(t,x;β∗).

For the term (6), we have

(6) =H−1
0

∫
X×T ×Y

{
fT (t)

fT |X(t|x)
m(t;β∗) · L′(y − g(t;β∗))− fT (t)

fT |X(t|x)
m(t;β∗) · ε(t,x;β∗)

+ E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X = x] + E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|T = t]

}
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× fY |X,T (y|x, t)fT |X(t|x)
∂

∂α

∣∣∣∣
α=0

fαX(x)dydxdt

=H−1
0

∫
X×T

{
E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X = x] + E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|T = t]

}
× fT |X(t|x) · ∂

∂α

∣∣∣∣
α=0

fαX(x)dxdt

=H−1
0

∫
X×T

E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X = x] · fT |X(t|x) · ∂
∂α

∣∣∣∣
α=0

fαX(x)dxdt

=H−1
0

∫
X
E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X = x] · ∂

∂α

∣∣∣∣
α=0

fαX(x)dx

=H−1
0

∫
X×T

ε(t,x;β∗)m(t;β∗) · fT (t) · ∂
∂α

∣∣∣∣
α=0

fαX(x)dxdt.

We have proved (3) holds, hence Seff is the efficient influence function of β∗.

2.2 Particular Case I: Binary Average Treatment Effects

In this section, we show that when T ∈ {0, 1}, g(t;β) = β0 + β1 · t and L(v) = v2, our general

efficiency bound derived in Theorem 1 reduces to the well-known efficiency bound for average

treatment effects in Robins, Rotnitzky, and Zhao (1994) and Hahn (1998). In accordance with

our identification condition, β∗0 and β∗1 are identified by minimizing the following loss function

∑
t∈{0,1}

E[(Y ∗(t)− β0 − β1 · t)2] · P(T = t).

The solutions are given by

β∗0 = E[Y ∗(0)], β∗1 = E[Y ∗(1)− Y ∗(0)].

Here β∗1 is the average treatment effects.

Corollary 2.1 Suppose T ∈ {0, 1}, L(v) = v2, g(t;β) = β0 +β1 · t and the conditions in Theorem

1 hold, the efficient influence functions of β∗0 and β∗1 given by Theorem 1 reduce to

Seff (T,X, Y ; β∗0) = φ2(T,X, Y ; β∗0),

Seff (T,X, Y ; β∗1 , β
∗
0) = φ2(T,X, Y ; β∗0)− φ1(T,X, Y ; β∗1 , β

∗
0),
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where

φ1(T,X, Y ; β∗1 , β
∗
0) =

T

P(T = 1|X)
· Y ∗(1)−

{
T

P(T = 1|X)
− 1

}
· E[Y ∗(1)|X]− β∗0 − β∗1 ,

φ2(T,X, Y ; β∗0) =
1− T

P(T = 0|X)
· Y ∗(0)−

{
1− T

P(T = 0|X)
− 1

}
· E[Y ∗(0)|X]− β∗0 ,

and they are the same as the efficient influence functions given in Robins, Rotnitzky, and Zhao

(1994) and Hahn (1998).

Proof. Using our notation, we have

β∗ = (β0, β1)>, g(t;β∗) = β∗0 + β∗1 · t, m(t;β∗) =

[
1

t

]
, H0 = E

[
m(T ;β∗)m(T ;β∗)>

]
,

ε(T,X;β∗) = T · {E[Y ∗(1)− Y ∗(0)|X]− β∗1}+ E[Y ∗(0)|X]− β∗0 ,

π0(T,X) =
T · p+ (1− T ) · q

T · P(T = 1|X) + T · P(T = 0|X)
=

T

P(T = 1|X)
· p+

1− T
P(T = 0|X)

· q,

where p = P(T = 1) and q = P(T = 0). In accordance with our Theorem 1, the efficient influence

function of (β0, β1) is

H−1
0

{
π0(T,X)m(T ;β∗) {Y − E[Y |X, T ]}+ E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X]

}
.

With some computation, we have

H−1
0 =

[
1 p

p p

]−1

=
1

pq
·

[
p −p
−p 1

]
=

[
1
q
−1
q

−1
q

1
pq

]
. (7)

and

π0(T,X)m(T ;β∗) {Y − E[Y |X, T ]}

=
T

P(T = 1|X)
· p ·

[
1

T

]
·
{
Y − T · E[Y ∗(1)|X]− (1− T ) · E[Y ∗(0)|X]

}

+
1− T

P(T = 0|X)
· q ·

[
1

T

]
·
{
Y − T · E[Y ∗(1)|X]− (1− T ) · E[Y ∗(0)|X]

}

=
T

P(T = 1|X)
· p ·

[
1

1

]
·
{
Y ∗(1)− E[Y ∗(1)|X]

}
+

1− T
P(T = 0|X)

· q ·

[
1

0

]
·
{
Y ∗(0)− E[Y ∗(0)|X]

}
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=

 T
P(T=1|X)

· {Y ∗(1)− E[Y ∗(1)|X]} · p+ 1−T
P(T=0|X)

· {Y ∗(0)− E[Y ∗(0)|X]} · q

T
P(T=1|X)

· {Y ∗(1)− E[Y ∗(1)|X]} · p

 (8)

and

E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X]

=E

[(
T · {E[Y ∗(1)− Y ∗(0)|X]− β∗1}+ E[Y ∗(0)|X]− β∗0

)
· T

P(T = 1|X)
· p ·

[
1

T

] ∣∣∣∣X
]

+ E

[(
T · {E[Y ∗(1)− Y ∗(0)|X]− β∗1}+ E[Y ∗(0)|X]− β∗0

)
· 1− T
P(T = 0|X)

· q ·

[
1

T

] ∣∣∣∣X
]

=E

[(
E[Y ∗(1)|X]− β∗1 − β∗0

)
· T

P(T = 1|X)
· p ·

[
1

1

] ∣∣∣∣X
]

+ E

[(
E[Y ∗(0)|X]− β∗0

)
· 1− T
P(T = 0|X)

· q ·

[
1

0

] ∣∣∣∣X
]

=


(
E[Y ∗(1)|X]− β∗1 − β∗0

)
· p+

(
E[Y ∗(0)|X]− β∗1

)
· q(

E[Y ∗(1)|X]− β∗1 − β∗0
)
· p

 . (9)

Therefore, with (7), (8), and (9) we can obtain that

π0(T,X)m(T ;β∗) {Y − E[Y |X, T ]}+ E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X]

=

p · φ1(T,X, Y ;β∗) + q · φ2(T,X, Y ;β∗)

p · φ1(T,X, Y ;β∗)

 ,

and the efficient influence functions of β∗0 and β∗1 are given by

[
1
q
−1
q

−1
q

1
pq

]
·

p · φ1(T,X, Y ;β) + q · φ2(T,X, Y ;β∗)

p · φ1(T,X, Y ;β∗)

 =

 φ2(T,X, Y ;β∗)

φ1(T,X, Y ;β∗)− φ2(T,X, Y ;β∗) .

 .
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2.3 Particular Case II: Multiple Average Treatment Effects

In this section, we show that when T ∈ {0, 1, ..., J}, J ∈ N, g(t;β) =
∑J

j=0 βj · I(t = j)

and L(v) = v2, our general efficiency bound derived in Theorem 1 reduces to the efficiency

bound of multi-level treatment effects given in Cattaneo (2010). In accordance with our proposed

identification condition, {β∗j }Jj=0 are identified by minimizing the following loss function

J∑
j=0

E
[
(Y ∗(j)− βj)2

]
· P(T = j).

The solutions are β∗j = E[Y ∗(j)] for j ∈ {0, ..., J}.

Corollary 2.2 Suppose T ∈ {0, 1, ..., J}, J ∈ N, g(t;β) =
∑J

j=0 βj · I(t = j), L(v) = v2, and

the conditions in Theorem 1 hold, the efficient influence functions of {β∗j }Jj=0 given by Theorem

1 reduce to

Seff (T,X, Y ; β∗j ) =
I(T = j)

P(T = j|X)
· {Y ∗(j)− E[Y ∗(j)|X]}+ E[Y ∗(j)|X]− β∗j , j ∈ {0, ..., J},

and they are the same as the efficient influence functions given in Cattaneo (2010).

Proof. Using our notation, we have

β∗ = (β∗0 , ..., β
∗
J)>, g(t;β∗) =

J∑
j=0

βj · I(t = j), m(t;β∗) =


I(t = 0)

I(t = 1)
...

I(t = J)

 , H0 = E
[
m(T ;β∗)m(T ;β∗)>

]
.

Then

ε(T,X;β∗) =E[Y |T,X]− g(T ;β∗)

=
J∑
j=0

E[Y ∗(j)|X] · I(t = j)−
J∑
j=0

β∗j · I(T = j)

=
J∑
j=0

(
E[Y ∗(j)|X]− β∗j

)
· I(T = j)
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and

π0(T,X) =
J∑
j=0

I(T = j)

P(T = j|X)
· pj, where pj = P(T = j).

Then we have

H−1
0 = E

[
m(T ;β∗)m(T ;β∗)>

]−1
=


p−1

0

p−1
1

· · ·
p−1
J

 ,

and

π0(T,X)m(T ;β∗) {Y − E[Y |X, T ]}

=

{
J∑
j=0

I(T = j)

P(T = j|X)
· pj

}
·


I(T = 0)

I(T = 1)
...

I(T = J)

 ·
{
Y −

J∑
j=0

I(T = j) · E[Y ∗(j)|X]

}

=


I(T = 0)

I(T = 1)
...

I(T = J)


{

J∑
j=0

I(T = j)

P(T = j|X)
· pj · Y ∗(j)−

J∑
j=0

I(T = j)

P(T = j|X)
· pj · E[Y ∗(j)|X]

}

=



I(T=0)
P(T=0|X)

· p0 · {Y ∗(0)− E[Y ∗(0)|X]}
I(T=1)

P(T=1|X)
· p1 · {Y ∗(1)− E[Y ∗(1)|X]}

...

I(T=J)
P(T=J |X)

· pJ · {Y ∗(j)− E[Y ∗(j)|X]}

 (10)

and

ε(T,X;β∗)π0(T,X)m(T ;β∗)
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=

{
J∑
j=0

(
E[Y ∗(j)|X]− β∗j

)
· I(T = j)

}{
J∑
j=0

I(T = j)

P(T = j|X)
· pj

}
I(T = 0)

I(T = 1)
...

I(T = J)



=


I(T=0)

P(T=0|X)
· p0 · {E[Y ∗(0)|X]− β∗0}

I(T=1)
P(T=1|X)

· p1 · {E[Y ∗(1)|X]− β∗1}
...

I(T=J)
P(T=J |X)

· pJ · {E[Y ∗(j)|X]− β∗J}


and

E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X] =


p0 · {E[Y ∗(0)|X]− β∗0}

p1 · {E[Y ∗(1)|X]− β∗1}
...

pJ · {E[Y ∗(j)|X]− β∗J}

 . (11)

From Theorem 1, the efficient influence function of β∗ = (β∗0 , ..., β
∗
J) is given by

H−1
0 {π0(T,X)m(T ;β∗) {Y − E[Y |X, T ]}+ E [ε(T,X;β0)π0(T,X)m(T ;β∗)|X]}

=



I(T=0)
P(T=0|X)

· {Y ∗(0)− E[Y ∗(0)|X]}+ E[Y ∗(0)|X]− β∗0
I(T=1)

P(T=1|X)
· {Y ∗(1)− E[Y ∗(1)|X]}+ E[Y ∗(1)|X]− β∗1

...

I(T=J)
P(T=J |X)

· {Y ∗(j)− E[Y ∗(j)|X]}+ E[Y ∗(j)|X]− β∗J

 ,

which is the same as the efficient influence function developed in Corollary 1 of Cattaneo (2010).

2.4 Particular Case III: Binary Quantile Treatment Effects

In this section, we show that when T ∈ {0, 1} is a binary treatment variable, L(v) = v(τ−I(v ≤
0)) is the check function with τ ∈ (0, 1), and g(t;β∗) = β∗0 · (1− t) + β∗1 · t, where β∗ = (β∗0 , β

∗
1),

our general efficiency bound derived in Theorem 1 reduces to the efficiency bound of quantile

treatment effects given in Firpo (2007). In accordance with our identification condition, β∗0 and
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β∗1 are identified by minimizing the following loss function

∑
j∈{0,1}

P(T = j) · E [(Y ∗(j)− βj) {τ − I(Y ∗(j) ≤ βj)}] .

The solutions are β∗0 = inf{q : P(Y ∗(0) ≤ q) ≥ τ} and β∗1 = inf{q : P(Y ∗(1) ≤ q) ≥ τ}, which are

the τ th quantiles of potential outcomes.

Corollary 2.3 Let T ∈ {0, 1}, fY ∗(1) and fY ∗(0) be the probability densities of the potential out-

comes Y ∗(1) and Y ∗(0) respectively, g(t;β∗) = β∗0 · (1 − t) + β∗1 · t, L(v) = v(τ − I(v ≤ 0)), and

the conditions in Theorem 1 hold, then the efficient influence function of β∗ given by Theorem 1

reduces to

Seff (Y, T,X;β∗) =

 1−T
P(T=0|X)

·
{
τ−I(Y ∗(0)≤β∗0 )

fY ∗(0)(β
∗
0 )

}
−
(

1−T
P(T=0|X)

− 1
)
· E
[
τ−I(Y ∗(0)≤β∗0 )

fY ∗(0)(β
∗
0 )

∣∣X]
T

P(T=1|X)
·
{
τ−I(Y ∗(1)≤β∗1 )

fY ∗(1)(β
∗
1 )

}
−
(

T
P(T=1|X)

− 1
)
· E
[
τ−I(Y ∗(1)≤β∗1 )

fY ∗(1)(β
∗
1 )

∣∣X]
 ,

which is the same as the efficient influence function given in Firpo (2007).

Proof. Using our notation, we have

β∗ = (β∗0 , β
∗
1)>, g(t;β∗) = β∗0 · (1− t) + β∗1 · t, m(t;β∗) =

[
1− t
t

]
,

L(v) = v(τ − I(v ≤ 0)), L′(v) = τ − I(v ≤ 0) a.s.,

ε(T,X;β∗) = T · E[τ − I(Y ∗(1) ≤ β∗1)|X] + (1− T ) · E[τ − I(Y ∗(0) ≤ β∗0)|X],

π0(T,X) =
T

P(T = 1|X)
· p+

1− T
P(T = 0|X)

· q , p = P(T = 1), q = P(T = 0).

Direct computation yields

π0(T,X)m(T ;β∗)L′(Y − g(T ;β∗))

=

{
T

P(T = 1|X)
· p+

1− T
P(T = 0|X)

· q
}
·

[
1− T
T

]
·
{
τ − I(Y ≤ β∗0 · (1− T ) + β∗1 · T )

}

=

 1−T
P(T=0|X)

· q · {τ − I(Y ∗(0) ≤ β∗0)}
T

P(T=1|X)
· p · {τ − I(Y ∗(1) ≤ β∗1)}


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and

π0(T,X)m(T ;β∗)ε(T,X;β∗) =

 1−T
P(T=0|X)

· q · E [τ − I(Y ∗(0) ≤ β∗0)|X]

T
P(T=1|X)

· p · E [τ − I(Y ∗(1) ≤ β∗1)|X]


and

E [π0(T,X)m(T ;β∗)ε(T,X;β∗)|X] =

q · E [τ − I(Y ∗(0) ≤ β∗0)|X]

p · E [τ − I(Y ∗(1) ≤ β∗1)|X]


and

H0 =∇βE [π0(T,X)m(T ;β∗)L′(Y − g(T ;β∗))] =

[
−q · fY ∗(0)(β

∗
0) 0

0 −p · fY ∗(1)(β
∗
1)

]
.

Therefore, by Theorem 1, the efficient influence function of β∗ is

Seff (Y, T,X;β∗)

=H−1
0 ·

{
π0(T,X)m(T ;β∗)L′(Y − g(T ;β∗))− π0(T,X)m(T ;β∗)ε(T,X;β∗)

+ E [ε(T,X;β∗)π0(T,X)m(T ;β∗)|X]

}

=

q−1 · 1
fY ∗(0)(β

∗
0 )

0

0 p−1 · 1
fY ∗(1)(β

∗
1 )


×

 1−T
P(T=0|X)

· q · {τ − I(Y ∗(0) ≤ β∗0)} − q ·
(

1−T
P(T=0|X)

− 1
)
· E [τ − I(Y ∗(0) ≤ β∗0)|X]

T
P(T=1|X)

· p · {τ − I(Y ∗(1) ≤ β∗1)} − p ·
(

T
P(T=1|X)

− 1
)
· E [τ − I(Y ∗(1) ≤ β∗1)|X]



=


1−T

P(T=0|X)
·
{
τ−I(Y ∗(0)≤β∗0 )

fY ∗(0)(β
∗
0 )

}
−
(

1−T
P(T=0|X)

− 1
)
· E
[
τ−I(Y ∗(0)≤β∗0 )

fY ∗(0)(β
∗
0 )

∣∣∣∣X]
T

P(T=1|X)
·
{
τ−I(Y ∗(1)≤β∗1 )

fY ∗(1)(β
∗
1 )

}
−
(

T
P(T=1|X)

− 1
)
· E
[
τ−I(Y ∗(1)≤β∗1 )

fY ∗(1)(β
∗
1 )

∣∣∣∣X]
 ,

which coincides with efficiency bound derived in Firpo (2007).

3 Convergence Rate of Estimated Stabilized Weights
In this section, we establish the convergence rate of estimated stabilized weights π̂K(T,X).

Let G∗K1×K2
, Λ∗K1×K2

and π∗K(t,x) be the theoretical counterparts of ĜK1×K2 , Λ̂K1×K2 and π̂K(t,x)
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respectively:

G∗K1×K2
(Λ) :=E[ĜK1×K2(Λ)] = E

[
ρ
(
uK1(T )>ΛvK2(X)

)]
− E[uK1(T )>] · Λ · E[vK2(X)],

Λ∗K1×K2
:= arg maxG∗K1×K2

(Λ),

π∗K(t,x) :=ρ′
(
uK1(t)

>Λ∗K1×K2
vK2(x)

)
.

Because of Assumption 1.4, without loss of generality, we can assume the sieve bases uK1(T ) and

vK2(X) are orthonormalized, i.e.,

E
[
uK1(T )u>K1

(T )
]

= IK1×K1 , E
[
vK2(X)v>K2

(X)
]

= IK2×K2 . (12)

Let

ζ1(K1) := sup
t∈T
‖uK1(t)‖ , ζ2(K2) := sup

x∈X
‖vK2(x)‖ , K = K1 ·K2 , ζ(K) = ζ1(K1)ζ2(K2).

We also recall the following property satisfied by π0(T,X): for any integrable functions u(t) and

v(X),

E [π0(T,X)u(T )v(X)] = E[u(T )] · E[v(X)]. (13)

3.1 Lemma 3.1

The first lemma states that π∗K(t,x) is arbitrarily close to the true stabilized weights π0(t,x).

Lemma 3.1 Under Assumption 1.2-1.4, we have

sup
(t,x)∈T ×X

|π0(t,x)− π∗K(t,x)| = O(ζ(K)K−α),

and

E
[
|π0(T,X)− π∗K(T,X)|2

]
= O

(
K−2α

)
,

and
1

N

N∑
i=1

|π0(Ti,X i)− π∗K(Ti,X i)|2 = Op

(
K−2α

)
.

Proof. By Assumption 1.2, π0(t,x) ∈ [η1, η2], ∀(t,x) ∈ T × X and (ρ′)−1 is strictly decreasing.

Define

γ := sup
(t,x)∈T ×X

(ρ′)−1 (π0(t,x)) ≤ (ρ′)−1(η1) and γ := inf
(t,x)∈T ×X

(ρ′)−1 (π0(t,x)) ≥ (ρ′)−1(η2),

16



which are two finite constants. By Assumptions 1.3, there exist a constant C > 0 and a K1 ×K2

matrix ΛK1×K2 ∈ RK1×K2 such that

sup
(t,x)∈T ×X

∣∣(ρ′)−1 (π0(t,x))− uK1(t)
>ΛK1×K2vK2(x)

∣∣ < CK−α,

which implies

uK1(t)
>ΛK1×K2vK2(x) ∈

(
(ρ′)−1 (π0(t,x))− CK−α, (ρ′)−1 (π0(t,x)) + CK−α

)
(14)

⊂
[
γ − CK−α, γ + CK−α

]
, ∀(t,x) ∈ T × X ,

and

ρ′
(
uK1(t)

>ΛK1×K2vK2(x) + CK−α
)
− ρ′(uK1(t)

>ΛK1×K2vK2(X))

<π0(t,x)− ρ′
(
uK1(t)

>ΛK1×K2vK2(x)
)

<ρ′
(
uK1(t)

>ΛK1×K2vK2(x)− CK−α
)
− ρ′(uK1(t)

>ΛK1×K2vK2(x)) ,∀(t,x) ∈ T × X .

Let Γ1 := [γ − 1, γ + 1], by Mean Value Theorem, for large enough K, there exist

ξ1(t,x) ∈
(
uK1(t)

>ΛK1×K2vK2(x), uK1(t)
>ΛK1×K2vK2(x) + CK−α

)
⊂
[
γ − CK−α, γ + 2CK−α

]
⊂ Γ1 ,

ξ2(t,x) ∈
(
uK1(t)

>ΛK1×K2vK2(x)− CK−α, uK1(t)
>ΛK1×K2vK2(x)

)
⊂
[
γ − 2CK−α, γ + CK−α

]
⊂ Γ1,

such that

ρ′
(
uK1(t)

>ΛK1×K2vK2(x) + CK−α
)
− ρ′

(
uK1(t)

>ΛK1×K2vK2(x)
)

= ρ′′(ξ1(t, x))CK−α ≥ −a1CK
−α

and

ρ′
(
uK1(t)

>ΛK1×K2vK2(x)− CK−α
)
− ρ′

(
uK1(t)

>ΛK1×K2vK2(x)
)

= −ρ′′(ξ2(t,x))CK−α ≤ a2CK
−α,

where −a1 := infγ∈Γ1 ρ
′′(γ) and a2 := supγ∈Γ1

(−ρ′′(γ)). Let a := max{a1, a2}, we have

sup
(t,x)∈T ×X

∣∣π0(t,x)− ρ′
(
uK1(t)

>ΛK1×K2vK2(x)
)∣∣ < aCK−α. (15)
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For some fixed C2 > 0 (to be chosen later), define

ΥK1×K2 :=
{

Λ ∈ RK1×K2 : ‖Λ− ΛK1×K2‖ ≤ C2K
−α} .

For sufficiently large K1 and K2, we have that ∀Λ ∈ ΥK1×K2 , ∀(t,x) ∈ T × X ,

∣∣uK1(t)
>ΛvK2(x)− uK1(t)

>ΛK1×K2vK2(x)
∣∣

≤‖Λ− ΛK1×K2‖ · sup
x∈X
‖vK2(x)‖ · sup

t∈T
‖uK1(t)‖ ≤ C2K

−αζ1(K1)ζ2(K2).

Then in light of (14) and Assumption 1.4, for large enough K1 and K2, ∀Λ ∈ ΥK1×K2 and

∀(t,x) ∈ T × X , we can deduce that

uK1(t)
>ΛvK2(x) ∈

(
uK1(t)

>ΛK1×K2vK2(x)− C2K
−αζ1(K1)ζ2(K2), (16)

uK1(t)
>ΛK1×K2vK2(x) + C2K

−αζ1(K1)ζ2(K2)
)

⊂
[
γ − CK−α − C2K

−αζ1(K1)ζ2(K2),

γ + CK−α + C2K
−αζ1(K1)ζ2(K2)

]
⊂ Γ1.

By definition

G∗K1×K2
(Λ) = E

[
ρ
(
uK1(T )>ΛvK2(X)

)]
− E[uK1(T )]>ΛE[vK2(X)],

is a strictly concave function of Λ. By (13), the formula tr(AB) = tr(BA) for matrices A and B,

the facts E
[
vK2(X)vK2(X)>

]
= IK2×K2 and E

[
uK1(T )uK1(T )>

]
= IK1×K1 , we can deduce that

‖∇G∗K1×K2
(ΛK1×K2

)‖2

=
∥∥E [ρ′ (uK1(T )>ΛK1×K2vK2(X)

)
uK1(T )vK2(X)>

]
− E[uK1(T )]E[vK2(X)]>

∥∥2

=
∥∥E [ρ′ (uK1

(T )>ΛK1×K2
vK2

(X)
)
uK1

(T )vK2
(X)>

]
− E[π0(T,X)uK1

(T )vK2
(X)]>

∥∥2
(by (13))

=

∥∥∥∥∥E
[√

π0(T,X)

{
ρ′
(
uK1

(T )>ΛK1×K2
vK2

(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)>

]∥∥∥∥∥
2

=tr

{
E

[√
π0(T,X)

{
ρ′
(
uK1

(T )>ΛK1×K2
vK2

(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)>

]

× E

[√
π0(T,X)

{
ρ′
(
uK1(T )>ΛK1×K2vK2(X)

)
− π0(T,X)

}√
π0(T,X)

vK2
(X)uK1

(T )>

]}

=tr

{
E

[√
π0(T,X)

{
ρ′
(
uK1

(T )>ΛK1×K2
vK2

(X)
)
− π0(T,X)

}√
π0(T,X)

uK1
(T )vK2

(X)>

]
· E
[
uK2

(X)uK2
(X)>

]
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× E

[√
π0(T,X)

{
ρ′
(
uK1

(T )>ΛK1×K2
vK2

(X)
)
− π0(T,X)

}√
π0(T,X)

vK2
(X)uK1

(T )>

]
· E
[
uK1

(T )uK1
(T )>

]}

=E

[
tr

{
uK1(T )> · E

[√
π0(T,X)

{
ρ′
(
uK1

(T )>ΛK1×K2
vK2

(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)>

]
· E
[
uK2(X)uK2(X)>

]
× E

[√
π0(T,X)

{
ρ′
(
uK1(T )>ΛK1×K2vK2(X)

)
− π0(T,X)

}√
π0(T,X)

vK2
(X)uK1

(T )>

]
· uK1

(T )

}]

=E

[
π0(T,X) · uK1

(T )> · E

[√
π0(T,X)

{
ρ′
(
uK1

(T )>ΛK1×K2
vK2

(X)
)
− π0(T,X)

}√
π0(T,X)

uK1
(T )vK2

(X)>

]
· uK2

(X)

× ·uK2(X)>E

[√
π0(T,X)

{
ρ′
(
uK1

(T )>ΛK1×K2
vK2

(X)
)
− π0(T,X)

}√
π0(T,X)

vK2(X)uK1(T )>

]
· uK1(T )

]
(by (13))

=E

[∣∣∣∣π0(T,X)
1
4uK1(T )E

[√
π0(T,X)

{
ρ′
(
uK1

(T )>ΛK1×K2
vK2

(X)
)
− π0(T,X)

}√
π0(T,X)

uK1(T )vK2(X)>

]
π0(T,X)

1
4 vK2(X)

∣∣∣∣2
]
.

(17)

Note that the term in the last expression

π0(T,X)
1
4uK1

(T )·E

[√
π0(T,X)

{
ρ′
(
uK1(T )>ΛK1×K2vK2(X)

)
− π0(T,X)

}√
π0(T,X)

uK1
(T )vK2

(X)>

]
π0(T,X)

1
4 vK2

(X)

is the L2(dFT,X)-projection of
{ρ′(uK1

(T )>ΛK1×K2
vK2

(X))−π0(T,X)}√
π0(T,X)

on the space spanned by {π0(T,X)
1
4uK1(T ),

π0(T,X)
1
4 vK2

(X)}, which implies that

E

[∣∣∣∣π0(T,X)
1
4uK1

(T )E

[√
π0(T,X)

{
ρ′
(
uK1

(T )>ΛK1×K2
vK2

(X)
)
− π0(T,X)

}√
π0(T,X)

uK1
(T )vK2

(X)>

]
π0(T,X)

1
4 vK2

(X)

∣∣∣∣2
]

≤E

[∣∣∣∣
{
ρ′
(
uK1

(T )>ΛK1×K2
vK2

(X)
)
− π0(T,X)

}√
π0(T,X)

∣∣∣∣2
]
. (18)

Now, with (17), (18), we can obtain that

‖∇G∗K1×K2
(ΛK1×K2)‖

≤E

[∣∣∣∣
{
ρ′
(
uK1(T )>ΛK1×K2vK2(X)

)
− π0(T,X)

}√
π0(T,X)

∣∣∣∣2
] 1

2

≤ 1
√
η1

sup
(t,x)∈T ×X

∣∣ρ′ (uK1(t)
>ΛK1×K2vK2(x)

)
− π0(t,x)

∣∣ (by Assumption 1.2)

≤ aC
√
η1

·K−α (by (15)). (19)

Note that for any Λ ∈ ∂ΥK1×K2 , i.e. ‖Λ− ΛK1×K2‖ = C2K
−α, by Mean Value Theorem and the
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fact ρ′′(y) = −ρ′(y), we can deduce that

G∗K1×K2
(Λ)−G∗K1×K2

(ΛK1×K2)

=

K2∑
j=1

(λj − λKj )>
∂

∂λi
G∗K1×K2

(λK1 , . . . , λ
K
K2

)

+

K2∑
l=1

K2∑
j=1

1

2
(λj − λKj )>

∂2

∂λi∂λl
G∗K1×K2

(λ̄K1 , . . . , λ̄
K
K2

)(λl − λKl )

≤ ‖Λ− ΛK1×K2‖ ‖∇G∗K1×K2
(ΛK1×K2)‖

+
1

2

K2∑
l=1

K2∑
j=1

(λj − λKj )>E
[
ρ′′
(
u>K1

(T )Λ̄K1×K2vK2(X)
)
uK1(T )uK1(T )>vK2,j(X)vK2,l(X)

]
(λl − λKl )

= ‖Λ− ΛK1×K2‖ ‖∇G∗K1×K2
(ΛK1×K2)‖

− 1

2

K2∑
l=1

K2∑
j=1

(λj − λKj )>E

[
ρ′
(
u>K1

(T )Λ̄K1×K2vK2(X)
)

π0(T,X)
π0(T,X)uK1(T )uK1(T )>vK2,j(X)vK2,l(X)

]
(λl − λKl )

≤ ‖Λ− ΛK1×K2‖ ‖∇G∗K1×K2
(ΛK1×K2)‖

− a3

2η2

K2∑
l=1

K2∑
j=1

(λj − λKj )>E
[
π0(T,X)uK1(T )uK1(T )>vK2,j(X)vK2,l(X)

]
(λl − λKl ) (by a3 = inf

y∈Γ1

{ρ′(y)})

= ‖Λ− ΛK1×K2‖ ‖∇G∗K1×K2
(ΛK1×K2)‖

− a3

2η2

K2∑
l=1

K2∑
j=1

(λj − λKj )>E
[
uK1(T )uK1(T )>

]
E [vK2,j(X)vK2,l(X)] (λl − λKl ) (by (13))

= ‖Λ− ΛK1×K2‖ ‖∇G∗K1×K2
(ΛK1×K2)‖ − a3

2η2

K2∑
l=1

K2∑
j=1

(λj − λKj )>E [vK2,j(X)vK2,l(X)] (λl − λKl )

= ‖Λ− ΛK1×K2‖ ‖∇G∗K1×K2
(ΛK1×K2)‖ − a3

2η2

K2∑
j=1

(λj − λKj )>(λj − λKj )

= ‖Λ− ΛK1×K2‖ ‖∇G∗K1×K2
(ΛK1×K2)‖ − a3

2η2
‖Λ− ΛK1×K2‖

2

= ‖Λ− ΛK1×K2‖
(
‖∇G∗K1×K2

(ΛK1×K2)‖ − a3

2η2
‖Λ− ΛK1×K2‖

)
≤ ‖Λ− ΛK1×K2‖

(
aC
√
η1
K−α − a3

2η2
· C2K

−α
)
, (by (19))

where Λ̄K1×K2 = (λ̄K1 , ..., λ̄
K
K2

) lies on the line joining Λ = (λ1, ..., λK2) and ΛK1×K2 = (λK1 , ..., λ
K
K2

),

which implies u>K1
(t)Λ̄K1×K2vK2(x) ∈ Γ1 by (16); a3 = infy∈Γ1{ρ′(y)} > 0 is a finite pos-

itive constant; the fourth and fifth equalities follow from E
[
uK1(T )uK1(T )>

]
= IK1×K1 and
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E
[
vK2(X)vK2(X)>

]
= IK2×K2 respectively. Therefore, by choosing

C2 >
2η2

a3

· aC√
η1

,

we can obtain the following conclusion:

G∗K1×K2
(ΛK1×K2) > G∗K1×K2

(Λ) , ∀Λ ∈ ∂ΥK1×K2 . (20)

Since G∗K1×K2
is continuous, (20) implies that there exists a local maximum of G∗K1×K2

in the

interior of ΥK1×K2 . Note that G∗K1×K2
is strictly concave with a unique global maximum point

Λ∗K1×K2
, therefore we can claim that

Λ∗K1×K2
∈ Υ◦K1×K2

, i.e. ‖Λ∗K1×K2
− ΛK1×K2‖ = O(K−α) . (21)

By Mean Value Theorem, (16) and (21), we can deduce that

|ρ′ (uK1(t)ΛK1×K2vK2(x))− ρ′
(
uK1(t)Λ

∗
K1×K2

vK2(x)
)
|

=|ρ′′(ξ∗(t,x))|
∣∣uK1(t)ΛK1×K2vK2(x)− uK1(t)Λ

∗
K1×K2

vK2(x)
∣∣

≤− ρ′′(ξ∗(t,x))× ‖ΛK1×K2 − Λ∗K1×K2
‖ × sup

t∈T
‖uK1(t)‖ × sup

x∈X
‖vK2(x)‖

≤a2C2K
−αζ1(K1)ζ2(K2) ,

where a2 = supγ∈Γ1
{−ρ′′(γ)} < ∞ is a finite positive constant, and ξ∗(t,x) lies between the

point uK1(t)
>Λ∗K1×K2

vK2(x) and uK1(t)
>ΛK1×K2vK2(x) (note (16) implies ξ∗(t,x) ∈ Γ1 for all

(t,x) ∈ T × X and large enough K). Therefore, using the triangle inequality, and Assumption

1.4, we can have

sup
(t,x)∈T ×X

|π0(t,x)− π∗K(t,x)|

≤ sup
(t,x)∈T ×X

|π0(t,x)− ρ′ (uK1(t)ΛK1×K2vK2(x))|

+ sup
(t,x)∈T ×X

∣∣ρ′ (uK1(t)ΛK1×K2vK2(x))− ρ′
(
uK1(t)Λ

∗
K1×K2

vK2(x)
)∣∣

≤ aCK−α + a2C2K
−αζ1(K1)ζ2(K2) = O

(
K−αζ(K)

)
,

where ζ(K) = ζ1(K1)ζ2(K2).
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We next prove E
[
|π0(T,X)− π∗K(T,X)|2

]
= O (K−2α). By Assumption 1.4, we can deduce

that

E
[
|π0(T,X)− π∗K(T,X)|2

]
≤2 · E

[
|π0(T,X)− ρ′ (uK1(T )ΛK1×K2vK2(X))|2

]
+ 2 · E

[∣∣ρ′ (uK1(T )Λ∗K1×K2
vK2(X)

)
− ρ′ (uK1(T )ΛK1×K2vK2(X))

∣∣2]
≤2 · sup

(t,x)∈T ×X
|π0(t,x)− ρ′ (uK1(t)ΛK1×K2vK2(x))|2 + 2 sup

γ∈Γ1

|ρ′′(γ)|2 · E
[∣∣u>K1

(T )
{

Λ∗K1×K2
− ΛK1×K2

}
vK2(X)

∣∣2]
≤O(K−2α) +O(1) · E

[∣∣u>K1
(T )

{
Λ∗K1×K2

− ΛK1×K2

}
vK2(X)

∣∣2] .
We next compute the order of E

[∣∣u>K1
(T )

{
Λ∗K1×K2

− ΛK1×K2

}
vK2(X)

∣∣2]. Note that E[uK1(T )uK1(T )>] =

IK1×K1 , E[vK2(X)vK2(X)>] = IK2×K2 , (13), (21) and Assumption 1.2, we can deduce that

E
[∣∣u>K1

(T )
{

Λ∗K1×K2
− ΛK1×K2

}
vK2(X)

∣∣2]
=E

[
u>K1

(T )
{

Λ∗K1×K2
− ΛK1×K2

}
vK2(X)vK2(X)>

{
Λ∗K1×K2

− ΛK1×K2

}>
uK1(T )

]
=E

[
1

π0(T,X)
π0(T,X)u>K1

(T )
{

Λ∗K1×K2
− ΛK1×K2

}
vK2

(X)vK2
(X)>

{
Λ∗K1×K2

− ΛK1×K2

}>
uK1

(T )

]
≤ 1

η1
· E
[
π0(T,X)u>K1

(T )
{

Λ∗K1×K2
− ΛK1×K2

}
vK2

(X)vK2
(X)>

{
Λ∗K1×K2

− ΛK1×K2

}>
uK1

(T )
]

=
1

η1
·
∫
T
u>K1

(t)
{

Λ∗K1×K2
− ΛK1×K2

}
E
[
vK2(X)vK2(X)>

] {
Λ∗K1×K2

− ΛK1×K2

}>
uK1(t)dFT (t) (by (13))

=
1

η1
·
∫
T
u>K1

(t)
{

Λ∗K1×K2
− ΛK1×K2

}
·
{

Λ∗K1×K2
− ΛK1×K2

}>
uK1

(t)dFT (t)

=
1

η1
·
∫
T

tr

({
Λ∗K1×K2

− ΛK1×K2

}
·
{

Λ∗K1×K2
− ΛK1×K2

}>
uK1

(t)u>K1
(t)

)
dFT (t)

=
1

η1
· tr

({
Λ∗K1×K2

− ΛK1×K2

}
·
{

Λ∗K1×K2
− ΛK1×K2

}>)

≤ 1

η1
· ‖Λ∗K1×K2

− ΛK1×K2
‖2 = O(K−2α). (by (21)) (22)

Therefore, we can obtain

E
[
|π0(T,X)− π∗K(T,X)|2

]
= O

(
K−2α

)
.

We finally prove N−1
∑N

i=1 |π0(Ti,X i)− π∗K(Ti,X i)|2 = Op (K−2α). Note that by (22), we can

have

E

{ 1

N

N∑
i=1

∣∣u>K1
(Ti)

{
Λ∗K1×K2

− ΛK1×K2

}
vK2

(Xi)
∣∣2 − E

[∣∣u>K1
(T )

{
Λ∗K1×K2

− ΛK1×K2

}
vK2

(X)
∣∣2]}2


≤ 1

N
· E
[∣∣u>K1

(T )
{

Λ∗K1×K2
− ΛK1×K2

}
vK2

(X)
∣∣4]

22



≤ 1

N
· E
[∣∣u>K1

(T )
{

Λ∗K1×K2
− ΛK1×K2

}
vK2

(X)
∣∣2] · sup

(t,x)∈T ×X

∣∣u>K1
(t)
{

Λ∗K1×K2
− ΛK1×K2

}
vK2

(x)
∣∣2

≤ 1

N
·O(K−2α) · ζ1(K1)2ζ2(K2)2 ·

∥∥Λ∗K1×K2
− ΛK1×K2

∥∥2 ≤ 1

N
· ζ(K)2 ·O(K−4α),

then in light of Chebyshev’s inequality and Assumption 1.4, we have

1

N

N∑
i=1

∣∣u>K1
(Ti)

{
Λ∗K1×K2

− ΛK1×K2

}
vK2(X i)

∣∣2 − E
[∣∣u>K1

(T )
{

Λ∗K1×K2
− ΛK1×K2

}
vK2(X)

∣∣2]
=Op

(
ζ(K)√
N
K−2α

)
= op

(
K−2α

)
. (23)

With (21), (22), (23), and Assumption 1.2, we can deduce that

1

N

N∑
i=1

|π0(Ti,X i)− π∗K(Ti,X i)|2

≤ 2

N

N∑
i=1

|π0(Ti,X i)− ρ′ (uK1(Ti)ΛK1×K2vK2(X i))|2

+
2

N

N∑
i=1

∣∣ρ′ (uK1(Ti)Λ
∗
K1×K2

vK2(X i)
)
− ρ′ (uK1(Ti)ΛK1×K2vK2(X i))

∣∣2
≤2 sup

(t,x)∈T ×X
|π0(t,x)− ρ′ (uK1(t)ΛK1×K2vK2(x))|2

+ sup
γ∈Γ1

|ρ′′(γ)|2 · 2

N

N∑
i=1

∣∣u>K1
(Ti)

{
Λ∗K1×K2

− ΛK1×K2

}
vK2(X i)

∣∣2
≤2 sup

(t,x)∈T ×X
|π0(t,x)− ρ′ (uK1(t)ΛK1×K2vK2(x))|2

+ 2 · sup
γ∈Γ1

|ρ′′(γ)|2 · E
[∣∣u>K1

(T )
{

Λ∗K1×K2
− ΛK1×K2

}
vK2(X)

∣∣2]+ op
(
K−2α

)
=O(K−2α) +O(K−2α) + op

(
K−2α

)
= Op

(
K−2α

)
. (by (21))

3.2 Lemma 3.2

Lemma 3.2 Under Assumption 1.2-1.4, we have

∥∥∥Λ̂K1×K2 − Λ∗K1×K2

∥∥∥ = Op

(√
K

N

)
.
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Proof. Define

ŜN :=
1

N

N∑
i=1

K2∑
l=1

K2∑
j=1

(λj − λ∗j)>π0(Ti,X i)uK1(Ti)uK1(Ti)
>(λl − λ∗l )vK2,j(X i)vK2,l(X i),

where λj and λ∗j are the j-th column of Λ and Λ∗K1×K2
respectively. Since ŜN is symmetric, using

(13) and the facts that E
[
uK1(T )uK1(T )>

]
= IK1×K1 and E

[
vK2(X)vK2(X)>

]
= IK2×K2 , we can

have

E
[
ŜN

]
=

K2∑
l=1

K2∑
j=1

(λj − λ∗j)>E
[
π0(T,X)uK1(T )uK1(T )>vK2,j(X)vK2,l(X)

]
(λl − λ∗l )

=

K2∑
l=1

K2∑
j=1

(λj − λ∗j)>E
[
uK1(T )uK1(T )>

]
E[vK2,j(X)vK2,l(X)](λl − λ∗l )

=

K2∑
j=1

(λj − λ∗j)>(λj − λ∗j) =
∥∥Λ− Λ∗K1×K2

∥∥ .
Then we can further deduce that

E
[∣∣∣ŜN − ∥∥Λ− Λ∗K1×K2

∥∥∣∣∣2]
=E[Ŝ2

N ]− 2E[ŜN ]
∥∥Λ− Λ∗K1×K2

∥∥+
∥∥Λ− Λ∗K1×K2

∥∥2

=
N

N2
· E

( K2∑
l=1

K2∑
j=1

(λj − λ∗j)>π0(T,X)uK1(T )uK1(T )>(λl − λ∗l )vK2,j(X)vK2,l(X)

)2


+ 2 · 1

N2
·

(
N

2

)
· E

[
K2∑
l=1

K2∑
j=1

(λj − λ∗j)>π0(T,X)uK1(T )uK1(T )>(λl − λ∗l )vK2,j(X)vK2,l(X)

]2

−
∥∥Λ− Λ∗K1×K2

∥∥2

=
1

N
E

( K2∑
l=1

K2∑
j=1

(λj − λ∗j)>π0(T,X)uK1(T )uK1(T )>(λl − λ∗l )vK2,j(X)vK2,l(X)

)2


+
N(N − 1)

N2
· E
[
ŜN

]2

−
∥∥Λ− Λ∗K1×K2

∥∥2

=
1

N
E

( K2∑
l=1

K2∑
j=1

(λj − λ∗j)>π0(T,X)uK1(T )uK1(T )>(λl − λ∗l )vK2,j(X)vK2,l(X)

)2


− 1

N

∥∥Λ− Λ∗K1×K2

∥∥2
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<
1

N
E

( K2∑
l=1

K2∑
j=1

(λj − λ∗j)>π0(T,X)uK1(T )uK1(T )>(λl − λ∗l )vK2,j(X)vK2,l(X)

)2
 .

In light of the fact that

0 ≤ y>
{
π0(t,x)uK1(t)uK1(t)

>} y ≤ η2ζ1(K1)2y>y , ∀y ∈ RK1 , ∀(t,x) ∈ T × X ,

we can deduce that

K2∑
l=1

K2∑
j=1

(λj − λ∗j)>
{
π0(T,X)uK1(T )uK1(T )>

}
(λl − λ∗l )vK2,j(X)vK2,l(X)

=

[
K2∑
j=1

vK2,j(X)(λj − λ∗j)>
]
·
{
π0(T,X)uK1(T )uK1(T )>

}
·

[
K2∑
l=1

(λl − λ∗l )vK2,l(X)

]

≤η2 · ‖uK1(T )‖2 ·

∥∥∥∥∥
K2∑
i=1

(λi − λ∗i )>vK2,i(X)

∥∥∥∥∥
2

≤η2 · ‖uK1(T )‖2 ·

(
K2∑
i=1

‖λi − λ∗i ‖2

)(
K2∑
i=1

vK2,i(X)2

)
=η2 · ‖uK1(T )‖2 ·

∥∥Λ− Λ∗K1×K2

∥∥2 ‖vK2(X)‖2.

Therefore, we can obtain that

E
[∣∣∣ŜN − ∥∥Λ− Λ∗K1×K2

∥∥∣∣∣2]
≤ 1

N
η2

2 · E
[
‖uK1(T )‖4 · ‖vK2(X)‖4

]
·
∥∥Λ− Λ∗K1×K2

∥∥4

≤ 1

N
η2

2 · ζ1(K1)2 · ζ2(K2)2 · E
[
‖uK1(T )‖2 · ‖vK2(X)‖2

]
·
∥∥Λ− Λ∗K1×K2

∥∥4

=
1

N
η2

2 · ζ1(K1)2 · ζ2(K2)2 · E
[

1

π0(T,X)
· π0(T,X)‖uK1(T )‖2 · ‖vK2(X)‖2

]
·
∥∥Λ− Λ∗K1×K2

∥∥4

≤ 1

N

η2
2

η1
· ζ1(K1)2 · ζ2(K2)2 · E

[
π0(T,X)‖uK1(T )‖2 · ‖vK2(X)‖2

]
·
∥∥Λ− Λ∗K1×K2

∥∥4
(by Assumption 1.2)

=
1

N

η2
2

η1
· ζ1(K1)2 · ζ2(K2)2 · E

[
‖uK1(T )‖2

]
· E
[
‖vK2(X)‖2

]
·
∥∥Λ− Λ∗K1×K2

∥∥4
(by (13))

=
1

N

η2
2

η1
· ζ1(K1)2 · ζ2(K2)2 ·K1 ·K2 ·

∥∥Λ− Λ∗K1×K2

∥∥4
(since E[‖uK1(T )‖2] = K1 and E[‖vK2(X)‖2] = K2)

=
1

N

η2
2

η1
· ζ(K)2 ·K ·

∥∥Λ− Λ∗K1×K2

∥∥4
. (since ζ(K) = ζ1(K1)ζ2(K2) and K = K1 ·K2) (24)
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Considering the event set

EN :=

{
ŜN >

1

2

∥∥Λ− Λ∗K1×K2

∥∥2
, Λ 6= Λ∗K1×K2

}
,

by Chebyshev’s inequality, (24), and Assumption 1.4 we can get

P
(∣∣∣ŜN − ∥∥Λ− Λ∗K1×K2

∥∥2
∣∣∣ ≥ 1

2

∥∥Λ− Λ∗K1×K2

∥∥2
, Λ 6= Λ∗K1×K2

)

≤
4E
[∣∣∣ŜN − ∥∥Λ− Λ∗K1×K2

∥∥∣∣∣2]∥∥Λ− Λ∗K1×K2

∥∥4

≤ 4

N

η2
2

η1

· ζ(K)2 ·K ≤ O

(
ζ(K)2K

N

)
= o(1). (25)

Note that

∇ĜK1×K2(Λ) =
1

N

N∑
i=1

{
ρ′
(
u>K1

(Ti)ΛvK2(X i)
)
uK1(Ti)v

>
K2

(X i)− uK1(Ti) · E[v>K2
(X)]

}
− E[uK1(T )] ·

{
1

N

N∑
l=1

v>K2
(X l)− E[v>K2

(X)]

}

−

{
1

N

N∑
i=1

uK1(Ti)− E[uK1(T )]

}{
1

N

N∑
l=1

v>K2
(X l)− E[v>K2

(X)]

}

=∇ĤK1×K2(Λ)−

{
1

N

N∑
i=1

uK1(Ti)− E[uK1(T )]

}{
1

N

N∑
l=1

v>K2
(X l)− E[v>K2

(X)]

}
, (26)

where

ĤK1×K2(Λ) :=
1

N

N∑
i=1

{
ρ
(
u>K1

(Ti)ΛvK2(X i)
)
− uK1(Ti)

>ΛE[vK2(X)]
}

− E[u>K1
(T )]Λ

{
1

N

N∑
l=1

vK2(X l)− E[vK2(X)]

}
.

Since Λ∗K1×K2
is a unique maximizer of G∗K1×K2

(·), then for each j ∈ {1, . . . , K2},

∂

∂λj
G∗K1×K2

(λ∗1, . . . , λ
∗
K2

)

=E
[
ρ′
(
u>K1

(T )Λ∗K1×K2
vK2(X)

)
uK1(X)vK2,j(Y )

]
− E[uK1(T )]E[vK2,j(X)] = 0 .
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Therefore, for large enough K, we can deduce that

E
[
‖∇ĤK1×K2(Λ∗K1×K2

)‖2
]

=

K2∑
j=1

E

[∥∥∥∥ ∂

∂λj
ĤK1×K2(λ∗1, . . . , λ

∗
K2

)

∥∥∥∥2
]

(27)

≤2

K2∑
j=1

E

∥∥∥∥∥ 1

N

N∑
i=1

{
ρ′
(
u>K1

(Ti)Λ
∗
K1×K2

vK2(Xi)
)
uK1(Ti)vK2,j(Xi)− E[vK2,j(X)]uK1(Ti)

}∥∥∥∥∥
2


+ 2

K2∑
j=1

E

∥∥∥∥∥E [uK1(T )] ·

{
1

N

N∑
l=1

vK2,j(X l)− E[vK2,j(X)]

}∥∥∥∥∥
2


≤ 4

N

K2∑
j=1

{
E
[∥∥∥ρ′ (u>K1

(T )Λ∗K1×K2
vK2(Y )

)
uK1(T )vK2,j(X)

∥∥∥2
]

+ E[vK2,j(X)2]E
[
‖uK1(T )‖2

]}

+
2

N

K2∑
j=1

E
[
vK2,j(X)2

]
· E
[
‖uK1(T )‖2

]

=
4

N

K2∑
j=1

{
E

[∣∣ρ′ (u>K1
(T )Λ∗K1×K2

vK2(X)
)∣∣2

π0(T,X)
· π0(T,X) · ‖uK1(T )vK2,j(X)‖2

]
+ E[vK2,j(X)2]E

[
‖uK1(T )‖2

]}

+
2

N

K2∑
j=1

E
[
vK2,j(X)2

]
· E
[
‖uK1(T )‖2

]

≤ 4

N

K2∑
j=1

{(
supγ∈Γ1

ρ′(γ)
)2

η1
· E
[
π0(T,X) · ‖uK1(T )vK2,j(X)‖2

]
+ E[vK2,j(X)2]E

[
‖uK1(T )‖2

]}

+
2

N

K2∑
j=1

E
[
vK2,j(X)2

]
· E
[
‖uK1(T )‖2

]

=
4

N

K2∑
j=1

{(
supγ∈Γ1

ρ′(γ)
)2

η1
· E
[
vK2,j(X)2

]
E
[
‖uK1(T )‖2

]
+ E[vK2,j(X)2]E

[
‖uK1(T )‖2

]}

+
2

N

K2∑
j=1

E
[
vK2,j(X)2

]
· E
[
‖uK1(T )‖2

]

≤ 1

N

 4

η1

(
sup
γ∈Γ1

ρ′(γ)

)2

+ 4 + 2

 · E [‖uK1(T )‖2
] K2∑
j=1

E
[
vK2,j(X)2

]

=
1

N

 4

η1

(
sup
γ∈Γ1

ρ′(γ)

)2

+ 6

K1K2 ≤ C2
4

K

N
,

where the last inequality follows by Assumption 1.8 and C4 is a finite universal constant.
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Let ε > 0, fix C5(ε) > 0 (to be chosen later) and define

Υ̂K1×K2(ε) :=

{
Λ ∈ RK1×K2 : ‖Λ− Λ∗K1×K2

‖ ≤ C5(ε)C4

√
K

N

}
.

For ∀Λ ∈ Υ̂K1×K2(ε),∀(t,x) ∈ T × X , we can have

∣∣uK1(t)
>ΛvK2(x)− uK1(t)

>Λ∗K1×K2
vK2(x)

∣∣
≤‖Λ− Λ∗K1×K2

‖ sup
t∈T
‖uK1(t)‖ sup

x∈X
‖vK2(x)‖ ≤ C5(ε)C4

√
K

N
ζ1(K1)ζ2(K2),

thus for large enough N , in accordance with Assumption 1.4 and (14), we have

uK1(t)
>ΛvK2(x) ∈

[
uK1(t)

>Λ∗K1×K2
vK2(x)− C5(ε)C4ζ1(K1)ζ2(K2)

√
K

N
,

uK1(t)
>Λ∗K1×K2

vK2(x) + C5(ε)C4ζ1(K1)ζ2(K2)

√
K

N

]

⊂

[
γ − CK−α − C5(ε)C4ζ1(K1)ζ2(K2)

√
K

N
,

γ + CK−α + C5(ε)C4ζ1(K1)ζ2(K2)

√
K

N

]
⊂ Γ2(ε) , (28)

where Γ2(ε) :=
[
γ − 1− C5(ε), γ + 1 + C5(ε)

]
is a compact set and independent of (t,x).

For any Λ ∈ ∂Υ̂K1×K2(ε), there exists Λ̄ on the line joining Λ and Λ∗K1×K2
such that

ĜK1×K2(Λ) =ĜK1×K2(Λ
∗
K1×K2

) +

K2∑
j=1

(λj − λ∗j)>
∂

∂λi
ĜK1×K2(λ

∗
1, . . . , λ

∗
K2

)

+
1

2

K2∑
l=1

K2∑
j=1

(λj − λ∗j)>
∂2

∂λi∂λl
ĜK1×K2(λ̄1, . . . , λ̄K2)(λl − λ∗l ) ,

where λ̄j denotes the j-th column of Λ̄. For the second order term in above equality, note that

u>K1
(t)Λ̄vK2(x) ∈ Γ2(ε) for all (t,x) ∈ T × X , we can further deduce that

K2∑
l=1

K2∑
j=1

(λj − λ∗j)>
∂2

∂λi∂λl
ĜK1×K2(λ̄1, . . . , λ̄K2)(λl − λ∗l ) (29)
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=
1

N

N∑
i=1

K2∑
j=1

K2∑
l=1

(λj − λ∗j)>uK1(Ti)ρ
′′ (u>K1

(Ti)Λ̄vK2(X i)
)

(λl − λ∗l )>uK1(Ti)vK2,j(X i)vK2,l(X i)

≤− b̄(ε)

N

N∑
i=1

K2∑
j=1

K2∑
l=1

(λj − λ∗j)>uK1(Ti)uK1(Ti)
>(λl − λ∗l )vK2,j(X i)vK2,l(X i)

=− b̄(ε)

N

N∑
i=1

K2∑
j=1

K2∑
l=1

1

π0(Ti,X i)
(λj − λ∗j)>π0(Ti,X i)uK1(Ti)uK1(Ti)

>(λl − λ∗l )vK2,j(X i)vK2,l(X i)

≤− b̄(ε)

Nη2

N∑
i=1

K2∑
j=1

K2∑
l=1

(λj − λ∗j)>π0(Ti,X i)uK1(Ti)uK1(Ti)
>(λl − λ∗l )vK2,j(X i)vK2,l(X i)

=− b̄(ε)

η2

ŜN ,

where −b̄(ε) := supγ∈Γ2(ε) ρ
′′(γ) <∞.

Define the event set

EN :=

{
ŜN >

1

2

∥∥Λ− Λ∗K1×K2

∥∥2
, Λ 6= Λ∗K1×K2

;

and

∥∥∥∥∥
{

1

N

N∑
i=1

uK1(Ti)− E[uK1(T )]

}{
1

N

N∑
l=1

v>K2
(X l)− E[v>K2

(X)]

}∥∥∥∥∥ ≤ 1

N1/4
·
√
K

N

}
.

Note that∥∥∥∥∥
{

1

N

N∑
i=1

uK1(Ti)− E[uK1(T )]

}{
1

N

N∑
l=1

v>K2
(X l)− E[v>K2

(X)]

}∥∥∥∥∥ = OP

(√
K

N

)
.

By (25), we can deduece that for any ε > 0, there exists N0(ε) ∈ N such that N > N0(ε) large

enough

P ((EN )c) < P
(∣∣∣ŜN − ∥∥Λ− Λ∗K1×K2

∥∥2
∣∣∣ ≥ 1

2

∥∥Λ− Λ∗K1×K2

∥∥2
, Λ 6= Λ∗K1×K2

)
+ P

(∥∥∥∥∥
{

1

N

N∑
i=1

uK1(Ti)− E[uK1(T )]

}{
1

N

N∑
l=1

v>K2
(X l)− E[v>K2

(X)]

}∥∥∥∥∥ > 1

N1/4
·
√
K

N

)
<
ε

4
+
ε

4
=
ε

2
. (30)
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Therefore, on the event EN , for large enough N , we can deduce that for any Λ ∈ ∂Υ̂K1×K2(ε),

ĜK1×K2(Λ)− ĜK1×K2(Λ
∗
K1×K2

) (31)

=

K2∑
j=1

(λj − λ∗j)>
∂

∂λj
ĜK1×K2(λ

∗
1, . . . , λ

∗
K2

)

+

K2∑
l=1

K2∑
j=1

1

2
(λj − λ∗j)>

∂2

∂λj∂λl
ĜK1×K2(λ̄1, . . . , λ̄K2)(λl − λ∗l )

≤
∥∥Λ− Λ∗K1×K2

∥∥ ‖∇ĜK1×K2(Λ
∗
K1×K2

)‖ − b̄(ε)

2η2

ŜN (by (29))

≤
∥∥Λ− Λ∗K1×K2

∥∥ ‖∇ĜK1×K2(Λ
∗
K1×K2

)‖ − b̄(ε)

4η2

∥∥Λ− Λ∗K1×K2

∥∥2

≤
∥∥Λ− Λ∗K1×K2

∥∥(‖∇ĤK1×K2(Λ
∗
K1×K2

)‖+
1

N1/4
·
√
K

N
− b̄(ε)

4η2

∥∥Λ− Λ∗K1×K2

∥∥) (by (26))

≤
∥∥Λ− Λ∗K1×K2

∥∥(‖∇ĤK1×K2(Λ
∗
K1×K2

)‖ − 1

2
· b̄(ε)

4η2

∥∥Λ− Λ∗K1×K2

∥∥)
where the second and the last inequality follow from definition of the event EN .

Note that for sufficiently large N , by Chebyshev’s inequality and (27) we have

P
{
‖∇ĤK1×K2(Λ

∗
K1×K2

)‖ ≥ b̄(ε)

8η2

∥∥Λ− Λ∗K1×K2

∥∥} (32)

≤64 · η2
2

b̄(ε)2
·
E
[∥∥∥∇ĤK1×K2(Λ

∗
K1×K2

)
∥∥∥2
]

∥∥Λ− Λ∗K1×K2

∥∥2 ≤ 64η2
2

b̄(ε)2C2
5(ε)

≤ ε

2

where the last inequality holds by choosing

C5(ε) ≥

√
128 · η2

2

b̄(ε)2ε
.

Therefore, for sufficiently large N , by (30) and (32) we can derive

P
(

(EN)c or ‖∇ĤK1×K2(Λ
∗
K1×K2

)‖ ≥ b̄(ε)

8η2

∥∥Λ− Λ∗K1×K2

∥∥) ≤ ε

2
+
ε

2
= ε

⇒P
(
EN and ‖∇ĤK1×K2(Λ

∗
K1×K2

)‖ < b̄(ε)

8η2

∥∥Λ− Λ∗K1×K2

∥∥) > 1− ε . (33)
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With (31) and (33), we can obtain that

P
{
ĜK1×K2(Λ)− ĜK1×K2(Λ

∗
K1×K2

) < 0, ∀Λ ∈ ∂Υ̂K1×K2(ε)
}
≥ 1− ε .

Note that the event
{
ĜK1×K2(Λ

∗
K1×K2

) > ĜK1×K2(Λ), ∀Λ ∈ ∂Υ̂K1×K2(ε)
}

implies that there exists

a local maximizer in the interior of Υ̂K1×K2(ε). Since ĜK1×K2(·) is strictly concave and Λ̂K1×K2 is

the unique global maximizer of ĜK1×K2 , then we get

P
(

Λ̂K1×K2 ∈ Υ̂K1×K2(ε)
)
> 1− ε , (34)

i.e.
∥∥∥Λ̂K1×K2 − Λ∗K1×K2

∥∥∥ = Op

(√
K
N

)
.

3.3 Corollary 3.3

The next corollary states that π̂K(t,x) is arbitrarily close to π∗K(t,x).

Corollary 3.3 Under Assumption 1.2-1.4, we have

sup
(t,x)∈T ×X

|π̂K(t,x)− π∗K(t,x)|2 = Op

(
ζ(K)

√
K

N

)
,

and ∫
T ×X
|π̂K(t,x)− π∗K(t,x)|2dFT,X(t,x) = Op

(
K

N

)
,

and
1

N

N∑
i=1

|π̂K(Ti,X i)− π∗K(Ti,X i)|2 = Op

(
K

N

)
.

Proof. From the proof of Lemma 3.2, we know the facts P
(

Λ̂K1×K2 ∈ Υ̂K1×K2(ε)
)
> 1 − ε and

(28). Then for any element Λ̃K1×K2 lying on the line joining Λ̂K1×K2 and Λ∗K1×K2
, we can have

that P(uK1(t)
>Λ̃K1×K2vK2(x) ∈ Γ2(ε) for all (t,x) ∈ T × X ) ≥ 1− ε, which implies

sup
(t,x)∈T ×X

|ρ′′(uK1(t)Λ̃K1×K2vK2(x))| = Op(1). (35)

Using Mean Value Theorem, Lemma 3.1, and (35), we can obtain that

sup
(t,x)∈T ×X

|π̂K(t,x)− π∗K(t,x)|
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= sup
(t,x)∈T ×X

|ρ′
(
uK1(t)Λ̂K1×K2vK2(x)

)
− ρ′

(
uK1(t)Λ

∗
K1×K2

vK2(x)
)
|

≤ sup
(t,x)∈T ×X

|ρ′′(uK1(t)Λ̃K1×K2vK2(x))| sup
(t,x)∈T ×X

∣∣∣uK1(t)Λ̂K1×K2vK2(x)− uK1(t)Λ
∗
K1×K2

vK2(x)
∣∣∣

≤Op(1) · ‖Λ̂K1×K2 − Λ∗K1×K2
‖ · sup

t∈T
‖uK1(t)‖ · sup

x∈X
‖vK2(x)‖

≤Op(1) ·Op

(√
K

N

)
ζ1(K1) · ζ2(K2) = Op

(
ζ(K)

√
K

N

)
.

Note that by Mean Value Theorem and (35), we can deduce that∫
T ×X
|π̂K(t,x)− π∗K(t,x)|2dFT,X(t,x)

≤ sup
(t,x)∈T ×X

|ρ′′(uK1(t)Λ̃K1×K2vK2(x))|2
∫
T ×X

∣∣∣uK1(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x)

≤Op(1) ·
∫
T ×X

∣∣∣uK1(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x).

We estimate
∫
T ×X

∣∣∣uK1(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x). Note that E[uK1(T )[uK1(T )>] =

IK1×K1 , E[vK2(X)vK2(X)>] = IK2×K2 , (13) and Assumption 1.2, we can deduce that∫
T ×X

∣∣∣uK1(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x)

≤
∫
T ×X

u>K1
(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(x)vK2(x)>

{
Λ̂K1×K2 − Λ∗K1×K2

}>
uK1(t)dFT,X(t,x)

=

∫
T ×X

1

π0(t,x)
π0(t,x)u>K1

(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(x)vK2(x)>

{
Λ̂K1×K2 − Λ∗K1×K2

}>
uK1(t)dFT,X(t,x)

≤ 1

η1

∫
T ×X

π0(t,x) · u>K1
(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(x)vK2(x)>

{
Λ̂K1×K2 − Λ∗K1×K2

}>
uK1(t)dFT,X(t,x)

=
1

η1

∫
T
u>K1

(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}(∫
X
vK2(x)vK2(x)>dFX(x)

){
Λ̂K1×K2 − Λ∗K1×K2

}>
uK1(t)dFT (t)

=
1

η1

∫
T
u>K1

(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}{
Λ̂K1×K2 − Λ∗K1×K2

}>
uK1(t)dFT (t)

=
1

η1
tr

({
Λ̂K1×K2 − Λ∗K1×K2

}{
Λ̂K1×K2 − Λ∗K1×K2

}> ∫
T
uK1(t)u>K1

(t)dFT (t)

)

=
1

η1
tr

({
Λ̂K1×K2 − Λ∗K1×K2

}{
Λ̂K1×K2 − Λ∗K1×K2

}>)

=
1

η1
·
∥∥∥Λ̂K2×K2 − Λ∗K1×K2

∥∥∥2
= Op

(
K

N

)
. (36)
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Then we obtain ∫
T ×X
|π̂K(t,x)− π∗K(t,x)|2dFT,X(t,x) = Op

(
K

N

)
.

Similar to (23), we have

1

N

N∑
i=1

∣∣∣u>K1
(Ti)

{
Λ̂K1×K2 − Λ∗K1×K2

}
vK2(Xi)

∣∣∣2 − ∫
T ×X

∣∣∣uK1(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x)

=Op

(
ζ(K)√
N
· ‖Λ̂K1×K2 − Λ∗K1×K2

‖2
)

= Op

(
ζ(K)√
N
· K
N

)
= op

(
K

N

)
. (37)

where the last equality holds in light of Assumption 1.4. Hence, with (36) and (37), we have

1

N

N∑
i=1

|π̂K(Ti,X i)− π∗K(Ti,X i)|2

≤ sup
(t,x)∈T ×X

|ρ′′(uK1(t)Λ̃K1×K2vK2(x))|2 · 1

N

N∑
i=1

∣∣∣uK1(Ti)
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(X i)

∣∣∣2
≤Op(1) ·

∫
T ×X

∣∣∣uK1(t)
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(x)

∣∣∣2 dFT,X(t,x) + op

(
K

N

)
≤Op

(
K

N

)
+ op

(
K

N

)
= Op

(
K

N

)
.

4 Efficient Estimation

4.1 Proof of Theorem 4

Because β̂ (resp. β∗) is a unique minimizer of N−1
∑N

i=1 π̂K(Ti,X i)L (Yi − g(Ti;β)) (resp.

E [π0(T,X)L (Y − g(T ;β))]), from the theory of M -estimation (van der Vaart, 1998, Theorem

5.7), if the following condition holds:

sup
β∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

π̂K(Ti,X i)L (Yi − g(Ti;β))− E [π0(T,X)L (Y − g(T ;β))]

∣∣∣∣∣ p−→ 0.

then β̂
p−→ β∗. Note that

sup
β∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

π̂K(Ti,X i)L (Yi − g(Ti;β))− E [π0(T,X)L (Y − g(T ;β))]

∣∣∣∣∣
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≤ sup
β∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

{π̂K(Ti,X i)− π0(Ti,X i)}L (Yi − g(Ti;β))

∣∣∣∣∣ (38)

+ sup
β∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

π0(Ti,X i)L (Yi − g(Ti;β))− E [π0(T,X)L (Y − g(T ;β))]

∣∣∣∣∣ . (39)

We first show (38) is of oP (1). By Theorem 3, π̂K(·) L2(FN )−−−−→ π0(·), using Cauchy-Scharwz’ in-

equality and Assumption 1.5, we have

|(38)| ≤

{
1

N

N∑
i=1

{π̂K(Ti,X i)− π0(Ti,X i)}2

}1/2

· sup
β∈Θ

{
1

N

N∑
i=1

L (Yi − g(Ti;β))2

}1/2

≤oP (1) ·
{

sup
β∈Θ

E
[
L (Y − g(T ;β))2]+ oP (1)

}1/2

= oP (1) (by Assumption 5)

To show (39) is of oP (1), by (Newey and McFadden, 1994, Lemma 2.4), it is sufficient to require

the following conditions holds:

1. Θ is compact;

2. L(Y − g(T ;β)) is continuous in β;

3. E
[
supβ∈Θ |L(Y − g(T ;β))|

]
<∞.

which are the imposed Assumption 1.5.

4.2 Proof of Theorem 5

The proposed estimator β̂ is a special case of Chen, Linton, and Van Keilegom (2003), where

the authors establish the consistency and asymptotic normality of a class of semiparametric

optimization estimators under that the criterion function does not satisfy standard smoothness

conditions. The asymptotic distribution of the proposed estimator can be derived by applying

Theorem 2 of Chen, Linton, and Van Keilegom (2003).

Using their notation, we denote

MN(β, π(·)) :=
1

N

N∑
i=1

π(Ti,X i)L
′ (Yi − g(Ti;β))m(Ti;β),

M(β, π(·)) := E[MN(β, π(·))] = E [π(T,X)L′ (Y − g(T ;β))m(T ;β)] .
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The ordinary derivative Γ1(β, π(·)) in β of M(β, π(·)) is

Γ1(β, π(·))(β̄ − β) = : lim
τ→0

M(β + τ(β̄ − β), π(·))−M(β, π(·))
τ

=∇βE [π(T,X)L′ (Y − g(T ;β))m(T ;β)] ,

and the functional derivative Γ2(β, π0(·))[π(·)−π0(·)] of M(β, π0(·)) along the direction π(·)−π0(·)
is

Γ2(β, π0(·))[π(·)− π0(·)] := lim
τ→0

M(β, π0(·) + τ(π(·)− π0(·)))−M(β, π0(·))
τ

=E [(π(T,X)− π0(T,X))L′ (Y − g(T ;β))m(T ;β)] .

In order to apply Theorem 2 of Chen, Linton, and Van Keilegom (2003), we need to verify their

Conditions (2.1)-(2.6) hold. Conditions (2.1)-(2.5) of Chen, Linton, and Van Keilegom (2003) can

be easily verified by using following facts:

• Theorem 4 ensures ‖β̂ − β∗‖ p−→ 0;

• Assumption 1.6 (iv) implies ‖MN(β̂, π̂K(·))‖ =
∥∥∥N−1

∑N
i=1 π̂K(Ti,X i)m(Ti; β̂)L′{Yi − g(Ti; β̂)}

∥∥∥ =

oP (1/
√
N);

• Assumption 1.8 implies K = op(N
1/2) and K−α = op(N

−1/2), then by Theorem 2 we

have
∫
T ×X |π̂K(t,x) − π0(t,x)|2dFT,X(t,x) = Op (K−α) + Op

(√
K/N

)
= oP (N−1/2) +

oP (N−1/4) ≤ op(N
−1/4).

The most important step toward the application of Theorem 2 of Chen, Linton, and Van Keilegom

(2003) is to check their Condition (2.6) holds, which states that there exits some finite matrix V1

such that

√
N {MN(β∗, π0(·)) + Γ2(β∗, π0(·))[π̂K(·)− π0(·)]} d−→ N(0, V1). (40)

If Conditions (2.1)-(2.6) hold, Theorem 2 of Chen, Linton, and Van Keilegom (2003) ensures that

√
N
(
β̂ − β∗

)
d−→ N (0,Ω),

where Ω := Γ1(β∗, π0(·))−1V1(Γ1(β∗, π0(·))−1)> = H−1
0 V1(H−1

0 )>. However, Chen, Linton, and

Van Keilegom (2003) do not give the expression of V1 and the verification of (40) is difficult which
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is also admitted by the authors themselves (see the first paragraph in Section 3.3 of Chen, Linton,

and Van Keilegom (2003)). In Section 4.3, we prove (40) holds and give

V1 = E[ψ(Y, T,X;β∗)ψ(Y, T,X;β∗)>].

Therefore, we can have Ω = Veff which justifies Theorem 5.

4.3 Proof of (40)

Before proving (40), we prepare some preliminary notation and results that will be used later.

Since Λ̂K1×K2 is a unique maximizer of the concave function ĜK1×K2 , then

1

N

N∑
i=1

ρ′
(
uK1(Ti)

>Λ̂K1×K2vK2(X i)
)
uK1(Ti)vK2(X i)

> − 1

N2

N∑
i=1

N∑
l=1

uK1(Tl)vK2(X i)
> = 0.

Using Mean Value Theorem, we can have

1

N

N∑
i=1

ρ′
(
uK1(Ti)

>Λ∗K1×K2
vK2(X i)

)
uK1(Ti)vK2(X i)

>

+
1

N

N∑
i=1

ρ′′
(
uK1(Ti)

>Λ̃K1×K2vK2(X i)
)
uK1(Ti)uK1(Ti)

>
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(X i)vK2(X i)

>

=
1

N2

N∑
i=1

N∑
l=1

uK1(Tl)vK2(X i)
> , (41)

where Λ̃K1×K2 lies on the line joining from Λ̂K1×K2 to Λ∗K1×K2
. We define the following notation:

ÂK1×K2 := Λ̂K1×K2 − Λ∗K1×K2
, (42)

ÃK1×K2 := Λ̃K1×K2 − Λ∗K1×K2
, (43)

and

A∗K1×K2
:= ∇ĜK1×K2

(
Λ∗K1×K2

)
=

1

N

N∑
i=1

ρ′
(
uK1(Ti)

>Λ∗K1×K2
vK2(X i)

)
uK1(Ti)vK2(X i)

> −

(
1

N

N∑
l=1

uK1(Tl)

)(
1

N

N∑
i=1

vK2(X i)
>

)
.

(44)
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In light of (27) we have ∥∥A∗K1×K2

∥∥ = Op

(√
K

N

)
.

From (41), A∗K1×K2
can also be written as

A∗K1×K2
= − 1

N

N∑
i=1

ρ′′
(
uK1(Ti)

>Λ̃K1×K2vK2(X i)
)
uK1(Ti)uK1(Ti)

>
{

Λ̂K1×K2 − Λ∗K1×K2

}
vK2(X i)vK2(X i)

>.

(45)

We now start to (40). We decompose
√
N {MN(β∗, π0(·)) + Γ2(β∗, π0(·))[π̂K(·)− π0(·)]} as

follows:

√
N {MN (β∗, π0(·)) + Γ2(β∗, π0(·))[π̂K(·)− π0(·)]}

=
1√
N

N∑
i=1

{
π0(Ti,Xi)L

′ {Yi − g (Ti;β
∗)}m(Ti;β

∗) +

∫
T

∫
X

(π̂K(t,x)− π0(t,x)) ε(x, t;β∗)m(t;β∗)dFX,T (x, t)

}

=
√
N

∫
T

∫
X
m(t;β∗)ε(t,x;β∗) (π∗K(t,x)− π0(t,x)) dFX,T (x, t)

+
√
N

∫
T

∫
X

(π̂K(t,x)− π∗K(t,x)) ε(x, t;β∗)m(t;β∗)dFX,T (x, t)

+
1√
N

N∑
i=1

π0(Ti,Xi)L
′ {Yi − g (Ti;β

∗)}m(Ti;β
∗)

=
√
N

∫
T

∫
X
m(t;β∗)ε(t,x;β∗) (π∗K(t,x)− π0(t,x)) dFX,T (x, t) (46)

+
√
N

∫
T

∫
X

(π̂K(t,x)− π∗K(t,x)) ε(x, t;β∗)m(t;β∗)dFX,T (x, t) (47)

−
√
N

∫
T

∫
X
ε(t,x;β∗)ρ′′

(
u>K1

(t)Λ̃K1×K2vK2(x)
)
u>K1

(t)ÂK1×K2vK2(x)m(t;β∗)dFX,T (x, t)

+
√
N

∫
T

∫
X
ε(t,x;β∗)ρ′′

(
u>K1

(t)Λ̃K1×K2vK2(x)
)
u>K1

(t)ÂK1×K2vK2(x)m(t;β∗)dFX,T (x, t) (48)

−
√
N

∫
T

∫
X
ε(t,x;β∗)ρ′′

(
u>K1

(t)Λ∗K1×K2
vK2(x)

)
u>K1

(t)A∗K1×K2
vK2(x)m(t;β∗)dFX,T (x, t)

+
√
N

∫
X
ε(t,x;β∗)ρ′′

(
u>K1

(t)Λ∗K1×K2
vK2(x)

)
u>K1

(t)A∗K1×K2
vK2(x)m(t;β∗)dFX,T (x, t) (49)

+
1√
N

N∑
i=1

{
π0(Ti,Xi)m(Ti;β

∗)ε(Ti,Xi;β
∗)− E [π0(T,X)m(T ;β∗)ε(T,X;β∗)|X = Xi]

− E [π0(T,X)m(T ;β∗)ε(T,X;β∗)|T = Ti]

}
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+
1√
N

N∑
i=1

{
π0(Ti,Xi)L

′ {Yi − g (Ti;β
∗)}m(Ti;β

∗)− π0(Ti,Xi)m(Ti;β
∗)ε(Ti,Xi;β

∗) (50)

+ E [π0(T,X)m(T ;β∗)ε(T,X;β∗)|X = Xi] + E [π0(T,X)m(T ;β∗)ε(T,X;β∗)|T = Ti]

}
,

where ÂK1×K2 and A∗K1×K2
are defined in (42) and (45). We show that the terms (46)-(49) are

all of op(1), while the term (50) is asymptotically normal.

For term (46): By Lemma 3.1 and Assumption 1.4, we can deduce that∥∥∥√N · E [m(T ;β∗)ε(T,X;β∗) (π∗K(T,X)− π0(T,X))]
∥∥∥

≤
√
N sup

t∈T
‖m(t;β∗)‖ · E[|ε(T,X;β∗)|2]

1
2 · E

[
|π∗K(T,X)− π0(T,X)|2

] 1
2 = O

(√
NK−α

)
.

For term (47): By Mean Value Theorem and the definition of ÂK1×K2 in (42), the term (47) is

exactly equal to zero.

For term (48): We can telescope (48) as follows:

√
N

∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′′

(
u>K1

(t)Λ̃K1×K2vK2(x)
)
u>K1

(t)ÂK1×K2vK2(x)dFX,T (x, t)

−
√
N

∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′′

(
u>K1

(t)Λ∗K1×K2
vK2(x)

)
u>K1

(t)A∗K1×K2
vK2(x)dFX,T (x, t)

=
√
N

∫
T

∫
X
m(t;β∗)ε(t,x;β∗)

{
ρ′′
(
u>K1

(t)Λ̃K1×K2vK2(x)
)
− ρ′′

(
u>K1

(t)Λ∗K1×K2
vK2(x)

)}
× u>K1

(t)ÂK1×K2vK2(x)dFX,T (x, t) (51)

+
√
N

∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′′

(
u>K1

(t)Λ∗K1×K2
vK2(x)

)
u>K1

(t)

×
{
ÂK1×K2 − A∗K1×K2

}
vK2(x)dFX,T (x, t). (52)

For the term (51), by Mean Value Theorem,

(51) =
√
N

∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′′′ (ξ3(t,x))

{
u>K1

(t)ÃK1×K2
vK2

(x)
}{

u>K1
(t)ÂK1×K2

vK2
(x)
}
dFX,T (x, t).

Since ξ3(t,x) lies between uK1(t)
>Λ∗K1×K2

vK2(x) and uK1(t)
>Λ̃∗K1×K2

vK2(x), which implies ξ3(t,x)

lies between uK1(t)
>Λ∗K1×K2

vK2(x) and uK1(t)
>Λ̂∗K1×K2

vK2(x). Then in light of (28) and (34), we
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have P (ξ3(t,x) ∈ Γ2(ε), ∀(t,x) ∈ T × X ) > 1− ε, therefore,

sup
(t,x)∈T ×X

|ρ′′′ (ξ3(t,x)) | = Op(1) . (53)

With (36), (53), the fact ‖ÃK1×K2‖ ≤ ‖ÂK1×K2‖, Lemma 3.2, and Assumption 1.4, we can derive

that

‖(51)‖ ≤
√
N sup

(t,x)∈T ×X
|ρ′′′ (ξ3(t,x))| sup

t∈T
‖m(t;β∗)‖ · sup

(t,x)∈T ×X
|ε(t,x;β∗)|

·
∫
T

∫
X

∣∣∣uK1(t)
>ÃK1×K2vK2(x)

∣∣∣ · ∣∣∣u>K1
(t)ÂK1×K2vK2(x)

∣∣∣ dFX,T (x, t)

≤
√
N ·Op(1) ·O(1) ·O(1) ·

{∫
T

∫
X

∣∣∣uK1(t)
>ÃK1×K2vK2(x)

∣∣∣2 dFX,T (x, t)

} 1
2

·
{∫
T

∫
X

∣∣∣u>K1
(t)ÂK1×K2vK2(x)

∣∣∣2 dFX,T (x, t)

} 1
2

=
√
N ·Op(1) ·O(1) ·O(1) ·Op

(√
K

N

)
·Op

(√
K

N

)
= Op

(√
K2

N

)
(by ((36))).

(54)

For the term (52), we first compute the probability order of ‖A∗K1×K2
− ÂK1×K2‖. Using (45),

the fact ρ′′(v) = −ρ′(v) and Mean Value Theorem, we have

A∗K1×K2
− ÂK1×K2

=− 1

N

N∑
i=1

ρ′′
(
u>K1

(Ti)Λ
∗
K1×K2

vK2
(Xi)

)
uK1

(Ti)uK1
(Ti)

>ÂK1×K2
vK2

(Xi)v
>
K2

(Xi)

− 1

N

N∑
i=1

ρ′′′ (ξ3(Ti,Xi))
{
uK1

(T )>ÃK1×K2
vK2

(Xi)
}
uK1

(Ti)uK1
(Ti)

>ÂK1×K2
vK2

(Xi)v
>
K2

(Xi)

− ÂK1×K2

=
1

N

N∑
i=1

{
ρ′
(
u>K1

(Ti)Λ
∗
K1×K2

vK2
(Xi)

)
uK1

(Ti)uK1
(Ti)

>ÂK1×K2
vK2

(Xi)v
>
K2

(Xi)− ÂK1×K2

}
(55)

− 1

N

N∑
i=1

ρ′′′ (ξ3(Ti,Xi))
{
uK1(Ti)

>ÃK1×K2vK2(Xi)
}
uK1(Ti)uK1(Ti)

>ÂK1×K2vK2(Xi)v
>
K2

(Xi). (56)

For the term (55), by (13) we can write ÂK1×K2 as

ÂK1×K2 = ET,X
[
π0(T,X)uK1(T )uK1(T )>ÂK1×K2vK2(X)v>K2

(X)
]
,
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where ET,X [·] denotes taking expectation with respect to (T,X). We telescope (55) as follows:

1

N

N∑
i=1

{
ρ′
(
u>K1

(Ti)Λ
∗
K1×K2

vK2(X i)
)
uK1(Ti)uK1(Ti)

>ÂK1×K2vK2(X i)v
>
K2

(X i)− ÂK1×K2

}

=
1

N

N∑
i=1

{{
ρ′
(
u>K1

(Ti)Λ
∗
K1×K2

vK2(X i)
)
− π0(Ti,X i)

}
uK1(Ti)uK1(Ti)

>ÂK1×K2vK2(X i)v
>
K2

(X i)

}
(57)

− 1

N

N∑
i=1

{
π0(Ti,X i)uK1(Ti)uK1(Ti)

>ÂK1×K2vK2(X i)v
>
K2

(X i)

− ET,X
[
π0(T,X)uK1(T )uK1(T )>ÂK1×K2vK2(X)v>K2

(X)
]}

. (58)

For the term (57), by Lemmas 3.1 and 3.2 and (36), we have that

∥∥∥∥ 1

N

N∑
i=1

{
ρ′
(
u>K1

(Ti)Λ
∗
K1×K2

vK2(Xi)
)
− π0(Ti,Xi)

}
uK1(Ti)uK1(Ti)

>ÂK1×K2vK2(Xi)v
>
K2

(Xi)

∥∥∥∥
≤

√√√√ 1

N

N∑
i=1

∣∣∣ρ′ (u>K1
(Ti)Λ∗K1×K2

vK2(Xi)
)
− π0(Ti,Xi)

∣∣∣2 ‖uK1(Ti)‖2‖vK2(Xi)‖2

·

√√√√ 1

N

N∑
i=1

|uK1(Ti)>ÂK1×K2vK2(Xi)|2

≤O(ζ(K)K−α) ·

[∫
T ×X

|uK1(t)ÂK1×K2vK2(x)|2dFT,X(t,x) + ‖ÂK1×K2‖2 ·Op

(
ζ(K)

√
K

N

)]1/2

≤O(ζ(K)K−α) ·Op(‖ÂK1×K2‖)

=O(ζ(K)K−α) ·Op

(√
K

N

)
= Op

(
N−

1
2 ζ(K) ·K

1
2
−α
)
.

For the term (58), define the linear map J (·) : RK1×K2 → R by

J (M) :=
1

N

N∑
i=1

{
π0(Ti,Xi)uK1

(Ti)uK1
(Ti)

>MvK2
(Xi)v

>
K2

(Xi)− ET,X
[
π0(T,X)uK1

(T )uK1
(T )>MvK2

(X)v>K2
(X)

]}
,

then (58) = J (ÂK1×K2). For any fixedM ∈ RK1×K2 , by (13) andM = E[π0(T,X)uK1(T )uK1(T )>M

·vK2(X)v>K2
(X)], then we have

E
[
J (M)2

]
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=
1

N
· E
[∥∥∥∥π0(T,X)uK1(T )uK1(T )>MvK2(X)v>K2

(X)− E
[
π0(T,X)uK1(T )uK1(T )>MvK2(X)v>K2

(X)
] ∥∥∥∥2]

≤ 1

N
· E
[∥∥∥∥π0(T,X)uK1(T )uK1(T )>MvK2(X)v>K2

(X)

∥∥∥∥2]
≤ 1

N
· η2 · E

[
π0(T,X) · ‖uK1(T )‖4‖vK2(X)‖4

]
· ‖M‖2

=
1

N
· η2 · E[‖uK1(T )‖4] · E[‖vK2(X)‖4] · ‖M‖2

≤ 1

N
· η2 · ζ1(K)2 · ζ2(K)2 · E[‖uK1(T )‖2] · E[‖vK2(X)‖2] · ‖M‖2

= ‖M‖2 ·O
(
ζ(K)2K

N

)
.

Using Chebyshev’s inequality we have

|J (M)| = ‖M‖Op

(
ζ(K)

√
K

N

)
,

then in light of Lemma 3.2,

(58) = J (ÂK1×K2) = ‖ÂK1×K2‖Op

(
ζ(K)

√
K

N

)
= Op

(
ζ(K)

K

N

)
.

Therefore,

(55) = (57) + (58) = Op

(
N−

1
2 ζ(K) ·K

1
2
−α
)

+Op

(
ζ(K)

K

N

)
.

For the term (56), in light of (53) and Lemma 3.2, we can deduce that

∥∥∥∥ 1

N

N∑
i=1

ρ′′′ (ξ3(Ti,Xi))
{
uK1(Ti)

>ÃK1×K2vK2(Xi)
}{

uK1(Ti)uK1(Ti)
>ÂK1×K2vK2(Xi)v

>
K2

(Xi)
}∥∥∥∥

≤ sup
(t,x)∈T ×X

∣∣ρ′′′ (ξ3(t,x))
∣∣ · ζ(K) · 1

N

N∑
i=1

∣∣∣uK1(Ti)
>ÃK1×K2vK2(Xi)

∣∣∣ · ∣∣∣uK1(Ti)
>ÂK1×K2vK2(Xi)

∣∣∣
≤ sup

(t,x)∈T ×X

∣∣ρ′′′ (ξ3(t,x))
∣∣ · ζ(K) ·

√√√√ 1

N

N∑
i=1

∣∣∣uK1(Ti)>ÃK1×K2vK2(Xi)
∣∣∣2 ·
√√√√ 1

N

N∑
i=1

∣∣∣uK1(Ti)>ÂK1×K2vK2(Xi)
∣∣∣2

≤O(1) · ζ(K) ·Op(‖ÃK1×K2‖) ·Op(‖ÂK1×K2‖) ≤ Op(1) · ζ(K) ·Op

(√
K

N

)
·Op

(√
K

N

)
≤ Op

(
ζ(K)

K

N

)
.
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Now, we can obtain

‖ÂK1×K2 − A∗K1×K2
‖ = (55) + (56) = Op

(
N−

1
2 ζ(K)K

1
2
−α
)

+Op

(
ζ(K)

K

N

)
+Op

(
ζ(K)

K

N

)
= Op

(
N−

1
2 ζ(K) ·K

1
2
−α
)

+Op

(
ζ(K)

K

N

)
. (59)

Using (59), Assumptions 1.7 and 1.4, for large enough N , we have

(52) =

∥∥∥∥√N ∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′′

(
u>K1

(t)Λ∗K1×K2
vK2(x)

)
u>K1

(t)
{
ÂK1×K2 −A∗K1×K2

}
vK2(x)dFX,T (x, t)

∥∥∥∥
≤
√
N sup

t∈T
‖m(t;β∗)‖ sup

γ∈Γ1

|ρ′′ (γ) | · E
[
|ε(T,X;β∗)|2

] 1
2 ·
[∫
T ×X

(
uK1(t)

{
ÂK1×K2 −A∗K1×K2

}
vK2(x)

)2

dFT,X(t,x)

] 1
2

≤
√
N ·O(1) ·O(1) ·O(1) ·O(1) ·O(‖ÂK1×K2

−A∗K1×K2
‖)

≤Op
(
ζ(K) ·K 1

2−α
)

+Op

(
ζ(K)

K√
N

)
, (60)

where the second inequality holds since by using the same argument of establishing (36), we have∫
T ×X

(
uK1(t)

{
ÂK1×K2 − A∗K1×K2

}
vK2(x)

)2

dFT,X(t,x) = O(‖ÂK1×K2 − A∗K1×K2
‖).

Therefore, by combining (54) and (60), we can obtain that

(48) = (51) + (52) =Op

(√
K2

N

)
+Op

(
ζ(K) ·K

1
2
−α
)

+Op

(
ζ(K)

K√
N

)
=Op

(
ζ(K) ·K

1
2
−α
)

+Op

(
ζ(K)

K√
N

)
.

For term (49): By the definition of A∗K1×K2
in (44), we have

(49) =
1√
N

N∑
i=1

{∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′′

(
u>K1

(t)Λ∗K1×K2
vK2

(x)
)
u>K1

(t) (61)

×
{
uK1

(Ti)ρ
′ (uK1

(Ti)Λ
∗
K1×K2

vK2
(Xi)

)
v>K2

(Xi)
}
vK2

(x)dFX,T (x, t) +m(Ti;β
∗)ε(Ti,Xi;β

∗)π0(Ti,Xi)

}
− 1√

N

N∑
i=1

{∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′′

(
u>K1

(t)Λ∗K1×K2
v>K2

(x)
)
u>K1

(t)

(
1

N

N∑
l=1

uK1(Tl)

)
(62)

×

 1

N

N∑
j=1

v>K2
(Xj)

 vK2
(x)dFX,T (x, t) + E [π0(T,X)m(T ;β∗)ε(T,X;β∗)|X = Xi]

+ E [π0(T,X)m(T ;β∗)ε(T,X;β∗)|T = Ti]

}
.
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We shall show that both (61) and (62) are of op(1). Noting ρ′′ = −ρ′, we can telescope (61) as

follows:

(61) =
1√
N

N∑
i=1

{∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′

(
u>K1

(t)Λ∗K1×K2
vK2

(x)
)
u>K1

(t) (63)

×
{
uK1

(Ti)

[
− ρ′

(
uK1

(Ti)Λ
∗
K1×K2

vK2
(Xi)

)
+ π0(Ti,Xi)

]
v>K2

(Xi)

}
vK2

(x)dFX,T (x, t)

}
− 1√

N

N∑
i=1

{∫
T

∫
X
m(t;β∗)ε(t,x;β∗)

{
ρ′
(
u>K1

(t)Λ∗K1×K2
vK2

(x)
)
− π0(t,x)

}
u>K1

(t) (64)

×
{
uK1(Ti)π0(Ti,Xi)v

>
K2

(Xi)
}
vK2

(x)dFX,T (x, t)

}
− 1√

N

N∑
i=1

{∫
T

∫
X
m(t;β∗)ε(t,x;β∗)π0(t,x)u>K1

(t)
{
uK1(Ti)π0(Ti,Xi)v

>
K2

(Xi)
}
vK2(x)dFX,T (x, t)

+m(Ti;β
∗)ε(Ti,Xi;β

∗)π0(Ti,Xi)

}
. (65)

We shall show that (63), (64) and (65) are all of op(1). Note that second moment of (63) is

E[|(63)|2] = E

[∣∣∣∣∣
∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′

(
u>K1

(t)Λ∗K1×K2
vK2

(x)
)
u>K1

(t)

×
{
uK1

(Ti)

[
− ρ′

(
uK1

(Ti)Λ
∗
K1×K2

vK2
(Xi)

)
+ π0(Ti,Xi)

]
v>K2

(Xi)

}
vK2

(x)dFX,T (x, t)

∣∣∣∣∣
2]

=E

[∣∣∣∣∣
∫
T

∫
X
π0(t,x) ·m(t;β∗)ε(t,x;β∗)

[
ρ′
(
u>K1

(t)Λ∗K1×K2
vK2

(x)
)

π0(t,x)

]
u>K1

(t)

×
{
uK1

(Ti)

[
− ρ′

(
uK1

(Ti)Λ
∗
K1×K2

vK2
(Xi)

)
+ π0(Ti,Xi)

]
v>K2

(Xi)

}
vK2

(x)dFX,T (x, t)

∣∣∣∣∣
2]

≤E

[∣∣∣∣∣
∫
T

∫
X
π0(t,x) ·m(t;β∗)ε(t,x;β∗)

[
ρ′
(
u>K1

(t)Λ∗K1×K2
vK2

(x)
)

π0(t,x)

]
u>K1

(t)
{
uK1(Ti)v

>
K2

(Xi)
}
vK2(x)dFX,T (x, t)

∣∣∣∣∣
2]

× sup
(t,x)∈T ×X

{
−ρ′

(
u>K1

(t)Λ∗K1×K2
vK2

(x)
)

+ π0(t,x)
}2

=

E

[∣∣∣∣∣m(Ti;β
∗)ε(Ti,Xi;β

∗)

[
ρ′
(
u>K1

(Ti)Λ
∗
K1×K2

vK2(Xi)
)

π0(Ti,Xi)

]∣∣∣∣∣
2]

+ o(1)

× sup
(t,x)∈T ×X

{−π∗K(t,x) + π0(t,x)}2

=O(1) ·O(K−2αζ(K)2) = O(K−2αζ(K)2)→ 0, (by Assumption 1.4)

where the third equality holds because∫
T

∫
X
π0(t,x)·m(t;β∗)ε(t,x;β∗)

[
ρ′
(
u>K1

(t)Λ∗K1×K2
vK2(x)

)
π0(t,x)

]
u>K1

(t)
{
uK1(T )v>K2

(X)
}
vK2(x)dFX,T (x, t)
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is the weighted L2-projection of m(t;β∗)ε(t,x;β∗)

[
ρ′(u>K1

(t)Λ∗K1×K2
vK2

(x))
π0(t,x)

]
on the space linearly

spanned by {uK1(t), vK2(x)} with the weighted measure π0(t,x)dFT,X(t,x). Similarly, we can

also show (64) and (65) are of op(1). Therefore, (61) is of op(1).

For the term (62), since ρ′′(v) = −ρ′(v) and the fact E [π0(T,X)m(T ;β∗)ε(T,X;β∗)] = 0, we

telescope it as follows:

(62) =
√
N

∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′

(
u>K1

(t)Λ∗K1×K2
vK2

(x)
)
u>K1

(t)

(
1

N

N∑
l=1

uK1
(Tl)− E [uK1

(T )]

)

×

 1

N

N∑
j=1

v>K2
(Xj)− E[v>K2

(X)]

 vK2
(x)dFX,T (x, t) (66)

+
1√
N

N∑
i=1

{∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′

(
u>K1

(t)Λ∗K1×K2
vK2

(x)
)
u>K1

(t)E [uK1
(T )] v>K2

(Xi)vK2
(x)dFX,T (x, t)

− E [π0(T,X)m(T ;β∗)ε(T,X;β∗)|X = Xi]

}
(67)

+
1√
N

N∑
l=1

{∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′

(
u>K1

(t)Λ∗K1×K2
vK2

(x)
)
u>K1

(t)uK1
(Tl)E[v>K2

(X)]vK2
(x)dFX,T (x, t)

− E [π0(T,X)m(T ;β∗)ε(T,X;β∗)|T = Ti]

}
(68)

− 1√
N

N∑
i=1

{∫
T

∫
X
m(t;β∗)ε(t,x;β∗)ρ′

(
u>K1

(t)Λ∗K1×K2
vK2(x)

)
u>K1

(t)E [uK1(T )]E[v>K2
(X)]vK2

(x)dFX,T (x, t)

− E [π0(T,X)m(T ;β∗)ε(T,X;β∗)]

}
. (69)

For the term (66), since∥∥∥∥∥ 1

N

N∑
l=1

uK1(Tl)− E [uK1(T )]

∥∥∥∥∥ = Op

(√
K1

N

)
,∥∥∥∥∥ 1

N

N∑
j=1

vK2(Xj)− E [vK2(X)]

∥∥∥∥∥ = Op

(√
K2

N

)
,

sup
(t,x)∈T ×X

∣∣ρ′ (u>K1
(t)Λ∗K1×K2

vK2(x)
)∣∣ = O(1) ,

and by Assumptions 1.4, 1.6 and 1.7, we can deduce that

(66) =
√
N ·O(ζ(K))Op

(√
K1

N

)
Op

(√
K2

N

)
= Op

(
ζ(K)

√
K

N

)
= op(1) .
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For the term (67), noting the fact that E [π0(T,X)m(T ;β∗)ε(T,X;β∗)|X] =
∫
T m(t;β∗)ε(t,X;β∗)

dFT (t), we can rewrite (67) as follows:

(67) =
1√
N

N∑
j=1

{∫
T

∫
X
m(t;β∗)ε(t,x;β∗)

π∗K(t,x)

π0(t,x)
u>K1

(t)E [uK1(T )] v>K2
(Xj)vK2(x)dFX(x)dFT (t)

−
∫
T
m(t;β∗)ε(t,Xj;β

∗)dFT (t)

}
.

By computing the second moment of (67), we can obtain that

E
[∥∥∥∥ ∫

T

∫
X
m(t;β∗)ε(t,x;β∗)

π∗K(t,x)

π0(t,x)
u>K1

(t)E [uK1
(T )] v>K2

(X)vK2
(x)dFX(x)dFT (t)−

∫
T
m(t;β∗)ε(t,X;β∗)dFT (t)

∥∥∥∥2]
≤E
[∥∥∥∥ ∫

T

∫
X
m(t;β∗)ε(t,x;β∗)

π∗K(t,x)

π0(t,x)
u>K1

(t)uK1
(T ∗)v>K2

(X∗)vK2
(x)dFX(x)dFT (t)−m(T ∗;β∗)ε(T ∗,X∗;β∗)

∥∥∥∥2]
≤2 · E

[∥∥∥∥ ∫
T

∫
X
m(t;β∗)ε(t,x;β∗)u>K1

(t)uK1
(T ∗)v>K2

(X∗)vK2
(x)dFX(x)dFT (t)−m(T ∗;β∗)ε(T ∗,X∗;β∗)

∥∥∥∥2]
+ 2 · E

[∥∥∥∥ ∫
T

∫
X
m(t;β∗)ε(t,x;β∗)

π∗K(t,x)− π0(t,x)

π0(t,x)
u>K1

(t)uK1
(T ∗)v>K2

(X∗)vK2
(x)dFX(x)dFT (t)

∥∥∥∥2]
→ 0,

where T ∗ ∼ FT , X∗ ∼ FX , and T ∗ is independent of X∗; the first inequality holds by Jensen’s

inequality; the last convergence result follows from Lemma 3.1 and the fact that∫
T

∫
X
m(t;β∗)ε(t,x;β∗)u>K1

(t)uK1(T
∗)v>K2

(X∗)vK2(x)dFX(x)dFT (t)

is the L2-projection of m(T ∗;β∗)ε(T ∗,X∗;β∗) on the space spanned by {uK1(T
∗), vK2(X

∗)}. Thus

(67) is of op(1) by Chebyshev’s inequality. Similar argument can be applied to show that both

(68) and (69) are of op(1). Therefore, we can have that

|(62)| ≤ |(66)|+ |(67)|+ |(68)| = op(1) .

Then, we can obtain that

|(49)| ≤ |(61)|+ |(62)| = op(1) .

Summing up all orders (46)-(49) and using Assumption 1.8, we have

(46) + (47) + (48) + (49)

=O(
√
NK−α) + 0 +

{
Op

(
ζ(K) ·K

1
2
−α
)

+Op

(
ζ(K)

K√
N

)}
+ op(1) = op(1).
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5 Some Extensions

5.1 Proof of Theorem 7

(Consistency). Let

γ̂ =

[
N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [ N∑
i=1

uK1(Ti)π̂K(Ti,X i)Yi

]

then θ̂t = γ̂>uK1(t). By assumption, there exists γ∗ ∈ RK1 such that

sup
t∈T

∣∣θt − (γ∗)>uK1(t)
∣∣ = O(K−α̃1 ). (70)

We first claim that

‖γ̂ − γ∗‖ = Op

(
ζ(K)

{√
K

N
+K−α

}
+K−α̃1

)
, (71)

whose proof will be established later. Using (70) and (71), we can deduce that∫
T

[
θ̂t − θt

]2

dFT (t)

=

∫
T

[γ̂>uK1(t)− (γ∗)>uK1(t) + (γ∗)>uK1(t)− θt]2dFT (t)

≤2(γ̂ − γ∗)>
[∫
T
uK1(t)uK1(t)

>dFT (t)

]
(γ̂ − γ∗) + 2

∫
T

[(γ∗)>uK1(t)− θt]2dFT (t)

≤2‖γ̂ − γ∗‖2 · λmax

(
E[uK1(T )uK1(T )>]

)
+ 2 sup

t∈T
|(γ∗)>uK1(t)− θt|2

=Op

(
ζ(K)2

{
K

N
+K−2α

}
+K−2α̃

1

)
,

and

sup
t∈T
|θ̂t − θt| = sup

t∈T

∣∣γ̂>uK1(t)− (γ∗)>uK1(t) + (γ∗)>uK1(t)− θt
∣∣

≤ sup
t∈T
‖uK1(t)‖ · ‖γ̂ − γ∗‖+ sup

t∈T
|(γ∗)>uK1(t)− θt|

≤Op

[
ζ1(K1)

(
ζ(K)

{√
K

N
+K−α

}
+K−α̃1

)]
+O(K−α̃1 )
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=Op

[
ζ1(K1)

(
ζ(K)

{√
K

N
+K−α

}
+K−α̃1

)]
.

Finally, we come back to prove (71). Note that

γ̂ − γ∗ =

[
N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [ N∑
i=1

π̂K(Ti,X i)uK1(Ti)Yi

]
− γ∗

=

[
N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [ N∑
i=1

uK1(Ti) {π̂K(Ti,X i)− π0(Ti,X i)}Yi

]

+

[
N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [ N∑
i=1

uK1(Ti){π0(Ti,X i)Yi − E[π0(Ti,X i)Yi|Ti]}

]

+

[
N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [ N∑
i=1

uK1(Ti)
{
E[π0(Ti,X i)Yi|Ti]− (γ∗)>uK1(Ti)

}]
≡A1N + A2N + A3N .

We first compute the probability order of A1N . We use the following notation:

ĤN :=

(
{π̂K(T1, X1)− π0(T1, X1)}Y1, ..., {π̂K(TN , XN)− π0(TN , XN)}YN

)>
,

UN×K1 := (uK1(T1), ..., uK1(TN))> ,

Φ̂K1×K1 :=
1

N

N∑
i=1

uK1(T )u>K1
(T ).

Then we can obtain that

‖A1N‖2 =

∥∥∥∥∥∥
[

N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [ N∑
i=1

uK1(Ti) {π̂K(Ti,X i)− π0(Ti,X i)}Yi

]∥∥∥∥∥∥
2

=N−2tr
(

Φ̂−1
K1×K1

U>N×K1
ĤNĤ

>
NUN×K1Φ̂

−1
K1×K1

)
=N−2tr

(
U>N×K1

ĤNĤ
>
NUN×K1Φ̂

−1
K1×K1

Φ̂−1
K1×K1

)
=N−2tr

(
Φ̂
−1/2
K1×K1

U>N×K1
ĤNĤ

>
NUN×K1Φ̂

−1/2
K1×K1

Φ̂−1
K1×K1

)
≤λmax(Φ̂−1

K1×K1
)N−2tr

(
Φ̂
−1/2
K1×K1

U>N×K1
ĤNĤ

>
NUN×K1Φ̂

−1/2
K1×K1

)
=λmax(Φ̂−1

K1×K1
)N−1tr

(
ĤNĤ

>
NUN×K1(U

>
N×K1

UN×K1)
−1U>N×K1

)
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≤[λmin(Φ̂K1×K1)]
−1N−1‖ĤN‖2

=[λmin(Φ̂K1×K1)]
−1 · 1

N

N∑
i=1

{π̂K(Ti,X i)− π0(Ti,X i)}2 Y 2
i

≤[λmin(Φ̂K1×K1)]
−1 sup

(t,x)∈T ×X
|π̂K(t, x)− π0(t, x)|2 · 1

N

N∑
i=1

Y 2
i

≤Op(1) ·Op

(
ζ(K)2K−2α +

ζ(K)2K

N

)
·Op(1)

=Op

(
ζ(K)2K−2α +

ζ(K)2K

N

)
, (72)

where the first inequality follows from the fact that tr(AB) ≤ λmax(B)tr(A) for any symmetric

matrix B and positive semidefinite matrix A, the second inequality follows from the same fact

and the fact that UN×K1(U
>
N×K1

UN×K1)
−1U>N×K1

is a projection matrix with maximum eigenvalue

1, and the fourth inequality follows from the facts that |λmin(Φ̂K1×K1)|−1 = Op(1), Lemma 3.1

and Corollary 3.3, and N−1
∑N

i=1 Y
2
i = Op(1).

Next, we compute the probability order of A2N . Let

εi := π0(Ti,X i)Yi − E[π0(Ti,X i)Yi|Ti] and EN := (ε1, . . . , εN)>.

We can deduce that

‖A2N‖2 =

∥∥∥∥∥∥
[

N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [ N∑
i=1

uK1(Ti)εi

]∥∥∥∥∥∥
2

=N−2tr
(

Φ̂−1
K1×K1

U>N×K1
ENE>NUN×K1Φ̂

−1
K1×K1

)
=N−2tr

(
U>N×K1

ENE>NUN×K1Φ̂
−1
K1×K1

Φ̂−1
K1×K1

)
≤[λmin(Φ̂K1×K1)]

−2N−2‖U>N×K1
EN‖2 = Op

(
K1

N

)
,

where the last equality follows that |λmin(Φ̂K1×K1)|−1 = Op(1) and N−2‖U>N×K1
EN‖2 = Op(K1/N)

by Markov’s inequality.
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We finally compute the probability order of A3N . Let

RN(γ∗) =

({
E[π0(T1, X1)Y1|T1]− (γ∗)>uK1(T1)

}
, . . . ,

{
E[π0(TN , XN)YN |TN ]− (γ∗)>uK1(TN)

})>
,

then

‖A3N‖2 =

∥∥∥∥∥∥
[

N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [ N∑
i=1

uK1(Ti)
{
E[π0(Ti,X i)Yi|Ti]− (γ∗)>uK1(Ti)

}]∥∥∥∥∥∥
2

=N−2
∥∥∥Φ̂−1

K1×K1
U>N×K1

RN(γ∗)
∥∥∥2

=N−2tr
(

Φ̂−1
K1×K1

U>N×K1
RN(γ∗)RN(γ∗)>UN×K1Φ̂

−1
K1×K1

)
=N−2tr

(
U>N×K1

RN(γ∗)RN(γ∗)>UN×K1Φ̂
−1
K1×K1

Φ̂−1
K1×K1

)
=N−2tr

(
Φ̂
−1/2
K1×K1

U>N×K1
RN(γ∗)RN(γ∗)>UN×K1Φ̂

−1/2
K1×K1

Φ̂−1
K1×K1

)
≤λmax(Φ̂−1

K1×K1
)N−2tr

(
Φ̂
−1/2
K1×K1

U>N×K1
RN(γ∗)RN(γ∗)>UN×K1Φ̂

−1/2
K1×K1

)
=λmax(Φ̂−1

K1×K1
)N−1tr

(
RN(γ∗)RN(γ∗)>UN×K1(U

>
N×K1

UN×K1)
−1U>N×K1

)
≤[λmin(Φ̂K1×K1)]

−1N−1‖RN(γ∗)‖2

=[λmin(Φ̂K1×K1)]
−1 · 1

N

N∑
i=1

{
E[π0(Ti,X i)Yi|Ti]− (γ∗)>uK1(Ti)

}2
= Op(K

−2α̃
1 ),

where the first inequality follows from the fact that tr(AB) ≤ λmax(B)tr(A) for any symmetric

matrix B and positive semidefinite matrix A, the second inequality follows from the same fact

and the fact that UN×K1(U
>
N×K1

UN×K1)
−1U>N×K1

is a projection matrix with maximum eigenvalue

1, and the last equality follows from the fact that |λmin(Φ̂K1×K1)|−1 = Op(1) and the fact that
1
N

∑N
i=1

{
E[π0(Ti,X i)Yi|Ti]− (γ∗)>uK1(Ti)

}2 ≤ supt∈T |E[π0(T,X)Y |T = t] − (γ∗)>uK1(t)|2 =

O(K−2α̃
1 ). Hence, we complete the proof of (71).

(Asymptotic Normality). We have the following decomposition for θ̂t − θ(t):

θ̂t − θt = uK1(t)
>(γ̂ − γ∗) + [(γ∗)>uK1(t)− θt]

=uK1(t)
>

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti,X i)Yi − E [π0(Ti,X i)Yi|Ti]

}]
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+uK1(t)
>

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [
1

N

N∑
i=1

uK1(Ti) ·
{
E [π0(Ti,X i)Yi|Ti]− (γ∗)>uK1(Ti)

}]

+

[
(γ∗)>uK1(t)− θt

]
≡b1N(t) + b2N(t) + b3N(t).

We shall show that b1N(t) contributes to the asymptotic variance; and b2N(t) + b3N(t) con-

tributes to the asymptotic bias which is asymptotically negligible. Thus to complete the proof of

asymptotic normality, it is sufficient to prove the following results:

(i) Vt ≥ c‖uK1(t)‖2 for some c > 0;

(ii)
√
NV

−1/2
t b1N(t)

d−→ N(0, 1);

(iii)
√
NV

−1/2
t b2N(t) = op(1);

(iv)
√
NV

−1/2
t b3N(t) = op(1).

We first prove Result (i). By assumption, λmin

(
E
[
bK1(T,X, Y )b>K1

(T,X, Y )
])
≥ c, we have

Vt =u>K1
(t)Φ−1

K1×K1
E
[
bK1(T,X, Y )b>K1

(T,X, Y )
]

Φ−1
K1×K1

uK1(t)

≥c · u>K1
(t)Φ−1

K1×K1
Φ−1
K1×K1

uK1(t)

≥c · λ2
min

(
Φ−1
K1×K1

)
‖uK1(t)‖2.

For the claim (ii). Let

b̃1N(t) = uK1(t)
>

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [
1

N

N∑
i=1

bK1(Ti,X i, Yi)

]
.

Similar to the proof of (40), we can show

√
NV

−1/2
t · (b1N(t)− b̃1N(t)) = op(1) .

Then

√
NV

−1/2
t b1N(t) =

√
NV

−1/2
t b̃1N(t) + op(1)

=
√
NV

−1/2
t uK1(t)

>Φ̂−1
K1×K1

N−1

N∑
i=1

bK1(Ti,X i, Yi)
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=
√
NV

−1/2
t uK1(t)

>Φ−1
K1×K1

·N−1

N∑
i=1

bK1(Ti,X i, Yi)

+
√
NV

−1/2
t uK1(t)

>
[
Φ̂−1
K1×K1

− Φ−1
K1×K1

]
·N−1

N∑
i=1

bK1(Ti,X i, Yi)

≡b(1)
1N(t) + b

(2)
1N(t). (73)

For b
(1)
1N(t), we can simply apply the Liapounov CLT and show that b

(1)
1N(t)

d−→ N(0, 1). For b
(2)
1N(t),

we can deduce that

|b(2)
1N,2(t)|2 ≤

{
V −1
K ‖uK1(t)‖2

}
·
∥∥∥Φ̂−1

K1×K1
− Φ−1

K1×K1

∥∥∥2

·

∥∥∥∥∥ 1√
N

N∑
i=1

bK1(Ti,X i, Yi)

∥∥∥∥∥
2

≤Op(1) ·OP

(
ζ1(K1)2 · K1

N

)
·OP (K1) = OP

(
ζ1(K1)2 · K

2
1

N

)
= oP (1),

where the second inequality by noting the following facts∥∥∥Φ̂−1
K1×K1

− Φ−1
K1×K1

∥∥∥2

=tr
({

Φ̂−1
K1×K1

− Φ−1
K1×K1

}{
Φ̂−1
K1×K1

− Φ−1
K1×K1

})
=tr

(
Φ̂−1
K1×K1

{
Φ̂K1×K1 − ΦK1×K1

}
Φ−1
K1×K1

Φ−1
K1×K1

{
Φ̂K1×K1 − ΦK1×K1

}
Φ̂−1
K1×K1

)
=tr

({
Φ̂K1×K1 − ΦK1×K1

}
Φ−1
K1×K1

Φ−1
K1×K1

{
Φ̂K1×K1 − ΦK1×K1

}
Φ̂−1
K1×K1

Φ̂−1
K1×K1

)
≤λmin

(
Φ̂K1×K1

)−2

λmin (ΦK1×K1)
−2 · tr

({
Φ̂K1×K1 − ΦK1×K1

}{
Φ̂K1×K1 − ΦK1×K1

})
≤Op(1) ·Op(1) ·OP

(
ζ1(K1)2 · K1

N

)
= OP

(
ζ1(K1)2 · K1

N

)
,

and

E

∥∥∥∥∥ 1√
N

N∑
i=1

bK1(Ti,X i, Yi)

∥∥∥∥∥
2
 = E

[
‖bK1(T,X, Y )‖2

]
= O(K1).

Thus (ii) holds.

For (iii), by Cauchy-Schwarz’s inequality, we can obtain that

√
NV

−1/2
t |b2N(t)|
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=N−1/2V
−1/2
t

∣∣∣uK1(t)
>Φ̂−1

K1×K1
U>N×K1

RN(γ∗)
∣∣∣

≤V −1/2
t

{
uK1(t)

>Φ̂−1
K1×K1

(
N−1U>N×K1

UN×K1

)
Φ̂−1
K1×K1

uK1(t)
} 1

2 {
RN(γ∗)>RN(γ∗)

} 1
2

≤V −1/2
t

{
uK1(t)

>Φ̂−1
K1×K1

uK1(t)
} 1

2 {
RN(γ∗)>RN(γ∗)

} 1
2

≤{V −1/2
t ‖uK1(t)‖} · |λmax(Φ−1

K1×K1
)|

1
2 ·O(

√
N ·K−α̃1 )

=O(1) ·Op(1) · op(1) = op(1) .

Similarly, we can show show that
√
NV

−1/2
t |b3N(t)| = op(1). This completes the proof of the

Theorem.

5.2 Proof of Theorem 9

Note that √
NV

−1/2
t1,t0|t0 · θ̂t0,t1|t0 =

√
NV

−1/2
t1,t0|t0 · θ̂t1|t0 −

√
NV

−1/2
t1,t0|t0 · θ̂t0|t0 .

Consider the term
√
NV

−1/2
t1,t0|t0 · θ̂t0|t0 . Since θ̂t0|t0 is a nonparametric series estimator of θt0|t0 , by

using a similar argument of proving Theorem 6 (see also Newey (1997)), we have

√
NV

−1/2
t1,t0|t0 · θ̂t0|t0 = V

−1/2
t1,t0|t0 · uK1(t0)>Φ−1

K1×K1
· 1√

N

N∑
i=1

b3,K1(Ti, Yi) + oP (1), (74)

where

b3,K1(Ti, Yi) = uK1(Ti){Yi − E[Yi|Ti]}.

Consider the term
√
NV

−1/2
t1,t0|t0 · θ̂t1|t0 . Let δ := t1 − t0, and

γ̂ :=

[
N∑
i=1

π̂K(Ti,X i)

π̂K(Ti − δ,X i)
· Yi · u>K1

(Ti)

][
N∑
i=1

uK1(Ti)u
>
K1

(Ti)

]−1

.

Then θ̂t1|t0 = γ̂>uK1(t1). We have the following decomposition for θ̂t1|t0 − θt1|t0 :

θ̂t1|t0 − θt1|t0 = uK1(t1)>(γ̂ − γ∗) + [(γ∗)>uK1(t1)− θt1|t0 ]

=uK1(t1)>

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti,X i)

π̂K(Ti − δ,X i)
Yi −

π̂K(Ti,X i)

π0(Ti − δ,X i)
Yi

}]
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+uK1(t1)>

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti,X i)

π0(Ti − δ,X i)
Yi − E

[
π0(Ti,X i)

π0(Ti − δ,X i)
Yi

∣∣∣∣Ti]}
]

+uK1(t1)>

[
1

N

N∑
i=1

uK1(Ti)uK1(Ti)
>

]−1 [
1

N

N∑
i=1

uK1(Ti) ·
{
E
[

π0(Ti,X i)

π0(Ti − δ,X i)
Yi

∣∣∣∣Ti]− (γ∗)>uK1(Ti)

}]

+

[
(γ∗)>uK1(t1)− θt1|t0

]
≡b1N(t1) + b2N(t1) + b3N(t1) + b4N(t1).

Similar to the proof of Theorem 7 (pp 50, (iii) and (iv)), we can show

√
NV

−1/2
t1,t0|t0|b3N(t1)| → 0 and

√
NV

−1/2
t1,t0|t0|b4N(t1)| → 0. (75)

Consider b1N(t1). Similar to (73), we can show that

√
NV

−1/2
t1,t0|t0 · b1N(t1)

=−
√
NuK1(t1)>Φ−1

K1×K1

[
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti − δ,X i)− π0(Ti − δ,X i)

π0(Ti − δ,X i)π̂K(Ti − δ,X i)

}
π̂K(Ti,X i)Yi

]
+ oP (1).

Then we have

√
NV

−1/2
t1,t0|t0 · b1N(t1)

=−
√
NV

−1/2
t1,t0|t0 · uK1(t1)>Φ−1

K1×K1

[
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti − δ,X i)− π0(Ti − δ,X i)

π0(Ti − δ,X i)2

}
π0(Ti,X i)Yi

]

−
√
NV

−1/2
t1,t0|t0 · uK1(t1)>Φ−1

K1×K1

[
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti − δ,X i)− π0(Ti − δ,X i)

π0(Ti − δ,X i)

}

×
{

π̂K(Ti,X i)

π̂K(Ti − δ,X i)
− π0(Ti,X i)

π0(Ti − δ,X i)

}
Yi

]

=−
√
NV

−1/2
t1,t0|t0 · uK1(t1)>Φ−1

K1×K1

[
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti − δ,X i)− π0(Ti − δ,X i)

π0(Ti − δ,X i)2

}
π0(Ti,X i)Yi

]

−
√
NV

−1/2
t1,t0|t0 · uK1(t1)>Φ−1

K1×K1

[
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti − δ,X i)− π0(Ti − δ,X i)

π0(Ti − δ,X i)

}

×
{
π̂K(Ti,X i)− π0(Ti,X i)

π̂K(Ti − δ,X i)

}
Yi

]
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+
√
NV

−1/2
t1,t0|t0 · uK1(t1)>Φ−1

K1×K1

[
1

N

N∑
i=1

uK1(Ti)

{
π̂K(Ti − δ,X i)− π0(Ti − δ,X i)

π0(t0,X i)

}

·
{
π̂K(Ti − δ,X i)− π0(Ti − δ,X i)

π0(Ti − δ,Xi)π̂K(Ti − δ,X i)

}
π0(Ti,X i)Yi

]
≡
√
NV

−1/2
t1,t0|t0 · b

(1)
1N(t1) +

√
NV

−1/2
t1,t0|t0 · b

(2)
1N(t1) +

√
NV

−1/2
t1,t0|t0 · b

(3)
1N(t1).

Consider
√
NV

−1/2
t1,t0|t0 · b

(2)
1N(t1). The conditions λmin(Σ2K1×2K1) > c > 0 and λmin(ΦK1×K1) > c > 0

imply V −1
t1,t0|t0 ≥ c · ‖uK1(t1)‖2 for some c > 0. Similar to (72), we can show that

√
NV

−1/2
t1,t0|t0

∣∣∣b(2)
1N(t1)

∣∣∣ ≤ √N {V −1/2
t1,t0|t0 · ‖uK1(t1)‖

}
·

∥∥∥∥∥Φ−1
K1×K1

[
1

N

N∑
i=1

uK1(Ti) ·
{
π̂K(Ti − δ,X i)− π0(Ti − δ,X i)

π0(Ti − δ,X i)

}{
π̂K(Ti,X i)− π0(Ti,X i)

π̂K(Ti − δ,X i)

}
Yi

]∥∥∥∥∥
≤
√
N ·OP (1) ·

{
1

N

N∑
i=1

{
π̂K(Ti − δ,X i)− π0(Ti − δ,X i)

π0(Ti − δ,X i)

}2

·
{
π̂K(Ti,X i)− π0(Ti,X i)

π̂K(Ti − δ,X i)

}2

Y 2
i

}1/2

≤
√
N ·OP (1) · sup

(t,x)∈T ×X
|π̂K(t,x)− π0(t,x)|2 ·

{
1

N

N∑
i=1

Y 2
i

}1/2

≤OP

(√
N · ζ2(K) ·

{
K−2α +

K

N

})
= oP (1). (76)

Similarly, we can also show

√
N · V −1/2

t1,t0|t0 ·
∣∣∣b(3)

1N(t1)
∣∣∣ = oP (1). (77)

We next consider b
(1)
1N(t1). We shall find the influence representation for N−1/2uK1(t1)Φ−1

K1×K1

·
∑N

i=1 uK1(Ti){π̂K(Ti− δ,X i)− π0(Ti− δ,X i)}π0(Ti,X i)Yi/π0(t0,X i)
2. To achieve this goal, we

consider the asymptotic behavior ofN−1/2
∑N

i=1{π̂K(Ti−δ,X i)φ(Ti,X i, Yi)−E[π0(T−δ,X)φ(T,X, Y )]},
where φ(T,X, Y ) denotes a general L2 random variable. Define µ(t,x) := E [φ(T,X, Y )|T = t,X = x].

Similar to the proof of (40) in Section 4.3, we have the following decomposition:

1√
N

N∑
i=1

{π̂K(Ti − δ,X i)φ(Ti,X i, Yi)− E [π0(T − δ,X)φ(T,X, Y )]}

=
1√
N

N∑
i=1

{
(π̂K(Ti − δ,X i)− π∗K(Ti − δ,X i))φ(Ti,X i, Yi) (78)
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−
∫
T

∫
X

(π̂K(t− δ,x)− π∗K(t− δ,x))µ(x, t)dFX,T (x, t)

}

+
1√
N

N∑
i=1

{
(π∗K(Ti − δ,X i)− π0(Ti − δ,X i))φ(Ti,X i, Yi) (79)

−
∫
T

∫
X
µ(t,x) (π∗K(t− δ,x)− π0(t− δ,x)) dFX,T (x, t)

}
+
√
N

∫
T

∫
X
µ(t,x) (π∗K(t− δ,x)− π0(t− δ,x)) dFX,T (x, t) (80)

+
√
N

∫
T

∫
X

(π̂K(t− δ,x)− π∗K(t− δ,x))µ(x, t)dFX,T (x, t) (81)

−
√
N

∫
T

∫
X
µ(t,x)ρ′′

(
u>K1

(t− δ)Λ̃K1×K2vK2(x)
)
u>K1

(t− δ)ÂK1×K2vK2(x)dFX,T (x, t)

+
√
N

∫
T

∫
X
µ(t,x)ρ′′

(
u>K1

(t− δ)Λ̃K1×K2vK2(x)
)
u>K1

(t− δ)ÂK1×K2vK2(x)dFX,T (x, t) (82)

−
√
N

∫
T

∫
X
µ(t,x)ρ′′

(
u>K1

(t− δ)Λ∗K1×K2
vK2(x)

)
u>K1

(t− δ)A∗K1×K2
vK2(x)dFX,T (x, t)

+
√
N

∫
X
µ(t,x)ρ′′

(
u>K1

(t− δ)Λ∗K1×K2
vK2(x)

)
u>K1

(t− δ)A∗K1×K2
vK2(x)dFX,T (x, t) (83)

+
1√
N

N∑
i=1

{
π0(Ti,X i)

fT |X(Ti + δ|X i)

fT |X(Ti|X i)
µ(Ti + δ,X i)

− E
[
π0(Ti,X i)

fT |X(Ti + δ|X i)

fT |X(Ti|X i)
µ(Ti + δ,X i)

∣∣∣∣X i

]
− E

[
π0(Ti,X i)

fT |X(Ti + δ|X i)

fT |X(Ti|X i)
µ(Ti + δ,X i)

∣∣∣∣Ti]
+ E

[
π0(Ti,X i)

fT |X(Ti + δ|X i)

fT |X(Ti|X i)
µ(Ti + δ,X i)

]
+

1√
N

N∑
i=1

{
π0(Ti − δ,X i)φ(Ti,X i, Yi)− π0(Ti,X i)

fT |X(Ti + δ|X i)

fT |X(Ti|X i)
µ(Ti + δ,X i) (84)

+ E
[
π0(Ti,X i)

fT |X(Ti + δ|X i)

fT |X(Ti|X i)
µ(Ti + δ,X i)

∣∣∣∣X i

]
− E

[
π0(Ti,X i)

fT |X(Ti + δ|X i)

fT |X(Ti|X i)
µ(Ti + δ,X i)

]
+ E

[
π0(Ti,X i)

fT |X(Ti + δ|X i)

fT |X(Ti|X i)
µ(Ti + δ,X i)

∣∣∣∣Ti]− E
[
π0(Ti,X i)

fT |X(Ti + δ|X)

fT |X(Ti|X i)
µ(Ti + δ,X i)

]}
.
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Using changing of variables, the first term of (83) can be written as follows:

√
N

∫
T

∫
X
µ(t,x)ρ′′

(
u>K1

(t− δ)Λ̃K1×K2vK2(x)
)
u>K1

(t− δ)ÂK1×K2vK2(x)fX,T (x, t)dxdt

=
√
N

∫
T

∫
X

{
fT |X(t+ δ|x)

fT |X(t|x)

}
µ(t+ δ,x)ρ′′

(
u>K1

(t)Λ̃K1×K2vK2(x)
)
u>K1

(t)ÂK1×K2vK2(x)dFX,T (x, t).

Using a similar argument of showing that (46)-(49) are all op(1), we can show that (80)-(83) are

all op(1). By substituting φ(T,X, Y ) = uK1(t1)>ΦK1×K1uK1(T )π0(T,X)Y/π0(T − δ,X)2, we can

obtain

√
NV

−1/2
t1,t0|t0 · b

(1)
1N(t1) = V

−1/2
t1,t0|t0 · u

>
K1

(t1)Φ−1
K1×K1

[
1√
N

N∑
i=1

b1,K1(Ti,X i, Yi)

]
+ oP (1), (85)

where

b1,K1(Ti,X i, Yi) =
fT |X(Ti + δ|X)

fT |X(Ti|X i)

π0(Ti,X i)
2

π0(Ti − δ,X i)2
· E[Yi|Ti,X i] · uK1(Ti)

− E
[
fT |X(Ti + δ|X)

fT |X(Ti|X i)

π0(Ti,X i)
2

π0(Ti − δ,X i)2
· Yi · uK1(Ti)

∣∣∣∣X i

]
− E

[
fT |X(Ti + δ|X)

fT |X(Ti|X i)

π0(Ti,X i)
2

π0(Ti − δ,X i)2
· Yi · uK1(Ti)

∣∣∣∣Ti]
+ E

[
fT |X(Ti + δ|X)

fT |X(Ti|X i)

π0(Ti,X i)
2

π0(Ti − δ,X i)2
· Yi · uK1(Ti)

]
.

By combining (85), (76), and (77), we have

√
NV

−1/2
t1,t0|t0 · b1N(t1)

=
√
NV

−1/2
t1,t0|t0 · b

(1)
1N(t1) +

√
NV

−1/2
t1,t0|t0 · b

(2)
1N(t1) +

√
NV

−1/2
t1,t0|t0 · b

(3)
1N(t1)

=V
−1/2
t1,t0|t0 · uK1(t1)>Φ−1

K1×K1

[
1√
N

N∑
i=1

b1,K1(Ti,X i, Yi)

]
+ oP (1). (86)

Similar to the proof of (40), we can show

√
NV

−1/2
t1,t0|t0 · b2N(t1) = uK1(t1)>Φ−1

K1×K1

[
1√
N

N∑
i=1

b2,K1(Ti,X i, Yi)

]
+ oP (1), (87)
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where

b2,K1(Ti,X i, Yi) =
π0(Ti,X i)

π0(Ti − δ,X i)
· Yi · uK1(Ti)− E

[
π0(Ti,X i)

π0(Ti − δ,X i)
· Yi · uK1(Ti)

∣∣∣∣Ti,X i

]
+ E

[
π0(Ti,X i)

π0(Ti − δ,X i)
· Yi · uK1(Ti)

∣∣∣∣X i

]
− E

[
π0(Ti,X i)

π0(Ti − δ,X i)
· Yi · uK1(Ti)

]
.

Therefore, by combining (75), (86) and (87), we can have that

√
NV

−1/2
t1,t0|t0 · θ̂t1|t0 = V

−1/2
t1,t0|t0 · uK1(t1)>Φ−1

K1×K1
· 1√

N

N∑
i=1

{b1,K1(Ti,X i, Yi) + b2,K1(Ti,X i, Yi)}+ oP (1).

(88)

By combining (74) and (88), we can obtain

√
NV

−1/2
t1,t0|t0 · θ̂t1,t0|t0 =

√
NV

−1/2
t1,t0|t0 ·

{
θ̂t1|t0 − θ̂t0|t0

}
=V

−1/2
t1,t0|t0 ·

1√
N

N∑
i=1

{
uK1(t1)>Φ−1

K1×K1
· {b1,K1(Ti,X i, Yi) + b2,K1(Ti,X i, Yi)}

− uK1(t0)>Φ−1
K1×K1

· b3,K1(Ti, Yi)

}
+ oP (1),

which implies
√
NV

−1/2
t1,t0|t0 · θ̂t1,t0|t0

d−→ N(0, 1) by Liapounov CLT.

6 Variance Estimation in Monte Carlo Simulations

6.1 Proposed Variance Estimator

In Monte Carlo simulations, the estimated parameter is the average treatment effects, which

corresponds to a differentiable loss function L(v) = v2. The variance estimator can be simply

defined as follows:

V̂eff =

[
1

N

N∑
i=1

m(Ti; β̂)m(Ti; β̂)>

]−1

×

{
1

N

N∑
j=1

[
ψ̂(Yj, Tj,Xj; β̂)−mean(ψ̂)

]
·
[
ψ̂(Yj, Tj,Xj; β̂)−mean(ψ̂)

]>}

×

[
1

N

N∑
i=1

m(Ti; β̂)m(Ti; β̂)>

]−1

, (89)
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where

ψ̂(Y, T,X; β̂) =π̂K′(T,X)m(T ; β̂){Y − Ê[Y |T,X]}+ Ê
[
{Y − g(T ; β̂)}π0(T,X)m(T ; β̂)|X

]
,

and

Ê [Y |T,X] =

[
N∑
i=1

YiwK0(Ti,X i)
>

][
N∑
i=1

wK0(Ti,X i)wK0(Ti,X i)
>

]−1

wK0(T,X)

and

Ê
[
{Y − g(T ; β̂)}π0(T,X)m(T ; β̂)|X

]
=

[
N∑
i=1

π̂K′(Ti,X i)(Yi − g(Ti; β̂))m(Ti; β̂)vM0(X i)
>

]

×

[
N∑
i=1

vM0(X i)vM0(X i)
>

]−1

vM0(X),

and

mean(ψ̂) :=
1

N

N∑
j=1

ψ̂(Yj, Tj,Xj; β̂).

6.2 True Values of Veff in Monte Carlo Simulations

In Section 9 of the main paper, Monte Carlo simulations on variance estimation are performed.

Computing the bias, standard deviation, and RMSE of the variance estimator V̂eff requires to

compute the true variance Veff . We describe how to compute Veff under DGP-L1 in Section 6.2.1

and DGP-NL1 in Section 6.2.2. DGP-L2 and DGP-NL2 are omitted since they can be handled

in the same way as DGP-L1 and DGP-NL1.

To reduce notation, the single covariate X1 is redefined as X. Note that the influence function

is written as

ψ(Y, T,X;β∗) =π0(T,X)m(T ;β0){Y − g(T ;β∗)} − E [{Y − g(T ;β∗)}π0(T,X)m(T ;β∗)|T,X]

+ E [{Y − g(T ;β∗)}π0(T,X)m(T ;β∗)|T ] + E [{Y − g(T ;β∗)}π0(T,X)m(T ;β∗)|X]

− E [{Y − g(T ;β∗)}π0(T,X)m(T ;β∗)]

=π0(T,X)m(T ;β∗){Y − g(T ;β∗)} − E [{Y − g(T ;β∗)}π0(T,X)m(T ;β∗)|T,X]

+ E [{Y − g(T ;β∗)}π0(T,X)m(T ;β∗)|X] . (90)
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6.2.1 DGP-L1

Recall that DGP-L1 is

T = 1 + ρT,X ·X + ξ, Y = 1 +X + T + ε. (ρT,X = 0.2)

We have

E[Y |T,X] = 1 +X + T, E[Y (t)] = g(t;β∗) = 1 + t.

We directly compute

E [{Y − g(T ;β∗)}π0(T,X)m(T ;β∗)|T = t,X = x] =

∫
{y − g(t;β∗)} · fT (t)

fT |X(t|x)
·m(t) · fY |T,X(y|t, x)dy

= m(t) · π0(t, x) · {E[Y |X = x, T = t]− g(t;β∗)} = m(t) · π0(t, x) · {1 + x+ t− (1 + t)}

= m(t) · π0(t, x) · x (91)

and

E [{Y − g(T ;β∗)}π0(T,X)m(T ;β∗)|X = x] =

∫
m(t) · π0(t, x) · x · fT |X(t|x)dt

= x ·
∫
m(t)f(t)dt = x · E[m(T )]. (92)

Substitute (91) and (92) into (90) to get

ψ(Y, T,X;β∗) =π0(T,X)m(T ){Y − 1− T} −m(T ) · π0(T,X) ·X +X · E[m(T )]

=π0(T,X) ·m(T ) · {Y − 1−X − T}+X · E[m(T )]

=π0(T,X) · {Y − 1−X − T} ·

[
1

T

]
+

[
X

X

]
. (93)

To compute π0(t, x), note that

fT |X(t|x) =
1√
2π

exp

(
−(t− 1− ρT,X · x)2

2

)
,

fT (t) =
1√

2π · (1 + ρ2
T,X)

exp

(
− (t− 1)2

2 · (1 + ρ2
T,X)

)
, (T ∼ N(1, 1 + ρ2

T,X)).
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Hence,

π0(t, x) =
fT (t)

fT |X(t|x)
=

1√
1 + ρ2

T,X

exp

{
ρ2
T,X · (t− 1)2 + (1 + ρ2

T,X) · ρ2
T,X · x2 − 2 · (1 + ρ2

T,X) · ρT,X · x(t− 1)

2(1 + ρ2
T,X)

}
.

(94)

Using (93) and (94), the true variance can be computed as

Veff =

[
1

N

N∑
i=1

m(Ti)m(Ti)
>

]−1{
1

N

N∑
i=1

ψ̂(Yi, Ti, Xi;β
∗)ψ(Yi, Ti, Xi;β

∗)>

}[
1

N

N∑
i=1

m(Ti)m(Ti)
>

]−1

. (95)

Based on a simulated sample with large enough size N = 108, it follows that V11 = 3.142,

V12 = −1.097, and V22 = 1.097.

6.2.2 DGP-NL1

Recall that DGP-NL1 is

T = ρT,X ·X2 + ξ, Y = X2 + T + ε. (ρT,X = 0.1)

We have

E[Y |T,X] = X2 + T, E[Y (t)] = g(t;β∗) = 1 + t.

Eq. (91) is now rewritten as

E [{Y − g(T ;β∗)}π0(T,X)m(T ;β∗)|T = t,X = x] = m(t) · π0(t, x) · {x2 − 1}.

Eq. (92) is now rewritten as

E [{Y − g(T ;β∗)}π0(T,X)m(T ;β∗)|X = x] = {x2 − 1} · E[m(T )].

Substitute those equations into (90) to get

ψ(Y, T,X;β∗) = π0(T,X) · {Y −X2 − T} ·

[
1

T

]
+

[
X2 − 1

{X2 − 1} · ρT,X

]
. (96)
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To compute π0(t, x), note that

fT |X(t|x) =
1√
2π

exp

(
−(t− ρT,X · x2)2

2

)
,

f̂T (t) =
1

Nh

N∑
i=1

k

(
Ti − t
h

)
=

1

Nh

N∑
i=1

1√
2π

exp

(
−(Ti − t)2

2h2

)
,

where k(·) is the kernel function which can be taken as k(z) = (2π)−1/2 exp (−z2/2), and the

bandwith can be taken as, say, h = 0.1. Then

π0(t, x) =
f̂T (t)

fT |X(t|x)
=

1

Nh

N∑
i=1

exp

(
−(Ti − t)2

2h2
+

(t− ρT,X · x2)2

2

)
. (97)

Using (96) and (97), the true variance can be computed from (95). Based on a simulated

sample with large enough size N = 50000, it follows that V11 = 3.043, V12 = −0.118, and

V22 = 1.074.
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