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Abstract. The instrumental variable quantile regression (IVQR) model (Chernozhukov

and Hansen, 2005) is a popular tool for estimating causal quantile effects with endogenous

covariates. However, estimation is complicated by the non-smoothness and non-convexity of

the IVQR GMM objective function. This paper shows that the IVQR estimation problem

can be decomposed into a set of conventional quantile regression sub-problems which are

convex and can be solved efficiently. This reformulation leads to new identification results

and to fast, easy to implement, and tuning-free estimators that do not require the availabil-

ity of high-level “black box” optimization routines.
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1. Introduction

Quantile regression (QR), introduced by Koenker and Bassett (1978), is a widely-used

method for estimating the effect of regressors on the whole outcome distribution. QR is

flexible, easy to interpret, and can be computed very efficiently as the solution to a convex

problem. However, in many applications, the variables of interest are endogenous, rendering

QR inconsistent for estimating causal quantile effects. The instrumental variable quantile

regression (IVQR) model of Chernozhukov and Hansen (2005, 2006) generalizes QR to ac-

commodate endogenous regressors. Unfortunately, in sharp contrast to QR and other IV

estimators such as 2SLS, estimation of IVQR models is computationally challenging because

the resulting estimation problem, formulated as a generalized method of moments (GMM)

problem, is non-smooth and non-convex. From an applied perspective, this issue is par-

ticularly troublesome as resampling methods are often used to avoid the choice of tuning

parameters when estimating the asymptotic variance of IVQR estimators.

In this paper, we develop a new class of estimators for linear IVQR models. The proposed

estimators are fast, easy to implement, tuning-free, and do not require the availability of

high-level “black box” optimization routines. They are particularly suitable for settings

with many exogenous regressors, a moderate number of endogenous regressors, and a large

number of observations, which are ubiquitous in applied research. The key insight underlying

our estimators is that the complicated and nonlinear IVQR estimation problem can be

“decentralized”, i.e., decomposed into a set of more tractable sub-problems, each of which

is solved by a “player” who best responds to the other players’ actions. Each subproblem

is a conventional (weighted) QR problem, which is convex and can be solved very quickly

using robust algorithms. The IVQR estimator is then characterized as a fixed point of such

sub-problems, which can be viewed as the pure strategy Nash equilibrium of the “game”.

Computationally, this reformulation allows us to recast the original non-smooth and non-

convex optimization problem as the problem of finding the fixed point of a low dimensional

map, which leads to substantial reductions in computation times.

Implementation of our preferred procedures is straightforward and only requires the avail-

ability of a routine for estimating quantile regressions and in some cases a univariate root-

finder. The resulting estimation algorithms attain significant computational gains. For
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example, we show that in problems with two endogenous variables, a version of our estima-

tor that uses a contraction algorithm is 155–297 times faster than the most popular existing

approach for estimating IVQR models, the inverse quantile regression (IQR) estimator of

Chernozhukov and Hansen (2006). Another version that uses a nested root-finding algo-

rithm, which is guaranteed to converge under a milder condition, is 77–134 times faster

than the IQR estimator. Importantly, these computational gains do not come at a cost in

terms of the finite sample performance of our procedures, which is very similar to IQR. The

computational advantages of our estimators are even larger with more than two endogenous

variables because the computational costs of IQR are increasing exponentially in the number

of endogenous variables.

The fixed point reformulation also provides new insights into global identification in the

IVQR model. In particular, it allows us to study identification and stability of the algorithms

(at the population level) in the same framework. Exploiting the equivalence of global identi-

fication and uniqueness of the fixed point, we give a new identification result and population

algorithms based on the contraction mapping theorem. We then compare our identification

conditions to those of Chernozhukov and Hansen (2006). Further, our reformulation is shown

to be useful beyond setups where the contraction mapping theorem applies as long as the pa-

rameter of interest is globally identified. For such settings, algorithms based on root-finding

methods are proposed. Finally, we show that, by recursively nesting fixed point problems,

it is always possible to recast the IVQR estimation problem as a univariate root-finding

problem, which is particularly easy to solve.

We establish consistency and asymptotic normality of the proposed estimators and prove

validity of the empirical bootstrap for estimating the limiting laws. The bootstrap is partic-

ularly attractive in conjunction with our computationally efficient estimation algorithms, as

it allows us to avoid the choice of tuning parameters inherent to estimating the asymptotic

variance based on analytic formulas. The key technical ingredient for deriving our theoret-

ical results is the Hadamard differentiability of the fixed point map. This result may be of

independent interest.

To illustrate the usefulness of our estimation algorithms, we revisit the analysis of the

impact of 401(k) plans on savings in Chernozhukov and Hansen (2004). Based on this

application, we perform extensive Monte Carlo simulations, which demonstrate that our

estimation and inference procedures have excellent finite sample properties.
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1.1. Literature. We contribute to the literature on estimation and inference based on linear

IVQR models. Chernozhukov and Hong (2003) have proposed a quasi-Bayesian approach

which can accommodate multiple endogenous variables but, as noted by Chernozhukov and

Hansen (2013), requires careful tuning in applications. Chernozhukov and Hansen (2006)

have developed an inverse QR algorithm that combines grid search with convex QR problems.

Because the dimensionality of the grid search equals the number of endogenous variables,

this approach is computationally feasible only if the number of endogenous variables is very

low. Chernozhukov and Hansen (2008) and Jun (2008) have studied weak instrument robust

inference procedures based on the inversion of Anderson-Rubin-type tests. Chernozhukov,

Hansen, and Jansson (2009) have proposed a finite sample inference approach. Andrews

and Mikusheva (2016) have developed a general conditional inference approach and derived

sufficient conditions for the IVQR model. Kaplan and Sun (2017) and de Castro, Galvao,

Kaplan, and Liu (2018) have suggested to use smoothed estimating equations to overcome

the non-smoothness of the IVQR estimation problem, although the non-convexity remains.

More recently, Chen and Lee (2018) have proposed to reformulate the IVQR problem as a

mixed-integer quadratic programming problem which can be solved using well-established

algorithms. However, efficiently solving such a problem is still challenging even for low-

dimensional settings. By replacing the `2 norm by the `∞ norm, Zhu (2018) has shown

that the problem admits a reformulation as a mixed-integer linear programming problem,

which can be computed more efficiently than the quadratic program in Chen and Lee (2018).

This procedure typically requires an early termination of the algorithm to ensure compu-

tational tractability which is akin to a tuning parameter choice. In addition, Zhu (2018)

has proposed a k-step approach that allows for estimating models with multiple endoge-

nous regressors based on large datasets. However, the k-step approach requires the choice

of tuning parameters for estimating the gradient. Pouliot (2018) proposes a mixed integer

linear programming formulation that allows for subvector inference via the inversion of a

distribution-free rankscore test and can be modified to accommodate weak instruments. An

important drawback of the estimation approaches based on mixed integer reformulations

is that they rely on the availability of high-level “black box” optimization routines such as

Gurobi and typically require careful tuning in applications. Finally, imposing a location-scale

model for the potential outcomes, Machado and Santos Silva (2018) propose moment-based

estimators for the structural quantile function.
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Compared to the existing literature on estimation in linear IVQR models, the main ad-

vantages of the proposed estimation algorithms are the following. First, by relying on convex

QR problems, our estimators are easy to implement, robust, and computationally efficient

in settings with many exogenous variables, a moderate number of endogenous variables, and

a large number of observations. Second, by exploiting the specific structure of the IVQR

estimation problem, our estimators are tuning-free and do not require the availability of

high-level “black box” optimization routines. Third, our estimators are based on the orig-

inal IVQR estimation problem and thus avoid the choice of smoothing bandwidths and do

not rely on additional restrictions on the structural quantile function.

Semi- and nonparametric estimation of IVQR models has been studied by Chernozhukov,

Imbens, and Newey (2007), Horowitz and Lee (2007), Chen and Pouzo (2009), Chen and

Pouzo (2012), Gagliardini and Scaillet (2012), and Wüthrich (2017). Chernozhukov and

Hansen (2013) and Chernozhukov, Hansen, and Wüthrich (2017) have provided surveys on

the IVQR model including references to empirical applications.

Abadie, Angrist, and Imbens (2002) have proposed an alternative approach to the identifi-

cation and estimation of quantile effects with binary endogenous regressors, which builds on

the local average treatment effects framework of Imbens and Angrist (1994). Their approach

has been extended and further developed by Frandsen, Frölich, and Melly (2012), Frölich and

Melly (2013), and Belloni, Chernozhukov, Fernandez-Val, and Hansen (2017) among others.

We refer to Melly and Wüthrich (2017) for a recent review of this approach and to Wüthrich

(2018) for a comparison between this approach and the IVQR model. Identification and

estimation in nonseparable models with continuous endogenous regressors have been studied

by Chesher (2003), Ma and Koenker (2006), Lee (2007), Jun (2009), Imbens and Newey

(2009), D’Haultfoeuille and Février (2015), and Torgovitsky (2015) among others.

On a broader level, our paper contributes to the literature which proposes estimation

procedures that rely on decomposing computationally burdensome estimation problems into

several more tractable subproblems. This type of procedure, which we call decentralization,

has been applied in different contexts. Examples include the estimation of single index

models with unknown link function (Weisberg and Welsh, 1994), general maximum likelihood

problems (Smyth, 1996), linear models with high-dimensional fixed effects (e.g., Guimaraes

and Portugal, 2010, and the references therein), sample selection models (Marra and Radice,

2013), peer effects models (Arcidiacono, Foster, Goodpaster, and Kinsler, 2012), interactive



6 KAIDO AND WÜTHRICH

fixed effects models (e.g., Chen, Fernandez-Val, and Weidner, 2014; Moon and Weidner,

2015), and random coefficient logit demand models (Lee and Seo, 2015). Most of these

papers decompose a single estimation problem into two subproblems. The present paper

explicitly considers cases in which the number of subproblems may exceed two. Our analysis

on identification, estimation, and inference can be extended beyond the IVQR model and is

undertaken in ongoing work.

1.2. Organization of the Paper. The remainder of the paper is structured as follows.

Section 2 introduces the setup and the IVQR model. Section 3 shows that the IVQR esti-

mation problem can be decentralized into a series of (weighted) conventional QR problems.

In Section 4 we introduce population algorithms based on the contraction mapping theorem

and root-finders. Section 5 discusses the corresponding sample algorithms. In Section 6 we

establish the asymptotic normality of our estimators and prove the validity of the bootstrap.

Section 7 presents an empirical application. In Section 8 we provide extensive simulation

evidence on the finite sample properties of our methods. Section 9 concludes. All proofs as

well as some additional results are collected in the appendix.

2. Setup and Model

Consider a setup with a continuous outcome variable Y , a dX × 1 vector of exogenous

covariates X, a dD × 1 vector of endogenous treatment variables D, and a dZ × 1 vector

of instruments Z. The IVQR model is developed within the standard potential outcomes

framework (e.g., Rubin, 1974). Let {Yd} denote the (latent) potential outcomes. The object

of primary interest is the conditional quantile function of the potential outcomes, which we

denote by q(d, x, τ). Having conditioned on covariates X = x, by the Skorokhod representa-

tion of random variables, potential outcomes can be represented as

Yd = q(d, x, Ud) with Ud ∼ U(0, 1).

This representation lies at the heart of the IVQR model. With this notation at hand, we

state the main conditions of the IVQR model (Chernozhukov and Hansen, 2005, Assumptions

A1-A5).

Assumption 1. Given a common probability space (Ω, F, P ), the following conditions hold

jointly with probability one:
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(1) Potential outcomes: Conditional on X = x, for each d, Yd = q(d, x, Ud), where

q(d, x, τ) is strictly increasing in τ and Ud ∼ U(0, 1).

(2) Independence: Conditional on X = x, {Ud} are independent of Z.

(3) Selection: D := δ(Z,X, V ) for some unknown function δ(·) and random vector V .

(4) Rank invariance or Rank similarity: Conditional on X = x, Z = z,

(a) {Ud} are equal to each other; or, more generally,

(b) {Ud} are identically distributed, conditional on V .

(5) Observed variables: Observed variables consist of Y := q(D,X,UD), D, X, and Z.

We briefly discuss the most important aspects of Assumption 1 and refer the interested

reader to Chernozhukov and Hansen (2005, 2006, 2013) for more comprehensive treatments.

Assumption 1.1 states the Skorohod representation of Yd and requires strict monotonicity of

the potential outcome quantile function, which rules out discrete outcomes. Assumption 1.2

imposes independence between the potential outcomes and the instrument. Assumption 1.3

defines a general selection mechanism. The key restriction of the IVQR model is Assumption

1.4. Rank invariance (a) requires individual ranks Ud to be the same across treatment states.

Rank similarity (b) weakens this condition, allowing for random slippages of Ud away from

a common level U . Finally, Assumption 1.5 summarizes the observables.

Remark 2.1. Assumption 1 does not impose any restrictions on how the instrument Z

affects the endogenous variable D. As a consequence, Assumption 1 alone does not guar-

antee point identification of the parameter of interest, θ(τ). In Sections 3 and 4 we discuss

sufficient conditions for global (point) identification of θ(τ). Due to the nonlinearity of the

IVQR problem, these conditions are stronger than the usual first stage assumptions in linear

instrumental variables models and require the instrument to have a nontrivial impact on the

joint distribution of (Y,D). The identification conditions are particularly easy to interpret

when D and Z are binary; see Chernozhukov and Hansen (2005, Section 2.4) and Appendix

C.2.1 for a further discussion.

The main implication of Assumption 1 is the following conditional moment restriction

(Chernozhukov and Hansen, 2005, Theorem 1):

P (Y ≤ q(D,X, τ) | X,Z) = τ, τ ∈ (0, 1). (2.1)
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In this paper, we focus on the commonly used linear-in-parameters model for q(·) (e.g.,

Chernozhukov and Hansen, 2006):

q(d, x, τ) = x′θ1(τ) + d1θ2(τ) + · · ·+ ddDθJ(τ), (2.2)

where J = dD + 1 and θ(τ) := (θ1(τ)′, θ2(τ), . . . , θJ(τ))′ is the finite dimensional parameter

vector of interest. The conditional moment restriction (2.1) suggests GMM estimators based

on the following unconditional population moment conditions:

ΨP (θ(τ)) := EP

(1 {Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)} − τ)

X
Z

 . (2.3)

Our primary goal here is to obtain estimators in a computationally efficient and reliable

manner. We therefore focus on just-identified moment restrictions where dZ = dD, for which

the construction of an estimator is straightforward. A potential caveat of this approach is

that estimators based on these restrictions do not achieve the pointwise (in τ) semiparametric

efficiency bound implied by the conditional moment restrictions (2.1). Appendix A provides a

discussion of overidentified GMM problems and presents a two-step approach for constructing

efficient estimators based on the proposed algorithms.

For later use, we define

ΨP (θ(τ)) =
(
ΨP,1 (θ(τ))′ , . . . ,ΨP,J (θ(τ))

)′
,

where

ΨP,1 (θ(τ)) := EP [(1 {Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)} − τ)X] ,

ΨP,j (θ(τ)) := EP [(1 {Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)} − τ)Zj−1] , j = 2, . . . , J.

In what follows, we will often suppress the dependence on τ to lighten-up the exposition.

We then define the true parameter value θ∗ as the solution to the moment conditions, i.e.,

ΨP (θ∗) = 0.

The resulting GMM objective function reads

QN (θ) = −1

2

(
1√
N

N∑
i=1

mi (θ)

)′
WN (θ)

(
1√
N

N∑
i=1

mi (θ)

)
, (2.4)

where mi (θ) := (1 {Yi ≤ X ′iθ1 +D1iθ2 + · · ·+DdDiθJ} − τ) (Z ′i, X
′
i)
′ and WN (θ) is a positive

definite weighting matrix. Estimation based on (2.4) is complicated by the non-smoothness
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and, most importantly, the non-convexity of QN . This paper proposes a new set of algorithms

to address these challenges.

3. Decentralization

Here, we describe the basic idea behind our decentralization estimators. To simplify the

exposition, we first illustrate our approach with the population problem of finding the true

parameter value θ∗ in the IVQR model. Our estimator then adopts the analogy principle,

which will be presented in Section 5. The key insight is that the complicated nonlinear IVQR

estimation problem can be “decentralized”, i.e., decomposed into a set of more tractable sub-

problems, each of which is solved by a “player” who best responds to other players’ actions.

Specifically, we first split the parameter vector θ into J subvectors θ1, . . . , θJ . We then

decompose the grand estimation problem into J subproblems. Each of the subproblems is

allocated to a distinct player. For each j, player j’s choice variable is the j-th subvector

θj. Her problem is to find the value of θj such that a subset of the moment restrictions

is satisfied given the other players’ actions θ−j. This reformulation allows us to view the

estimation problem as a game of complete information and to characterize θ∗ as the game’s

pure strategy Nash equilibrium.

We start by defining weighted population QR objective functions. For each θ ∈ Rd, let

QP,1 (θ) := EP [ρτ (Y −X ′θ1 −D1θ2 − · · · −DdDθJ)] , (3.1)

QP,j (θ) := EP [ρτ (Y −X ′θ1 −D1θ2 − · · · −DdDθJ)(Zj−1/Dj−1)] , j = 2, . . . , J, (3.2)

where ρτ (u) = u(τ − 1{u < 0}) is the “check-function”. We assume that the model is

parametrized such that Z`/D` is positive for all ` = 1, . . . , dD. Under our assumptions, we

can always reparametrize the model such that this condition is met; see Appendix B for

more details.

The players then solve the following optimization problems:

min
θ̃1∈RdX

QP,1

(
θ̃1, θ−1

)
, (3.3)

min
θ̃j∈R

QP,j

(
θ̃j, θ−j

)
, j = 2, . . . , J. (3.4)

Observe that each player’s problem is a weighted QR problem, which is convex in its choice

variable. For the sample analogues of these problems fast solution algorithms exist (e.g.,
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Koenker, 2017). For each j, let L̃j(θ−j) denote the set of minimizers. Borrowing the ter-

minology from game theory, we refer to these maps best response (BR) maps. Under an

assumption we specify below, the first-order optimality conditions imply that any element

θ̃∗j ∈ L̃j(θ−j) of the BR map satisfies

0 = EP

[(
1
{
Y ≤ X ′θ̃∗1 +D′θ−1

}
− τ
)
X
]
, (3.5)

0 = EP

[(
1
{
Y ≤ (X ′, D′−(j−1))

′θ−j +Dj−1θ̃
∗
j

}
− τ
)
Zj−1

]
, j = 2, . . . , J, (3.6)

where D−(j−1) stacks as a vector all endogenous variables except Dj−1. Note that these are

the unconditional IVQR moment conditions imposed on the true parameter value θ∗. Hence

θ∗ satisfies

θ∗j ∈ L̃j(θ∗−j), j = 1, . . . , J, (3.7)

which implies that θ∗ is a fixed point of the BR-maps (i.e. a Nash equilibrium of the game).

In what follows, we work with conditions that ensure the existence of singleton-valued BR

maps Lj, j = 1, . . . , J , such that, for each j, ΨP,j (Lj(θ−j), θ−j) = 0.1 We say that the IVQR

estimation problem admits decentralization if there exist such BR functions defined over

domains for which the moment conditions can be evaluated.2 To ensure decentralization, we

make the following assumption.

Assumption 2. The following conditions hold.

(1) Θ is a closed rectangle in Rd. θ∗ is in the interior of Θ.

(2) E[|Z`|2] < ∞ for ` = 1, . . . , dD. E[|Xk|2] < ∞ for all k = 1, . . . , dX . For each

` = 1, . . . , dD, D` has a compact support;

(3) The conditional cdf y → FY |D,X,Z(y) is continuously differentiable for all y ∈ R a.s.

The conditional density fY |D,Z,X is uniformly bounded a.s.;

(4) For any θ ∈ Θ, the matrices

EP [fY |D,X,Z (D′θ−1 +X ′θ1)XX ′]

1While it may be interesting to work with set-valued maps, the existence of the BR functions greatly

simplifies our analysis of identification and inference.
2In Appendix C.2, we also provide weaker conditions under which the decentralization holds on a local

neighborhood of θ∗. We call such a result local decentralization, which is sufficient for analyzing the (local)

asymptotic behavior of the estimator.
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and

EP [fY |D,X,Z (D′θ−1 +X ′θ1)D`Z`], ` = 1, . . . , dD,

are positive definite.

For each j, let Θ−j ⊂ Rd−j denote the parameter space for θ−j. Assumption 2.1 ensures

that Θ is compact. This assumption also ensures that each Θ−j is a closed rectangle, which

we use to show that Lj is well-defined on a suitable domain. Assumptions 2.2 and 2.3

impose standard regularity conditions on the conditional density and the moments of the

variables in the model. We assume D` has a compact support, which allows us to always

reparameterize the model so that the objective function in (3.2) is well-defined and convex

(cf. Appendix B). The first part of Assumption 2.4 is a standard full rank condition which

is a natural extension of the local full rank condition required for local identification and

decentralization (cf. Assumption 4 in the appendix). For the second part of Assumption 2.4,

it suffices that the model is parametrized such that, for each ` ∈ {1, . . . , dD}, D`Z` (and

Z`/D`) is positive with probability 1.

For each j, define

R−j := {θ−j ∈ Θ−j : ΨP,j(θ) = 0, for some θ = (θj, θ−j) ∈ Θ}. (3.8)

This is the set of subvectors θ−j for which one can find θj ∈ Θj such that θ = (θj, θ−j)
′

solve the j-th moment restriction. We take this set as the domain of player j’s best response

function Lj.

The following lemma establishes that the IVQR model admits decentralization.

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then, there exist functions Lj : R−j →
Rdj , j = 1, . . . , J such that, for j = 1, . . . , J ,

ΨP,j (Lj(θ−j), θ−j) = 0, for all θ−j ∈ R−j. (3.9)

Further, Lj is continuously differentiable on the interior of R−j for all j = 1, . . . , J .

We now introduce maps that represent all players’ (joint) best responses. We consider two

basic choices of such maps; one represents simultaneous responses and the other represents

sequential responses. In what follows, for any subset a ⊂ {1, . . . , J}, let θ−a denote the

subvector of θ that stacks the components of θj’s for all j /∈ a. If a is a singleton (i.e.
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a = {j} for some j), we simply write θ−j. For each j and a ⊆ {1, . . . , J} \ {j}, let π−a :

Θ−j →
∏

k∈{1,...,J}\({j}∪a) Θk be the coordinate projection of θ−j to a further subvector that

stacks all components of θ−j except for those of θk with k ∈ a.

Let DK := {θ ∈ Θ : π−jθ ∈ R−j, j = 1, . . . , J}. Let K : DK → Rd be a map defined by

K(θ) =


K1(θ)

...

KJ(θ)

 =


L1(θ−1)

...

LJ(θ−J)

 . (3.10)

This can be interpreted as the players’ simultaneous best responses to the initial strategy

(θ1, . . . , θJ). With one endogenous variable, this map simplifies to

K(θ) =

L1(θ2)

L2(θ1)

 . (3.11)

Here, K maps θ = (θ1, θ2) to a new parameter value through the simultaneous best responses

of players 1 and 2.

Similarly, let DM ⊂ RdD and let M : DM → RdD be a map such that

M (θ−1) =


M1(θ−1)

M2(θ−1)
...

MdD(θ−1)

 =


L2

(
L1(θ−1), θ−{1,2}

)
L3

(
L1(θ−1), L2(L1(θ−1), θ−{1,2}), θ−{1,2,3}

)
...

LJ
(
L1(θ−1), L2(L1(θ−1), θ−{1,2}), · · ·

)

 , (3.12)

which can be interpreted as the players’ sequential responses (first by player 1, then player

2, etc.) to an initial strategy θ−1 = (θ2, . . . , θJ).3 Note that the argument of M is not the

entire parameter vector. Rather, it is a subvector of θ consisting of the coefficients on the

endogenous variables. In order to find a fixed point, this feature is particularly attractive

when the number of endogenous variables is small. With one endogenous variable (i.e. θ2 ∈ R

is a scalar), the map simplifies to

M(θ2) = L2 (L1 (θ2)) ,

which is a univariate function whose fixed point is often straightforward to compute.

3One may define M by changing the order of responses as well. For theoretical analysis, it suffices to

consider only one of them. Once the fixed point θ∗−1 of M is found, one may also obtain θ∗1 using θ∗1 = L1(θ∗−1).
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Define

R̃1 :=
{
θ−1 ∈ Θ−1 :ΨP,1(θ1, θ−1) = 0,

ΨP,2(θ1, θ2, π−{1,2}θ−1) = 0, ∃(θ1, θ2) ∈ Θ1 ×Θ2

}
. (3.13)

This is the set on which the map θ−1 → L2

(
L1 (θ−1) , π−{1,2}θ−1

)
, the first component of

M , is well-defined. We then recursively define R̃j for j = 2, . . . , dD in a similar manner. A

precise definition of these sets is given in Appendix C. Now define

DM :=

dD⋂
j=1

R̃j = R̃dD , (3.14)

where the second equality follows because R̃dD turns out to be a subset of R̃j for all j ≤ dD.

The following corollary ensures that K and M are well-defined on DK and DM respectively.

Corollary 1. The maps K : DK → Rd and M : DM → RdD exist and are continuously

differentiable on the interior of their domains.

The key insight that we exploit is that, by construction of the BR maps, the problem of

finding a solution to ΨP (θ) = 0 is equivalent to the problem of finding a fixed-point of K

(or M). The following proposition states the formal result.

Proposition 1. Suppose that Assumptions 1 and 2 hold. Then,

(i) ΨP (θ∗) = 0 if and only if K (θ∗) = θ∗

(ii) ΨP (θ∗) = 0 if and only if M
(
θ∗−1

)
= θ∗−1 and θ∗1 = L1(θ∗−1).

In view of Proposition 1, the original IVQR estimation problem can be reformulated as the

problem of finding the fixed point of K (or M). This reformulation naturally leads to dis-

crete dynamical systems associated with these maps, which in turn provide straightforward

iterative algorithms for computing θ∗.

(1) Simultaneous dynamical system:4

θ(s+1) = K
(
θ(s)
)
, s = 0, 1, 2, . . . , θ(0) given. (3.15)

4This algorithm is akin to the Jacobi computational procedure.



14 KAIDO AND WÜTHRICH

(2) Sequential dynamical system:5

θ
(s+1)
−1 = M

(
θ

(s)
−1

)
, s = 0, 1, 2, . . . , θ

(0)
−1 given, (3.16)

where θ
(s+1)
1 = L1

(
θ

(s)
−1

)
.

These discrete dynamical systems constitute the basis for our estimation algorithms.6

4. Population Algorithms

In this section, we explore the implications of the fixed point reformulation for constructing

population-level algorithms for computing fixed points.

4.1. Contraction-based Algorithms. We first consider conditions under which K and M

are contraction mappings. They ensure that the discrete dynamical systems induced by K

and M are convergent to unique fixed points. Moreover, in view of Proposition 1, (point)

identification is equivalent to the uniqueness of the fixed point of K (or M). Therefore,

the conditions we provide below are also sufficient for the point identification of θ∗. We will

discuss the relationship between our conditions and existing ones in the next section.

For any vector-valued map E, let JE(x) denote its Jacobian matrix evaluated at its ar-

gument x. For any matrix A, let ‖A‖ denote its operator norm. We provide conditions in

terms of the Jacobian matrices of K and M , which are well-defined by Corollary 1.

Assumption 3. There exist open strictly convex sets D̃K ⊆ DK and D̃M ⊆ DM such that

(1) ‖JK (θ) ‖ ≤ λ for some λ < 1 for all θ ∈ D̃K;

(2) ‖JM (θ−1) ‖ ≤ λ for some λ < 1 for all θ−1 ∈ D̃M .

Under this additional assumption, the iterative algorithms are guaranteed to converge to

the fixed point. We summarize this result below.

Proposition 2. Suppose that Assumptions 1 and 2 hold.

(i) Suppose further that Assumption 3.1 holds. Then K is a contraction on the closure

of D̃K. The fixed point θ∗ ∈ cl(D̃K) of K is unique. For any θ(0) ∈ D̃K , the sequence

{θ(s)}∞s=0 defined in (3.15) satisfies θ(s) → θ∗ as s→∞.

5Smyth (1996) considers this type of algorithm for J = 2 and calls it “zigzag” algorithm. It is akin to a

Gauss-Seidel procedure.
6These discrete dynamical systems can also be viewed as learning dynamics in a game (Li and Basar,

1987; Fudenberg and Levine, 2007).
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(ii) Suppose further that Assumption 3.2 holds. Then M is a contraction on the closure

of D̃M . The fixed point θ∗−1 ∈ cl(D̃M) of M is unique. For any θ
(0)
−1 ∈ D̃M , the

sequence {θ(s)
−1}∞s=0 defined in (3.16) satisfies θ

(s)
−1 → θ∗−1 as s→∞.

In the case of a single endogenous variable, the Jacobian matrices of K and M are given

by

JK(θ) =

 0 JL1(θ2)

JL2(θ1) 0

 , and JM(θ2) = JL2 (L1(θ2)) JL1 (θ2) ,

where

JL−j
(θj) = −

(
∂ΨP,−j(θj, θ−j)

∂θ′−j

∣∣∣∣
θ=(θj ,L−j(θj))

)−1
∂ΨP,−j(θj, θ−j)

∂θ′j

∣∣∣∣
θ=(θj ,L−j(θj))

, for j = 1, 2.

One may therefore check the high-level condition through the Jacobians of the original

moment restrictions. In Appendix C.2.1, we illustrate a simple primitive condition for a

local version of Assumption 3. In practice, we found that violations of Assumption 3 lead

to explosive behavior of the estimation algorithms and are very easy to detect numerically.

4.2. Connections to the Identification Conditions in the Literature. In view of

Proposition 1, identification of θ∗ is equivalent to uniqueness of the fixed points of K and

M , which is ensured by Proposition 2. Here, we discuss how the conditions required by

Proposition 2 relate to the ones in the literature.

We first start with local identification. The parameter vector θ∗ is said to be locally

identified if there is a neighborhood N of θ∗ such that ΨP (θ) 6= 0 for all θ 6= θ∗ in the

neighborhood. Local identification in the IVQR model follows from standard results (e.g.,

Rothenberg, 1971; Chen, Chernozhukov, Lee, and Newey, 2014). For example, if ΨP (θ) is

differentiable, Chen, Chernozhukov, Lee, and Newey (2014, Section 2.1) show that full rank

of JΨP
(θ) at θ∗ is sufficient for local identification.

It is interesting to compare this full rank condition to Assumption 5.1 in the appendix,

which is a local version of Assumption 3.1. Assumption 5.1 requires that ρ (JK(θ∗) < 1, where

ρ(A) denotes the spectral radius of a square matrix A. We highlight the connection in the case

with a single endogenous variable. Full rank of JΨP
(θ∗) is equivalent to det (JΨP

(θ∗)) 6= 0.
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Observe that, for any θ,

det (JΨP
(θ)) = det

∂ΨP,1(θ1, θ2)/∂θ′1 ∂ΨP,1(θ1, θ2)/∂θ′2

∂ΨP,2(θ1, θ2)/∂θ′1 ∂ΨP,2(θ1, θ2)/∂θ′2


= det

∂ΨP,1(θ1, θ2)/∂θ′1 0

0 ∂ΨP,2(θ1, θ2)/∂θ′2

 Id1 −JL1(θ2)

−JL2(θ1) Id2


= det

∂ΨP,1(θ1, θ2)/∂θ′1 0

0 ∂ΨP,2(θ1, θ2)/∂θ′2

 det

 Id1 −JL1(θ2)

−JL2(θ1) Id2

 .

If ∂ΨP,j(θ)/∂θ
′
j|θ=θ∗ is invertible for j = 1, 2 (which is true under Assumption 2.4), JΨP

(θ∗)

is full rank if and only if

0 6= det

 Id1 −JL1(θ
∗
2)

−JL2(θ
∗
1) Id2

 = det(Id − JK(θ∗)). (4.1)

That is, it requires that none of the eigenvalues has modulus one. Therefore, Assumption

5.1 is sufficient but not necessary for condition (4.1) to hold. Specifically, Assumption 5.1

requires all eigenvalues of JK(θ∗) to lie strictly within the unit circle, while local identification

only requires all eigenvalues not to be on the unit circle. In terms of the dynamical system

induced by K, the former ensures that the dynamical system has a unique asymptotically

stable fixed point, while the latter ensures that the system has a unique hyperbolic fixed

point, which is a more general class of fixed points (e.g. Galor, 2007).7 Under the former

condition, iteratively applying the contraction map induces convergence, while the latter

generally requires a root finding method to obtain the fixed point.

Now we turn to global identification and compare Proposition 2 to the global identification

result in Chernozhukov and Hansen (2006).

Lemma 2 (Theorem 2 in Chernozhukov and Hansen (2006)). Suppose that Assumption 1

holds. Moreover, suppose that (i) Θ is compact and convex and θ∗ is in the interior of Θ;

(ii) fY |D,Z,X is uniformly bounded a.s.; (iii) JΨ(θ) is continuous and has full rank uniformly

over Θ; and (iv) the image of Θ under the mapping θ → Ψ(θ) is simply connected. Then, θ∗

uniquely solves Ψ(θ) = 0 over Θ.

7The argument above also applies to settings with multiple endogenous variables. A similar result can

also be shown for M .
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Under Conditions (i)–(iv), which are substantially stronger than the local identification

conditions discussed above, the result in Lemma 2 follows from an application of Hadamard’s

global univalence theorem (e.g. Theorem 1.8 in Ambrosetti and Prodi (1995)).

Comparing Lemma 2 to Proposition 2, we can see that the result in Lemma 2 establishes

identification over the whole parameter space Θ, while Proposition 2 establishes identification

over the sets D̃K and D̃M , which will generally be subsets of Θ. Regarding the underlying

assumptions, Conditions (i) and (ii) in Lemma 2 correspond to our Assumptions 2.1 and

2.3. Moreover, our Assumption 2.3 constitutes an easy-to-interpret sufficient condition for

continuity of JΨP
as required in Condition (iii). To apply Hadamard’s global univalence

theorem, Chernozhukov and Hansen (2006) assume the simple connectedness of the image of

Ψ (Condition (iv)). By contrast, we use a different univalence theorem by Gale and Nikaido

(1965) (applied to the map Ξ defined in (E.3) that arises from each subsystem), which does

not require further conditions. However, when establishing global identification based on the

contraction mapping theorem, we need to impose an additional condition on the Jacobian

(Assumption 3). In sum, our conditions are somewhat stronger in terms of restrictions on

the Jacobian, but they are relatively easy to check and allow us to dispense with an abstract

condition (simple connectedness of the image of a certain map) to apply a global univalence

theorem.

4.3. Root-Finding Algorithms and Nesting. Note that Assumption 3 is a sufficient

condition for the uniqueness of the fixed point and the convergence of the contraction-based

algorithms. Even in settings where this assumption fails to hold, one may still identify θ∗ and

design an algorithm that is able to find it under weaker conditions on the Jacobian. This is

the case under the assumptions in the general (global) identification result of Chernozhukov

and Hansen (2006); see Lemma 2.

Note that, for the simultaneous dynamical system, θ∗ solves

(Id −K)(θ∗) = 0, (4.2)

where Id is the identity map. Similarly, in the sequential dynamical system, θ∗−1 solves

(IdD −M)(θ∗−1) = 0. (4.3)

Therefore, standard root-finding algorithms can be used to compute the fixed point.
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For implementing root-finding algorithms, we find that reducing the dimension of the fixed

point problem is often helpful. Toward this end, we briefly discuss another class of dynamical

systems and associated population algorithms which can be used for the purpose of dimension

reduction. Namely, with more than two players, one can construct nested dynamical systems,

which induce nested fixed point algorithms. Nesting is useful as it allows for transforming

any setup with more than two players into a two-player system.

To fix ideas, consider the case of three players (J = 3). Fix player 3’s action θ3 ∈ Θ3 ⊂ R

and consider the associated “sub-game” between players 1 and 2. To describe the subgame,

define M1,2|3(· | θ3) : Θ2 → Θ2 pointwise by

M1,2|3(θ2 | θ3) := L2 (L1 (θ2, θ3) , θ3) . (4.4)

This map gives the sequential best responses of players 1 and 2 while taking player 3’s

strategy given. Define the fixed point L12 : Θ3 → Θ1 ×Θ2 of the subgame by

L12(θ3) :=

θ̄1(θ3)

θ̄2(θ3)

 =

 L1(θ̄2(θ3), θ3)

M1,2|3(θ̄2(θ3) | θ3).

 (4.5)

This map then defines a new “best response” map. Here, given θ3, the players in the subgame

(i.e. players 1 and 2) collectively respond by choosing the Nash equilibrium of the subgame.

The overall dynamical system induced by the nested decentralization is then given by

M3(θ3) = L3 (L12(θ3)) . (4.6)

Hence, we can interpret the nested algorithm as a two-player dynamical system where one

player solves an internal fixed point problem. This nesting procedure is generic and can be

extended to more than three players by sequentially adding additional layers of nesting.8

It follows that any decentralized estimation problem with more than two players can be

reformulated as a nested dynamical system with two players: player J and all others −J .

The resulting dynamical system MJ(θJ) = LJ (L−J(θJ)) is particularly useful when MJ is

not necessarily a contraction map since θJ is a scalar such that, as we see below, its fixed

point can efficiently be computed using univariate root-finding algorithms.

8In the current example, consider adding player 4 and letting players 1-3 best respond by returning the

fixed point of the subgame through M3 given θ4. One can repeat this for additional players. This procedure

can also be applied to the simultaneous dynamical system induced by K.



DECENTRALIZATION ESTIMATORS FOR IVQR 19

5. Sample Estimation Algorithms

Let {(Yi, D′i, X ′i, Z ′i)}
N
i=1 be a sample generated from the IVQR model. Our estimators are

constructed using the analogy principle. For this, define the sample payoff functions for the

players as

QN,1 (θ) :=
1

N

N∑
i=1

ρτ (Yi −X ′iθ1 −D1,iθ2 − · · · −DdD,iθJ), (5.1)

QN,j (θ) :=
1

N

N∑
i=1

ρτ (Yi −X ′iθ1 −D1,iθ2 − · · · −DdD,iθJ)(Zj−1,i/Dj−1,i), j = 2, . . . , J.

(5.2)

For each j = 1, . . . , J , let the sample BR function L̂j(θ−j) be a function such that

L̂1 (θ−1) ∈ arg min
θ̃1∈RdX

QN,1(θ̃1, θ−1), (5.3)

L̂j (θ−j) ∈ arg min
θ̃j∈R

QN,j(θ̃j, θ−j), j = 2, . . . , J. (5.4)

Assuming that the model is parametrized in such a way that Z`,i/D`,i, ` = 1, . . . , dD, is

positive, these are convex (weighted) QR problems for which fast solution algorithms exist.

In our empirical applications and simulations, we use the R-package quantreg to estimate

the QRs (Koenker, 2018). For example, L̂2(θ−2) can be computed by running a QR with

weights Z1,i/D1,i in which one regresses Yi −X ′iθ1 −D2,iθ3 − · · · −DdD,iθJ on D1,i without

a constant. These sample BR functions also approximately solve the sample analog of the

moment restrictions in (3.5)-(3.6); see Lemma 10 in the appendix.

Remark 5.1. The proposed estimators rely on decentralizing the original non-smooth and

non-convex IVQR GMM problem into a series of convex QR problems. The quality and the

computational performance of our procedures therefore crucially depends on the choice of the

underlying QR estimation approach, which deserves some further discussion. The interested

reader is referred to Koenker (2017) for an excellent overview on the computational aspects

of quantile regression. In this paper, we use the Barrodale and Roberts algorithm which

is implemented as the default in the quantreg package and described in detail in Koenker

and D’Orey (1987, 1994). This algorithm is computationally tractable for problems up

several thousand observations. For larger problems, we recommend using interior point

methods, potentially after preprocessing; see Portnoy and Koenker (1997) for a detailed

description. These methods are conveniently implemented in the quantreg package. For very
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large problems, one can resort to first-order gradient descent methods, which are amenable

to modern parallelized computation; see Section 5.5 in Koenker (2017) for an excellent

introduction and simulation evidence on the performance of such methods.

We construct estimation algorithms by mimicking the population algorithms. Let K̂ and

M̂ denote sample analogs of K and M :

K̂ (θ) :=


L̂1 (θ−1)

...

L̂J (θJ−1)

 (5.5)

and

M̂ (θ−1) :=


M̂1(θ−1)

M̂2(θ−1)
...

M̂dD(θ−1)

 =


L̂2

(
L̂1(θ−1), θ−{1,2}

)
L̂3

(
L̂1(θ−1), L̂2(L̂1(θ−1), θ−{1,2}), θ−{1,2,3}

)
...

L̂J

(
L̂1(θ−1), L̂2(L̂1(θ−1), θ−{1,2}), · · ·

)

 , (5.6)

where θ1 = L̂1 (θ−1). These maps induce sample analogs of the dynamical systems in Section

3.

(1) Sample simultaneous dynamical system:

θ(s+1) = K̂
(
θ(s)
)
, s = 0, 1, 2, . . . , θ(0) given. (5.7)

(2) Sample sequential dynamical system:

θ
(s+1)
−1 = M̂

(
θ

(s)
−1

)
, s = 0, 1, 2, . . . , θ

(0)
−1 given, (5.8)

where θ
(s+1)
1 = L̂1

(
θ

(s)
−1

)
.

5.1. Contraction-based Algorithms. The first set of algorithms exploits that, under As-

sumption 3, K̂ and M̂ are contraction mappings with probability approaching one. In this

case, we iterate the dynamical systems (5.7) or (5.8) until ‖θ(s) − K̂
(
θ(s)
)
‖ (or ‖θ(s)

−1 −
M̂(θ

(s)
−1)‖) is within a numerical tolerance eN .9 This iterative algorithm is known to con-

verge at least linearly. The approximate sample fixed point θ̂N that meets the convergence

criterion then serves as an estimator for θ.

9In the next section, we require eN = o(N−1/2), which ensures that the numerical error does not affect

the asymptotic distribution.
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5.2. Algorithms based on Root-Finders and Optimizers. As discussed in Section 4.3,

for root-finding algorithms, the sequential dynamical system (induced by M) is particu-

larly useful because it leads to a substantial dimension reduction. The original (dX + dD)-

dimensional GMM estimation problem can be reduced to a dD-dimensional root-finding

problem. An estimator θ̂N of θ∗ can be constructed as an approximate fixed point to the

sample problem: ∥∥θ̂N,−1 − M̂(θ̂N,−1)
∥∥ ≤ eN , (5.9)

where θ̂N,1 = L̂1(θ̂N,−1) and eN is a numerical tolerance. This problem can be solved ef-

ficiently using well-established root-finding algorithms since M̂ is easy to evaluate as the

composition of standard QRs. When dD = 1, one may use Brent’s method (Brent, 1971)

whose convergence is superlinear. When dD > 1, one could apply the Newton-Raphson

method, which achieves quadratic convergence but requires an estimate or a finite differ-

ence approximation of the derivative. The corresponding approximation error may affect

the performance. Alternatively, on can compute the fixed point by minimizing ‖M̂(θ)− θ‖2.

The potential issue with this approach is that translating the root-finding problem into a

minimization problem can lead to local minima in the objective function. Therefore, it is

important to use global optimization strategies.

As described in Section 4.3, nesting can be used to reduce the dimensionality even further.

In particular, the problem can be reformulated as a one-dimensional fixed point problem,

which can be solved efficiently using existing methods. We found that Brent’s method works

very well in our context.

6. Asymptotic Theory

6.1. Estimators. We define an estimator θ̂N of θ∗ as an approximate fixed point of K̂ in

the following sense:

‖θ̂N − K̂(θ̂N)‖ ≤ inf
θ′∈Θ
‖θ′ − K̂(θ′)‖+ op(N

−1/2). (6.1)

In what follows, we call θ̂N the fixed point estimator or θ∗. Alternatively, using M̂ , one may

define an estimator θ̂N,−1 of θ−1 as

‖θ̂N,−1 − M̂(θ̂N,−1)‖ ≤ inf
θ′−1∈Θ−1

‖θ′−1 − M̂(θ′−1)‖+ op(N
−1/2). (6.2)
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An estimator of θ∗1 can be constructed by setting

θ̂N,1 := L̂1(θ̂N,−1). (6.3)

Under the conditions we introduce below, the definitions in (6.1) and (6.2)–(6.3) are asymp-

totically equivalent; see Lemma 5 in the appendix. Therefore, we mostly focus on the

definition based on K̂ below. K̂ (or M̂) is defined similarly for the nested dynamical system

in which one player solves a fixed-point problem in a subgame.

Consistency and parametric convergence rates of θ̂N can be established using existing

results. When K̂ (or M̂) is asymptotically a contraction map, one may construct an es-

timator θ̂N satisfying (6.1) using the contraction algorithm in Section 5.1 with tolerance

eN = o(N−1/2). One may then apply the result of Dominitz and Sherman (2005) to obtain

the root-N consistency of the estimator.10 For completeness, this result is summarized in

Appendix H.

More generally, if K̂ is not guaranteed to be a contraction, one may use root-finding

algorithms that solve θ − K̂(θ) = 0 or θ−1 − M̂(θ−1) = 0 up to approximation errors

of o(N−1/2). The root-N consistency of θ̂N then follows from the standard argument for

extremum estimators, in which we take LN(θ) = ‖θ− K̂(θ)‖ as a criterion function.11 Since

these results are standard, we omit details and focus below on the asymptotic distribution

and bootstrap validity of the fixed point estimators. Our contributions are two-fold. First,

we establish the asymptotic distribution of the fixed point estimator without assuming that

K̂ or M̂ is an asymptotic contraction map, which therefore allows the practitioner to conduct

inference using the estimator based on the general root-finding algorithm and complements

the result of Dominitz and Sherman (2005). Second, to our knowledge, the bootstrap validity

of the fixed point estimators is new. These results are established by showing that, under

regularity conditions, the population fixed point is Hadamard-differentiable and hence admits

the use of the functional δ-method, which may be of independent theoretical interest.

Remark 6.1. To establish the asymptotic properties, one could try to reformulate our

estimator as an estimator that approximately solves a GMM problem. Here, instead of

10Satisfying eN = o(N−1/2) requires the number of iterations to increase as the sample size tends to

infinity, which in turn satisfies requirement (ii) in Theorem 2 (Dominitz and Sherman, 2005).
11The key conditions for these results, uniform convergence (in probability) of K̂ and its stochastic

equicontinuity, are established in Lemma 11.
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relying on another reformulation, which would require establishing a sample analog version of

Proposition 1, we develop and directly apply an asymptotic theory for fixed point estimators.

We take this approach as the theory itself contains generic results (Theorem 1 and Lemmas

6–7) surrounding the Hadamard-differentiability of fixed points, which allow for applying

the functional δ-method to obtain the asymptotic distribution of θ̂N and bootstrap validity.

These results can potentially be used to analyze decentralized estimators outside the IVQR

class.

6.2. Asymptotic Theory and Bootstrap Validity. The following theorem gives the

limiting distribution of our estimator. For each w = (y, d′, x′, z′)′ and θ ∈ Θ, let f(w; θ) ∈
RdX+dD be a vector whose sub-vectors are given by

f1(w; θ) = (1{y ≤ d′θ−1 + x′θ1} − τ)x,

fj(w; θ) = (1{y ≤ d′θ−1 + x′θ1} − τ)zj−1, j = 2, . . . , J,

and let g(w; θ) = (g1(w; θ)′, . . . , gJ(w; θ))′ be a vector such that

gj(w; θ) =
∂2

∂θj∂θ′j
QP,j(Lj(θ−j), θ−j)

−1fj(w;Lj(θ−j), θ−j), j = 1, . . . , J. (6.4)

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let {Wi}Ni=1 be an i.i.d. sample

generated from the IVQR model, where Wi = (Yi, D
′
i, X

′
i, Z

′
i). Then,

√
N(θ̂N − θ∗)

L→ N(0, V ) , (6.5)

with

V = (Id − JK(θ∗))−1E[W(θ∗)W(θ∗)′](Id − JK(θ∗))−1, (6.6)

where W is a tight Gaussian process in `∞(Θ)d with the covariance kernel

Cov(W(θ),W(θ̃)) = EP
[
(g(W ; θ)− EP [g(W ; θ)])(g(w; θ̃)− EP [g(w; θ̃)])′

]
. (6.7)

To conduct inference on θ∗, one may employ a natural bootstrap procedure. For this, use

in (5.5) and (6.1) the bootstrap sample instead of the original sample to define the bootstrap

analogs K̂∗ and θ̂∗N of K̂ and θ̂N . In practice, the bootstrap can be implemented using the

following steps.

(1) Compute the fixed point estimator θ̂N using the original sample.
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(2) Draw a bootstrap sample {W ∗
i }Ni=1 randomly with replacement from PN . Use the

simultaneous (or sequential) dynamical system based on K̂∗ (or M̂∗) combined with

a contraction or root-finding algorithm to compute θ̂∗N .

(3) Repeat Step 2 across bootstrap replications b = 1, . . . , B. Let

FB(x) :=
1

B

B∑
b=1

1
{√

N(θ̂∗,bN − θ̂N) ≤ x
}
, x ∈ R. (6.8)

Use FB as an approximation to the sampling distribution of the root
√
N(θ̂N − θ∗).

The bootstrap is particularly attractive in conjunction with our new and computationally

efficient estimation algorithms. By contrast, directly bootstrapping for instance the IQR

estimator of Chernozhukov and Hansen (2006) is computationally very costly. Alternative

methods (either an asymptotic approximation or a score-based bootstrap) require estimation

of the influence function, which involves nonparametric estimation of a certain conditional

density. Directly bootstrapping our fixed point estimators avoids the use of any smoothing

and tuning parameters.12

The following theorem establishes the consistency of the bootstrap procedure. For this,

let
L∗
 denote the weak convergence of the bootstrap law in outer probability, conditional on

the sample path {Wi}∞i=1.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let {Wi}Ni=1 be an i.i.d. sample

generated from the IVQR model. Then,

√
N(θ̂∗N − θ̂N)

L∗
 N(0, V ),

where V is as in (6.6).

7. Empirical Example

In this section, we illustrate the proposed estimators by reanalyzing the effect of 401(k)

plans on savings behavior as in Chernozhukov and Hansen (2004). This empirical example

constitutes the basis for our Monte Carlo simulations in Section 8. As explained by Cher-

nozhukov and Hansen (2004), 401(k) plans are tax-deferred savings options that allow for

deducting contributions from taxable income and accruing tax-free interest. These plans are

12The use of the bootstrap here is for consistently estimating the law of the estimator. Whether one

may obtain higher-order refinements through a version of the bootstrap, e.g., the m out of n bootstrap with

extrapolation (Sakov and Bickel, 2000), is an interesting question which we leave for future research.
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provided by employers and were introduced in the United States in the early 1980s to increase

individual savings. To estimate the effect of 401(k) plans (D) on accumulated assets (Y ), one

has to deal with the potential endogeneity of the actual participation status. Chernozhukov

and Hansen (2004) propose an instrumental variables approach to overcome this problem.

They use 401(k) eligibility as an instrument (Z) for the participation in 401(k) plans. The

argument behind this strategy, which is due to Poterba, Venti, and Wise (1994, 1995, 1998)

and Benjamin (2003), is that eligibility is exogenous after conditioning on income and other

observable factors. We use the same identification strategy here but note that there are also

papers which argue that 401(k) eligibility is not conditionally exogenous (e.g., Engen, Gale,

and Scholz, 1996).

We use the same dataset as in Chernozhukov and Hansen (2004). The dataset contains

information about 9913 observations from a sample of households from the 1991 Survey of

Income and Program Participation.13 We refer to Chernozhukov and Hansen (2004) for more

information about the data and to their Tables 1 and 2 for descriptive statistics. Here we

focus on net financial assets as our outcome of interest.14

We consider the following linear model for the conditional potential outcome quantiles

q(D,X, τ) = X ′θ1(τ) +Dθ2(τ). (7.1)

The vector of covariates X includes seven dummies for income categories, five dummies

for age categories, family size, four dummies for education categories, indicators for mari-

tal status, two-earner status, defined benefit pension status, individual retirement account

participation status and homeownership, and a constant. Because P (D = 0) > 0, we re-

parametrize the model by replacing D by D? = D + 1 to ensure that Z/D? is well-defined

and positive.

We found that, in this empirical setting (and simulations based on it), contraction algo-

rithms based on K̂ can be rather sensitive to the choice of starting values. We therefore

focus on algorithms based on M̂ . Figure 1 graphically illustrates our fixed point algorithms.

It displays M̂ at three different quantile levels τ ∈ {0.25, 0.50, 0.75}. Our theoretical results

show that, under appropriate conditions, the intersection between M̂ and the 45-degree line

13The dataset analyzed by Chernozhukov and Hansen (2004) has 9,915 observations. Here we delete the

two observations with negative income.

14Chernozhukov and Hansen (2004) also consider total wealth and net non-financial assets.
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provides a consistent estimate of θ2. Figure 1 further provides a straightforward graphical

way to check the validity of the sample analog of Assumption 3. We can see that the sample

analog of JM (i.e. the slope of M) is smaller than one. This suggests that the contraction-

based sequential algorithm converges at all three quantile levels, which is indeed what we

find.

[Figure 1 about here.]

We consider two different algorithms based on M̂ , a contraction algorithm and a root-

finding algorithm based on Brent’s method as implemented by the R-package uniroot. We

compare our estimators to the IQR estimator of Chernozhukov and Hansen (2006) with 500

grid points which provides a slow but very robust benchmark.

Figure 2 displays the estimates of θ2(τ) for τ ∈ {0.15, 0.20, . . . , 0.85}. We can see that

all estimation algorithms yield very similar results. We also note that the contraction-based

algorithm converges for all quantile levels considered.

[Figure 2 about here.]

Figures 3 depicts pointwise 95% confidence intervals for the proposed estimators obtained

using the empirical bootstrap described in Section 6.2 with 500 replications. We can see that

the resulting confidence intervals are very similar for both algorithms and do not include zero

at all quantile levels considered.

[Figure 3 about here.]

8. Simulation Study

In this section, we assess and compare the finite sample performance of our estimation

algorithms. We first discuss the competing algorithms and then introduce the DGPs.

8.1. Estimation Algorithms. We assess and compare several different algorithms all of

which are based on the dynamical system M̂ . We do not explore contraction algorithms

based on K̂ because we found them to be less robust than the corresponding algorithms

based on M̂ and somewhat sensitive to the choice of starting values. For the root-finding

algorithms, using K̂ will typically be less attractive than using M̂ because the dimensionality

of the root-finding problem is much larger when using K̂ (dD+dX) than when using M̂ (dD).
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For the models with one endogenous variable, we consider a contraction algorithm and a

root-finding algorithm based on Brent’s method. For models with two endogenous variables,

we analyze a contraction algorithm, a root-finding algorithm implemented as a minimization

problem based on simulated annealing (SA), and a nested root-finding algorithm based on

Brent’s method.15 For all estimators, we use two-stage least squares estimates as starting

values. We compare the results of our algorithms to those obtained from IQR, which serves

as a slow but very robust benchmark. We use 500 (one endogenous variable) and 1600

(two endogenous variables) grid points for IQR.16 Table 1 presents more details about the

algorithms.

[Table 1 about here.]

8.2. An Application-Based DGP. Here we consider DGPs which are based on the em-

pirical application of Section 7.17 We focus on a simplified setting with only two covariates:

income and age. The covariates are drawn from their joint empirical distribution. The instru-

ment Zi is generated as Bernoulli
(
Z̄
)
, where Z̄ is the mean of the instrument in the empirical

application. We then generate the endogenous variable as Di = Zi · 1 {0.6 · Vi < Ui} , where

Ui ∼ Uniform(0, 1) and Vi ∼ Uniform(0, 1) are independent disturbances. The DGP for Di

is chosen to roughly match the joint empirical distribution of (Di, Zi). The outcome variable

Yi is generated as

Yi = X ′iθ1(Ui) +Diθ2(Ui) +G−1(Ui). (8.1)

The coefficient θ1(Ui) is constant and equal to the IQR median estimate in the empirical

application. θ2(Ui) = 5000 + Ui · 10000 is chosen to match the increasing shape of the es-

timated conditional quantile treatment effects in Figure 2. G−1(·) is the quantile function

of a re-centered Gamma distribution, estimated to match the distribution of the IQR resid-

uals at the median. To investigate the performance of our procedure with more than one

15We have also explored algorithms based on Newton-Raphson-type root-finders. These algorithms are,

in theory, up to an order of magnitude faster than the contraction algorithm and the nested algorithms,

but, unlike the other algorithms considered here, require an approximation to the Jacobian and are not very

robust to the choice of starting values. We therefore do not report the results here.
16The performance of IQR can be improved by increasing the number of grid points. However, as we

document below, IQR becomes computationally prohibitive when the number of grid points is large.

17The construction of our DGPs is inspired by the application-based DGPs in Kaplan and Sun (2017).
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endogenous variable, we add a second endogenous regressor:

Yi = X ′iθ1(Ui) +Diθ2(Ui) +D2,iθ3(Ui) +G−1(Ui), (8.2)

where we set θ3(Ui) = 10000. The second endogenous variable is generated as

D2,i = 0.8 · Z2,i + 0.2 · Φ−1(Ui)

and the second instrument is generated as Z2,i ∼ N(0, 1). We set N = 9913 as in the

empirical application.

First, we investigate the finite sample bias and root mean squared error (RMSE) of the

different methods. Tables 2 and 3 present the results. With one endogenous regressor, all

three methods perform well and exhibit a similar bias and RMSE. Turning to the results with

two endogenous regressors, we can see that the nested algorithm exhibits the best overall

performance, while the performance of our other algorithms is only slightly worse. The finite

sample properties of the proposed algorithms are comparable to IQR.

[Table 2 about here.]

[Table 3 about here.]

Next, we analyze the finite sample properties of our bootstrap inference procedure. Table

4 shows the empirical coverage probabilities of bootstrap confidence intervals based on the

contraction-based algorithm and the root-finding algorithm based on Brent’s method. Both

methods exhibit coverage rates which are very close to the respective nominal levels.

[Table 4 about here.]

Finally, we investigate the computational performance of the different procedures. Tables 5

and 6 show the average computation time (in seconds) for estimating the model with one and

two endogenous variables for different sample sizes. We compare our procedures to the IQR

algorithm with a grid search over 500 points (one endogenous regressor) and 100×100 points

(two endogenous regressors).18 Note that we choose a higher (and arguably more practically

relevant) number of grid points for the model with two endogenous regressors than in the

18We take IQR as a benchmark as it is the most popular existing IVQR estimator and other recently

proposed algorithms such as Kaplan and Sun (2017) and Zhu (2018) require the choice of tuning parameters.
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simulations.19 All computations were carried out on a standard desktop computer with a

3.2 GHz Intel Core i5 processor and 8GB RAM.

With one endogenous regressor, both of our algorithms are computationally much more

efficient than IQR. Specifically, the root-finding algorithm based on Brent’s method is about

8 to 23 times faster than IQR, and the contraction algorithm is 4 to 11 times faster. Among

our algorithms, the root-finding method is about twice as fast as the contraction-based

iterative algorithm.

The computational gain of our algorithms becomes more pronounced with two endogenous

variables. Table 6 shows that IQR’s average computation times are around two orders

of magnitude slower than those of our procedures. Specifically, the nested root-finding

algorithm is 77 to 134 times faster than IQR, while the contraction algorithm is 155 to

297 times faster. This is as expected since, due to the use of grids, IQR’s computational

cost increases exponentially as the number of endogenous variables increases.20 Among

our algorithms, the contraction algorithm is almost twice as fast as the nested algorithm.

However, both of these procedures are computationally very efficient even for large samples.

The minimization-based algorithm based on SA is about an order of magnitude slower that

the contraction algorithm and the nested algorithm, while still being an order of magnitude

faster than IQR.

[Table 5 about here.]

[Table 6 about here.]

19We found that using the same number of grid points for IQR in the simulations reported in Tables 2-4

was computationally prohibitive.
20Our implementation of IQR with two endogenous variables is inherently slower than the implementation

with one endogenous variable, even when the number of grid points is the same. First, there is an additional

covariate in the underlying QRs (the second instrument). Second, with one endogenous variable, we choose

the grid value that minimizes the absolute value of the coefficient on the instrument. By contrast, with two

endogenous regressors, we choose the grid point which minimizes a quadratic form based on the inverse of

the estimated QR variance covariance matrix as suggested in Chernozhukov, Hansen, and Wüthrich (2017),

which requires an additional computational step.
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Appendix D presents additional simulation evidence, demonstrating that our algorithms

perform well and remain computationally tractable with more than two endogenous regres-

sors.21

8.3. Additional Simulations. This section presents some additional simulation evidence

based on the following location-scale shift model:

Yi = γ1 + γ2Xi + γ3D1,i + γ4D2,i + (γ5 + γ6D1,i + γ7D2,i)Ui (8.3)

Here D1,i and D2,i are the endogenous variables of interest and Xi is an exogenous covariate.

In addition, we have access to two instruments Z1,i and Z2,i. For γ2 = γ4 = γ7 = 0, this

model reduces to the model considered in Section 6.1 of Andrews and Mikusheva (2016).

We set γ1 = · · · = γ7 = 1. To evaluate the performance of our algorithms with one endoge-

nous variable, we set γ4 = γ7 = 0 and use Z1i as the instrument. Following Andrews and

Mikusheva (2016), we consider a symmetric as well as an asymmetric DGP:

(Ui, D1,i, D2,i, Z1,i, Z2,i, Xi) = (Φ(ξU,i),Φ(ξD1,i),Φ(ξD2,i),Φ(ξZ1,i),Φ(ξZ2,i),Φ(ξX,i)) , (symmetric)

(Ui, D1,i, D2,i, Z1,i, Z2,i, Xi) = (ξU,i, exp(2ξD1,i), exp(2ξD2,i), ξZ1,i, ξZ2,i, ξX,i) , (asymmetric)

where (ξU,i, ξD1,i, ξD2,i, ξZ1,i, ξZ2,i, ξX,i) is a Gaussian vector with mean zero, all variances are

set equal to one, Cov(ξU , ξD1) = Cov(ξU , ξD2) = 0.5, Cov(ξD1 , ξZ1) = 0.8, Cov(ξD2 , ξZ2) =

0.4, which allows us to investigate the impact of instrument strength, all other covariances

are equal to zero, and Φ is the cumulative distribution function of the standard normal

distribution.

We first investigate the bias and RMSE of the different methods. Tables 7–10 present

the results. With one endogenous variable, the performances of the root-finding algorithm

using Brent’s method and IQR are very similar both in terms of bias and RMSE. The

contraction algorithm performs well but exhibits some bias at the tail quantiles. Turning to

the results with two endogenous variables, we can see that the nested algorithm exhibits the

best overall performance, both in terms of bias and RMSE. The performances of the SA-

based optimization algorithm and IQR are similar and only slightly worse than that of the

nested algorithm. The contraction algorithm tends to exhibit some bias at the tail quantiles.

However, this bias decreases substantially as the sample size gets larger. Finally, comparing

21Specifically, we present simulation results based on the DGP used in this section, augmented with an

additional endogenous regressor, generated as D3,i = 0.8 · Z3,i + 0.2 · Φ−1(Ui), where Z3,i ∼ N(0, 1).
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the results for the coefficients on D1 and D2, we can see that the instrument strength matters

for the performance of all estimators (including IQR), suggesting that weak identification

can have implications for the estimation of IVQR models.

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

[Table 10 about here.]

Table 11 displays the empirical coverage probabilities of the bootstrap confidence inter-

vals. The results show that the our bootstrap procedure exhibits excellent size properties.

The confidence intervals based on the contraction algorithm tend to exhibit a slightly more

accurate coverage than those based on Brent’s method, which exhibit some over-coverage,

especially for N = 500 and α = 0.1.

[Table 11 about here.]

9. Conclusion

The main contribution of this paper is to develop computationally convenient and easy-to-

implement estimation algorithms for IVQR models. Our key insight is that the non-smooth

and non-convex IVQR estimation problem can be decomposed into a sequence of much

more tractable convex QR problems, which can be solved very quickly using well-established

methods. The proposed algorithms are particularly well-suited if the number of exogenous

variables is large and the number of endogenous variables is moderate as in many empirical

applications.

An interesting avenue for further research is to investigate weak identification robust infer-

ence within the decentralized model. One may, for example, write the (re-scaled) sample fixed

point restriction as
√
N(I − K̂)(θ) = sN(θ) + W(θ) + rN(θ), where sN(θ) =

√
N(I −K)(θ),

W is a Gaussian process, and rN is an error that tends to zero uniformly. This paper as-

sumes that sN(θ∗) = 0 uniquely, and outside N−1/2-neighborhoods of θ∗, sN(θ) diverges and

dominates W. For a one-dimensional fixed point problem, this requires the BR map to be

bounded away from the 45-degree line outside any N−1/2-neighborhood of the fixed point.

However if sN fails to dominate W over a substantial part of the parameter space, one would
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end up with weak identification.22 How to conduct robust inference in such settings is an

interesting question, which we leave for future research.

Finally, we note that while we study the performance of the proposed algorithms sep-

arately, our reformulation and the resulting algorithms are potentially very useful when

combined with other existing procedures. For instance, one could choose starting values

using an initial grid search over a coarse grid and then apply a fast contraction algorithm.
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APPENDIX (FOR ONLINE PUBLICATION)

Appendix A. Overidentification

In the main text, we focus on just-identified moment restrictions with dZ = dD, for which the

construction of an estimator is straightforward. If the model is overidentified (i.e. if dZ > dD), we

can transform the original moment conditions

EP

(1{Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)
}
− τ
)X

Z

 = 0

into a set of just-identified moment conditions

EP

(1{Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)
}
− τ
)X

Z̃

 = 0, (A.1)

where Z̃ is a dD × 1 vector of transformations of (X,Z). A practical choice is to construct Z̃ using

a least squares projection of D on Z and X.

To achieve pointwise (in τ) efficiency, we can employ the following two-step procedure which is

based on Remark 5 in Chernozhukov and Hansen (2006):

Step 1: We first obtain an initial consistent estimate of θ∗ using one of our estimators based

on a set of just-identified moment conditions such as (A.1). We then use nonparametric estimators

to estimate the conditional densities V (τ) = fε(τ)|X,Z(0) and v(τ) = fε(τ)|D,X,Z(0), where ε(τ) =

Y −X ′θ∗1(τ)−D1θ
∗
2(τ)−· · ·−DdDθ

∗
J(τ), and the conditional expectation function EP [Dv(τ) | X,Z].

Step 2: We apply our procedure to obtain a solution to the following moment conditions:

EP

(1{Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)
}
− τ
) V (τ)X

EP [Dv(τ) | X,Z]

 = 0. (A.2)

Consider players j = 1, . . . , J solving the following optimization problems:

min
θ̃1∈RdX

QP,1

(
θ̃1, θ−1

)
(A.3)

min
θ̃j∈R

QP,j

(
θ̃j , θ−j

)
, j = 2, . . . , J, (A.4)

where

QP,1 (θ(τ)) := EP
[
ρτ
(
Y −X ′θ1(τ)−D1θ2(τ)− · · · −DdDθJ(τ)

)
V (τ)

]
,

QP,j (θ(τ)) := EP

[
ρτ
(
Y −X ′θ1(τ)−D1θ2(τ)− · · · −DdDθJ(τ)

) EP [Dv(τ) | X,Z]j−1

Dj−1

]
, j = 2, . . . , J,

and EP [Dv(τ) | X,Z]j−1 is the j-th element of EP [Dv(τ) | X,Z]. For each j, the BR function

Lj(θ−j(τ)), defined as a member of the set of minimizers of QP,j(·, θ−j), solves a suitable subset of
1
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the moment conditions in (A.2). The optimization problems in (A.3)-(A.4) are convex population

QR problems provided that the model is parametrized such that EP [Dv(τ) | X,Z]j−1 /Dj−1, j =

2, . . . , J , is positive. Estimation can then proceed by replacing the population QR problems by

their sample analogues and applying one of the estimation algorithms discussed in the main text.

The resulting estimator uses the optimal instrumental variables and thus achieves pointwise (in τ)

efficiency (e.g., Chamberlain, 1987).

Appendix B. Reparametrization

In the main text, we assume that the model is reparametrized such that Z`/D` is positive for all

` = 1, . . . , dD. This ensures that the weights are well-defined and that the weighted QR problems

are convex. However, in empirical applications, the weights may not be well-defined (e.g., if D`

is an indicator variable with P (D` = 0) > 0) or negative in some instances. Assuming that Z` is

positive, a simple way to reparametrize the model is to add a large enough constant c to D`.
23 This

transformation is theoretically justified by the compactness of the support of D` (Assumption 2.2).

To fix ideas, suppose that one is interested in estimating the following linear-in-parameters model

with a single endogenous variable:

q(D,X, τ) = θ11 + X̃ ′θ12 +Dθ2,

where θ1 = (θ11, θ
′
12)′ and X =

(
1, X̃ ′

)′
. Suppose further that the support of D is a compact

interval, [dmin, dmax] ⊂ R, with dmin < 0. In this case, we can apply the transformation D? = D+c,

where c > |dmin|. The transformed model reads

q(D,X, τ) = θ?11 + X̃ ′θ12 +D?θ2,

where θ?11 = θ11 − cθ2. Importantly, one can always back out the original parameters, θ =

(θ11, θ
′
12, θ2)′, from the parameters in the reparametrized model, θ? = (θ?11, θ

′
12, θ2)′.

Appendix C. Decentralization

C.1. The domains of Mj-maps. Recall that, in (3.13), we defined the set

R̃1 :=
{
θ−1 ∈ Θ−1 :ΨP,1(θ1, θ−1) = 0,

ΨP,2(θ1, θ2, π−{1,2}θ−1) = 0, ∃(θ1, θ2) ∈ Θ1 ×Θ2

}
.

23Since the IVQR model is characterized by conditional moments (as in (2.1)), one may choose transfor-

mations of instruments to generate unconditional moment conditions. In case Z` is not positive a.s., one

can use a positive transformation (e.g. logistic function) of Z` instead of Z` itself. The decentralization and

identification results then hold with the transformed instruments as long as they satisfy our assumptions.
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Similarly for k = 2, . . . , dD − 1, define

R̃k :=
{
θ−1 ∈ Θ−1 :ΨP,1(θ1, θ−1) = 0,

ΨP,2(θ1, θ2, π−{1,2}θ−1) = 0,

...

ΨP,k(θ1, . . . , θk, π−{1,...,k}θ−1) = 0, ∃(θ1, . . . , θk) ∈
k∏
j=1

Θj

}
.

For k = dD, let

R̃dD :=
{
θ−1 ∈ Θ−1 :ΨP,1(θ1, θ−1) = 0,

ΨP,2(θ1, θ2, π−{1,2}θ−1) = 0,

...

ΨP,J(θ1, . . . , θJ) = 0, ∃(θ1, . . . , θJ) ∈
J∏
j=1

Θj

}
.

For each k, the map Mk is well-defined on R̃k. Note also that R̃dD ⊂ R̃j for all j ≤ dD.

C.2. Local Decentralization and Local Contractions. We say that an estimation problem

admits local decentralization if the BR functions Lj , j = 1, . . . , J , and the maps K and M are

well-defined over a local neighborhood of θ∗. The following weak conditions are sufficient for local

decentralization of the IVQR estimation problem.

Assumption 4. The following conditions hold.

(1) The conditional cdf y 7→ FY |D,X,Z(y) is continuously differentiable at y∗ = d′θ∗−1 + x′θ∗1 for

almost all (d, x, z). The conditional density fY |D,Z,X is bounded on a neighborhood of y∗

a.s.;

(2) The matrices

EP [fY |D,X,Z
(
D′θ∗−1 +X ′θ∗1

)
XX ′]

and

EP [fY |D,X,Z
(
D′θ∗−1 +X ′θ∗1

)
D`Z`], ` = 1, . . . , dD,

are positive definite.

Assumption 4 is weaker than Assumption 2.3–2.4 as it only requires the conditions, e.g. continu-

ous differentiability of the conditional CDF, at a particular point, e.g. y∗. Under this condition, we

can study the local properties of our population algorithms. For this, the following lemma ensures

that the BR maps are well-defined locally.
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Lemma 3. Suppose that Assumptions 1, 2.1–2.2, and 4 hold. Then, there exist open neighborhoods

NL−j , j = 1, . . . , J , NK , NM of θ∗−j, θ
∗, and θ∗−1 such that

(i) There exist maps Lj : N−j → Rdj , j = 1, . . . , J such that, for j = 1, . . . , J ,

ΨP,j (Lj(θ−j), θ−j) = 0, for all θ−j ∈ N−j

Further, Lj is continuously differentiable for all j = 1, . . . , J .

(ii) The maps K : NK → Rd and M : NM → RdD are continuously differentiable.

Proof. (i) The proof is similar to that of Lemma 1. Therefore, we sketch the argument below

for j = 1. By Assumptions 2.2 and 4.1, ΨP,1 is continuously differentiable on a neighborhood V

of θ∗. By Assumption 4.2 and the continuity of det(∂ΨP,1(θ)/∂θ′1), one may choose V so that

det(∂ΨP,1(θ)/∂θ′1) 6= 0 for all θ = (θ1, θ−1) ∈ V . By the implicit function theorem, there is a

continuously differentiable function L1 and an open set N−1 containing θ−1 such that

ΨP,1(L1(θ−1), θ−1) = 0, for all θ−1 ∈ N−1.

The arguments for Lj , j 6= 1 are similar.

(ii) Let NK = {θ ∈ Θ : π−jθ ∈ N−j , j = 1, . . . , J} and let NM be defined by mimicking (3.13),

while replacing Θj with Nj in the definition of R̃j for j = 1, . . . , J . The continuous differentiability

of K and M follows from that of Lj , j = 1, . . . , J . �

C.2.1. Local Contractions. Recall that ρ(A) denotes the spectral radius of a square matrix A. The

following assumption ensures that K and M are local contractions.

Assumption 5.

(1) ρ (JK (θ∗)) < 1;

(2) ρ (JM (θ∗2)) < 1

Here, we illustrate a primitive condition for Assumption 5. Consider a simple setup without

covariates (i.e. X = 1), a binary D, and a binary Z. We only analyze Assumption 5.1. A similar

result can be derived for Assumption 5.2. In this setting, the Jacobian of K evaluated at θ∗ is given

by

JK(θ∗) =

 0 −EP [fY |D,Z(Dθ∗2+θ∗1)D]
EP [fY |D,Z(Dθ∗2+θ∗1)]

− EP [fY |D,Z(Dθ∗2+θ∗1)Z]
EP [fY |D,Z(Dθ∗2+θ∗1)ZD]

0

 .

The characteristic polynomial is then given by

pK(λ) = λ2 −
EP
[
fY |D,Z (Dθ∗2 + θ∗1)D

]
EP
[
fY |D,Z (Dθ∗2 + θ∗1)

] EP
[
fY |D,Z (Dθ∗2 + θ∗1)Z

]
EP
[
fY |D,Z (Dθ∗2 + θ∗1)ZD

] .
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Hence, Assumption 3.1 holds if all eigenvalues (i.e. the roots λK of pK(λ) = 0) have modulus less

than one, which holds when∣∣∣∣EP
[
fY |D,Z (Dθ∗2 + θ∗1)D

]
EP
[
fY |D,Z (Dθ∗2 + θ∗1)

] EP
[
fY |D,Z (Dθ∗2 + θ∗1)Z

]
EP
[
fY |D,Z (Dθ∗2 + θ∗1)ZD

]∣∣∣∣ < 1.

This condition can be simplified to

fY |0,1(θ∗1)p(0|1)fY |1,0(θ∗2 + θ∗1)p(1|0) < fY |1,1(θ∗2 + θ∗1)p(1|1)fY |0,0(θ∗1)p(0|0), (C.1)

where fY |d,z(y) := fY |D=d,Z=z(y) and p(d|z) := P (D = d | Z = z). It is instructive to interpret

condition (C.1) under the local average treatment effects framework of Imbens and Angrist (1994).

Specifically, condition (C.1) holds if (i) their monotonicity assumption is such that there are com-

pliers but no defiers and (ii) the complier potential outcome density functions are strictly positive.

Conversely, the condition is violated if there are defiers but no compliers.

Under the local contraction conditions in Assumption 5, we have the following results.

Proposition 3. Suppose that Assumptions 1, 2.1, 2.2, and 4 hold.

(i) Suppose further that Assumption 5.1 holds. Then there exists a closed neighborhood N̄K of

θ∗ such that K(N̄K) ⊂ N̄K and K is a contraction on N̄K with respect to an adapted norm.

(ii) Suppose further that Assumption 5.2 holds. Then there exists a closed neighborhood N̄M
of θ∗2 such that M(N̄M ) ⊂ N̄M and M is a contraction on N̄M with respect to an adapted

norm.

Proof. We only prove the result for K, the proof for M is similar. By Lemma 3, Lj is continuously

differentiable at θ∗. Note that JK is given by

JK(θ) =


0 ∂L1(θ−1)

∂θ′2
. . . . . . ∂L1(θ−1)

∂θ′J
∂L2(θ−2)

∂θ′1
0 ∂L2(θ−2)

∂θ′3
. . . ∂L2(θ−2)

∂θ′J
...

...
...

...
...

∂LJ (θ−J )
∂θ′1

· · · · · · ∂LJ (θ−J )
∂θ′J−1

0

 , (C.2)

which is continuous at θ∗. The desired result now follows, for instance, from Proposition 2.2.19 in

(Hasselblatt and Katok, 2003). �

Appendix D. Additional Simulations with Three Endogenous Variables

In this section, we present additional simulation evidence with three endogenous variables. We

consider the application-based DGP of Section 8.2 augmented with an additional endogenous vari-

able

Yi = X ′iθ1(Ui) +Diθ2(Ui) +D2,iθ3(Ui) +D3,iθ4(Ui) +G−1(Ui), (D.1)
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where θ4(Ui) = 10000, D3,i = 0.8 · Z3,i + 0.2 · Φ−1(Ui), and Z3,i ∼ N(0, 1). We only report

the results based on the contraction algorithm and the nested fixed point algorithm and do not

report results for IQR, which we found to be computationally prohibitive with three endogenous

regressors. Table 12 shows that both methods exhibit similar performances in terms of bias and

RMSE, which are comparable to the respective performances with two endogenous regressors.

Table 13 displays average computation times. As expected, the computational advantages of the

contraction algorithm relative to the nested fixed point algorithm are more pronounced than with

two endogenous variables.

[Table 12 about here.]

[Table 13 about here.]

Appendix E. Proofs of Theoretical Results in Section 3

Proof of Lemma 1. (i) We first show that L1 is well-defined. For a given θ−1 ∈ Rd−dX , let

θ∗1 ∈ arg minθ̃1∈RdX QP,1(θ̃1, θ−1). Under Assumption 2, the objective function is convex and differ-

entiable with respect to θ̃1. Therefore, by the necessary and sufficient condition of minimization,

θ∗1 solves

EP [(1{Y ≤ D′θ−1 +X ′θ∗1})X] = 0.

In what follows, we show that the map L1 : θ−1 7→ θ∗1 is well-defined on R−1 using a global inverse

function theorem. Recall that

ΨP,1(θ) = EP [(1{Y ≤ D′θ−1 +X ′θ1})X]. (E.1)

This function is continuously differentiable with respect to θ. The Jacobian is given by

JΨP,1
(θ) =

∂

∂θ′
EP [FY |D,X,Z(D′θ−1 +X ′θ1)X] = EP [fY |D,X,Z(D′θ−1 +X ′θ1)X(X ′, D′)], (E.2)

where the second equality follows from Assumption 2 and the dominated convergence theorem.

Define a transform Ξ : Θ→ Rd by

Ξ(θ) := (ΨP,1(θ)′, θ−1
′)′. (E.3)

We follow Krantz and Parks (2012) (Section 3.3) to obtain an implicit function L1 on a suitable

domain such that θ1 = L1(θ2) if and only if ΨP,1(θ) = 0. The key is to apply a global inverse
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function theorem to Ξ. Toward this end, we analyze the Jacobian of Ξ, which is given as

JΞ(θ) =

∂ΨP,1(θ1, θ−1)/∂θ′1 ∂ΨP,1(θ1, θ−1)/∂θ′−1

0d−1×d1 Id−1


=

EP [fY |D,X,Z(D′θ−1 +X ′θ1)XX ′] EP [fY |D,X,Z(D′θ−1 +X ′θ1)XD′]

0d−1×d1 Id−1

 , (E.4)

where Id denotes the d× d identity matrix. Let I ⊂ {1, . . . d}.

For any matrix A, let [A]I,I denote a principal minor of A, which collects the rows and columns

of A whose indices belong to the index set I. By (E.4), if I ⊂ {1, . . . , d1},

[JΞ(θ)]I,I = EP [fY |D,X,Z(D′θ−1 +X ′θ1)X̃X̃ ′] (E.5)

for a subvector X̃ of X, which is positive definite by Assumption 2 and Lemma 4. If I ⊂ {d1 +

1, . . . , d}, [JΞ(θ)]I,I = I` for some 1 ≤ ` ≤ d − d1 and is hence positive definite. Otherwise, any

principal minor is of the following form:

[JΞ(θ)]I,I =

EP [fY |D,X,Z(D′θ−1 +X ′θ1)X̃X̃ ′] B

0`×m I`

 (E.6)

for some subvector X̃ of X and a m× ` matrix B. Note that

det([JΞ(θ)]I,I) = det(EP [fY |D,X,Z(D′θ−1 +X ′θ1)X̃X̃ ′]−BI−1
` × 0`×m) det(I`)

= det(EP [fY |D,X,Z(D′θ−1 +X ′θ1)X̃X̃ ′]) > 0, (E.7)

where the last inequality follows again from Assumption 2 and Lemma 4. Hence, JΞ(θ) is a P -

matrix. Note that Θ is a closed rectangle. By Theorem 4 in Gale and Nikaido (1965), Ξ is univalent,

and hence the inverse map Ξ−1 is well defined.

Let

R−1 = {θ−1 ∈ Rd−1 : (0, θ−1) ∈ Ξ(Θ)} = {θ−1 ∈ Rd−1 : ΨP,1(θ1, θ−1) = 0, for some (θ1, θ−1) ∈ Θ},

which coincides with the definition in (3.8) with j = 1. Let F1 = [Id1 , 0d1×d−1 ]. For each θ−1 ∈ R−1,

define

L1(θ−1) := F1Ξ−1(0, θ−1).

Then, for any θ ∈ Θ, ΨP,1(θ) = 0 if and only if θ−1 ∈ R−1 and Ξ(θ) = (0, θ−1). By the univalence

of Ξ, this is true if and only if θ = Ξ−1(0, θ−1), and the first d1 components extracted by applying

F1 is θ1. This ensures L1 is well-defined on R−1.
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Below, for any set A, let Ao denote the interior of A. Let Ro−1 = {θ−1 ∈ Rd−1 : (0, θ−1) ∈ Ξ(Θo)}.

Note that ΨP,1 is C1 on Θo and, for each θ = (θ1, θ−1) ∈ Θ with θ−1 ∈ Rod−1
, det(∂ΨP,1(θ)/∂θ′1) 6= 0.

Therefore, by the implicit function theorem, there is a C1-function L̃1 and an open set V containing

θ−1 such that

ΨP,1(L̃1(θ−1), θ−1) = 0, for all θ−1 ∈ V.

However, such a local implicit function must coincide with the unique global map L1 on V . Hence,

L1|V = L̃1, and therefore L1 is continuously differentiable at θ−1. Since the choice of θ−1 is

arbitrary, L1 is continuously differentiable for all θ−1 ∈ Ro2.

Showing that the conclusion holds for any other Lj for j = 2, . . . , J is similar, and hence we omit

the proof. �

Lemma 4. Suppose EP [fY |D,X,Z (D′θ−1 +X ′θ1)XX ′] is positive definite. Then, for any subvector

X̃ of X with dimension d̃X ≤ dX , EP [fY |D,X,Z (D′θ−1 +X ′θ1) X̃X̃ ′] is positive definite.

Proof. In what follows, let W = fY |D,X,Z (D′θ−1 +X ′θ1) and let

A := EP [fY |D,X,Z
(
D′θ−1 +X ′θ1

)
XX ′] = E[WXX ′]. (E.8)

Let X̃ be a subvector of X with d̃X components. Then, there exists a dX ×dX permutation matrix

Pπ such that the first d̃X components of PπX is X̃.

Let B := E[WPπXX
′P ′π] and note that

B = PπE[WXX ′]P ′π = PπAP
′
π, (E.9)

by the linearity of the expectation operator and W being a scalar. Let λ be an eigenvalue of B

such that

Bz = λz, (E.10)

for the corresponding eigenvector z ∈ RdX . By (E.9)-(E.10),

PπAP
′
πz = λz ⇔ AP ′πz = λP−1

π z. (E.11)

Note that P−1
π = P ′π due to Pπ being a permutation matrix. Letting y := P ′πz then yields

Ay = λy, (E.12)

which in turn shows that λ is an eigenvalue of A. For any eigenvalue of A, the argument above

can be reversed to show that it is also an eigenvalue of B. Since the choice of the eigenvalue is

arbitrary, A and B share the same eigenvalues.
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Now let C := E[WX̃X̃ ′] and note that it is a leading principal submatrix of B. Then, by the

eigenvalue inclusion principle (Horn and Johnson, 1990, Theorem 4.3.28),

λmin(C) ≥ λmin(B) = λmin(A) > 0, (E.13)

where the last inequality follows from the positive definiteness of A. This completes the claim of

the lemma. �

Proof of Corollary 1. The existence of K and its continuous differentiability follows immediately

from Lemma 1. For M , by the definition of R̃1, for any θ−1 ∈ R̃j , there exists (θ1, θ2) ∈ Θ1 × Θ2

such that

ΨP,1(θ1, θ−1) = 0, (E.14)

ΨP,2(θ1, θ2, π−{1,2}θ−1) = 0, (E.15)

By (i), one may then write θ1 = L1(θ−1) and θ2 = L2(L1(θ−1), π−{1,2}θ−1). Hence, the map

M1 : R̃1 → Θ2 defined below is well-

M1(θ−1) = L2

(
L1(θ−1), π−{1,2}θ−1

)
. (E.16)

Recursively, arguing in the same way, the maps

M2(θ−1) = L3

(
L1(θ−1),M1(θ−1), π−{1,2,3}θ−1

)
(E.17)

...

Mj(θ−1) = Lj+1

(
L1(θ−1),M1(θ−1), . . . ,Mj−1(θ−1), π−{1,...,j+1}θ−1

)
(E.18)

...

MdD(θ−1) = LJ
(
L1(θ−1),M1(θ−1), . . . ,MdD−1(θ−1)

)
(E.19)

are well-defined on R̃2, · · · , R̃dD respectively. The continuous differentiability of M follows from

that of Ljs and the chain rule. �

Proof of Proposition 1. ⇒: For every solution, ΨP (θ∗) = 0, θ∗j = Lj

(
θ∗−j

)
by construction

under Assumptions 1 and 2. It follows that K (θ∗) = θ∗ and M
(
θ∗−1

)
= θ∗−1.

⇐: For the simultaneous response note that K
(
θ̄
)

= θ̄ implies that θ̄j = Lj
(
θ̄−j
)

for all j ∈

{1, · · · , J}. Thus, θ̄ solves ΨP (θ̄) = 0 by Lemma 1. Consider next the sequential response. Let
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θ̃, θ̄ ∈ Θ be such that θ̃j = Lj(θ̄−j) for j = 1, . . . , J . By Lemma 1, they satisfy

ΨP,1

(
θ̃1, θ̄2, · · · , θ̄J

)
= 0

ΨP,2

(
θ̃1, θ̃2, · · · , θ̃J

)
= 0

...

ΨP,J

(
θ̃1, θ̃2, · · · , θ̃J

)
= 0

Thus, a fixed point θ̃ = θ̄ satisfies ΨP

(
θ̄
)

= 0. �

Appendix F. Proofs of Theoretical Results in Section 4

Proof of Proposition 2. We prove the result for K. By Assumption 3, there exists a strictly

convex set D̃K on which the spectral norm of the Jacobian of K is uniformly bounded by 1. This

ensures that K is a contraction map on cl(D̃K), and the claim of the proposition now follows from

Theorem 2.2.16 in Hasselblatt and Katok (2003). �

Appendix G. Proofs of Theoretical Results in Section 6

Proof of Theorem 1. Let H := Id −K. A fixed point θ∗ of K then satisfies

H(θ∗) = 0.

Similarly, let Ĥ := Id − K̂. The estimator θ̂ satisfies

‖Ĥ(θ̂)‖2 ≤ inf
θ′∈Θ
‖Ĥ(θ)‖2 + r2

N , (G.1)

where rN = op(N
−1/2). Let ϕ : `∞(Θ)d×R→ Rd be a map such that, for each (H, r) ∈ `∞(Θ)d×R,

θ̃ = ϕ(H, r) is an r-approximate solution, which satisfies

‖H(θ̃)‖2 ≤ inf
θ′∈Θ
‖H(θ′)‖2 + r2. (G.2)

One may then write

√
N(θ̂N − θ∗) =

√
N(ϕ(Ĥ, r̂)− ϕ(H, 0)). (G.3)

By Corollary 2,
√
N(K̂−K) W in `∞(Θ)d, where W is a Gaussian process defined in Corollary 2.

By Lemmas 6-7, Condition Z in Chernozhukov, Fernandez-Val, and Melly (2013)(CFM henceforth)

holds, which in turn ensures that one may apply Lemmas E.2 and E.3 in CFM. This ensures

√
N(ϕ(Ĥ, r̂)− ϕ(H, 0)) ϕ′H,0(W, 0) = −Ḣ−1

θ∗ W(θ∗). (G.4)
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Hence, we obtain (6.5) with

V = Ḣ−1
θ∗ E[W(θ∗)W(θ∗)′]Ḣ−1

θ∗ . (G.5)

Finally, note that Ḣθ∗ = Id − JK(θ∗) by Lemma 7. This establishes the theorem. �

Proof of Theorem 2. Recall that Ĥ = Id − K̂. The estimator θ̂N satisfies

‖Ĥ(θ̂N )‖2 ≤ inf
θ′∈Θ
‖Ĥ(θ′)‖2 + r2

N , (G.6)

where rN = op(N
−1/2). Similarly, let Ĥ∗ = Id − K̂∗. Let P ∗ denote the law of Ĥ∗ conditional on

{Wi}∞i=1. The bootstrap estimator θ̂∗N satisfies

‖Ĥ∗(θ̂∗N )‖2 ≤ inf
θ′∈Θ
‖Ĥ∗(θ′)‖2 + (r∗N )2, (G.7)

where r∗N = oP ∗(N
−1/2) conditional on {Wi}∞i=1.

Using the r-approximation, one may therefore write

√
N(θ̂∗N − θ̂N ) =

√
N(ϕ(Ĥ∗, r∗N )− ϕ(Ĥ, rN )). (G.8)

Let EP ∗ denote the conditional expectation with respect to P ∗. Let BL1 denote the space of

bounded Lipschitz functions on Rd with Lipschitz constant 1. Then, for any ε > 0,

sup
h∈BL1

∣∣∣EP ∗h(√N[ϕ(Ĥ∗, r∗N )− ϕ(Ĥ, rN )
])
− EP ∗h

(
ϕ′H,0

(√
N
[
(Ĥ∗, r∗N )′ − (Ĥ, rN )′

]))∣∣∣
≤ ε+ 2P ∗

(∥∥√N[ϕ(Ĥ∗, r∗N )− ϕ(Ĥ, rN )
]
− ϕ′H,0

(√
N
[
(Ĥ∗, r∗N )− (Ĥ, rN )

])∥∥ > ε
)
. (G.9)

By Corollary 2,
√
N(Ĥ∗−Ĥ) = −

√
N(K̂∗−K̂)

L∗
 −W d

= W. Noting that h◦ϕ′H,0 ∈ BL1(`∞(Θ)×R)

and rN = op(N
−1/2), it follows that

sup
h∈BL1

∣∣∣EP ∗h(ϕ′H,0(√N[(Ĥ∗, r∗N )− (Ĥ, rN )
])
− EP ∗h ◦ ϕ′H,0(W, 0)

∣∣∣→ 0, (G.10)

with probability approaching 1 due to rN = oP (N−1/2). Hence, for the conclusion of the theorem,

it suffices to show that the right hand side of (G.9) tends to 0 in probability.

For this, as shown in the proof of Theorem 1, ϕ is Hadamard differentiable at (H, 0). Hence, by

Theorem 3.9.4 in Van der Vaart and Wellner (1996),

√
N
[
ϕ(Ĥ∗, r∗N )− ϕ(H, 0)

]
= ϕ′H,0(

√
N [(Ĥ∗, r∗N )− (H, 0)]) + oP ∗(1)

√
N
[
ϕ(Ĥ, rN )− ϕ(H, 0)] = ϕ′H,0(

√
N [(Ĥ, rN )− (H, 0)]) + oP (1),

Take the difference of the left and right hand sides respectively and note that ϕ′H,0 is linear. This

implies the right hand side of (G.9) tends to 0 in probability. This ensures

√
N(ϕ(Ĥ, r∗N )− ϕ(Ĥ, rN ))

L∗
 ϕ′H,0(W, 0) = −Ḣ−1

θ∗ W(θ∗). (G.11)
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�

Lemma 5. Suppose Assumptions 1-2 hold. (i) Let θ̂N be an estimator of θ∗ that satisfies (6.1).

Then, it also satisfies (6.2)-(6.3); (ii) Let θ̂N be an estimator of θ∗ that satisfies (6.2)-(6.3). Then,

it also satisfies (6.1).

Proof. (i) Consider the case j = 2. Note that, by (6.1),

θ̂N,2 − L̂2(L̂1(θ̂N,−1), θ̂N,3, . . . , θ̂N,J) = θ̂N,2 − L̂2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J) (G.12)

= L̂2(θ̂N,1, θ̂N,3, . . . , θ̂N,J)− L̂2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J),

(G.13)

where rN,1 = op(N
−1/2), and the second equality follows from the definition of θ̂N,2. (G.13) can be

written as

L̂2(θ̂N,1, θ̂N,3, . . . , θ̂N,J)− L̂2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J)

=
(

[L̂2(θ̂N,1, θ̂N,3, . . . , θ̂N,J)− L2(θ̂N,1, θ̂N,3, . . . , θ̂N,J)]

− [L̂2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J)− L2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J)]
)

+ [L2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J)− L2(θ̂N,1, θ̂N,3, . . . , θ̂N,J)]

= op(N
−1/2) +OP (rN,1), (G.14)

where the last equality follows from the stochastic equicontinuity of LN shown in the proof of Lemma

11 and L2 being Lipschitz since L2 is continuously differentiable with a derivative that is uniformly

bounded on the compact set Θ. By (G.12)-(G.14), it holds that θ̂N,j = Mj(θ̂N,−1) + op(N
−1/2) for

j = 2. Repeat the same argument sequentially for j = 3, . . . , J . The first conclusion of the lemma

then follows.

(ii) Suppose now that rN,1 := θ̂N,1 − L̂1(θ̂N,−1) 6= oP (N−1/2). Then, there is a subsequence

kN along which, for any η > 0,
√
kNrkN ,1 > η for all kN with positive probability. Then, the

OP (rkN ,1)-term in (G.14) is not op(k
−1/2
N ), which therefore implies θ̂N,j 6= Mj(θ̂N,−1) + op(N

−1/2)

for j = 2. The second conclusion of the lemma then follows. �

Lemma 6. Let Λ ⊂ Rp be a compact set, and let K : Λ → Rp be a map that has a unique fixed

point λ0 ∈ Λ. let H : Λ→ Rp be defined by H(λ) := λ−K(λ). Then H−1(x) = {λ ∈ Λ : H(λ) = x}

is continuous at x = 0 in Hausdorff distance.

Proof. For any x, write

H−1(x) = {λ : λ−K(λ) = x}.
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Let xn → 0. Since λ0 is the unique fixed point of K, H−1(0) = {λ0}. Therefore,

dH(H−1(0), H−1(xn)) = max

{
inf

λ∈H−1(xn)
‖λ− λ0‖, sup

λ∈H−1(xn)

‖λ− λ0‖

}
= sup

λ∈H−1(xn)

‖λ− λ0‖.

Hence, it suffices to show that supλ∈H−1(xn) ‖λ − λ0‖ = o(1). We show this by contradiction.

Suppose that there is a sequence {λn} ⊂ Λ and δ > 0 such that λn ∈ H−1(xn) for all n and {λn}

has a subsequence {λkn} such that ‖λkn − λ0‖ > δ for all n. λkn ∈ Λ is a sequence in a compact

space, and hence there is a further subsequence λhn such that λhn → λ∗ for some λ∗ ∈ Λ with

λ∗ 6= λ0. By the continuity of K, one then has

λhn −K(λhn)→ λ∗ −K(λ∗).

By λhn −K(λhn) = xn and xn → 0, it must hold that

λ∗ −K(λ∗) = 0.

However this contradicts the fact that λ0 is the unique fixed point, and hence the conclusion

follows. �

Lemma 7. Suppose H = I − K and K : Rp → Rp is continuously differentiable at λ0. Suppose

further that det(I − JK(λ0)) 6= 0. Let Ḣλ0 := I − JK(λ0). Then,

lim
t↓0

sup
h:‖h‖=1

‖t−1[H(λ0 + th)−H(λ0)]− Ḣλ0h‖ = 0,

and

inf
h:‖h‖=1

‖Ḣλ0h‖ > 0.

Proof. Let {hn} ⊂ Sp be a sequence on the unit sphere. Then,

t−1[H(λ0 + thn)−H(λ0)]− Ḣλ0hn = t−1[λ0 + thn +K(λ0 + thn)− λ0 −K(λ0)]− hn − JK(λ0)hn

= t−1[K(λ0 + thn)−K(λ0)]− JK(λ0)hn

= (JK(λ̄n)− JK(λ0))hn,

where λ̄n is a mean value between λ0 + thn and λ0. Therefore, by the Cauchy-Schwarz inequality,

‖(JK(λ̄n)− JK(λ0))hn‖ ≤ ‖JK(λ̄n)− JK(λ0)‖‖hn‖ → 0,

where we used ‖hn‖ = 1, λ̄n → λ0, and the continuity of the Jacobian.

For the second claim, note that

‖Ḣλ0h‖ = ‖(I − JK(λ0))h‖,
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and h 7→ ‖(I−JK(λ0))h‖ is continuous. Since the domain of h is compact, there is h∗ ∈ Sp such that

inf‖h‖=1 ‖Ḣλ0h‖ = ‖(I − JK(λ0))h∗‖. Let q = (I − JK(λ0))h∗ and note that I − JK(λ0) is linearly

independent (due to det(I − JK(λ0)) 6= 0), and hence q 6= 0. Hence inf‖h‖=1 ‖Ḣλ0h‖ = ‖q‖ > 0.

Hence, the second conclusion follows. �

The following result is a slight extension of Lemma E.1 in CFM.

Lemma 8. Suppose that Λ ⊂ Rp and U is a compact and convex set in Rq. Let I be an open

set containing U . Suppose that Ψ : Λ × I → Rp is continuous and λ 7→ Ψ(λ, u) is the gradient of

a convex function in λ for each u ∈ U ; (b) for each u ∈ U , Ψ(λ0(u), u) = 0; (c) ∂
∂(λ′,u′)Ψ(λ, u)

exists at (λ0(u), u) and is continuous at (λ0(u), u) for each u ∈ U and Ψ̇λ0(u),u := ∂
∂λ′Ψ(λ, u)|λ0(u)

obeys infu∈U inf‖h‖=1 ‖Ψ̇λ0(u),uh‖ > c0 > 0. Then, Condition Z in CFM holds and u 7→ λ0(u) is

continuously differentiable with derivative Jλ0(u) = −Ψ̇−1
λ0(u)u

∂
∂u′Ψ(λ0(u), u).

Proof. The proof is the same as that of Lemma E.1 in CFM, in which U is a compact interval in

R. A slight modification is needed when one computes the derivative of λ0(u) with respect to u.

Since u is allowed to be multidimensional, the implicit function theorem gives

Jλ0(u) = −Ψ̇−1
λ0(u)u

∂

∂u′
Ψ(λ0(u), u), (G.15)

which is uniformly bounded and continuous in u by condition (c), which ensures continuous differ-

entiability of u 7→ λ0(u). Note that for any δ > 0 and λ ∈ Bδ(λ0(u)), there is η > 0 and u′ such

that ‖u′ − u‖ ≤ η so that

‖λ− λ0(u′)‖ ≤ ‖λ− λ0(u)‖+ ‖λ0(u)− λ0(u′)‖ ≤ 2δ. (G.16)

Since U is compact (and hence totally bounded), there is a finite set {uj}Jj=1 ⊂ U such that

U ⊂
⋃
j Bη(uj). The argument above then shows that N =

⋃
u∈U Bδ(λ0(u)) ⊂

⋃
j B2δ(λ0(uj)),

which ensures that N is totally bounded. Since N is a subset of a Euclidean space (equipped with

a complete metric), it follows that N is compact. This ensures condition Z (i) in CFM. The rest

of the proof is essentially the same as the case, in which U being a compact interval. �

Lemma 9. Suppose Assumption 2 holds. Let w = (y, d′, x′, z′) and let τ ∈ (0, 1). Define

M :=
{
f : f(w; θ) =

(
(1{y ≤ d′θ−1 + x′θ1} − τ)x,

(1{y ≤ d′θ−1 + x′θ1} − τ)z1, . . . , (1{u ≤ d′θ−1 + x′θ1} − τ)zdD
)
, θ ∈ Θ

}
. (G.17)

Then, M is a Donsker-class.
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Proof. The proof is standard, and hence we give a brief sketch for the first component of f ,

f1(w; θ) = (1{y ≤ d′θ−1 + x′θ1} − τ)x. Note that w 7→ 1{y ≤ d′θ−1 + x′θ1} − τ belongs to

Type II-class in Andrews (1994), and the map w 7→ x does not depend on the parameter. By The-

orems 2 and 3 in Andrews (1994), this function then satisfies the uniform entropy condition with

the envelope function M̄(w) = x, which is square integrable by assumption. Similar arguments

apply to the other components of f . By Theorem 1 in Andrews (1994), the empirical process: Gnf

is stochastically equicontinuous, and Gnf(·, θ) obeys the classical central limit theorem for each

θ ∈ Θ. Hence, we conclude that M is Donsker. �

Below, let g(w; θ) = (g1(w; θ)′, . . . , gJ(w; θ))′ be a vector such that

gj(w; θ) =
∂2

∂θj∂θ′j
QP,j(Lj(θ−j), θ−j)

−1fj(w;Lj(θ−j), θ−j), j = 1, . . . , J. (G.18)

Let ρ(θ, θ̃) :=
∥∥diag

(
EP
[
(g(W ; θ) − EP [g(W ; θ)])(g(w; θ̃) − EP [g(w; θ̃)])′

])∥∥ be the variance semi-

metric. Let Wi = (Yi, D
′
i, X

′
i, Z
′
i), i = 1, . . . , N be an i.i.d. sample generated from the IVQR model.

Define

LN,j(θ−j) :=
√
N(L̂j(θ−j)− Lj(θ−j)) , j = 1, . . . , J. (G.19)

Similarly, let W ∗i = (Y ∗i , D
∗′
i , X

∗′
i , Z

∗′
i )′, i = 1, . . . , N be an bootstrap sample from the empirical

distribution P̂N of {Wi}. Define

L∗N,j(θ−j) :=
√
N(L̂∗j (θ−j)− L̂j(θ−j)) , j = 1, . . . , J, (G.20)

where L̂∗j is the sample best response map of player j, which is defined as in (5.3)-(5.4) while

replacing Wi with the bootstrap sample W ∗i in (5.1)-(5.2).

Lemma 10 below shows that the sample BR functions approximately solve sample estimating

equations and Lemma 11 characterizes the limiting distributions of LN and L∗N .

Lemma 10. Let the sample BR functions be L̂j(θ−j) ∈ argminθ̃jQN,j(θ̃j , θ−j), j = 1, . . . , J . Let

L̂j(θ−j)
∗ be an analog of L̂j(θ−j) for the bootstrap sample. Then, (i) the sample BR functions

satisfy

∣∣∣ 1
n

n∑
i=1

(
1{Yi ≤ D′iθ−1 +X ′iL̂1(θ−1)} − τ

)
Xi

∣∣∣2
≤ inf

θ1∈Θ1

∣∣∣ 1
n

n∑
i=1

(
1{Yi ≤ D′iθ−1 +X ′iθ1} − τ

)
Xi

∣∣∣2 + r2
N,1(θ−1), (G.21)
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and

∣∣∣ 1
n

n∑
i=1

(
1{Yi ≤ (X ′i, D

′
i,−(j−1))

′θ−j +D′i,jL̂j(θ−j)} − τ
)
Zi,j

∣∣∣2
≤ inf

θj∈Θj

∣∣∣ 1
n

n∑
i=1

(
1{Yi ≤ (X ′i, D

′
i,−(j−1))

′θ−j +D′i,jL̂j(θ−j)} − τ
)
Zi,j

∣∣∣2 + r2
N,j(θ−j), j = 2, . . . , J,

(G.22)

where supθ−j∈Θ−j
|rN,j(θ−j)| = oP (N−1/2) for all j; (ii) the sample BR functions L̂∗j (θ−j), j =

1, . . . , J in the bootstrap sample satisfy (G.21)-(G.22) while replacing (Yi, Di, Xi, Zi) with a bootstrap

sample (Y ∗i , D
∗
i , X

∗
i , Z

∗
i ), each L̂j with L̂∗j , and each rN,j with r∗N,j such that supθ−j∈Θ−j

|r∗N,j(θ−j)| =

oP ∗(N
−1/2).

Proof. (i) For j ≥ 2, the subgradient of QN,j is

ξj =
1

n

n∑
i=1

(
1{Yi ≤ (X ′i, D

′
i,−(j−1))

′θ−j +D′i,j−1L̂j(θ−j)} − τ
)
Zi,j−1, (G.23)

and hence by the property of the subgradient, for any v ∈ R, one has

ξjv ≤ ∇θjQN,j(L̂j(θ−j), θ−j , v), (G.24)

where ∇θjQN,j(L̂j(θ−j), θ−j , v) is the directional derivative of QN,j(θj , θ−j) with respect to θj to-

ward direction v ∈ R evaluated at (L̂j(θ−j), θ−j). Note that the directional derivative is given

by

∇θjQN,j(L̂j(θ−j), θ−j , v) = − 1

N

N∑
i=1

ψ∗τ (Yi − (X ′i, D
′
i,−(j−1))

′θ−j −D′i,j−1L̂j(θ−j),−Zi,j−1v)Zi,j−1v,

(G.25)

where

ψ∗τ (u,w) =

τ − 1{u < 0} u 6= 0

τ − 1{w < 0} u = 0.
(G.26)
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Observe that −∇θjQN,j(L̂j(θ−j), θ−j ,−v) ≤ ξv ≤ ∇θjQN,j(L̂j(θ−j), θ−j , v). This implies

|ξjv| ≤ ∇θjQN,j(L̂j(θ−j), θ−j , v)− (−∇θjQN,j(L̂j(θ−j), θ−j ,−v))

=
1

N

N∑
i=1

(
− ψ∗τ (Yi − (X ′i, D

′
i,−(j−1))

′θ−j −D′i,jL̂j(θ−j),−Zi,j−1v)

+ ψ∗τ (Yi − (X ′i, D
′
i,−(j−1))

′θ−j −D′i,jL̂j(θ−j), Zi,j−1v)
)
Zi,j−1v

=
1

N

N∑
i=1

1{Yi = (X ′i, D
′
i,−(j−1))

′θ−j +D′i,jL̂j(θ−j)}sgn(Zi,j−1v)Zi,j−1v

=
1

N

N∑
i=1

1{Yi = (X ′i, D
′
i,−(j−1))

′θ−j +D′i,jL̂j(θ−j)}|Zi,j−1v|

≤
( N∑
i=1

1{Yi = (X ′i, D
′
i,−(j−1))

′θ−j +D′i,jL̂j(θ−j)}
)

max
i=1,...,N

|Zi,j−1v|
N

. (G.27)

Noting that
∑N

i=1 1{Yi = (X ′i, D
′
i,−(j−1))

′θ−j + D′i,jL̂j(θ−j)} = dim(θj) = 1 and taking v = 1, we

obtain,∣∣∣ 1
n

n∑
i=1

(
1{Yi ≤ (X ′i, D

′
i,−(j−1))

′θ−j +D′i,jL̂j(θ−j)} − τ
)
Zi,j

∣∣∣ ≤ max
i=1,...,N

|Zi,j−1|
N

= oP (N−1/2),

(G.28)

uniformly in θ−j , where the last equality is due to E[|Zi,j−1|2] <∞ by Assumption 2.2. Therefore,

for some rN,j satisfying the assumption of the lemma, we may write

∣∣∣ 1
n

n∑
i=1

(
1{Yi ≤ (X ′i, D

′
i,−(j−1))

′θ−j +D′i,jL̂j(θ−j)} − τ
)
Zi,j

∣∣∣2 ≤ r2
N,j(θ−j)

≤ inf
θj∈Θj

∣∣∣ 1
n

n∑
i=1

(
1{Yi ≤ (X ′i, D

′
i,−(j−1))

′θ−j +D′i,jθj} − τ
)
Zi,j

∣∣∣2 + r2
N,j(θ−j). (G.29)

The proof for j = 1 is similar. Also, (ii) can be shown by mimicking the argument above. �

Lemma 11. Suppose that Assumptions 1 and 2 hold. Then, (i) LN := (LN,1, . . . ,LN,J) satisfies

LN (·) W, (G.30)

where W is a tight Gaussian process in `∞(Θ)d with the covariance kernel

Cov(W(θ),W(θ̃)) = EP
[
(g(W ; θ)− EP [g(W ; θ)])(g(W ; θ̃)− EP [g(W ; θ̃)])′

]
; (G.31)

LN is stochastically equicontinuous with respect to the variance semimetric ρ; (ii) L∗N := (L∗N,1, . . . ,L∗N,J)

satisfies

L∗N (·) L∗
 W; (G.32)
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(iii) ρ satisfies limδ↓0 sup‖θ−θ̃‖<δ ρ(θ, θ̃)→ 0.

Proof. (i) We first work with LN,1. For this, we establish that L1 is Hadamard differentiable. Note

that θ1 = L1(θ−1) solves

EP [(1{Y ≤ D′θ−1 +X ′θ1} − τ)X] = 0. (G.33)

Take U = Θ−1, Ξ = Θ1, ψ(λ, u) = EP [(1{Y ≤ Du+X ′λ}−τ)X]. Define φ : `∞(Ξ×U)kb×`∞(U)→

`∞(U), which maps (ψ, r) to a solution φ(ψ, r) = λ(·) such that

‖ψ(λ(u), u)‖2 ≤ inf
λ′∈Θ
‖ψ(λ′, u)‖2 + r(u)2. (G.34)

Then, one may write L1(·) = φ(ψ, 0). We then show that ψ satisfies the conditions of Lemma 8.

Note first that U and Ξ are compact. ψ is continuous and λ 7→ ψ(λ, u) is the gradient of the convex

function λ 7→ EP [ρτ (Y −Du−X ′λ)] . The function L1(u) = λ0(u) is defined as the exact solution

of ψ(λ, u) = 0. Note also that, by Assumption 2,

∂2

∂θ1∂θ′1
QP,1(θ1, θ−1) =

∂

∂θ′1
EP [(1{Y ≤ D′θ−1 +X ′θ1} − τ)X]

= EP [
∂

∂θ′1
(FY |D,X,Z(D′θ−1 +X ′θ1)− τ)X]

= EP [fY |D,X,Z(D′θ−1 +X ′θ1)XX ′], (G.35)

where the second equality follows from the dominated convergence theorem, and the last display is

well-defined by the square integrability of X. Similarly,

∂2

∂θ1∂θ′−1

QP,1(θ1, θ−1) = EP [fY |D,X,Z(D′θ−1 +X ′θ1)XD′]. (G.36)

Hence, the derivative

∂

∂(λ′, u′)
Ψ(λ, u) = (

∂2

∂θ1∂θ′1
QP,1(θ1, θ−1),

∂2

∂θ1∂θ′−1

QP,1(θ1, θ−1))

exists and is continuous by Assumption 2. By Assumption 2.4, Ψ̇λ0(u),u = ∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)

obeys

inf
u∈U

inf
‖h‖=1

‖Ψ̇λ0(u),uh‖ = inf
θ−1∈Θ−1

inf
‖h‖=1

‖EP [fY |D,X,Z(D′θ−1 +X ′θ1)XX ′]h‖ > 0. (G.37)

Then, by Lemma 8 and Lemma E.2 in CFM, φ is Hadamard differentiable tangentially to C(N ×

U)K × {0} with the Hadamard derivative (of L1)

φ′Ψ,0(z, 0) = − ∂2

∂θ1∂θ′1
QP,1(L1(·), ·)−1z(L1(·), ·), (G.38)

where (z, 0) 7→ φ′Ψ,0(z, 0) is continuous over z ∈ `∞(Θ)K .
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For j ≥ 2, the argument is similar. For example, for j = 2, one may take U = Θ−2, Ξ = Θ2

and ψ(λ, u) = EP [(1{Y ≤ D2θ2 + (D1, X)′u} − τ)Z2] and write L2(·) = φ(ψ, 0). The rest of the

argument is the same.

Continuing with j = 1, by Lemma 10, one may write L̂j(·) = φ(ψN , rN,1) with ψN (λ, u) =

1
N

∑N
i=1 1{Yi ≤ D′iu+X ′iλ}Xi and supθ−1∈Θ−1

|rN,1(θ−1)| = op(N
−1/2). By Lemma 9 and applying

the δ-method (as in Lemma E.3 in CFM), we obtain

LN (·) W, (G.39)

where W = (W′1, . . . ,W′J)′ is a tight Gaussian process in `∞(Θ)d, where for each j, Wj ∈ `∞(Θ−j)
dj

is given pointwise by

Wj(θ−j) = − ∂2

∂θj∂θ′j
QP,j(Lj(θ−j), θ−j)

−1Gfj(w;Lj(θ−j), θ−j), j = 1, · · · , J ; (G.40)

Hence, its covariance kernel is as given in (G.31). By Lemma 1.3.8. in Van der Vaart and Wellner

(1996), {LN} is asymptotically tight, which in turn means that {LN} is stochastically equicontin-

uous with respect to ρ by Theorem 1.5.7 in Van der Vaart and Wellner (1996).

(ii) For each j, let L∗N,j ∈ `∞(Θ−j)
dj be defined pointwise by

L∗N,j(θ−j) =
√
N(L̂∗j (θ−j))− L̂j(θ−j)). (G.41)

Below, again we work with the case j = 1. Using φ (the solution to (G.34)) and applying Lemma

10, we may write

L∗N,1(θ−1) =
√
N(φ(ψ̂∗N , r

∗
N )− φ(ψ̂N , rN )), (G.42)

where ψ̂N (λ, u) = N−1
∑N

i=1(1{Yi ≤ Diu + X ′iλ} − τ)Xi, and ψ̂∗N is defined similarly for the

bootstrap sample. Let EP ∗ denote the conditional expectation with respect to P ∗, the law of

{W ∗i }Ni=1 conditional on the sample path. Let BL1 denote the space of bounded Lipschitz functions

on Rd1 with Lipschitz constant 1. Then, for any ε > 0,

sup
h∈BL1

∣∣∣EP ∗h(√N[φ(ψ̂∗N , r
∗
N )− φ(ψ̂N , rN )

])
− EP ∗h

(
φ′Ψ,0

(√
N
[
(ψ̂∗N , r

∗
N )− (ψ̂N , rN )

]))∣∣∣
≤ ε+ 2P ∗

(∥∥√N[φ(ψ̂∗N , r
∗
N )− φ(ψ̂N , rN )

]
− φ′Ψ,0

(√
N
[
(ψ̂∗N , r

∗
N )− (ψ̂N , rN )

])∥∥ > ε
)
. (G.43)

By Lemma 9 and Theorem 3.6.2 in Van der Vaart and Wellner (1996),
√
N(ψ̂∗N − ψ̂N )

L∗
 Gf1.

Noting that h ◦ φ′Ψ,0 ∈ BL1(`∞(Θ−1)d1 × R) and rN = op(N
−1/2), it follows that

sup
h∈BL1

∣∣∣EP ∗h(φ′Ψ,0(√N[(ψ̂∗N , r∗N )− (ψ̂N , rN )
]))
− EP ∗h ◦ φ′Ψ,0(Gf1, 0)

∣∣∣→ 0, (G.44)
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with probability approaching 1 due to rN = oP (N−1/2). Hence, for the conclusion of the theorem,

it suffices to show that the second term on the right hand side of (G.43) tends to 0.

As shown in the proof of (i), φ is Hadamard differentiable at (ψ, 0). Hence, by Theorem 3.9.4 in

Van der Vaart and Wellner (1996),

√
N
[
φ(ψ̂∗N , r

∗
N )− φ(ψ, 0)

]
= φ′Ψ,0(

√
N [(ψ̂∗N , r

∗
N )− (ψ, 0)]) + oP ∗(1)

√
N
[
φ(ψ̂N , rN )− φ(ψ, 0)] = φ′Ψ,0(

√
N [(ψ̂N , rN )− (ψ, 0)]) + oP (1),

Take the difference of the left and right hand sides respectively and note that φ′Ψ,0 is linear. This

implies the right hand side of (G.43) tends to 0 in probability. This, together with (G.43)-(G.44),

ensures

L∗N,1
L∗
 W1, (G.45)

where W1(θ−1) = − ∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)−1Gfj(·;L1(θ−1), θ−1). The analysis for any j 6= 1 is

similar, and one may apply the arguments above jointly across j = 1, . . . , J , which yields the second

claim of the lemma.

(iii) Consider the first submatrix of EP [(g(W ; θ)−EP [g(W ; θ)])(g(w; θ̃)−EP [g(w; θ̃)])′]. It is given

by

Var
(
− ∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)−1f1(w;L1(θ−1), θ−1)

)
−Var

(
− ∂2

∂θ1∂θ′1
QP,1(L1(θ̃−1), θ̃−1)−1f1(w;L1(θ̃−1), θ̃−1)

)
=

∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)−1Var(f1(w;L1(θ−1), θ−1))

∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)−1

− ∂2

∂θ1∂θ′1
QP,1(L1(θ̃−1), θ̃−1)−1Var(f1(w;L1(θ̃−1), θ̃−1))

∂2

∂θ1∂θ′1
QP,1(L1(θ̃−1), θ̃−1)−1.

(G.46)

Note that Θ is compact and θ−1 7→ ∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)−1 is continuous by Lemma 1, which

implies that this map is uniformly continuous. Therefore, it remains to show the uniform continuity

of θ 7→ Var(f1(w; θ)). Note that

Var(f1(w;L1(θ−1), θ−1)) = EP [(1{Y ≤ D′θ−1 +X ′L1(θ−1)} − τ)XX ′]

− EP [(1{Y ≤ D′θ−1 +X ′L1(θ−1)} − τ)X]EP [(1{Y ≤ D′θ−1 +X ′L1(θ−1)} − τ)X]′. (G.47)

The right hand side of the display above is continuous on the compact domain Θ, and hence it is uni-

formly continuous. One can argue the same way for the other subcomponents of diag
(
EP [(g(W ; θ)−

EP [g(W ; θ)])(g(w; θ̃)− EP [g(w; θ̃)])′]
)
. This completes the proof. �
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Corollary 2. Suppose that Assumptions 1 and 2 hold. (i) Let Wi = (Yi, D
′
i, X

′
i, Z
′
i)
′, i = 1, . . . , N

be an i.i.d. sample generated from the IVQR model. Then,

√
N
(
K̂ −K

)
 W. (G.48)

(ii) Let W ∗i = (Y ∗i , D
∗′
i , X

∗′
i , Z

∗′
i )′, i = 1, . . . , N be an bootstrap sample from the empirical distribu-

tion P̂N of {Wi}Ni=1. Then,

√
N
(
K̂∗ − K̂

) L∗
 W.

Proof. (i) By Lemma 11, it follows that

√
N
(
L̂1(·)− L1(·), . . . , L̂J(·)− LJ(·)

)′
 W.

Note that, by the definition of L̂ and L, one has

√
N(K̂j(θ)−Kj(θ)) =

√
N(L̂j(θ−j)− Lj(θ−j)), j = 1, · · · , J.

The conclusion of the lemma then follows. The proof of (ii) is similar, and is therefore omitted. �

Appendix H. Consistency of the Contraction Estimator

Below, we adopt the framework of Dominitz and Sherman (2005). Let (X , d) be a metric space.

For a contraction map F : X → X , let cF be the modulus of contraction such that

d(F (x), F (x′)) ≤ cFd(x, x′),

for any x, x′ ∈ X .

Lemma 12. Suppose Assumptions 1, 2, and 3 hold. Let θ̂N be an estimator constructed by iterating

the dynamical system in (5.7) or (in (5.8)) sN times, where sN ≥ −1
2 lnN/ ln cK . Then,

θ̂N − θ∗ = Op(N
−1/2).

Proof. We show the result by applying Theorem 1 in Dominitz and Sherman (2005) to the estimator

obtained from the simultaneous dynamical system. The argument for the sequential system is

similar.

By Assumption 3, K is a contraction map on DK . Let θ(s) be obtained from iterating s-times

the population dynamical system in (3.15). The iteration on the dynamical system is covergent

at least linearly (Bertsekas and Tsitsiklis, 1989, Proposition 1.1). Under the condition on sN ,

arguing as in (Dominitz and Sherman, 2005, p.842), it follows that N1/2‖θ(sN )− θ∗‖ ≤ ‖θ(0)− θ∗‖.

Finally, by Corollary 2 and tightness of W, N1/2 supθ∈DK
‖K̂(θ)−K(θ)‖ = Op(1). These imply the

conditions of Theorem 1 in Dominitz and Sherman (2005) with δ = 1/2. The claim of the lemma

then follows. �
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Tables

Table 1. Algorithms

One endogenous variable

Algorithm R-Package Comments

Contraction algorithm

Root-finding algorithm uniroot (R Core Team, 2018)

IQR 500 gridpoints

Two endogenous variables

Algorithm R-Package Comments

Contraction algorithm

Root-finding algorithm optim sa (Husmann, Lange, and Spiegel, 2017) implemented as optimizer

Nested root-finding algorithm uniroot (R Core Team, 2018)

IQR 40×40 gridpoints, implementation: p.132 in
Chernozhukov, Hansen, and Wüthrich (2017)
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Table 2. Bias and RMSE, 401(k) DGP with one endogenous regressor

Bias/102 RMSE/103

τ Contr. Brent IQR Contr. Brent IQR

0.15 -6.66 -6.52 -8.65 8.08 7.43 7.88

0.25 -1.77 -3.17 -3.14 3.89 3.97 3.97

0.50 0.88 0.54 0.74 1.99 1.99 2.00

0.75 -1.41 -1.10 -0.91 1.96 1.96 1.96

0.85 0.05 0.65 0.74 2.10 2.11 2.11

Notes: Monte Carlo simulation with 500 repetitions

as described in the main text. Contr: contraction

algorithm; Brent: root-finding algorithm based on

Brent’s method; IQR: inverse quantile regression.
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Table 3. Bias and RMSE, 401(k) DGP with two endogenous regressors

Bias/102 RMSE/103

τ Contr. SA Nested IQR Contr. SA Nested IQR

Coefficient on binary endogenous variable

0.15 -9.12 -1.73 -7.42 -9.36 8.03 6.92 7.63 8.19

0.25 -5.74 -5.84 -6.11 -6.52 4.46 4.40 4.45 4.54

0.50 -0.25 -0.36 -0.43 -0.42 1.94 1.96 1.95 2.00

0.75 0.24 0.26 0.21 0.36 1.81 1.82 1.82 1.87

0.85 -0.31 0.07 0.07 0.06 2.20 2.21 2.21 2.26

Coefficient on continuous endogenous variable

0.15 2.14 4.66 0.54 0.48 1.07 2.12 1.04 1.13

0.25 2.26 0.90 0.33 -0.03 0.97 1.25 0.97 1.04

0.50 1.12 0.16 0.03 0.01 0.89 0.96 0.95 1.07

0.75 -1.40 0.01 -0.26 0.00 0.98 1.06 1.07 1.16

0.85 -3.28 -1.08 -1.23 -1.12 1.11 1.25 1.26 1.33

Notes: Monte Carlo simulation with 500 repetitions as described

in the main text. Contr: contraction algorithm; SA: simulated an-

nealing based optimization algorithm; Nested: nested algorithm

based Brent’s method; IQR: inverse quantile regression.
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Table 4. Coverage, 401(k) DGP with one endogenous regressor

1− α = 0.95 1− α = 0.9

τ Contr. Brent Contr. Brent

0.15 0.95 0.95 0.91 0.88

0.25 0.96 0.96 0.93 0.93

0.50 0.96 0.96 0.91 0.91

0.75 0.94 0.94 0.89 0.89

0.85 0.94 0.95 0.90 0.90

Notes: Monte Carlo simulation with

1000 repetitions as described in the

main text. Contr: contraction al-

gorithm; Brent: root-finding algo-

rithm based on Brent’s method.
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Table 5. Computation time, 401(k) DGP with one endogenous regressor

N Contr. Brent IQR

1000 0.08 0.04 0.31

5000 0.37 0.14 2.57

10000 0.63 0.31 7.15

Notes: The table reports av-

erage computation time in

seconds at τ = 0.5 over 50

simulation repetitions based

on the DGP described in the

main text. Contr: contrac-

tion algorithm; Brent: root-

finding algorithm based on

Brent’s method; IQR: inverse

quantile regression with grid

search over 500 grid points.
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Table 6. Computation time, 401(k) DGP with two endogenous regressor

N Contr. SA Nested IQR

1000 0.22 3.60 0.49 65.63

5000 1.76 22.87 3.23 326.29

10000 4.80 64.47 9.63 743.63

Notes: The table reports average com-

putation time in seconds at τ = 0.5

over 50 simulation repetitions based

on the DGP described in the main

text. Contr: contraction algorithm;

SA: simulated annealing based opti-

mization algorithm; Nested: nested al-

gorithm based Brent’s method; IQR:

inverse quantile regression with grid

search over 100×100 grid points.
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Table 7. Bias and RMSE, symmetric design with one endogenous regressor

N = 500

Bias RMSE

τ Contr. Brent IQR Contr. Brent IQR

0.15 0.03 -0.00 -0.00 0.10 0.10 0.10

0.25 0.03 0.00 0.00 0.12 0.12 0.12

0.50 -0.00 -0.00 -0.00 0.12 0.14 0.14

0.75 -0.04 -0.01 -0.01 0.13 0.12 0.12

0.85 -0.04 -0.00 -0.00 0.11 0.11 0.11

N = 1000

Bias RMSE

τ Contr. Brent IQR Contr. Brent IQR

0.15 0.02 0.00 0.00 0.07 0.07 0.07

0.25 0.01 -0.00 -0.00 0.08 0.08 0.08

0.50 -0.01 -0.01 -0.01 0.09 0.10 0.10

0.75 -0.02 -0.00 -0.00 0.09 0.08 0.08

0.85 -0.02 -0.00 -0.00 0.08 0.08 0.08

Notes: Monte Carlo simulation with 500 repetitions

as described in the main text. Contr: contraction

algorithm; Brent: root-finding algorithm based on

Brent’s method; IQR: inverse quantile regression.



Tables 29

Table 8. Bias and RMSE, asymmetric design with one endogenous regressor

N = 500

Bias RMSE

τ Contr. Brent IQR Contr. Brent IQR

0.15 0.12 0.01 -0.00 0.22 0.20 0.20

0.25 0.07 0.00 -0.00 0.17 0.16 0.16

0.50 0.04 -0.00 -0.00 0.13 0.12 0.12

0.75 0.03 0.00 0.00 0.11 0.11 0.11

0.85 -0.03 -0.01 -0.00 0.12 0.11 0.11

N = 1000

Bias RMSE

τ Contr. Brent IQR Contr. Brent IQR

0.15 0.05 -0.01 -0.01 0.16 0.15 0.15

0.25 0.04 0.00 0.00 0.11 0.11 0.11

0.50 0.03 0.00 0.00 0.08 0.08 0.08

0.75 0.01 -0.01 -0.01 0.08 0.08 0.08

0.85 -0.03 -0.01 -0.01 0.09 0.09 0.09

Notes: Monte Carlo simulation with 500 repetitions

as described in the main text. Contr: contraction

algorithm; Brent: root-finding algorithm based on

Brent’s method; IQR: inverse quantile regression.
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Table 9. Bias and RMSE, symmetric design with two endogenous regressors

N = 500

Bias RMSE

τ Contr. SA Nested IQR Contr. SA Nested IQR

Coefficient on D1

0.15 0.00 0.00 -0.00 -0.01 0.11 0.14 0.12 0.13

0.25 0.01 -0.01 -0.00 -0.01 0.15 0.17 0.16 0.16

0.50 -0.02 -0.02 -0.02 -0.02 0.17 0.19 0.19 0.20

0.75 -0.04 -0.03 -0.03 -0.03 0.21 0.21 0.20 0.20

0.85 -0.05 -0.03 -0.03 -0.03 0.18 0.18 0.17 0.17

Coefficient on D2

0.15 0.10 -0.01 -0.01 -0.02 0.27 0.29 0.27 0.31

0.25 0.10 -0.02 -0.00 -0.02 0.29 0.30 0.29 0.30

0.50 -0.01 -0.02 -0.02 -0.02 0.33 0.39 0.38 0.39

0.75 -0.15 -0.06 -0.04 -0.05 0.40 0.41 0.40 0.41

0.85 -0.19 -0.06 -0.05 -0.07 0.39 0.40 0.36 0.43

N = 1000

Bias RMSE

τ Contr. SA Nested IQR Contr. SA Nested IQR

Coefficient on D1

0.15 -0.00 -0.01 -0.00 -0.00 0.08 0.10 0.09 0.10

0.25 -0.00 -0.01 -0.00 -0.01 0.10 0.12 0.11 0.13

0.50 -0.01 -0.01 -0.01 -0.01 0.12 0.13 0.13 0.16

0.75 -0.01 -0.01 -0.01 -0.00 0.13 0.14 0.13 0.14

0.85 -0.02 -0.02 -0.01 -0.02 0.12 0.13 0.12 0.13

Coefficient on D2

0.15 0.05 -0.01 -0.01 -0.02 0.19 0.21 0.19 0.20

0.25 0.05 -0.01 -0.00 -0.01 0.22 0.23 0.21 0.23

0.50 -0.02 -0.02 -0.02 -0.03 0.25 0.27 0.27 0.29

0.75 -0.09 -0.02 -0.02 -0.03 0.27 0.28 0.25 0.26

0.85 -0.09 -0.03 -0.01 -0.03 0.26 0.25 0.23 0.24

Notes: Monte Carlo simulation with 500 repetitions as described

in the main text. Contr: contraction algorithm; SA: simulated an-

nealing based optimization algorithm; Nested: nested algorithm

based Brent’s method; IQR: inverse quantile regression.
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Table 10. Bias and RMSE, asymmetric design with two endogenous regressors

N = 500

Bias RMSE

τ Contr. SA Nested IQR Contr. SA Nested IQR

Coefficient on D1

0.15 -0.02 0.00 0.02 0.01 0.25 0.28 0.26 0.26

0.25 -0.05 0.00 0.01 -0.00 0.20 0.21 0.20 0.21

0.50 -0.04 0.00 -0.00 0.00 0.16 0.21 0.17 0.19

0.75 -0.02 -0.01 -0.02 -0.02 0.17 0.18 0.17 0.19

0.85 -0.01 -0.02 -0.01 -0.02 0.20 0.19 0.19 0.19

Coefficient on D2

0.15 0.26 -0.11 -0.06 -0.13 0.57 0.58 0.52 0.59

0.25 0.23 -0.02 -0.01 -0.01 0.45 0.43 0.41 0.44

0.50 0.12 -0.04 -0.03 -0.07 0.34 0.48 0.32 0.73

0.75 0.04 -0.06 -0.05 -0.05 0.32 0.34 0.31 0.34

0.85 -0.13 -0.01 -0.03 0.01 0.40 0.38 0.34 0.36

N = 1000

Bias RMSE

τ Contr. SA Nested IQR Contr. SA Nested IQR

Coefficient on D1

0.15 -0.03 -0.00 0.01 -0.01 0.18 0.19 0.19 0.19

0.25 -0.04 -0.01 -0.00 -0.01 0.15 0.16 0.15 0.16

0.50 -0.03 -0.01 -0.01 -0.01 0.13 0.14 0.13 0.14

0.75 -0.03 -0.01 -0.01 -0.01 0.12 0.13 0.12 0.14

0.85 0.01 0.00 0.00 -0.00 0.14 0.15 0.13 0.15

Coefficient on D2

0.15 0.15 -0.03 -0.03 -0.04 0.37 0.38 0.37 0.39

0.25 0.10 -0.01 -0.01 -0.02 0.28 0.30 0.28 0.28

0.50 0.05 -0.03 -0.02 -0.03 0.22 0.23 0.22 0.24

0.75 0.06 -0.02 -0.01 -0.01 0.24 0.24 0.22 0.24

0.85 -0.08 -0.04 -0.03 -0.03 0.27 0.26 0.24 0.24

Notes: Monte Carlo simulation with 500 repetitions as described

in the main text. Contr: contraction algorithm; SA: simulated an-

nealing based optimization algorithm; Nested: nested algorithm

based Brent’s method; IQR: inverse quantile regression.



32 Tables

Table 11. Coverage, location-scale DGP with one endogenous regressor

N = 500

Symmetric Design Asymmetric Design

1 − α = 0.95 1 − α = 0.9 1 − α = 0.95 1 − α = 0.9

τ Contr. Brent Contr. Brent Contr. Brent Contr. Brent

0.15 0.95 0.97 0.91 0.93 0.92 0.97 0.87 0.94

0.25 0.95 0.97 0.91 0.92 0.93 0.96 0.89 0.93

0.50 0.96 0.97 0.90 0.91 0.94 0.96 0.90 0.92

0.75 0.95 0.96 0.90 0.92 0.96 0.96 0.93 0.92

0.85 0.96 0.97 0.91 0.93 0.95 0.95 0.93 0.92

N = 1000

Symmetric Design Asymmetric Design

1 − α = 0.95 1 − α = 0.9 1 − α = 0.95 1 − α = 0.9

τ Contr. Brent Contr. Brent Contr. Brent Contr. Brent

0.15 0.96 0.96 0.90 0.91 0.93 0.96 0.87 0.93

0.25 0.94 0.94 0.90 0.89 0.93 0.95 0.88 0.91

0.50 0.96 0.96 0.90 0.91 0.93 0.94 0.89 0.89

0.75 0.95 0.95 0.91 0.92 0.95 0.94 0.90 0.90

0.85 0.96 0.95 0.91 0.92 0.96 0.95 0.92 0.90

Notes: Monte Carlo simulation with 1000 repetitions as described in the

main text. Contr: contraction algorithm; Brent: root-finding algorithm

based on Brent’s method.



Tables 33

Table 12. Bias and RMSE, 401(k) DGP with three endogenous regressors

Bias/102 RMSE/103

τ Contr. Nested Contr. Nested

Coefficient on D

0.15 -5.04 -7.08 7.29 7.39

0.25 -2.04 -3.19 3.97 3.99

0.50 0.97 0.56 1.99 2.01

0.75 -0.97 -0.92 1.97 1.96

0.85 0.35 0.48 2.08 2.10

Coefficient on D2

0.15 0.95 -0.32 1.12 1.09

0.25 0.92 -0.46 0.94 0.98

0.50 1.56 0.60 0.94 0.99

0.75 -2.40 -1.41 1.06 1.14

0.85 -2.05 -0.23 1.14 1.24

Coefficient on D3

0.15 1.87 0.02 1.09 1.12

0.25 1.94 -0.01 0.97 0.98

0.50 1.62 0.77 0.94 0.97

0.75 -0.25 0.66 1.04 1.12

0.85 -1.76 -0.33 1.14 1.30

Notes: Monte Carlo simulation with

500 repetitions as described in the main

text. Contr: contraction algorithm;

Nested: nested algorithm based Brent’s

method.



34 Tables

Table 13. Computation time, 401(k) DGP with three endogenous regressor

N Contr. Nested

1000 0.62 6.18

5000 3.27 43.37

10000 13.89 186.47

Notes: The table reports

average computation time

in seconds at τ = 0.5 over

20 simulation repetitions

based on the DGP de-

scribed in the main text.

Contr: contraction algo-

rithm; Nested: nested

algorithm based Brent’s

method.
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Figures

Figure 1. Illustration Fixed Point
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Figure 2. Comparison Point Estimates
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Figure 3. Pointwise 95% Bootstrap Confidence Intervals
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