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Abstract

We establish nonparametric identification in a class of so-called index

models using a novel approach that relies on general topological results.

Our proof strategy imposes very weak smoothness conditions on the func-

tions to be identified and does not require any large support conditions on

the regressors in our model. We apply the general identification result to

additive random utility and competing risk models.

KEYWORDS: nonparametric identification, discrete choice, competing risks, in-

dex

JEL codes: C14, C35, C36, C41

1 Introduction

We develop a novel nonparametric identification result for the following class of

models,

Π (w, x, z) = Λ (g (w) + h (x) , z) , (1)
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where Λ : RJ ×RdZ 7→ RJ , g : RdW 7→ RJ , and h : RdX 7→ RJ are all vector-valued
functions of dimension J ≥ 1. The arguments w ∈ RdJ and x ∈ RdX represent the
values of two sets of regressors, W and X, while z ∈ RdZ corresponds to values of
a set of control variables, Z. We take as high-level assumption that we know (have

observed from data) the function Π (w, x, z) for (w, x, z) ∈ supp (W,X,Z) from

which we then wish to identify the unknown functions Λ (a, z) and h (x), while

we treat the function g (w) as being known. Here, and in the following, supp (A)

denotes the support of any given random variable A. We refer to this class of

models as index models since W and X are restricted to enter the model through

g(W ) and h(X), respectively.

We make three major contributions relative to the existing literature: First,

we do not impose any large support conditions on any of the regressors in our

model, which is in contrast to most existing results on identification of this class of

models. Second, we impose very weak smoothness conditions on the functions of

interest; in particular, we do not require continuity or differentiability in order to

obtain identification of Λ and h while most existing results as a minimum require

the underlying functions to be differentiable. Third, we show how the presence

of the controls Z can help to achieve identification in a nontrivial way: We first

show local identification at each value of the control Z. Suitable variation in Z

then allows us to piece the locally identified components together across different

values of Z to achieve global identification.

Our proof strategy relies on arguments from general topology that, to our

knowledge, are completely new to the literature on nonparametric identification.

These should be of general interest since they can be used for identification in other

settings. A key element of our approach is the notion of relative identification: We

say that a function a (w, x) is relatively identified on a setM if there exists x such

that for all (w′, x′) ∈ M there exists w with (w, x) ∈ M and a (w, x) = a (w′, x′).

If a is indeed relatively identified onM, then for any point (w′, x′) ∈ M we can

use injectivity of Λ to find w such that a (w, x) = a (w′, x′). We will apply this

concept to a (w, x) := g (w) + h (x) in the above model. Since g (w) is treated

as known, we can therefore identify the difference h (x) − h (x′). Importantly, we

will not have to require any continuity of h or the domain of x to employ relative

identification.
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Relative to "identification at infinity", as discussed below, we only require

relative identification on small sets. Extending the identification result so to hold

on larger set is achieved through the second main ingredient of our argument,

which is the topological notion of a connected set. By definition, a connected

set cannot be contained in the union of two non-empty disjoint open sets while

having non-empty intersection with both. In other words, it is not possible to

split a connected set into disjoint subsets that are separated by being contained

within disjoint open sets. We will then require the image of a (W,X) to be covered

by open sets, within each of which we have relative identification. The image

being connected then ensures that local identification extends to all of the image.

Like us, Berry and Haile (2018) and Evdokimov (2010), among others, rely on

connectness to achieve global identification but in these papers the restriction is

imposed directly on the support of the covariates thereby implicity restricting the

covariates to be continuous. In contrast, we impose connectedness on the image

of a (W,X) and so allow for both X and W to contain discrete components.

Two leading examples that fall within our general framework are nonparametric

versions of additive discrete choice models and competing risk models as shown

in the next section. There is a large literature on identification and estimation of

semiparametric multinomial choice models (see,e.g., Manski, 1975; Lewbel et al.,

2000). In contrast, the literature on nonparametric identification is quite thin with

few results having been developed since the seminal work of Matzkin (1993). In

terms of modelling, Theorem 2 in Matzkin (1993) is probably the most related to

our result, but the assumptions and identification strategy of this theorem are very

different from ours. Our and her set of assumptions are not clearly ranked with

some of our assumptions being stronger while others weaker compared to hers. One

key feature of her proof strategy is the introduction of assumptions that ensure

the multinomial model may be converted to a binary choice problem and then

employment of an "identification at infinity" argument. This assumes availability

of a set of special regressors with full support; identification is then achieved by

sending each of these special regressors off to infinity. This is an example of what

Khan and Tamer (2010) call "thin set identification" which they show leads to

irregularly behaved estimators. In contrast, we achieve identification as long as

g (w)+h (x) exhibits suffi cient, but potentially bounded, variation. More recently,
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Allen and Rehbeck (2019) provide conditions under which one can identify how

regressors alter the desirability of alternatives using only average demands. Their

conditions are weaker than ours but on the other hand they are only able to identify

certain features of the model.

There is also a nascent literature on nonparametric identification of so-called

BLPmodels (Berry et al., 1995) as used in industrial organization; see, for example,

Berry and Haile (2018) and Chiappori et al. (2018). The setting of the BLP model

is somewhat different, though, since there the observed choice probabilities contain

unobserved product characteristics that have to be controlled for. This leads to a

different identification problem compared to ours.

Finally, there is also a literature on identification in competing risk models.

The two most closely related papers in terms of modelling are Heckman and Hon-

oré (1989) and Lee and Lewbel (2013). Heckman and Honoré (1989) achieves

identification by letting the index of the duration variable go to zero and so their

result falls in the "thin set identification" category. Lee and Lewbel (2013) provide

a high-level assumption for identification involving a rank condition of an integral

operator. Primitive conditions for this to hold are not known. We complement

these two studies by showing identification under primitive conditions without

relying on "thin set identification".

In the next section, we give two motivating examples in form of a random

utility model and a competing risk model that both fall within the setting of eq.

(1). We present our general framework in Section 3 and the assumptions we will

work under, and provide our identification results in Section 4. Section 5 concludes.

2 Two Motivating Examples

The model (1) comprises a range of models that are met in economics. We here

present two classes of models that fall within our framework.

2.1 Discrete choice models

We here first demonstrate that additive random utility models (ARUM) belong

to the class of models (1). Using existing results in the literature, this implies
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that our results also apply to a broad class of rational inattention discrete choice

models (Fosgerau et al., 2018) and an even wider class of perturbed utility models.

2.1.1 Additive random utility

Consider an agent choosing between J + 1 alternatives, each of which being asso-

ciated with an indirect utility of the form

Uj = gj (W ) + hj (X) + εj, j = 0, 1, ..., J,

where (W,X) is a set of observed covariates while ε = (ε0, ε1, ..., εJ) is unob-

served. This model was initially proposed by McFadden (1974) and has since

become one of the workhorses in applied microeconomics; see e.g. Ben-Akiva and

Lerman (1985) and Maddala (1986). As is standard in the literature, we impose

the following normalization on the "outside"option j = 0: g0 (w) = h0 (x) = 0.

We collect the remaining functions in g (W ) = (g1 (W ) , ..., gJ (W )) and h (X) =

(g1 (X) , ..., gJ (X)).

Some of the regressors (W,X) may potentially be dependent on ε. To handle

this situation, we assume the availability of a set of control variables Z so the

following conditional independence assumption is satisfied:

Assumption 1 Fε|(W,X,Z) = Fε|Z where Fε|Z has a conditional density with full

support and finite first moments.

In addition to (W,X,Z), the researcher also observes the utility maximizing

choice, D = arg maxj∈{0,1,...,J} Uj. Thus, the conditional choice probabilities,

Πj (w, x, z) := P (D = j| (W,X,Z) = (w, x, z)) , j = 0, 1, ..., J, (2)

are identified in the population. We collect these in the vector-valued function

Π (w, x, z) = {Πj (w, x, z) : j = 1, ..., J} ∈ RJ where we leave out the choice prob-
ability of the outside option. Define the surplus function

G (a0, ...aJ , z) = E

[
max
j=0,...,J

{εj + aj} |Z = z

]
,
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for any given (a0, a1, ..., aJ) ∈ RJ+1. Then by the conditional independence in

Assumption 1 together with the Williams-Daly-Zacchary Theorem (McFadden,

1981), the gradient of the surplus function is the vector of choice probabilities.

That is, for j = 1, ..., J ,

Πj (w, x, z) = Λj (g (w) + h (x) , z) , Λj (a1, ...aJ , z) =
∂G (a0, a1...aJ , z)

∂aj

∣∣∣∣
a0=0

,

and so (1) holds. Moreover, due to Fε|Z having a conditional density with full

support, the conditional choice probability mapping Λ (·, z) is invertible for each
z, c.f. Hofbauer and Sandholm (2002, Thm 2.1), and so injective which we will

require to achieve identification.

Fosgerau et al. (2018) show that any ARUM satisfying the conditions above is

observationally equivalent to a rational inattention discrete choice model in which

the prior is held constant. This generalizes the result by Matějka and McKay

(2015) that the multinomial logit model has a foundation as a rational inattention

model. The Fosgerau et al. (2018) result implies that our identification result

extends without effort to a broad class of rational inattention models.

2.1.2 Perturbed utility

The class of perturbed utility models (Fosgerau et al., 2012; Fudenberg et al., 2015)

generalizes the class of additive random utility models. As shown by Hofbauer and

Sandholm (2002), the conditional choice probabilities of an ARUM arise as the

solution to a utility maximization problem where a consumer chooses the vector

of choice probabilities to maximize a function that consists of a linear term and

a concave term. Here we present a more general version that allows controls to

affect the concave term, i.e.

Λ (a, z) = arg max
q∈∆
{aᵀq + Ω (q|z)} ,

where a ∈ RJ+1 is a vector of utility indexes, ∆ = {q ∈ RJ+1
+ :

∑J
j=0 qj = 1} is the

unit simplex and Ω (·|z) is a concave function for each z ∈ Z. We further specify
the indexes as a = a (w, x) = g (w) + h (x) in which case the implied conditional
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choice probabilities Π (w, x, z) satisfy (1).

We will show that Λ is injective for each z as a function of a, which will include

perturbed utility models among the models for which we establish identification.

First, in order to rule out zero demands, we assume that the norm of the gradient

∇qΩ (q|z) approaches infinity as q approaches the boundary of the unit simplex.

Second, we assume that Ω (q|z) is differentiable.1 Third, we normalize the outside

option so that g0 (w) = h0 (x) = 0. Now, for each value of the control z, the

demand solves the first-order condition for an interior solution

a+∇qΩ (Λ (a, z) |z) = λι,

where λ is a scalar constant and ι ∈ RJ is a vector consisting of ones. To show
that Λ is injective, consider this equation at a1 and a2 and assume that Λ (a1, z) =

Λ (a2, z). Define a matrixM such thatMx = x−x0ι for all x = (x0, ..., xJ) ∈ RJ+1.

Pre-multiply this matrix onto the first-order condition to obtain that

a1 +M∇qΩ (Λ (a1, z) |z) = a2 +M∇qΩ (Λ (a2, z) |z) ,

which implies that a1 = a2 as required.

2.2 Accelerated failure time models for competing risks

Consider a competing risk model as in Heckman and Honoré (1989) with J com-

peting causes of failure. A latent failure time Tj > 0 is associated with each cause

j ∈ {1, ..., J}. The econometrician observes the duration until the first failure,
Y = minj∈{1,...,J} Tj, and the associated cause of failure, D = arg minj∈{1,...,J} Tj,

together with a set of covariates (X,W,Z). Assume that the jth failure time

satisfies

lnTj = gj (W ) + hj (X)− εj,

for some functions gj and hj, j = 1, ..., J . We collect the unobservables in ε =

(ε1, ..., εJ) which again is required to satisfy Assumption 1. The model may then

be termed a multivariate generalized accelerated failure time model (Kalbfleisch

1Note we do not require a Hessian.
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and Prentice, 1980; Fosgerau et al., 2013).

The econometrician has knowledge of

Πj (w, x|z) = E (lnY | (W,X,Z) = (w, x, z))·P (D = j| (W,X,Z) = (w, x, z)) , : j = 1, ..., J,

which satisfies eq. (1) with

Λj (a, z) = G (a, z) · ∂G (a, z)

∂aj
, : j = 1, ..., J,

where as before a = (a1, ..., aJ) while G (a, z) is now the expected log failure time,

G (a, z) = E [lnY |g (W ) + h (X) = a, Z = z] = −E
[

max
j=1,...,J

{−aj + εj} |Z = z

]
.

Injectivity of Λ (a, z) = (Λ1 (a, z) , ...,ΛJ (a, z)) for each value of z follows from

Assumption 1 by recycling the arguments of the previous section where now nor-

malization of one of the causes of failure is not required since the level G (a, z) is

included.

3 General framework

We now return to the general model given in eq. (1) where g : RJ → RJ is a known
function while h : RdX → RJ and Λ : RJ ×RdZ → RJ are unknown functions. We
take Π (w, x, z) as given and known to us for all (w, x, z) ∈ supp (W,X,Z) ⊆ RJ ×
RdX × RdZ where (W,X,Z) denote the random variables that we have observed,

c.f. the examples in the previous section.

For notational convenience, define

a (w, x) := g (w) + h (x) . (3)

Given that g is known to us, identification of a is equivalent to identification of h.

We then wish to identify the functions a (w, x) and Λ (a, z) for (w, x) ∈M0, a ∈ A0

and z ∈ Z0 where the setsM0, A0 and Z0 are defined below. Specifically, these

sets will be constructed according to certain features of the underlying covariates
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and the functions of interest as explained in the following.

The covariates W play a special role in our approach in that we need suffi cient

continuous variation in these to achieve identification. First, we will throughout

require that dim (W ) = J in order to vary each of the J components of a in

Λ (a, z) independently of each other. We will now strengthen this and require

that W exhibit continuous variation: For given values of z ∈ supp (Z) and x ∈
supp (X|Z = z), define

M (z) = ∪x∈supp(X|Z=z)int supp (W |X = x, Z = z)× {x} ⊆ RJ × RdX , (4)

where intM denotes the interior of a given setM, and let

A (z) = a (M (z)) = {a (w, x) | (w, x) ∈M (z)} ⊆ RJ (5)

denote the image of M (z) under a. We then wish to show that a and Λ are

identified on

M0 = ∪z∈Z0M (z) , and A0 = ∪z∈Z0A (z) , (6)

respectively, where Z0 ⊆ supp (Z) will be specified below.

At a first glance, the construction ofM0 in terms ofM (z) may look somewhat

odd and one could perhaps be tempted to instead attempt to achieve identification

on M̃0 = ∪z∈Z0M̃ (z) where M̃ (z) = int supp (W,X|Z = z). However, the alter-

native version M̃ (z) will be empty if, for example, X is discrete; in contrast,M (z)

will be non-empty as long as supp (W |X = x, Z = z) has non-empty interior for

some values of (x, z), regardlessly of X having discrete components. A suffi cient

condition forM (z) to be non-empty is that the distribution of W |X = x, Z = z

has a continuous component but it allows for this to be combined with discrete

components. However, if the discrete support points are not contained within the

support of the continuous component, we will not be able to show identification

at these values. This also rules out that some components of W are included in

Z since in this case int supp (W |X = x, Z = z) = ∅. At the same time, however,
(X,W ) are allowed to be dependent on Z; we just need suffi cient variation in

(X,W ) conditional on Z. Finally, we would like to stress that we do not impose

any large-support restrictions on W , which is in contrast to most existing results
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in the literature; see discussion in the Introduction.

Observe the dependence ofM0 and A0 on the set Z0 ⊆ supp (Z). To achieve

“maximal”identification, we would ideally like to choose Z0 = supp (Z). However,

we potentially have to restrict Z0 so that the functions a 7→ Λ (a, z) and w 7→ g (w)

satisfy certain conditions as we vary (w, x) over M0. Specifically, we implicitly

restrict Z0 so that the following two assumptions are satisfied on the resulting set:

Assumption 2 For any z ∈ Z0, a 7→ Λ (a, z) is injective on A (z) as defined in

(5).

Assumption 3 w 7→ g (w) is injective and, for any z ∈ Z0, takes open sets to

open sets on
{
w ∈ RJ : ∃x ∈ RdX : (w, x) ∈M (z)

}
.

In a given application, Assumptions 2-3 may not hold for all z ∈ supp (Z) in

which case we will remove such values from Z0. In the worst case scenario, this

leaves us with Z0 being empty and our identification result becomes void. At the

other extreme, Z0 = supp (Z) and we achieve identification on the whole support.

Regarding Assumption 2, asking that Λ is injective is weaker than the assumption

that ε|Z = z has a continuous distribution, which we used in our two examples to

guarantee injectivity. Regarding Assumption 3, first note that functions that take

open sets into open sets are referred to as open maps in topology. A suffi cient

condition for Assumption 3 to hold is that g is one-to-one with its inverse being

continuous. However, an open map does not necessarily have to be continuous and

so Assumptions 2-3 potentially allow for discontinuities in both Λ and g.

Due to the structure of a (w, x), as given in eq. (3), it follows from the definition

ofM (z) together with Assumption 3 that A (z) and thereby also A0 are open sets.

We add to this by also requiring it to be connected. Recall that a set A is said
to be connected if for any non-empty open sets O1 and O2 the following holds:

A ⊆ O1 ∪ O2, A ∩ O1 6= ∅, A ∩ O2 6= ∅ ⇒ O1 ∩ O2 6= ∅. Thus a connected set
cannot be contained in two non-empty disjoint open sets. We then impose:

Assumption 4 A0 defined in eq. (6) is connected.

The latter assumption allows us to extend identification from each A (z) to

all of A0, but, importantly, without requiring that each A (z) is connected. It
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still requires, however, that we can connect all points in A0 as we vary z ∈ Z0.

Note the potential tension between this last assumption and Assumptions 2-3: It

may very well be that the set of values for z at which Assumptions 2-3 hold is

so small that the corresponding set A0 becomes disconnected. This situation can

be handled under additional constraints: Suppose, for example, Z0 = Z0,1 ∪ Z0,2

where A0,k = ∪z∈Z0,kA (z), k = 1, 2, are two connected sets but A1 ∪ A2 is not

connected. Then we can apply the results presented in the next section to Z0,1

and Z0,2 separately to achieve identification on A0,1 ∪ A0,2. This does, however,

require two normalizations —one for each of the two separate sets —since we need

to impose the following normalization on the function h:

Assumption 5 There exists known z0 ∈ Z0 and (w0, x0) ∈M (z0) so that h (x0) =

0.

This is needed to identify the level of h since, for any given pair of (Λ, h), we

have Λ (g (w) + h (x) , z) = Λ̃
(
g (w) + h̃ (x) , z

)
where Λ̃ (a, z) = Λ (a+ c, z) and

h̃ (x) = h (x)− c for some given value of c ∈ RJ .

4 Results

As explained earlier, we shall make use of the following notion of relative identifi-

cation in our proof of identification:

Definition 1 A function a (w, x) is relatively identified on a given setM if there

exists x such that for all (w′, x′) ∈ M there exists w with (w, x) ∈ M and

a (w, x) = a (w′, x′).

In particular, if a is relatively identified onM and if a is identified at a point

inM, then a is also identified on all ofM. Note thatM may, for example, take

the form of M = W × {x} in which case we are only able to identify a(w, x) at

the single value x. We then have the following first result:

Lemma 1 Under Assumptions 2-3 the following hold: For any z ∈ Z0 and (w, x) ∈
M (z), there exists an open neighbourhood O ⊆ A (z) of a (w, x) such that a (·, ·)
is relatively identified on a−1 (O) ∩M (z).
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Proof. Let (w, x) ∈ M (z) be given. By definition of M (z), there exists

an open neighbourhood Ow of w such that (w′, x) ∈ M (z) for all w′ ∈ Ow,
which in turn implies that O := a (Ow, x) = g (Ow) + h (x) ⊆ A (z) is open

by Assumption 3. Now, consider an arbitrary point (w′, x′) ∈ a−1 (O) ∩M (z).

By construction of O, there exists w′′ ∈ Ow such that a (w′′, x) = a (w′, x′)

Then also Π (w′, x′, z) = Π (w′′, x, z). By definition this corresponds to solving

Λ (g (w′) + h (x′) , z) = Λ (g (w′′) + h (x) , z) w.r.t. w′′, which will have a unique

solution since a 7→ Λ (a, z) is injective on A (z) by Assumption 2 and g is invertible

by Assumption 3. Thus, w′′ is well-defined and unique, and is identified since Π is

known/identified. Hence, a (·, ·) is relatively identified on a−1 (O).

Assumption 4 now allows us to take the step from relative identification on a

cover of A0 by open sets to identification everywhere onM0:

Theorem 1 Under Assumptions 2-4, a (·, ·) is identified onM0.

Proof. For any given z ∈ Z0, recall that A (z) is open. Using Lemma 1, find an

open cover of A (z), ∪i∈IzOi (z), where Oi (z) ⊆ A (z) and a is relatively identified

on each a−1 (Oi (z)) ∩M (z), i ∈ Iz. Then

∪z∈Z0 ∪i∈Iza−1 (Oi (z)) ∩M (z) (7)

is an open cover ofM0 where a is relatively identified on each a−1 (Oi (z))∩M (z).

Define S ⊆M0 as the set of points at which a (·, ·) is identified. S is nonempty,
since (w0, x0) ∈ S.
Consider any Oi (z) for i ∈ Iz and z ∈ Z0, so that a (S) ∩ Oi (z) 6= ∅. By

construction, Oi (z) ⊆ A (z) and hence S ∩ a−1 (Oi (z)) ∩ M (z) 6= ∅. Hence

a−1 (Oi (z)) ∩M (z) ⊆ S due to Lemma 1. Moreover, Oi (z) ⊆ a (S) for all such

Oi (z) and we conclude that a (S) is open.

Now suppose, to obtain a contradiction, that identification does not extend

to all of M0, i.e. M0\S 6= ∅. By assumption, there exists Oi (z) with Oi (z) ∩
a (M0\S) 6= ∅, and we haveOi (z)∩a (S) = ∅ since otherwise a−1 (Oi (z))∩M (z) ⊆
S. Then the union of such such neighbourhoods Oi (z) is open and disjoint from

the open set a (S). But this is a contradiction since A0 is connected.
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Importantly, the above argument shows that it is possible to achieve identifi-

cation across different values of z without continuity due to connectedness of the

image A. Moreover, this result holds without having identified Λ. Once we have

identified a we can also identify Λ:

Theorem 2 Under Assumptions 2-4, Λ is identified on A0.

Proof. Let z ∈ Z0 and a ∈ A (z) be given. By definition ofA (z), there exists some

pair (w, x) ∈M (z) such that a = a (w, x). Since a (·, ·) is identified, the pair (w, x)

is also identified. But then we also know Π (w, x, z) and so Λ (a, z) = Π (w, x, z) is

uniquely identified.

5 Conclusion

We have established an general identification result for a wide class of index models,

whereby identification relies solely on general topological properties. Smoothness

is not required. No large support condition is imposed on the regressors. Controls

variables may contribute to achieving identification.
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