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Inference on average treatment effects in aggregate
panel data settings∗

Victor Chernozhukov† Kaspar Wüthrich‡ Yinchu Zhu§

Abstract

This paper studies inference on treatment effects in aggregate panel data settings
with a single treated unit and many control units. We propose new methods for mak-
ing inference on average treatment effects in settings where both the number of pre-
treatment and the number of post-treatment periods are large. We use linear models
to approximate the counterfactual mean outcomes in the absence of the treatment.
The counterfactuals are estimated using constrained Lasso, an essentially tuning free
regression approach that nests difference-in-differences and synthetic control as spe-
cial cases. We propose a K-fold cross-fitting procedure to remove the bias induced
by regularization. To avoid the estimation of the long run variance, we construct a
self-normalized t-statistic. The test statistic has an asymptotically pivotal distribution
(a student t-distribution withK − 1 degrees of freedom), which makes our procedure
very easy to implement. Our approach has several theoretical advantages. First, it
does not rely on any sparsity assumptions. Second, it is fully robust against misspec-
ification of the linear model. Third, it is more efficient than difference-in-means and
difference-in-differences estimators. The proposed method demonstrates an excellent
performance in simulation experiments, and is taken to a data application, where we
re-evaluate the economic consequences of terrorism.

∗We are grateful to Yixiao Sun and conference participants at UCL for valuable comments.
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1 Introduction
This paper studies the problemofmaking inference on treatment effects in aggregate panel
data settings with a single treated unit. The treated unit is observed for a number of time
periods before and after the intervention occurs. In addition, there are potentially very
many untreated units, which serve as controls. Such settings are ubiquitous in applied
economic research and there are many different estimation and inference approaches. Ex-
amples include difference-in-differences methods (e.g., Ashenfelter and Card, 1985; Card
and Krueger, 1994; Bertrand et al., 2004; Athey and Imbens, 2006; Angrist and Pischke,
2008), synthetic control approaches (e.g., Abadie and Gardeazabal, 2003; Abadie et al.,
2010, 2015; Li, 2017), penalized regression models (e.g., Valero, 2015; Doudchenko and
Imbens, 2016; Li and Bell, 2017; Carvalho et al., 2017), and factor, matrix completion and
interactive fixed effects models (e.g., Bai, 2003; Pesaran, 2006; Bai, 2009; Hsiao et al., 2012;
Kim and Oka, 2014; Gobillon and Magnac, 2016; Chan and Kwok, 2016; Xu, 2017; Athey
et al., 2017; Amjad et al., 2017; Li, 2018). Following Chernozhukov et al. (2017), we refer to
these methods as counterfactual and synthetic control (CSC) methods.

Here, we consider estimation and inference on average treatment effects in settings
where both the number of pre-treatment periods T0 and the number of post-treatment
periods T1 are large. We approximate the counterfactual outcome of the treated unit in
the absence of the treatment, Y N

0t , using a linear model:

Y N
0t = µ+

N∑
i=1

wiY
N
it + ut, E(ut) = 0, t = 1, . . . , T0 + T1. (1)

We are interested in testing hypotheses about the average treatment effect (ATE):

τ =
1

T1

T0+T1∑
t=T0+1

αt,

where αt = Y I
0t − Y 0

0t is the per-period treatment effect, which is equal to the difference
between the potential outcome with the treatment, Y I

0t, and Y N
0t . We propose estimating w

using constrained Lasso (e.g., Raskutti et al., 2011; Chernozhukov et al., 2017), which im-
poses an `1 constraint on the weight vector w. Constrained Lasso is an essentially tuning
regression approachwhich nests two of themost popular approaches for estimating coun-
terfactuals in aggregate panel settings, difference-in-differences and synthetic control, as
special cases.

We develop aK-fold cross fitting scheme for bias-correction to obtain a consistent and
asymptotically normal estimator. The key assumption underlying our procedure is sta-
tionarity of the data. Consequently, if the data are not stationary, we first pre-process the
data to make them stationary before applying our method.

Inference on τ is based on a t-statistic that exploits a self-normalization structure and
thereby avoids the tricky issue of estimating the long-run variance. The resulting test
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statistic has an asymptotically pivotal distribution (a student t-distribution with K − 1

degrees of freedom), which makes our inference procedure very easy to implement. The
construction of our test statistic is inspired by Ibragimov and Müller (2010).

The proposed new method has several theoretical advantages. First, while we allow
for high-dimensional covariates, we do not impose any sparsity assumption on w. As a
result, the proposed procedure is robust to the lack of sparsity. Second, the validity of
the proposal does not rely on the correct specification of the linear model. This is a very
appealing feature of ourwork because, in practice, misspecification is quite difficult to rule
out. Third, compared to difference-in-means and difference-in-differences estimators, our
method is more efficient in terms of asymptotic variance.

In deriving the theoretical results, we obtain a result that may be of independent inter-
est. We provide a characterization of constrained Lasso under misspecification. Specifi-
cally, we show that the constrained Lasso estimator is consistent in `2 for the pseudo-true
parameter value, which is defined as the minimizer of the population loss subject to the
`1 constraint.

The proposed method demonstrates an excellent performance in simulation experi-
ments, and is taken to a data application, where we re-visit the analysis of the economic
consequences of terrorism in Abadie and Gardeazabal (2003).

1.1 Related literature
Here, we discuss the relationship of our approach and existing CSC methods based on
linear models. References to inference procedures for other types of CSC approaches are
provided at the beginning of the introduction.

Our approach is most closely related to a very recent literature which proposes asymp-
totic inference theory for settingswhere both T0 and T1 are large. Focusing on the expected
treatment effect E(αt), Li and Bell (2017) derive the asymptotic distribution of the least
squares estimator proposed by Hsiao et al. (2012).1 Moreover, they propose to use Lasso
to select the relevant control units, but do not provide formal theory. In related work, Li
(2017) studies inference on E(αt) in synthetic control settings. In this paper, we focus on
a different target, the ATE, 1

T1

∑T0+T1
t=T0+1 αt, which allows us to avoid strong assumptions on

{αt}. Carvalho et al. (2017) study inference on the ATE in settings where the parameters
are estimated using Lasso. Their approach relies sparsity of w. By contrast, we develop a
cross fitting scheme for bias-correction that allows us to completely avoid any sparsity as-
sumptions. Another key difference to the literature (e.g., Li and Bell, 2017; Carvalho et al.,
2017), which typically relies on Newey-West-type variance estimators, is that we rely on a
self-normalized test statistic. This allows us to completely avoid the estimation of the long
run variance, which we found to be essential for achieving a good performance in small
sample settings.

1Note that the linear models in Li and Bell (2017) and Hsiao et al. (2012) are derived from a factor struc-
ture.
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Another part of the literature focuses on finite population inference approaches. These
approaches assume that the potential outcomes are fixed but unknown, which justifies the
use of permutation/randomization tests for testing sharp null hypotheses about thewhole
treatment effect trajectory {αt}T0+T1t=T0+1. This approach was introduced in the context of syn-
thetic control methods (Abadie et al., 2010), but can be applied to a much broader class of
linearmethods, including difference-in-differences and penalized regressionmodels (e.g.,
Doudchenko and Imbens, 2016). We refer to Firpo and Possebom (2017) and Ferman and
Pinto (2017) for a discussion of these approaches. Our proposal differs from these finite
population approaches in that we study the problem of making inferences on the ATE in
a super-population setting where the number of time periods and the number of potential
control units are large.

Finally, Chernozhukov et al. (2017) propose a generic conformal inference approach
for testing sharp null hypotheses about {αt}T0+T1t=T0+1. Their method can be combined with
linear models such as constrained Lasso. Here, we focus on a different target, the ATE,
and rely on asymptotic approximations instead of permutation distributions for making
inference.

1.2 Plan of the paper
We introduce some frequently used notations. For q ≥ 1, the `q-norm of a vector is denoted
by ‖ · ‖q. We use ‖ · ‖0 to denote the number of nonzero entries of a vector; ‖ · ‖∞ is used
to denote the maximal absolute value of entries of a vector. For a matrix A, we use the
notation ‖A‖∞ = ‖vec(A)‖∞, where vec(A) is the column-wise vectorization of A. We also
use the notation a . b to denote a ≤ cb for some constant c > 0 that does not depend on
the sample size. We also use the notation a � b to denote a . b and b . b. For a set A, |A|
denotes the cardinality of A.

Section 2 introduces the setup and our methodology. In Section 3, we derive theoreti-
cal properties of our method. Section 4 provides simulation evidence on the finite sample
performance of our procedure. In Section 5, we use our method to re-analyze the eco-
nomics consequences of terrorism. Section 6 concludes. All proofs are collected in the
appendix.

2 Methodology

2.1 Setup
Consider an aggregate panel data settingwithN+1 units and T time periods. Unit i = 0 is
the treated unit and units i = 1, . . . , N are the control units. The treated unit is untreated
for the first T0 periods, and treated during the remaining T −T0 = T1 periods. The control
units remain untreated for all T periods. We observe {(Yit, Zit)}, where Yit is the outcome
of interest and Zit contains additional observable characteristics.
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Our analysis is developed within the potential (latent) outcome framework (Neyman,
1923; Rubin, 1974). Potential outcomes with and without the treatment are denoted as Y I

it

and Y N
it . Observed outcomes are related to potential outcomes as Yit = DitY

I
it+(1−Dit)Y

N
it ,

where the treatment indicator can be written as Dit = 1{t > T0, i = 0}. Our object of
interest is the ATE in the post treatment period:

τ =
1

T1

T∑
t=T0+1

αt, (2)

where αt := α0t = Y I
0t − Y N

0t is the per-period treatment effect. Specifically, we consider
the problem of testing hypotheses of the form

H0 : τ = τ0. (3)

Because the counterfactual outcome Y N
0t is fundamentally unobserved for t > T0, αt is

not identified without additional assumptions. To overcome this identification problem,
we impose a linear model for Y N

t := Y N
0t , which we write compactly as

Y N
t = X ′tw + ut,

whereXt ∈ Rp is a vector of transformations of
(
Y N
1t , . . . , Y

N
Nt, Z0t, . . . , ZNt

)
as in model (1)

and w ∈ Rp is an unknown parameter. To improve the accuracy of predicting the mean
of Y N

t , p is allowed to be large, even larger than T0. For concreteness, we consider the
constrained Lasso estimator (e.g., Raskutti et al., 2011; Chernozhukov et al., 2017), which
restricts w to be in a subset of an `1-ball of bounded radius Q, ‖w‖1 ≤ Q:

ŵ = arg min
w

1

T0

T0∑
t=1

(Yt −X ′tw)2 s.t. ‖w‖1 ≤ Q. (4)

One can also include an unregularized intercept in the above estimator, but this is nu-
merically equivalent to running the above estimator with demeaned data. Hence, for our
theoretical analysis, we focus on the estimator in (4).

2.2 Bias-corrected estimation and inference
The natural estimator for τ would be T−11

∑T
t=T0+1(Yt −X ′tŵ) with ŵ defined in (4). How-

ever, this estimator is biased due to the bias in ŵ. To remove the bias, we propose aK-fold
cross-fitting procedure. Throughout this paper,K is assumed to be fixed. We partition the
pre-treatment period intoK consecutive pieces: H1

⋃
H2

⋃
· · ·
⋃
HK = {1, . . . , T0}. Define

r = bT0/Kc and letHk = {(k−1)r+1, . . . , kr} for k ≤ K−1 andHK = {(K−1)r+1, . . . , T0}.
For notational simplicity, we assuem that T0/K is an integer. The constrained Lasso esti-
mator using data in H(−k) := {1, . . . , T0}\Hk is given by

ŵ(k) = arg min
w

∑
t∈H(−k)

(Yt −X ′tw)2 s.t. ‖w‖1 ≤ Q.
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Define

τ̂k =
1

T1

T∑
t=T0+1

(Yt −X ′tŵ(k))−
1

|Hk|
∑
t∈Hk

(Yt −X ′tŵ(k)).

The estimator for the treatment effect is

τ̂ =
1

K

K∑
k=1

τ̂k. (5)

To avoid estimating σ, we construct a test statistic that is scale-free. The idea is to form
a ratio in which the numerator and denominator are both scaled by the long-run standard
deviation. Specifically, we propose to use a t-statistic based on {τ̂k}:

TK =

√
K (τ̂ − τ)

σ̂τ̂
, (6)

where

σ̂τ̂ =

√
1 +

T0
T1

√√√√ 1

K − 1

K∑
k=1

(τ̂k − τ̂)2.

The construction of the test statistic TK is inspired by Ibragimov and Müller (2010).

3 Theory

3.1 Validity under correction specification
In this subsection, we derive the first theoretical result of the paper. Under correct spec-
ification, the proposed estimator in (5) is shown to be

√
T0-consistent and asymptotically

normal and the test statistic TK in (6) is shown to have a student t-distribution withK − 1

degrees of freedom.
We summarize our model in the following assumption.

Assumption 1 (Model).
Y N
t = X ′tw + ut, (7)

where E(ut) = 0, E (Xtut) = 0 and ‖w‖1 ≤ Q with Q = O(1).

Remark 1. The constrained Lasso model in Assumption 1 nests two of the most popular
approaches formodeling counterfactuals based on linearmodels, difference-in-differences
and canonical synthetic controls, as special cases. (As argued before, we can easily include
an intercept µ.) The classical difference-in-differencesmodel imposes the followingmodel
for the counterfactual in the absence of the treatment (e.g., Doudchenko and Imbens, 2016):

Y N
t = µ+

1

N

N∑
i=1

Y N
it + ut. (8)
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This model is nested by Assumption 1 by setting wi = 1/N for all i = 1, . . . , N , Xt =(
Y N
1t , . . . , Y

N
Nt

)′, and Q = 1. The canonical synthetic control model (Abadie et al., 2010,
2015; Doudchenko and Imbens, 2016) assumes that

Y N
t =

N∑
i=1

wiY
N
it + ut, wi > 0,

N∑
i=1

wi = 1 (9)

This model is nested by setting µ = 0, wi > 0, Xt =
(
Y N
1t , . . . , Y

N
Nt

)′, and Q = 1.

To study the asymptotic properties of τ̂ , we first establish the `2-consistency of con-
strained Lasso for estimating w(k). For this, we impose the following assumptions.

Assumption 2. Let K be fixed. Suppose that the following conditions hold for 1 ≤ k ≤ K:

1. Let Σ(−k) = |H(−k)|−1
∑

t∈H(−k)
E(XtX

′
t). There exists a constant κ > 0 such that

min1≤k≤K λmin(Σ(−k)) ≥ κ.

2. ‖|H(−k)|−1
∑

t∈H(−k)
(XtX

′
t − E(XtX

′
t))‖∞ = oP (1) and ‖|H(−k)|−1

∑
t∈H(−k)

Xtut‖∞ =

oP (1).

The eigenvalues of Σ(−k) are assumed to be bounded away from zero to achieve identi-
fication ofw. The second condition in Assumption 2 holds under weak serial dependence,
mild conditions on the tail of the distribution of the variables and conditions on p. For ex-
ample, when entries ofXt and ut are sub-Gaussian, we can allow for log p = o(

√
T0); when

entries of Xt and ut have bounded rth moment for r > 2, then we can typically allow for
p = o(T

r/4
0 ).

The next theorem presents our first main result.

Theorem 1. Let Assumptions 1 and 2 hold. Then ‖ŵ(k) − w‖2 = oP (1). In particular,

∥∥ŵ(k) − w
∥∥2
2
≤

4‖|H(−k)|−1
∑

t∈H(−k)
(XtX

′
t − E(XtX

′
t))‖∞Q2 + 4‖|H(−k)|−1

∑
t∈H(−k)

Xtut‖∞Q
κ

.

Remark 2. Under Gaussianity, one could sharpen the bound in Theorem 1; see Theo-
rem 1 of Raskutti et al. (2010) which has a slightly different rate. However, according to
Rudelson and Zhou (2013), the argument in Raskutti et al. (2010) cannot be extended to
the non-Gaussian case because their argument exploits the Gaussianity through Gordon’s
Theorem, which is not available beyond Gaussian settings.

To establish the asymptotic distribution, we impose the following stationarity assump-
tion.

Assumption 3 (Stationarity). E(Xt) does not depend on t and {ut}Tt=1 is covariance-stationary.
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Wewould like to emphasize that stationarity as stated inAssumption 3 is not just a tech-
nical regularity condition but is one of the key assumptions underlying our results. If the
data are not stationary in that themean ofXt depends on t, one has to pre-process the data
to make it stationarity before applying our methodology. For example, in the application
in Section 5, since the GDP data is non-stationary, we de-trend the data before applying
our method. We would like to note that stationarity is a common fundamental assump-
tion imposed for high-dimensional models in the literature. For example, Carvalho et al.
(2017) assume that the entire (Xt, Y

N
t ) is fourth-order stationary. For non-stationary data,

only highly parametrized models are considered; for example, Li (2018) imposes a factor
structure for the outcome in a panel data setting and allows the factor to follow an exact
unit-root process.

By simple algebra, Assumption 3 gives us the following observation.

Lemma 1. Let Assumptions 1 and 3 hold. Then for any 1 ≤ k ≤ K,

τ̂k − τ =

(
T−11

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut

)
+

(
1

|Hk|
∑
t∈Hk

X̃t − T−11

T∑
t=T0+1

X̃t

)′
∆(k),

where X̃t = Xt − E(Xt) and ∆(k) = ŵ(k) − w.

The following weak conditions guarantee that the second term in Lemma 1 is negligi-
ble. The idea is that under weak dependence, ∆(k) is approximately independent of data
in Hk

⋃
{T0 + 1, ..., T}. Hence, the `2-consistency established in Theorem 1 can be used to

bound the second term in Lemma 1.

Assumption 4. Suppose the following conditions hold:

1. There exists a constant κ1 > 0 such that for any A ⊆ {1, . . . , T0}, the largest eigenvalue of

E

[
|A|−1

(∑
t∈A

X̃t

)(∑
t∈A

X̃t

)′]

is bounded above by κ1.

2. There exists a sequence ρT0 > 0 such that P (max1≤t≤T0 ‖X̃t‖∞ ≤ ρT0)→ 1.

3. The data {(Xt, ut)}Tt=1 is β-mixing with coefficient satisfying βmix(γT ) → 0 for some se-
quence γT satisfying 0 < γT < T0/(K + 1) and ρTγT = o(min{

√
T0,
√
T1}).

The weak dependence is stated in terms of β-mixing, which holds for a large class of
stochastic processes. The boundon X̃t is allowed to growbut no faster thanmin{

√
T0,
√
T1}.

We are now in the position to state our second main result.
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Theorem 2. Let Assumptions 1, 3, and 4 hold. Suppose that ‖w‖1 = O(1) and Q = O(1). Also
assume T1 = O(T0). Then we have

max
1≤k≤K

∣∣∣∣∣τ̂k − τ −
(
T−11

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut

)∣∣∣∣∣ = oP

(
1

min{
√
T0,
√
T1}

)
+OP

(
max1≤k≤K ‖∆(k)‖2
min{

√
T0,
√
T1}

)
.

By Theorem 2, the asymptotic normality follows once we show max1≤k≤K ‖∆(k)‖2 =

oP (1). Assumption 2 provides sufficient conditions for constrained Lasso. Theorem 1 and
Theorem 2 then imply the following key result.

Corollary 1. Let Assumptions 1, 2, 3, and 4 hold. Suppose that T0/T1 → c0 for some c0 ∈ [0,∞).
Then

√
T0 (τ̂k − τ) =

√
T0/T1

(
T
−1/2
1

T∑
t=T0+1

ut

)
−
√
T0/|Hk|

(
1

|Hk|−1/2
∑
t∈Hk

ut

)
+ oP (1).

Moreover, if {ut}Tt=1 satisfies max1≤t≤T0 E|ut|r = O(1) and βmix(i) . i−η for some constants
r > 2 and η > r/(r − 2), then

√
T0


τ̂1 − τ
τ̂2 − τ

...
τ̂K − τ

 d→


√
c0ξ0 −

√
Kξ1√

c0ξ0 −
√
Kξ2

...
√
c0ξ0 −

√
KξK

σ,

where ξ0, . . . , ξK are independentN(0, 1) randomvariables andσ2 = limT→∞E
(
T−1/2

∑T
t=1 ut

)2
.

The asymptotic normality in Corollary 1 follows by the usual CLT for dependent pro-
cesses, e.g., Theorem 5.20 of White (2014).

Notice that we allow for the case T1 � T0, i.e., c0 = 0. In this scenario, the variance
comes from the errors in the post-treatment periods. Moreover, we include the case in
which T1 � T0. This is a relevant scenario in many applications.

The next theorem establishes the asymptotic distribution of our estimator and test
statistic.

Theorem 3. Let all the assumptions in Corollary 1 hold. Then (i)√
T0(τ̂ − τ)

d→ N(0, (1 + c0)σ
2)

and (ii)

TK
d→ tK−1

where the random variable tK−1 has a standard t-distribution with K − 1 degrees of freedom.

9



The first part of Theorem 3 establishes the asymptotic normality of our ATE estima-
tor. Making inference directly based on this result would require estimation of the long
run variance σ2, which can be tricky in small sample settings. We therefore use the self-
normalized test statistic TK , which allows us to completely avoid estimation of σ2. The
second part of the Theorem 3 demonstrates that TK has an asymptotically pivotal student
t-distribution with K − 1 degrees of freedom. This result is very useful from a practi-
cal perspective, as one does not have to simulate non-standard critical values. Theorem 3
further suggests the following 1− α confidence interval for τ :

CIK(1− α) =

[
τ̂ − tK−1(1− α/2)

σ̂τ̂√
K
, τ̂ + tK−1(1− α/2)

σ̂τ̂√
K

]
,

where tK−1(1 − α/2) denotes the (1 − α/2)-quantile of t-distribution with K − 1 degrees
of freedom.

Notice that TK and the limiting distribution depend on the choice of K. The choice
of K cannot be avoided since it is inherent in the cross-fitting procedure that we employ
to obtain asymptotic normality. To shed some light on the choice of K, we analyze the
expected width of the confidence interval.

By Corollary 1, we have that
√
T0|CIK(1− α)| d→ ζK−1, where

EζK−1 = 2σtK−1(1− α/2)

√
1 + c0
K − 1

E


√√√√ K∑

k=1

(ξk − ξ̄)2

 ,

where ξ̄ = K−1
∑K

k=1 ξk, and {ξk}Kk=1 are i.i.d. standard normal random variables. Notice
that

∑K
k=1(ξk − ξ̄)2 has a χ2 distribution with K − 1 degrees of freedom and thus,

E


√√√√ K∑

k=1

(ξk − ξ̄)2

 =
√

2
Γ (K/2)

Γ ((K − 1)/2)
. (10)

Using (10), we can rewrite the expected length of the confidence interval as

EζK−1 = C · tK−1(1− α/2)

√
1

K − 1

Γ (K/2)

Γ ((K − 1)/2)
,

where the constant C = 2
√

2
√

1 + c0σ does not depend on K. Figure 1 plots EζK−1 as a
function of K, where we set T0 = 18, T1 = 25 (as in our application), α = 0.1, and σ = 1.
We can see that the expected length is strictly decreasing in K. Increasing K from 2 to 3
and from 3 to 4 leads to a substantial reductions in the expected length of the confidence
intervals, while increasing K beyond 4 or 5 does not reduce the length much further. In
practice, the choice of K is subject to a trade-off between the expected length of the con-
fidence interval and its finite sample coverage properties. Choosing K large will lead to
shorter confidence intervals, but may impact the accuracy of the t-approximation of TK in
Theorem 3, which can lead to undercoverage. In Section 4, we investigate the choice ofK
based on empirical Monte Carlo simulations that are calibrated to match several features
of our empirical application.
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3.2 Validity under misspecification specification
Assumption 1 might not always hold in practice. For stationary data, while it is true that
E(Xtut) = 0 for ut = Yt − X ′tw with w = [E(XtX

′
t)]
−1E(XtYt), there is no guarantee that

‖w‖1 ≤ Q. Therefore, a natural question is whether the proposed method is still valid in
this situation. Here, we show that the answer is affirmative.

We first provide some intuition. Let w∗ = arg min‖v‖1≤Q E(Yt − X ′tv)2 and u∗,t = Yt −
X ′tw∗. We shall show that under weak conditions, we have ‖ŵ(k) − w∗‖2 = oP (1) and

τ̂ − τ = T−11

T∑
t=T0+1

u∗,t − T−10

T0∑
t=1

u∗,t + oP (T
−1/2
0 ).

Since w∗ might not equal to [E(XtX
′
t)]
−1E(XtYt), there is no guarantee that E(u∗,t) = 0.

However, as long as {u∗,t}Tt=1 is covariance-stationary, we should still expect zero mean
and asymptotic normality for T−11

∑T
t=T0+1 u∗,t−T

−1
0

∑T0
t=1 u∗,t. Next, we provide regularity

conditions to formalize this intuition.

Assumption 5. Suppose that {(Xt, Y
N
t )}Tt=1 is covariance-stationary and satisfies the following

conditions
(1) ‖(µ̂(−k) − µ) − (Σ̂(−k) − Σ)w∗‖∞ = oP (1), where µ = EXtY

N
t , Σ = EXtX

′
t, µ̂(−k) =

|H(−k)|−1
∑

t∈H(k)
XtY

N
t and Σ̂(−k) = |H(−k)|−1

∑
t∈H(k)

XtX
′
t.

(2) ‖Σ̂(−k) − Σ‖∞ = oP (1) and λmin(Σ) ≥ c.

Assumption 5 serves the role of Assumption 2 in that it is essentially a law of large
numbers uniformly across entries of XtY

N
t and XtX

′
t. Notice that Assumption 5 directly

states a condition on XtY
N
t instead of Xtut. Under Assumption 5, we have the following

consistency result under misspecification.

Theorem 4. Let Assumption 5 hold. Assume that Q = O(1). Then ‖ŵ(k) − w∗‖2 = oP (1). In
particular,

‖ŵ(k) − w∗‖22 ≤
4‖Σ̂− Σ‖∞Q2 + 2‖ξ‖∞Q

c
.

Next, we note that all the arguments in Lemma 1 and Theorem 2 still hold with ut
replaced by u∗,t. Therefore, we can still have a result analogous toCorollary 1 andTheorem
3.

Corollary 2. Let Assumptions 4 and 5 hold. Suppose that Q = O(1) and T0/T1 → c0 for some
c0 ∈ [0,∞). Then

√
T0 (τ̂k − τ) =

√
T0/T1

(
T
−1/2
1

T∑
t=T0+1

ũt

)
−
√
T0/|Hk|

(
1

|Hk|−1/2
∑
t∈Hk

ũt

)
+ oP (1),

11



where ũt = u∗,t − E(u∗,t). Moreover, if max1≤t≤T0 E|ũt|r = O(1) and βmix(i) . i−η for some
constants r > 2 and η > r/(r − 2), then

√
T0


τ̂1 − τ
τ̂2 − τ

...
τ̂K − τ

 d→


√
c0ξ0 −

√
Kξ1√

c0ξ0 −
√
Kξ2

...
√
c0ξ0 −

√
KξK

σ∗,

where ξ0, . . . , ξK are independentN(0, 1) randomvariables andσ2
∗ = limT→∞E

(
T−1/2

∑T
t=1 ũt

)2
.

Theorem 5. Let all the assumptions in Corollary 2 hold. Then (i)√
T0(τ̂ − τ)

d→ N(0, (1 + c0)σ
2
∗)

and (ii)

TK
d→ tK−1.

Theorem 5 demonstrates that, under stationarity, our inference procedure is fully ro-
bust against misspecification of the linear model in Assumption 1.

3.3 Efficiency
In this subsection, we consider the efficiency of our estimator τ̂ defined in (5). Since we
assume that E(Y N

t ) does not depend on t, a natural estimator is the difference-in-means

τ̃ =
1

T1

T∑
t=T0+1

Yt −
1

T0

T0∑
t=1

Yt. (11)

The difference-in-means estimator (11) is similar in spirit to typical treatment effect esti-
mators used in randomized experiments, where researchers estimate treatment effects by
comparing the averages of the treatment and the control group. It is well-known that, in
the context of randomized experiments, one can use regression adjustments to improve
the efficiency of the simple difference-in-means estimator. The classical argument is based
on the analysis of variance and dates back to Neyman (1923). This has recently been con-
sidered for growing number of covariates in Lei and Ding (2018); Bloniarz et al. (2016).
In Lei and Ding (2018), an OLS estimator is used for each group and it is required that
p log p = o(n); in Bloniarz et al. (2016), the linear model is assumed to be correctly speci-
fied and a sparsity requirement is imposed.

The next theorem establishes a similar result in our context.

Theorem 6. Suppose that {(Y N
t , Xt)}Tt=1 is i.i.d with E(Xt) = 0, E(Y N

t ) = 0 and E|Y N
t |2+δ <

∞ for some δ > 0. Assume that T0/T1 → c0 for some c0 ∈ [0,∞). Then√
T0(τ̃ − τ)

d→ N(0, (1 + c0)σ
2
0),

where σ2
0 = E(Y N

t )2. Moreover, σ0 ≥ σ∗, where σ∗ is defined in Theorem 5.
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When the covariates and outcome variable do not have mean zero, we can add an un-
penalized intercept to the estimation ofw. Since doing so is equivalent to applying existing
methods to the demeaned data, the assumption of E(Xt) = 0 and E(Y N

t ) = 0 does not
lose much generality. Theorem 6 shows that, asymptotically, the proposed estimator τ̂ is
at least as efficient as the difference-in-means estimator τ̃ , irrespective of whether or not
the linear model in Assumption 1 is correctly specified.

A similar efficient result can be derived with respect to difference-in-difference estima-
tors. Consider the estimator

τ̃ =
1

T1

T∑
t=T0+1

(Yt −X ′tβ)− 1

T0

T0∑
t=1

(Yt −X ′tβ), (12)

where β ∈ Rp is a pre-specified vector. In the difference-in-differences model described
in Remark 1, β would be the vector with each entry equal to 1/p. By a similar argument
as in Theorem 6, one can show that the estimator in (12) is asymptotically normal with an
asymptotic variance larger than or equal to σ2

∗ .

4 Monte Carlo simulations

4.1 Empirical Monte Carlo simulations
Our first simulation study is based on the empirical application in Section 5. We will use
these simulations to inform our choice of K in the application. We set T0 = 18, T1 = 25,
and N = 16 as in the empirical application. The potential outcomes in the absence of the
treatment are modeled as

Y N
t = µ+

N∑
i=1

wiY
N
it + ut, t = 1, . . . , T.

Here, we set µ and w equal to the corresponding estimates based on the pre-treatment
period in the application and generate {ut} according to an AR(1) model fitted to the
estimated residuals, where we draw innovations from the empirical distribution of the
AR(1) residuals. To generate the control outcomes, we first fit separate AR(1) models
to {Y N

it }Tt=1 for all i = 1, . . . , N . Let {ε̂t}Tt=1 denote the corresponding residuals, where
ε̂t = (ε̂1t, . . . , ε̂Nt). The control outcomes are simulated according to the estimated AR(1)
models, wherewe draw the innovations for all units jointly from the empirical distribution
of {ε̂t}Tt=1 to preserve the cross-sectional dependence. The treatment effects are generated
as αt = τ0 + ξ̃t, where ξ̃t = ξt − 1/T1

∑T
t=T0+1 ξt and ξt

iid∼ N(0, σ2
û) such that the true effect

is exactly equal to τ0 and σ2
û is the sample variance of the residuals. We do not redraw the

treatment effect across simulations and set τ0 equal to the difference-in-means estimate in
the application. We considerK ∈ {2, 3, 4, 5} and compare our method to the Lasso-based
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approach for estimating “Artificial Counterfactuals” (ArCo) proposed by Carvalho et al.
(2017). The nominal coverage is equal to 1− α = 0.9 for all simulations.

Table 1 shows the empirical coverage and average length of the confidence intervals.
The simulation results are consistent with our theory. ForK = 2, the empirical coverage is
very close to the nominal level, while the confidence intervals are rather wide on average.
Choosing K = 3 yields much shorter confidence intervals that still exhibit good coverage
properties. Increasing K to 4 and 5 further reduces the average length of the confidence
intervals. However, this reduction is accompanied by a substantial deterioration of the
finite sample coverage properties. ArCo yields very short confidence intervals that ex-
hibits substantial undercoverage. In view of these empirical Monte Carlo simulations, we
choose K = 3 in our application.

4.2 Additional simulations
Here, we present additional simulation evidence. Our goal is to study how the perfor-
mance of our procedure varies when we change key parameters such as T0, T1, N , and
the degree of serial dependence. In addition, we shed some light on the finite sample
performance of our method under misspecification.

We consider different data generating processes (DGPs) for the potential outcomes of
the treated unit in the absence of the treatment all of which specify the treated outcome
as a weighted average of the control outcomes:

Y N
t =

N∑
i=1

wiY
N
it + ut,

where ut = ρuut−1 + vt, where vt
iid∼ N(0, 1 − ρ2u). The DGPs differ with respect to the

specification of the weights w.

Weight Specification ‖w‖1
DGP1 w ∝ (1, 1, 1, 0, . . . , 0)′ 1
DGP2 w ∝ (1, . . . , 1)′ 1
DGP3 w ∝ (1, . . . , 1)′ 3

DGP1 represents a setting with very sparse weights. In DGP2, we set all weights equal
to wi = 1/N , which corresponds to the difference-in-differences model; see Remark 1. In
the simulations, we chooseQ = 1 such thatDGP3 represents a setting inwhich constrained
Lasso is misspecified.

Following Hahn and Shi (2016), we impose factor model for the control units:

Y N
it = µi + θt + λiFt + εit,
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Here, we set µi = i/J , λi = i/J , θt
iid∼ N(0, 1), Ft

iid∼ N(0, 1), and εit = ρεεit−1 + ξjt, where
ξjt

iid∼ N(0, 1−ρ2ε). We consider settingswith i.i.d. data (ρu = ρε = 0) andweakly dependent
data (ρu = ρε = 0.6).

The treatment effects are generated as αt = τ0 + ξ̃t, where ξ̃t = ξt − 1/T1
∑T

t=T0+1 ξt

and ξt
iid∼ N(0, 1), which ensures that the true effect is exactly equal to τ0 in all simulated

samples. We do not redraw treatments effect across simulations and set τ0 = 0.
We consider different values for K, K ∈ {2, 3, 4, 5}, and compare our method to the

Lasso-based ARCO approach proposed by Carvalho et al. (2017). The nominal coverage
is equal to 1− α = 0.9.

Table 2 shows the empirical coverage and the average length of the confidence inter-
vals with i.i.d. data (ρu = ρε = 0). Our method exhibits very close-to-correct coverage,
irrespective of the choice ofK and whether or not constrained Lasso is correctly specified.
As predicted by our theory, the average length of the confidence intervals is decreasing in
K. In addition, we find that, under correct specification (DGP1 andDGP2), the confidence
intervals are shorter than under misspecification (DGP3). By comparison, ArCo typically
exhibits undercoverage and yields confidence intervals that are slightly shorter on average
than the intervals obtained from our approach with K = 5 under correct specification.

Table 3 presents the results under weak dependence (ρu = ρε = 0.6). With K = 2,
our method exhibits almost exact coverage but yields very wide confidence intervals. For
K = 3, coverage is still very close to the nominal level, but the confidence bands are much
shorter on average. As predicted by our theory, choosingK = 4 orK = 5 further reduces
the average length of the confidence intervals but can lead to undercoverage, especially
when T0 = 20. However, we note that the coverage properties improve substantially when
going from T0 = T1 = 20 to T0 = T1 = 40, suggesting that when T0 and T1 become larger,
choosing K = 4 (or even K = 5) may be sensible in practice. Under weak dependence,
ArCo yields shorter confidence intervals than our method but exhibits substantial under-
coverage under all three DGP.

5 Application: the economic costs of conflict
To illustrate our approach, we analyze the economic effects of conflict. We follow Abadie
andGardeazabal (2003) and use the terrorist conflict in the BasqueCountry as a case study.
Before the outbreak of terrorist activity by the Basque terrorist organization ETA in the
early 1970’s, the Basque Country was the third richest region in Spain in terms of GDP
per capita. After 30 years of terrorism and political conflicts, the Basque Country had
dropped to the sixth position. Our goal is to estimate the causal effect of terrorism on per-
capita GDP in the Basque Country. We use the same dataset as in Abadie andGardeazabal
(2003).2 The data contain annual real per-capita GDP at the province-level in thousands

2The data are available through the R-package Synth (Abadie et al., 2011).
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of 1986 USD from 1955 to 1997. Figure 2 displays the raw data. Because the data are non-
stationary, we apply our method to de-trended data.3 There are N + 1 = 17 provinces
in total. The terrorist activities gained in strength during the 1970’s. In 1973, ETA killed
Franco’s Prime Minister and for the first time was responsible for more than five deaths
per year; see Table 1 in Abadie and Gardeazabal (2003). Therefore, our pre-intervention
period goes from 1955 to 1972 (T0 = 18). Our post-intervention period goes from 1973 to
1997 (T1 = 25).

Our empirical strategy uses the N = 16 other regions as control units. We impose the
followingmodel for the per capita GDP in the Basque Country in the absence of terrorism.

Y N
t = µ+

N∑
i=1

wiY
N
it + ut, ‖w‖1 ≤ 1.

We estimate the ATE using our method withK = 3. This choice is based on the empirical
Monte Carlo simulations in Section 4.1. For comparison, we also report the estimates for
K = 2 andK = 4. Table 4 presents the results. ForK = 3, the estimated effect of terrorism
on GDP is negative and significant. The results for K = 2 and K = 4 are similar. We
compare our results to estimates obtained from the Lasso-based ArCo approach proposed
by Carvalho et al. (2017). The ArCo point estimate is somewhat smaller (in absolute value)
than the estimates based on our method, but also significantly different from zero.

6 Conclusion
This paper develops newmethods formaking inference on average treatment effects in ag-
gregate panel data settings. We approximate the counterfactual outcomes in the absence
of the treatment using linear models estimated by constrained Lasso. The proposed infer-
ence method is based on a cross-fitting procedure for bias correction in conjunction with
a self-normalized t-statistic. Our procedure is very easy to implement and has several
theoretical advantages: it does not rely on sparsity, is fully robust against misspecifica-
tion, avoids estimation of the long run variance, and is more efficient than difference-in-
differences and difference-in-means estimators. The proposed method exhibits excellent
finite sample properties in settings where T0 and T1 are very small. We use our method to
re-evaluate the economic consequences of terrorism.

Here, we focus on the constrained Lasso estimator because it nests popular existing
approaches, is essentially tuning free, does not rely on sparsity, has desirable theoretical
properties, and admits a characterization under misspecification. However, many of the
ideas presented in this paper such as the cross-fitting scheme and the construction of the
test statistic are generic and could be used in conjunction with other CSC methods for
estimating counterfactuals.

3We subtract a linear trend which is estimated based on the pre-treatment period for the treated unit and
based on all periods for the control units.
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A Proofs

A.1 Proof of Theorem 1
We use the notation ET,(−k) for |H(−k)|−1

∑
t∈H(−k)

. To simplify notations, we use δ =

ŵ(k) − w instead of ∆(k) = ŵ(k) − w. Let η1 = ‖ET,(−k)(XtX
′
t − E(XtX

′
t))‖∞ and η2 =

‖ET,(−k)Xtut‖∞.
Notice that ET,(−k)(ut −X ′tδ)2 ≤ ET,(−k)u

2
t . Therefore,

ET,(−k)(X
′
tδ)

2 ≤ 2(ET,(−k)Xtut)
′δ ≤ 2η2‖δ‖1.

Notice that∣∣δ′ (ET,(−k)XtX
′
t − Σ(−k)

)
δ
∣∣ ≤ ‖δ‖21 ∥∥ET,(−k)XtX

′
t − Σ(−k)

∥∥
∞ = η1‖δ‖21.

This means that

ET,(−k)(X
′
tδ)

2 ≥ δ′Σ(−k)δ − η1‖δ‖21 ≥ κ‖δ‖22 − η1‖δ‖21.

It follows that
κ‖δ‖22 − η1‖δ‖21 ≤ 2η2‖δ‖1.

Since ‖δ‖1 ≤ ‖ŵ(k)‖1 + ‖w‖1 ≤ 2Q, we obtain the result by ‖δ‖22 ≤ (η1‖δ‖21 + 2η2‖δ‖1)/κ.

A.2 Proof of Lemma 1
Let µ = E(Xt). Notice that for T0 + 1 ≤ t ≤ T ,

Yt −X ′tŵ(k) = αt + ut −X ′t∆(k) = αt + ut − µ′∆(k) − X̃ ′t∆(k)

and for t ∈ Hk

Yt −X ′tŵ(k) = ut −X ′t∆(k) = ut − µ′∆(k) − X̃ ′t∆(k).

Therefore,

τ̂k − τ = T−11

T∑
t=T0+1

(Yt −X ′tŵ(k))−
1

|Hk|
∑
t∈Hk

(Yt −X ′tŵ(k))− τ

= T−11

T∑
t=T0+1

(αt + ut − µ′∆(k) − X̃ ′t∆(k))−
1

|Hk|
∑
t∈Hk

(ut − µ′∆(k) − X̃ ′t∆(k))− τ

= T−11

T∑
t=T0+1

ut −
1

|Hk|
∑
t∈Hk

ut +
1

|Hk|
∑
t∈Hk

X̃ ′t∆(k) − T−11

T∑
t=T0+1

X̃ ′t∆(k).

The proof is complete.
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A.3 Proof of Theorem 2
Fix k ∈ {1, ..., K}. Define Bk to be the “two-sided buffer”, i.e., the set that contains the
smallest γT numbers and the largest γT numbers in Hk. Also define Ak = Hk\Bk, i.e.,
Ak = {t : minHk + γT + 1 ≤ t ≤ maxHk − γT}. Thus,∑

t∈Hk

X̃ ′t∆(k) =
∑
t∈Ak

X̃ ′t∆(k) +
∑
t∈Bk

X̃ ′t∆(k).

The second term can be bounded by∣∣∣∣∣∑
t∈Bk

X̃ ′t∆(k)

∣∣∣∣∣ ≤ max
1≤t≤T0

‖X̃t‖∞‖∆(k)‖1|Bk| = 2γT max
1≤t≤T0

‖X̃t‖∞‖∆(k)‖1.

Thus,

P

(∣∣∣∣∣∑
t∈Bk

X̃ ′t∆(k)

∣∣∣∣∣ ≤ 2ρTγT‖∆(k)‖1

)
→ 1. (13)

On the other hand, we use Berbee’s coupling to bound
∑

t∈Ak X̃
′
t∆(k). By Theorem

16.2.1 of Athreya and Lahiri (2006), on an enlarged probability space, there exist ran-
dom variables {X̄t}t∈Ak such that (1) {X̄t}t∈Ak and {X̃t}t∈Ak have the same distribution,
(2) {X̄t}t∈Ak is independent of data in {1, ..., T0}\Hk and (3) P ({X̄t}t∈Ak 6= {X̃t}t∈Ak) ≤
βmix(γT ). Notice that ∆(k) is independent of {X̄t}t∈Ak . Hence,

E

(∑
t∈Ak

X̄ ′t∆(k)

)2

| ∆(k)

 = ∆′(k)E

[(∑
t∈Ak

X̄t

)(∑
t∈Ak

X̄t

)′]
∆(k)

(i)
≤ |Ak|κ1‖∆(k)‖22,

where (i) follows by Assumption 4 and the fact that {X̄t}t∈Ak and {X̃t}t∈Ak have the same
distribution. Thus,

∑
t∈Ak X̄

′
t∆(k) = OP (

√
|Ak|‖∆(k)‖2). Since P ({X̄t}t∈Ak 6= {X̃t}t∈Ak) ≤

βmix(γT ) = o(1), it follows that∑
t∈Ak

X̃ ′t∆(k) = OP (
√
|Ak|‖∆(k)‖2). (14)

Now by (13) and (14),∑
t∈Hk

X̃ ′t∆(k) = OP

(
ρTγT‖∆(k)‖1 +

√
|Ak|‖∆(k)‖2

)
(i)
= OP

(
ρTγT max

1≤k≤K
‖∆(k)‖1 +

√
T0 max

1≤k≤K
‖∆(k)‖2

)
,

where (i) follows by the assumption that γT = o(T0), min1≤k≤K |Hk|/T0 ≥ 1/(K + 1) andK
is bounded. Thus,

T−10

k∑
k=1

∑
t∈Hk

X̃ ′t∆(k) = OP

(
T−10 ρTγT max

1≤k≤K
‖∆(k)‖1 + T

−1/2
0 max

1≤k≤K
‖∆(k)‖2

)
.
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Similarly, we can show

T−11

T∑
t=T0+1

X̃ ′t∆ = OP

(
T−11 ρTγT max

1≤k≤K
‖∆(k)‖1 + T

−1/2
1 max

1≤k≤K
‖∆(k)‖2

)
.

The desired result follows by the assumption ρTγT = o(min{
√
T0,
√
T1}) and the fact that

max1≤k≤K ‖∆(k)‖1 is bounded (due to the assumption of ‖w‖1 = O(1)).

A.4 Proof of Theorem 3
Part (i) is a direct consequence of Corollary 1. For Part (ii), Corollary 1 and the continuous
mapping theorem imply that

TK
d→ TK ,

where

TK =

√
K(K−1

∑K
k=1(
√
c0ξ0 −

√
Kξk))

√
1 + c0

√
(K − 1)−1

∑K
k=1((

√
c0ξ0 −

√
Kξk)−K−1

∑K
k=1(
√
c0ξ0 −

√
Kξk))2

=
(1 + c0)

−1/2(
√
Kc0ξ0 −Kξ̄)√

(K − 1)−1
∑K

k=1(
√
K(ξk − ξ̄))2

=
(1 + c0)

−1/2(
√
c0ξ0 −

√
Kξ̄)√

(K − 1)−1
∑K

k=1(ξk − ξ̄)2
,

where ξ̄ = K−1
∑K

k=1 ξk. Notice that
∑K

k=1(ξk − ξ̄)2 is independent of ξ̄ and thus is inde-
pendent of the numerator of TK . It follows that TK has a student t-distribution withK − 1

degrees of freedom.

A.5 Proof of Theorem 4
For simplicity, we write ŵ = ŵ(k), µ̂ = µ̂(−k) and Σ̂ = Σ̂(−k). Let ξ = (µ̂− Σ̂w∗)− (µ−Σw∗).
By assumption, ‖ξ‖∞ = oP (1).

We rewrite

w∗ = arg min
v

v′Σv − 2µ′v s.t. ‖v‖1 ≤ Q

and

ŵ = arg min
v

v′Σ̂v − 2µ̂′v s.t. ‖v‖1 ≤ Q.

Let ∆ = ŵ − w∗. For any λ ∈ [0, 1], define wλ = w∗ + λ∆. Then by the definition of w∗,
we have that w′λΣwλ − 2µ′wλ ≥ w′∗Σw∗ − 2µ′w∗, which means

λ2∆′Σ∆ ≥ 2λ(µ− Σw∗)
′∆.
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Thus, for any λ ∈ (0, 1), we have that λ∆′Σ∆ ≥ 2(µ− Σw∗)
′∆. Since this holds for any

λ ∈ (0, 1), we have that
(µ− Σw∗)

′∆ ≤ 0. (15)

Now by definition, we have that

β̂′Σ̂β̂ − 2µ̂′β̂ ≤ w′∗Σ̂w∗ − 2µ̂′w∗.

It follows that
∆′Σ̂∆ ≤ 2(µ̂− Σ̂w∗)

′∆.

Notice that

(µ̂− Σ̂w∗)
′∆ = (µ− Σw∗)

′∆ + ξ′∆
(i)
≤ ξ′∆ ≤ ‖ξ‖∞‖∆‖1 ≤ 2‖ξ‖∞Q,

where (i) holds by (15). The above two displays imply that

∆′Σ̂∆ ≤ 2‖ξ‖∞Q.

Therefore

2‖ξ‖∞Q ≥ ∆′Σ∆ + ∆′(Σ̂− Σ)∆ ≥ ∆′Σ∆− ‖Σ̂− Σ‖∞‖∆‖21 ≥ c‖∆‖22 − 4‖Σ̂− Σ‖∞Q2.

The desired result follows.

A.6 Proof of Theorem 5
In view of Corollary 2, the proof follows by the same arguments as in the proof of Theorem
3.

A.7 Proof of Theorem 6
It is easy to see that

τ̃ − τ = T−11

T∑
t=T0+1

Y N
t − T−10

T0∑
t=1

Y N
t .

By Lyapunov’s central limit theorem, we have that
√
T0(τ̃ − τ)

d→ N(0, (c0 + 1)σ2
0). For the

second claim, notice that in this case

σ2
∗ = E(Y N

t −X ′tw∗)2 = min
‖v‖1≤Q

E(Y N
t −X ′tv)2 ≤ E(Y N

t )2 = σ2
0.

The proof is complete.
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B Tables and figures

Table 1: Empirical Monte Carlo simulations

Coverage

K = 2 K = 3 K = 4 K = 5 ArCo

0.91 0.84 0.74 0.67 0.57

Average length

0.62 0.22 0.15 0.12 0.11

Notes: Simulation design based on the empirical
application as described in the main text. Nom-
inal coverage 1 − α = 0.9. Based on simulations
with 1000 repetitions.
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Table 2: Results i.i.d. data

Coverage

J = 20

DGP1 DGP2 DGP3

T0 T1 K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo

20 20 0.92 0.92 0.92 0.90 0.85 0.89 0.92 0.90 0.90 0.84 0.89 0.90 0.90 0.88 0.78
40 20 0.91 0.92 0.90 0.89 0.87 0.92 0.91 0.91 0.91 0.84 0.91 0.91 0.91 0.91 0.85
20 40 0.91 0.90 0.91 0.89 0.88 0.90 0.91 0.89 0.89 0.86 0.90 0.89 0.88 0.89 0.80
40 40 0.90 0.92 0.90 0.90 0.93 0.91 0.90 0.89 0.91 0.93 0.90 0.90 0.90 0.91 0.89

J = 40

DGP1 DGP2 DGP3

T0 T1 K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo

20 20 0.90 0.91 0.88 0.88 0.81 0.92 0.92 0.90 0.90 0.85 0.89 0.90 0.90 0.88 0.74
40 20 0.91 0.91 0.91 0.90 0.85 0.93 0.92 0.89 0.91 0.86 0.90 0.90 0.91 0.89 0.84
20 40 0.90 0.90 0.91 0.90 0.85 0.91 0.92 0.91 0.92 0.88 0.90 0.90 0.90 0.91 0.81
40 40 0.91 0.90 0.90 0.92 0.93 0.90 0.92 0.90 0.91 0.93 0.89 0.90 0.90 0.90 0.89

Average length

J = 20

DGP1 DGP2 DGP3

T0 T1 K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo

20 20 4.18 2.17 1.67 1.51 1.26 4.02 2.07 1.61 1.44 1.20 8.46 4.55 3.52 3.21 1.27
40 20 3.50 1.63 1.31 1.21 1.09 3.44 1.65 1.32 1.23 1.06 7.20 3.63 3.03 2.76 1.12
20 40 3.53 1.83 1.42 1.30 1.16 3.53 1.79 1.38 1.25 1.15 6.86 3.84 3.00 2.84 1.14
40 40 2.75 1.37 1.10 1.02 1.02 2.68 1.31 1.07 0.98 1.00 5.72 2.98 2.43 2.29 1.01

J = 40

DGP1 DGP2 DGP3

T0 T1 K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo

20 20 4.15 2.22 1.71 1.57 1.27 4.02 2.10 1.58 1.45 1.21 8.30 4.26 3.36 3.15 1.22
40 20 3.65 1.77 1.41 1.27 1.09 3.52 1.67 1.32 1.23 1.06 6.98 3.57 2.95 2.70 1.07
20 40 3.60 1.92 1.45 1.33 1.18 3.33 1.79 1.36 1.24 1.10 6.90 3.70 2.89 2.76 1.11
40 40 2.76 1.36 1.11 1.03 1.03 2.59 1.33 1.08 0.99 0.99 5.75 2.82 2.42 2.24 1.01

Notes: Simulation design as described in themain text with ρu = ρε = 0. Nominal coverage 1−α = 0.9. Based on simulations
with 1000 repetitions.
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Table 3: Results weakly dependent data

Coverage

J = 20

DGP1 DGP2 DGP3

T0 T1 K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo

20 20 0.90 0.88 0.83 0.79 0.73 0.90 0.88 0.84 0.81 0.72 0.92 0.90 0.85 0.87 0.65
40 20 0.91 0.88 0.87 0.87 0.76 0.92 0.90 0.88 0.86 0.74 0.91 0.90 0.90 0.89 0.71
20 40 0.90 0.87 0.83 0.82 0.76 0.90 0.89 0.84 0.81 0.76 0.90 0.90 0.86 0.86 0.68
40 40 0.90 0.90 0.87 0.84 0.82 0.89 0.88 0.88 0.86 0.83 0.89 0.90 0.90 0.89 0.78

J = 40

DGP1 DGP2 DGP3

T0 T1 K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo

20 20 0.91 0.87 0.84 0.80 0.72 0.90 0.89 0.85 0.83 0.73 0.90 0.89 0.87 0.86 0.68
40 20 0.90 0.89 0.88 0.85 0.74 0.91 0.90 0.89 0.86 0.75 0.90 0.89 0.88 0.87 0.71
20 40 0.90 0.86 0.83 0.81 0.75 0.90 0.87 0.84 0.80 0.75 0.88 0.89 0.88 0.87 0.71
40 40 0.89 0.88 0.86 0.83 0.79 0.90 0.88 0.87 0.85 0.80 0.91 0.90 0.89 0.90 0.73

Average length

J = 20

DGP1 DGP2 DGP3

T0 T1 K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo

20 20 6.55 3.08 2.22 1.90 3.40 6.54 2.97 2.20 1.88 1.55 10.47 5.01 3.91 3.53 1.76
40 20 6.20 2.89 2.27 2.01 1.63 6.29 2.87 2.28 1.98 1.46 9.08 4.50 3.62 3.32 1.58
20 40 5.71 2.71 1.97 1.67 1.46 5.23 2.50 1.82 1.59 1.36 8.69 4.38 3.37 2.99 1.46
40 40 4.83 2.41 1.88 1.63 1.37 4.81 2.29 1.81 1.58 1.31 7.37 3.74 2.96 2.73 1.37

J = 40

DGP1 DGP2 DGP3

T0 T1 K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo K = 2 K = 3 K = 4 K = 5 ArCo

20 20 6.83 3.16 2.29 1.98 1.72 6.27 2.94 2.09 1.84 1.54 10.42 5.00 3.88 3.50 1.68
40 20 6.13 2.96 2.31 2.00 1.52 6.28 2.86 2.20 1.93 1.45 9.05 4.41 3.54 3.19 1.51
20 40 5.62 2.64 1.98 1.70 1.49 5.30 2.56 1.85 1.59 1.35 8.56 4.43 3.36 3.01 1.44
40 40 4.88 2.34 1.83 1.61 1.34 4.81 2.29 1.77 1.57 1.27 7.24 3.56 2.88 2.66 1.32

Notes: Simulation design as described in the main text with ρu = ρε = 0.6. Nominal coverage 1 − α = 0.9. Based on
simulations with 1000 repetitions.
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Table 4: Results application

Method ATE 90%-CI

K = 2 -0.90 -1.22 -0.57
K = 3 -0.92 -1.13 -0.70
K = 4 -0.88 -1.00 -0.75
ArCo -0.76 -1.16 -0.36

Figure 1: Expected length confidence interval
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Figure 2: Raw Data
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