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Abstract. In this paper, we describe how to test for the presence of measure-
ment error in explanatory variables. First, we discuss the test of such hypotheses
in parametric models such as linear regressions and then introduce a new Stata
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illustrate the new command, we provide Monte Carlo simulations and an empirical
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1 Introduction

In this paper, we describe how to test for the presence of measurement error in explana-
tory variables. Specifically, consider an outcome Y (e.g. earnings) that depends on an
explanatory variable X∗ (e.g. schooling). We do not observe X∗ directly, but only two
variables X and Z that are related to X∗. We suspect X to be an error-contaminated
measurement of X∗ (e.g. schooling as reported in a survey) and Z is a variable related
to X∗, perhaps an instrument (e.g. distance to college) or a repeated measurement (e.g.
schooling as reported in another survey). The hypothesis of no measurement error in
X is

H0 : P (X = X∗) = 1, (1)

In the schooling example, testing H0 could be useful as a first-step model specification
test to tell the researcher whether measurement error is an important feature of the
data that should be modelled. However, testing H0 may also be of direct economic
interest because, for example, the null of no measurement error can often be shown
to be implied by the absence of frictions in a structural economic model (e.g. Chetty
(2012), Wilhelm (2018)). A test of H0 can therefore be interpreted as a test of the
absence of such frictions.

In a finite sample, we may not be able to detect measurement error even though X is
in fact mismeasured. The reason is that measurement errors might be small relative to
the overall sampling noise. In this sense, we can interpret the test of H0 as finding out
whether measurement error is severe enough for the data to tell the difference between
models with and without measurement error.
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2 dgmtest

In this paper, we describe how to test for the presence of measurement error with-
out imposing any parametric restrictions and, in fact, without requiring the model to
be identified. Both of these aspects are important for empirical practice. First, when
testing for measurement error it is important to allow for nonlinearities in the relation-
ship of Y and X∗ because measurement error in X can make the relationship appear
nonlinear when it isn’t and make it appear linear when it isn’t (Chesher (1991)). To
disentangle measurement error from nonlinearities therefore requires a procedure that
can allow for nonlinearities. Second, nonparametric measurement error models are
identified only under fairly strong conditions and their estimation involves complicated
procedures such as Fourier transforms and operator inversions (Schennach (2013, 2016),
Hu (2017)). However, Wilhelm (2018) shows that testing for the presence of measure-
ment error does not require identification of the model and is thus possible without such
strong assumptions. In particular, the test is able to detect a wide range of nonclassical
measurement error models, i.e. models in which the measurement error depends on the
true, latent variable. Another byproduct of avoiding identification of the model is that
complicated estimation techniques are not necessary. In fact, the test we describe only
employs standard nonparametric regression techniques.

The null hypothesis depends on the latent variable X∗ and thus cannot directly
be tested. In Section 2, this paper therefore first describes how to convert the null
hypothesis into a testable restriction in terms of the observable variables Y,X,Z in
a simple example, a linear regression model. In this model, H0 can easily be tested
using existing Stata commands following Hausman (1978). Section 3 then describes
the extension of such ideas to the nonparametric framework as recently proposed by
Wilhelm (2018). We introduce the new Stata command [R] dgmtest that implements
a test of H0 without imposing any parametric restrictions. Section 4 reports the results
of Monte Carlo simulations for this new command and Section 5 concludes with an
empirical example in which we show how to test for measurement error in administrative
earnings data.

Related Literature Mahajan (2006) proposes a test for the presence of measurement
error when the explanatory variable X∗ and the observed measure X are binary. There
are also some existing tests for the presence of measurement error in parametric models
that require identification and consistent estimators of the model: Hausman (1978),
Chesher (1990), Chesher et al. (2002), Hahn and Hausman (2002), and Hu (2008). Re-
lated to Hausman (1978), in empirical work it is common to estimate linear regressions
by OLS and IV, and then attribute a difference in the two estimates to the presence
of measurement error, treating the IV estimate as the consistent and unbiased one. Of
course, this strategy is valid only if the true relationship of interest is in fact linear, the
measurement error is classical, and the model is identified. None of these assumptions
are required in the nonparametric approach described in the present paper.

In principle, one could imagine constructing a test for the presence of measurement
error by comparing an estimator of the model that accounts for the possibility of mea-
surement error with one that ignores it, similar in spirit to the work by Durbin (1954),
Wu (1973), and Hausman (1978). If the difference between the two is statistically sig-
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nificant, then one could conclude that this is evidence for the presence of measurement
error. However, this strategy would require identification and consistent estimation of
the measurement error model, which leads to overly strong assumptions, the necessity
of solving ill-posed inverse problems in the continuous variable case, and potentially
highly variable estimators. These difficulties can all be avoided by the nonparametric
approach described in this paper.

2 Linear Regression Model

Consider the linear regression model for an outcome Y and an explanatory variable
X∗, assuming for simplicity that there are no further regressors (the extension to the
presence of additional controls is straightforward and discussed below),

Y = α+ βX∗ + ε, E(εX∗) = 0. (2)

Instead of X∗, we observe a measurement X of X∗ and an instrumental variable (IV)
Z which depends on X∗ (i.e. E(X∗Z) 6= 0), but is excluded from the outcome equa-
tion (i.e. E(εZ) = 0). Testing for the presence of measurement error in this context
is straightforward (Hausman (1978)). Under the null of no measurement error OLS
consistently estimates β, but under the alternative of some measurement error it is
inconsistent. The IV estimator, however, is consistent under both the null and the al-
ternative. Therefore, one can simply compute both estimators and compare them. If
their difference is statistically significant, that indicates the presence of measurement
error.

To better understand the connection to the nonparametric test described in the next
section it might be instructive to note that the test based on the difference of OLS and
IV estimators is equivalent to testing significance in an expanded regression. To see
this, suppose there is no measurement error in X, then

Y = α+ βX + ε, E(εX) = 0.

Therefore, when regressing Y onto both X and Z, the exclusion of the IV implies that
the coefficient of Z must be zero1, i.e. we test the hypothesis of no measurement error
by instead testing

γ̄ = 0 (3)

in the regression
Y = ᾱ+ β̄X + γ̄Z + ε̄.

In conclusion, we have shown that the null of no measurement error, (1), implies (3) in
the linear regression model. The only assumption for this to be true is that (2) holds
and that the IV is excluded from the outcome equation, i.e. E(εZ) = 0. Therefore, a
rejection of the restriction (3) implies a rejection of the hypothesis of no measurement
error, (1).

1. Hausman (1978) suggests running a regression of Y on X and the projection X̂ of X onto Z. Then,

H0 implies that the coefficient of X̂ must be zero.
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However, without further assumptions, failing to reject (3) does not necessarily imply
failing to reject the null of no measurement error, (1). Suppose X = X∗+ηX , so that ηX
represents the measurement error in X. If the measurement error in X is assumed to be
classical (i.e. it is uncorrelated with the latent regressor, E(X∗ηX) = 0), uncorrelated
with the regression error, E(εηX) = 0, and some further regularity conditions hold,
then it is easy to see that the null hypothesis H0 not only implies but is, in fact, also
implied by (3). Therefore, failing to reject (3) may be interpreted as failing to reject
H0 and rejecting (3) may be interpreted as rejecting H0.

Consider the following simulated example that illustrates the finite sample perfor-
mance of the test by Hausman (1978). First, we simulate data without measurement
error in the regressor (X = X∗):

. set obs 200

. gen double z = rnormal(0,1)

. gen double u = rnormal(0,0.5)

. gen double e = rnormal(0,0.5)

. gen xs = 0.5*z + u

. gen x = xs

. gen y = xs + e

Then we regress Y on X and Z (and a constant):

. reg y x z

Source | SS df MS Number of obs = 200
-------------+---------------------------------- F(2, 197) = 190.55

Model | 110.874464 2 55.437232 Prob > F = 0.0000
Residual | 57.3145743 197 .290936925 R-squared = 0.6592

-------------+---------------------------------- Adj R-squared = 0.6558
Total | 168.189038 199 .845171047 Root MSE = .53939

------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
x | 1.052337 .0747708 14.07 0.000 .904883 1.199791
z | -.0218478 .0585315 -0.37 0.709 -.1372765 .093581

_cons | -.0184318 .0381422 -0.48 0.629 -.0936512 .0567876
------------------------------------------------------------------------------

to find that Z is not significant at any reasonable confidence level (p-value is 0.709).
Therefore, we fail to reject the null of no measurement error as expected. Now, we
generate a measurement error-contaminated regressor (X 6= X∗):

. gen double eta = rnormal(0,0.5)

. gen x = xs + eta

Again, we regress Y on X and Z (and a constant):

. reg y x z

Source | SS df MS Number of obs = 200
-------------+---------------------------------- F(2, 197) = 116.36

Model | 91.0844045 2 45.5422023 Prob > F = 0.0000
Residual | 77.1046338 197 .39139408 R-squared = 0.5416

-------------+---------------------------------- Adj R-squared = 0.5369
Total | 168.189038 199 .845171047 Root MSE = .62561
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------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
x | .5981834 .0608373 9.83 0.000 .4782075 .7181593
z | .2439546 .0578135 4.22 0.000 .1299419 .3579674

_cons | -.0331463 .0442702 -0.75 0.455 -.1204506 .054158
------------------------------------------------------------------------------

to find that now Z is significant at every reasonable confidence level (p-value is 0.000).
Therefore, we strongly reject the null of no measurement error.

In the presence of additional, correctly measured, controls in the regression model,
we would proceed exactly as above except that we would include the additional controls
in the regression command.

3 Nonparametric Model – the New dgmtest Command

While the approach to testing H0 in the previous section is straightforward and intu-
itive, its validity relies on strong assumptions: linearity in the outcome equation and
classical measurement error in X. Since nonlinearities in the regression equation and
measurement error in X may manifest themselves in similar ways (Chesher (1991)), it is
important to allow for nonlinearities in the relationship between Y and X∗ when testing
for measurement error. In addition, a large literature has documented that measure-
ment error in economic data is rarely classical (see the survey by Bound et al. (2001),
for example). In this section, we describe how to test H0 in nonlinear models with
nonclassical measurement error.

Suppose the variable Z is related to X∗, but together with the measurement X is
excluded from the outcome model in the sense that

E(Y |X∗, X, Z) = E(Y |X∗) a.s. (4)

i.e. they can affect outcomes only through the true explanatory variable X∗. Then
it is easy to see that, under H0, Z must also be excluded from the outcome equation
conditional on the observed X:

E(Y |X,Z) = E(Y |X) a.s.. (5)

Unlike H0, this is a restriction that depends only on observables and can directly be
tested without making any parametric assumptions about how the conditional mean
of Y depends on X∗. The test by Delgado and Gonzalez Manteiga (2001) introduced
in the next subsection and implemented in the new Stata command [R] dgmtest, for
instance, directly tests the restriction (5). Because of the above argument it can be
interpreted as a test of the original null of interest, the null of no measurement error in
(1).

The exclusion restriction (4) is standard in the literature on identification and esti-
mation of measurement error models (Carroll et al. (2006), Chen et al. (2011), Schennach



6 dgmtest

(2013, 2016), Hu (2017)) and has already been justified in a wide range of empirical
applications. Since the assumption is central to the validity of the test for measurement
error, we now provide a few examples.

Consider a generic production problem in which Y is an output that is produced
from a vector of inputs X∗. The inputs are measured by the vector X and Z provides
an alternative vector of measurements. In this context, the exclusion restriction is often
a natural assumption as it requires the “true” inputs X∗ to be the factors that matter
for production, not the measurements (X,Z). Therefore, conditional on knowing X∗,
the measurements X and Z should not provide any additional information about the
output Y . Cunha et al. (2010), Heckman et al. (2013), Attanasio et al. (2015), Attanasio
et al. (2017) are examples of empirical papers in the skill formation literature that have
justified the exclusion restriction in this fashion. The same argument also applies to
many other production problems in which inputs are difficult to measure (e.g. Olley
and Pakes (1996)).

In the empirical part of Wilhelm (2018) and in Section 5 below, Y,X,Z are three
measurements of earnings, but Y and (X,Z) come from two different data sources,
one from a survey and the other from an administrative dataset. We then argue the
exclusion restriction holds because the error in Z has a very different origin from the
error in Y , at least conditional on X∗.

There are many other empirical applications that also impose the exclusion restric-
tion (4): for instance, Altonji (1986) studies labor supply, Kane and Rouse (1995) and
Kane et al. (1999) the returns to education, Card (1996) the effect of unions on the
wage structure, Hu et al. (2013) auctions with unobserved heterogeneity, Feng and Hu
(2013) unemployment dynamics, and Arellano et al. (2017) earnings dynamics.

Wilhelm (2018) actually shows that, under additional assumptions, H0 not only
implies, but is also implied by the observable restriction (5). Therefore, failing to reject
(5) may be interpreted as failing to reject H0 and rejecting (5) may be interpreted as
rejecting H0.

The main assumptions required for this equivalence result are, first, the exclusion re-
striction (4), second, a relevance condition that ensures Z is sufficiently strongly related
to X∗ and, third, monotonicity of the conditional mean function x∗ 7→ E(Y |X∗ = x∗).

To satisfy the relevance condition we need to be able to find two values of Z, say
z1, z2, such that the probability mass functions of X∗|Z = z1 and X∗|Z = z2 do not
cross more than once. This assumption is testable under the additional assumption that
X and X∗ are sufficiently strongly monotonically related because, in that case, we must
also have that the probability mass functions of X|Z = z1 and X|Z = z2 do not cross
more than once (see Appendix A.3 in Wilhelm (2018)). Finally, monotonicity of the
relationship between the outcome and the explanatory variable is a weak assumption
that is often directly implied by economic theory, e.g. when the conditional mean
E(Y |X∗ = x∗) is a production, cost, or utility function. Examples can be found in
Matzkin (1994), Olley and Pakes (1996), Cunha et al. (2010), Blundell et al. (2012,
2016), Kasy (2014), Wilhelm (2015), Hoderlein et al. (2016), Chetverikov and Wilhelm
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(2017), among many others.

We now heuristically explain why the exclusion restriction, the relevance condition
and the monotonicity condition together guarantee equivalence of H0 and (5). We have
already argued why H0 implies (5) under the exclusion restriction, so we only need to
show that the reverse holds as well.

Consider the special case when X∗, X are continuously distributed and X∗, X, Z are
scalars. Suppose the observable implication (5) holds. Then, for any two values z1, z2,
we have E[Y |X,Z = z1] = E[Y |X,Z = z2]. Then, by the exclusion restriction,∫

E[Y |X∗] d(PX∗|X,Z=z1 − PX∗|X,Z=z2) = 0.

If E[Y |X∗ = ·] is differentiable, then integration by parts yields∫ (
PX∗|X=x,Z=z1(x∗)− PX∗|X=x,Z=z2(x∗)

) ∂E[Y |X∗ = x∗]

∂x∗
dx∗ = 0. (6)

We want to show that this equation implies the null hypothesis H0. On the contrary,
assume that this is not the case. To generate a contradiction, we want to ensure that (6)
does not hold under the alternative H1. This is the case, for example, when E[Y |X∗ = ·]
is monotone (and not constant) and PX∗|X=x,Z=z2 first-order stochastically dominates
(FOSD) PX∗|X=x,Z=z1 (and they are not equal) under H1. The relevance condition of
Wilhelm (2018) ensures that this FOSD holds. The monotonicity assumption, on the
other hand, implies that the derivative of the conditional expectation does not change
sign (and is nonzero somewhere) and the dominance condition implies that the difference
of the conditional distributions is nonnegative (and positive somewhere). In conclusion,
the integral in (6) is nonzero under H1, yielding the desired contradiction, so the null
of no measurement error must hold. For more details on the exact assumptions and
arguments, see Wilhelm (2018).

In some applications, Z may be excluded from the outcome equation only after
conditioning on some additional, correctly measured controls W , i.e. the exclusion
restriction (4) is replaced by

E(Y |X∗,W,X,Z) = E(Y |X∗,W ) a.s.. (7)

This additional conditioning on W is necessary, for example, in cases in which W de-
termines both Y and (X,Z). Under (7), the null hypothesis H0 then implies

E(Y |X,W,Z) = E(Y |X,W ) a.s.. (8)

The null hypothesis is, in fact, equivalent to (8) under conditions similar to those re-
quired for the equivalence of H0 and (5). In the implementation of the test we allow for
two types of additional controls, say W = (W1,W2), where the vector W1 is included in
the conditional mean in a nonseparable fashion and the vector W2 is additively separable
and linear:

E(Y |X,W ) = g(X,W1) + π′W2 (9)
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for some function g and some vector of coefficients π. (5)

There exist many nonparametric tests of the conditional mean independence in (5)
and (8), for example Gozalo (1993), Fan and Li (1996), Delgado and Gonzalez Manteiga
(2001), Mahajan (2006), and Huang et al. (2016). Therefore, any of those could be used
for nonparametrically testing for the presence of measurement error. In the presence,
of several additional covariates W , the curse of dimensionality may however cause fully
nonparametric tests to be infeasible. We therefore recommend the semiparametric,
partially linear model in (9) as a more practical approach in such cases.

In the following subsections we introduce a new Stata command [R] dgmtest that
implements the test by Delgado and Gonzalez Manteiga (2001). This test has some
desirable properties such as relatively simple implementation and its ability to detect
alternatives at the

√
n-rate.

3.1 The Test by Delgado and Gonzalez Manteiga (2001)

We briefly describe the approach by Delgado and Gonzalez Manteiga (2001) for testing
the conditional mean independence (5). There are many other reasons why one might
want to test such a restriction and the test for the presence of measurement error as
described in this paper is only one of these. To simplify the description, we focus on
the case in which there are no additional controls W .

The authors rewrite the null hypothesis of conditional mean independence, (5), as

E[T (X,Z)] = 0,

where
T (x, z) := E

[
fX(X)

{
Y − E(Y |X)

}
1{X ≤ x}1{Z ≤ z}

]
,

1{A} is equal to one if the event A holds, zero otherwise, and fX is the density of X.
Given a random sample {(Yi, Xi, Zi)}ni=1 from the distribution of (Y,X,Z), consider
the empirical analogue Tn(x, z) of T (x, z):

Tn(x, z) :=
1

n2

∑
i

∑
j

1

h
K

(
Xi −Xj

h

)
(Yi − Yj) 1{Xi ≤ x}1{Zi ≤ z}.

where h is a bandwidth parameter and K a kernel function. Delgado and Gonza-
lez Manteiga (2001) propose two test statistics: the Cramér-von Mises statistic Tn :=
n
∑n

i=1 Tn(Xi, Zi)
2 and the Kolmogorov-Smirnov statistic Tn := supx,z,y |

√
nTn(x, z)|.

Critical values of the test are computed using the bootstrap procedure described in
Delgado and Gonzalez Manteiga (2001).

Testing the version with additional controls, (8), is a simple extension of the above
test. In the presence of additively separable controls W2, we perform the test in two
steps. First, we compute an estimator π̂ of π as in Robinson (1988). Then, we apply
Delgado and Gonzalez Manteiga (2001)’s test as described above, replacing Yi by Yi −
π̂′W2i.
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3.2 Syntax

The [R] dgmtest command implements the test by Delgado and Gonzalez Manteiga
(2001). The syntax of the command is as follows:

dgmtest depvar expvar
[
if
] [

in
] [

, qz(#) qw2(#) teststat(string)

kernel(string) bootdist(string) bw(#) bootnum(#) ngrid(#) qgrid(#)
]

The two required arguments of the command are depvar (the outcome variable Y )
and expvar (a list of variables containing all elements of X, W1, W2, and Z). Therefore,
expvar should consist of at least two variables in which case the first is taken to be X
and the second to be Z. If there are more than two variables, then the options qz and
qw2 determine which variables in the list are X, W1, W2, and Z. For instance, if expvar
contains 6 variables, qz equals the default value of 1, and qw2 is equal to 2, then the
first 3 variables in the list are interpreted as (X,W1) (which one is X and which one
is W1 does not matter as the test treats both types of variables exactly the same), the
fourth and fifth variables are interpreted as W2, and the sixth variable as Z.

3.3 Options

We now describe the options of the command. If options are left unspecified, the
command runs on the default settings.

qz(integer) is the dimension of Z. The default is 1.

qw2(integer) is the dimension of W2. The default is 0, which means there are no
additional controls W2.

teststat(string) is the type of test statistic to be used: CvM and KS represent the
Cramér-von Mises and Kolmogorov-Smirnov statistics, respectively. The default is
CvM.

kernel(string) is the kernel function. The default kernel is the Epanechnikov kernel
(epanechnikov). Alternatively, we can choose one among two other Epanechnikov
kernels order of 2 and 4 with the support [−1, 1] (epan2 and epan4), biweight kernel
(biweight), Gaussian kernel (normal), rectangle kernel (rectangle), and triangular
kernel (triangular).

bootdist(string) is the distribution of the bootstrap multiplier variable. Follow-
ing Delgado and Gonzalez Manteiga (2001), it should have a zero mean and unit
variance. The default is mammen in Härdle and Mammen (1993), which is the
two point distribution attaching masses

(√
5 + 1

)
/2
√

5 and
(√

5− 1
)
/2
√

5 to the

points −
(√

5− 1
)
/2 and

(√
5 + 1

)
/2, respectively. Alternatively, we can choose

the Rademacher distribution (rademacher) or the continuous uniform distribution
on
(
−
√

3,
√

3
)

(uniform).

bw(real) is the bandwidth h, taken to be the same for every component of (X,W1).
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The default is n−1/3q, which is a rule of thumb in Delgado and Gonzalez Manteiga
(2001), where n is the sample size and q the dimension of (X,W1).

bootnum(integer) is the number of bootstrap samples for the computation of the test’s
critical value. The default is 500.

ngrid(integer) is the number of equally spaced grid points used to compute the supre-
mum of the Kolmogorov-Smirnov statistic, if that statistic is chosen via the option
teststat. The default is 0, which means that the sample serves as the grid. Choos-
ing 0 is required for calculating the exact Kolmogorov-Smirnov statistic, but it is a
burden when we perform a simulation with a large sample, so one might want to
choose a positive number smaller than the sample size in that case. The user need
not specify this if CvM is used for teststat.

qgrid(real) is a quantile probability between 0 and 1 to set the min and max values
of the grid points in the previous option. If qgrid is smaller than 0.5, the min value
is the qgrid-quantile and the max value is the (1-qgrid)-quantile. The default is 0,
so that in that case the grid ranges from the min to the max value in the sample.
The user need not specify this if CvM is used for teststat.

3.4 Saved Results

The command dgmtest generates the following results in e():

Scalars
e(N) number of observations e(btpv) bootstrap p-value
e(dimXW1) dimension of (X,W1) e(btcv1) 1% bootstrap critical value
e(dimW2) dimension of W2 e(btcv5) 5% bootstrap critical value
e(dimZ) dimension of Z e(btcv10) 10% bootstrap critical value
e(stat) scalar value of the test statistic e(ngrid) number of grid points
e(bootnum) number of bootstrap samples e(qgrid) quantile probability for min or
e(bw) bandwidth h max values of grid points

Macros
e(cmd) dgmtest e(teststat) type of test statistic
e(title) nonparametric significance test e(bootdist) distribution of bootstrap
e(kernel) type of kernel function multiplier variable

3.5 A Simple Example

Consider again the simple simulated example from Section 2. First, perform the non-
parametric test for measurement error on the correctly measured explanatory variable,
using the default settings of the dgmtest command:

. dgmtest y xs z

-----------------------------------------------------
Delgado and Manteiga test

-----------------------------------------------------

H0: E[Y | X,W1,Z] = E[Y | X,W1]

----- parameter settings -----
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Test statistic: CvM (default)
Kernel: epanechnikov (default)
bw = n^(1/3q) (default)
bootstrap multiplier distribution: mammen (default)

number of observations: 200
bandwidth: .17099759
dimension of (X,W1): 1
dimension of W2: 0
dimension of Z: 1
number of bootstrap samples: 500

----- test results -----

CvM = .0023243
bootstrap critical value at 1%: .01183001
bootstrap critical value at 5%: .00939969
bootstrap critical value at 10%: .00781435
p(CvM < CvM*) = .812

The p-value of the Cramér-von Mises version of the test is 0.812 which means we fail
to reject the null of no measurement error at all reasonable confidence levels. Now, we
perform the test on mismeasured explanatory variable, again using the default settings
of the command:

. dgmtest y x z

-----------------------------------------------------
Delgado and Manteiga test

-----------------------------------------------------

H0: E[Y | X,W1,Z] = E[Y | X,W1]

----- parameter settings -----

Test statistic: CvM (default)
Kernel: epanechnikov (default)
bw = n^(1/3q) (default)
bootstrap multiplier distribution: mammen (default)

number of observations: 200
bandwidth: .17099759
dimension of (X,W1): 1
dimension of W2: 0
dimension of Z: 1
number of bootstrap samples: 500

----- test results -----

CvM = .01688708
bootstrap critical value at 1%: .01369306
bootstrap critical value at 5%: .01035709
bootstrap critical value at 10%: .00813346
p(CvM < CvM*) = .002

As expected the nonparametric test detects the measurement error and strongly rejects
the null of no measurement error (p-value is 0.002) at all reasonable confidence levels.
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4 Monte Carlo Simulation

In this section, we present a small simulation study investigating the finite sample
performance of the measurement error test.

We consider the following outcome equation

Y = X∗2 +
1

2
X∗ +N

(
0, σ2

ε

)
(10)

with different models for the measurement system:

Model I : X = X∗ +D ·N
(
0, σ2

ME

)
, Z = X∗ +N

(
0, 0.32

)
;

Model II : X = X∗ +D ·N
(
0, σ2

ME

)
e−|X

∗−0.5|, Z = X∗ +N
(
0, 0.32

)
;

Model III : X = X∗ +D ·N
(
0, σ2

ME

)
e−|X

∗−0.5|, Z = X∗ +N
(
0, 0.32

)
e−|X

∗−0.5|;

Model IV : X = X∗ +D ·N
(
0, σ2

ME

)
, Z = − (X∗ − 1)

2
+N

(
0, 0.22

)
.

The value for σε is 0.5 for the models I, II, and III, and 0.2 for the model IV. In all
four models, X∗ ∼ U [0, 1] and the random variable D is Bernoulli(1− λ), where 1− λ
is the probability of measurement error in X occurring. 1 − λ = 0 means there is no
measurement error in X, which represents the null hypothesis. To generate alternatives,
we increase 1 − λ on a grid up to one. We also vary the standard deviation of the
measurement error in X, σME , in {0.2, 0.5, 1}. Therefore, alternatives get closer to the
null as we decrease 1 − λ and/or σME . We also vary the sample size n ∈ {200, 500},
but all models are simulated on 1,000 Monte Carlo samples. Following Delgado and
Gonzalez Manteiga (2001), we use the bandwidth rule-of-thumb value n−1/3. Simulation
results for different choices of bandwidths, which are not presented here, are very similar.

The Cramér-von Mises statistics are generated by

. dgmtest Y X Z, kernel(epan2) bootnum(100)

The Kolmogorov-Smirnov test statistics with 10 grid points are generated by

. dgmtest Y X Z, teststat(KS) kernel(epan2) bootnum(100) ngrid(10) qgrid(0.05)

Table 1 shows the rejection frequencies of the test. Overall the test controls size
well and possesses power against all alternatives. These findings are consistent with the
Monte Carlo simulation results in Wilhelm (2018).
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Table 1: Rejection frequencies from the simulation experiment.
n = 200 n = 500

σME 1 − λ 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Model I

0.2 0.164 0.377 0.600 0.789 0.270 0.677 0.922 0.983

0.5 CvM 0.049 0.394 0.853 0.981 0.995 0.049 0.777 0.996 1.000 1.000

1.0 0.319 0.847 0.994 0.999 0.683 0.997 1.000 1.000

0.2 0.143 0.316 0.538 0.711 0.242 0.611 0.875 0.973

0.5 KS 0.051 0.377 0.836 0.973 0.996 0.054 0.697 0.995 1.000 1.000

1.0 0.314 0.813 0.988 0.998 0.652 0.996 1.000 1.000

Model II

0.2 0.123 0.240 0.374 0.537 0.190 0.436 0.717 0.886

0.5 CvM 0.049 0.322 0.767 0.956 0.992 0.049 0.630 0.986 1.000 1.000

1.0 0.370 0.876 0.996 0.998 0.755 0.999 1.000 1.000

0.2 0.111 0.211 0.322 0.490 0.166 0.380 0.642 0.856

0.5 KS 0.051 0.287 0.713 0.934 0.986 0.054 0.567 0.974 1.000 1.000

1.0 0.357 0.845 0.990 0.998 0.698 0.995 1.000 1.000

Model III

0.2 0.149 0.312 0.512 0.706 0.235 0.591 0.852 0.963

0.5 CvM 0.051 0.399 0.876 0.986 1.000 0.055 0.782 0.997 1.000 1.000

1.0 0.472 0.952 1.000 1.000 0.875 1.000 1.000 1.000

0.2 0.127 0.287 0.429 0.632 0.201 0.523 0.819 0.950

0.5 KS 0.050 0.376 0.848 0.983 0.998 0.053 0.736 0.996 1.000 1.000

1.0 0.446 0.952 0.998 1.000 0.844 1.000 1.000 1.000

Model IV

0.2 0.586 0.941 0.997 1.000 0.938 1.000 1.000 1.000

0.5 CvM 0.076 0.912 1.000 1.000 1.000 0.061 1.000 1.000 1.000 1.000

1.0 0.828 1.000 1.000 1.000 0.999 1.000 1.000 1.000

0.2 0.464 0.889 0.990 0.998 0.847 0.999 1.000 1.000

0.5 KS 0.062 0.898 1.000 1.000 1.000 0.052 0.998 1.000 1.000 1.000

1.0 0.802 1.000 1.000 1.000 0.999 1.000 1.000 1.000
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Figure 1: Nonparametric density estimates of administrative earnings (“ssearn77”) and
survey earnings (“repearn77”) in 1977, using cross-validated bandwidths.

5 Example: Testing for the Presence of Measurement
Error in Administrative Earnings Data

In this section, we test for measurement error in the U.S. Social Security Administra-
tion’s measure of earnings. While measurement error in survey responses is a wide-
spread concern that has occupied a large literature (Bound et al. (2001)), only recently
empirical researchers have emphasized concerns about the reliability of administrative
data (e.g. Fitzenberger et al. (2006), Kapteyn and Ypma (2007), Abowd and Stinson
(2007), Groen (2011)).

The data come from the 1978 Current Population Survey-Social Security Earnings
Records Exact Match File. The sample selection is similar to Wilhelm (2018) except
that we only consider white singles of age between 25 and 60 who work full time the
full year. The sample size is 2,683 individuals. The dataset contains a survey measure
of earnings in 1977 (repearn77) from the CPS and two administrative measures of
earnings in 1977 and in 1976 (ssearn77 and ssearn76), the earnings records of the
social security administration. We denote by Y the survey measure and by X and Z
the administrative measures in 1977 and 1976, respectively. A test for the presence of
measurement error in X as in H0 is then a test of the presence of measurement error in
administrative earnings in 1977.

Figure 1 shows nonparametric density estimates of survey and administrative earn-
ings. Figure 2 plots the nonparametric density estimate of the difference between ad-
ministrative and survey earnings. There is substantial probability mass within USD
±1, 000 which are large deviations relative to the maximum earnings in the sample
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Figure 2: Nonparametric density estimate of the difference in administrative and survey
earnings in 1977, using a cross-validated bandwidth.
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Figure 3: Nonparametric estimate of the conditional density of administrative earn-
ings in 1977 given lagged administrative earnings being in the 10th or 90th percentile.
Bandwidths are chosen by cross-validation.

(USD 16, 500).

The exclusion restriction (4) is likely to hold in this context because the measurement
errors in survey and administrative earnings come from very different sources (see the
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Figure 4: Nonparametric estimate of E[Y |X,Z], where Y is survey earnings in 1977,
X and Z are administrative earnings in 1977 and 1976, respectively. Bandwidths are
chosen by cross-validation.

more detailed discussion in Wilhelm (2018)). To assess the relevance of the second
measurement Z, which here is lagged administrative earnings, we plot the density of
administrative earnings in 1977 given those in 1976. Figure 3 shows this density for those
individuals with lagged earnings in the 10th and 90th percentile of the 1976 earnings
distribution. The graph shows that the second measurement Z, lagged administrative
earnings, shifts the earnings distribution in the next period to the right as we go from
the 10th to the 90th percentile. In particular, the two densities seem to cross only once,
which is consistent with the relevance condition that is needed for the equivalence of
H0 and the observable restriction (5).

Figure 4 shows nonparametric estimates of the conditional mean E(Y |X = x, Z = z)
as a function of z for three values of x. If there was no measurement error in X, then
(5) implies that this conditional mean should not vary with z. The graphs suggests
that there is some variation in that dimension, particularly for small and large values of
earnings, but the graph does not contain any information about whether this variation
is statistically significant. We therefore now discuss the results of the formal test of H0.

The test is performed using the new command [R] dgmtest with its default settings
except we increase the number of bootstrap samples to 5,000:

. dgmtest repearn77 ssearn77 ssearn76, bootnum(5000)

-----------------------------------------------------
Delgado and Manteiga test

-----------------------------------------------------
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Table 2: Test results.
p-value test stat. cval 1% cval 5% cval 10% h sample size

full sample 0.026 0.512 0.631 0.418 0.336 0.072 2,682

males 0.141 0.276 0.597 0.404 0.321 0.102 944
females 0.100 0.318 0.583 0.407 0.319 0.083 1,738

< highschool 0.080 0.290 0.759 0.759 0.111 0.169 206
highschool 0.210 0.143 0.616 0.459 0.210 0.091 1,329
> highschool 0.072 0.818 1.504 0.922 0.721 0.096 1,147

H0: E[Y | X,W1,Z] = E[Y | X,W1]

----- parameter settings -----

Test statistic: CvM (default)
Kernel: epanechnikov (default)
bw = n^(1/3q) (default)
bootstrap multiplier distribution: mammen (default)

number of observations: 2682
bandwidth: .07197479
dimension of (X,W1): 1
dimension of W2: 0
dimension of Z: 1
number of bootstrap samples: 5000

----- test results -----

CvM = .51238949
bootstrap critical value at 1%: .63053938
bootstrap critical value at 5%: .41803533
bootstrap critical value at 10%: .33279162
p(CvM < CvM*) = .0262

The test produces a p-value of 0.0262 so we reject the null of no measurement error
in administrative earnings at high confidence levels. Table 2 shows the test results for
the full sample as well as for subsamples with the same gender and education. The
p-values for the low and high education groups are about 8% and 7%, which is some
evidence for the presence of measurement error, but weaker than in the full sample. For
individuals in the middle education group there is no evidence of measurement error.
Similarly, we cannot reject the null on the subsamples of males and females. Of course,
the sample sizes on the subsamples are significantly smaller than on the full sample, so
it may be harder to reject the null for that reason.
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6 Concluding Remarks

This paper describes how to test for the presence of measurement error in covariates.
While in linear regression models with classical measurement error, testing the null of
no measurement error can be carried out using simple linear regression techniques, this
paper introduces the new command [R] dgmtest which implements a nonparametric
test that doesn’t rely on linearity nor on the measurement error (if there is any) to be
classical.

The command is an implementation of the Delgado and Gonzalez Manteiga (2001)
test of conditional mean independence, a hypothesis that might be of interest in appli-
cations other than testing for the presence of measurement error.
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