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Abstract

In an important class of econometric problems, researchers select a target pa-

rameter by maximizing the Euclidean norm of a data-dependent vector. Examples

that can be cast into this frame include threshold regression models with estimated

thresholds, and structural break models with estimated breakdates. Estimation

and inference procedures that ignore the randomness of the target parameter can

be severely biased and misleading when this randomness is non-negligible. This

paper proposes conditional and unconditional inference in such settings, reflecting

the data-dependent choice of target parameters. We detail the construction of

quantile-unbiased estimators and confidence sets with correct coverage, and prove

their asymptotic validity under data generating process such that the target param-

eter remains random in the limit. We also provide a novel sample splitting approach

that improves on conventional split-sample inference.
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1 Introduction

In a variety of economic settings, researchers select a target parameter by maximizing the

Euclidean norm of a data-dependent vector. For example, in threshold regressions and

structural break models researchers commonly estimate the location of a break or threshold

by minimizing a residual sum of squares or, equivalently, maximizing an explained sum

of squares. Researchers then estimate and form confidence sets for the magnitude of the

discontinuity, taking the estimated threshold or break as given (see e.g. Hansen (2000)

and Perron (2006)). Estimation and inference procedures that do not account for the

data-driven selection of the target parameter in such settings can perform very poorly

when the maximizer is variable. In the structural break and threshold regression settings,

this corresponds to the empirically-relevant case where the location of the threshold/break

is unknown, and is not obvious from the data. In such cases conventional estimators may

be badly biased, and conventional confidence intervals may under-cover.

This paper builds on the results of our companion paper, I. Andrews et al. (2019) (hence-

forth abbreviated AKM), to derive quantile-unbiased estimators and valid confidence sets.

In AKM we develop results on estimation and inference following abstract data-dependent

selection of a target parameter in a normal model, proving a variety of validity and optimal-

ity results. The form of the resulting procedures depends on the nature of selection, and

AKM works out details for the case where the target parameter is chosen by maximizing the

level of an asymptotically normal random variable. The translation of results from the nor-

mal model to results on asymptotic validity also depends on the form of selection considered,

and AKM further shows uniform asymptotic validity for the level-maximization case. In the

present paper, we derive the form of the AKM estimators and confidence sets in the settings

where the target parameter is chosen by maximizing the norm, rather than the level, of

asymptotically normal random variables and prove asymptotic validity of these procedures

for the first time in this class of problems. For asymptotic validity, we focus on sequences

of parameter spaces such that the norm-maximizing value is random, even asymptotically.

Our results also build on the rapidly expanding statistics literature on selective inference,

which has primarily considered inference on regression parameters after using popular

model-selection tools. See e.g. Harris et al. (2016), Lee et al. (2016), Tian and Taylor

(2018), Fithian et al. (2017), Tibshirani et al. (2018), and references therein. To implement

selective inference procedures one needs a tractable representation of the selection event

of interest as a function of sufficient statistics for nuisance parameters. We derive such
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a representation for norm-maximization problems, while existing papers in the literature

have developed analogous representations for other questions, for example inference after

LASSO model selection in Lee et al. (2016). Tibshirani et al. (2018) also develop results

on asymptotic validity for parameter spaces similar to those we consider, but their results

cover neither the norm-maximization setting we study nor some of the estimators and

confidence intervals we discuss.1 In contrast to the level-maximization setting studied by

AKM, we show that norm-maximization induces a non-convex conditioning event. De-

riving a tractable form for this conditioning event and establishing validity of the resulting

procedures constitute the main theoretical contributions of this paper.

Split-sample inference provides an alternative solution to the failures of conventional

estimators and confidence sets in this setting. In a split-sample approach, one selects the

target parameter based on one part of the data (or, alternatively, a noised-up version of

the full data), and then conducts inference using the remainder of the data. In AKM we

derive an improved split-sample approach for abstract selection events, which dominates

conventional split-sample inference. In the present paper, we work out the details of

improved split-sample inference in norm-maximization settings.

We illustrate how our estimation and inference procedures can be applied to structural

break and threshold regression settings. Building upon Elliott and Müller (2007, 2014)

and Wang (2017, 2018), we show how to cast estimation and inference in these models

as norm-maximization problems. In a notable departure from these papers, our estimators

and confidence intervals do not require the threshold or structural break model to be

correctly specified. This added generality is important, since researchers sometimes fit

a threshold model as a parsimonious approximation in settings where the parameters

may in fact change in a more continuous manner. Hence, if we perform inference after

estimating the breaks, the pseudo-true parameter defined based on an estimated change

point becomes a natural object of interest.

Finally, we examine the performance of our proposed methods in threshold regression

simulations calibrated to data from Card et al. (2008). These authors studied the dynamics

of neighborhood segregation by comparing the change in white share between 1980 and 1990

to the minority share in 1980. They fit a model which allows for “tipping point” dynamics,

where an increase in the minority share beyond some threshold leads to a discontinuous

1In particular, the inference procedures studied in Tibshirani et al. (2018) are all what we term
conditional below, in that they condition on a selection event, while we consider both conditional and
unconditional inference procedures.
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decrease in the white share (“white flight”). Their theoretical model, by contrast, predicts

large but potentially continuous changes as a function of the minority share, and so suggests

the discontinuous tipping point model may be misspecified. Our simulations calibrated

to this application highlight that conventional estimation and inference procedures can

perform very poorly in terms of bias and coverage when the target parameter is selected

through norm-maximization. By contrast, our new procedures perform well in terms

of both bias and coverage, and outperform existing alternatives. In particular, Card

et al. (2008) originally conducted inference based on a split-sample approach, and we find

substantial performance gains from our improved split-sample methods

The next section illustrates the pitfalls of conventional inference, and outlines the

goals of our corrections, in a stylized norm-maximization problem. Section 3 discusses

the norm-maximization problem in the context of a normal model, and shows that both

the structural break and threshold regression examples are asymptotically normal under

a small-break asymptotic approximation. We then briefly introduce the AKM inference

procedures and derive the expressions needed to implement them in a norm-maximization

setting. Section 4 establishes the asymptotic validity of our estimators and confidence

intervals in norm-maximization settings. Finally, Section 5 discusses implementation of

our improved split-sample procedures, while Section 6 wraps up with our simulation study

based on Card et al. (2008).

2 Norm Maximization in a Stylized Example

We begin by considering a stylized example inspired by Romano and Wolf (2005). In

particular, suppose we compare two investment strategies in a backtest, and seek to

estimate and form a confidence interval for the expected return of the strategy with the

largest absolute historical average return.2 To further simplify the analysis for this section,

let us suppose the returns of the two strategies are statistically independent. We emphasize,

however, that such independence is neither required nor imposed in the rest of the paper.

Let Ri,1 and Ri,2 denote the observed returns of the two investment strategies in period

i for a sample of observations i= 1,...,n and R̄= (R̄1,R̄2)
′ = n−1

∑n
i=1Ri. We assume

returns are stationary, and when |R̄1|≥|R̄2| we are interested in inference on E[Ri,1], while

when |R̄2|> |R̄1| we are interested in inference on E[Ri,2]. Standard weak dependence and

2Treating negative and positive historical returns symmetrically can be justified by the ability to take
short positions.
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moment conditions imply a central limit theorem:

√
n(R̄−E[Ri])

d−→N (0,Σ),

where Σ is a diagonal, consistently estimable variance matrix.

To capture the feature that average returns are small relative to sampling uncertainty,

let us further model E[Ri]=µ/
√
n for a fixed vector µ, so

Xn=
√
nR̄

d−→X∼N (µ,Σ). (1)

This “small return” approximation ensures that both investment strategies are chosen with

positive probability even in large samples, and hence that our asymptotic analysis captures

the finite-sample uncertainty about which strategy has the highest absolute return.3 If

we were to instead fix E[Ri], then so long as the elements of |E[Ri]| are not equal, the

strategy with the largest absolute expected return would be chosen with probability one

asymptotically. For ĵ=argmaxj|Xj|, our inference problem thus asymptotically resembles

that of estimation and inference on µĵ based on observing X∼N (µ,Σ) for known Σ. We

thus study this asymptotic problem, in the hope (borne out by the results of Section

4) that finite-sample results for procedures based on (X,Σ) will translate to asymptotic

results for procedures based on Xn and a variance estimator Σ̂n.

Since Xj is an unbiased estimator for µj, one may be tempted to use Xĵ to estimate

µĵ and to form a (1−α)-level confidence interval in the standard way as

[Xĵ−
√

Σĵĵz1−α/2,Xĵ+
√

Σĵĵz1−α/2], (2)

for z1−α/2 the 1−α/2 quantile of a standard normal distribution. Recall, however, that

ĵ is random, so in general Xĵ is biased and (2) does not have correct coverage for µĵ.

To understand why, suppose that ĵ=1, or equivalently that |X1|≥|X2|. Conditional on

ĵ=1, Xĵ is distributed as a normal variable with mean µ1 and variance Σ11, truncated

to lie outside the random interval (−|X2|,|X2|). We thus see that the distribution of Xĵ

conditional on the realized value of ĵ=1 is neither normal nor symmetric about µ1 for µ1 6=0.

To better understand the behavior of Xĵ in this setting, let us further condition on

3These drifting sequence asymptotics can be considered a form of weak-identification asymptotics,
where the best performing investment strategy is weakly identified.
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the realized value of X2. The conditional mean of Xĵ given ĵ=1 and X2 =x2 is

E[Xĵ|ĵ=1,X2 =x2]=E[X1||X1|≥|x2|]=µ1+σ1

φ
(
|x2|−µ1√

Σ11

)
−φ
(
−|x2|−µ1√

Σ11

)
1−Φ

(
|x2|−µ1√

Σ11

)
+Φ
(
−|x2|−µ1√

Σ11

). (3)

The conditional bias thus has the same sign as φ
(
|x2|−µ1√

Σ11

)
−φ
(
−|x2|−µ1√

Σ11

)
, which for x2 6=0

has the same sign as µ1. Since the sign of the bias is the same for almost every x2, the bias

of Xĵ conditional on ĵ=1 likewise has the same sign as µ1. Since the symmetric argument

again for ĵ = 2, we thus see that Xĵ is biased away from zero conditional on ĵ = j, in

the sense that |E[Xĵ|ĵ=j]|>µj whenever µj 6=0. As this bias suggests, the conventional

confidence set (2) will undercover.

In this paper we build on the results of AKM to overcome the problem of biased

estimation and undercoverage for norm maximization settings. In particular, we develop

a conditionally α-quantile unbiased estimator µ̂α, which has the property that

Pµ

{
µ̂α≥µĵ|ĵ=j

}
=α for j∈{1,2} and all µ.

These estimators can be used to form equal-tailed 1−α level confidence intervals [µ̂α
2
,µ̂1−α

2
],

which have correct conditional coverage given ĵ,

Pµ

{
µĵ∈CS|ĵ=j

}
=1−α for j∈{1,2} and all µ.

If the level-maximization criterion considered in AKM were used instead, i.e., ĵ =

argmaxjXj, the conditioning event in (3) would be given by a half-open interval {X1≥x2}
rather than the union of the disconnected intervals {X1≥|x2|}∪{X1≤−|x2|}. Below we

show that in general, norm-maximization problems lead to conditioning events that can be

represented as finite unions of disconnected intervals, unlike level-maximization problems

for which the conditioning events are intervals.

Conditional quantile unbiasedness and conditional coverage are demanding require-

ments, and simulations in AKM suggest that they can come at the cost of unconditional

performance.4 Hence, for cases where we are satisfied with controlled unconditional bias,

4Whether a conditional or unconditional coverage constraint is more appropriate is necessarily
context-specific. We refer the interested reader to AKM for further discussion of this point.
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following AKM we also introduce estimators µ̂Hα such that

|Pµ
{
µ̂α≥µĵ

}
−α|≤β ·max{α,1−α} for all µ,

where β is a user-selected constant, and confidence sets with correct unconditonal coverage,

Prµ
{
µĵ∈CS

}
≥1−α for all µ.

3 Norm Maximization in the Normal Model

This section introduces a finite-dimensional normal model with norm maximization which

generalizes the stylized example in the last section, and shows that this model arises as

an asymptotic approximation to threshold regression and structural break models. We

then briefly introduce the inference procedures of AKM and derive the expressions needed

to use these procedures in the norm-maximization setting.

As in the general setting of AKM, assume we observe normal random vectors
(
X(θ)′,Y (θ)

)′
for θ ∈ Θ where Θ is a finite set, X (θ) ∈ RdX , and Y (θ) ∈ R. In particular, for

Θ=
{
θ1,...,θ|Θ|

}
, let X=

(
X(θ1)

′,...,X
(
θ|Θ|
)′)′

and Y =
(
Y (θ1),...,Y

(
θ|Θ|
))′
. Then

(
X

Y

)
∼N(µ,Σ) (4)

for

E

[(
X(θ)

Y (θ)

)]
=µ(θ)=

(
µX(θ)

µY (θ)

)
,

Σ(θ,θ̃)=

(
ΣX(θ,θ̃) ΣXY (θ,θ̃)

ΣYX(θ,θ̃) ΣY (θ,θ̃)

)
=Cov

((
X(θ)

Y (θ)

)
,

(
X(θ̃)

Y (θ̃)

))
.

We assume that Σ is known, while µ is unknown and unrestricted unless noted otherwise.

We abbreviate Σ(θ,θ) by Σ(θ). We assume throughout that ΣY (θ)>0 for all θ∈Θ, since

the inference problem is trivial when ΣY (θ)=0.

We are interested in inference on µY (θ̂) where θ̂ is chosen by norm maximization

θ̂=argmax
θ∈Θ

‖X(θ)‖, (5)

with ‖ ·‖ denoting the Euclidean norm. The stylized example of the previous section
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corresponds to the special case for which Y =X, dX=1 and |Θ|=2.

3.1 Threshold Regression and Structural Break Estimation

Suppose we observe data on an outcome Yi, a scalar threshold regressor Qi and a k-

dimensional vector of regressors Ci for i ∈ {1, ...,n}. We assume there is a linear but

potentially regressor-dependent relationship between Yi and Ci:

Yi=C
′
i(β+ϕn(Qi))+Ui, (6)

where Qi∈R and the residuals Ui are orthogonal to Qi and Ci. Similarly to Elliott and

Müller (2014) and Wang (2018), the function ϕn :R→Rk determines the value of the

regressor-dependent coefficient β+ϕn(Qi). This model nests the traditional threshold

regression model (see e.g. Hansen (2000) and references therein) by taking

ϕn(Qi)=1{Qi>θ}δ, (7)

where θ ∈R is the “true” threshold. This model also nests a time-varying parameters

regression model where the observations i=1,...,n are ordered and Qi=i/n denotes the

position of observation i in the sample. The traditional structural change model is a special

case of this time-varying parameters model (see Bai (1997) and Perron (2006)) for which

(7) holds and θ∈ (0,1) is the “true” break fraction. For the remainder of this paper we

focus terminology on the threshold regression, with the understanding that the analysis

also applies to the special case of a regression model with a structural break.

The threshold model (7) is often used as a parsimonious approximation to the more

general linear regression model (6) with regressor-dependent coefficents. For instance, as

noted above Card et al. (2008) use the threshold model to approximate a theoretical model

where the regressor-dependent coefficients may change smoothly. Hansen (1997, 2000) also

notes that the threshold regression model is often used as a misspecified but parsimonious

approximation to a more general class of nonlinear regression models. Since the threshold

regression model is widely used in practice as an approximating model, we consider a

researcher who fits the model (7), but to allow for the possibility of misspecification we

assume only that the data are generated by (6).

To provide a good asymptotic approximation to finite sample behavior, we follow

Elliott and Müller (2007, 2014) and Wang (2018) and model parameter instability as being

on the same order of magnitude as sampling uncertainty, with ϕn(Qi) = 1√
n
g(Qi) for a
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fixed function g. As in the stylized example of the previous section, this DGP allows

the asymptotic problem to reflect an important feature of the finite sample problem in

many applications, namely that the data provide limited information about the regressor-

dependent coefficient function ϕn(·). See Elliott and Müller (2007, 2014) and Wang (2018)

for further justification of this drifting sequence DGP.

We further assume that

1

n

n∑
i=1

CiC
′
i1{Qi≤θ}→pΣC(θ),

1

n

n∑
i=1

CiC
′
ig(Qi)1{Qi≤θ}→pΣCg(θ), (8)

and
1√
n

n∑
i=1

CiUi1{Qi≤θ}⇒G(θ), (9)

all uniformly in θ ∈ R. Here ΣC : R→ Rk×k is a consistently-estimable matrix-valued

function and ΣC(θ) is full rank for all θ in the interior of the support of Qi, ΣCg :R→Rk

is a vector-valued function, and G(·) is a k-dimensional mean zero Gaussian process with a

consistently estimable covariance function that is positive definite when evaluated at points

in the interior of the support of Qi. Conditions (8) and (9) are analogous to Conditions

1(ii) and 1(iv) of Elliott and Müller (2007) for structural break models in a time-series

setting. See Wang (2018) for sufficient conditions that give rise to (8) and (9).

The standard threshold estimator θ̂n chooses θ to minimize the sum of squared residuals

in an OLS regression of Yi on Ci and 1{Qi>θ}Ci across a finite grid of thresholds Θ.5 For

Xn(θ)=

(
(
∑n

i=1CiC
′
i1{Qi≤θ})−

1
2 (
∑n

i=1Ciηi1{Qi≤θ})
(
∑n

i=1CiC
′
i1{Qi>θ})−

1
2 (
∑n

i=1Ciηi1{Qi>θ})

)
,

with ηi≡Ui+n−1/2C′ig(Qi), arguments analogous to those in the proof of Proposition 1

in Elliott and Müller (2007) imply that θ̂n=argmaxθ∈Θ‖Xn(θ)‖+op(1), where op(1) is an

asymptotically negligible term.

Suppose we are interested in the approximate change in the jth parameter δj =e′jδ,

where ej is the jth standard basis vector.6 In practice it is common to estimate δ by least

5Note that finiteness of Θ is without loss of generality if Qi is finitely-supported. In the case of
continuously-supported Qi, only a finite number of thresholds is available for estimation for any given
sample size.

6By changing the definition of Yn below, our results likewise apply to the pre-change parameters βj
and the post-change parameters βj+δj, amongst other possible objects of interest.
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squares imposing the estimated threshold θ̂n. When the threshold regression model (7) is

misspecified, however, there is neither a “true” threshold θ nor a “true” change coefficient δ.

Instead, the population regression coefficient δ(θ) imposing threshold θ depends on θ. Thus,

we are interested in δj(θ̂n), the population regression coefficient at the estimated threshold.

Denote the OLS estimate imposing threshold θ by δ̂j(θ) and define Yn(θ)=
√
nδ̂j(θ). If

we define µY (θ)= limn→∞
√
nδj(θ) as the scaled coefficient of interest and µX(θ) as the

population analog of Xn(θ),
7 Section A.1 of the appendix shows that(
Xn(θ)

Yn(θ)

)
d−→N

((
µX(θ)

µY (θ)

)
,Σ(θ)

)
(10)

uniformly over a parameter space Θ contained in the interior of the support ofQi, where the

covariance matrix Σ(θ) is consistently estimable but µX(θ) and µY (θ) are not. This corre-

sponds to the asymptotic problem (4) where θ̂ is defined through norm-maximization (5).8

Inference in Threshold and Break Models Since the estimated threshold θ̂n is

random and the parameter of interest δj(θ) (or equivalently µY,n(θ)) depends on θ, it is

important to account for this randomness in our inference procedures. In particular, it

may be appealing to condition inference on the estimated threshold θ̂n, since we only seek

to conduct inference on δj(θ̃) when θ̂n= θ̃. Even if we only desire coverage of δj(θ̂n) on

average over the distribution of θ̂n, and so prefer unconditional estimators and confidence

intervals, accounting for the randomness of θ̂n remains important.

It may also be natural to condition inference on additional variables. For example, if

we report a confidence interval for the change coefficient δj(θ̂n) only when we reject the

null hypothesis of parameter constancy, H0 :ϕn(θ)=0 for all θ, it is natural to condition

inference on this rejection. This can be accomplished by defining γ̂n = γ(Xn) to be a

dummy for rejection of H0, and conditioning inference on (θ̂n,γ̂n). See Propositions 1 and

2 below for further details.

If we are confident that the threshold model is correctly specified, so that (7) holds in the

data, it is conceptually more appealing to focus on inference for the “true” parameters as

in Elliott and Müller (2014) and Wang (2018). However, we note that these latter inference

procedures can become computationally intractable when Ci has more than a few elements,

so that even in the correctly-specified setting inference on δj(θ̂n) may be the only feasible

7See Section A.1 of the appendix for precise definitions of these quantities.
8Estimators and confidence intervals for the object of interest δj(θ̂) can be obtained by a simple√
n-rescaling of the corresponding estimators and confidence intervals for µY (θ̂).
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option. In addition, Proposition 5 of AKM implies that when the break magnitude ‖δ‖ is

large enough that θ̂n takes a single value with very high probability, the conditional inference

procedures here collapse to standard efficient inference on the “true” δj.
9 On the other hand,

the computationally feasible standard threshold and structural break confidence intervals

are based upon normal distributional approximations to δ̂j(θ̂n) (see e.g., Bai (1997), Bai and

Perron (1998) and Hansen (2000)). Therefore, when the true break magnitude is not large

enough to overwhelm sampling variability (in accord with the asymptotic approximations

of this section), they can have poor coverage for either δ̂j(θ̂n) or the “true” δj.

One solution to this problem that has been used in the literature is sample splitting,

where the first part of the sample is used to form θ̂n and the second part is used to form

δ̂(·), so that a standard normal approximation can be applied to δ̂j(θ̂n).
10 See e.g. Card

et al. (2008). Like the methods proposed in this paper, this form of split-sample inference

is valid for δj(θ̂n), not the “true” δj. However, when θ̂n is formed using only the first

fraction of the data, it is a less precise estimator of the (pseudo-)true break fraction than

when using the full data as we do here. Even in the case for which one wishes to only use

a fraction of the data to form θ̂n, Section 5 provides an improved split-sample inference

approach that dominates the standard method.

Other Norm-Maximization Examples While our discussion of threshold regression

estimation focuses on the linear model (6), Elliott and Müller (2014) show that structural

break estimation in nonlinear models with time-varying parameters gives rise to the same

asymptotic problem. Hence, our results apply in that setting as well. Likewise, Wang (2018)

shows that the same asymptotic problem arises in nonlinear threshold models.11 Further

afield, one could generalize our approach to consider norm-minimization rather than norm-

maximization, and so derive results for GMM-type problems with finite parameter spaces.

3.2 Inference in the Normal Model

This section briefly introduces the AKM inference approaches for the normal model. AKM

considers estimators for µY (θ̂) that are quantile-unbiased conditional on the realization

of θ̂, perhaps along with the value of an additional conditioning variable γ̂=γ(X). The

9Elliott and Müller (2014) employ a switching scheme such that their approach nearly reduces to
standard inference, but they use a slightly larger critical value to account for the switch.

10While direct application of this approach fails in structural break settings since the data may be
non-stationary, an analogous effect can be achieved by adding normal noise: see Section 5 below for details.

11In a manuscript circulated after the initial public version of this paper, Hyun et al. (2018) consider
the related problem of conditional inference for changepoint detection, but the changepoint estimation
methods they consider cannot be cast as norm-maximization, so their results do not overlap with ours.
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mean vector µX is a nuisance parameter in this problem, and AKM notes that

Zθ̃=X−
(

ΣXY (·,θ̃)/ΣY (θ̃)
)
Y (θ̃),

is a sufficient statistic for the unknown mean vector µX. Hence, the inference procedures

derived in AKM condition on (θ̂,γ̂)=(θ̃,γ̃) and Zθ̃=z. Conditional on Zθ̃=z, the event

that (θ̂,γ̂)=(θ̃,γ̃) is equivalent to the event that Y (θ̃)∈Y(θ̃,γ̃,z) for a set Y(θ̃,γ̃,z) which

depends on the nature of θ̂ and γ̂. AKM derives the form of Y(θ̃,γ̃,z) for level-maximization

problems, while we derive the form for norm-maximization problems in the next section.

Given Y (θ̃)∈Y(θ̃,γ̃,z), let FTN(·;µY (θ̃),θ̃,z) denote the distribution function for the

truncated normal random variable

ξ|ξ∈Y(θ̃,γ̃,z), where ξ∼N
(
µY (θ̃),ΣY,n(θ̃)

)
.

The conditionally α-quantile unbiased estimator of µY (θ̂), µ̂α, is the unique solution to

FTN(Y (θ̂);µ̂α,θ̂,Zθ̂)=1−α.

In particular, AKM shows that

Prµ

{
µ̂α≥µ(θ̃)|θ̂= θ̃,γ̂= γ̃

}
=α for all µ, θ̃, γ̃.

Hence, µ̂1
2

is conditionally median-unbiased, while the equal-tailed confidence interval

CSET =[µ̂α
2
,µ̂1−α

2
] has conditional coverage 1−α,

Prµ

{
µY (θ̃)∈CSET |θ̂= θ̃,γ̂= γ̃

}
=1−α for all µ, θ̃, γ̃.

AKM further builds on results from Pfanzagl (1979, 1994) to show that µ̂α is efficient in

a strong sense in the class of conditionally quantile-unbiased estimators.

Rather than considering equal-tailed intervals, we can alternatively consider confidence

intervals that are unbiased, in the sense that the probability of covering any given false

parameter value is bounded above by 1−α. To derive an unbiased confidence interval,

define a size α test of the two-sided hypothesis H0 :µY (θ̃)=µY,0 as

φU,α(µY,0)=1
{
Y (θ̃) 6∈ [cl(Zθ̃),cu(Zθ̃)]

}
, (11)
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where cl(z), cu(z) solve

Pr{ζ∈ [cl(z),cu(z)]}=1−α, E[ζ1{ζ∈ [cl(z),cu(z)]}]=(1−α)E[ζ]

for ζ that follows the truncated normal distribution

ξ|ξ∈Y(θ̃,γ̃,z), with ξ∼N
(
µY,0(θ̃),ΣY (θ̃)

)
. (12)

The level 1−α two-sided unbiased confidence interval is CSU = {µY,0 :φU,α,n(µY,0)=0}.
This confidence interval is uniformly most accurate unbiased, in the sense that it has a

weakly lower probability of covering any given incorrect parameter value than does any

other unbiased confidence set.

AKM establishes an additional appealing property for µ̂α, CSET , and CSU , namely

that for any sequence of means µm such that Prµm

{
θ̂= θ̃,γ̂= γ̃

}
→1, µ̂α→pY (θ̃) while

both CSET and CSU converge to the conventional confidence interval that ignores selection.

Hence, in cases where selection-corrected inference is unnecessary, there is no ”price” for

using the conditional procedures discussed above.

Imposing conditional unbiasedness and coverage can be costly from an unconditional

perspective. Results in Kivaranovic and Leeb (2018) imply that both the equal-tailed

and conditional confidence sets can have infinite expected length. If one cares only about

unconditional coverage, an alternative approach is to start with a joint confidence interval

for µY and project on the dimension corresponding to θ̂. This general approach has been

applied in various contexts in the literature – see AKM for examples. To formally discuss

this approach, let cα denote the 1−α quantile of maxθ∈Θ|ξ(θ)|/
√

ΣY (θ) for ξ∼N(0,ΣY ).

Define the level 1−α projection confidence interval as

CSαP =

[
Y (θ̂n)−cα

√
Σ̂Y (θ̂),Y (θ̂)+cα

√
Σ̂Y (θ̂)

]
.

This interval has correct unconditional coverage Prµ

{
µY (θ̂)∈CSP

}
≥ 1−α for all µ,

but does not in general have correct conditional coverage in the sense that we may have

Prµ

{
µY (θ̂)∈CSP |θ̂= θ̃

}
<1−α for some θ̃ and µ. Moreover, the length of CSP does not

depend on (X,Y ), so in cases where Prµ

{
θ̂= θ̃

}
≈1 for some θ̃, CSP will tend to be much

longer than the conditional confidence sets discussed above.

In order to overcome some of the weaknesses of both the conditional and projection
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procedures, AKM introduce hybrid procedures that condition both on θ̂ and on the

(possibly incorrect) event that µY (θ̂)∈CSβP for some 0≤β≤α. This latter conditioning

limits the worst-case dispersion of hybrid estimators and the worst-case length of hybrid

confidence intervals by changing the conditioning event used in hybrid procedures to

YH(θ̃,µY ,z)=Y(θ̃,z)∩
[
µY−cβ,n

√
Σ̂Y,n(θ̃),µY +cβ,n

√
Σ̂Y,n(θ̃)

]
.

Let FH
TN(·;µY (θ̃),θ̃,z) denote the distribution function for the truncated normal distri-

bution random variable

ξ|ξ∈YH(θ̃,µY (θ̃),z), where ξ∼N
(
µY (θ̃),Σ̂Y,n(θ̃)

)
,

and define µ̂Hα to solve FH
TN(Y (θ̂);µ̂Hα ,θ̂,Zθ̃) = 1−α. AKM show that the unconditional

level-α quantile bias of µ̂Hα is controlled,∣∣∣Prµ{µ̂Hα ≥µY (θ̂)
}
−α
∣∣∣≤β ·max{α,1−α}.

Hence, for example, the absolute median bias of µ̂H1
2

(measured as the deviation of the

exceedance probability from 1/2) is bounded above by β/2. Using these estimators, we

can form level 1−α equal-tailed hybrid confidence intervals as

CSHET =

[
µ̂Hα−β

2−2β

,µ̂H
1− α−β

2−2β

]
.

Note that we have adjusted the quantiles considered to account for the possibility that

CSβP may not cover µY (θ̂).

Finally to form a hybrid confidence interval based on inverting unbiased tests, we

define φHU,α(µY,0) as to φU,α(µY,0) in (11), but replace the conditioning event Y(θ̃,Zθ̃) with

YH(θ̃,µY,0,Zθ̃) when defining the distribution of ζ in (12). The corresponding level 1−α
confidence interval is then

CSHU =

{
µY,0∈CSβP :φH

U,α−β
1−β

(µY,0)=0

}
.
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3.3 Conditioning Sets for Norm-Maximization Problems

To implement AKM procedures in a given setting, we need tractable representations for the

sets Y(θ̃,γ̃,z). AKM derive such representations in cases where θ̂ is selected by maximizing

the level of X(θ) (dX =1), but do not consider the norm-maximization setting studied here.

Since the set of X values such that θ̂= θ̃, X ∈X (θ̃) =
{
X :‖X(θ̃)‖=maxθ∈Θ‖X(θ)‖

}
,

involves nonlinear constraints, other results in the existing literature (e.g., Lee et al. (2016))

likewise do not apply. Hence, in this section we derive Y(θ̃,γ̃,z) for norm-maximization

settings.

In norm-maximization settings without additional conditioning variables, the general

expression for Y(θ̃,z) is long, but easy calculate in applications.

Proposition 1

Define

A(θ̃,θ)=ΣY (θ̃)−2

dX∑
i=1

[
ΣXY,i(θ̃)

2−ΣXY,i(θ,θ̃)
2
]
,

BZ(θ̃,θ)=2ΣY (θ̃)−1

dX∑
i=1

[
ΣXY,i(θ̃)Zθ̃,i(θ̃)−ΣXY,i(θ,θ̃)Zθ̃,i(θ)

]
,

CZ(θ̃,θ)=

dX∑
i=1

[
Zθ̃,i(θ̃)

2−Zθ̃,i(θ)
2
]
.

For

DZ(θ̃,θ)=BZ(θ̃,θ)2−4A(θ̃,θ)CZ(θ̃,θ), HZ(θ̃,θ)=
−CZ(θ̃,θ)

BZ(θ̃,θ)
,

GZ(θ̃,θ)=
−BZ(θ̃,θ)−

√
DZ(θ̃,θ)

2A(θ̃,θ)
, and KZ(θ̃,θ)=

−BZ(θ̃,θ)+
√
DZ(θ̃,θ)

2A(θ̃,θ)
,

define

`1Z(θ̃)=max

{
max

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
GZ(θ̃,θ), max

θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)>0
HZ(θ̃,θ)

}
,

`2Z(θ̃,θ)=max

{
max

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
GZ(θ̃,θ), max

θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)>0
HZ(θ̃,θ),KZ(θ̃,θ)

}
,

u1
Z(θ̃,θ)=min

{
min

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
KZ(θ̃,θ), min

θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)<0
HZ(θ̃,θ),GZ(θ̃,θ)

}
,
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u2
Z(θ̃)=min

{
min

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
KZ(θ̃,θ), min

θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)<0
HZ(θ̃,θ)

}
,

and

V(θ̃,Zθ̃)= min
θ∈Θ:A(θ̃,θ)=BZ(θ̃,θ)=0 or DZ(θ̃,θ)<0

CZ(θ̃,θ).

If V(θ̃,Zθ̃)≥0 then

Y(θ̃,Zθ̃)=
⋂

θ∈Θ:A(θ̃,θ)>0,DZ(θ̃,θ)≥0

[
`1Z(θ̃),u1

Z(θ̃,θ)
]
∪
[
`2Z(θ̃,θ),u2

Z(θ̃)
]
.

If V(θ̃,Zθ̃)<0, then Y(θ̃,Zθ̃)=∅.

Note thatPrµ

{
V(θ̂,Zθ̂)<0

}
=0 for all µ so we can ignore this constraint in applications.

While the expression for Y(θ̃,z) is long, it simplifies substantially in some special cases.

Corollary 1

Suppose dX=1, X=Y , and ΣX is full rank.

(i) Define HZ(θ̃,θ)=−ΣX(θ̃)Zθ̃(θ)/(2ΣX(θ,θ̃)),

GZ(θ̃,θ)=
ΣX(θ̃)ΣX(θ,θ̃)Zθ̃(θ)−ΣX(θ̃)2|Zθ̃(θ)|

ΣX(θ̃)2−ΣX(θ,θ̃)2
,

KZ(θ̃,θ)=
ΣX(θ̃)ΣX(θ,θ̃)Zθ̃(θ)+ΣX(θ̃)2|Zθ̃(θ)|

ΣX(θ̃)2−ΣX(θ,θ̃)2
.

Then, for

`1Z(θ̃)=max

{
max

θ∈Θ:|ΣX(θ,θ̃)|>ΣX(θ̃)
GZ(θ̃,θ), max

θ∈Θ:|ΣX(θ,θ̃)|=ΣX(θ̃),ΣX(θ,θ̃)Zθ̃(θ)<0
HZ(θ̃,θ)

}
,

`2Z(θ̃,θ)=max

{
max

θ∈Θ:|ΣX(θ,θ̃)|>ΣX(θ̃)
GZ(θ̃,θ), max

θ∈Θ:|ΣX(θ,θ̃)|=ΣX(θ̃),ΣX(θ,θ̃)Zθ̃(θ)<0
HZ(θ̃,θ),KZ(θ̃,θ)

}
,

u1
Z(θ̃,θ)=min

{
min

θ∈Θ:|ΣX(θ,θ̃)|>ΣX(θ̃)
KZ(θ̃,θ), min

θ∈Θ:|ΣX(θ,θ̃)|=ΣX(θ̃),ΣX(θ,θ̃)Zθ̃(θ)>0
HZ(θ̃,θ),GZ(θ̃,θ)

}
,

and

u2
Z(θ̃)=min

{
min

θ∈Θ:|ΣX(θ,θ̃)|>ΣX(θ̃)
KZ(θ̃,θ), min

θ∈Θ:|ΣX(θ,θ̃)|=ΣX(θ̃),ΣX(θ,θ̃)Zθ̃(θ)>0
HZ(θ̃,θ)

}
,

16



Y(θ̃,Zθ̃)=
⋂

θ∈Θ:|ΣX(θ,θ̃)|<ΣX(θ̃)

[
`1Z(θ̃),u1

Z(θ̃,θ)
]
∪
[
`2Z(θ̃,θ),u2

Z(θ̃)
]
.

(ii) If, moreover, |ΣX(θ,θ̃)|<ΣX(θ̃) for all θ, θ̃∈Θ such that θ 6= θ̃,

Y(θ̃,Zθ̃)=

(
−∞,min

θ∈Θ
GZ(θ̃,θ)

]
∪
[
max
θ∈Θ

KZ(θ̃,θ),∞
)
.

Part (i) of the corollary covers the stylized example discussed in Section 2, and it’s gener-

alization to cases with dependence and more than two strategies. The condition |ΣX(θ,θ̃)|<
ΣX(θ̃) in part (ii) holds automatically when X is comprised of studentized statistics.

So far this section has considered conditioning on θ̂= θ̃, AKM also allows conditioning

on another random variable γ̂=γ(X). Such conditioning can be used to incorporate the

outcome of a pre-test or other data-driven selection in order to address pretest bias and

coverage distortions. The form of Y(θ̃,γ̃,z) will depend on the nature of γ̂, so here we

derive Y(θ̃,γ̃,z) in the case where γ̂ encodes the outcome of the sup-Wald pretest, which

is a natural pretest for tipping point and structural break applications.

Threshold Regression and Structural Break Estimation (continued) Suppose

that we report estimates and confidence intervals for the change parameter δj(θ̂) only

if we reject the null hypothesis of no threshold, H0 : δ(θ) = 0 for all θ ∈Θ. Suppose, in

particular, that we test H0 with the sup-Wald test of D. Andrews (1993). Analogous

results to those in Elliott and Müller (2014) show that the asymptotic version of such a test

rejects asymptotically if and only if ‖X(θ̂)‖>c for a critical value c that depends on Σ. 4
Let γ̂ ∈ {0,1} be a dummy variable for rejection by the sup-Wald pretest, γ̂ =

1
{
‖X(θ̂)‖>c

}
. We study inference conditional on θ̂= θ̃ and γ̂=1. We can express

Y(θ̃,γ̃,z)=Y(θ̃,z)∩Yγ(γ̃,z),

with Y(θ̃,z) the conditioning set based on θ̂ alone (derived in Proposition 1), and Yγ(γ̃,z)
the conditioning set based on γ̂. The next result derives the form of Yγ(1,z) for the

sup-Wald test, while Yγ(0,z)=Yγ(1,z)c.

Proposition 2
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Suppose γ̂=1
{
‖X(θ̂)‖>c

}
. Define

Ā(θ̃)≡ΣY (θ̃)−2

dX∑
i=1

ΣXY,i(θ̃)
2,

B̄Z(θ̃)≡2ΣY (θ̃)−1

dX∑
i=1

ΣXY,i(θ̃)Zθ̃,i(θ̃),

C̄Z(θ̃)≡
dX∑
i=1

Zθ̃,i(θ̃)
2−c, D̄Z(θ̃)≡B̄Z(θ̃)2−4Ā(θ̃)C̄Z(θ̃).

For

L̄(Zθ̃)≡
−B̄Z(θ̃)−

√
DZ(θ̃)

2Ā(θ̃)
,

Ū(Zθ̃)≡
−B̄Z(θ̃)+

√
DZ(θ̃)

2Ā(θ̃)
,

V̄(Zθ̃)≡ [1{Ā(θ̃)=0}+1{Ā(θ̃)>0,DZ(θ̃)<0}]C̄Z(θ̃),

if V̄(Zθ̃)≥0 then Yγ(1,Zθ̃)=
(
L̄(Zθ̃),Ū(Zθ̃)

)c
, while Yγ(1,Zθ̃)=∅ otherwise.

4 Practical Implementation and Uniform Asymptotic Validity

In this section, we show that the desirable finite-sample properties of the AKM estimators

and confidence intervals in the normal model translate to asymptotic results in norm-

maximization problems satisfying regularity conditions. In particular, we show that feasible

implementations of the AKM procedures are uniformly asymptotically valid over classes

of norm-maximization problems such that the mean vectors µX and µY are asymptotically

bounded. We begin by discussing our asymptotic setting and assumptions and relate our

assumptions to the threshold regression and structural break examples. We then turn to

our asymptotic results for feasible versions of the AKM procedures.

4.1 Asymptotic Setting and Assumptions

In analogy with the normal model of Section 3, but dropping the assumption of finite-sample

normality with known variance, assume we observe random vectors
(
Xn(θ)

′,Yn(θ)
)′

for

θ∈Θ, where Θ is a finite set, Xn(θ)∈RdX , and Yn(θ)∈R. In particular, for Θ=
{
θ1,...,θ|Θ|

}
,
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let Xn=
(
Xn(θ1)

′,...,Xn

(
θ|Θ|
)′)′

and Yn=
(
Yn(θ1),...,Yn

(
θ|Θ|
))′
. We suppose that the data

in the sample of size n are distributed according to P ∈Pn for Pn a sample-size dependent

class of distributions, and assume that with appropriate recentering, (Xn,Yn) are jointly

asymptotically normal uniformly over P ∈Pn.

Assumption 1

For BL1 the class of Lipschitz functions that are bounded in absolute value by one and

have Lipschitz constant bounded by one, and ξP∼N(0,Σ(P)),

lim
n→∞

sup
P∈Pn

sup
f∈BL1

∣∣∣∣∣EP
[
f

(
Xn−µX,n(P)

Yn−µY,n(P)

)]
−E[f(ξP )]

∣∣∣∣∣=0

for some sequence of functions µX,n(·) and µY,n(·).

Bounded Lipschitz distance metrizes convergence in distribution, so uniform conver-

gence in bounded Lipschitz, as we assume here, is one formalization for uniform convergence

in distribution. Intuitively speaking, this assumption requires that

(
X′n−µX,n(P)′,Y ′n−µY,n(P)′

)′
be asymptotically N(0,Σ(P)) distributed, uniformly over P ∈Pn.

In many cases we can take (µX,n(P),µY,n(P)) to be the mean of (Xn,Yn) under P,

EP

[
Xn(θ)

Yn(θ)

]
=µn(θ;P)=

(
µX,n(θ;P)

µY,n(θ;P)

)
.

We do not impose this as an assumption, however, since the finite-sample mean may be

poorly-behaved in some settings, including in structural break and tipping point applica-

tions, so it may be preferable to define (µX,n(P),µY,n(P)) in some other application-specific

way. For instance, see the next section for definitions in the tipping-point example.

We are interested in estimation and inference on µY,n(θ̂n;P) for the true but unknown

DGP P, in the norm-maximization problem where

θ̂n=argmax
θ∈Θ

‖Xn(θ)‖+op(1),

and the op(1) term is uniformly asymptotically negligible over P ∈Pn.
We next restrict the asymptotic variance Σ(P).
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Assumption 2

There exists a finite λ̄>0 such that for λmin(A) and λmax(A) the minimum and maximum

eigenvalues of a matrix A,

1/λ̄≤λmin(ΣX(P))≤λmax(ΣX(P))≤ λ̄ for all P ∈Pn

and

1/λ̄≤ΣY (θ;P)≤ λ̄ for all θ∈Θ and all P ∈Pn.

This assumption bounds the variance matrix ΣX(P) above and away from singularity,

and likewise bounds the diagonal elements of ΣY (P) above and away from zero. This

ensures that the set of covariance matrices consistent with P ∈Pn is a subset of a compact

set, and that ‖Xn(θ)‖ has a unique maximum with probability tending to one.

Our estimators and confidence intervals depend not only on (Xn,Yn), but also on an

estimator Σ̂n of Σ. We assume that this estimator is uniformly consistent.

Assumption 3

Σ̂n is uniformly consistent for Σ(P),

lim
n→∞

sup
P∈Pn

PrP

{∥∥∥Σ̂n−Σ(P)
∥∥∥>ε}=0,

for all ε>0.

Finally, we assume that (µX,n(P),µY,n(P)) are asymptotically bounded.

Assumption 4

There exists a finite constant C>0 such that

limsup
n→∞

sup
P∈Pn

(‖µX,n(P)‖+‖µY,n(P)‖)≤C.

This assumption requires that ‖µX,n(P)‖ and ‖µY,n(P)‖ be uniformly bounded over Pn
by a constant that does not depend on the sample size. Given the scaling of (Xn,Yn) in our

threshold regression and structural break examples, this corresponds to the case with local

parameter instability. More broadly, this condition implies that the norm-maximization

problem remains non-trivial even asymptotically, in the sense that we do not have PrP{θ̂=

θ̃}→1 for any θ̃. While it may be possible to relax this assumption, it holds in all settings

we have encountered that give rise to the norm-maximization problem asymptotically.12

12Note, moreover, that the proofs of uniform asymptotic validity for a related class of selective inference
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Threshold Regression and Structural Break Estimation (continued) As shown

in Section 3, the asymptotically normal norm-maximization problem arises when we follow

Elliott and Müller (2007, 2014) and Wang (2018) and model the degree of parameter

instability as shrinking with the sample size at the
√
n rate. The quantities (Xn,Yn) in

this example are detailed in Section 3 above, while we can take (µX,n,µY,n) to be their

population analogs. In particular, let

µX,n(θ;P)=
√
n

(
EP [CiC

′
i1{Qi≤θ}]−

1
2EP [Ciηi1{Qi≤θ}]

EP [CiC
′
i1{Qi>θ}]−

1
2EP [Ciηi1{Qi>θ}]

)
.

Calculations in Section A.1 of the appendix show that we can write the population

regression coefficient δ(θ,P) imposing break point P as δ(θ,P)≡A(θ;P)−1B(θ;P) for

A(θ;P)=EP [CiC
′
i1{Qi>θ}]−EP [CiC

′
i1({Qi>θ}]EP [CiC

′
i]
−1
EP [CiC

′
i1{Qi>θ}],

B(θ;P)=EP [CiC
′
i1{Qi>θ}g(Qi)]−EP [CiC

′
i1{Qi>θ}]EP [CiC

′
i]
−1
EP [CiC

′
ig(Qi)],

so we can define µY,n(θ;P)=
√
nδ(θ,P). Note that while µX,n and µY,n correspond naturally

to Xn and Yn, respectively, in general EP [Xn] 6=µX,n and EP [Yn] 6=µY,n.
In Appendix A.1, we show that the elements of Σ(θ,θ̃;P) are functions of ΣC(θ;P),

ΣC(θ̃;P) and EP [G(θ)G(θ̃)′] so that we can construct an estimator Σ̂n by plugging in

consistent estimators of these two quantities. In particular, we can estimate ΣC(θ;P)=

EP [CiC
′
i1{Qi≤θ}] by Σ̂C(θ)= 1

n

∑n
i=1CiC

′
i1{Qi≤θ} andEP [G(θ)G(θ̃)′]=EP [CiC

′
i1{Qi≤θ}]

for θ≤ θ̃ and iid data by Σ̂C(θ)= 1
n

∑n
i=1CiC

′
iÛ

2
i 1{Qi≤θ} with Ûi=Yi−C′i(β̂−ϕ̂n(Qi))

for consistent estimators β̂ of β and ϕ̂n(·) of ϕn(·).13

In this setting, Assumptions 1-3 follow from standard conditions. In particular, As-

sumption 1 requires that (Xn,Yn) be uniformly asymptotically normal over Pn, and will

follow from uniform versions of (8) and (9), along with bounds on ΣC(θ;P). Assumption 2

bounds the behavior of Σ, and will follow from suitable uniform moment bounds. Finally,

Assumption 3 will again follow from uniform moment bounds and, in the structural break

setting, limits on the degree of dependence in the data.

Assumption 4 warrants additional discussion. This assumption holds if we take Pn
to correspond to any finite collection of local sequences of the sort studied by Elliott and

procedures in Tibshirani et al. (2018) rely on a similar condition, though the proofs of AKM for the
level-maximization setting do not.

13For dependent data, EP [G(θ)G(θ̃)′]=limn→∞
1
n

∑n
i=1

∑n
j=1EP [CiC

′
jUiUj1(Qi≤θ)1(Qj≤ θ̃)] can be

consistently estimated using standard long-run variance estimation techniques.
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Müller (2007, 2014) and Wang (2018). If we instead take the degree of parameter instability

to be fixed, one can show that the threshold regression and structural break models reduce

to level maximization, as studied by AKM, asymptotically. Intuitively, for µX large,

‖X(θ)‖2≈‖µX(θ)‖2+2µX(θ)′(X(θ)−µX(θ)),

so the squared norm ‖X(θ)‖2 behaves like a normal random variable.

The issue here is similar to the difference in the asymptotic distribution of the Vuong

(1989) test between the nested and non-nested cases. As this analogy suggests, it may be

possible to develop asymptotic results for threshold regression and structural break models

that, analogous to the results of Shi (2015) and Schennach and Wilhelm (2017) for the

Vuong test, cover cases with both fixed and local parameter instability. We are unaware of

such results for existing procedures in threshold regression and structural break literatures,

however, and this point is far afield from our primary focus here. Hence, in this paper

we follow Elliott and Müller (2007, 2014) and Wang (2018) by limiting attention to cases

with local parameter instability and refer readers interested in fixed parameter instability

to the level-maximization results discussed in AKM. 4
Note that the stylized example discussed in Section 2 can likewise be recast as level

maximization when µX grows large. In particular, for trading strategies with absolute

average returns well-separated from zero, we can consistently estimate the sign of the

average return, and so convert the problem to level maximization by choosing strategy

j to maximize sign{µj}Xj, where sign{x} takes value 1 if x>0 and value -1 if x<0.

4.2 Uniformity Results for Estimators and Confidence Intervals

We next prove uniform asymptotic validity for feasible versions of the AKM procedures.

These feasible versions are defined as in the normal model in Section 3.2, save that we

replace θ̂ by θ̂n, Y by Yn, Σ by Σ̂n, and Zθ̃ by

Zθ̃,n=Xn−
(

Σ̂XY,n(·,θ̃)/Σ̂Y,n(θ̃)
)
Yn(θ̃)

in all expressions.

Asymptotic uniformity results for some conditional inference procedures that, like

our corrections, rely on truncated normal distributions have been previously established

by Tibshirani et al. (2018). However, their results do not cover the norm-maximization

problems studied in this paper. Moreover, they do not cover the hybrid inference procedures
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of AKM, which are new to the literature, nor do they provide results for quantile-unbiased

estimation. Our proofs are based on subsequencing arguments as in D. Andrews et al.

(2018), though due to the differences in our setting (our interest in conditional inference,

and the fact that our target is random from an unconditional perspective), we cannot

directly apply their results.

4.2.1 Asymptotic Validity of Conditional Procedures

We begin the analysis of uniform asymptotic validity by establishing results for the feasible

asymptotically α-quantile unbiased estimator µ̂α,n. Just as µ̂α is quantile unbiased in the

normal model, µ̂α,n is asymptotically quantile unbiased both conditional on the event{
θ̂n= θ̃

}
and unconditonally.

Proposition 3

Under Assumptions 1-4,

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂α,n≥µY,n(θ̂n;P)|θ̂n= θ̃
}
−α
∣∣∣=0, (13)

for all θ̃∈Θ, and

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂α,n≥µY,n(θ̂n;P)}−α∣∣∣=0. (14)

Arguments as in the proof of Proposition 3 imply analogous results for additional

conditioning variables γ̂n, such as γ̂n=1
{
‖Xn(θ̂n)‖>c

}
. This is also true for the other

conditional results in this subsection and the next. For the sake of brevity, however, we

do not pursue such extensions here.

Proposition 3 immediately implies that the one-sided confidence intervals (−∞,µ̂1−α,n]

and [µ̂α,n,∞) have uniformly correct asymptotic coverage. We also consider equal-tailed

intervals CSET,n=[µ̂α/2,n,µ̂1−α/2,n]. The following corollary shows that CSET,n has correct

asymptotic coverage for µY,n(θ̂n;P), both conditionally and unconditionally.

Corollary 2

Under Assumptions 1-4,

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CSET,n|θ̂n= θ̃
}
−(1−α)

∣∣∣=0,
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for all θ̃∈Θ, and

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CSET,n}−(1−α)
∣∣∣=0.

Arguments along the same lines as in the proof of Corollary 2 also imply uniform

asymptotic validity of intervals which weight the two tails differently, CS=[µ̂δ,n,µ̂1−α−δ,n]

for 0<δ<α.

Rather than using quantile-unbiased estimators to form confidence intervals, one could

instead consider feasible analogs of the unbiased confidence intervals CSU described in

Section 3.2. These feasible intervals CSU,n again have correct coverage both conditionally

and unconditionally.

Proposition 4

Under Assumptions 1-4,

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CSU,n|θ̂n= θ̃
}
−(1−α)

∣∣∣=0, (15)

for all θ̃∈Θ, and

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CSU,n}−(1−α)
∣∣∣=0. (16)

4.2.2 Unconditional Validity Results

In this section, we turn to asymptotic validity for the unconditional procedures discussed in

Section 3.2, namely the projection and Hybrid approaches. Let us denote the feasible level

1−α projection interval by CSαP,n. This interval has asymptotically correct unconditional

coverage for µY,n(θ̂n;P) uniformly over the class of DGPs P ∈Pn.

Proposition 5

Under Assumptions 1-4,

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSαP,n

}
≥1−α.

Next, consider feasible hybrid estimators µ̂α,n. While these estimators are not asymp-

toptically quantile-unbiased, their asymptotic quantile bias (as measured by the exceedence

probability) is controlled.
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Proposition 6

Under Assumptions 1-4,

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂Hα,n≥µY,n(θ̂n;P)|θ̂n= θ̃,µY,n

(
θ̂n;P

)
∈CSβP,n

}
−α
∣∣∣=0,

for all θ̃∈Θ. Moreover

limsup
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂Hα,n≥µY,n(θ̂n;P)}−α∣∣∣≤max{α,1−α}β.

We can again use the estimators µ̂Hα,n to form equal-tailed confidence intervals. As in

Section 3.2, however, we need to adjust the quantiles we consider to account for the fact

that CSβP may not cover µY,n(θ̂n;P). Hence, we define the feasible level 1−α equal-tailed

hybrid interval as

CSHET,n=

[
µ̂Hα−β

1−β ,n
,µ̂H

1−α−β
1−β ,n

]
.

Corollary 3

Under Assumptions 1-4,

lim
n→∞

sup
P∈Pn

∣∣∣∣PrP{µY,n(θ̂n;P)∈CSHET,n|θ̂n= θ̃,µY,n

(
θ̂n;P

)
∈CSβP,n

}
−1−α

1−β

∣∣∣∣=0,

for all θ̃∈Θ,

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSHET,n

}
≥1−α,

and

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSHET,n

}
≤ 1−α

1−β
≤1−α+β.

Finally, we can form a feasible analog of CSHU defined in Section 3.2, CSHU,n. This

interval again has asymptotically correct unconditional coverage.

Proposition 7

Under Assumptions 1-4,

lim
n→∞

sup
P∈Pn

∣∣∣∣PrP{µY,n(θ̂n;P)∈CSHU,n|θ̂n= θ̃,µY,n

(
θ̂n;P

)
∈CSβP,n

}
−1−α

1−β

∣∣∣∣=0,

for all θ̃∈Θ,

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSHU,n

}
≥1−α,
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and

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CSHU,n

}
≤ 1−α

1−β
≤1−α+β.

5 Split-Sample Inference

We next briefly discuss feasible split-sample estimators and confidence intervals which

dominate conventional split-sample inference as used in e.g. Card et al. (2008). These

dominating procedures were introduced in a general asymptotic setting by AKM, and we

refer the interested reader to AKM for theoretical details on dominance in the normal

model. Asymptotic validity of these procedures under extensions of Assumptions 1-4

follows from arguments along the same lines as the proofs of the results in the last section,

so we omit formal statements and proofs for brevity.

The problem we consider here is quite similar to that studied in Section 4.2, with the

key difference being that the user has opted to use only part of the sample to select the

norm-maximizing value. In settings with iid data, this can be formalized as follows: for

τ∈(0,1), assume we observe random vectors

(X1′
n ,Y

1′
n )′≡τ−1/2(X′[τn],Y

′
[τn])

′

and

(X2′
n ,Y

2′
n )′≡(1−τ)−1[(X′n,Y

′
n)
′−
√
τ(X′[τn]+1,Y

′
[τn]+1)

′],

where (X′n,Y
′
n)
′ is as defined in Section 4.2, and [τn] is the closest whole number to τn.

Intuitively, (X1′
n ,Y

1′
n )′ is the analog of (X′n,Y

′
n)
′ formed from the first [τn] observations,

while (X2′
n ,Y

2′
n )′ is the analog of (X′n,Y

′
n)′ formed from the rest of the sample. Split-sample

approaches then take

θ̂1
n=argmax

θ∈Θ
‖X1

n(θ)‖+op(1)

and consider inference on µY,n(θ̂
1
n;P). The conventional split-sample estimator and con-

fidence interval for µY,n(θ̂
1
n;P) are Y 2

n (θ̂1
n) and

CSSS,n=

[
Y 2
n (θ̂1

n)−
√

1

1−τ
Σ̂Y,n(θ̂1

n)z1−α/2,Y
2
n (θ̂1

n)+

√
1

1−τ
Σ̂Y,n(θ̂1

n)z1−α/2

]
,

where Σ̂n is as defined in Section 4.2. Since (X1′
n ,Y

1′
n )′ and (X2′

n ,Y
2′
n )′ are based on different

observations, they are independent by construction, and it is straightforward to show
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that Y 2
n (θ̂1

n) is asymptotically unbiased and CSSS,n has correct asymptotic coverage for

µY,n(θ̂
1
n;P) both conditional on the realization of θ̂1

n and unconditionally.

Direct sample splitting can also be applied in some stationary time-series applications,

where asymptotic independence of (X1′
n ,Y

1′
n )′ and (X2′

n ,Y
2′
n )′ will follow from weak de-

pendence assumptions. In structural break applications, however, we are fundamentally

interested in non-stationarity, and splitting the sample is not a viable approach. In such

cases, one can still employ an asymptotic analog of sample splitting. Specifically, for ξ

a standard normal random vector independent of the data we can take

(X1′
n ,Y

1′
n )′=(X′n,Y

′
n)
′−
√

1−τ
τ

Σ̂
1
2
nξ

(X2′
n ,Y

2′
n )′=(X′n,Y

′
n)
′+

√
τ

1−τ
Σ̂

1
2
nξ,

and define θ̂1
n as above. Under Assumptions 1-4, (X1′

n ,Y
1′
n )′ and (X2′

n ,Y
2′
n )′ will be asymp-

totically independent, and asymptotic validity of conventional split-sample inference again

follows.

Taking τ as given, we next describe how to construct estimators and confidence intervals

for µY,n(θ̂
1
n;P) that are conditionally and unconditionally valid, and dominate Y 2

n (θ̂1
n) and

CSSS,n in terms of concentration around µY,n(θ̂
1
n;P) and confidence interval length. Let

FA
SS(·;µY (θ̃1),θ̃1,z1) denote the distribution function of the random variable(

ξ1+
1−τ
τ

ξ2

)∣∣∣ξ1∈Y(θ̃1,z1)

where

ξ1∼N
(
µY (θ̃1),

1

τ
Σ̂Y,n(θ̃

1)

)
and ξ2∼N

(
µY (θ̃1),

1

1−τ
Σ̂Y,n(θ̃

1)

)
are independent, and Y(θ̃,z) is defined as in Proposition 1. Expressing Y(θ̃1,z1) as a

finite union of disjoint intervals using De Morgan’s laws, Y(θ̃1,z1)=∪Kk=1[`k(z
1),uk(z

1)],

we obtain the following expression for FA
SS(y;µY (θ̃1),θ̃1,z1):14

E

[
Φ

(
(y−ξ1− 1−τ

τ
µY (θ̃1))/

√
1−τ
τ2

Σ̂Y,n(θ̃1)

)
1
(
ξ1∈

⋃K
k=1[`k(z

1),uk(z
1)]
)]

τ
∑K

k=1

(
Φ

(
(uk(z1)−µY (θ̃1))/

√
τ−1Σ̂Y,n(θ̃1)

)
−Φ

(
(`k(z1)−µY (θ̃1))/

√
τ−1Σ̂Y,n(θ̃1)

)),
14See AKM for the full derivation.
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where Φ(·) is the cumulative distribution function of a standard normal random variable

and the expectation is taken with respect to ξ1.

The α-quantile asymptotically unbiased split-sample estimator µ̂ASS,α,n is the unique

solution to

FA
SS

(
Y 1
n (θ̂1

n)+
1−τ
τ

Y 2
n (θ̂1

n);µ̂
A
SS,α,n,θ̃

1,Z1
θ̃1,n

)
=1−α,

where θ̃1 = θ̂1
n and

Z1
θ̃1,n

=X1
n−
(

Σ̂XY,n(·,θ̃1)/Σ̂Y,n(θ̃
1)
)
Y 1
n (θ̃1).

The new dominating equal-tailed split-sample confidence interval is

CSASS,n=[µ̂ASS,α/2,n,µ̂
A
SS,1−α/2,n].

The expression for FA
SS(y;µY (θ̃1),θ̃1,z1) above makes the computation of µ̂ASS,α,n and CSASS,n

very straightforward in practice.

6 Monte Carlo Simulations for the Threshold Regression Model

In this section, we conduct a simulation study based on the tipping point model of Card

et al. (2008), a leading application of the threshold regression model discussed throughout

this paper as a running example. Card et al. (2008) study the evolution of neighborhood

composition as a function of minority population share. For Yi the normalized change in

the white population of census tract i between 1980 and 1990, Ci a vector of controls, and

Qi the minority share in 1980, Card et al. (2008) consider the specification

Yi=β+C′iα+δ1{Qi>θ}+Ui.

This specification allows the white population share to change discontinuously when the

minority share exceeds some threshold θ. They then fit this model, including the break

point θ, by least squares. See Card et al. (2008) for details on the data and motivation.

We consider data from Chicago and Los Angeles with n=1,820 and n=2,035 observations,

respectively, estimating the model separately in each city.15

Results in Wang (2018) show that if we model the degree of parameter instability as on

the same order as sampling uncertainty, this threshold regression model satisfies the high-

level conditions (8)–(9) we introduced in Section 3.1. Hence, we can apply our results for the

15We focus on these cities following Wang (2017), a previous version of Wang (2018), since Card et al.
(2008) note that their tipping point estimation method appears more appropriate for larger cities.
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norm-maximization problem to the present setting. Specifically, we defineXn as discussed in

Section 3.1 and θ̂n is again asymptotically equivalent to the solution to a norm-maximization

problem argmaxθ∈Θ‖X(θ)‖.16 We define Yn(θ)=
√
nδ̂(θ) to be proportional to the estimated

change coefficient imposing tipping point θ, so we again consider the problem of inference on

the (scaled) change coefficient while acknowledging randomness in the estimated threshold.

Our simulations draw random vectors (X,Y ) from the limiting normal model (10).

This model depends on the function ΣC and the covariance function of G in (9) which we

(consistently) estimate from the Card et al. (2008) data. It also depends on the function

Σcg(·). Since this is not consistently estimable, we consider three specifications. Specification

(i) assumes there is no coefficient change, corresponding to δ=0. Specification (ii) assumes

that there is a single moderate change, setting δ=−100% and taking the true threshold to

equal the estimate in the Card et al. (2008) data. Finally, specification (iii) calibrates Σcg(·)
to the data, corresponding to the analog of model (6) where the intercept term in the

regression may depend arbitrarily upon a neighborhood’s minority share. This specification

implies that the break model is misspecified but as discussed above, our approach remains

applicable in this case, unlike the method of Wang (2018). Indeed, Card et al. (2008)

acknowledge that the tipping point model only approximates their underlying theoretical

model of neighborhood ethnic composition, so misspecification seems likely in this setting.

Figure 1 above plots the function ϕn(·) for specifications (i)–(iii) corresponding to how

the data are generated in the simulations, for both the Chicago and Los Angeles data.

While the data-calibrated specification (iii) does not correspond to a true structural break

model, the break approximation seems potentially reasonable.

We begin by considering the problem of inference on µY (θ̂). We focus on unconditional

performance, as we are unaware of alternative procedures with conditional performance

guarantees in this setting. All reported results are based on 104 simulation draws. Ta-

ble 1 reports the unconditional coverage Prµ{µY (θ̂)∈CS} for the confidence intervals

CSET , CSU , CS
H
ET , CS

H
U , and CSαP , along with the conventional confidence interval

CSN = [Y (θ̂)−
√

Σ(θ̂)z1−α/2,Y (θ̂)+

√
Σ(θ̂)z1−α/2]. In all cases, we consider confidence

intervals with nominal coverage 95%, α= 0.05. For hybrid confidence intervals, we set

β=α/10. From Table 1 we see that all confidence intervals other than CSN have correct

coverage, the projection confidence interval CSP often over-covers, the conditional con-

16While Card et al. (2008) optimize over all possible tipping points between 5% and 60%, consistent
with our theoretical results we limit attention to a finite set of thresholds. In particular, we consider 100
evenly-spaced quantiles of the minority share, and then further restrict attention to thresholds between
5% and 60%. We also tried several other discretization schemes and found very similar results in all cases.
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Figure 1: Specifications for ϕn(·) used in the simulations for Chicago (left) and LA (right) data.
The horizontal axis corresponds to the empirical percentile of Qi. The solid line corresponds to
DGP (i), the dotted line corresponds to DGP (ii) and the dashed line corresponds to DGP (iii).

fidence intervals CSET , and CSU have exact coverage and the hybrid confidence intervals

CSHET and CSHU exhibit minimal over-coverage. In this application, the conventional

confidence interval CSN severely under-covers for some simulation designs.

Table 1: Unconditional Coverage Probability

DGP CSET CSU CSHET CSHU CSP CSN
Chicago Data Calibration

(i) 0.948 0.95 0.949 0.949 0.95 0.750
(ii) 0.951 0.95 0.956 0.955 0.994 0.951
(iii) 0.947 0.946 0.951 0.951 0.990 0.934

Los Angeles Data Calibration
(i) 0.949 0.948 0.949 0.948 0.95 0.615
(ii) 0.952 0.952 0.956 0.956 0.996 0.952
(iii) 0.951 0.949 0.955 0.954 0.996 0.95

Table 2 compares the lengths of our confidence intervals to that of CSP . Since projec-

tion confidence intervals have been previously proposed in the literature and their length is

proportional to the asymptotic standard error

√
ΣY (θ̂) of the estimated change coefficient,

it provides a natural benchmark for comparison of our new confidence intervals. For

each confidence interval we report both median length relative to CSP and the frequency

with which the confidence interval is longer than CSP . Here we see that the conditional

confidence intervals can be relatively long, while the hybrid confidence intervals provide

marked performance improvements across the specifications considered. The benefits of the
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hybrid confidence intervals can become even more pronounced at higher length quantiles.

See Section C of the appendix. Remarkably, neither of the hybrid confidence intervals is

longer than CSP in any simulation draw across all specifications examined. The overall

message is that hybrid confidence intervals possess clear advantages for unconditional

inference. Since CSHET is more straightforward to compute (requiring only calculation

of µ̂Hα for two values of α, rather than test inversion), we recommend this approach for

settings where unconditional coverage is desired.

Table 2: Length of Confidence Sets Relative to CSP in Tipping Point Simulations

Median Length Relative to CSP Probability Longer than CSP
CSET CSU CSHET CSHU CSET CSU CSHET CSHU

Chicago Data Calibration
(i) 1.33 1.38 0.94 0.94 0.83 0.89 0 0
(ii) 0.72 0.72 0.74 0.74 0 0 0 0
(iii) 0.82 0.93 0.82 0.87 0.35 0.44 0 0

Los Angeles Data Calibration
(i) 1.26 1.29 0.86 0.85 0.58 0.62 0 0
(ii) 0.68 0.68 0.69 0.69 0 0 0 0
(iii) 0.68 0.70 0.70 0.72 0.15 0.19 0 0

Finally, we compare the conventional point estimator Y (θ̂) with µ̂1
2

and µ̂H1
2

. The initial

columns of Table 3 report median bias measured both as the deviation of the exceedance

probability from 1
2

and as the studentized median estimation error. We see that µ̂1
2

is

median-unbiased (up to simulation error) and that µ̂H1
2

exhibits minimal median bias. By

contrast, in specification (i) the conventional estimator Y (θ̂) has substantial median bias

as measured by the studentized median estimation error, though very little as measured

by the exceedance probability. This latter feature reflects the fact that the density of

Y (θ̂)−µY (θ̂) is bimodal with very little mass near zero in this specification.

Turning to median absolute studentized error, we see that all estimators perform

similarly when the series has a single moderate break. By contrast, the median unbiased

estimator µ̂1
2

performs better than the conventional estimator Y (θ̂) in specification (i)

(no break) but performs worse in specification (iii). The hybrid estimator µ̂H1
2

is weakly

better than the unbiased estimator in all cases, with perfomance gains in case (i) and equal

performance in the other two cases. The performance gains are again more pronounced

if one considers higher quantiles of the absolute error distribution, as reported in Section

C of the supplement.
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Table 3: Bias and Median Absolute Error in Tipping Point Simulations

Prµ

{
µ̂>µY (θ̂)

}
− 1

2
Medµ

(
µ̂−µY (θ̂)√

ΣY (θ̂)

)
Medµ

(∣∣∣∣ µ̂−µY (θ̂)√
ΣY (θ̂)

∣∣∣∣)
µ̂1

2
µ̂H1

2

Y (θ̂) µ̂1
2

µ̂H1
2

Y (θ̂) µ̂1
2

µ̂H1
2

Y (θ̂)

Chicago Data Calibration
(i) 0 0 0.01 -0.01 0.01 0.64 1.51 1.38 1.52
(ii) -0.01 -0.01 -0.01 -0.03 -0.03 -0.03 0.66 0.66 0.66
(iii) -0.01 -0.01 -0.15 -0.03 -0.03 -0.37 0.83 0.83 0.71

Los Angeles Data Calibration
(i) 0 0 0 0 0 -0.8 1.38 1.29 1.80
(ii) 0 0 0 0.01 0.01 0.01 0.67 0.67 0.67
(iii) 0 0 0.006 0 -0.01 -.016 0.74 0.74 0.68

6.1 Split-Sample Procedures

We have so far focused on inference on µY (θ̂) and compared the performance of our con-

ditional and hybrid procedures to the projection confidence interval CSP and conventional

estimator Y (θ̂). However Card et al. (2008) instead adopt a sample splitting approach,

using two thirds of the data to select the break date and one third of the data for inference.

In this section we compare the performance of this conventional split-sample procedure

to that of (asymptotic versions of) the dominating split-sample alternative discussed in

Section 5. We consider the same calibrations to the Card et al. (2008) data as above and

choose the sample split as in Card et al. (2008).

Table 4 compares asymptotic versions of the conventional split-sample confidence

interval CSSS and estimator Y 2(θ̂1) used by Card et al. (2008) to the asymptotic versions

of our (equal-tailed) alternative split-sample confidence interval CA
SS and median-unbiased

estimator µ̂A1
2
,SS

, where we drop the n subscript in the table to emphasize that we consider

the asymptotic problem. These results clearly reflect the dominance of the alternative split-

sample procedures, with substantial performance improvements for both confidence intervals

and estimators across all calibrations. These improvements are largest in the true break case

(ii), but are nearly as large in the data-calibrated case (iii). Section C of the supplement

provides ratios of the 5th, 25th, 50th, 75th and 95th quantiles of the lengths of CSASS relative

to the those of CSSS as well as the quantiles of
∣∣∣µ̂−µY (θ̂1)

∣∣∣/√ΣY (θ̂1) for µ̂=µ̂A1
2
,SS

and µ̂=

Y 2(θ̂1). There, our new split-sample procedures can be seen to dominate the conventional

ones across all quantiles and simulation designs considered, often by very wide margins.
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Table 4: Performance Measures of Split-Sample Procedures

Median Length
Relative to CSSS

Medµ

(
|µ̂−µY (θ̂1)|√

ΣY (θ̂1)

)
DGP CSASS µ̂A1

2
,SS

Y 2(θ̂1)

Chicago Data Calibration
(i) 0.83 0.57 0.67
(ii) 0.58 0.38 0.66
(iii) 0.64 0.44 0.67

Los Angeles Data Calibration
(i) 0.78 0.55 0.69
(ii) 0.58 0.39 0.67
(iii) 0.59 0.42 0.68
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Appendix

A Proofs for Results in Section 3

Proof of Proposition 1 Note the following equivalence of events:

{θ̂= θ̃}=

{
dX∑
i=1

Xi(θ̃)
2≥

dX∑
i=1

Xi(θ)
2 ∀θ∈Θ

}

=

{
dX∑
i=1

[
Zθ̃,i(θ̃)+ΣXY,i(θ̃)ΣY (θ̃)−1Y (θ̃)

]2

≥
dX∑
i=1

[
Zθ̃,i(θ)+ΣXY,i(θ,θ̃)ΣY (θ̃)−1Y (θ̃)

]2

∀θ∈Θ

}
=
{
A(θ̃,θ)Y (θ̃)2+BZ(θ̃,θ)Y (θ̃)+CZ(θ̃,θ)≥0 ∀θ∈Θ

}
, (17)

for A(θ̃,θ), BZ(θ̃,θ), and CZ(θ̃,θ) as defined in the statement of the proposition.

By the quadratic formula, (17) is equivalent to the event−BZ(θ̃,θ)−
√
DZ(θ̃,θ)

2A(θ̃,θ)
≤Y (θ̃)≤

−BZ(θ̃,θ)+
√
DZ(θ̃,θ)

2A(θ̃,θ)

∀θ∈Θ s.th. A(θ̃,θ)<0 and DZ(θ̃,θ)≥0,

Y (θ̃)≤
−BZ(θ̃,θ)−

√
DZ(θ̃,θ)

2A(θ̃,θ)
or Y (θ̃)≥

−BZ(θ̃,θ)+
√
DZ(θ̃,θ)

2A(θ̃,θ)

∀θ∈Θ s.th. A(θ̃,θ)>0 and DZ(θ̃,θ)≥0,
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Y (θ̃)≥−CZ(θ̃,θ)

BZ(θ̃,θ)
∀θ∈Θ s.th. A(θ̃,θ)=0 and BZ(θ̃,θ)>0,

Y (θ̃)≤−CZ(θ̃,θ)

BZ(θ̃,θ)
∀θ∈Θ s.th. A(θ̃,θ)=0 and BZ(θ̃,θ)<0,

CZ(θ̃,θ)≥0 ∀θ∈Θ s.th. A(θ̃,θ)=BZ(θ̃,θ)=0,

CZ(θ̃,θ)>0 ∀θ∈Θ s.th. DZ(θ̃,θ)<0
}

=

Y (θ̃)∈
⋂

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0

−BZ(θ̃,θ)−
√
DZ(θ̃,θ)

2A(θ̃,θ)
,
−BZ(θ̃,θ)+

√
DZ(θ̃,θ)

2A(θ̃,θ)


∩

⋂
θ∈Θ:A(θ̃,θ)>0,DZ(θ̃,θ)≥0

−∞,−BZ(θ̃,θ)−
√
DZ(θ̃,θ)

2A(θ̃,θ)

∪
−BZ(θ̃,θ)+

√
DZ(θ̃,θ)

2A(θ̃,θ)
,∞


∩

⋂
θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)>0

[
HZ(θ̃,θ),∞

)
∩

⋂
θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)<0

(
−∞,HZ(θ̃,θ)

]
∩
{

min
θ∈Θ:A(θ̃,θ)=BZ(θ̃,θ)=0 or DZ(θ̃,θ)<0

CZ(θ̃,θ)≥0

}
=

{
Y (θ̃)∈

[
max

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
GZ(θ̃,θ), min

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
KZ(θ̃,θ)

]
∩
[

max
θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)>0

HZ(θ̃,θ),∞
)
∩
(
−∞, min

θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)<0
HZ(θ̃,θ)

]

∩
⋂

θ∈Θ:A(θ̃,θ)>0,DZ(θ̃,θ)≥0

(
−∞,GZ(θ̃,θ)

]
∪
[
KZ(θ̃,θ),∞

)∩{V(θ̃,Zθ̃)≥0
}

=

Y (θ̃)∈
⋂

θ∈Θ:A(θ̃,θ)>0,DZ(θ̃,θ)≥0

[
`1Z(θ̃,θ),u1

Z(θ̃,θ)
]
∪
[
`2Z(θ̃,θ),u2

Z(θ̃,θ)
]∩{V(θ̃,Zθ̃)≥0

}

for DZ(θ̃,θ), GZ(θ̃,θ), HZ(θ̃,θ), KZ(θ̃,θ), `1Z(θ̃), `2Z(θ̃,θ), u1
Z(θ̃,θ), u2

Z(θ̃), and V(θ̃,Zθ̃) again

defined in the statement of the proposition. The result follows immediately. �

Proof of Corollary 1 (i) The result follows directly from Proposition 1 after specializing

the problem of AKM to the case for which X=Y and dX =1. More specifically, in the

notation of Proposition 1, A(θ̃,θ)=1−ΣX(θ,θ̃)2/ΣX(θ̃)2 so that A(θ̃,θ)<(=)0 if and only if

|ΣX(θ,θ̃)|>(=)ΣX(θ̃), BZ(θ̃,θ)=−2Zθ̃(θ)ΣX(θ,θ̃)/ΣX(θ̃) so that BZ(θ̃,θ)>0 if and only if

ΣX(θ,θ̃)Zθ̃(θ)<0 and DZ(θ̃,θ)=4Zθ̃(θ)
2 so that DZ(θ̃,θ)≥0 holds everywhere. Moreover,
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V(θ̃,Zθ̃)≥0 vacuously holds everywhere since CZ(θ̃,θ)=−Zθ̃(θ)2 so that V(θ̃,Zθ̃)<0 would

imply that Zθ̃(θ) 6=0 for some θ∈Θ for which both |ΣX(θ,θ̃)|=ΣX(θ̃) and ΣX(θ,θ̃)Zθ̃(θ)=0.

This is impossible given the full rank assumption on ΣX, which implies ΣX(θ̃)>0.

(ii) Specializing the result in part (i), we have

{X(θ̃): θ̂= θ̃}=
⋂
θ∈Θ

(
−∞,GZ(θ̃,θ)

]
∪
[
KZ(θ̃,θ),∞

)
.

But note that

GZ(θ̃,θ)=


−ΣX(θ̃)|Zθ̃(θ)|

ΣX(θ̃)+ΣX(θ,θ̃)
if Zθ̃(θ)≥0

−ΣX(θ̃)|Zθ̃(θ)|
ΣX(θ̃)−ΣX(θ,θ̃)

if Zθ̃(θ)<0

and

KZ(θ̃,θ)=


ΣX(θ̃)|Zθ̃(θ)|

ΣX(θ̃)−ΣX(θ,θ̃)
if Zθ̃(θ)≥0

ΣX(θ̃)|Zθ̃(θ)|
ΣX(θ̃)+ΣX(θ,θ̃)

if Zθ̃(θ)<0,

which implies GZ(θ̃,θ)≤0 and KZ(θ̃,θ)≥0 for all θ̃,θ∈Θ and thus the result in part (ii). �

Proof of Proposition 2 Arguments as in the proof of Proposition 1 show that

{‖X(θ̃)‖2≥c}=

Y (θ̃)≤
−B̄Z(θ̃)−

√
DZ(θ̃)

2Ā(θ̃)
or Y (θ̃)≥

−B̄Z(θ̃)+
√
DZ(θ̃)

2Ā(θ̃)
,DZ(θ̃)≥0


∩{C̄Z(θ̃)≥0,DZ(θ̃)<0}

if Ā(θ̃)> 0 and {‖X(θ̃)‖2 ≥ c}= {C̄Z(θ̃)≥ 0} if Ā(θ̃) = 0, since Ā(θ̃)≥ 0 by definition.

Then we can immediately see that if V̄(Zθ̃)≥ 0 then Yγ(1,Zθ̃) =
(
L̄(Zθ̃),Ū(Zθ̃)

)c
, while

Yγ(1,Zθ̃)=∅ otherwise. �

A.1 Threshold Regression Limit Experiment Details

This section provides additional results to supplement our discussion of the threshold

regression example in the text.

We begin by establishing the weak convergence (10). To do so, we show uniform

convergence over any compact set Θ̃ in the interior of the support of Qi, which implies

uniform convergence over Θ. Note, in particular, that under (8) and (9) the continuous

mapping theorem implies that

Xn(θ)⇒X(θ)
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=

(
ΣC(θ)−1/2ΣCg(θ)

(ΣC(∞)−ΣC(θ))−1/2(ΣCg(∞)−ΣCg(θ))

)
+

(
ΣC(θ)−1/2G(θ)

(ΣC(∞)−ΣC(θ))−1/2(G(∞)−G(θ))

)
(18)

uniformly on Θ̃, where we use the following slight abuse of notation:

1

n

n∑
i=1

CiC
′
i→pΣC(∞),

1

n

n∑
i=1

CiC
′
ig(Qi)→pΣCg(∞), and

1√
n

n∑
i=1

CiUi⇒G(∞).

Hence, if we define µX(θ) to equal the first term, we obtain the convergence (10) for Xn.

Likewise, standard regression algebra (e.g. the FWL theorem) shows that

√
nδ̂(θ)≡An(θ)−1[Bn(θ)+Cn(θ)],

for

An(θ)≡n−1

n∑
i=1

CiC
′
i1{Qi>θ}−

(
n−1

n∑
i=1

CiC
′
i1{Qi>θ}

)(
n−1

n∑
i=1

CiC
′
i

)−1(
n−1

n∑
i=1

CiC
′
i1{Qi>θ}

)
,

Bn(θ)≡n−1

n∑
i=1

CiC
′
i1{Qi>θ}g(Qi)−

(
n−1

n∑
i=1

CiC
′
i1{Qi>θ}

)(
n−1

n∑
i=1

CiC
′
i

)−1(
n−1

n∑
i=1

CiC
′
ig(Qi)

)
,

Cn(θ)≡n−1/2

n∑
i=1

CiUi1{Qi>θ}−

(
n−1

n∑
i=1

CiC
′
i1{Qi>θ}

)(
n−1

n∑
i=1

CiC
′
i

)−1(
n−1/2

n∑
i=1

CiUi

)
.

Under (8) and (9), however, the continuous mapping theorem implies that

An(θ)→pΣC(∞)−ΣC(θ)−(ΣC(∞)−ΣC(θ))ΣC(∞)−1(ΣC(∞)−ΣC(θ))

=ΣC(θ)−ΣC(θ)ΣC(∞)−1ΣC(θ)≡A∗(θ),

Bn(θ)→pΣCg(∞)−ΣCg(θ)−(ΣC(∞)−ΣC(θ))ΣC(∞)−1ΣCg(∞)

=ΣC(θ)ΣC(∞)−1ΣCg(∞)−ΣCg(θ)≡B∗(θ),

Cn(θ)⇒G(∞)−G(θ)−(ΣC(∞)−ΣC(θ))ΣC(∞)−1G(∞)

=ΣC(θ)ΣC(∞)−1G(∞)−G(θ)≡C∗(θ)

all uniformly on Θ̃, where this convergence holds jointly with that for Xn. By another

application of the continuous mapping theorem,

Yn(θ)=e′j
√
nδ̂(θ)⇒Y (θ)=e′jA∗(θ)−1[B∗(θ)+C∗(θ)]. (19)
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Hence, if we define µY (θ)=e′jA(θ)−1B(θ), we obtain the convergence (10), as desired.

We now obtain explicit expressions for the elements of the variance matrix Σ(P) in

terms of the consistently estimable quantities ΣC(θ) and E[G(θ)G(θ̃)′], dropping explicit

dependence of expectation operators on P to ease notation. From (18) we obtain

ΣX(θ,θ̃)=

(
Σ11
X (θ,θ̃) Σ12

X (θ,θ̃)

Σ21
X (θ,θ̃) Σ22

X (θ,θ̃)

)
,

where

Σ11
X (θ,θ̃)=ΣC(θ)−1/2E[G(θ)G(θ̃)′]ΣC(θ̃)−1/2,

Σ12
X (θ,θ̃)=ΣC(θ)−1/2(E[G(θ)G(∞)′]−E[G(θ)G(θ̃)′])(ΣC(∞)−ΣC(θ̃))−1/2,

Σ21
X (θ,θ̃)=(ΣC(∞)−ΣC(θ))−1/2(E[G(∞)G(θ̃)′]−E[G(θ)G(θ̃)′])ΣC(θ̃)−1/2,

Σ22
X (θ,θ̃)=(ΣC(∞)−ΣC(θ))−1/2(E[G(∞)G(∞)′]−E[G(∞)G(θ̃)′]−E[G(θ)G(∞)′]+E[G(θ)G(θ̃)′])

×(ΣC(∞)−ΣC(θ̃))−1/2.

From (18) and (19) we obtain

ΣXY (θ,θ̃)=

(
ΣC(θ)−1/2E[G(θ)C∗(θ̃)′]A∗(θ̃)−1ej

(ΣC(∞)−ΣC(θ))−1/2(E[G(∞)C∗(θ̃)′]−E[G(θ)C∗(θ̃)′])A∗(θ̃)−1ej

)
,

ΣYX(θ,θ̃)=

(
ΣC(θ̃)−1/2E[G(θ̃)C∗(θ)′]A∗(θ)−1ej

(ΣC(∞)−ΣC(θ̃))−1/2(E[G(∞)C∗(θ)′]−E[G(θ̃)C∗(θ)′])A∗(θ)−1ej

)′
,

where

E[G(θ)C∗(θ̃)′]=E[G(θ)G(∞)′]ΣC(∞)−1ΣC(θ̃)−E[G(θ)G(θ̃)′].

Finally, from (19) we obtain

ΣY (θ,θ̃)=e′jA∗(θ)−1E[C∗(θ)C∗(θ̃)′]A∗(θ̃)−1ej,

where

E[C∗(θ)C∗(θ̃)′]=ΣC(θ)ΣC(∞)−1E[G(∞)G(∞)′]ΣC(∞)−1ΣC(θ̃)−ΣC(θ)ΣC(∞)−1E[G(∞)G(θ̃)′]

−E[G(θ)G(∞)′]ΣC(θ̃)ΣC(∞)−1+E[G(θ)G(θ̃)′].
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B Proofs for Results in Section 4

B.1 Auxiliary Lemmas

To prove uniformity in norm-maximization settings, we rely on some of the lemmas in

AKM, along with a few additional results.

Lemma 1

Under Assumptions 2 and 4, for any sequence of confidence sets CSn, any sequence of sets

Cn(P) indexed by P , Cn(P)=1
{(
Xn,Yn,Σ̂n

)
∈Cn(P)

}
, and any constant α, to show that

limsup
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CSn|Cn(P)=1
}
−α
∣∣∣PrP{Cn(P)=1}=0

it suffices to show that for all subsequences {ns}⊆{n}, {Pns}∈P∞=×∞n=1Pn with:

1. Σ(Pns)→Σ∗∈
{

Σ:1/λ̄≤λmin(ΣX)≤λmax(ΣX)≤ λ̄,1/λ̄≤ΣY (θ)≤ λ̄
}

2. (µX,ns(Pns),µY,ns(Pns))→(µ∗X,µ
∗
Y ) for (µ∗X,µ

∗
Y ) finite

we have

lim
s→∞

PrPns

{
µ̂Y,ns

(
θ̂ns;Pns

)
∈CSns|Cns(Pns)=1

}
=α.

Proof: Follows by the same argument as in the proof of Lemma 5 in AKM. �

To state the next lemma, for Zθ̃,n,j(θ) the jth element of Zθ̃,n(θ), let us define

An

(
θ̃,θ
)

=Σ̂Y,n

(
θ̃
)−2

dX∑
j=1

[
Σ̂XY,n,j

(
θ̃
)2

−Σ̂XY,n,j

(
θ,θ̃
)2
]

BZ,n

(
θ̃,θ
)

=2Σ̂Y,n

(
θ̃
)−2

dX∑
j=1

[
Σ̂XY,n,j

(
θ̃
)
Zθ̃,n,j

(
θ̃
)
−Σ̂XY,n,j

(
θ,θ̃
)
Zθ̃,n,j(θ)

]

CZ,n

(
θ̃,θ
)

=

dX∑
j=1

[
Zθ̃,n,j

(
θ̃
)2

−Zθ̃,n,j(θ)
2

]
,

DZ,n

(
θ̃,θ
)

=BZ,n

(
θ̃,θ
)2

−4An

(
θ̃,θ
)
CZ,n

(
θ̃,θ
)
,

GZ,n

(
θ̃,θ
)

=

−BZ,n
(
θ̃,θ
)
−
√
DZ,n

(
θ̃,θ
)

2An

(
θ̃,θ
) ,KZ,n

(
θ̃,θ
)

=

−BZ,n
(
θ̃,θ
)

+

√
DZ,n

(
θ̃,θ
)

2An

(
θ̃,θ
)
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and

HZ,n

(
θ̃,θ
)

=−
CZ,n

(
θ̃,θ
)

BZ,n

(
θ̃,θ
).

Based on these objects, let us further define

`1Z,n

(
θ̃
)

=max

{
max

θ∈Θ:An(θ̃,θ)<0,DZ,n(θ̃,θ)≥0

GZ,n

(
θ̃,θ
)
, max
θ∈Θ:An(θ̃,θ)=0,BZ,n(θ̃,θ)>0

HZ,n

(
θ̃,θ
)}

`2Z,n

(
θ̃,θ
)

=max

{
max

θ∈Θ:An(θ̃,θ)<0,DZ,n(θ̃,θ)≥0
GZ,n

(
θ̃,θ
)
, max
θ∈Θ:An(θ̃,θ)=0,BZ,n(θ̃,θ)>0

HZ,n

(
θ̃,θ
)
,GZ,n

(
θ̃,θ
)}

u1
Z,n

(
θ̃,θ
)

=min

{
min

θ∈Θ:An(θ̃,θ)<0,DZ,n(θ̃,θ)≥0
KZ,n

(
θ̃,θ
)
, min
θ∈Θ:An(θ̃,θ)=0,BZ,n(θ̃,θ)<0

HZ,n

(
θ̃,θ
)
,KZ,n

(
θ̃,θ
)}

u2
Z,n

(
θ̃
)

=min

{
min

θ∈Θ:An(θ̃,θ)<0,DZ,n(θ̃,θ)≥0
KZ,n

(
θ̃,θ
)
, min
θ∈Θ:An(θ̃,θ)=0,BZ,n(θ̃,θ)<0

HZ,n

(
θ̃,θ
)}

.

Lemma 2

Under Assumptions 3 and 1, for any {ns} and {Pns} satisfying conditions (1) and (2) of

Lemma 1, (
Yns,Σ̂ns,θ̂ns,`

1
Z,ns

(
θ̃
)
,`2Z,ns

(
θ̃,θ
)
,u1
Z,ns

(
θ̃,θ
)
,u2
Z,ns

(
θ̃
))

→d

(
Y ∗,Σ∗,θ̂,`1∗Z

(
θ̃
)
,`2∗Z

(
θ̃,θ
)
,u1∗
Z

(
θ̃,θ
)
,u2∗
Z

(
θ̃
))
,

where the objects on the right hand side are calculated based on (X∗,Y ∗,Σ∗) for(
X∗

Y ∗

)
∼N(µ∗,Σ∗).

Proof: Note that Assumption 1 along with condition (2) of Lemma 1 imply that(
Xns

Yns

)
→d

(
X∗

Y ∗

)
∼N(µ∗,Σ∗),

while Assumption 3 implies that Σ̂ns→pΣ∗.
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If we define(
A∗
(
θ̃,θ
)
,B∗Z

(
θ̃,θ
)
,C∗Z

(
θ̃,θ
)
,D∗Z

(
θ̃,θ
)
,G∗Z

(
θ̃,θ
)
,K∗Z

(
θ̃,θ
)
,H∗Z

(
θ̃,θ
))

as the analog of(
An

(
θ̃,θ
)
,BZ,n

(
θ̃,θ
)
,CZ,n

(
θ̃,θ
)
,DZ,n

(
θ̃,θ
)
,GZ,n

(
θ̃,θ
)
,KZ,n

(
θ̃,θ
)
,HZ,n

(
θ̃,θ
))

based on (X∗,Y ∗,Σ∗), the continuous mapping theorem implies that(
Ans

(
θ̃,θ
)
,BZ,ns

(
θ̃,θ
)
,CZ,ns

(
θ̃,θ
))
→d

(
A∗
(
θ̃,θ
)
,B∗Z

(
θ̃,θ
)
,C∗Z

(
θ̃,θ
))

where this convergence holds jointly over all
(
θ,θ̃
)
∈Θ2. If A∗

(
θ̃,θ
)
6=0, another application

of the continuous mapping theorem implies that17

(
DZ,ns

(
θ̃,θ
)
,GZ,ns

(
θ̃,θ
)
,KZ,ns

(
θ̃,θ
))
→d

(
D∗Z

(
θ̃,θ
)
,G∗Z

(
θ̃,θ
)
,K∗Z

(
θ̃,θ
))
.

If instead A∗
(
θ̃,θ
)

=0, note that

Z∗
θ̃,j

(θ)=X∗j (θ)−
Σ∗XY,j

(
θ,θ̃
)

Σ∗Y

(
θ̃
) Y ∗

(
θ̃
)

=X∗j (θ)−
Σ∗XY,j

(
θ̃
)

Σ∗Y

(
θ̃
) Y ∗

(
θ̃
)
.

Hence, in this setting

B∗Z

(
θ̃,θ
)

=2ΣY

(
θ̃
)−2

dX∑
j=1

[
X∗j

(
θ̃
)
−X∗j (θ)

]

and condition (1) of Lemma 1 implies that Pr
{
B∗Z

(
θ̃,θ
)

=0
}

= 0 for all θ 6= θ̃. Hence,

Pr
{
D∗Z

(
θ̃,θ
)
>0
}

=1. Moreover, note that for b 6=0 and all c

lim
a→0

−b−
√
b2−4ac

2a
=

−c
b

if b<0

−∞ if b>0
,

17Note that we allow the possibility that
(
DZ,n

(
θ̃,θ
)
,D∗Z

(
θ̃,θ
))

may be negative, so(
GZ,n

(
θ̃,θ
)
,KZ,n

(
θ̃,θ
))

and
(
G∗Z

(
θ̃,θ
)
,K∗Z

(
θ̃,θ
))

may be complex-valued.
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while

lim
a→0

−b+
√
b2−4ac

2a
=

∞ if b<0

−c
b

if b>0
.

Hence, if A∗
(
θ,θ̃
)

=0,

−BZ,n
(
θ̃,θ
)
−
√
DZ,n

(
θ̃,θ
)

2An

(
θ̃,θ
) →d−∞·1

{
B∗Z

(
θ̃,θ
)
>0
}

+H∗Z

(
θ̃,θ
)

and

−BZ,n
(
θ̃,θ
)

+

√
DZ,n

(
θ̃,θ
)

2An

(
θ̃,θ
) →d∞·1

{
B∗Z

(
θ̃,θ
)
<0
}

+H∗Z

(
θ̃,θ
)
,

with the convention that∞·0=0. Finally, another application of the continuous mapping

theorem shows that when A∗
(
θ̃,θ
)

=0,

HZ,ns

(
θ̃,θ
)
→dH

∗
Z

(
θ̃,θ
)
.

Since all of these convergence results hold jointly over
(
θ,θ̃
)
∈Θ2, another application

of the continuous mapping theorem implies that(
`1Z,ns

(
θ̃
)
,`2Z,ns

(
θ̃,θ
)
,u1
Z,ns

(
θ̃,θ
)
,u2
Z,ns

(
θ̃
))
→d

(
`1∗Z

(
θ̃
)
,`2∗Z

(
θ̃,θ
)
,u1∗
Z

(
θ̃,θ
)
,u2∗
Z

(
θ̃
))
.

Moreover, θ̂ is almost everywhere continuous in X∗, so that (Yns,Σ̂ns,θ̂ns)→d (Y ∗,Σ∗,θ̂),

where this convergence occurs jointly with that above. Thus, we have established the

desired result. �

To state our next two lemmas, we consider sets that can be written as finite unions

of disjoint intervals, YK=∪Kk=1

[
`k,uk

]
.

Lemma 3

For FTN
(
·;µ,ΣY (θ),YK

)
the distribution function for ζ with

ζ∼ξ|ξ∈YK,ξ∼N(µ,ΣY (θ)),
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FTN
(
Y (θ);µ,ΣY (θ),YK

)
is continuous on the set{

(Y (θ),µ,ΣY (θ))∈R3,`1∈ [−∞,∞),{
`k
}K
k=2
∈RK−1,

{
uk
}K−1

k=1
∈RK−1,uK∈(−∞,∞]

:ΣY (θ)>0,
∑
k

∣∣∣uk−`k∣∣∣>0,uk≥`k≥uk−1 for all k

}
.

Proof: Note that we can write

FTN
(
Y (θ);µ,ΣY (θ),YK

)
=

∑
k1
{
Y (θ)≥`k

}(
FN

(
uk∧Y (θ)−µ√

ΣY (θ)

)
−FN

(
`k−µ√
ΣY (θ)

))
∑

k

(
FN

(
uk−µ√
ΣY (θ)

)
−FN

(
`k−µ√
ΣY (θ)

)) .

Hence, we trivially obtain continuity for ΣY (θ)>0,Y (θ)∈R,µ∈R, 0<
∑

k

∣∣uk−`k∣∣<∞.

Moreover, as in the proof of Lemma 9 of AKM we retain continuity as we allow `1→−∞
and/or uK→∞, in the sense that for a sequence of sets YKm with

{
`km,u

k
m

}K
k=1
→
{
`k∞,u

k
∞
}K
k=1

with `1∞=−∞ and/or uK∞=∞ and the other elements finite,

FTN
(
Y (θ);µ,ΣY (θ),YKm

)
→FTN

(
Y (θ);µ,ΣY (θ),YK∞

)
. �

To state the next lemma, let

(
cl
(
µ,ΣY (θ),YK

)
,cu
(
µ,ΣY (θ),YK

))
(20)

solve

Pr{ζ∈ [cl,cu]}=1−α

E[ζ1{ζ∈ [cl,cu]}]=(1−α)E[ζ]

for ζ as in Lemma 3.

Lemma 4
The function (20) is continuous in

(
µ,ΣY (θ),YK

)
for Lebesgue almost-every

{
`k,uk

}K
k=1

on the set{
(µ,ΣY (θ))∈R2,`1∈ [−∞,∞),{

`k
}K
k=2
∈RK−1,

{
uk
}K−1

k=1
∈RK−1,uK∈(−∞,∞]

:ΣY (θ)>0,
∑
k

∣∣uk−`k∣∣>0,uk≥`k≥uk−1 for all k

}
.

Moreover, if we fix any (µ,ΣY (θ)) in this set, and fix all but one element of
{
`k,uk

}K
k=1

,
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(20) is almost-everywhere continuous in the remaining element.

Proof: Note that

Pr{ζ∈ [cl,cu]}=

∑
k1
{
uk≥cl,cu≥`k

}(
FN

(
uk∧cu−µ√

ΣY (θ)

)
−FN

(
`k∨cl−µ√

ΣY (θ)

))
∑

k

(
FN

(
uk−µ√
ΣY (θ)

)
−FN

(
`k−µ√
ΣY (θ)

))
while

E[ζ1{ζ∈ [cl,cu]}]=E[ζ|ζ∈ [cl,cu]]Pr{ζ∈ [cl,cu]}

where

E[ζ|ζ∈ [cl,cu]]=µ+
√

ΣY (θ)

∑
k1
{
uk≥cl,cu≥`k

}(
fN

(
`k∨cl−µ√

ΣY (θ)

)
−fN

(
uk∧cu−µ√

ΣY (θ)

))
∑

k1{uk≥cl,cu≥`k}
(
FN

(
uk∧cu−µ√

ΣY (θ)

)
−FN

(
`k∨cl−µ√

ΣY (θ)

)).
Thus,

E[ζ1{ζ∈ [cl,cu]}]=µ

∑
k1
{
uk≥cl,cu≥`k

}(
FN

(
uk∧cu−µ√

ΣY (θ)

)
−FN

(
`k∨cl−µ√

ΣY (θ)

))
∑

k

(
FN

(
uk−µ√
ΣY (θ)

)
−FN

(
`k−µ√
ΣY (θ)

))

+
√

ΣY (θ)

∑
k1
{
uk≥cl,cu≥`k

}(
fN

(
`k∨cl−µ√

ΣY (θ)

)
−fN

(
uk∧cu−µ√

ΣY (θ)

))
∑

k

(
FN

(
uk−µ√
ΣY (θ)

)
−FN

(
`k−µ√
ΣY (θ)

))
and

E[ζ]=µ+
√

ΣY (θ)

∑
k

(
fN

(
`k−µ√
ΣY (θ)

)
−fN

(
uk−µ√
ΣY (θ)

))
∑

k

(
FN

(
uk−µ√
ΣY (θ)

)
−FN

(
`k−µ√
ΣY (θ)

)).
Using analogous reasoning to that in the proof of Lemma 10 in AKM, we can write

(20) as the solution to

g
(
c;µ,
√

ΣY (θ),YK
)

=0 (21)

for

g
(
c;µ,
√

ΣY (θ),YK
)

=
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∑
k1
{
uk≥cl,cu≥`k

}(
FN

(
uk∧cu−µ√

ΣY (θ)

)
−FN

(
`k∨cl−µ√

ΣY (θ)

)
−(1−α)

(
FN

(
uk−µ√
ΣY (θ)

)
−FN

(
`k−µ√
ΣY (θ)

)))
∑
k1
{
uk≥cl,cu≥`k

}(
fN

(
`k∨cl−µ√

ΣY (θ)

)
−fN

(
uk∧cl−µ√

ΣY (θ)

)
−(1−α)

(
fN

(
`k−µ√
ΣY (θ)

)
−fN

(
uk−µ√
ΣY (θ)

)))
.

Note that by construction

g
(
c;µ,
√

ΣY (θ),YK
)

=g
(
c−µ;0,

√
ΣY (θ),YK−µ

)
,

which implies that

(
cl
(
µ,ΣY (θ),YK

)
,cu
(
µ,ΣY (θ),YK

))
=
(
µ+cl

(
0,ΣY (θ),YK−µ

)
,µ+cu

(
0,ΣY (θ),YK−µ

))
so to prove continuity it suffices to consider the case with µ=0.

Next, note that g
(
c;0,
√

ΣY (θ),YK
)

is almost everywhere differentiable with respect

to (cl,cu), with derivative
∑

k1
{
uk>cl>`

k
} −1√

ΣY (θ)
fN

(
cl√

ΣY (θ)

) ∑
k1
{
uk>cu>`

k
}

1√
ΣY (θ)

fN

(
cu√
ΣY (θ)

)
∑

k1
{
uk>cl>`

k
} −cl

ΣY (θ)
fN

(
cl√

ΣY (θ)

) ∑
k1
{
uk>cu>`

k
}

cu
ΣY (θ)

fN

(
cu√
ΣY (θ)

)
,

though it is non-differentiable if cu∈
{
uk,`k

}
or cl∈

{
uk,`k

}
for some k.

Note, however, that if we fix all but one element of
{
`k,uk

}K
k=1

and change the remaining

element, the set of values for which there exists a solution c to (21) with cu∈(`j,uj) and

cl∈
(
`k,uk

)
for some j,k has Lebesgue measure one by arguments along the same lines as in

the proof of Lemma 10 of AKM. Likewise, the set of values such that there exists a solution

c to (21) with cl = cu has Lebesgue measure zero. The implicit function theorem thus

implies that (20) is almost-everywhere continuously differentiable in the element we have

selected. Since we can repeat this argument for each element of
{
`k,uk

}K
k=1

, we obtain that

(20) is elementwise continuously differentiable in
{
`k,uk

}K
k=1

Lebesgue almost everywhere.

Moreover, as in the proof of Lemma 10 of AKM, the form of (20) implies that the same

remains true if we take `1→−∞ or uK→∞. �

Lemma 5

Under Assumptions 1-4, for either Cn=1
{
θ̂n= θ̃

}
or

Cn=1
{
θ̂n= θ̃,µY,n

(
θ̂n,Pn

)
∈CSβP,n

}
,
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there exists ε>0 such that

liminf
n→∞

inf
p∈Pn

PrP{Cn=1}≥ε.

Hence, for any sequence of variables Vn,

limsup
n→∞

sup
P∈Pn
|EP [Vn|Cn=1]|PrP{Cn=1}=0

if and only if

limsup
n→∞

sup
P∈Pn
|EP [Vn|Cn=1]|=0.

Proof of Lemma 5 By the same argument as in the proof of Lemma 5 in AKM, it

suffices to consider sequences as in Lemma 1, where by Assumption 4,

‖µ∗X‖+‖µ∗Y ‖≤C.

Note, next, that for (X∗′,Y ∗′)′∼N((µ∗′X,µ
∗′
Y )′,Σ), ΣX full-rank, and θ̂∗=argmaxθ∈Θ‖X∗(θ)‖,

θ̂∗ has full support. Moreover, θ̂∗ is almost everywhere continuous in X∗, so by the contin-

uous mapping theorem, θ̂ns→d θ̂
∗ under {ns}, {Pns}. Moreover, Pr

{
θ̂∗= θ̃

}
is continuous

in µ∗X and ΣX, and the set of µ∗X, ΣX values we consider is compact. Hence, Pr
{
θ̂∗= θ̃

}
is

bounded away from zero, from which the bound for Cn=1
{
θ̂n= θ̃

}
follows. The claim for

Cn=1
{
θ̂n= θ̃,µY,n

(
θ̂n,Pn

)
∈CSβP,n

}
,

follows by the same argument, using almost everywhere continuity of CSβP in the limit

problem. The final claim is then immediate. �

B.2 Proofs of Uniform Asymptotic Validity Results

Proof of Proposition 3 As in the proof of Proposition 9 of AKM, note that

µ̂α,n≥µY,n
(
θ̂n;P

)
⇐⇒ µY,n

(
θ̂n;P

)
∈CSU,−,n

for CSU,−,n=(−∞,µ̂α,n]. Hence, by Lemmas 1 and 5, to prove that (13) holds it suffices

to show that for all {ns} and {Pns} such that conditions (1) and (2) of Lemma 1 hold
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with Cn=1
{
θ̂n= θ̃

}
, we have

lim
s→∞

PrPns

{
µ̂Y,ns

(
θ̂ns;Pns

)
∈CSU,−,ns|θ̂ns = θ̃

}
=α. (22)

To this end, note that for FTN
(
Y (θ);µ,ΣY (θ),YK

)
as defined in the statement of Lemma

3, the estimator µ̂α,n solves

FTN

(
Yn

(
θ̂n

)
;µ,Σ̂Y,n

(
θ̂n

)
,Yn
)

=1−α,

for

Yn=
⋂

θ∈Θ:An(θ̃,θ)>0,DZ,n(θ̃,θ)≥0

[
`1Z,n

(
θ̃
)
,u1
Z,n

(
θ̃,θ
)]
∩
[
`2Z,n

(
θ̃,θ
)
,u2
Z,n

(
θ̃
)]

(23)

(see Proposition 1). The set Yn can be written as a finite union of disjoint intervals by

DeMorgan’s Laws.

The cdf FTN

(
Yn

(
θ̂n

)
;µ,Σ̂Y,n

(
θ̂n

)
,Yn
)

is strictly decreasing in µ as argued in the proof

of Proposition 8 of AKM, and is increasing in Yn

(
θ̂
)

. Hence, µ̂α,n≥µY,n
(
θ̂n;P

)
if and only if

FTN

(
Yn

(
θ̂n

)
;µY,n

(
θ̂n;P

)
,Σ̂Y,n

(
θ̂n

)
,Yn
)
≥1−α.

Lemma 2 shows that
(
Yn

(
θ̂ns

)
,Σ̂Y,ns

(
θ̂ns

)
,Yns,θ̂ns

)
converges in distribution as s→∞,18

so since FTN is continuous by Lemma 3 while argmaxθ‖X∗(θ)‖ is almost everywhere

continuous for X∗, the continuous mapping theorem implies that(
FTN

(
Yns

(
θ̂ns

)
;µY,ns

(
θ̃;Pns

)
,Σ̂Y,ns

(
θ̂ns

)
,Yns

)
,1
{
θ̂ns = θ̃

})
→d

(
FTN

(
Y ∗
(
θ̂
)

;µY,ns

(
θ̃;Pns

)
,Σ∗Y

(
θ̂
)
,Y∗
)
,1
{
θ̂= θ̃

}) ,

where Y∗ is the analog of Yn calculated based on (X∗,Y ∗,Σ∗).

Since we can write

PrPns

{
FTN

(
Yns

(
θ̂ns

)
;µY,ns

(
θ̃;Pns

)
,Σ̂Y,ns

(
θ̂ns

)
,Yns

)
≥1−α|θ̂ns = θ̃

}
18Since Yn can be represented as a finite union of intervals, we use Yn→dY∗ to denote joint convergence

in distribution of (i) the number of intervals and (ii) the endpoints of the intervals.
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=
EPns

[
1
{
FTN

(
Yns

(
θ̂ns

)
;µY,ns

(
θ̃;Pns

)
,Σ̂Y,ns

(
θ̂ns

)
,Yns

)
≥1−α

}
1
{
θ̂ns = θ̃

}]
EPns

[
1
{
θ̂ns = θ̃

}] ,

and by construction

FTN

(
Y ∗
(
θ̂
)

;µY,ns

(
θ̃;Pns

)
,Σ∗Y

(
θ̂
)
,Y∗,θ̂

)
|θ̂= θ̃∼U[0,1],

and Pr
{
θ̂= θ̃

}
=p∗>0 by Assumption 4, we thus have that

PrPns

{
FTN

(
Yns

(
θ̂ns

)
;µY,ns

(
θ̃;Pns

)
,Σ̂Y,ns

(
θ̂ns

)
,Yns

)
≥1−α|θ̂ns = θ̃

}
→Pr

{
FTN

(
Y ∗
(
θ̂
)

;µ∗Y

(
θ̃
)
,Σ∗Y

(
θ̂
)
,Y∗
)
≥1−α|θ̂= θ̃

}
=α,

which verifies (22).

Since this argument holds for all θ̃∈Θ, and Assumptions 1 and 2 imply that for all

θ,θ̃∈Θ with θ 6= θ̃,
lim
n→∞

sup
P∈Pn

PrP

{
‖Xn(θ)‖=

∥∥∥Xn

(
θ̃
)∥∥∥}=0,

Lemma 6 of AKM implies (14). �

Proof of Corollary 2 Follows from Proposition 3 by the same argument used to prove

Corollary 1 of AKM. �

Proof of Proposition 4 Note that by the definition of CSU,n

µY,n

(
θ̂n;P

)
∈CSU,n

⇐⇒ Yn

(
θ̂n

)
∈
[
cl

(
µY,n

(
θ̂n;P

)
,Σ̂Y,n

(
θ̂n

)
,Yn
)
,cu

(
µY,n

(
θ̂n;P

)
,Σ̂Y,n

(
θ̂n

)
,Yn
)]

where Yn is as defined in (23) while (cl(µ,ΣY (θ),Yn),cu(µ,ΣY (θ),Yn)) are as defined imme-

diately before Lemma 4, after replacing YK with Yn.
By Lemmas 1 and 5, to prove that (15) holds it suffices to show that for all {ns} and

{Pns} satisfying conditions (1) and (2) of Lemma 1,

lim
s→∞

PrPns

{
µY,ns

(
θ̂ns

)
∈CSU,ns|θ̂ns = θ̃

}
=1−α.
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Thus, it suffices to show that

lim
s→∞

PrPns

Yns(θ̂ns)∈
[
cl

(
µY,ns

(
θ̂,Pns

)
,Σ̂Y,ns

(
θ̂ns

)
,Yns

)
,

cu

(
µY,ns

(
θ̂,Pns

)
,Σ̂Y,ns

(
θ̂ns

)
,Yns

)] ∣∣∣∣∣∣θ̂ns = θ̃

=1−α.

To this end, note that by Lemma 2,(
Yns,Yns,Σ̂ns,1

{
θ̂ns = θ̃

})
→d

(
Y ∗,Y∗,Σ∗,1

{
θ̂= θ̃

})
,

and thus, by Lemma 4 and the continuous mapping theorem,19

(
Yns

(
θ̃
)
,cl

(
µY,ns

(
θ̃,Pns

)
,Σ̂Y,ns

(
θ̃
)
,Yns

)
,cu

(
µY,ns

(
θ̃,Pns

)
,Σ̂Y,ns

(
θ̃
)
,Yns

)
,1
{
θ̂ns= θ̃

})
→d

(
Y ∗
(
θ̃
)
,cl

(
µ∗Y

(
θ̃
)
,Σ∗Y

(
θ̃
)
,Y∗
)
,cu

(
µ∗Y

(
θ̃
)
,Σ∗Y

(
θ̃
)
,Y∗
)
,1
{
θ̂= θ̃

})
.

By construction,

Pr
{
Y ∗
(
θ̃
)
∈
[
cl

(
µ∗Y

(
θ̃
)
,Y∗,Σ∗Y

(
θ̃
))
,cu

(
µ∗Y

(
θ̃
)
,Y∗,Σ∗Y

(
θ̃
))]
|θ̂= θ̃

}
=1−α,

and Y ∗
(
θ̃
)
|θ̂= θ̃,Y ∗

(
θ̃
)
∈Y∗ follows a truncated normal distribution, so

Pr
{
Y ∗
(
θ̃
)

=cl

(
µ∗Y

(
θ̃
)
,Σ∗Y

(
θ̃
)
,Y∗
)}

=Pr
{
Y ∗
(
θ̃
)

=cu

(
µ∗Y

(
θ̃
)
,Σ∗Y

(
θ̃
)
,Y∗
)}

=0.

Hence,

PrPns

Yns(θ̂ns)∈
[
cl

(
µY,ns

(
θ̃,Pns

)
,Σ̂Y,ns

(
θ̂ns

)
,Yns

)
,

cu

(
µY,ns

(
θ̃,Pns

)
,Σ̂Y,ns

(
θ̂ns

)
,Yns

)] ∣∣∣∣∣∣θ̂ns = θ̃


=

EPns [1{Yns(θ̂ns)∈[cl(µY,ns(θ̃,Pns),Σ̂Y,ns(θ̂ns),Yns),cu(µY,ns(θ̃,Pns),Σ̂Y,ns(θ̂ns),Yns)]}1{θ̂ns=θ̃}]
EPns [1{θ̂ns=θ̃}]

→ E[1{Y ∗(θ̂)∈[cl(µ∗Y (θ̃),Σ∗
Y (θ̂),Y∗),cu(µ∗Y (θ̃),Σ∗

Y (θ̂),Y∗)]}1{θ̂=θ̃}]
E[1{θ̂=θ̃}] =1−α,

as we wanted to show, so (15) follows by Lemma 5 of AKM.

Since this result again holds for all θ̃ ∈ Θ, (16) follows immediately by the same

argument as in the proof of Proposition 3. �

19Note that when θ̂= θ̃, Y∗ is either equal to the real line or contains at least one interval with a
continuously distributed endpoint. Hence, the almost-everywhere continuity established in Lemma 4 is
sufficient for us to apply the continuous mapping theorem.
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Proof of Proposition 5 Follows by the same argument as in the proof of Proposition

11 of AKM. �

Proof of Proposition 6 Follows by an argument along the same lines as in the proof of

Proposition 12 of AKM, using Lemmas 1, 2, 3, and 5 in place of Lemmas 5, 8, and 9 in AKM,

and using the conditioning event {Yn(θ̂n)∈YHn }={Yn(θ̂n)∈Yn}∩
{
µY,n

(
θ̂n,Pn

)
∈CSβP,n

}
.

�

Proof of Corollary 3 Follows by the same argument as in the proof of Corollary 2 in

AKM. �

Proof of Proposition 7 Follows by the same argument as the proof of Proposition 6,

using Lemma 4 rather than Lemma 3. �

C Additional Results for Tipping Point Simulations

Tables 5 and 6 provide the ratios of the 5th, 25th, 50th, 75th and 95th quantiles of the lengths of

CSET , CSU , CSHET and CSHU relative to the corresponding length quantiles of CSP for the

tipping point data-calibrated designs described in Section 6 of the main text. Looking at the

upper quantiles in Table 5, we can see that the conditional confidence intervals CSET and

CSU can become very wide in the absence of a clear break. Conversely, the hybrid intervals

CSHET and CSHU dominate CSP across all quantiles and simulation designs we examined.

Table 7 reports the same quantiles of the studentized absolute errors of µ̂1
2
, µ̂H1

2

and

Y (θ̂). The main features of this table are similar to those of Table 5: the unconditional

estimator µ̂1
2

can exhibit very large absolute errors while the hybrid estimator µ̂H1
2

does

not exhibit such extreme values. In addition, note that the hybrid estimator µ̂H1
2

not only

exhibits minimal bias, in contrast to the standard estimator Y (θ̂), but also exhibits lower

studentized absolute errors across most quantiles and designs considered.
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Table 5: Ratios of Length Quantiles Relative to CSP

CSET Quantile CSU Quantile
DGP 5th 25th 50th 75th 95th 5th 25th 50th 75th 95th

Chicago Data Calibration
(i) 0.88 1.13 1.33 1.54 1.87 0.92 1.20 1.38 1.58 1.89
(ii) 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.74
(iii) 0.74 0.74 0.82 1.22 3.30 0.74 0.76 0.93 1.45 3.65

Los Angeles Data Calibration
(i) 0.92 1.27 1.26 0.99 0.76 0.94 1.31 1.29 1.00 0.77
(ii) 0.68 0.68 0.68 0.68 0.68 0.67 0.68 0.68 0.68 0.69
(iii) 0.68 0.68 0.68 0.79 2.12 0.68 0.68 0.70 0.89 2.32

Table 6: Ratios of Length Quantiles Relative to CSP

CSHET Quantile CSHU Quantile
DGP 5th 25th 50th 75th 95th 5th 25th 50th 75th 95th

Chicago Data Calibration
(i) 0.69 0.91 0.94 0.93 0.96 0.60 0.90 0.94 0.93 0.96
(ii) 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.75
(iii) 0.75 0.75 0.82 0.93 0.97 0.76 0.78 0.87 0.94 0.97

Los Angeles Data Calibration
(i) 0.73 0.91 0.86 0.82 0.76 0.65 0.91 0.85 0.82 0.76
(ii) 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.70
(iii) 0.69 0.69 0.70 0.79 0.91 0.68 0.69 0.72 0.84 0.92
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Table 7: Quantiles of
∣∣∣µ̂−µY (θ̂)

∣∣∣/√ΣY (θ̂)

µ̂1
2

Quantile µ̂H1
2

Quantile Y (θ̂) Quantile

DGP 5th 25th 50th 75th 95th 5th 25th 50th 75th 95th 5th 25th 50th 75th 95th

Chicago Data Calibration
(i) 0.15 0.74 1.51 2.65 6.38 0.15 0.71 1.38 2.02 2.63 0.81 1.16 1.52 1.95 2.70
(ii) 0.06 0.32 0.66 1.14 1.95 0.06 0.32 0.66 1.14 1.95 0.06 0.32 0.66 1.14 1.95
(iii) 0.08 0.38 0.83 1.50 4.81 0.08 0.38 0.83 1.48 2.94 0.07 0.34 0.71 1.19 2.05

Los Angeles Data Calibration
(i) 0.13 0.67 1.38 2.32 5.25 0.13 0.64 1.29 1.93 2.60 1.07 1.45 1.80 2.20 2.89
(ii) 0.07 0.32 0.67 1.14 1.93 0.07 0.32 0.67 1.14 1.93 0.07 0.32 0.67 1.14 1.93
(iii) 0.07 0.35 0.74 1.31 2.56 0.07 0.35 0.74 1.30 2.46 0.06 0.33 0.68 1.17 2.00
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C.1 Additional Results for Split-Sample Approaches

Table 8 provides the ratios of the 5th, 25th, 50th, 75th and 95th quantiles of the length

of our newly proposed equal-tailed split-sample confidence interval CSASS relative to the

corresponding length quantiles of the conventional split-sample confidence interval CSSS

for each of the tipping point data-calibrated designs described in Section 6 of the main

text. Since every entry in this table is less than one, we can see that the dominance result

illustrated in Table 4 of the main text is further reinforced: the length quantiles of CSASS
are shorter than those of CSSS across all quantiles and simulation designs considered.

Table 9 reports the same quantiles of the studentized absolute errors of our newly proposed

split-sample estimator µ̂A
SS,1

2

and those of the conventional split-sample estimator Y 2(θ̂1).

Though both of these estimators are median unbiased for µY (θ̂1), µ̂A
SS,1

2

dominates Y 2(θ̂1) in

terms of studentized absolute errors across all quantiles and simulation designs considered.

Table 8: Ratios of Length Quantiles of CSASS Relative to CSSS

Quantile
DGP 5th 25th 50th 75th 95th

Chicago Data Calibration
(i) 0.69 0.79 0.83 0.84 0.87
(ii) 0.57 0.58 0.58 0.58 0.58
(iii) 0.59 0.59 0.64 0.73 0.86

Los Angeles Data Calibration
(i) 0.74 0.85 0.78 0.68 0.57
(ii) 0.57 0.58 0.58 0.58 0.58
(iii) 0.57 0.58 0.59 0.66 0.81

Table 9: Quantiles of
∣∣∣µ̂−µY (θ̂1)

∣∣∣/√ΣY (θ̂)1

µ̂A
SS,1

2

Quantile Y 2(θ̂1) Quantile

DGP 5th 25th 50th 75th 95th 5th 25th 50th 75th 95th

Chicago Data Calibration
(i) 0.05 0.27 0.57 0.95 1.61 0.06 0.31 0.67 1.15 1.97
(ii) 0.04 0.18 0.38 0.65 1.13 0.06 0.31 0.66 1.14 1.96
(iii) 0.04 0.21 0.44 0.77 1.38 0.07 0.32 0.67 1.15 2.00

Los Angeles Data Calibration
(i) 0.05 0.25 0.55 0.93 1.56 0.07 0.32 0.69 1.16 1.96
(ii) 0.04 0.18 0.39 0.66 1.13 0.06 0.31 0.67 1.15 1.96
(iii) 0.04 0.20 0.42 0.71 1.25 0.06 0.32 0.68 1.16 1.98
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