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Abstract

The idea of summarizing the information contained in a large number of variables by a
small number of “factors” or “principal components” has been broadly adopted in economics
and statistics. This paper introduces a generalization of the widely used principal component
analysis (PCA) to nonlinear settings, thus providing a new tool for dimension reduction and
exploratory data analysis or representation. The distinguishing features of the method include
(i) the ability to always deliver truly independent factors (as opposed to the merely uncorre-
lated factors of PCA); (ii) the reliance on the theory of optimal transport and Brenier maps
to obtain a robust and efficient computational algorithm; (iii) the use of a new multivariate
additive entropy decomposition to determine the principal nonlinear components that capture
most of the information content of the data and (iv) formally nesting PCA as a special case,
for linear Gaussian factor models. We illustrate the method’s effectiveness in an application to
the prediction of excess bond returns from a large number of macro factors.

1 Introduction
The idea that the information contained in a large number of variables can be summarized by a
small number of variables (the “factors” or “principal components”) has been widely adopted in
economics and statistics. For example, asset returns are often modeled as a function of a small
number of factors (e.g., Ludvigson and Ng (2009), Stock and Watson (1989), Ludvigson and Ng
(2007), Bai and Ng (2002), Bai (2003), Bai and Ng (2012)). Cross-country variations are also
found to have common components (e.g., Gregory and Head (1999)). Factor analysis is used
for forecasting (Stock and Watson (1999)) and for Engel curves construction in demand analysis
(Lewbel (1991)). More broadly, applications can be found in many fields of statistics (Loève
(1978)) and include medical imaging (Sjöstrand, Stegmann, and Larsen (2006)), data compression
(Wallace (1991)) and even search engines (Brin and Page (1998)). Dimension reduction methods
are also related to machine learning, which has been receiving increasing attention in economics
(see Athey and Imbens (2019) for a recent review aimed at economists).

∗This work is supported by the US National Science Foundation under grant SES-1659334. Earlier versions of
this work were circulated under the title “A Nonlinear Principal Component Analysis”. We thank the participants of
the “Celebrating Whitney Newey’s Contributions to Econometrics” conference for helpful comments. Computational
resources were provided by the Center for Computation and Visualization at Brown University.
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Although Principal Component Analysis (PCA) has a long history as an effective device for
dimension reduction (Jolliffe (1986)), it exhibits two main limitations. First, it is fundamentally a
linear transformation of the data and is thus not the most appropriate representation to use if the dif-
ferent data dimensions exhibit some form of mutual nonlinear relationships. Second, the resulting
principal components are merely uncorrelated, but not necessarily independent, thus suggesting
that they do not capture truly unrelated effects, except, of course, in a simple linear Gaussian
setting.

The importance of obtaining nonlinear independent factors is perhaps best understood with a
simple example: Consider two uncorrelated zero-mean variables X and Y that however exhibit
statistical dependence because they are functionally related via Y = X2 − 1 (with X satisfying
E [X2] = 1 and E [X3] = 0). In a linear framework, two factors are needed (X and Y themselves)
to fully describe the data, whereas one factor would be sufficient in a nonlinear framework, with a
curvilinear coordinate system defined by:

(X, Y ) =
(
F1, F

2
1 − 1

)
where F1 is the only factor needed and the second factor F2 = 0 is simply constant. Hence,
replacing two dependent variables X, Y by two independent ones (F1 and F2) reveals that only
one factor is actually needed. This example is simple and low-dimensional — the savings in terms
of number of factors can be significantly greater in higher dimensions.

The aim of this paper is to introduce a practical nonlinear generalization of PCA that cap-
tures nonlinear forms of dependence and delivers truly independent factors. The output of the
method is a low-dimensional curvilinear coordinate system that tracks the important features of
the data. The key ingredients of our approach are (i) the reliance on the theory of Brenier maps
(Brenier (1991)), which are a natural generalization of monotone functions in multivariate settings,
(ii) the use of entropy (Kullback (1959), Csiszar (1991), Golan, Judge, and Miller (1996), Shore
and Johnson (1980), Gray (2011), Shannon (1948), Schennach (2014)) to determine the princi-
pal nonlinear components that capture most of the information content of the data and (iii) the
introduction of a novel multivariate additive decomposition of the entropy into one-dimensional
contributions. Computationally, the resulting method combines the well-studied problem of com-
puting a Brenier map with a simple matrix diagonalization step. It yields independent (rather than
merely uncorrelated) factors and, in the special case of Gaussian data, it reduces to conventional
linear PCA. These features distinguish our approach from the numerous other solutions that have
been previously proposed in the very active literature seeking nonlinear generalizations of PCA
(see, e.g., Lawrence (2012) and Lee and Verleysen (2007) for reviews). In particular, the fact that
our method is closely related to linear PCA enables a convenient hybrid approach that naturally
combines linear and nonlinear PCA to yield a method that can efficiently handle high dimensional
data.

This paper is organized as follows. In Section 2, we first informally outline and motivate our
method before turning to more formal treatment of the approach and a description of its imple-
mentation. We then compare our approach with previously proposed nonlinear extensions of PCA
in Section 3. We finally provide examples of applications, in Section 4, to both simulated and
actual data. In particular, we focus on an application to the prediction of excess bond returns from
macroeconomic factors, in the spirit of Ludvigson and Ng (2009). This application illustrates that
our approach can detect nonlinearities in the factors that are of economic relevance while avoiding
a complex model selection procedure.
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All proofs are collected in an Appendix.

2 Method

2.1 Outline
The proposed method relies on a powerful result of convex analysis, which characterizes the so-
lution to the following optimization problem. Consider a random vector Y taking values in Rd

with density f (y) (with respect to the Lebesgue measure) where one wishes to find a (measurable)
mapping T : Rd 7→ Rd such that the random variable x = T (y) has a pre-specified density Φ̃ (x).
As there are obviously an infinite number of possible T that satisfy this constraint, it is natural to
select the simplest transformation in the sense that it minimizes:∫

‖y − T (y)‖2 f (y) dy,

where ‖·‖ denotes the Euclidian norm. This minimization problem is known as the Monge-
Kantorovich-Brenier optimal transportation problem, as it identifies the mapping that requires the
least amount of probability mass movement in the mean square sense. (For introductions to this
topic, we refer to Galichon (2016), Rachev and Rüschendorf (1998), Santambrogio (2015), Villani
(2003), and Villani (2009).) The solution to this problem has desirable regularity properties. In
particular, the so-called Brenier map T must take the form of the gradient of a convex function,
which is often regarded as a natural generalization of the concept of monotonicity in multivariate
settings (Brenier (1991), McCann (1995), Carlier, Chernozhukov, and Galichon (2016), Ekeland,
Galichon, and Henry (2011)). Remarkably, one can even show that T (y) is the only transformation
(subject to almost everywhere qualifications) mapping f to Φ̃ that is the gradient of a convex func-
tion. This characterization of the Brenier map actually even relaxes any requirement of y having
a finite variance. Numerous numerical methods to find T (y) are available in the literature (e.g.,
Benamou and Brenier (2000), Chartrand, Wohlberg, Vixie, and Bollt (2009), Benamou, Froese,
and Oberman (2014)).

We show that this optimal transportation problem is directly related to the determination of
nonlinear independent components that best represent the data. By selecting a target density Φ̃ (x)
that factors as a product of univariate densities

∏d
i=1 φ̃i (xi), we obtain, by construction, indepen-

dent components. These components define a curvilinear coordinate system in the space of the
original variables via the inverse mapping y = T−1 (x). Note that the factorization in terms of uni-
variate marginals does not need to be along one specific Cartesian coordinate system. In general,
one can have:

Φ̃ (x) =
d∏
i=1

φ̃i
(
ui · x

)
where {ui}di=1 is a set of orthogonal unit vectors and φ̃i (·) are functions of one variable.

Obviously, there are many possible choices of ui and φ̃i (·) and we need to be more specific
to construct a well-defined procedure. First, we observe that, for a given choice of {ui}di=1, the
choice of the φ̃i (·) is arbitrary, because different choices generate essentially equivalent curvilin-
ear coordinate systems that only differ in the “speed” at which one travels along each axis. We
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exploit this arbitrariness by selecting the φ̃i (x) to be of a particularly convenient form: A standard
univariate normal, denoted φ (x). This choice is driven by the fact that a multivariate standard
normal Φ (x) ≡

∏d
i=1 φ (xi) is the only distribution which exhibits two properties: (i) it factors as

a product of marginals and (ii) it is invariant under arbitrary rotations of the coordinate system. We
can exploit the invariance under rotation to straightforwardly explore various possible choices of
coordinate systems {ui}di=1 in search of an optimal one, in a sense to be made precise below.

Ultimately, our goal is to only keep the subset {ui}ki=1 (with k < d) of the d dimensions that
“explains” the most important features of the data.1 We show that, although the concept of variance
is not very useful in nonlinear settings to identify the most important components, the concept of
entropy proves extremely useful. The entropy of a density f (y) is defined as

H [f ] = −
∫
f (y) ln f (y) dy (1)

for a given density f (y) with respect to the Lebesgue measure and where the integral is over Rd

and, by convention, 0 ln 0 ≡ limt→0 t ln t = 0. The concept of entropy has a long history as a
measure of the amount of information contained in a probability distribution (Kullback (1959),
Csiszar (1991), Golan, Judge, and Miller (1996), Shore and Johnson (1980), Schennach (2005)).
We seek the {ui}ki=1 that accounts for the largest possible fraction of this entropy. We demonstrate
that the k most important components u1, . . . , uk can be simply identified from the (normalized)
eigenvectors associated with the k largest eigenvalues of the matrix J̄ ≡ −

∫
f (y) ln J (y) dy

where J (y) = ∂T (y)
∂y′

is the Jacobian of the transformation T (the previously obtained Brenier
mapping f onto Φ) and the ln of a matrix M , diagonalizable as M = P diag (λ1, . . . , λd)P

−1 is
defined in the usual way (Gantmacher (1959)) as lnM ≡ P diag (lnλ1, . . . , lnλd)P

−1.
Our low-dimensional nonlinear representation of the data, denoted yk∗ then takes the form:

yk∗ = T−1

(
k∑
j=1

ujxj

)
. (2)

where xj ∈ R for j = 1, . . . , k are arbitrary coordinates expressed in our curvilinear coordinate
system. When the data is Gaussian, T−1 is a linear map and Equation (2) reduces to standard PCA.

2.2 Main results
2.2.1 Optimal transport-based entropy decomposition

The first step in the construction is to obtain the Brenier map T : Rd → Rd mapping a given
density f (with respect to the Lebesgue measure) to the standard Normal Φ of the same dimension.
Once the Brenier map T has been determined, the principal components (or factors) can be deter-
mined by rotating the coordinate system of the standard normal variables. The implied curvilinear
coordinate system in the space of the original vector y provides the nonlinear factors. The principal
components are determined by keeping the coordinates that contribute the most to the entropy of
the distribution of y.

We assume the following regularity condition throughout:
1While the selection of the number of factors is discussed in Section 4, the formal derivation of a data-driven

selector of the number of factors in fully nonlinear settings is left for future research.
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Assumption 1 The random vector y admits a uniformly bounded density f (y) with respect to the
Lebesgue measure.

In order to be able to select which nonlinear factor contributes the most to the overall entropy
of the observed distribution, we need to introduce a formal definition of the entropy contribution
of each factor. The following lemma shows that the entropy of the distribution of y, denoted H ,
can be naturally expressed as a sum of factor-specific contributions, as shown in the Appendix.

Lemma 1 Let T be the Brenier map transporting f onto Φ. Then, for any set of unit vectors
{uj}dj=1 forming an orthogonal basis, the entropy of f (y) can be written as

H [f ] =
d∑
j=1

Huj

where, for a given unit vector u, Hu is the the effective contribution of factor u to the entropy,
given by

Hu =
1

2
ln (2πe) + u′J̄u. (3)

Here, 1
2

ln (2πe) is the entropy of a univariate standard normal while

J̄ ≡ −
∫

Φ (x) ln
(
J
(
T−1 (x)

))
dx = −

∫
f (y) ln J (y) dy (4)

where J (y) = ∂T (y)
∂y′

. (The ln of a matrix M , diagonalizable as M = P diag (λ1, . . . , λd)P
−1 is

defined as lnM ≡ P diag (lnλ1, . . . , lnλd)P
−1.)

Intuitively, the two terms in the expression for Hu (Equation (3)) arise from (i) the entropy
of a standard univariate normal (since the standard normal is used as a target density) and (ii) a
correction term that quantifies the total deviations from a standard normal along the direction u.
An automatic consequence of this Lemma is that the most important factors (based on our entropy
criterion) can be determined as follows.

Theorem 1 For a given k ≤ d, a solution to

(
u1, . . . , uk

)
= argmax

(u1,...,uk)∈Uk,d

k∑
j=1

Huj

where Uk,d =
{
ui ∈ Rd : ui · uj = 1 {i = j} for i, j ∈ {1, . . . , k}

}
, is given by the k eigenvectors

associated with the k largest eigenvalues of the matrix J̄ (defined in Equation (4)).

Remark As in standard PCA, there may be multiple solutions, corresponding to trivial changes in
the signs of ui, permutations or linear combinations among them. Also, eigenvectors are not unique
if some eigenvalues are degenerate. These ambiguities (except for signs changes and the possibility
of degenerate eigenvalues) can be circumvented by adopting the convention of iteratively defining
the uj for j = 1, 2, . . . , k as:

uj = argmax
uj∈Uj

Huj
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where U j = {uj : ui · uj = 1 {i = j} for i = 1, . . . , j}.
The definition of the effective contribution of a factor to the entropy in Lemma 1 exhibits a

number of desirable properties. First, it generalizes well-known special cases, as shown in the
Appendix:

Corollary 1 (Special cases) (i) For independent random variables, the decomposition of Lemma
1 reduces to the usual fact that the entropy of independent random variables is additive. (ii) For
normally distributed variables, the Brenier map T (y) is linear and picking the k < d factors with
largest variance is equivalent to picking the k factors with largest entropy.

However, the advantage of our concept of additive entropy decomposition is that it maintains
the same natural form and interpretation in general nonlinear and non-Gaussian models. In con-
trast, the concept of variance does not generalize well to nonlinear factor setting (as it is not clear
what is the meaning of comparing the variances of random variables that are nonlinearly related).
The problem can best be seen by the following example. Consider two bivariate distributions,
which could represent the projection of the same data along two directions. One is uniformly dis-
tributed on a “s”-shaped set and one is uniformly distributed on an “l”-shaped set. The longest
linear dimension of the “s” could be shorter than the “l” and yet, the length of the “s” along the
its curve could be longer than the “l”. Variance would identify the distribution with support “l” as
explaining more variation in the data, whereas, in fact, it is arguably the distribution with support
“s” that does. Uniform distributions with a larger support have a larger entropy and thus, in our ex-
ample, the distribution with “s”-shaped support would be correctly identified as more informative.

A second desirable property is the fact that the principal factors (that contribute the most to
the entropy) can be easily determined by diagonalizing the matrix J̄ , which is analogous to linear
PCA. The optimization of the “orientation” of the principal factors can be done via simple linear
algebra operations, despite the nonlinear nature of the original problem. The computation of the
Brenier map is an additional preliminary step relative to the linear case, but it only needs to be
performed once for one arbitrary choice of coordinate system.

If k components are kept, then our low-dimensional nonlinear representation of the data, de-
noted yk∗, takes the form:

yk∗ = T−1

(
k∑
j=1

ujxj

)
(5)

where uj for j = 1, . . . , k are the normalized eigenvectors of the J̄ matrix associated with the
k largest eigenvalues and xj ∈ R for j = 1, . . . , k are an arbitrary coordinates expressed in our
curvilinear coordinate system.

2.2.2 Relationship to linear PCA

Equation (5) clearly reduces to standard PCA if T−1 is a linear map, which is the case when the
data is Gaussian. The fact that our approach nests PCA as a special case is not only conceptually
appealing but also opens the way to a very efficient hybrid method. The idea is to exploit the
fact that, by a Taylor expansion argument, the effect of the less important factors can often be
linearized. This suggests that one could constrain T to be linear along the dimensions in which
the data has the smallest spread while allowing for nonlinearity along the other dimensions. This
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hybrid scheme can be efficiently implemented by first performing a linear PCA step to identify the
very small components that can be linearized and only perform a nonlinear PCA on the remaining
components that are large enough to even have nonlinear features. This suggestion raises the
question of whether PCA might misidentify some factors as being unimportant when, in fact, a
nonlinear analysis would have revealed that they have a large entropy. The following inequality
formally guards against this possibility.

Theorem 2 Let the random vector y be partitioned as
(
yk
∗
, yo
)
, then

H
[
f(yk∗ ,yo)

]
−H

[
fyk∗

]
≤ tr ln

(√
2πeVar [yo]

)
. (6)

This result can be used to convert output from PCA into statements regarding entropy: If, after a
PCA step, one decides to keep the k∗ factors with the largest variance while omitting the remaining
ones, we let yk∗ denote the factors kept while letting yo denote those omitted. The left-hand side
of (6) then represents the entropy neglected by eliminating yo, while the right-hand side bounds
this entropy in terms of the PCA variance of the omitted factors, with a small variance implying a
small entropy loss. More generally, this result shows that the total variance of a group of factors
obtained via PCA provides an upper bound on the total entropy of those factors.

2.2.3 Asymptotics

We now establish consistency of our procedure, taking as given known results regarding the con-
sistency and regularity of the building blocks entering our estimator.

Theorem 3 Let T̂ (y) and f̂ (y) be uniformly (over y) consistent estimators of T (y) and f (y),
respectively. If

∫ ∣∣∣f̂ (y)
∣∣∣ dy ≤ f̄ < ∞ and J (y) ≡ ∂T (y) /∂y′ is uniformly continuous and its

eigenvalues are bounded away from zero and infinity, then, there exist sequences εn and ȳn such
that ̂̄J ≡ −∫

‖y‖≤ȳn
f̂ (y) ln Ĵ (y) dy

p−→ J̄

where the elements of Ĵ (y) are given, for i, j = 1, . . . , d, by

Ĵij (y) =
1

(4εn)

(
T̂i (y + εnej)− T̂i (y − εnej) + T̂j (y + εnei)− T̂j (y − εnei)

)
,

where ej denotes the j-th unit vector. Furthermore, the eigenvalues and eigenvectors of ̂̄J converge
to those of J̄ , if the eigenvalues of J̄ are distinct.

This establishes consistency of all the quantities defining our curvilinear coordinate system of
Equation (5). The needed assumptions are stated in high-level form because they can be directly
verified using existing results: Standard results on the uniform consistency of f̂ (y) can be found in
Andrews (1995), while the uniform consistency of the estimated Brenier map T̂ (y) were obtained
in Chernozhukov, Galichon, Hallin, and Henry (2017). Assumptions regarding the regularity of
the Jacobian J (y) follow from Caffarelli’s Regularity theory (see, e.g. Villani (2003) Theorem
4.14 and de Philippis and Figalli (2014)).
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Given the current state of development of the theory of estimated optimal transport maps, it is
beyond the scope of this paper to provide complete distributional results. We however note that
ongoing related works seek to establish the validity of subsampling for obtaining the asymptotic
distribution of T̂ (y) (Gunsilius and Schennach (2019)) and the convergence rates of Brenier maps
and related quantities (Gunsilius (2019), Hütter and Rigollet (2019)).

2.3 Implementation
Our implementation is based on ideas from Villani (2003) and Chartrand, Wohlberg, Vixie, and
Bollt (2009) and uses the known fact that the Brenier map T (y) is the only mapping (i) that will
transform one given density f (y) into another given density Φ (x) and (ii) that can be written as
the gradient of a convex function c (y), called the “potential” of the Brenier map. The function
c (y) is the minimizer of the functional:

M [c] =

∫
c (y) f (y) dy +

∫ (
max
y

(x · y − c (y))

)
Φ (x) dx. (7)

This functional admits a functional derivative δM [c] /δc satisfying the condition

M (c+ δc) =

∫
δM [c] (y)

δc
δc (y) dy + o (‖δc‖) ,

Remarkably, this functional derivative admits a simple closed-form expression:

δM [c] (y)

δc
= f (y)− Φ

(
∂c (y)

∂y

)
det

(
∂2c (y)

∂y∂y′

)
. (8)

At the optimum of this unconstrained optimization problem, this derivative must be zero, which
implies that f (y) = Φ (T (y)) det (∂T (y) /∂y′), i.e., that the original density f (y) is mapped to
Φ (x) by the map x = T (y) using the usual change of variables formula.

The determination of the Brenier map thus reduces to finding a convex function c such that
δM [c] /δc = 0. To facilitate the search for the solution, we include a penalty term that disfavors
nonconvex functions. This curvature penalty is asymptotically not active when the solution is
approached, but it helps steer away from nonconvex functions during the numerical convergence.

We propose a numerical solution methods based on approximating c (y) by a discrete mesh
and using finite differences to approximate gradients and Hessians of c (y). The density f (y)
is first obtained by kernel smoothing and we implement Equation (8) via finite differences and
by sampling the functions on a grid. We place a regular, fixed, grid on the original data, with
grid points ẏm, indexed by m ∈ {−M, . . . ,+M}d. The corresponding curvilinear grid in the
transformed space is ẋm = T (ẏm) where the d elements Tj (ẏm) of T (ẏm) are approximated via
centered finite differences2 as

Tj (ẏm) ≈
c
(
ẏm+∆j

)
− c

(
ẏm−∆j

)∥∥ẏm+∆j
− ẏm−∆j

∥∥
2At boundary points, noncentered differences need to be used instead. We use noncentered differences that are

second-order accurate (so that their accuracy is theoretically equivalent to the centered differences used for non bound-
ary points). This remark applies to all finite differences throughout the paper.
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where ∆j is a d-dimensional vector containing 1 at the j-th element and zero elsewhere. The
Jacobian is also approximated via centered finite differences:

Jij (ẏm) =

[
∂2c (y)

∂yi∂yj

]
y=ẏm

≈
c
(
ẏm+∆j+∆i

)
− c

(
ẏm+∆j−∆i

)
− c

(
ẏm−∆j+∆i

)
+ c
(
ẏm−∆j−∆i

)
‖ẏm+∆i

− ẏm−∆i
‖
∥∥ẏm+∆j

− ẏm−∆j

∥∥ .

During the optimization of c (y), it is helpful to enforce convexity of cn (y) at each step. This
can be accomplished by checking if one of the eigenvalues of the Hessian of c (y) is negative at
some grid point ẏm and, if so, by reducing c (y) at ẏm so that this eigenvalue becomes equal to a
small user-specified positive number ε. This is iterated until all points of nonconvexity have been
eliminated. The value ε is gradually reduced as iterations progress, so that, asymptotically, the
curvature penalty is not binding at the solution.

Once c (y) has been determined, the optimal rotation can be found as follows. The matrix J̄
from Lemma 1 can approximated by

J̄ ≈ −
∑

m∈{−M,...,+M}d
f (ẏm) ln (J (ẏm))

d∏
j=1

∥∥ẏm+∆j
− ẏm−∆j

∥∥ /2.
Diagonalization of this matrix yields the (normalized) eigenvectors u1, . . . , uk associated with the k
largest eigenvalues. The curvilinear coordinate system representing the k most important nonlinear
factors is then given by Equation (2).

An alternative numerical approach that may improve the scalability of the method to higher
dimensions would be to use a series approximation to c (y) instead of a grid representation. In this
approach, the optimization problem associated with finding c (y) can also be made more efficient
by exploiting the closed-form expression (8) for the gradient of M [c]. The use of a curvature
penalty term is also helpful in this context to prevent convergence to a nonconvex c (y). Replac-
ing summation over grid points by Monte Carlo sampling is another independnt way to improve
tractability of the method in higher dimensions. The use of series approximation in the context
of Brenier maps has been proposed before (Lee (2018)), but our suggestion to use (i) a curva-
ture penalty, (ii) an explicit expression (8) for the gradient and (iii) integral evaluations through
Monte Carlo sampling goes beyond that earlier contribution and opens the way to handle higher
dimensional situations.3

Once the Brenier map T (x) has been determined (from either methods above), obtaining the
corresponding curvilinear coordinate system (5) involves computing its inverse T−1 (x). We pro-
vide an efficient approach for its practical computation. In particular, we use the equivalence
T−1 (x) = ∂c∗ (x) /∂x, where c∗ (x) ≡ maxy (x · y − c (y)) is the Legendre-Fenchel transform
of c. This representation is convenient, as the Legendre-Fenchel transform can be computed in
linear time using the algorithm proposed in Lucet (1997), which we adapt to a higher dimensional
setting.

Our implementation is general in that it can handle data of any dimensions, although computa-
tional requirements do increase with the dimension. For very high-dimensional problems, it may
not be practical to perform a full nonlinear PCA analysis due to computational requirements and

3Of course, in high dimensions one might also encounter a curse of dimensionality. This could be mitigated by
using either parametric (yet nonlinear) functional forms for T (y) or semiparametric modeling (in which only some
of the factors are treated fully nonparametrically). This may be easier to accomplish in the sieve approach.
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the potential for a curse of dimensionality. Our proposed hybrid linear-nonlinear PCA approach
thus proves helpful in that context.

3 Discussion
While the idea of extending PCA to nonlinear settings has apparently not been explored in the field
of econometrics, this problem has received considerable attention in the field of machine learning.
Instead of comparing our approach with a long list of existing methods, it is more instructive to
identify key distinguishing features of the proposed method that clearly differ from general features
shared by many other existing methods.

Our approach guarantees, by construction, that the resulting factors are statistically indepen-
dent, thus implying that they each truly represent distinct and unrelated features of the data. Many
existing methods (e.g., Schölkopf, Smola, and Müller (1998), Gorban and Zinovyev (2010), Gash-
ler, Ventura, and Martinez (2008), Tenenbaum, de Silva, and Langford (2000)) specifically target
the goal of accurately representing the data by a manifold of a given dimension and thus perform
very well in this respect. However, the goal of obtaining independent factors is largely overlooked.
Even methods designed with independence in mind (e.g., Bell and Sejnowski (1995)), only achieve
it approximately in general. The importance of independence can also be appreciated from a data
compression perspective: Any remaining dependence in the factors implies that one could, in prin-
ciple, obtain a more compact representation of the data by exploiting the statistical dependence
to partially predict some of the factor from the values of others and thus reduce the amount of
information that needs to be stored (the prediction error could have a smaller variance than the
factors themselves, for instance). This is not possible under full independence of the factors, thus
indicating that the data has already been optimally “compressed”.

Our approach relies on the concept of entropy (e.g., Kullback (1959), Shore and Johnson
(1980), Schennach (2005)) to gauge the importance of the factors, whereas most existing methods
employ some concept of “distance” to identify the important factors. Unfortunately, the concept
of distance becomes somewhat ambiguous in the context of curvilinear coordinate systems (e.g., is
distance measured in, say, the Euclidian metric in terms of the data coordinates y or in the curvi-
linear coordinates x?). In contrast, the idea of entropy is directly tied to the information content of
the data and can be defined independently of a choice of metric,4 a key realization that has, so far,
only been used in a few methods (e.g., Bell and Sejnowski (1995), although they use entropy in a
very different way).

Our procedure has a well-defined unique global optimal solution, thanks to a direct connec-
tion to the theory of optimal transport and Brenier maps (Brenier (1991), McCann (1995)). Some
existing methods enjoy global optimization properties (e.g., Tenenbaum, de Silva, and Langford
(2000), albeit after specifying a “neighborhood size”) but most do not. Many methods rely on an
iterative refinement of a manifold based on some local rules that penalize complexity and reward
accuracy. While these rules convey useful properties to the decomposition, their complexity and
locality make it hard to ascertain convergence to a global optimum. Many methods (e.g., De-
martines and Hérault (1997), Bell and Sejnowski (1995), Kramer (1991)) rely on neural networks
for optimization, and convergence to a unique solution are typically assessed by experimentation

4However, it does depend on the choice of reference probability measure, here taken to be the Lebesgue measure.
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rather than by formal proof.
Our procedure reduces, without user input, to linear PCA in the classic linear Gaussian case.

This apparently simple property is not guaranteed in most sophisticated nonlinear dimension re-
duction techniques, even those that have a very direct connection to linear PCA (e.g., Schölkopf,
Smola, and Müller (1998), which simply performs PCA on a set of nonlinear functions of the data).
Yet, this property ensures that (i) the procedure is at least as good as linear PCA and that (ii) it can
be freely combined with linear methods to improve the method’s computational efficiency.

A large fraction of existing methods (e.g., Roweis and Saul (2000), Tenenbaum, de Silva, and
Langford (2000)) only work directly with data points, rather than with a density of the input data.
Our approach can work with both, which is extremely useful if the input data can be accurately
modeled (in part or entirely) by a parametric model. Perhaps even more importantly, the ability to
work with densities represents a major theoretical advantage to study the asymptotic properties of
the method in the limit of large data sets.

4 Illustrative Examples

4.1 Simulations
Our first example employs simulated data to clearly illustrate the method’s ability to capture both
the general “direction” and the nonlinear nature of the main features of the data. As an input
density, we use a mixture of three normals:

N

([
3
−3

]
,

[
3 2
2 3

])
, N

([
−3
3

]
,

[
3 −3
−3 4

])
, N

([
−1
−1

]
,

[
4 −2
−2 2

])
with equal weights. The resulting nonlinear principal component analysis, depicted in Figure
1, shows that the method correctly identifies the direction along which the data exhibits the most
variation. The curvilinear coordinate system also roughly follows the clear ridge in the data despite
its multimodal nature. Additionally, the grid lines are further apart in areas where the density is
spread over a bigger area, indicating that they do “adapt” to the target distribution in a nontrivial
nonlinear fashion.

4.2 Application to bond excess returns prediction
Linear factor models have found important applications in forecasting (e.g. Stock and Watson
(2002)). Here, we revisit an influential example of this line of work (Ludvigson and Ng (2009)) by
relaxing the constraint of linearity of the factor model. This exercise not only corroborates Lud-
vigson and Ng’s findings under more general conditions, but also provides an avenue to simplify
the implementation of the prediction process by avoiding an extensive model selection step.

Ludvigson and Ng (2009) seek to assess whether macroeconomic variables could improve the
predictability of excess returns on bonds, beyond known financial factors, such as the well-known
Cochrane and Piazzesi (2005) factor (hereafter, CP). Answering such questions tests the core of
the basic expectations hypothesis, namely that deviations from expected future prices should be
unpredictable conditional on current information. Ludvigson & Ng’s approach is to first use linear
PCA to extract the most important factors out of a large set of macro indicators proposed by Stock
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Figure 1: Nonlinear principal component analysis in a simple two-dimensional example using a
mixture of 3 normals as an input density. The density is shown as a color map while the overlaid
curvilinear grid represents the nonlinear factors.

and Watson (2002). In a second step, they use these factors as regressors in polynomial predictive
regressions of future excess returns and see if they add predictive power relative to the CP variable
alone. They rely on a model selection procedure to determine the form of the polynomial used in
the predictions.

We propose to replace their use of PCA with our nonlinear PCA in the first step, which offers
two advantages. First, we obtain truly independent factors by construction, which helps motivate
that these factors truly represent different aspects of the economy. Second, and perhaps more
importantly, in this case, our approach is found to eliminate the need for an extensive model selec-
tion procedure: In this application, the relevant nonlinearity is already accounted for by the factor
model and does not need to be added in the predictive regression through a model selection step.

The input data consists of 132 macro series (provided in the supplementary information of Ju-
rado, Ludvigson, and Ng (2015)) from which we extract monthly data for the time period extending
from 1964 through 2003 (the same as in Ludvigson and Ng (2009)).5 To improve the tractability
of the calculations, we make use of a hybrid linear and nonlinear PCA. Following Ludvigson and
Ng (2009), we use the formal PCA-based number of factors selection procedure of Bai and Ng
(2002) to extract 8 relevant factors. Thanks to Theorem 2, we know that PCA cannot understate
the importance of factors even in the presence of nonlinearity. Hence, the 124 factors eliminated in
this step would also have been eliminated if we had carried out a nonlinear PCA-based procedure
on all the variables instead. The end result of this step is an 8-dimensional dataset (over 480 time
periods) obtained by projecting the original data onto the 8 PCA eigenvectors associated with the
largest eigenvalues (sorted in decreasing order of eigenvalue).

Next, we apply our nonlinear PCA method to the resulting dataset on dimension 1 through k∗

while treating factors k∗ + 1 through 8 linearly. To check that the value of k∗ used is such that
nonlinearity is negligible in factors k∗ + 1 through 8, we performed the analysis for various values
of k∗ (here, 2, 3 and 4) and obtained essentially the same results. We also observed that the vectors
u3 and u4 obtained via our nonlinear procedure (for k∗ = 4) match the corresponding eigenvectors
of linear PCA (within 2 decimal places), thus further supporting the fact that linear PCA would be

5This data in Jurado, Ludvigson, and Ng (2015) is a slightly updated version of the data originally used in Ludvig-
son and Ng (2009). The differences are minor and do not affect our conclusions.
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Figure 2: Graphical representation of the nonlinear factors. Colored surfaces show contours of
constant estimated density of the data generating process while the grids represent the 3 most im-
portant nonlinear factors as a curvilinear coordinate system (L-shaped cross-section shown, for
clarity). Both objects are three dimentional cross sections of four dimensional quantities, for
plotting purposes. The underlying cartesian coordinate system used is defined by the four most
important linear PCA components (with the 4th component not shown here).

adequate for these factors. We conservatively report here the analysis performed with k∗ = 4, even
though accounting for the nonlinearity in the first two factors would have been sufficient for this
application. We use a grid-based implementation of the method with grid size of 31×31×31×31
and a kernel density estimator whose bandwidth is chosen by cross-validation.6 The resulting 4
nonlinear factors are illustrated in Figure 2.

The process of checking if enough factors are nonlinearly included does not significantly add
to the computational requirements, since the results of earlier optimizations (with few nonlinear
factors) can be used as the starting point for further optimization with more nonlinear factors. This
process should be familiar to practitioners, as it is entirely analogous to the selection of an adequate
number of terms in nonparametric series or sieve estimation.

We use the factors resulting from the above analysis in a predictive regression of excess bond
returns, r(a)

t+1, which is defined as the difference between (i) the log holding period return from
buying an a-year bond at time t and selling it as an a − 1 year bond at time t + 1 and (ii) the log
yield on the one-year bond). Following Ludvigson and Ng (2009), the model takes the general
form:

r
(a)
t+1 = α′Ft + βZt + εt+1

where εt+1 is an error term, Zt is the well-known CP financial factor and Ft denotes a vector of
various macroeconomic factors. We use the following notation for these factors: f1, . . . , f8 denote

6We use “leave-k consecutive observations out” cross-validation to allow for serial dependence. The bandwidth
was found to not be sensitive to the specific value of k for k ≥ 18 (i.e., beyond the standard 18-month lag traditionally
used for time series exhibiting seasonality).
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the most important factor found via PCA while f̃1, . . . , f̃4 denote the nonlinear factors found via
nonlinear PCA applied to f1, . . . , f4. Our hybrid approach uses factors f̃1, . . . , f̃4, f5, . . . , f8.7

In our analysis, we consider models that either include or exclude Zt and compare various
choices of Ft (among f̃1, . . . , f̃4, f1, . . . , f8). To illustrate the advantages provided by our approach,
we consider three broad classes of predictive models for r(2)

t+1:

1. As a benchmark case (hereafter labelled “PCA+poly”), we use the model that Ludvig-
son and Ng (2009) select via the Bayesian Information Criterion (BIC), which consists of
the first factor f1 and its cube f 3

1 , while the 7 other factors f2, . . . , f8 enter linearly. We
consider different possible numbers of factors, denoted κ, which means that we include
factors f1, f

3
1 , f2, f3, . . . , fκ in Ft. We also consider the Ludvigson and Ng’s “preferred”

model, found via an extensive model selection procedure,8 which only includes a subset
f1, f

3
1 , f3, f4, f8 of the factors.

2. As another benchmark (labelled “PCA+lin”), we consider only including κ PCA factors
linearly: f1, . . . , fκ (hence omitting f 3

1 from the previous case).

3. Our proposed approach (labelled “INPCA+lin”) is to use κ nonlinear PCA factors in a linear
predictive regression, in which caseFt contains f̃1, . . . , f̃κ (for κ ≤ 4) or f̃1, . . . , f̃4, f5, . . . , fκ
(for κ ≥ 5). This approach avoids the selection of which powers of each factor to use in the
predictive regression.

We study the predictive power of each these approaches as a function of κ using an out-of-
sample procedure. In addition to its robustness, this approach circumvents the need to perform a
detailed analysis of the asymptotic properties of our method. We use the early half of the sample
(years 1964–1983) to determine (i) the factors (either with PCA alone or with PCA followed by our
nonlinear extension) and (ii) the regression coefficients. We then use the later half of the sample
(years 1984–2003) to estimate the magnitude of the one-year ahead prediction errors, without re-
optimizing either the regression coefficients or the choice of regressors.

First, our analysis broadly corroborates Ludvigson & Ng’s findings, namely that macro factors
have significant predictive power beyond the CP factor. Our results thus show that their analysis is
robust to the use of more general nonlinear factor models. Our subsequent analysis thus focuses on
the question of whether their analysis can be accomplished without an extensive model selection
step.

Figure 3 compares the three approaches and reveals that our proposed approach (INPCA+lin) is
as predictive as the best existing alternative (PCA+poly), both comparing across the same value of
κ and overall, as described below. While there is clearly a benefit in going from a linear regression
(in blue) to a polynomial regression (in orange) when using linear factors, we obtain essentially the

7This choice implicitly relies on the assumption that, if nonlinear PCA had been applied to factors f1, . . . , f8, it
would given the same result as linear PCA for factors f5, . . . , f8. The fact that nonlinear PCA on the first 4 factors
already gave the same result for factor f3, f4 as linear PCA is highly suggestive that this property holds for the less
important factors beyond the fourth.

8They arrive at this model by first separately regressing returns linearly on each factor. The factors associated with
better BIC scores are then further considered in univariate polynomial regressions. The regressions exhibiting the best
BIC then point to the terms that are considered for inclusion in a range of possible multivariate regressions on the
factors, which are then ranked using the BIC.
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Figure 3: Top panels: Excess bond returns prediction errors for the different models considered in
the text as a function of the number of factors included. Bottom panels: Corresponding p-values
of tests that the expected squared prediction errors of the various models are equal, as a function
of the number of factors included. The right panels report models that include the CP factor while
the left panels report those that exclude it.

same benefit by using nonlinear factors in a linear predictive regression of returns instead and thus
avoid the need to decide on the order of the polynomial to use. Furthermore, our κ = 2 and κ = 3
models also perform just as well as Ludvigson & Ng’s best predictor (shown by a dotted line)
based on factors f1, f

3
1 , f3, f4, f8 that were obtained by an extensive model selection procedure.

Figure 3 also shows the p-values of a test that these predictions are statistically significantly
different. This test is based on comparing the mean square prediction errors, using Newey-West
standard errors with a maximum lag of 18 months.9 The blue line shows that nonlinearity does
yield statistically significantly better predictions than a fully linear model, while the orange line
shows that the two nonlinear approaches are not statistically significantly different, as expected.
A similar exercise, now including the financial CP factor, supports the same conclusion: The
nonlinear PCA approach avoids an extensive model selection step and performs no worse than the
best approach based on linear PCA in all cases.

It should be noted that the model selection procedure in Ludvigson and Ng (2009) that iden-
tified the importance of the f 3

1 regressor was performed using the entire sample, whereas our
nonlinear PCA step only uses the earlier half of the sample — hence, if anything, this comparison
puts our method at a disadvantage. The similarity of their results to ours also indicates that their
results are not driven by their use of future data to find the functional form of the best model.

9The use of an 18 month maximum lag is standard in this literature: A minimum of 12-month lag is needed
to account for seasonal effects, which is increased by 50% to circumvent the fact that the Newey-West estimator
downweights the larger lags significantly.
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Finally, it is noteworthy to observe that the nonlinearity of the factors in our method is de-
termined before using the returns data (which is the dependent variable in the regression). This
suggests that our nonlinear PCA procedure actually detects a nonlinearity in the data that not
only provides just a better fit but also apparently detects genuine economic features, since it im-
proves the factors’ predictive abilities, before the bond data to be predicted are even included in
the analysis. This observation also indicates that the nonlinear terms in the polynomial regression
of Ludvigson & Ng was mostly needed to overcome the limitations of the linear PCA factors.

5 Conclusion
We have introduced a novel nonlinear generalization of principal component analysis (PCA) that
offers a number of unique advantages. It generates truly independent (as opposed to the merely un-
correlated) factors, thus maximizing the amount of “information compression”. Thanks to the use
of the theory of optimal transport and Brenier maps, a unique optimal solution can be established
and efficient computational algorithms can be devised. The method makes conceptual connections
with entropy maximization as it relies on a new multivariate additive entropy decomposition to
determine the principal nonlinear components that capture most of the information content of the
data. An application to the prediction of excess bond returns from a large number of macro factors
reveals that the method is able to naturally capture economically relevant nonlinearities and, as a
by-product, reduces the reliance on extensive model selection procedures.

A Proofs
Proof of Lemma 1. We first observe that the contribution to the entropyH = −

∫
f (y) ln f (y) dy

coming from values of y in a setN of null Lebesgue measure is zero since the density f (y) is uni-
formly bounded (by a constant f̄ > 0):

∫
y∈N f (y) |ln f (y)| dy ≤ max

{
e−1, f̄

∣∣ln f̄ ∣∣} ∫
y∈N dy =

0. This implies that we can ignore a set of null measure Lebesgue from the entropy integral in our
subsequent analysis.

The density of the observed data, f (y), can be expressed in terms of the Brenier map T (y)
and the standard multivariate normal Φ (x):

f (y) = Φ (T (y)) det

(
∂T (y)

∂y′

)
,

where the Jacobian matrix J (y) ≡ ∂T (y) /∂y′ is almost everywhere well-defined as Brenier
maps between bounded Lebesgue densities are differentiable almost everywhere, by a theorem
from Aleksandrov (Aleksandrov (1939); see also Villani (2003)).

We can then find a simple expression for the entropy, via the change of variable: x = T (y) (so
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that dx = det
(
∂T (y)
∂y′

)
dy):

H = −
∫

Φ (T (y)) det

(
∂T (y)

∂y′

)
ln

(
Φ (T (y)) det

(
∂T (y)

∂y′

))
dy

= −
∫

Φ (x) ln

(
Φ (x)

[
det

(
∂T (y)

∂y′

)]
y=T−1(x)

)
dx

= −
∫

Φ (x) ln
(
Φ (x) det J

(
T−1 (x)

))
dx

where J (y) = ∂T (y)
∂y′

and where the inverse T−1 (x) is also defined almost everywhere. Next, we
have

H = −
∫

Φ (x) ln
(
Φ (x) det J

(
T−1 (x)

))
dx

= −
∫ ( d∏

i=1

φ (xi)

)
ln

((
d∏
i=1

φ (xi)

)
det J

(
T−1 (x)

))
dx

= A+B

where

A = −
∫ ( d∏

i=1

φ (xi)

)
ln

((
d∏
i=1

φ (xi)

))
dx

B = −
∫

Φ (x) ln
(
det J

(
T−1 (x)

))
dx.

Each term can then be simplified:

A = −
d∑
j=1

∫ ( d∏
i=1

φ (xi)

)
ln (φ (xj)) dx

= −
d∑
j=1

∫
φ (xj) ln (φ (xj)) dxj

∏
i 6=j

(∫
φ (xi) dxi

)

= −
d∑
j=1

∫
φ (xj) ln (φ (xj)) dxj =

d∑
j=1

−H0

where H0 = −1
2

ln (2πe) is the entropy of a univariate normal.
To evaluate B, we use the equality:

ln det J
(
T−1 (x)

)
= ln

d∏
i=1

λi (x)

where λi are the eigenvalues of J (T−1 (x)). Note that since T is the gradient of an almost every-
where continuously differentiable convex function, J (y) = J (T−1 (x)) is symmetric and there-
fore diagonalizable almost everywhere. Also, the potential of a Brenier map between two Lebesgue
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densities is almost everywhere strictly convex (by Theorem 2.12 in Villani (2003)), which implies
that λi (x) > 0 for i = 1, . . . , d almost everywhere. Next, we observe that

ln det J
(
T−1 (x)

)
=

d∑
j=1

lnλj (x) = tr ln J
(
T−1 (x)

)
=

d∑
j=1

uj′
(
ln J

(
T−1 (x)

))
uj

where we introduced the logarithm of a matrix, have exploited the fact that the sum of eigenvalues
is equal to the trace and that the trace of a matrix can be evaluated in any orthogonal coordinate
system {uj}dj=1. Then,

B = −
∫

Φ (x)
d∑
j=1

uj′
(
ln J

(
T−1 (x)

))
ujdx

=
d∑
j=1

−uj′
(∫

Φ (x)
(
ln J

(
T−1 (x)

))
dx

)
uj

=
d∑
j=1

uj′J̄uj

where J̄ =
∫

Φ (x) (ln J (T−1 (x))) dx, as defined in the statement of the Lemma. (Note that we
also have J̄ = −

∫
f (y) ln J (y) dy, by the simple change of variable y = T−1 (x).) Collecting

these results, we then have:

H = A+B =
d∑
j=1

−H0 +
d∑
j=1

uj′J̄uj =
d∑
j=1

Huj

for Huj defined in the statement of the theorem.

Proof of Theorem 1. Since matrix J̄ is symmetric, it is diagonalizable with orthogonal eigenvec-
tors. We can thus decompose it as J̄ = PΛP ′ where Λ is diagonal and its elements are ordered in
decreasing order of magnitude and P is normalized so that P ′P = I (this also states that, in case
of degenerate eigenvalues, we select an orthogonal set of eigenvectors among the infinite number
of possibilities). We then have (observing that the additive constants −1

2
ln (2πe) do not affect the

optimization problem):

(
u1, . . . , uk

)
= argmax

(u1,...,uk)∈Uk,d

k∑
j=1

Huj = argmax
(u1,...,uk)∈Uk,d

k∑
j=1

uj′J̄uj

= argmax
(u1,...,uk)∈Uk,d

k∑
j=1

uj′PΛP ′uj = P argmax
(v1,...,vk)∈Uk,d

k∑
j=1

vj′Λvj

= P
[
e1, e2, . . . , ek

]
= (P·1, P·2, . . . P·k)

where ei is a d-dimensional column vector with 1 as its i entry and 0 elsewhere and P·i is the i-th
column of P , i.e., the i-th eigenvector.
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Proof of Corollary 1. The special case (i) of independent factors corresponds to the case where
T (y) takes the element-by-element form Ti (y) = gi (yi) for some strictly increasing function
gi (yi). Note that this mapping is a Brenier map because it is the gradient of the convex func-
tion c (y) ≡

∑d
i=1Gi (yi), where Gi (yi) =

∫ yi
y∗
gi (u) du for some y∗ ∈ R. Indeed, since

gi (yi) is strictly increasing, Gi (yi) is strictly convex, i.e. Gi (αy
1
i + (1− α) y2

i ) < αGi (y
1
i ) +

(1− α)Gi (y
2
i ) for any y1 ≡ (y1

1, . . . , y
1
d) ∈ Rd and y2 ≡ (y2

1, . . . , y
2
d) ∈ Rd, which implies that

c
(
αy1 + (1− α) y2

)
=

d∑
i=1

Gi

(
αy1

i + (1− α) y2
i

)
<

d∑
i=1

(
αGi

(
y1
i

)
+ (1− α)Gi

(
y2
i

))
= α

d∑
i=1

Gi

(
y1
i

)
+ (1− α)

d∑
i=1

Gi

(
y2
i

)
= αc

(
y1
)

+ (1− α) c
(
y2
)
,

i.e., c (y) is convex.
We also observe that J (T−1 (x)) is diagonal since ∂Ti (y) /∂yj = 0 for j 6= i. We then have,

for an orthogonal basis uj that is aligned with the independent factors, that uj′ (ln J (T−1 (x)))uj =

[ln J (T−1 (x))]jj = ln Jjj (T−1 (x)) = ln
[
∂gj(yj)

∂yj

]
yj=g−1

j (xj)
and

Huj = −1

2
ln (2πe)−

∫ ( d∏
i=1

φ (xi)

)(
ln

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

)
dx

= −1

2
ln (2πe)−

∫
φ (xj) ln

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

dxj
∏
i 6=j

∫
φ (xi) dxi

= −1

2
ln (2πe)−

∫
φ (xj) ln

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

dxj

Using the fact that −1
2

ln (2πe) = −
∫
φ (xi) lnφ (xi) dxi and performing the change of variables

xj = gj (yj), we have:

Huj = −
∫
φ (xj) ln

(
φ (xj)

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

)
dxj

= −
∫
φ (xj)

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

ln

(
φ (xj)

[
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

)([
∂gj (yj)

∂yj

]
yj=g−1

j (xj)

)−1

dxj

= −
∫
φ (gj (yj))

∂gj (yj)

∂yj
ln

(
φ (gj (yj))

∂gj (yj)

∂yj

)
dyj

= −
∫
fj (yj) ln fj (yj) dyj

where fj is the marginal density of yj with respect to Lebesgue measure. Thus, our definition
generalizes this simple additive result to the case where the yj are not independent (they are not, in
general).

To show statement (ii), we observe that, for Gaussian random variables, one can always find a
linear coordinate system that makes each coordinate statistically independent. Then, a monotone
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mapping xi = gi (yi) that maps one univariate Gaussian yi variable onto another (xi) must be
linear. It follows that T (y) must be linear. Also, the entropy of a multivariate normal where each
independent factor has variance σ2

i is given by
∑d

j=1 Huj with

Huj = −1

2
ln (2πe) +

1

2
lnσ2

i

Hence, picking the k < d factors with largest variance is equivalent to picking the k factors with
largest entropy.

Proof of Theorem 2. By definition of the entropy H [f ] and of conditional densities, we have:

H
[
fyk∗ ,yo

]
−H

[
fyk∗

]
= −

∫ ∫
f
(
yk
∗
, yo
)

ln f
(
yk
∗
, yo
)
dyk

∗
dyo +

∫ ∫
f
(
yk
∗
, yo
)
dyo ln f

(
yk
∗)
dyk

∗

= −
∫ ∫

f
(
yk
∗
, yo
)

ln
f
(
yk
∗
, yo
)

f (yk∗)
dyk

∗
dyo

= −
∫
f
(
yk
∗)(∫

f
(
yo|yk∗

)
ln f

(
yo|yk∗

)
dyo
)
dyk

∗
.

Next, we use the known fact that, for a given variance, the Gaussian is the density that maximizes
entropy,10 i.e., for any random vector v with density fV (v) and finite variance Var [v], we have∫

fV (v) ln fV (v) dv ≤
∫

ΦVar[v] (v) ln ΦVar[v] (v) dv, (9)

where ΦVar[v] denotes the a Gaussian density with variance Var [v] and zero mean. Next, if the
elements of v are selected to be along the principal axes of its variance ellipsoid (so that vi and vj
are uncorrelated), we have∫

ΦVar[v] (v) ln ΦVar[v] (v) dv =
dimV∑
i=1

ln
√

2πeVar [vi]. (10)

Now, letting qi denote the normalized eigenvectors of Var
[
yo|yk∗

]
, we can use Equations (9) and

(10) with vi = q′iy
o to write:

H
[
fyk∗ ,yo

]
−H

[
fyk∗

]
≤

∫
f
(
yk
∗)(dim yo∑

i=1

ln
√

2πeVar [yoi |yk
∗ ]

)
dyk

∗

=
∑
i

1

2
E
[
ln
(
2πeVar

[
yoi |yk

∗])]
. (11)

Next, we observe that, by Jensen’s inequality,

E
[
ln
(
2πeVar

[
yoi |yk

∗])] ≤ ln
(
2πeE

[
Var

[
yoi |yk

∗]])
(12)

10This can be shown by solving the Lagrangian of the constrained optimization problem:
∫
f (v) ln f (v) dv −

λ1
∫
f (v) dv − λ2

∫
vf (v) dv − λ3

∫
v2f (v) dv, with Lagrange multipliers λ1, λ2, λ3.
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and that, by the law of total variance,

E
[
Var

[
yoi |yk

∗]]
= Var [yoi ]− Var

[
E
[
yo|yk∗

]]
≤ Var [yoi ] . (13)

Combining Equations (11), (12) and (13) yields:

H
[
fyk∗ ,yo

]
−H

[
fyk∗

]
≤
∑
i

ln
(√

2πeVar [yoi ]
)

= tr ln
(√

2πeVar [yo]
)

where the last equality holds since Var [yo] is diagonal by assumption. Since the trace is invariant
to orthogonal coordinate transformations, the equality also holds if the elements of yo are not
necessarily chosen to be along the principal axes of its covariance matrix.

Proof of Theorem 3. We will show, in turn, consistency of Ĵ (y), ln Ĵ (y), ̂̄J and ûj .
We first note that the definition of Ĵij (y) is simply a symmetrized (Ĵij (y) = Ĵji (y)) ver-

sion of the simpler definition Ĵij (y) =
(
T̂i (y + εnej)− T̂i (y − εnej)

)
/2εn. We show consis-

tency of the latter (which trivially implies convergence of its symmetrized version). Let rn =

supy∈Rd

∣∣∣T̂ (y)− T (y)
∣∣∣, which satisfies rn

p−→ 0 by the assumed uniform consistency of T̂ (y)

and select εn such that εn −→ 0 and rn/εn
p−→ 0. By the triangle inequality, we have

∣∣∣Ĵij (y)− Jij (y)
∣∣∣ ≤ ∣∣∣∣∣ T̂i (y + εnej)− T̂i (y − εnej)

2εn
− Ti (y + εnej)− Ti (y − εnej)

2εn

∣∣∣∣∣+Rn (y)

where Rn ≡ supy∈Rd

∣∣∣Ti(y+εnej)−Ti(y−εnej)

2εn
− Jij (y)

∣∣∣. Next, rearranging and using the triangle
inequality again, we have

∣∣∣Ĵij (y)− Jij (y)
∣∣∣ ≤

∣∣∣T̂i (y + εnej)− Ti (y + εnej)
∣∣∣

2εn
+

∣∣∣T̂i (y − εnej)− Ti (y − εnej)∣∣∣
2εn

+Rn

≤ rn/εn +Rn
p−→ 0

where we have used (i) the definition of rn and the fact that rn/εn
p−→ 0 by construction and (ii)

the fact thatRn −→ 0 by the uniform continuity of J (y) and the definition of the partial derivative.
Hence Ĵ (y) is uniformly consistent and so is its symmetrized version (hereafter also denoted Ĵ (y)
in a slight above of notation), which is also guaranteed to be diagonalizable.

Next, the consistency of ln Ĵ (y) is shown using the fact that a function of a matrix is continuous
by Theorem 6.2.37 of Horn and Johnson (1991), provided the scalar version of this function is
continuous on an open set that includes all the eigenvalues of the diagonalizable matrix Ĵ (y). This
the case here since the eigenvalues of J (y) are bounded away from zero, as are those of Ĵ (y)
for n sufficiently large and the ln function is continuous on a set that excludes a neighborhood of
the origin. We can similarly establish uniform continuity by observing that the lower bound on
the eigenvalue is uniform so that the modulus on continuity of the ln on a common open set that
includes all the eigenvalues (for different y) is uniform as well. This shows uniform consistency of
ln Ĵ (y).
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To show consistency of ̂̄J , we write, for one element ij of the ̂̄J matrix:∣∣∣̂̄J ij − J̄ij∣∣∣ =

∣∣∣∣∫
‖y‖≤ȳn

f̂ (y)
(

ln Ĵ (y)
)
ij
dy −

∫
f (y) (ln J (y))ij dy

∣∣∣∣
≤

∫ ∣∣∣f̂ (y)
∣∣∣ ∣∣∣∣(ln Ĵ (y)

)
ij
− (ln J (y))ij

∣∣∣∣ dy (14)

+

∫ ∣∣∣f̂ (y) 1 {‖y‖ ≤ ȳn} − f (y)
∣∣∣ ∣∣∣(ln J (y))ij

∣∣∣ dy
where the first term converges since we just showed

∣∣∣∣(ln Ĵ (y)
)
ij
− (ln J (y))ij

∣∣∣∣ p−→ 0 uni-

formly and since f̂ (y) is absolutely integrable by assumption. To bound the second term of
Equation (14), we define sn = supy∈Rd

∣∣∣f̂ (y)− f (y)
∣∣∣ and note that sn

p−→ 0 by assumption.

We select a truncation sequence ȳn such that ȳn −→ ∞ and ȳdnsn
p−→ 0. We also introduce

Λ̄ = |max {lnλmin, lnλmax}| where λmin and λmax are, respectively, the uniform lower and upper
bound on the eigenvalues of J (y), assumed finite and nonzero. We can then write:∫ ∣∣∣f̂ (y) 1 {‖y‖ ≤ ȳn} − f (y)

∣∣∣ ∣∣∣(ln J (y))ij

∣∣∣ dy
≤ Λ̄

∫ ∣∣∣f̂ (y) 1 {‖y‖ ≤ ȳn} − f (y)
∣∣∣ dy

= Λ̄

∫
‖y‖≤ȳn

∣∣∣f (y)− f̂ (y)
∣∣∣ dy + Λ̄

∫
‖y‖≥ȳn

f (y) dy

≤ Λ̄Sdȳdnsn + Λ̄

∫
‖y‖≥ȳn

f (y) dy

where Sd is the volume of a d-dimensional unit sphere. Both terms converge to zero since ȳdnsn
p−→

0 and ȳn −→∞ with f (y) being absolutely integrable. This shows consistency of ̂̄J .
Finally, the fact that the eigenvalues and eigenvectors of ̂̄J converge to those of J̄ follows from

standard first-order matrix perturbation theory (Stewart and Sun (1990)), under the assumption that
eigenvalues of J̄ are nondegenerate.
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LOÈVE, M. (1978): Probability Theory II. New York: Springer.

LUCET, Y. (1997): “Faster than the fast Legendre transform, the linear-time Legendre transform,”
Numerical Algorithms, 16, 171–185.

LUDVIGSON, S. C., AND S. NG (2007): “The empirical risk-return relation: A factor analysis
approach,” Journal of Financial Economics, 83, 171–222.

LUDVIGSON, S. C., AND S. NG (2009): “Macro Factors in Bond Risk Premia,” Review of Finan-
cial Studies, 22, 5027–5067.

MCCANN, R. J. (1995): “Existence and uniqueness of monotone measure-preserving maps,” Duke
Mathematical Journal, 80, 309–324.
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SJÖSTRAND, K., M. B. STEGMANN, AND R. LARSEN (2006): “Sparse Principal Component
Analysis in Medical Shape Modeling,” International Symposium on Medical Imaging, 6144.

STEWART, G. W., AND J. SUN (1990): Matrix perturbation Theory. Academic Press, Boston.

STOCK, J. H., AND M. WATSON (1989): “New Indexes of Coincident and Leading Economic
Indications,” in NBER Macroeconomics Annual 1989, ed. by O. J. Blanchard, and S. Fischer.
M.I.T. Press, Cambridge.

25



STOCK, J. H., AND M. WATSON (1999): “Forecasting Inflation,” Journal of Monetary Economics,
44, 293–335.

STOCK, J. H., AND M. W. WATSON (2002): “Macroeconomic Forecasting Using Diffusion In-
dexes,” Journal of Business & Economic Statistics, 20, 147–162.

TENENBAUM, J. B., V. DE SILVA, AND J. C. LANGFORD (2000): “A global geometric framework
for nonlinear dimensionality reduction,” Science, 290, 2319–2323.

VILLANI, C. (2003): Topics in Optimal Transportation. American Mathematical Society, Provi-
dence.

VILLANI, C. (2009): “Optimal transport: Old and New,” in Grundlehren der mathematischen
Wissenschaften. Springer-Verlag, Heidelberg.

WALLACE, G. K. (1991): “The JPEG Still Picture Compression Standard,” Communication of the
ACM, 34, 30–44.

26


	CEMMAP COVER
	npca_v26b.pdf
	Introduction
	Method
	Outline
	Main results
	Optimal transport-based entropy decomposition
	Relationship to linear PCA
	Asymptotics

	Implementation

	Discussion
	Illustrative Examples
	Simulations
	Application to bond excess returns prediction

	Conclusion
	Proofs




