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Abstract

We propose a demand model where consumers simultaneously choose a few different goods

from a large menu of available goods, and choose how much to consume of each good. The

model nests multinomial discrete choice and continuous demand systems as special cases.

Goods can be substitutes or complements. Random coefficients are employed to capture

the wide variation in the composition of consumption baskets. Non-negativity constraints

produce corners that account for different consumers purchasing different numbers of types

of goods. We show semiparametric identification of the model. We apply the model to the

demand for fruit in the United Kingdom. We estimate the model’s parameters using UK

scanner data for 2008 from the Kantar World Panel. Using our parameter estimates, we

estimate a matrix of demand elasticities for 27 categories of fruit and analyze a range of tax

and policy change scenarios.
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1 Introduction

We propose a demand model that has features of both discrete multinomial choice and

traditional continuous demand systems. In the model consumers simultaneously choose a

small number of different goods from a large menu of available goods, and choose how much

to consume of each good. The model has wide applicability in large scale demand estimation

settings in which most consumers choose zero demand for most goods.

Our model nests both standard continuous demand systems (quadratic utility functions

with Gorman (1976, 1980) and Lancaster (1966) consumption technologies) and standard

discrete choice models (multinomial logit or probit with random coefficients) as special cases.

Unlike most discrete choice models, our model allows the chosen goods to be substitutes or

complements, and to be consumed in continuous quantities. Unlike standard continuous

consumer demand systems, our model allows individual consumers to choose zero quantities

of most types of goods, and includes substantial unobserved preference heterogeneity.

As our motivating example, we consider consumer demand for fresh fruit in the UK. In

a typical store, there are more than two dozen types of fruit that consumers can choose

among. Consumers typically choose from one to five different types of fruit to purchase, and

buy varying quantities of each type. Some types of fruits are substitutes (such as apples

vs bananas) while others are complements (like cantaloupe and honeydew melons in fruit

salad). Some fruits might be substitutes for some households while being complements for

others. The types and quantities of fruits purchased vary greatly across households.

While many different types of fruit are offered for sale, typical households only buy a

small number of types. As a result, most consumers buy zero quantities of most categories of

fruit, and therefore the vector of observed demands at the individual consumer level is sparse.

Note that this is not a model that is sparse in the sense of having many zero coefficients,

like regressions estimated using the Tibshirani (1996) LASSO estimator. Rather, here it is

the data that is sparse, since for each shopping trip, each consumer buys zero quantities of

most of the goods that are available in the store.
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The most popular method of dealing with such sparse demand systems, as exemplified

by the Berry, Levinsohn, and Pakes (1995) BLP model, is to discretize purchases and treat

each unit purchased as an independent multinomial choice decision. Unfortunately, in many

empirical applications not only is this method intractable but also the standard assumptions

underlying the methodology are likely to be seriously violated. For example, in our empirical

application consumers buy up to 5 different types of fruits from a set of 27 available types

of fruits. So even ignoring the quantities purchased and only looking at the types of fruit

selected, there are 80,730 possible baskets to consider, which is far too large for traditional

discrete choice methods.

A far more serious limitation of multinomial choice models is that they generally rule out

complements. Complementarities are important in a wide range of empirical applications.

For example, in our application, some fruits are strong complements (e.g., different types of

berries are frequently purchased and consumed jointly, and various fruits are complementary

inputs to dishes like fruit salad). It is possible to allow for complements in a discrete choice

framework by modelling combinations of fruit as additional distinct goods, e.g., treating an

apple, a banana, and the combination of both as three separate possible choices. However,

the number of possible combinations of just a few fruits out of more than two dozen makes

this approach impractical. We could alternatively allow for some complementaries in a

reduced form way by assuming logit shocks that are correlated across purchase decisions,

but the number of such correlations would again become rapidly intractable.

The leading alternative to multinomial choice models of demand for many goods are

traditional continuous demand models such as those described in Deaton and Muellbauer

(1980). These models are designed to handle joint purchases of bundles of goods in continuous

quantities. However, such models assume each consumer buys positive quantities of most or

all goods. Methods exist for dealing with small numbers of zeros in such models (essentially,

system Tobit; see, e.g., Yen and Lin 2006 and references therein). However, in our sparsity

case each consumer buys zero amounts of a large majority of the available goods.
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When using traditional demand systems, large numbers of zeros are usually dealt with

by aggregating to form a few broad categories of goods. However, such aggregation leads

to biases of unknown size and direction unless strict aggregation conditions are met. The

separability or price co-movement restrictions required to justify Gorman or Hicksian ag-

gregation (see, e.g., Lewbel (1996) and references therein) often do not hold. Moreover, for

many applications in marketing, industrial organization, public finance, or in health, one is

interested in the determinants of demand for each type of fruit, not just for broad aggregates.

In Section 7.4 we give an example in which the introduction of a tariff on EU sourced fruits

affects each category of fruit differently depending on the fraction sourced in the EU, and

we compute the disparate impacts on each type of fruit.

The basic structure of our model incorporates a Gorman (1976, 1980) and Lancaster

(1966) type characteristics model into a continuous demand system with substantial unob-

served preference heterogeneity. The model then allows for many corner solutions in the

demand for characteristics to account for the sparsity of observed individual consumer de-

mands, while the heterogeneity allows different consumers to be at different corner solutions.

Our model has J different kinds of goods, and contains K latent indices that are linear

functions of consumption quantities (in our fruit application, J = 27 and K = 5). As a

result, K is the maximum number of types of goods that any consumer will purchase at

one time (except for knife edge situations of indifference). The number of different types

of goods a particular consumer actually purchases at any one time, which ranges from zero

to K, is determined by the number of nonnegativity constraints that bind (i.e., the number

of corners) in the consumer’s utility maximization problem. When maximizing utility, the

consumer simultaneously determines how many different types of goods to buy, which goods

to buy, and the quantity to purchase of each good.

In one limiting case where K = J , our model reduces to a standard continuous choice

quadratic utility model, where all available goods are purchased in continuous quantities.

At the other extreme, when K = 1 our model reduces to the Dubin and McFadden (1984)
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model where consumers choose a single good by standard multinomial choice (e.g., probit),

and also choose to purchase a continuous quantity of that good. An alternative limit case

of our model nests standard multinomial logit or probit models as special cases. Our model

therefore nests standard multinomial choice (with or without random coefficients), standard

continuous demand systems, and classic mixed continuous and discrete demand models all

as special cases. As a result, our model has wide application across a range of demand

estimation settings.

The next section is a literature review. Section 3 lays out our model, and Section 4

shows how our model nests standard continuous, discrete, and mixed models as special

cases. Section 5 gives our semiparametric identification results, and describes our estimator.

Sections 6 and 7 describe our fruit demand application and our empirical results. Section

8 concludes. A separate Supplementary Appendix provides additional technical material,

summary statistics and estimation details.

2 Literature

As summarized by, e.g., Blundell and Meghir (1987), the continuous demand literature

considers three main theoretical rationales to explain zero expenditure on some goods. One

rationale is lexicographic preferences. With lexicographic preferences, an individual might

prefer to consume any amount of other goods, no matter how small, to a given good. A

second rationale is infrequency of purchase due to durability or storage. A good that is

durable or storable may be consumed regularly, but infrequently purchased. In our fruit

demand example, infrequency of purchase can be largely ruled out over time spans longer

than a few days, because fresh fruit is not durable and cannot be stored for very long. A third

rationale is corner solutions. These occur when the price of a good is above its reservation

price so that nonnegativity constraints are binding. In such cases, given prices and total

expenditures, a consumer chooses to purchase zero units of the good in question.
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Lexicographic preferences are typically modelled analogously to Heckman (1979) type

sample selection models. A binary choice equation models the decision of whether to con-

sume the good or not, and then ordinary demand systems are estimated either including or

excluding the good in question. Systems of equations like these can be estimated parametri-

cally using Shonkwiler and Yen (1999) or Yen and Lin (2006). A recent example (still with

a small number of goods) is the semiparametric estimator of Sam and Zheng (2010). Models

like these require utility functions that are fundamentally different for non-consumers and

consumers of a good. These types of models are generally most appropriate for goods that

a significant fraction of the population would never consume, like tobacco or alcohol.

In our model we focus on corners, since it is likely that very few types of fruit are

goods that households would never purchase. In addition, our model allows for substantial

preference heterogeneity, and so accommodates the types of behaviour that lexicographic

preferences seek to capture by allowing some consumers to have arbitrarily small marginal

utility for some goods. Our model allows for the possibility that purchases of some goods

may be extremely rare for a significant fraction of households.

Extreme versions of models based on corners are brand choice models where the constraint

that consumers buy exactly one brand is imposed either a priori or by the structure of the

utility function. For example, Hendel (1999) proposes a model in which firms choose a single

brand (of computer) along with a number of units (firms that are observed to buy multiple

brands are divided into separate tasks, and each task is treated as if it was an individual

firm choosing one brand). Similarly Dube (2004) proposes a model where the purchase for

each “consumption occasion” is the decision to purchase a single brand, but in a continuous

quantity. Other models that entail choosing a single good among many and consuming that

good in continuous quantities include Dubin and McFadden (1984) and Haneman (1984),

and more recently Crawford and Yorokoglu (2012).

A drawback of all these discrete choice based models is that they rule out the possibility

of many different goods being complements. None would, e.g., allow for the possibility of
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making a fruit salad. In contrast, our model is based directly on continuous joint demand

for multiple goods, and so allows for goods to be complements, and more generally places

no separability restrictions on the demands for different goods.

Corners in continuous demand models are generally modelled as censored regressions,

such as Tobit models. The early continuous demand system literature that considered corners

formally focused on cases where either a single good, or a very small number of goods,

may have zeros. Examples include Wales and Woodland (1983) and Lee and Pitt (1986).

Applications of continuous demand systems with many goods and censoring work as follows.

Let p and y be a price vector and total expenditures, respectively. Utility maximization

without nonnegativity constraints are first used to derive models of the form q∗j = fj(p, y)+ej

for each good J , where q∗j is a latent quantity and ej is an error term. Each observed quantity

qj is then assumed to be given by qj = max{0, q∗j}. Examples of such models include Golan,

Perloff, and Shen (2001) and Meyerhoefer, Ranney, and Sahn (2005).

These censored demand models have one of two flaws. Either errors ej are arbitrarily

appended to demand functions yielding empirical specifications of the form fj(p, y) + ej, or

errors are incorporated as random utility parameters but ignored in estimation. That is,

demand equations of the form q∗j = f ∗j (p, y, e) + ej are approximated by f ∗j (P, Y ) + ej. The

most common example of this latter method is based on Deaton and Muellbauer’s (1980)

Almost Ideal Demand System (AID), where the vector e appears in the demand functions

f ∗j (P, Y, e) only inside a general price index as in Heien and Wessells (1990).

Most of these censored continuous demand models are not fully consistent with utility

maximization because the nonnegativity constraints are not explicitly incorporated into the

consumer’s utility maximization. In these models, the consumer first chooses possibly nega-

tive quantities for some goods to maximize utility, and then actually purchases zero quantities

for these goods. These problems apply to almost all demand systems with many goods that

allow for censoring based either on e or those based on separate selection equations. An

exception is the brand choice models that forbid complementarities discussed earlier, which

6



solve this problem by imposing extreme forms of separability.

Continuous demand models do exist where random utility parameters e are not removed

by approximation (see, e.g., Lewbel and Pendakur 2009, 2017), but censored versions of

these models have mostly not been developed. An exception is Amano (2018), who essentially

applies Lee and Pitt’s (1986) theory to Lewbel and Pendakur (2009) EASI model, employing

a simulated method of moments estimator to overcome analytical difficulties. However, this

approach becomes impractical when the number of goods is large. Amano (2018) must

therefore still maintain strong two stage budgeting assumptions, and model at the level of

aggregate categories of food, to avoid having too many categories of food containing zeros.

Two other papers that have looked at complementarities across goods are Beckert, Grif-

fith, and Nesheim (2009) and Thomassen, Smith, Schiraldi, and Seiler (2017). The former

paper develops a discrete choice store choice model in which, at the second stage, consumers

choose a basket of goods, possibly including zero demand for some goods, using a quadratic

utility model. Unlike our model, their’s does not allow for many goods with many corners,

and does not include random coefficients. Their empirical analysis aggregates goods to a

high level and is limited to an application with 4 types of goods.

The latter paper, Thomassen et al. (2017), develops and estimates a store choice model

allowing consumers to purchase from multiple stores and accounting for zeros in demand.

The paper develops and estimates the implications of complementarities and multi-store

shopping behaviour for competition analysis. As in our paper, the consumer utility model

is quadratic.

Our paper adds to the frameworks developed in these previous papers by allowing the

quadratic utility model to be less than full rank, allowing for flexible heterogeneity to affect

both the first and second derivatives of utility, and by analysing demand at a much more

disaggregate level. The additional flexibility in heterogeneity is required to match variation

in baskets across households.

In our model, zeros are handled using both corners and the Gorman (1976, 1980) and
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Lancaster (1966) characteristics model of taste heterogeneity. Dubois, Griffith, and Nevo

(2014) also exploit a Gorman Lancaster characteristics model, but only to account for taste

heterogeneity for types of food, and not for dimension reduction. Theirs is a continuous

demand system, and so despite enormous sample sizes they must still substantially aggregate

across goods to avoid zeros (e.g, they treat spending on all fruits as a single aggregate good).

The model we propose overcomes all of the problems summarized above. Each consumer

takes all nonnegativity constraints directly into account when maximizing utility. The model

directly incorporates error terms as preference heterogeneity parameters and allows for ar-

bitrary patterns of substitutability or complementarity among the goods. The model allows

consumers to buy continuous quantities of some goods and zero quantities of the rest. The

model is broadly applicable to any situation where consumers choose multiple options from

a large discrete choice set.

3 The model

Let qj be the quantity of good j purchased by a consumer or a household, and let q ∈ RJ
+

be the bundle of goods purchased by this consumer. Later we add a subscript h to index

households, but for now, omit that to simplify notation. Suppose that consumer utility from

q is a function of K latent attributes. Let bkj be the quantity of attribute k that a consumer

derives from buying a unit of good j and let B be the K × J matrix of elements bkj. Then

the K vector of attributes a consumer derives utility from is the vector Bq. Assume K ≤ J,

rank(B) = K and BTB ≥ 0. This is essentially the Gorman-Lancaster linear household

technologies model.

We assume consumers have a strictly quasiconcave utility function over theK dimensional

latent attributes Bq. The particular functional form we use for this utility function is

quadratic. The quadratic utility assumption is not necessary for the analysis but offers

numerical simplicity when applied to large scale datasets.
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For now, we assume all consumers have the same matrix B. Later, we introduce ob-

servable (demographics) and unobservable (random coefficient) heterogeneity into B. This

heterogeneity will be important empirically to capture the fact that consumers facing the

same prices choose different baskets of goods.

In a standard continuous demand model, each consumer generally buys nonzero quantities

of all J goods. However, in the Gorman Lancaster model, utility is maximized by consumers

buying exactly K different types of goods. One feature of our model is that we let K be

much smaller than J , which then accounts for most of the zeros in our data. A second

feature is that we introduce preference variation across consumers in the form of random

terms that are added to each element of the vector of latent attributes Bq (later, we also

introduce additional variation in the form of random coefficients). This preference variation

across consumers results in different consumers choosing different baskets of goods. Even

with this taste heterogeneity, the Gorman model would be inadequate for real data, because

it implies that each consumer, with probability one, buys the same number of different types

of goods, K.

An additional feature of our model is that we allow that maximized utility may have

many corners, i.e., points where indifference curves intersect axes in attribute space. As a

result, depending on prices and preference parameters, utility may be maximized by choosing

anywhere from zero to K different types of goods. The more corners (the more binding

constraints), the smaller is the optimal number of different goods to purchase.

Analogous to a Tobit model, in our model the marginal value of each latent index (i.e.,

the marginal utility from each element of Bq) plus unobserved heterogeneity determines

whether a given attribute is desired sufficiently (relative to its cost) to purchase in nonzero

amounts. The unobserved heterogeneity terms are location shifts in the marginal utility for

each attribute. The interaction of these preference heterogeneity terms with binding corners

results not only in different consumers purchasing different baskets of goods, but also in

different consumers facing different corners, and different numbers of corners. The result
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is that our model can encompass the variation seen in data, where consumers vary in the

numbers of goods that they buy (from zero to K), vary in the choice of which goods to buy,

and vary in the quantities they purchase of each nonzero good.

Assume that each individual chooses q to maximize the utility function

u (q0)− 0.5 (e−Bq)T (e−Bq) such that y ≥ pT q + q0 and q ≥ 0

where u is a monotonically increasing function, y ∈ R+ is total grocery expenditures, q0 ∈ R

is a numeraire good, p ∈ RJ
+ is a price vector, and e ∈ RK , which is randomly distributed

in the population, is a vector of preference parameters, where element ek corresponds to a

satiation level or bliss point for attribute k.

This utility function is quadratic and weakly concave in q which allows us to employ

standard efficient quadratic programming techniques to handle zeros coming from corner

solutions. These methods are computationally fast even for very large quadratic programs.

Importantly for large scale estimation, it also allows us to efficiently analyse the inverse of

demand and compute the probabilities of observing the data at hand as functions of model

parameters. The theory would largely go through with more general utility functions that

are concave in e−Bq, but would be computationally more burdensome.

This utility function nests both standard continuous demand systems and standard dis-

crete choice models. We discuss this equivalence in more detail in Section 4. We also discuss

incorporating additional observable and unobservable heterogeneity in a way that includes

random coefficients multinomial probit or logit as special cases.

For the rest of the paper we let u (q0) = q0, making preferences quasilinear and thereby

eliminating income effects. This simplification is reasonable for our empirical application,

since fruit and vegetables are generally a small component of households’ overall budgets.

Assuming quasilinear utility, normalizing the marginal utility of income to be one1, and

1The utility function in (3.1) can be multiplied by any positive number without changing any predictions
or implications of the model.
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substituting the budget constraint into the objective, the consumer chooses q to maximize

y − pT q − 0.5 (e−Bq)T (e−Bq) such that q ≥ 0. (3.1)

3.1 First order conditions

The Lagrangian for each consumer’s maximization problem is

L (q, δ) = y − pT q − 0.5 (Bq − e)T (Bq − e) + δT q

where δ is a vector of Lagrange multipliers. The first order conditions are

0 = −p−BT (Bq − e) + δ (3.2)

0 = δT q, δ ≥ 0, q ≥ 0.

By assumption, the second order conditions are satisfied since −BTB ≤ 0.

Due to quasilinearity, the value of y does not affect the optimal choice of q. This model

implicitly assumes either that the numeraire can be consumed in negative quantities, or that

y ≥ pT q for any optimizing value of q. Note that this latter condition holds automatically

as long as y is large enough to purchase a bundle q that attains the satiation level Bq = e

(though consumers in that situation may still not choose to buy that bundle, if the utility

value of holding more of the numeraire is greater).

This model has the property that any consumer can maximize utility by buying nonzero

amounts of at most K goods. Given prices and B, the first order conditions define a partition

of RK with at most R =
(
J
K

)
elements and where each element of the partition is a polytope.

Let Er be an element of this partition. All consumers with e ∈ Er choose a quantity qr with

the same non-zero components. For each consumer, calculating their optimal quantity bundle

q entails solving a concave quadratic program. Finding an optimum requires identifying the
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relevant element of the partition and then computing the optimal quantity. Because the

problem is a concave quadratic program, algorithms exist that obtain a solution in polynomial

time (interior point and related methods). For estimation, computing the likelihood function

requires finding the set Er corresponding to each demand observation q and then computing

the probability that e ∈ Er. Because Er is a polytope, we are able to construct efficient

algorithms to compute this probability. Details are in the Supplementary Appendix.

3.2 Piecewise linear demands

To prove identification in Section 5.1, it is useful to characterize solutions that have the

maximum number K of nonzero elements. To do so, let q = (q1, q2) be a vector for which

q1 > 0 and q2 = 0 such that dim (q1) = K. Without loss of generality, the elements of q1 can

be taken to be the first K elements of q. Let p1 and p2 be the corresponding price subvectors

and B1 and B2 the corresponding submatrices of B so that

B =

[
B1 B2

]
.

That is, B1 is the K × K matrix formed from the first K columns of B and B2 is the

K × J −K matrix formed from the remaining J −K columns.

Then q is optimal for all e satisfying

−p1 −BT
1 (B1q1 − e) = 0 (3.3)

−p2 −BT
2 (B1q1 − e) ≤ 0 (3.4)

q1 ≥ 0 (3.5)

Equation (3.3) defines the inverse demand curve −p1 = BT
1 (B1q1 − e) for a single consumer.

The inequalities (3.4) and (3.5) define conditions under which choosing q1 > 0 and q2 = 0 is

optimal. When B1 is nonsingular the system can be simplified and solved to provide explicit
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conditions describing the piecewise linear demand function

q1 =
(
BT

1 B1

)−1 (
BT

1 e− p1
)

(3.6)

p2 −BT
2

(
BT

1

)−1
p1 ≥ 0 (3.7)

q1 ≥ 0. (3.8)

In words, the nonnegative q1 is optimal if it satisfies the demand equation (3.6) and if the

projection of its price vector is cheaper than the price vector p2. When (3.4) is not binding,

small changes in p2 have no impact on demand for q1.

4 Special Cases

In this section we show that our model nests standard continuous choice, discrete-continuous

choice and discrete choice demand models as special cases. In particular, different types of

continuous and multinomial choice demand systems result from setting K = J , K = 1, or

by imposing limiting constraints on B.

4.1 Continuous consumer demand

Suppose K = J . Then the model simplifies to an ordinary continuous quasilinear quadratic

utility function, which (by the first order conditions derived earlier) yields the demand

equations

q =
(
BTB

)−1 (
BT e− p+ δ

)
, 0 = δT q, δ ≥ 0, q ≥ 0.

where δ are Lagrange multipliers. When all elements of BT e − p are nonnegative then the

nonnegativity constraints do not bind and so with K = J , the system of linear continuous

demand equations given by (3.6) becomes

q =
(
BTB

)−1 (
BT e− p

)
.
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For empirical application, one could then let B or e depend on product characteristics z,

consumer characteristics x, or unobserved heterogeneity η as detailed in Section 5.2 below.

For example, one could assume ejh = (β0 + β1xh) zj + εjh to obtain a linear demand system

over continuously demanded goods.

4.2 Discrete-continuous choice

Before considering standard discrete choice, it is useful to examine how our model relates

to Dubin and McFadden (1984). They propose a model in which each consumer chooses a

single type of good according to a multinomial probit model and then purchases a continuous

quantity of the chosen good. Suppose that K = 1 in our model. Then B equals the row

vector of nonnegative elements b1j, e equals the scalar e1, and the consumer’s problem of

equation (3.1) reduces to

max
{
y − pT q − 0.5 (Bq − e1)2

}
(4.1)

Since K = 1, utility is maximized by purchasing at most one type of good. The con-

sumer’s utility from buying qj units of good j is

y − pjqj − 0.5 (b1jqj − e1)2 ,

which is maximized either at an interior point of the feasible range of values of qj given

by the first order condition −pj − (b1jqj − e1) b1j = 0 or at one of the endpoints of the

feasible range, i.e., either qj = 0 or qj = y/pj. At an interior solution, the optimal quantity

is qj = (e1 − pj/b1j) /b1j (which is only feasible if e1 > pj/b1j) which yields utility y +

0.5 ((pj/b1j)− e1)2−0.5e21. Otherwise, at the corner solution, if q = 0 is optimal, then utility

is y − 0.5e21.

It follows that if e1 ≤ min`∈{1,...,J}{p`/b1`} for all goods j, then utility is maximized by

q = 0. Otherwise, utility is maximized by buying the quantity qj = (e1 − pj/b1j) /b1j of the

good j = arg min`∈{1,...,J}{p`/b1`}, and not buying any other good. Let j = 0 denote not
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buying any of the goods. Let p0 = 1 and ln b10 = − ln e1. It then follows that equation (4.1)

implies making a discrete choice to purchase good j = arg max`∈{0,1,...,J}{ln b1` − ln p`} and

a continuous choice of qj as detailed above.

As discussed in Section 5.2 below, in empirical applications the elements of B may de-

pend on consumer and product characteristics. For example, one could assume ln b1jh =

(β0 + β1xh) zj + εjh where zj and xh are vectors of observed product and consumer charac-

teristics. Letting ε0h = ln e1h, our model reduces to a multinomial choice model in which a

consumer chooses to purchase only the good j that satisfies

j = arg max
`∈{0,1,...,J}

{βhz` − ln p` + ε`h}.

(which is multinomial probit if ε is normal) and the quantity qj given by qjh = (e1h − pj/b1jh) /b1jh.

4.3 Multinomial discrete choice

The previous section shows one way our model encompasses discrete-continuous choice. Ad-

ditionally, a limiting case of our model nests ordinary multinomial choice or pure discrete

choice. Suppose we take B to be a diagonal, invertible J × J matrix. Consider the model

where q ≥ 0 is determined by maximizing the utility function

(
y − pT q

)
β0 − 0.5qTBTBq + uT q (4.2)

for some positive scalar β0 (which equals the marginal utility of money) and vector of fixed or

random parameters u. When B is invertible, this model is equivalent to our model, because

for any choice of B and u, one can define e = B−1u, which then makes equation (4.2) equal

to equation (3.1) up to an affine transformation (multiplication by β0 and addition of eT e)

that has no effect on consumer choices. Essentially, our original utility model can be derived

from equation (4.2) by completing the square.

Now consider the limiting case of (4.2) in which B → 0 and Be→ u where uj = βzj +εj.
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In the limit case, maximizing (4.2) is equivalent to maximizing

∑J

j=1
(βzj − β0pj + εj) qj.

With the addition of the constraint that
∑

j qj ≤ 1, this is the standard multinomial choice

model. The parameters (β, β0), may depend on both observable demographics xh and ran-

dom coefficients ηh. In particular, if one assumes that εj are distributed as independent

Type I extreme value random variables, then this is the standard multinomial logit model.

5 Identification and estimation

In Section 5.1 we maintain the assumption that all consumers have the same B and discuss

conditions sufficient to ensure that B is point identified. We also consider nonparametric

identification of the distribution of the vector e. We show that this distribution is point

identified for all e in the set
{
e : BT e ≥ 0

}
. For values not in this set, the distribution

is not identified because consumers with values of e outside this set, choose q = 0 with

probability one. To see this, consider a consumer with e satisfying BT e ≤ 0. For this

consumer, it follows immediately from the first order conditions (3.2) that q = 0 for all

nonnegative prices. Therefore, if prices are nonnegative, nothing can be identified regarding

the distribution of e for all e ∈ {e | BT e ≤ 0}, other than the probability of lying in this set.

In Sections 5.2 and 5.3 we discuss heterogeneity in B before discussing estimation in

Section 5.4.

5.1 Identification

ASSUMPTION A1: With probability one, consumers buy the minimum number of different

goods necessary to maximize utility given by equation (3.1). Assume that p is continuously

distributed on the positive orthant with a density that is strictly positive almost everywhere

on the positive orthant. Assume that the distribution of q given p is known.
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The assumption that consumers buy the minimum number of goods is a tie breaker for

knife edge situations where utility can be maximized in more than one way. Given the

assumed continuity of prices, these knife edges occur with probability zero. The distribution

of q in a population facing prices p is in principle observable, so Assumption A1 essentially

says that, for proving identification, this distribution is assumed to be known for any value

of p.

ASSUMPTION A2: The K × J matrix B has rank K > 0. For every column Bj of

B, there exists a (K ×K − 1) matrix B−j consisting of K − 1 columns of B such that

B̃j =

[
Bj B−j

]
is nonsingular. Without loss of generality, B is assumed to be upper

triangular.

Assumption A2 ensures that for every good j, there exists a set of K goods including

good j such that some consumers choose to buy a bundle consisting of the those K goods.

Identification of the j′th column of B is assured using expressions like (3.6) and (3.7) with

nonsingularity of B̃j in Assumption A2 taking the place of nonsingularity of B1.

For any K × K matrix A such that ATA = I, our utility function is observationally

equivalent to a utility function that replaces B and e with AB and Ae. Specifically, B can

only be identified up to a set of scale and rotation normalizations. That is, the scale (or

magnitude) of each column of B is identified as is an upper triangular matrix defining, within

each column, the relative magnitudes of the elements of B. These normalizations can be

imposed by assuming B is upper triangular.

ASSUMPTION A3: Let fe denote the density function of e. The density fe is strictly

positive on the set E =
{
e | BT e ≥ 0

}
. e is distributed independently of p.

THEOREM 1: Given Assumptions A1, A2, and A3, the density fe (e) is nonparametri-

cally identified for all e ∈ E and the matrix B is identified.

Proof of Theorem 1: Let B be the set of unique combinations of K different goods chosen

17



from the J available goods, and let R =
(
J
K

)
be the total number of elements of B. Let

r ∈ {1, ...R} index each possible element of B. Let ir = {ir1, ..., irk}be an element of B and let

qr be a vector of quantities satisfying qr (i) = 0 if i /∈ ir. We call qr a K dimensional basket or

bundle corresponding to the list ir. So for a given basket qr, i
r indexes the nonzero elements

of qr. Let pr be the K vector of prices of the goods qr, and let p−r be the J −K vector of

prices of all the other goods. Let Br = B (:, ir) be the submatrix of B corresponding to these

nonzero elements. Let R̃ ⊂ B denote the smallest set of bundles such that Br is nonsingular

for all r ∈ R̃ and Bj is a column in Br for some r. The set R̃ has at least J/K elements and

no more than J −K + 1 elements. By Assumption A2, for every good j the column Bj lies

in some nonsingular Br.

With these definitions, we first show that for every r ∈ R̃, there is a set A ⊆ P ×Y and a

set Qr =
{
qr ∈ RJ with qr (i) = 0 if i /∈ ir

}
such that Pr (Qr |A) > 0. To show this, consider

qr ∈ Qr. It is optimal to choose qr when inequalities (3.7) and (3.6) are satisfied for q = qr.

That is when p−r − BT
−r
(
BT
r

)−1
pr ≥ 0 and qr =

(
BT
r Br

)−1 (
BT
r e− pr

)
≥ 0. Assumptions

A2 and A3 ensure that this event has positive probability.

Given this result, we can now establish identification of B. For each good j, there is a

subset Br of K goods as described above that includes good j. For this set of goods let pr be

sufficiently low, and let p−r be sufficiently high, to yield a positive probability of observing

bundles qr in which qr (i) > 0 for all i ∈ Br. Then qr > 0 for all p′ =
(
p′r, p

′
−r
)

where p′r ≤ pr

and p′−r ≥ p−r (p′, y).

Let Br be the K ×K submatrix consisting of the columns of B corresponding to the set

Br of these K goods, and let pr and qr denote K vectors of prices and quantities of those

K goods. By the first order conditions, a consumer buying qr has BT
r Brqr = BT

r e − pr.

By assumption A2, BT
r Br is nonsingular. The demand functions for these K goods for the

consumers in this region are therefore qr =
(
BT
r Br

)−1 (
BT
r e− pr

)
. Since the distribution of

e does not depend on pr, the derivative with respect to prices pr of the conditional mean (or

any conditional quantile) of qr conditioning on p (which can be calculated at any point that
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is not on the boundary of the region) is
(
BT
r Br

)−1
, which identifies BT

r Br.

By Assumption A2, each good j appears in some bundle r for which the above derivation

can be performed and BT
r Br can be identified, so all of the columns of B are recoverable up

to normalizations from the collection of estimates of BT
r Br. At most J −K such bundles r

would be required (so that each good j appears in at least one such bundle) and as few as

J/K such bundles might be needed.

We have now shown that for each r, we can identify

Ar = BT
r Br.

In addition, these matrices share common elements. So, we can pick one bundle r and define

Ar = DrCrC
T
r Dr

where Dr is a positive diagonal matrix and Cr is the Cholesky decomposition of a correlation

matrix. We can then define

Br = CT
r Dr.

This provides the rotation and scale normalizations up to which B is identified. Given

Br = CT
r Dr, the remaining columns of B are identified by sequentially dropping the last

column of Br and replacing it with each remaining column of B. The elements of column j

for j /∈ Br satisfy
∑

i [Bj (i)]2 = d2j for some dj > 0.

Having now shown identification of B, consider the distribution of e. Given Br for all

possible bundles r, we can observe BT
r e = BT

r Brqr + pr for all observable qr, pr pairs. Since

qr and pr are nonnegative, we can uncover observations of BT
r e and hence of e for all e ∈ E,

thereby identifying fe (e) for all e ∈ E. QED.

Theorem 1 shows that fe (e) is identified for e ∈ E. As discussed earlier, for e /∈ E, it is

not possible to learn anything about fe (e) other than the total probability of not lying in

19



the set E. The people with values of e /∈ E are never willing to pay a positive price to buy

fruit.

For policy questions such as competition policy questions or tax policy questions, these

people are irrelevant. They are outside the market. For policy questions involving exter-

nalities such as public health, they may be relevant and policy makers may be interested in

learning about the distribution of e for those consumer types. In that case, policy makers

have several options. They could estimate bounds on policy responses, they could introduce

experiments with subsidies to generate negative prices, or they could identify the distribu-

tion by imposing shape or parameter restrictions on fe. Since fe (e) is identified over a large

(positive measure) subset of the support of e, in general it could be fully identified either by

semiparametric shape restrictions such as radial symmetry, or by finitely parameterizing the

density. It then follows by Theorem 1 that the model is completely identified.

5.2 Heterogeneity in B

We now introduce heterogeneity in B and discuss how B shapes product choices and the de-

gree of substitutability and complementarity between goods. The main reason we introduce

heterogeneity in B is empirical. Prices alone do not explain the consumption patterns in the

data. Consumers facing the same prices choose different fruit baskets.

Let Bh be the matrix of preference parameters for household h, let Bh
j be column j in

Bh and let bhkj be row k column j in Bh. As discussed in Section 4.2, when K = 1, the ratio

of pj to |bh1j| determines product choice for household h. Household h purchases the good

with the smallest value of
pj

|bh1j| . In this case, all goods are perfect substitutes and goods

with low prices and large values of |bh1j| are purchased.

When K > 1, the magnitude of each column vector ‖Bh
j ‖ =

√∑K
k=1 (bhkj)

2, plays a simi-

lar role. When ‖Bh
j ‖ is large relative to pj, the product j is likely to be purchased. However,

now households may buy more than one good and goods may be complements. Now, the

relative magnitudes of the elements within a column of Bh, determine how important each
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good is in producing each latent attribute. They also govern the degree to which goods are

complements or substitutes.

As discussed above, Bh is identified only up to scale and rotation normalizations. To

impose these normalizations while incorporating heterogeneity in a flexible way, we parame-

terize Bh as follows. First, we normalise Bh to be upper triangular so that bhkj = 0 if k > j.

Then we convert the nonzero elements of each column of Bh into hyperspherical coordinates.

That is, for each j, we define
(
dhj, C

h
j

)
= H

(
Bh
j

)
where dhj = ‖Bh

j ‖, ‖Ch
j ‖ = 1, and H is

the hyperspherical coordinate transformation detailed in Appendix A in the Supplementary

Appendix. In the hyperspherical coordinate representation dhj ∈ R+, chkj ∈ [0, π] for all

k ≤ min(K, j)− 2, and chkj ∈ [0, 2π] for k = min(K, j)− 1. Here, chkj is the element in row

k of vector Ch
j . Finally, we assume that

ln dhj = zTj βh (5.1)

chkj = πΦ−1
(
zTkjγh

)
∀k ≤ min(K, j)− 2 (5.2)

chkj = 2πΦ−1
(
zTkjγh

)
∀k = min(K, j)− 1 (5.3)

where Φ is the normal CDF, (zj, zkj) are vectors of product characteristics, and (βh, γh) are

vectors of consumer specific parameters. The log transformation ensures that dhj is positive

and the inverse normal transformations ensure that chkj are constrained to lie in the relevant

intervals.2

We assume

βhj = βj0 + βTj1xh + βTj2ηh (5.4)

γhkj = γkj0 + γkj1xh + γkj2ηh (5.5)

where xh is a vector of observable demographic variables and ηh is a Nη dimensional vector

2The inverse normal transformation could be replaced with the inverse of any strictly increasing cumula-
tive distribution function.

21



of unobservable latent factors normalized to be independent with mean zero and variance 1.

The J×Nη matrix β2 =
[
β12, ..., βj2, ..., βJ2

]
is an upper triangular matrix of factor loadings

mapping the low dimensional η into the random coefficients βh. Let NC = (K − 1)
(
J − K

2

)
be the number of elements of {Cj}Jj=2 Then, the NC × Nη matrix γ2 =

[
γ122, ..., γKJ−1,2

]
is an upper triangular matrix of factor loadings mapping the low dimensional η into the

random coefficients ch. Note that the matrices of factor loadings are normalized to be upper

triangular and that the parameters describing the mean, variance and correlations of η are

subsumed in the parameters (β0, β2, γ0, γ2).

In terms of product substitutability, this specification nests the fully unrestricted case in

which (zj, zkj) are vectors of dummy variables defined by product names and more restricted

case where (zj, zkj) are vectors of observable product characteristics. The former case is

unrestricted in the sense that no patterns of substitutability are imposed on Bh. The latter,

depending on the set of observable characteristics available, imposes that products with

similar values of (zj, zkj) are similar.

In terms of heterogeneity across households, the flexibility of the model depends on the set

of observable variables available and on the dimension and distribution of η. In our empirical

application we assume that the dimension of ηh is 2 and that it is normally distributed.

The model is highly flexible in that the support of the random coefficients spans the space

of upper triangular matrices B. In addition, we allow random coefficients to affect both the

importance of each product ‖Bj‖ and the patterns of substitution and complementarity.

This flexibility is important to capture the wide variety of baskets chosen by households.

Finally, we maintain this flexibility while keeping the dimension of random coefficients low

by using the factor structure in equations (5.4) and (5.5).

5.3 Identification of additional heterogeneity

The proof of Theorem 1 works by establishing nonparametric identification of the distribu-

tion of BT e in the positive orthant. When B is constant, Theorem 1 shows this implies
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identification of B and nonparametric identification of the distribution of e for all e where

BT e > 0. These results remain true if both B and fe are conditioned on xh.

In our empirical application, we also introduce random coefficients into B as detailed in

the previous section. To maintain identification, we assume that the distributions of both the

random coefficients and e are finitely parameterized, with distributions that are independent

of p.

The proof of Theorem 1 shows that for various subsets r of K goods, people who pur-

chase positive amounts of those K goods (because the price vector pr of those goods is

sufficiently low and the price vector of all other goods is sufficiently high) do so with de-

mand functions given by qr =
(
BT
r Br

)−1 (
BT
r e− pr

)
. Conditioning on this price regime,

the conditional distribution of qr given prices nonparametrically identifies the distribution

of
(
BT
r Br

)−1 (
BT
r e− pr

)
given pr.

The parameterized distributions of B and e are then identified as long as their parame-

ters can be recovered from moments of
(
BT
r Br

)−1
and of

(
BT
r Br

)−1
BT
r e. In our empirical

application, we assume e is a multivariate K vector normal and, as detailed in the previous

section, we introduce random coefficients into B using a factor structure. Specifically, we

assume ηh is a Nη dimensional vector of independent normally distributed latent factors. We

then estimate the factor loadings βj2 and γkj2. The identification of the parameters of nor-

mal distributions from low order moments then ensures identification of this parameterized

model.

5.4 Estimation

We assume the data consists of n independent observations of (pht, qht, xht) for each household

(h, t). Observation (h, t) is an observation of household h in month t.3 Income yht plays

no role due to the quasilinear utility assumption. However, income can be included as a

3We use one observation per household and do not exploit the panel structure of the dataset. While it
is straightforward conceptually to extend the analysis to the panel setting under standard assumptions, the
computational burden increases and so we leave the analysis to future work.
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household characteristic, as is common in empirical applications of multinomial demand

models. To capture seasonal patterns in demand, we assume that that e ∼ N (µt,Σ) with

µ = {µt}
T
t=1 and that equation (5.4) is replaced with

βhjt = βj0t + βTj1xh + βT2jηh (5.6)

βj0t varies across months. In short, we allow aggregate demand for each of the K latent

indexes to vary across months and we allow the relative importance of each good, βj0t to

vary across months. We assume that the parameters γ do not vary across months. Finally, we

assume that η ∼ N (0, I), and that dim (η) = 2. The assumption that η has mean zero and

covariance matrix equal to the identity matrix is a normalization given the parameterization

in equations (5.4) and (5.5).

The parameters of the model are θ = (µ,Σ, β, γ) where µ = {µt}
T
t=1 is the vector of

all mean values of e, β =
{{
βj0t

}T
t=1

, βj1, βj2

}J
j=1

is the vector of all parameters in (5.1)

and γ =
{
γkj0, γkj1, γkj2

}
is the vector of all parameters in (5.2). The parameters (µ,Σ)

determine the distribution of e. They primarily determine the number of items chosen and

the quantities purchased. The parameters (β, γ) determine the distribution of B. They

govern which products are chosen and in which combinations. They also determine the

response to prices. We estimate the model parameters by maximum likelihood.

Full details of the log likelihood function are given in Appendix B in the Supplementary

Appendix. Here, we simply outline the key elements. We compute the likelihood function in

each of three cases. Case 1 is the case where a consumer purchases exactly K goods. In this

case, conditional on the random coefficients, the mapping from data to e is one-to-one. The

likelihood function is simply that of a linear model with random coefficients and computation

merely requires integration with respect to the distribution of random coefficients. Because

we assume a factor structure on the random coefficients, the dimension of integration is kept

low.
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Case 2 is the case where a consumer chooses fewer than K items but more than zero.

In this case, conditional on random coefficients, many values of e are consistent with the

observed choice and so the likelihood function is the integral over the polytope in RK defined

by the first order conditions. To compute the integral efficiently, we make a series of change

of variables to convert the integral to an integral over a hypercube and then use the tensor

product of Gauss-Legendre integration rules to compute the integral on the hypercube.

Because the region of integration is a polytope in the original coordinates, the change of

variables is simple and fast to compute. A benefit of the change of variables is that the

boundary of the transformed region of integration does not depend on the parameters so the

numerical approximation preserves the fact that the likelihood function is a smooth function

of the parameters.

Case 3 is the case where a consumer chooses to purchase nothing. This case is similar to

case 2 but with a slightly different set of binding inequalities defining the region of integration.

6 Empirical application

We use data from the Kantar World Panel for the UK for calendar year 2008 on all purchases

of food brought into the home by 26,514 households. Using handheld scanners, households

record purchases of all items bought and record prices from till receipts. We treat each

shopping trip as an observation. The data contain a large set of product attributes (at the

barcode level) as well as household characteristics. We use data on all purchases of fruit

excluding a few infrequently purchased categories. After eliminating these small categories,

we observe purchases of 27 different types of fruit including, for example, apricots, bananas,

apples, and cherries.
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6.1 Summary statistics

Table A.1 shows the purchase frequency of each category of fruit. The top three most

frequently purchased categories are bananas (23.79 % of purchases), apples (16.85%) and

grapes (9.99%). The top 15 categories account for 95% of purchases.

Table A.2 shows the purchase frequency of different sized baskets. The table shows that

48.18% of baskets contained exactly 1 item (that is, any quantity of one type of fruit),

25.63% contained two items and 13.86% contained 3 items. Households purchased baskets

containing 5 or fewer items 97.67% of the time. A simple discrete choice model that assumes

consumers buy at most one type of fruit, would be wrong 51.82% of the time.

Table A.3 shows the most frequently purchased two-item combinations. While each of the

top 5 or 10 two-item combinations has an appreciable market share, in aggregate the top 5

account for only 54.34% of two-item combinations and the top 10 account for only 67.20%. To

account for 95% of two-item combinations one must include 105 distinct combinations, which

are all the combinations listed in Tables C.1-C.3 in the Supplementary Appendix. Most of

these combinations have small market shares individually, but together they account for a

large share of all two-item baskets. Our model can account for this wide variation in choices

of types of fruit, numbers of types chosen, and the quantities of each.

Another way to see the variety of choices and the potential role of complementarities is

to look at the frequency of basket size conditional on fruit choice. Tables C.4-C.5 show, con-

ditional on purchase of a fruit type, how frequently each basket size was purchased. Except

for bananas, cherries, and lemons, all categories are more likely to be purchased in combina-

tions than as stand-alone categories. The relative frequencies of basket size vary across fruit

categories and the larger baskets are usually less frequent. These patterns strongly violate

the usual independence assumptions of typical discrete choice demand models.
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6.2 Prices

For every shopping trip, we observe the expenditure and price for all items purchased. How-

ever, for items not purchased the price is not observed. To overcome this problem, we follow

standard practice and impute prices using a hedonic regression. For each fruit category we

estimate a hedonic price model

ln pit = βxit + h (t) + εit

where ln pit is the price of item i in period t, xit is a vector of characteristics of item i in

period t and h (t) is a 6th order polynomial function of time. Time is measured as the day

within the year. Characteristics included in the regressions are country of origin, branded,

organic, tiering (economy, premium or standard), fascia (one of ten firms in the UK or other),

packaging, online shop, and small store.

Figure D.1 in the Supplementary Appendix shows price data and imputed prices for 3

representative examples of the 27 fruit categories: apricots, bananas and cherries. Price

is observed for each shopping trip where a particular fruit is purchased. For apricots and

cherries, prices rise in the spring and the autumn. These are periods when fresh apricots

and cherries are more costly and more scarce. In contrast, the price of bananas is relatively

flat. The results also show that, at any single point in time there is a great deal of variability

in price. This variation is primarily due to variation across fascia and variation due to

promotions.

6.3 Price issues

Issues regarding prices include imputations, seasonal unavailability, and potential endogene-

ity. For some stores and time periods, no purchases of a particular fruit are observed. As

noted above, we follow standard procedure in the literature by imputing prices for these

periods using a hedonic pricing model.
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For some time periods, the number of observed purchases is either zero or extremely low.

Fruits (such as ugli fruit) that have very low demand in all time periods are dropped from

the sample, since demand for these is too low and specialized to be estimated with reasonable

precision. Other fruits have very low or zero sales just in some time periods but not others,

due to availability (typically being out of season). For example, cherries are available in the

summer and winter but not in the spring and the autumn. To handle this situation, we trim

observations when sales within a one week window are below a low threshold. That is, if

total sales of a fruit within a week in our sample are below the threshold, we treat the fruit

as unavailable that week and drop from our sample the few households that did manage to

purchase that week. For these cases, we treat the fruit’s price as being arbitrarily high on

those days, to represent lack of availability.

Essentially, this procedure treats low availability as a supply shock. We interpret this

procedure as a form of asymptotic trimming. By lowering the threshold as the sample

size grows, asymptotically we only treat true zeros as unavailable supply, noting that any

infrequency of purchase or high demand price elasticity will eventually lead to some purchases

in every period where the product is really generally available.

The estimation of our model assumes prices are exogenous. Since we estimate the model

using data on daily purchases, likely sources of endogeneity for fruit demand on any particular

day could include promotional activity, weather (if both prices and demand respond to

weather), and unobserved quality variation. Most of the variation in quality of fruit is either

across stores or seasonal. We capture seasonal variation using monthly dummies in the

model. We treat store choice as exogenous (noting that store choice depends heavily on

factors other than fruit demand, such as distance to the store, and on the other products

consumers consider buying on each trip to the market). We are therefore assuming that,

that conditional on store, prices are not correlated with demand shocks. Conditional on

seasonal dummies, we expect current weather to shift demand but not price as we expect

stores to rarely if ever change prices in response to changes in high frequency (such as daily)

28



weather shocks. We include promotional status in our hedonic price models and assume that

conditional on price, unobserved demand shocks are independent of promotional activity. In

summary, given the nature of our data and the controls we include in the model, we expect

that biases from assuming prices are exogenous are likely to be small.

6.4 Potential estimation issues

Our identification proof assumes that prices are continuously distributed over a relatively

large support, which ensures that, with positive probability, most possible combinations of

K = 5 or fewer fruits would be purchased by some subset of consumers. However, in finite

data sets, we may not observe many combinations of less popular fruits being purchased, or

the number of consumers observed buying rare combinations of fruits may be very small.

An analogous problem arises in BLP type models, where some goods may have very small

or zero market shares. In practice, our estimator converges and appears to be numerically

well behaved, as we discuss in the next section. This may be aided in part by our use of a

parametric model for the distribution of random utility parameters, which should allow for

identification even with potentially limited price variation.

7 Empirical results

The total number of parameters in the model is determined by the number of types of fruit

J , the number of indices K (which equals the maximum number of different types of fruit

a single consumer may buy), Nη, the dimension of latent factors, and the number of month

fixed effects for µt and β0jt. For J = 27, K = 5, Nη = 2, and T = 12, there are 740

parameters. We estimate these parameters by maximum likelihood, using our sample of

26,514 observations. At the optimum we find that the Hessian of the likelihood function

is negative definite (largest eigenvalue is -0.15) and that all parameters are estimated with

a high degree of precision. All are statistically distinct from zero at the 5% level. We
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restarted the estimation procedure from multiple starting points, and tested by perturbing

the model in multiple directions in the parameter space. We found no evidence of multiple

local optimizers or of failure to converge to a global optimum.

Individual parameter values are difficult to interpret. So, to illustrate our results, we

discuss model predictions for individual households with different random coefficient values,

we summarize aggregate demand curves and elasticities implied by the estimates, and we

provide several different counterfactual simulation exercises.

7.1 Household level demand predictions

To illustrate model predictons for individual consumers, we plot predicted demand for 9

household types. Each type is defined by a realization of the vector η such that for each type

each element of η takes one of three values. For each element, the three values are selected

from the 25th, 50th or 75th percentile of the respective marginal distributions. Each type

also is set to have values of e equal to the mean.

For each household type, we computed the frequency with which baskets of various sizes

were purchased as prices vary (one at a time) from 50% to 200% of baseline prices (basket size

here refers to the number of different types of fruit, not the quantities of each). Household

types 2, 5, 7 and 8 virtually always buy exactly two types of fruit. There are only a small

number of settings in which they buy 1, 3, 4 or 5 items. At the same time, household types

1 and 4 buy 2 or 3 items most of the time (they buy 1 or 4 items on a small number of

occasions) and household types 3, 6, and 9 usually buy 1 or two items (they buy 2-5 items

on a small number of occasions).

For each household type, we also examined how the basket composition varies with

price. Household types 1-6, always buy bananas and apples but vary in terms of which

fruits are added to their basket when they buy more than two items. Household type 1, 4,

and 5 purchase kiwis and nectarines. Households 2, 3, and 6 buy easy-peelers, kiwis, and

nectarines. Households 7-9 do not buy bananas but do buy apples, kiwis, nectarines, and
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easy-peelers.

Finally, Figures B.1 and B.2 plot these households’ demand curves for various fruits, as

functions of the prices of bananas and apples, respectively. Turning first to Figure B.1, the

figures shows demand for bananas, apples and kiwis as function of the price of bananas for

households 1-6. Households 7-9 are not shown because they buy no bananas; as a result the

banana price does not affect their demand. For households 1-6, the banana demand curves

are downward sloping, with slope varying across households. In addition, household 3 stops

buying bananas when the price rises above 1.13, and for household 4, the banana demand

curve is kinked because the household starts buying kiwis when the banana price rises above

1.35. The effects of the banana price on demand for other fruits vary widely. Some cross-price

effects are negative, some are positive, and some are flat. Figure B.2 shows a similar wide

range of effects of apple prices on fruit demand by household type. Apple demand curves

slope downward. Some individual demand curves are kinked when a household either starts

or stops purchasing a type of fruit. cross-price effects are positive in some cases, negative in

others, and flat when apple demand is zero.

These 9 household types illustrate the types of individual behaviour predicted by the

model. However, they only illustrate a handful of cases. To further analyse the model’s

predictions, we next analyse aggregate demand.

7.2 Aggregate demand predictions

Figures B.3 - B.5 show estimated aggregate demand curves for each fruit. They also show

what fraction of aggregate demand comes from purchases of baskets with 1 to 5 items.

While the demand curves for individual consumers are piecewise linear, the variation across

households in slopes and kink points produces aggregate demand curves that are smooth

and show varying degrees of curvature.

The aggregate banana demand curve is shown in Figure B.3 panel (c). It has a relatively

gentle and constant slope . Most of the demand for bananas comes from shoppers purchasing
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3, 4, or 5 items. In contrast, panel (b) shows the avocado demand curve. The avocado

demand curve is mush steeper and has much more curvature. Very few consumers who buy

avocados buy 5 items. Most buy 2-4 items. These curves illustrate that both intensive and

extensive margin effects influence the shapes of the aggregate demand curves.

7.3 Elasticities

Tables A.4 - A.7 show estimates of average own- and cross-price elasticities. Six of the own-

price elasticities are less than one in magnitude (apples, bananas, easy-peelers, lemons, pears,

and plums). Of these apples, bananas and easy-peelers are in the top 5 fruit categories in

terms of market share, pears and plums are in the top 10 and lemons are 11th. This suggests

that these products might at least sometimes be sold as loss leaders, on sale for a relatively

low price, despite inelastic demand. Twenty of the elasticities are between -1.04 (mangos)

and -10.6 (sharon fruit) and seventeen elasticities are between -1 and -5.

One of the fruit own-price elasticities is very large in magnitude; pomegranates (-41.1).This

is not altogether unexpected. Pomegranates are purchased in only 0.16% of transactions.

While they are not the smallest market share product, it is a feature of sparse demand het-

erogeneous consumers that demand for products with small market shares can have very high

elasticities, because it only requires a small number of consumers to start buying the product

to produce a very large percentage increase in demand. The aggregate demand curve for

pomegranates seen in Figure B.5 panel (g) shows that the demand curve for pomegranates

is very steep when prices are low and flattens as the pomegranates price rises. As a result,

the estimated own-price elasticity drops substantially when the price rises.

Typical discrete choice models assume all goods are substitutes and so do not permit

zero or negative cross-price effects. Likewise, typical continuous demand models do not

have exactly zero cross-price effects. In contrast, in our model estimated cross-price effects

between two types of fruit will be exactly zero (consistent with economic theory) when the

two types of fruit are never purchased in the same basket. Tables A.4 - A.7 show that about
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a third of all pairs of fruits have zero cross-price effects at baseline prices.

Among the nonzero cross-price elasticities there are a mix of negative and positive effects.

The negative cross-price elasticities indicate that on average in our sample, the goods are

complements. For example, looking at row 3 in Tables A.4-A.7, when the price of bananas

rises, demand for 13 of the other groups goes down (avocados, berries, cherries, dates, apples,

easy-peelers, grapes, grapefruit, kiwi, lime, mango, melon, and pineapple). At baseline prices,

these goods in aggregate are complements to bananas. Demand for 10 other goods goes up

(lemons, lychees, nectarines, oranges, passion fruits, paw paws, peaches, pears, plums, and

pomegranates). At baseline prices, these goods in aggregate are substitutes to bananas.

For some of the small market share goods, these cross-price effects are large. For example,

the impact on pomegranates is 5.88. Because most people who buy pomegranates also buy

bananas, the banana price has a big impact on demand for pomegranates. In contrast, the

cross-price effect of pomegranate price on bananas is only 0.000482. It is small because most

people who buy bananas do not buy pomegranates.

7.4 Counterfactual scenarios

Many current large scale shifts in the economy could affect the markets for fruit in the UK.

For example, Brexit is likely to increase tariffs on fruit imports from Europe. Brexit could

also increase the costs of UK fruit by limiting the supply of farm workers and driving up

wages. Another potential change would be a merger between two of the largest supermarket

chains. A proposed merger between Asda and Sainsbury’s, who account for 16.8% and 15.5%

of UK fruit sales respectively, was blocked by the UK competition authority in April 2019.

Such a merger could increase their market power, possibly driving up fruit prices.

At the same time, various tax policy changes could be considered by the British govern-

ment. Currently, due to concerns about tax incidence on poor households, purchased food to

be eaten at home is not subject to the VAT (value added tax). Extending the VAT to food

could significantly increase tax revenue at the cost of adversely affecting poor households.
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Alternatively, the government might consider subsidising fruit consumption to promote pub-

lic health (in the past the British government promoted fruit consumption in other ways,

such as the “five a day” advertising campaign).

To analyse effects of these potential changes, we simulated the impacts of five different

policy scenarios:

1. A 10% increase in the prices of EU sourced fruit due to Brexit.

2. A 10% increase in the prices of UK sourced fruit due to Brexit.

3. A 5% increase in the price of fruit at Asda and Sainsbury’s.

4. A 10% subsidy of fruit prices to promote public health.

5. A 20% VAT tax on fruit to raise revenue.

To simulate the first three scenarios, we used our sample to compute the fraction of each

fruit category sourced from the EU, from the UK and from the rest of the world. We also

computed the fraction of each category sold by Asda and Sainsbury’s. We then used these

shares to compute the price changes implied by each of these events.

For scenario one, the percentage price increase for fruit j is assumed to be τ 1j = 0.1sEU,j

where sEU.j is the share of fruit sourced from the EU. For scenario two, the percentage

price increase for category j is assumed to be τ 2j = 0.1sUK,j where sUK,j is the share of

fruit sourced from the UK. For scenario 3, the percentage price increase is assumed to be

τ 3j = 0.05 (sASDA,j + sSAIN,j) where sASDA,j and sSAIN,j are the shares of fruit sold by Asda

and Sainsbury’s respectively. For scenario four, we assume all fruit prices decrease by 10%.

For scenario 5, we assume all prices increase by 20%.

The price changes resulting from each of these scenarios are detailed in Table A.8. The

first two scenarios affect prices in complex ways because the fraction of fruits sourced from

each country varies significantly across fruit types. For example, the EU tariff scenario

results in more than a 5% price increase for apricots, kiwis, lemons, nectarines, peaches and
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pears, because relatively large fractions of those fruits are sourced from the EU. In contrast,

the UK cost shock results in price increases of less than 5% for all fruits except rhubarb

(9.87% increase). A small number of categories (berries, cherries, apples, pears,) have more

moderate price increases of greater than 1%. These are the only categories for which the UK

is a significant supplier. The merger has a more balanced impact on prices because there

isn’t much variation in fruit market shares across grocery firms.

While the exact price impacts of Brexit and of the proposed merger are unknown (see

for example Levell et al. 2017), the hypothesised price changes we consider here provide an

illustration of what the first order impacts from Brexit or the proposed merger could be.

For each scenario, given the change in prices, we use our model to compute the impact

on a) demand, b) welfare, c) revenues of grocery firms, and d) tax revenue. Results are given

in Tables A.9 and A.10.

The second column in Table A.9 shows that the EU tariff has a small percentage impact

on most fruit categories but a big negative impact on apricots, cherries, nectarines, peaches

and pomegranates. For all of these categories, the tariff leads to a drop in demand of more

than 5%. The impacts are quite large, larger than one would predict based on the own-

price elasticities alone. In addition, due to substitution effects, several categories (bananas,

dates, apples, grapefruits, lychees, mangos, melons, oranges, passion fruits, paw paws, and

pineapples) experience a net increase in demand. These fruits are primarily sourced either

from the UK or from outside the EU. As a result, their prices are unaffected by the tariff

and yet their demand increases, in some cases by substantial amounts. Taken together, these

results illustrate that cross-price effects are quite important for understanding the impact of

tariff shocks on demand for fruit.

Scenarios 2 and 3 have much more moderate impacts on prices and also on the resulting

demand for fruit, for all fruits except rhubarb. Rhubarb demand, low to begin with, is re-

duced to zero by the predicted 9.87% price increase. Demand for berries, cherries, pears, and

plums is reduced by -1.12% (pears) to -7.61% (berries) while demand for lemons, nectarines,
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pineapples, peaches, pomegranates, and sharon fruits is increased by 1.09% (sharon fruits)

to 15.6% (pineapple). All other responses are less than 1%. In scenario 3, in which prices

increase by 1.08% (dates) to 2.21% (apricots), most products experience changes of demand

of less than 5%. The exceptions are apricots and sharon fruits which experience declines in

demand of 13% and 7.37% respectively.

The final two scenarios, a 10% subsidy of fruit prices and a 20% VAT on fruit, have

large impacts on demand. The former increases demand by less than 10% for 15 categories,

10-20% for 6 categories and more than 20% for 6 categories. The latter scenario reduces

demand by less than 10% for 10 categories, 10-20% for 7 categories and more than 20% for

10 categories.

Table A.10 reports impacts on total consumer expenditure and on welfare. The top panel

shows the impact on household fruit expenditure per shopping trip. The first 3 scenarios

lead to increases in expenditure ranging from 0.85% to 1.95%. Importantly, the change in

expenditure induced by the price change is not monotonically related to total expenditure.

In 4 of 5 scenarios the 90th percentile of expenditure changes the most and in 3 of 5 scenarios

the 10th percentile changes the least. In scenario 1 the 50th percentile is impacted more than

the 25th, whereas in scenario 2, the 25th is impacted more than the 50th. This illustrates

that accounting for unobserved heterogeneity is important for capturing how price changes

affect households at different points in the expenditure distribution.

The second panel shows the impact on consumer surplus measured in GBP per household

per shopping trip. The EU tariff costs 10th percentile households about 5 pence per shopping

trip and costs the 90th percentile households about 44 pence per shopping trip. The UK

cost shock has very small impacts, less than 10 pence per shopping. The merger has an

intermediate impact. Scenarios 4 and 5 lead to larger price changes and hence larger impacts

on consumer surplus.

The final panel summarizes the aggregate impacts of each scenario. In all cases, the

consumer surplus effects and tax revenue effects offset each other almost exactly. However,
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the price increases lead to reductions in firm revenue. The EU tariff reduces firm revenue by

13 pence per household per shopping trip, representing about a 2% decrease in revenues. The

merger actually reduces firm fruit revenues by about 7 pence per trip and reduces consumer

surplus by 11 pence per trip. Since fruit accounts for only a small share of supermarket

revenue, this suggests that the merger would have increased revenue from other goods enough

to compensate for this reduction in revenue.

8 Conclusions

Discrete choice models of demand focus on the fact that consumers must make individual

selections from a wide variety of items in the market. However, many goods are not purchased

and consumed in isolation, but jointly with other goods. Also, many goods are purchased

and consumed in close to continuous quantities rather than in single units. Unlike most

discrete choice models, our model allows consumers to choose more than one good at a

time, allows the chosen goods to be substitutes or complements, and lets goods be consumed

in continuous quantities. Unlike standard continuous consumer demand systems, our model

allows individual consumers to choose to consume zero quantities of most types of goods, and

includes substantial unobserved preference heterogeneity in the form of random coefficients.

Our model nests both standard continuous demand systems like the quadratic direct utility

function and standard discrete choice models like random coefficients logit or probit as special

cases.

In our empirical application to fruit demand in the UK, we uncover a wide range of

demand patterns, including complementarities, kinks, and corners, that could not have been

revealed with traditional discrete or continuous demand models. These results have impor-

tant implications for welfare calculations, construction of price indices, market structure, and

tax policies. We illustrate some of these implications by estimating the impacts of potential

policies such as tariffs or price changes due to Brexit, a change in the VAT, or a merger
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between two large grocery chains.
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A Tables

Table A.1: Most frequently purchased fruit categories

Freq. Pct. Cum. Pct.
Banana 371,892 23.79 23.79
Apples 263,369 16.85 40.63
Grapes 156,189 9.99 50.63
Berries+Currants 152,731 9.77 60.40
Easy Peelers 135,073 8.64 69.04
Pears 91,062 5.82 74.86
Orange 62,599 4.00 78.86
Plums 50,879 3.25 82.12
Melons 41,845 2.68 84.80
Nectarines 37,954 2.43 87.22
Lemon 35,593 2.28 89.50
Kiwi Fruit 32,527 2.08 91.58
Pineapples 25,482 1.63 93.21
Avocado 20,810 1.33 94.54
Peaches 16,874 1.08 95.62
Grapefruit 15,248 0.98 96.60
Mango 15,096 0.97 97.56
Cherries 13,792 0.88 98.44
Lime 6,777 0.43 98.88
Dates 3,869 0.25 99.13
Apricot 3,349 0.21 99.34
Pomegranates 2,474 0.16 99.50
Sharon Fruit 2,059 0.13 99.63
Rhubarb 1,867 0.12 99.75
Passion Fruit 1,592 0.10 99.85
Paw-Paws 1,222 0.08 99.93
Lychees 1,114 0.07 100.00

Note: Using sample of all shopping trips in
2008, each row in the table records the fre-
quency of purchase for a single category of
fruit.
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Table A.2: Number of categories purchased

Freq. Pct. Cum. Pct.
1 377,096 48.18 48.18
2 200,632 25.63 73.81
3 108,527 13.86 87.67
4 53,301 6.81 94.48
5 24,929 3.18 97.67
6 10,889 1.39 99.06
7 4,590 0.59 99.64
8 1,756 0.22 99.87
9 643 0.08 99.95
10 234 0.03 99.98
11 96 0.01 99.99
12 45 0.01 100.00
13 11 0.00 100.00
14 10 0.00 100.00
15 2 0.00 100.00
Total 782,761 100.00

Note: Using the sample of all shopping trips
in 2008, the table records the frequency with
which consumers purchased fruit baskets con-
taining between 1 and 15 categories of fruit.
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Table A.3: Most frequently purchased 2-item combinations

Freq. Pct. Cum. Pct.
Banana, Apples 101533 25.03 25.03
Banana, Berries+Currants 52141 12.85 37.88
Banana, Easy Peelers 24442 6.03 43.91
Banana, Grapes 23977 5.91 49.82
Apples, Easy Peelers 18363 4.53 54.34
Berries+Currants, Apples 15931 3.93 58.27
Apples, Grapes 12052 2.97 61.24
Berries+Currants, Grapes 8592 2.12 63.36
Avocado, Banana 7915 1.95 65.31
Banana, Pears 7681 1.89 67.20
Apples, Pears 6299 1.55 68.76
Banana, Orange 5746 1.42 70.17
Berries+Currants, Easy Peelers 5506 1.36 71.53
Apples, Orange 5070 1.25 72.78
Easy Peelers, Grapes 4856 1.20 73.98
Banana, Melons 3551 0.88 74.85
Banana, Nectarines 3244 0.80 75.65
Banana, Lemon 3187 0.79 76.44
Banana, Kiwi Fruit 3144 0.78 77.21
Berries+Currants, Cherries 3018 0.74 77.96
Banana, Plums 2916 0.72 78.68
Avocado, Berries+Currants 2514 0.62 79.30
Banana, Cherries 2511 0.62 79.92
Berries+Currants, Melons 2151 0.53 80.45
Berries+Currants, Nectarines 2133 0.53 80.97
Apples, Kiwi Fruit 2043 0.50 81.48
Apples, Lemon 2009 0.50 81.97
Apples, Melons 1898 0.47 82.44
Banana, Grapefruit 1829 0.45 82.89
Apples, Nectarines 1803 0.44 83.33
Apples, Plums 1790 0.44 83.77
Avocado, Apples 1751 0.43 84.21
Grapes, Pears 1745 0.43 84.64
Easy Peelers, Pears 1734 0.43 85.06
Grapes, Orange 1508 0.37 85.44

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.
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Table A.4: Elasticities (1)

Price Apricots Avocados Bananas Berries Cherries Dates Apples
pApricots -8.38 -0.0049 0 0 0 0 0
pAvocados -0.191 -2.33 -0.00366 0.000848 -0.0232 0 0.0135
pBananas 0 -0.0253 -0.237 -0.212 -0.0895 -0.0204 -0.0364
pBerries 0 0.00466 -0.168 -1.45 0.594 0.00516 -0.0105
pCherries 0 -0.00471 -0.00262 0.0219 -4.61 -0.000405 -0.00721
pDates 0 0 -0.00147 0.00047 -0.001 -1.62 -0.0535
pApples 0 0.0324 -0.0127 -0.00462 -0.0856 -0.257 -0.395
pEasyPeelers 0 -0.012 -0.0749 0.0445 0.686 -0.0317 0.103
pGrapes 0 0.0435 -0.121 0.1 0.0147 0.0625 -0.0135
pGrapefruits 0 1.62e-06 -0.00277 6.76e-05 0 0.036 -0.00205
pKiwis -3.28e-12 -0.0545 -0.0295 -0.106 0.0873 -0.00123 0.118
pLemons 0 0 0.00411 0.146 0.0293 0.00846 0.00845
pLimes 0 0 -1.51e-05 0 0 0.000663 -1.05e-05
pLychees 0 0 0.00219 0 0 0.0332 0.000468
pMangos 0 0 -0.00195 -0.000596 0.0203 0.152 0.0248
pMelons 0 0.259 -0.614 0.00996 0.229 -0.00969 0.0958
pNectarines 0.722 -0.0614 0.00882 -0.00412 0 -0.000843 0.0672
pOranges 0 0.00884 0.0991 0.0739 0.0722 0.148 -0.00488
pPassionfruits 0 0 4.76e-05 0 0 0 0
pPaw−paws 0 0 0.00316 0 0.000358 0.247 0.00391
pPeaches 0 0 0.143 0.17 0.495 0.0678 -0.00136
pPears 0 0 0.000698 -0.000211 -0.0035 0.0703 0.0464
pPineapples 0 0.00672 -0.0159 0.119 0.345 0.000366 -0.00153
pPlums 0 -0.00172 0.0121 -0.0191 0.0779 0.0572 -0.00483
pPomegranates 0 0 0.000482 7.42e-05 0 0.0418 0
pRhubarb 0 0 0 0 0 2.26e-05 0
pSharonfruits 0 0.00928 0 7.74e-06 0.00387 0 0

Note: Each column records the elasticities of demand of one fruit type with
respect to its own price and the prices of the other fruits. The own-price
elasticities are in boldface font.
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Table A.5: Elasticities (2)

Price Easy Peelers Grapes Grapefruits Kiwis Lemons Limes Lychees
pApricots 0 0 0 0 0 0 0
pAvocados -0.0022 0.0184 1.67e-05 -0.023 0 0 0
pBananas -0.095 -0.354 -0.197 -0.086 0.0198 -0.0047 0.248
pBerries 0.0448 0.233 0.00381 -0.244 0.561 0 -2.04e-11
pCherries 0.0255 0.00126 1.33e-11 0.00746 0.00415 0 0
pDates -0.00291 0.0132 0.185 -0.00026 0.00296 0.0149 0.273
pApples 0.0453 -0.0137 -0.0506 0.12 0.0142 -0.00114 0.0185
pEasyPeelers -0.317 0.101 -0.122 -0.0258 0.0362 0.0241 -2.01e-12
pGrapes 0.0437 -1.74 1.01 -0.000815 -0.0761 0.0329 0.888
pGrapefruits -0.00217 0.0415 -4.06 -0.000214 0.00141 0 0.152
pKiwis -0.0112 -0.000818 -0.00522 -1.07 0.0248 0 0
pLemons 0.0095 -0.0461 0.0207 0.015 -0.893 0 0
pLimes 9.8e-05 0.00031 0 0 0 -2.35 0
pLychees 0 0.0229 0.095 0 0 0 -3.5
pMangos 0.00295 0.00115 0.13 -0.00323 0.00227 0 0.0796
pMelons 0.432 0.112 0.101 -0.0836 -1.67 0 0
pNectarines -0.0124 -0.000783 0.00427 0.548 0.0338 0 0
pOranges 0.0103 1.51 1.01 -0.00023 -0.134 -0.0757 0.00427
pPassionfruits 0 0 0.0071 0 0 0 0
pPaw−paws 0.000625 -0.0045 0 0.000173 0 0 0
pPeaches -0.0469 -0.00914 0.375 -0.0101 -0.131 0.313 0.025
pPears -0.00315 0.0169 -0.00504 -0.00645 0.0202 0.0221 0.00957
pPineapples -0.017 0.0742 0.13 -0.00695 -0.00474 0 0
pPlums -0.000365 -0.0878 0.549 0.0179 0.139 -0.00332 0.0915
pPomegranates 0 0 -0.0167 0 0 0 0
pRhubarb 0 2.21e-05 0 0 0 0 0
pSharonfruits 0.000227 0 0 0.000514 0 0 0

Note: Each column records the elasticities of demand of one fruit type with
respect to its own price and the prices of the other fruits. The own-price
elasticities are in boldface font.
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Table A.6: Elasticities (3)

Price Mangos Melons Nectarines Oranges Passion fruits Paw-paws Peaches
pApricots 0 0 0.0346 0 0 0 0
pAvocados 0 0.079 -0.115 0.00279 0 0 0
pBananas -0.0492 -0.199 0.114 0.216 0.198 0.201 0.282
pBerries -0.0119 0.0174 -0.0423 0.128 0 0 0.266
pCherries 0.015 0.0141 0 0.00461 0 0.000668 0.0285
pDates 0.277 -0.00148 -0.000789 0.0233 0 1.14 0.00965
pApples 0.218 0.0703 0.302 -0.0037 0 0.0865 -0.000929
pEasyPeelers 0.0586 0.154 -0.126 0.0176 0 0.0314 -0.0727
pGrapes 0.00987 0.0805 -0.00346 1.12 4.06e-12 -0.0978 -0.00614
pGrapefruits 0.0463 0.003 0.000778 0.031 0.415 0 0.0104
pKiwis -0.028 -0.0605 2.43 -0.000172 0 0.00378 -0.00684
pLemons 0.0119 -0.00434 0.0907 -0.0607 0 0 -0.0534
pLimes 0 0 0 -0.00053 0 0 0.00198
pLychees 0.0177 0 0 8.21e-05 0 0 0.000433
pMangos -1.04 -0.00171 0.0251 -0.0173 0.216 0.136 0.000339
pMelons -0.0205 -7.23 -0.00801 0.165 0 0.0133 6.09
pNectarines 0.0489 -0.00131 -4.18 -0.00612 -0.0526 0.00313 -0.000685
pOranges -0.201 0.16 -0.0363 -2.42 0.0484 1.08 0.281
pPassionfruits 0.00131 0 -0.000164 2.54e-05 -1.39 0 0
pPaw−paws 0.0538 0.00044 0.000636 0.037 0 -4.88 0.0067
pPeaches 0.00435 0.652 -0.0045 0.311 0 0.217 -1.8
pPears 0.0947 -0.00116 0.0969 -0.00844 0 0.327 -0.00429
pPineapples 0.00116 0.06 0 0.00975 0 0 0.00993
pPlums 0.0293 -0.000583 -0.0392 -0.0456 1.12e-11 0 0.0156
pPomegranates 0.000474 0 0 0 0 0 0
pRhubarb 0 0 0 0 0 0 0
pSharonfruits 0 0 0 0 0 0 0

Note: Each column records the elasticities of demand of one fruit type with
respect to its own price and the prices of the other fruits. The own-price
elasticities are in boldface font.
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Table A.7: Elasticities (4)

Price Pears Pineapples Plums Pomegranates Rhubarb Sharon fruits
pApricots 0 0 0 0 0 0
pAvocados 0 0.0124 -0.00154 0 0 5.6
pBananas 0.0112 -0.204 0.0748 5.88 0 0
pBerries -0.00269 1.2 -0.0941 0.718 0 0.0256
pCherries -0.00165 0.129 0.0141 0 0 0.473
pDates 0.0817 0.000337 0.0256 36.9 0.26 0
pApples 0.259 -0.00675 -0.0104 0 0 0
pEasyPeelers -0.0399 -0.171 -0.00178 0 0 0.747
pGrapes 0.0929 0.323 -0.186 -7.92e-11 1.2 0
pGrapefruits -0.00114 0.0232 0.0478 -2.86 0 0
pKiwis -0.0355 -0.034 0.0379 0 0 0.735
pLemons 0.0669 -0.0125 0.179 0 0 0
pLimes 0.00114 0 -6.6e-05 0 0 0
pLychees 0.00135 0 0.00499 0 0 0
pMangos 0.0603 0.000584 0.00719 0.229 0 0
pMelons 5.9 0.36 -0.00158 0 0 0
pNectarines 0.12 0 -0.0188 0 0 0
pOranges -0.0621 0.0568 -0.129 0 0 0
pPassionfruits 0 0 0 0 0 0
pPaw−paws 0.0826 0 0 0 0 0
pPeaches -0.035 0.0642 0.049 0 0 0
pPears -0.881 -0.191 0.127 0 0 0
pPineapples -0.241 -3.02 0.301 0 0 0
pPlums 0.33 0.621 -0.936 -1.4 0 0.309
pPomegranates 0 0 -0.000708 -41.1 0 0
pRhubarb 0 0 0 0 -2.63 0
pSharonfruits 0 0 0.000458 0 0 -10.6

Note: Each column records the elasticities of demand of one fruit type with
respect to its own price and the prices of the other fruits. The own-price
elasticities are in boldface font.
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Table A.8: Percentage change in price due to tax/price change

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Fruit Baseline EU tariff UK cost shock Merger Subsidy VAT
Apricots 2.44 6.52% 3.33e-13% 2.21% -10% 20%
Avocados 4.4 1.93% 2.54e-11% 1.73% -10% 20%
Bananas 1.05 1.69e-11% 1.69e-11% 1.56% -10% 20%
Berries 6 3.54% 4.3% 1.75% -10% 20%
Cherries 7.1 3.47% 1.9% 1.45% -10% 20%
Dates 1.54 0.05% -1.95e-11% 1.08% -10% 20%
Apples 1.41 2.86% 1.54% 1.66% -10% 20%
Easy Peelers 1.78 4.24% -2.15e-11% 1.71% -10% 20%
Grapes 2.34 3.39% 0.08% 1.46% -10% 20%
Grapefruits 0.886 0.87% 1.11e-11% 1.75% -10% 20%
Kiwis 1.34 6.65% 7.97e-12% 1.55% -10% 20%
Lemons 1.91 5.21% -5.44e-12% 1.7% -10% 20%
Limes 0.892 2.27% -1.64e-11% 1.91% -10% 20%
Lychees 5.37 5.17e-12% 5.17e-12% 1.4% -10% 20%
Mangos 1.37 7.73e-12% 7.73e-12% 1.38% -10% 20%
Melons 1.1 1.81% 3.49e-11% 1.51% -10% 20%
Nectarines 2.17 5.96% 3.64e-11% 1.91% -10% 20%
Oranges 1.44 2.88% 1.23e-11% 1.66% -10% 20%
Passion fruits 1.8 -1.99e-11% -1.99e-11% 1.51% -10% 20%
Paw-paws 3.23 2.12e-11% 2.12e-11% 1.48% -10% 20%
Peaches 2.06 8.97% -1.98e-12% 1.54% -10% 20%
Pears 1.49 5.15% 1.54% 1.59% -10% 20%
Pineapples 0.985 2.01e-11% 2.01e-11% 1.22% -10% 20%
Plums 2.15 3.19% 0.26% 1.61% -10% 20%
Pomegranates 1.77 3.71% -1.32e-11% 1.14% -10% 20%
Rhubarb 4.51 0.11% 9.87% 1.78% -10% 20%
Sharon fruits 9.75 0.5% 2.19e-11% 1.7% -10% 20%

Note: The first column shows the baseline price for each fruit (GBP per kilogram). The
remaining columns show the percentage impact of the change in tax or prices.
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Table A.9: Percentage change in demand due to tax/price change

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Fruit Baseline (kg) EU tariff UK cost shock Merger Subsidy VAT
Apricots 0.00177 -29% 1.87e-11% -13% 116% -72%
Avocados 0.0384 -4.39% 0.0592% -3.69% 26.4% -31.8%
Bananas 1.11 0.657% -0.676% -0.741% 5.08% -9.22%
Berries 0.155 -2.7% -7.61% -2.12% 12% -19.3%
Cherries 0.00482 -7.57% -5.32% -2.92% 28.7% -45%
Dates 0.0548 1.18% -0.232% -0.836% 10.8% -16.4%
Apples 0.288 0.972% -0.933% -0.0613% 0.291% -1.08%
Easy Peelers 0.518 -1.25% 0.468% -0.405% 2.39% -4.6%
Grapes 0.17 -0.428% 0.72% 0.258% 0.973% -3.23%
Grapefruits 0.0186 12.5% 0.707% -2.22% 8.73% -12.3%
Kiwis 0.299 -4.59% -0.737% -1.16% 9.13% -14.9%
Lemons 0.127 -3.77% 4.01% -0.402% 3.67% -7.68%
Limes 0.00421 -2.93% 0.0341% -4.01% 34.7% -37.8%
Lychees 0.00192 4.44% 0.138% -2.17% 20.5% -34%
Mangos 0.0338 1.11% 0.531% -0.645% 5.22% -9.97%
Melons 0.505 6.25% 0.122% -1.12% 7.93% -14.3%
Nectarines 0.0416 -8.88% 3.01% -3.62% 16.5% -26.3%
Oranges 0.372 0.0718% 0.918% -1.22% 5.48% -8.57%
Passion fruits 0.000156 0.187% 3.6e-11% -0.782% 5.63% -9.77%
Paw-paws 0.00569 4.64% 0.66% -2.68% 19.4% -26.1%
Peaches 0.288 -18.3% 1.2% -0.587% 4.35% -8.33%
Pears 0.0489 -3.08% -1.12% -0.338% 2% -3.43%
Pineapples 0.0933 19.9% 15.6% 0.533% 9.31% -14%
Plums 0.0879 -1.96% -1.87% -1.1% 5.53% -10.3%
Pomegranates 5.41e-05 -35.6% 2.73% -3.43% 15.6% -31.2%
Rhubarb 1.63e-06 3.79% -100% -2.65% -100% -23.4%
Sharon fruits 2.87e-05 15.7% 1.09% -7.37% 12.9% -34.7%

Note: The first column shows baseline demand for each fruit (kilograms per household per
shopping trip). The remaining columns show the percentage change in demand resulting
from the change in tax or prices.
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Table A.10: Tax impact on expenditure and welfare

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Baseline EU tariff UK cost shock Merger Subsidy VAT

Consumer expenditure
10th percentile 1.1 0.85% -0.0579% 0.319% -4.04% 5.2%
25th percentile 2.15 0.914% 0.306% 0.555% -3.46% 6.4%
50th percentile 4.41 0.982% 0.0301% 0.509% -3.59% 5.88%
75th percentile 9.39 0.765% -0.17% 0.413% -4.03% 5.73%
90th percentile 16.4 1.95% -0.147% 0.842% -4.75% 8.23%
Change in consumer surplus (GBP)
10th percentile 2.68 -0.0487 -0.0127 -0.0209 0.196 -0.325
25th percentile 7.14 -0.0905 -0.0162 -0.0559 0.343 -0.598
50th percentile 16.3 -0.151 -0.0163 -0.0649 0.598 -1.02
75th percentile 31.7 -0.259 -0.0331 -0.134 0.917 -1.75
90th percentile 53.3 -0.437 -0.076 -0.204 1.46 -2.61
Per capita effects
Consumer surplus (GBP) 23.4 -0.228 -0.0472 -0.112 0.721 -1.32
Tax revenue (GBP) 0.0 0.222 0.0456 0.111 -0.744 1.24
Firm Revenue 6.98 -0.13 -0.0444 -0.0683 0.457 -0.761

Note: The first column shows the baseline values for expenditure, consumer surplus, firm revenue and tax
revenue. All amounts are measured in pounds per household per shopping trip. Columns 2 - 7 show the
percentage change in expenditure, the absolute change in consumer surplus, the absolute change in firm revenue
and the absolute change in tax revenue arising in each scenario. Because of quasilinear utility the change in
consumer surplus equals compensating variation.
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B Figures

Figure B.1: Demand vs. banana price: by household type
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Each panel shows demand for fruit vs. banana price for one household type. Only fruits with non-zero
demand are shown.
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Figure B.2: Demand vs. apple price: by household type
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Each panel shows demand for fruit vs. apple price for one household type. Only fruits with non-zero demand
are shown.
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Figure B.3: Aggregate demand curves (1)
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Each panel shows aggregate demand for a fruit category as that fruit’s price varies from 50% to 200% of its
baseline level. The figure also shows what fraction of demand comes from baskets of size 1 through 5.
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Figure B.4: Aggregate demand curves (2)
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Each panel shows aggregate demand for a fruit category as that fruit’s price varies from 50% to 200% of its
baseline level. The figure also shows what fraction of demand comes from baskets of size 1 through 5.
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Figure B.5: Aggregate demand curves (3)
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Each panel shows aggregate demand for a fruit category as that fruit’s price varies from 50% to 200% of its
baseline level. The figure also shows what fraction of demand comes from baskets of size 1 through 5.
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