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UNIFORM INFERENCE IN HIGH-DIMENSIONAL
GAUSSIAN GRAPHICAL MODELS*

By SVEN KLAASSEN, JANNIS KUCK,
MARTIN SPINDLER AND VICTOR CHERNOZHUKOV

Graphical models have become a very popular tool for repre-
senting dependencies within a large set of variables and are key for
representing causal structures. We provide results for uniform infer-
ence on high-dimensional graphical models with the number of tar-
get parameters d being possible much larger than sample size. This
is in particular important when certain features or structures of a
causal model should be recovered. Our results highlight how in high-
dimensional settings graphical models can be estimated and recovered
with modern machine learning methods in complex data sets. To con-
struct simultaneous confidence regions on many target parameters,
sufficiently fast estimation rates of the nuisance functions are crucial.
In this context, we establish uniform estimation rates and sparsity
guarantees of the square-root estimator in a random design under
approximate sparsity conditions that might be of independent inter-
est for related problems in high-dimensions. We also demonstrate in
a comprehensive simulation study that our procedure has good small
sample properties.

1. Introduction. We provide methodology and theory for uniform in-
ference on high-dimensional graphical models with the number of target
parameters being possible much larger than sample size. We demonstrate
uniform asymptotic normality of the proposed estimator over d-dimensional
rectangles and construct simultaneous confidence bands on all of the d tar-
get parameters. The proposed method can be applied to test simultaneously
the presence of a large set of edges in the graphical model

X =(Xy,..., X)) ~N(ux,Sx).

Assuming that the covariance matrix X x is nonsingular, the conditional in-
dependence structure of the distribution can be conveniently represented by
a graph G = (V, E), where V = {1,...,p} is the set of nodes and E the
set of edges in V' x V. Every pair of variables not contained in the edge set
is conditionally independent given all remaining variables. If the vector X
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is normally distributed, every edge corresponds to a non-zero entry in the
inverse covariance matrix (Lauritzen (1996)) [11].

In the last decade, significant progress has been made on estimation of a
large precision matrix in order to analyze the dependence structure of a
high-dimensional normal distributed random variable. There are mainly two
common approaches to estimate the entries of a precision matrix. The first
approach is a penalized likelihood estimation approach with a lasso-type
penalty on entries of the precision matrix, typically referred to as the graph-
ical lasso. This approach has been studied in several papers, see e.g Lam
and Fan (2009) [10], Rothman et al. (2008) [15], Ravikumar et al. (2011)
[13] and Yuan and Lin (2007) [20]. The second approach, first introduced
by Meinshausen and Bithlmann (2006) [12], is neighborhood based. It esti-
mates the conditional independence restrictions separately for each node in
the graph and is hence equivalent to variable selection for Gaussian linear
models. The idea of estimating the precision matrix column by column by
running a regression for each variable against the rest of variables was fur-
ther studied in Yuan (2010) [19], Cai, Liu and Zhou (2011) [5] and Sun and
Zhang (2013) [16].

In this paper, we do not aim to estimate the whole precision matrix but we
focus on quantifying the uncertainty of recovering its support by providing a
significance test for a set of potential edges. In recent years, statistical infer-
ence for the precision matrix in high-dimensional settings has been studied,
e.g in Jankova and van de Geer (2016) [9] and Ren et al. (2015) [14]. Both
approaches lead to an estimate that is elementwise asymptotically normal
and enables testing for low-dimensional parameters of the precision matrix
using standard procedures such as Bonferroni-Holm correction.

In contrast to these existing results, our method explicitly allows for testing
a joint hypothesis without correction for multiple testing and conducting in-
ference for a growing number of parameters using high dimensional central
limit results. In particular, our results rely on approximate sparsity instead
of row sparsity which restricts the number of non-zero entries of each row
of the precision matrix to be at most s < n that is in many applications
a questionable assumption. In order to provide theoretical results, fitting
the problem of support discovery in Gaussian graphical models into a gen-
eral Z-estimation setting with a high-dimensional nuisance function is key.
Inference on a (multivariate) target parameter in general Z-estimation prob-
lems in high dimensions is covered in Belloni et al. (2014) [3], Belloni et al.
(2018) [2] and Chernozhukov et al. (2017) [6]. To conduct inference on a
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high-dimensional target parameter, uniform estimation rates and sparsity
guarantees of the nuisance function are crucial. In this context, we formally
apply recent results from Belloni et al. (2018) [2] to ensure sufficient fast
convergence rate of the lasso estimator under approximate sparsity condi-
tions. Moreover, we provide auxiliary results for the square-lasso estimator
establishing uniform estimation rates and sparsity guarantees in a random
design under approximate sparsity conditions that might be of independent
interest for related problems in high-dimensional linear models.

Plan of this Paper. The rest of this paper is organized as follows. In
Section 2, we formally define the setting and introduce the notation that
will be used fitting the problem of support discovery in Gaussian graph-
ical models into a general Z-estimation problem with a high-dimensional
nuisance function. In Section 3, we outline the estimation procedure of the
high-dimensional target parameter and the conditions that are needed to
achieve our main theorem presented in Section 4. Section 5 provides imple-
mentation details and shows how our estimation procedure can be modified
by cross-fitting to improve small sample properties. Section 6 provides a
simulation study on the proposed method. The supplementary material in-
cludes additional technical material. The proof of our main theorem is pro-
vided in Appendix A. The uniform nuisance function estimation is discussed
in Appendix B. Appendix B.1 formally discusses conditions for the uniform
convergence rates of the lasso estimator. Finally, Appendix B.2 provides
auxiliary results for the square-lasso estimator.

2. Setting. Let
X =(X1,...,Xp)" ~ N(ux,Sx)

be a p-dimensional random variable. For all (j, k) € E with j # k, assume

that
p

Xj — Zﬂl(])Xl + g(j) — ﬁ(j)ij + E(j)
1]
and ‘ '
Xk — zy(]vk)X_{]yk} _|_ V(Jvk“)’

where E[¢¥)|X_;] = 0 and E[X_{jvk}u(j’k)] = 0. Define the column vector

T

T — (_ﬁy), RN —55»],)1, 1, —5;'217 RER) _@(}j))
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One may show

Py = (®g,..., ) = <F(1)/Var(s(1)), . ,F(p)/Var(E(p))> :

where @% is the j-th column of the precision matrix o = X Xl [9]. Hence
2.1 0¥ —0o X; L X4X_y
(2.1) By < B & Xj L XX giny

for all j # k. Assume that we are interested in the following set of potential
edges
M :={my,...,mq,}

where the number of edges d, may increase with sample size n. In the
following the dependence on n is omitted to simplify the notation. In order
to test whether all variables X; and X}, are conditionally independent with
my = (jr, ky) for ar € {1,...,d}, we have to estimate our target parameter

00 = Oy O = (B BT,
The setting above fits in the general Z-estimation problem of the form
E [Ym, (X, 0y iy )] = 0

for all r = 1,...,d with nuisance parameters
m, = (89,709)
where /B(_J,z = B(mr) and k) = ~(mr) The score functions are defined by
Y, (X,0,m) 5 = (X5 = 0 = VX, ) (Xe =P X, )

for m, = (jr, k) = (4, k), n = (M, n®) and r = 1,...,d. Without loss of
generality we assume j > k for all tuples m, € M.

COMMENT 2.1. The score function 9 is linear, meaning

P, (X,0,1) = 02 (X, )0 +¢b, (X,n)
with
2 (X, n?) = —X;, (Xk — 77(2)X-mr)

and
U, (X,m) = (5 = nOX 0, ) (X =0 X, )
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for m, = (j,k) and r=1,...,d.

It is well known that in partially linear regression models 6y satisfies the
moment condition

(2'2) E er (X7 Om, s nmr)} =0

for all r =1,...,d and also the Neyman orthogonality condition

00 {E [, (X Oy 1o, + 7)1} |,

for all 77 in an appropriate set where 9y denotes the derivate with respect to t.
These properties are crucial for valid inference in high dimensional settings.
We will show these properties explicitly in the proof of Theorem 1.

3. Estimation. Let X i=1,... n be i.i.d. random vectors.
At first we estimate the nuisance parameter 7, = (7]7(7%2,777(32) by running
a lasso/ post-lasso/ square-root lasso regression of X; on X_; to compute

(émr,ﬁ,(,ﬁ) and a lasso/ post-lasso/ square-root lasso regression of X} on

X_p,, to compute ﬁﬁSZ for each (j, k) = m, € M. The estimator 8 of the
target parameter

00 = Omys- - 0m,)"
is defined as the solution of

(3.1)

E[ X, 0, .7 ”— inf
rfﬁﬁd{‘ o | Uy (X, O,y i, ) odnf

B [t (X007 | <

where €, = o (5nn*1/ 2) is the numerical tolerance and (8, )n>1 a sequence
of positive constants converging to zero.

Assumptions A1-A4.
Let a, := max(d,p,n,e) and C a strictly positive constant independent of
n and r. The following assumptions hold uniformly in n > ng, P € Py:

A1l Forallm, = (j, k) € M with j # k we have the following approximate
sparse representations

(i) It holds
X; = ﬁ(j)X,j + W)



with
s2log(ay,
807y <5, max [8EmIR < ¢y 2108

and ) |
max |:<6(2:mr)X_mT) ] < C&(a”)‘

r=1,....d n

(i) It holds
=CW””+%“WUXW%+MW)

with

2]
[y Eme) |l < s, max l@m|2 < ¢ s*log(an)
r=1,...,

and

2
r=1,....d n
A2 There exist positive numbers ¢ > 0 and k < 1 such that the following
growth conditions are fulfilled:
12 10g4(an)

ni———— = o(1), log(d)=o (n% /\n%> .

A3 For all m, = (j,k) € M it holds

1Bl + Iyl < ©

and
sup sup || <C.
r=1,...,d 0€Om,,.
Additionally ©,,, contains a ball of radius log(log(n))n =2 log'/?(d) log(n)
centered at Oy,
A4 It holds

inf E [(5X)2] >cand sup E [(fX)ﬂ <C.
l1€ll2=1 1€ll2=1
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The condition Al is a standard approximate sparsity condition that is dis-
cussed in more detail in comment 3.1. The number of relevant variables
s, = s captured by the regression coefficient 51 respectively 4(1™) can
grow with the sample size. The coefficient 3(2™) respectively (2™) is the
approximate sparse part of the true regression coefficient. This misspecifica-
tion of a sparse model is controlled by condition A1l. The growth condition
A2 ensures that s?log*(a,)/n converges towards zero with at least poly-
nomial speed. If this convergence is too slow (¢ > 9) the condition on the
growth rate of the number of tested edges become more restrictive. In gen-
eral, both the number of parameters p and the number of relevant variables
s can grow with the sample size in a balanced way. If s is fixed, the number
of potential parameters p can grow at an exponential rate with the sample
size. This means that the set of potential variables can be much larger than
the sample size, only the number of relevant variables s has to be smaller
than the sample size. This situation is common for Lasso-based estimators.
Condition A3 restricts the parameter spaces and ensures that the true coeffi-
cients are well behaved. The condition A4 is a standard eigenvalue condition
that restricts the correlation between the components of X and bounds the
variances of each X; from below and above. Assumptions A1-A4 combined
with the normal distribution of X imply the conditions B1-B4 from theorem
2 which enables us to estimate the nuisance parameter sufficiently fast by
lasso and post-lasso. To ensure a sufficiently fast convergence rate and spar-
sity guarantees of the square-root lasso estimator further model assumptions
are needed.

COMMENT 3.1. If we have exact sparsity for each ) with (j,k) € M,

the sparsity of 4(") follows directly.
Observe that for k € {1,...,p} \{j} and l € {1,...,p} \ {Jj, k} we have

5l(k) =0 X, L Xi|X gy © E[Xp X)X 3] =0
which implies
E[XkXi| X (5] = E [EXe X)X ]I X_jrn] =0
and thereby
%(j’k) =0 Xy L Xi|X_ g & EXeXi| X_jr] = 0.

Hence, the sparsity conditions for testing on an edge (j, k) are satisfied if
each node j and k is only sparsely connected to all other nodes.



4. Main results. We will prove that the assumptions of Corollary 2.2
from Belloni et al. (2018) [2] hold and hence we are able to use their results
to construct confidence intervals even for a growing number of hypothesis

d = d,. Define

er = 89E[¢mr (X)7 97 Umr]
0'72nT =EK [Jnjf 72nT (X7 emru nmy)]

o—o,, = ~BIXk(Xik =) X m,)]
and the corresponding estimators
jm,r = —En[Xk(Xk — f/gZX_mr)]

52, = Bn [ 1202, (X, O im,)

forr =1,...,d. To construct confidence intervals we will employ the Gaus-
sian multiplier bootstrap. Define

szm'r (X) = _6-77171» j?;?,:wmr (X7 émr) 7777%)

and the process

N = (Nm’)mre/vt N <\}ﬁi§wm (X(i))>

where (&)1, are independent standard normal random variables which are
independent from (X (i))?zl. We define ¢, as the (1 — «)-conditional quantile

myreM

of sup,,, e | Nom, | given the observations (X (i))?:y The following theorem is
the main result of our paper and establishes simultaneous confidence bands
for the target parameter 6.

THEOREM 1.
Under the assumptions A1-AJ with probability 1 —o(1) uniformly in P € Py,
the estimator 0 in (3.1) obeys

A CaOm
4.1 P — L <
( ) <0m7 \/ﬁ — emr T \/’77/

Using theorem 1 we are able to construct standard confidence regions which
are uniformly valid over a large set of variables and we can check null hy-

pothesis of the form:
Hy: MNE =1.
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COMMENT 4.1. Theorem 1 is basically an application of the gaussian ap-
proximation and multiplier bootstrap for maxima of sums of high-dimensional
random vectors [7]. The central limit theorem and bootstrap in high dimen-
sion introduced by Chernozhukov, Chetverikov, Kato et al. (2017) [8] extend
these results to more general sets, more precisely sparsely convex sets. Hence
our main theorem can be easily generalized to various confidence regions
that contain the true target parameter with probability 1 — c. Theorem 1
provides critical regions of the form

Om
Vn—"

myr

(4.2) sup
r=1,....d

> Cl—q-

Alternatively, we can reject the null hypothesis if

A~

Vaome

Om,.

A~

Jrom:

my

(4.3) sup

< ca oOr sup
r=1,....,d 2

> Cl_a.
r=1,....,d 2

Both of these regions are based on the central limit theorem for hyperrect-
angles in high dimensions. The confidence region (4.3) is motivated by the
fact that the standard normal distribution N(0, I) in high dimensions is
concentrated in a thin spherical shell around the sphere of radius vd as
described by Roman Vershynin (2017) [18] and therefore might have smaller
volume. More generally, define

S

A exp
A 0,
6., (S, exp) = Z (\/ﬁA r_s>

s=1 T —s

for a fix S, exp € {1,2} and

r—s if r—s>0
r—s:= .
d+ (r—s) otherwise

A test that reject the null hypothesis if

(4.4) sup ‘HA,’;M(S, e:vp)‘ >
r=1,....d
has level a by [8], since the constructed confidence regions correspond to
S-sparsely convex sets. Here, ¢j_, is the (1 — «)-conditional quantile of
n
3

SUDP,,, e M ]/\A/’;f%| given the observations (X (i)) ., with

K= ()

s=1
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where

r—s if r—s>0
r—s:=
d+ (r—s) otherwise.

5. Notes on the implementation. We implemented a function that
will be added to the R-package hdm and estimates the target coefficients

O Omg) T = (B, BT
corresponding the considered set of potential edges
M:={my,...,mg,}

by the proposed method described in section 3. It can be used to perform
hypothesis tests with asymptotic level o based on the different confidence
regions described in comment 4.1. The nuisance function can be estimated
by lasso, post-lasso or square-root lasso.

5.1. Cross-fitting. In general Z- estimation problems where a so called
debiased or double machine learning (DML) method is used to construct
confidence intervals, it is common to use cross-fitting in order to improve
small sample properties. A detailed discussion of cross-fitted DML can be
found in Chernozhukov et al. (2017) [6]. The following algorithm generalizes
our proposed method to a K-fold cross fitted version. We assume that n is
divisible by K in order to simplify notation.

ALGORITHM 1. 1) Take a K-fold random partition (Ix)K_ | of observa-
tion indices [n] = {1,...,n} such that the size of each fold Ij is N. Also,
for each k € [K] = {1,...,K}, define If :== {1,...,N} \ I;. 2) For each
ke[K] andr=1,...,d, construct an estimator

Memr = Ty (Xi)iere)

by lasso/ post-lasso or square-root lasso. 3) For each k € [K], construct an
estimator O, = (Okmy»- - 0km,) as in 3.1:

sup {‘ENk [wmr (X, ék,mmﬁk,ﬂ’u)} ’ — inf |Eyp [1/’77% (X, evﬁk:mr)} ‘}

7’=1,...,d 9€@mr
< €y
with En g [tm, (Xi)] = N7! >icr, Ym, (Xi). 4) Aggregate these estimators:

- %S

k:
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5) Forr =1,...,d construct the uniform valid confidence interval
[AK _ army éK Ca TIfLr]
my Y my n
with
A~ ]_ ~ 2
I = ¢ 2 (Xk( Xk — 77;(“11 Xom,));
k=1

K
A 1 ~
K K\-2_— 2 K 3
O‘mr - (er) K Z ( My (X7 0m7.777k’,m7«))'

Co 18 the 1 — « bootstrap quantile of sup ./VmT with
r=1,...,d

- 1 < . .
Ny = =36 (x0
\/ﬁl:1£w 1"( )

where (&), are independent standard normal random variables which are

independent from (X(i)y.I , and

A o -1 ~
i (X) = = (00 T ) (X055 0.

The confidence region above corresponds to (4.2). Confidence regions corre-
sponding to (4.3) or (4.4) can be constructed in an analogous way.

6. Simulation Study. This section provides a simulation study on the
proposed method. In each example the precision matrix of the Gaussian
graphical model is generated as in the R-package huge [21]. Hence, the
corresponding adjacency matrix A is generated by setting the nonzero off-
diagonal elements to be one and each other element to be zero. To obtain a
positive definite pre-version of the precision matrix we set

Ppre =0 A+ (|Amin(v - A)| + 0.1+ w) - Lpxp.

Here v = 0.3 and u = 0.1 are chosen to control the magnitude of partial
correlations. The covariance matrix X is generated by inverting ®,,.. and
scaling the variances to one. The corresponding precision matrix ® is given
by X1, For a given p we generate n = 200 independent samples of

X =(X1,...,X,) ~N(0,%)
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and evaluate whether our test statistic would reject the null hypothesis for
a specific set of edges M which satisfies the null hypothesis. Finally the
acceptance rate is calculated over [ = 1000 independent simulations for a
given confidence level 1 — a = 0.95.

6.1. Simulation settings. In our simulation study we estimate the corre-
lation structure of four different designs that are described in the following.

6.1.1. Example 1: Random Graph. Each pair of off-diagonal elements of
the covariance matrix of the first p— 1 regressors is randomly set to non-zero
with probability prob = 5/p. The last regressor is added as an independent
random variable. It results in about (p — 1) - (p — 2) - prob/2 edges in the
graph. The corresponding precision matrix is of the form

where B is a sparse matrix. We test the hypothesis, whether the last regres-
sor is independent from all other regressors, corresponding to

M={p,1),...,(p,p -1}

6.1.2. Example 2: Cluster Graph. The regressors are evenly partitioned
into g = 4 disjoint groups. Each pair of off-diagonal elements ®; ;) is set
non-zero with probability prob = 5/p, if both ¢ and j belong to the same
group. It results in about g-(p/g)-(p/g—1)-prob/2 edges in the graph. The
precision Matrix is of the form

By 0

B3

0 By

where each block B; is a sparse matrix. We test the hypothesis that the
first two hubs are conditionally independent. This corresponds to testing
the tuples

M=A{(1l,p/4+1),...,(1,p/2),(2,p/4+1),...,(p/4,p/2)}.
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(a) Random Graph (b) Cluster Graph

Fig 1: Examples
The edges of the graph are colored in black and the edges contained in the hypothesis in red.

6.1.3. Ezample 3: Approximately Sparse Random Graph. In this exam-
ple we generate a random graph structure as in example 1, but instead
of setting the other elements of the adjacency matriy A to zero we gener-
ate independent random entries from a uniform distribution on [—a, a] with
a = 1/20. This results in a precision matrix of the form

where B is not a sparse matrix anymore. We then again test the hypothesis,
whether the last regressor is independent from all other regressors, corre-
sponding to

M = {(p7 1)7 SRR (pap - 1)}

6.1.4. Example 4: Independent Graph. By setting
(p = Ipo

we generate samples of p independent normal distributed random variables.
We can test the hypothesis whether the regressors are independent by choos-
ing

M={(1,2),...,(1,p),(2,3),...,(p—1,p)}.

6.2. Simulation results. We provide simulated acceptance rates of our
proposed estimation procedure with B = 1000 bootstrap samples for all
of the examples above. Confidence Intervall I corresponds to the standard
case in (4.2), whereas Confidence Intervall II is based on the approximation
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of the sphere in (4.3). In summary, the results reveal that the empirical
acceptance rate is, on average, close to the nominal level of 95% with a mean
absolute deviation of 2.581% over all simulations. The Confidence Intervall
IT has got a mean absolute deviation of 1.875% and performs significantly
better than Confidence Intervall I with a mean absolute deviation of 3.287%.
More complex S-sparsely convex sets seem to result in better acceptance
rates, whereas higher exponents do not improve the rates. The lowest mean
absolute deviation (1.138%) is achieved in table 2 for S = 5, exp = 1 and
without cross-fitting.

Confidence Interval I Confidence Intervall 1T
Model p d lasso  post-lasso sqrt-lasso  lasso  post-lasso  sqrt-lasso
20 19 0931 0.938 0.936 0.929 0.930 0.935
random 50 49  0.915 0.915 0.916 0.926 0.929 0.932
100 99 0.912 0.912 0.908 0.927 0.930 0.929
20 25 0.916 0.942 0.918 0.915 0.930 0.921
cluster 40 100 0.916 0.919 0.917 0.934 0.947 0.937
60 225 0.897 0.893 0.899 0.921 0.922 0.927
20 19 0.931 0.931 0.931 0.947 0.946 0.947
approx 50 49  0.908 0.908 0.908 0.920 0.920 0.920
100 99  0.902 0.902 0.902 0.935 0.935 0.935
5 10 0.931 0.931 0.931 0.933 0.933 0.933
indepent 10 45 0.927 0.927 0.927 0.937 0.937 0.937
20 190 0.896 0.896 0.896 0.920 0.920 0.920
TABLE 1

Simulation results for S=1,exp=1 and 1-fold
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Confidence Interval I

Confidence Intervall II

Model p d lasso  post-lasso  sqrt-lasso  lasso  post-lasso  sqrt-lasso
20 19 0.969 0.925 0.956 0.951 0.932 0.947
random 50 49  0.942 0.944 0.944 0.942 0.954 0.953
100 99 0.934 0.941 0.940 0.950 0.949 0.952
20 25  0.972 0.958 0.973 0.914 0.936 0.914
cluster 40 100 0.941 0.937 0.945 0.930 0.936 0.942
60 225 0.931 0.947 0.942 0.943 0.937 0.950
20 19  0.958 0.958 0.958 0.965 0.965 0.965
approx 50 49  0.937 0.937 0.937 0.940 0.940 0.940
100 99  0.920 0.921 0.920 0.936 0.936 0.936
5 10  0.951 0.951 0.951 0.951 0.951 0.951
indepent 10 45  0.932 0.932 0.932 0.952 0.952 0.952
20 190 0.926 0.926 0.926 0.947 0.947 0.947
TABLE 2
Simulation results for S=5,exp=1 and 1-fold
Confidence Interval 1 Confidence Intervall 1T
Model P d lasso  post-lasso sqrt-lasso  lasso  post-lasso  sqrt-lasso
20 19  0.909 0.916 0.921 0.916 0.921 0.930
random 50 49  0.931 0.910 0.926 0.926 0.907 0.927
100 99  0.907 0.909 0.909 0.917 0.934 0.923
20 25 0.910 0.905 0.905 0.904 0.898 0.901
cluster 40 100 0.909 0.910 0.910 0.905 0.919 0.921
60 225 0.885 0.894 0.898 0.912 0.925 0.934
20 19  0.929 0.928 0.929 0.929 0.928 0.929
approx 50 49  0.888 0.888 0.888 0.911 0.911 0.911
100 99  0.907 0.907 0.907 0.936 0.936 0.936
5 10 0.930 0.930 0.930 0.939 0.939 0.939
indepent 10 45 0.921 0.921 0.921 0.933 0.933 0.933
20 190 0.916 0.916 0.916 0.938 0.938 0.938
TABLE 3

Simulation results for S=5,exp=2 and 1-fold
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Confidence Interval I

Confidence Intervall II

Model p d lasso  post-lasso  sqrt-lasso  lasso  post-lasso  sqrt-lasso
20 19 0917 0.912 0.919 0.919 0.932 0.918
random 50 49  0.927 0.911 0.925 0.938 0.936 0.938
100 99  0.903 0.894 0.907 0.926 0.933 0.927
20 25  0.920 0.899 0.918 0.930 0.929 0.929
cluster 40 100 0.920 0.883 0.919 0.927 0.926 0.923
60 225 0.889 0.885 0.896 0.920 0.930 0.928
20 19 0.921 0.922 0.921 0.932 0.934 0.932
approx 50 49  0.899 0.899 0.899 0.926 0.926 0.926
100 99  0.889 0.889 0.889 0.930 0.929 0.930
5 10  0.922 0.923 0.922 0.935 0.934 0.935
indepent 10 45  0.905 0.905 0.905 0.937 0.937 0.937
20 190 0.903 0.903 0.903 0.936 0.936 0.936
TABLE 4
Simulation results for S=1,exp=1 and 3-fold
Confidence Interval 1 Confidence Intervall 1T
Model P d lasso  post-lasso sqrt-lasso  lasso  post-lasso  sqrt-lasso
20 19  0.970 0.919 0.964 0.950 0.932 0.958
random 50 49  0.923 0.911 0.927 0.938 0.951 0.935
100 99  0.929 0.925 0.930 0.949 0.940 0.948
20 25 0971 0.970 0.971 0.915 0.931 0.915
cluster 40 100 0.926 0.915 0.925 0.925 0.917 0.924
60 225 0.923 0.925 0.926 0.917 0.939 0.930
20 19  0.959 0.959 0.959 0.958 0.956 0.958
approx 50 49  0.932 0.932 0.932 0.931 0.933 0.931
100 99 0.929 0.929 0.929 0.949 0.950 0.949
5 10 0.940 0.940 0.940 0.951 0.951 0.951
indepent 10 45 0.922 0.922 0.922 0.938 0.938 0.938
20 190 0.930 0.930 0.930 0.938 0.938 0.938
TABLE 5

Simulation results for S=5,exp=1 and 3-fold
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Confidence Interval I

Confidence Intervall II

Model p d lasso  post-lasso  sqrt-lasso  lasso  post-lasso  sqrt-lasso
20 19 0914 0.897 0.918 0.922 0.921 0.923
random 50 49 0914 0.896 0.911 0.920 0.920 0.921
100 99 0.891 0.878 0.893 0.918 0.909 0.917
20 25 0.885 0.882 0.888 0.900 0.896 0.901
cluster 40 100 0.880 0.877 0.879 0.898 0.910 0.907
60 225 0.886 0.884 0.897 0.915 0.921 0.932
20 19 0.931 0.930 0.931 0.938 0.937 0.938
approx 50 49 0914 0.913 0.914 0.932 0.933 0.932
100 99 0.894 0.894 0.894 0.924 0.924 0.924
5 10 0.923 0.922 0.923 0.943 0.942 0.943
indepent 10 45 0917 0.916 0.917 0.934 0.935 0.934
20 190 0.890 0.890 0.890 0.932 0.932 0.932
TABLE 6

Simulation results for S=5,exp=2 and 3-fold
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APPENDIX A: PROOF OF THEOREM 1

PrOOF. We want to use corollary 2.2 from Belloni et al. (2018) [2]. Con-
sequently, we will show that their assumptions 2.1-2.4 and the growth con-
ditions of corollary 2.2 hold by modifying the proof of corollary 3.2 in [2].
To make the proof more comparable we try to keep the notation as similar
as possible. This implies that we use C for a strictly positive constant, in-
dependent of n and r, which may have a different value in each appearance.
The notation a, < b, stands for a, < Cb,, for all n for some fixed C. Ad-

~

ditionally a,, = o(1) stands for uniform convergence towards zero meaning
there exists sequence (by,),>1 With |ay| < by, by, is independent of P € P, for
all n and b, — 0. Finally, the notation a,, <p b, means that for any e > 0,
there exists C' such that uniformly over all n we have Pp(a, > Cb,) < e.
Let m, = (j, k) be an arbitrary set in M. We have

max E [(U(m7'))2:| <1 and mTaXE [(5(m"))2] S1

<
due to the assumptions A3 and A4. Define the convex set

T, = {n =", n®) : gV e RP72, 7 € RP—2}
and endow T, with the norm

[1nlle = 1M1z v [[1®]]2.

Further let 7,, := 4/ Sl%(“") and define the nuisance realization set

T, = {n € T, : |I1V]lo v 11 lo < Cs,
1D = B[ v [ — Al < O,

In® = B ||y v (1@ — Moy < C\/ng} U {(6(7717")”7(7”7"))}

for a sufficiently large constant C' > 0. First we verify Assumption 2.1 (i).
The moment condition holds since

E[Ym, (X, Om, s .. )]
= E[E[EmIumIX ) = Bt EETX_ ) = 0.

=0
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In addition, we have

Sn: = E [max |VAEn [, (X, O, 1,

=E |sup G,(f)
feF

with F = {™)pm)|r = 1,... . d} and G, (f) := /n|E,[f] — E[f]|. By the
same arguments as in the beginning of proof of theorem 2 we conclude that

the envelope sup | f| of F fulfills
fer

1/q

& I:mgx <|V(mT)|>2q] 1/2q

I max lg(mr)y(mr)mpg =F {m,?x <‘g(mr)y(mr)’>‘I:|

2
<E [max <|£(mr)]> q]
< Clog(d)7

1/2q

since the error terms are normal distributed. Using lemma 0.2 (Maximal
Inequality I) in [2] with |F| = d, we have

1/2 1/2 21og*(d) s 1/2
Sp < Clog'/?(d) + Clog'/?(d) <nq> < log!?(d)
n
by the assumption A2 for a ¢ > 2¢. Hence, assumptlon A3 implies that for all
r=1,...,d, O, contains an interval of radius Cn™ 25, log(n) centered at
O, for all sufficiently large n for any constant C. Assumption 2.1 (i) follows.

For all m, € M, the map (0,n) — ¥, (X,0,n) is twice continuously
Gateaux-differentiable on ©,,, X Tp,, , and so is the map (6, 7) — E[¢n,, (X, 0,1)].
Further we have

Dmr,()[na nmr] L= 8tE[wmr (Xa emw Nm,. + t(77 - nmr))] ‘t:

0
:E[at{ (Xj—emer—( O +t(n® — n‘”))X )
(Xk - (nﬁi +t(n® - X-mr H
ZE[e(m”(nﬁfZ*n@))Xfmr] E[(nY) — nMW)X_p, v/m)]

=0.
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Therefore, Assumptions 2.1 (ii) and 2.1 (iii) hold. Remark that

| Jm, | = [O0E[Ym, (X, 0,0, )lo=0,,,. |
= [E[- X" ]| = [E[("™))] < C

and
| T, | = [E[(™)?]] > ¢

due to assumption A4. Since the score 1) is linear with respect to 6, we have
for all m, € M and 0 € ©,,,

Eh/}mr(Xv 9:"7mr>] - er(e - er)

using the moment condition. This gives us Assumption 2.1 (iv).
For allt € [0,1), m, € M, § € ©,,,, n € Ty, we have

Ym, (Xa 0, 77) — Ym, (Xa O, s an))Q]
Vrm, (X,0,1) = i, (X, O,y 1) + Vi, (X Oy, 1) — i, (X, O er))Q]

E
C( E[(¢m, (X,0,7) = Y, (X, 0., )]
=:1

\4 E[(wmr (Xa emw 77) - ¢mr (X7 gmwnmr))z] >
=11

IN

with

2
I=10— 0, °E [(Xk(Xk ~ X ,)) ]

1/2
<10 = O, * (EIXPIEL(Xk — P X, )?])

< C|0— b, |2
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due to assumptions A3, A4 and the definition of 7, . Additionally we have
IT=E {((Xj Oy X — 1K ) (X — 0P X )
— (X = O, X, — 1) X, ) (X — ”gZX—W))Q]
_ [((Xj = O, X5 = 10X, ) (1) = 1) X, )
(512X ) (0 )% )]
< (12— n v ) ~ 0 Vla)

= C|lnm, —nll2

with similar arguments as in I above using

sup E [(fX)ﬂ <(C
ll€ll2=1

due to the normal distributed design. Combining these results gives us As-
sumption 2.1 (v) (a).
Observe that

‘atE {wmr (X7 97 Nm,. + t(77 - nmr)):| ‘
= ‘E [(Xj = 05 = (nft) + ¢ = nlD) X, ) (1) = )X ,)
+ (X6 = (02 + 0 = D) X, ) (02 - n(l))er)] ‘
< CHﬁmr - 77He

with the same argument as above, which gives us Assumption 2.1 (v) (b)
with By, = C. To complete the Assumption 2.1 (v) (c¢) with By, = C
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observe that
[ORE [ v, (X, 6, + 16— O, )1, + 01— )|
=0, {(Xj — (O, + (0 — 0,)) Xk — () + (™) — nﬁ%ﬁ))X—m,-)
() = ))X )
+ (X = 02 + 0 = n2)) X, )
(O — 0 X0+ () — n<1>>er)} \

=[2E[ (12~ 1) X ) (6, — )X+ (1) — 1 )X )]

<2((B[(0 -1 )] B0~ 050 02— 0] )

<Cllnat—n|3 <C (16, —012-+In) —nD113)
< C(|6m, — 01V [Inm, —nl1?).

Therefore Assumption 2.1 holds. Due to the construction of 7, Assump-
tions 2.2 (ii) and (iii) hold. Next, we show that the assumptions of theorem
2 from section B hold which implies Assumption 2.2 (i). Remark that con-
ditions B1 and B4 are satisfied with p = 2. Condition A1 implies condition
B3. Let 02 > 0 be a uniform lower bound for the variances of the error terms
and the regressors and let ¢ := o2z, where z; is the ¢-quantile of a standard
normal distribution for an arbitrary but fixed ¢ € (2, 4) Uniformly for all
r=1,....,dand l € {1,...,p} \ {4}, it holds

P ((zs(mT))QXl2 > 04) =1-P <\5(mT)Xl] < 02>
>1-P (\e<mr>| <eviXy < c)
>1- (P (| <) + P(IX] < 0))
> 1- 2P (0]7] < o)
=3—-4¢>0
where Z ~ N(0,1), which implies that
Inrin mlinE[(e(m’“))QXZZ] > (3 —4¢) > 0.
Analogously
minmlin]E[(l/(mT))QXZQ] > 0.

T
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Combined with condition A4 this implies condition B2. Therefore we are
able to estimate the nuisance parameters at a sufficiently fast rate.
Define

= {Ym.(0.m) i€ {1, d}0 €O €T, }.

To bound the covering entropy of F; we at first exclude the true nuisance
parameter and define

= {wmr(79777) HES {17 . -7d}79 € @TI‘LMn € Tmr \ {nmr}} ]:(1);1(1)

with
FH={X = (X; - 0%, —nWX_p) ir € {L...,d}0 € O,V € T 1)
FO =X 5 X =D X ) ire{1,...,d}, 0@ €T 5}

where 7% := Tpn, \ {Nm, }. Observe that the envelope Fl(}l) of .7-"1(11) fulfills

() H sup sup ('5(7%)'
I HP2q re{ld} geoy, 10 —n() |1 <Cr/Em

2
B @ _ )
+|(Om, — ) Xk| + [0 —m )X*mr|> HP,Qq

< L(me) N ¥
NHTE{SE%}( ) lpag + | e il g

_|_375HTE{SUp }HX_WHooHp,gq

< log(d) + log(d) + 87‘,% log(an)
S log(an)

and with an analogous argument

H(F ) HPQquOg(an)

Since we excluded the true nuisance parameter, which does not need to be
sparse, we have .7:1(11) C G1,1 and f1(21) C G1,1 with

Giii={X =X € e R g0 < Cslgll2 < C}

where Gy 1 is a union over (c]*)s) VC-subgraph classes Gy 1, with VC indices
less or equal to C's+2 (Lemma 2.6.15, Van der Vaart and Wellner (1996)[17]).
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This implies that .7:1(11) and .7-"1(21) are unions over (Cps) VC-subgraph classes

]:1(11)1@ and ‘7:1(21)k with VC indices less or equal to C's + 2.
Due to theorem 2.6.7 in [17] we obtain

1 1
F log Nl F Y llo.2s FOL I - llo2)

(Cs)
1 1
< sgplog ( > Nl FY g F - !Q,z))
k=1

glog< @ K(Cs+ 2)(16e)“5+2 C)QCSH)

<(2)”
<log ( (%)C‘S K(Cs + 2)(16¢)C5+2 <1)QCS+2)

£
< slog (a—n>
£

where K is an universal constant and with an analogous argument
2 2 a
suplog N(&|1F12 oz, 712 1 loa) < slo (7).

Using basic calculations on covering entropies (see for example Appendix
N Lemma N.1 from Belloni et al. (2014) [3]) we can bound the covering
entropy of the class Fi 1 by

1 2
Sup log N (el K Y F{Y ll g2, Fru |l - llg.2)

Q72>

19 2 2
+ SgplogN<2HF1(71)”Q727F1(,1)7 | - HQ,z)

< slog (a—n>
£

where Fy ;1= Fl(}l) F1(21) is an envelope for i ; with

3 1 1
< suplog N (G171 oz, 711 -

(1381

1/2
Pg = (H (Fl(,ll))2HP,2qH (Fl(,ll))2HP’2q> < log(ay).

Additionally define

Fio={bm,(0mm,) 7€ {1, d}6 €0, }.
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With the same argument as above 7  is a union over d VC-subgraph classes
with VC indices less or equal to 3 implying

Gn

d
suplog N (el Frzlloz, Fizs | loz) < Clog (7) < 1os ()
where the envelope F o of Fi 2 obeys

(g%l

Pgq < log(an)

with an analogous argument as above. Combining these results we obtain
Sup log N(e| Fillg.2: F1, I - lQ.2)

= suplog N(EIFYFER V Fiallos, Fii U Fiz |l - llos)

IN

suplog N(e[111 P17 o i |- lo2)
+ sgp log N (e[ Fiz2llQ2, F12, [l - [l@2)
< slog (a—n>
€
where the envelope I} := Fl(yll) F 1(21) V F1 o of Fi satisfies

11l pg < log(an)

which gives us Assumption 2.2 (iv). Observe that for all f € F; we have

1/4 1/4
E[f2/? < sup E [(Xj — 06Xy, — U(I)Xfmr)ﬂ sup [(Xk B U(Q)Xfmr)ﬂ
7'79»77(1) T‘,T](2)
471/2
< sup E[(€X)'] "< C
l§ll2=1

and

1/2
B[22 = E[(X; — 0X0 — 10X, (X~ n® X0

=7 =:Z>

For each Z; with i € {1,2} we have

Bz % L, (X)) >
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Therefore Z; and Z5 are both centered normal distributed random variables
where the variance is bounded away from zero. This implies

EBIZ2Z21V? > >0

which gives us Assumption 2.2 (v).
Assumption 2.2 (vi) (a) holds by construction of 7, and v, < s. Due to the

~

growth condition A2 we can choose ¢ = 2¢/(1 — k) such that
1—k
n~ 251002 (a,) = n 7 n%slog?(ay)
. 2 100k 1/2 .
I (nllls log (an)> <nH
n

Additionally we have

O, (slog(an)? £ 5L < 07y

4
1og"/2(d) B (s 1og(a,))1/2 5 218 n) < 3

N4 n

and
nl/272 = slog(an) <2

NLD
which gives us Assumption 2.2 (vi) (b) and (c) with d,, = n~ 2. Define the
class B
Fo :=A{tm,. (-):r=1,...,d}
Where Q;mr () = _UT7L1 J?:liwmr (" 0mr7 nmr) Wlth O-’I%’Lr = Jn;th/)?TLr (X7 emr? Tlmr)]
Observe that by the Cauchy-Schwarz Inequality for any ¢ > 0 the envelope
Fy for Fy satisfies

1/q
IIFollp,qZE sup (E[(g(mr)y(mr))z]1/2|€(mT),/(mr)|)q]
_r:l,...,d

1/q
SE| sup (la(mr)l/(mT)Dq]
_r:l,...,d

< log(d).

Since |Fp| = d we have

d
suplog N (<] Follgz: 7o. - o) < log ()
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for all < ¢ < 1. Therefore Assumption 2.3 (i) is satisfied with g, = 1
and A,, = d V n. Since the errors are centered normal distributed random
variables with a uniformly bounded variance we have E [(5("‘"))8] < C and

E[(u(m’"))g] < C. This implies E[f*] < C for all f € Fy which gives us
Assumption 2.3 (ii). The growth condititons from corollary 2.1 are satisfied
due to Condition A2. Observe that

<nq log(n Vv d) = o(1),

~

62log(n Vv d)

log?7(d) log(n V d) = o(n'/")

and we can find a ¢ such that
log?/3(d) log(n V d) = o(n'/372/B0),
Now, we verify Assumption 2.4. Define
G (X, 0P) 0 = =Xp(Xp, =P X )
and
n, (V) = Efdhm, (X, 1)),

where J, = —Ep[thn, (X, 7?)]. It holds

e = Jone| < Vs = 1, (G2 + [, (72 = 2, (2]
with
[0, (1)) = 1, (M| = [E[Xk () = 050) X, ]
E |x, ( (e — nﬁii) X_ﬂq@)] ‘

[

SR =122 S 7

(2) _

= [|72? — 0|

Let ~ -
G = {X = U, (X, @) :r =1, V€T, 2}

with

SUp | Jm, — Jm, | S sup [En[g(X)] = E[g(X)]] + 7.
r 9€G1
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The class G; has an envelope G with
1/q
}E[@?]l/q <E |sup sup |X}(Xp— 77(2)er)‘7|
ron@eTy
1/2q

< ||sup Xpllp2gE | sup  (Xp — P X, )%
r r,n(z)GT,thQ

1/2q

N

1
logz(d) | ||sup ™| |pag VE | sup ({2 — )X, )%
r rAeTr

< log? (d) <1og%(d) Vs sup B || X, |124] " 2q>

< log(an).

for all g. With similar arguments as in the verification of Assumption 2.2.
(iv), we obtain

~ a
sup log N(elGillge, 911 - llo2) < slog (f)

Therefore, by Lemma O.2, it holds
A 1 l 2

sup | Jm, — JIm, | §K< 'ng(‘l’l)+n1/q3ﬂgw> .
T n n

3

=0 (logfi(an)>

with probability not less then 1 — o(1). Next we want to show that

En[l/)zm (X, émw Nim, )| — E[¢3nT (X, Oy i, )] = OP(lOgil(an))'
By the triangle inequality we have

By (2 (X, Om, s i, )] — B2, (X, O, s 0, )|

)
)

< Bn[tr,, (X, 0m, . 5im, )] — B[W02, (X, O, , i, )|
+ B2, (X, Oy fim, ) — ¥ (X, Oy T, )|
< [Enltn, (X, 0,y )] — B[R, (X, Om, . fim, )]
+ E[(¢m, (X, Om, , i, ) + P, (X, O,y 0, )] 2
 E[($m, (X, O,y iy ) — P, (X, O,y 0, )]
< [Enlvi, (X, 0m,, 0in, )] — E[52, (X, Oy, fin, )]

+ C(‘gmr - émr’ \ Hnmr - ﬁmr”e)
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due to 2.1(a) and 2.2(v). Observe that with probability 1 — o(1)
SUp [0, — O, | S 70 = o(log ™ (az))
due to Appendix B from Belloni et al. (2018) [2]. Since the class
Go = {tm, (- 0,m) i 7 € {1, d}, 10— 0, | < Cram €Ty } € Fiy

we obtain the same entropy bounds as for F; ; implying

~ ~ a
sgplog N(e||G3llg:2, G5, Il - llg,2) < slog (f)

where G3 is a measurable envelope of G3 with

1G3llPg < 1I(F11)? 5,

1/2
< (IED Nl (FED) 11 5,)
S logQ(an)

due to || (Fl(}l))élHRq < log?(ap) and || (Fl(?l))4HP,q < log?(ay). For all g € G2
we have
sup E[g(X)?]"/?
9€G3
< sup E[(Xj —0X;, — n(l)X_mr)S} e sup E[(Xk — 77(2)X_,W)8 e
70,7 i

Therefore we can find a ¢ > 4 such that with probability 1 — o(1)

3
sup [En[g(X)] — E[g(X)]| < K( slog(an) +nl/qslog(cm)>
9€43 n n

= o(log™ " (an))

which implies

En [, (X, 0, i, )] = E[Ur, (X, O, . 1hn, )] = op(log ™" (an)).
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Since 1 < 02, <1 due to Assumption 2.1 (iv) and 2.2 (v), we have

Ome _ 1‘ < &Tz'“ ~1

Om, oz,
< |0 = i,
< |k = T B3, (X, O 1, )]

T2 B, (X O, i, )] = Bl (X O, 1, )|
< e = Ty | + (B, (X, Oy i, )] = E[7, (X, O, 1, )|
= op(log™"(an))
uniformly over all 7 = 1,. .., d which gives us Assumption 2.4 with A,, = o(1)

and &, = o(log™*(ay)). Next, we show the Assumption 2.3 (iii). The entropy
conditions of the class

]:—0 = {'(Zmr() _ﬁmr(.) T = 1""ad}
holdsA by construction with A, = d Vn and g = 1. Further it holds for all
fekF
||f||Pn,2 = ||&T:Lij1’;1¢mr (X’ émr7ﬁmr) - OT_YL}‘JTTI}me (X’ emr7 nmr)||Pn,2
<Nt = Tt Tk M Wom, (X, Oy 1, | 2

+ é”r?l,}- jT;Li ‘ |¢m7 ('X7 ém'r? 7:7"77/1) - wm'r' (X7 Hmr? nm7) | ‘Pn72
=1+11

To bound the first term, observe that uniformly over all r =1,...,d
Ge g = iy Ty | = 0P (1087 (an))
since 1 < Jp,,, S 1and 1 S oy, S 1. Define the class
Gs = {¥m, (O, 1, ) s =1, d}
with cardinality |Gs| = d and an envelope G3 that fulfills

- 207 1/4

Remark that

1
Suquv/)mr(X7 emr?nmr>”Pna2 S ( Sup Gn(g) +SupE[w72nT(X7 Hmr?nm'r‘)]>
T \/fﬁ gEé3 T

N|=
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with sup E[¢2, (X, 0, , m,)] < C and

3
1 sup Gn(g) < K log(an) 4 o1/a108"(an) | _ o(1)
VI iy n n

with probability 1 — o(1). This implies
I=op (log™!(ay))
uniformly over all » = 1,...,d. To bound the second term, define the class
Gt = (W, (- 0,1) = Yy (3O Ty ) 7 = 1,
|0 — O, | < C1pym € Tin b

for a sufficiently large constant C' > 0. Due to Assumption 2.2 (i) we have
that

U, (X, émra i) = Yy (X, O, N, ) € Ga
with probability 1 —o(1). Since G3 C (F; — F1)? the covering numbers obey

~ ~ a
sup log N (e[| Gillg.2, G, | - lg2) < slog (?n)

and the envelope

= 2
Gi = Ssup sup sup (¢mr ('7 97 77) - ¢mr (.7 emr i nm'r))
r=1,...,d |0—0p,,. | <CTr N€Tm,.

satisfies
[tex 1P
2
SIsup (O, = 0)Xe(Xe =P X)) llpg
,0,n(?)
2
7"777(1)777(2)
2
Hlsup (0 =X )l =0 )X, ) g
T?n
=TT +T2+T;
with

2 (2) ?
T 2l swp (Xu(Xk = 10X ) e

r,n(2

pagll sup (X5, — 1P X )2 | pag

)

< 7all sup X
T

< 28U 0042 = oflog ! an)),
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Ty < |l sup (752 = n®)X )2l pagll sup (X5 — Om, X5 — 71X ) P2
e )

P2qlog(d)

< stallsup | X, |13
T

2
1 n _
< 5108(an) 10 Y 1og(d) = o(log ™ (an)
n
and
0 % 1 sup () = 1) X, Py s0p00i, P
N T
< 572/ 5up | X _pm. | | 2q log(d) = o(log ™ (an)).
Since 12
2
1 n
" (S“P W]) < S108lan) _ 100-34,))
9g€G? n
it holds

1 slog(a ~ slog(a
L cup Gulg) S K [y 222800) | ez, 108 (00)
\/ﬁgeéi n n

= o(log™*(an))

with probability 1 — o(1). Hence,

Hd}mr(X7 émr7 f]mr) - wmr(X’ emr777mr)"Pn72

1

1 3
— sup G, sup E[g(X = o(log3/2 an,
< (\/ﬁgec% (9)+QGG% [9( )]) (log™""*(an))

with probability 1 — o(1) due to Assumption 2.1 (v) (a).

This gives us II = o, Qog_l(an)) with probability 1 — o(1) implying As-
sumption 2.3 (iii) with 6, = o(log™*(a,)) = o(1). It is straightforward to see
that the growth conditions of Corollary 2.2 hold. [

APPENDIX B: UNIFORM NUISANCE FUNCTION ESTIMATION

Consider the following linear regression model

p
Y, = Zﬁr,jXr,j +e&r = BT‘XT +eéer
j=1
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with centered regressors and errors ¢, with Ele,] = 0 for each r = 1,...,d.
The true parameter obeys

B € arg mﬁinE[(YT — BXT)Q]
with
B, =B + 5.

The parameter ﬁ,@) is the approximate sparse part of the true regression
coefficient that captures the misspecification of a sparse model. We show
that the lasso, post-lasso and square-root lasso estimators have sufficiently
fast estimation rates uniformly for all » = 1,...,d. In this setting d = d,, is
explicitly allowed to grow with n. In the following analysis, the regressors
and errors need to have at least subexponential tails. In this context, we
define the Orlicz norm || X||y, as

[ X[lw, = inf{C > 0:E[¥,(|X]|/C)] <1}
with ¥,(z) = exp(z”) — 1.

B.1. Uniform lasso estimation. Define the weighted lasso estimator
R /1 D
5’/‘ € argmin *En [(Y;’ - BXT> ] + *H\I/r,mﬁ”l
B \2 n
with the penalty level

A= cx/nd 1 (1 _ 7)

2pd

for a suitable ¢y > 1, v € [1/n,1/log(n)] and a fix m > 0. Define the
post-regularized weighted least squares estimator as

B, € argmﬁin (;En [(Yr — /BXT)2]> : supp(B) C supp(ﬁ}).

The penalty loadings \il,,ym = diag({l;,j,m, j=1,...,p}) are defined by

lrjo = max. 11X |

for m = 0 and for all m > 1 by the following algorithm:
ALGORITHM 2. Set m = 0. Compute Br based on ‘i’r,m- Set Zr,j,ﬁwl =
K 911/2
E, [((Yr — BTXT> Xm') ] . If m = m stop and report the current value

of ‘i’r,m; otherwise set m =m + 1.
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Let a, := max(p,n,d,e). In order to establish uniform convergence rates,
the following assumptions are required to hold uniformly in n > ng, P € Pp:

Assumptions B1-B4:

B1 (Tail conditions)
There exists 1 < p < 2 such that

X, ille, < C and <C.
max max [ Xrjlv, <C and max |lely, <

r=1,.., J PR

B2 (Uniformly bounded eigenvalues)
Forallr=1,...,d,, it holds

inf E[(€X,)?] >¢, sup E[(€X,)?*] <C
llgll2=1 ll€ll2=1

and

i in Ele2X2.]>c.
Tznll}.r},djznll,l,gp [er Xiy) 2
B3 (Uniform approximate sparsity)
The coefficients obey

s2log(ay, slog(ay,
max [[627 5 (/T80 B [(50x,)7] 5 2108

r=1 n r=1,....d n

goor

and
max (800 < s.
r=1,....d

B4 (Growth conditions)

There exists a positive number ¢ > 0 such that the following growth
condition is fulfilled:

1+4
. slog "7 (ay) —o(1).
n
THEOREM 2. Under the assumptions B1-Bj the lasso estimator BT obeys
uniformly over all P € P,, with probability 1 — o(1)

(B.1) max |3, — B0l < 0 78]

=1,...,

. 2log(an)
_ g, < sloglan)
(B.2) Jfnax |16, = B ]k < © .
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with

(B.3) max 18- ]lo < Cs.

Additionally the post-lasso estimator 3, obeys uniformly over all P € P,
with probability 1 — o(1)

(B.4) max |13, - A0 < 02108

' r=1,d " 2= n ’

r

Ay

- 2log(an)
_ gy, < s7logldn)
(B.5) E}adeBr By <C P

e

B.2. Uniform square-root lasso estimation. Now, assume that X, ;
are standardized covariates (E[ij] =1forallj=1,...,pandr=1,...,d)
which are independent from the errors ¢,. Define

Qr(B) == En[(Yr — X, — 5§2)Xr)2]-

The square-root lasso estimator is definded as
. ) A1/2 A
Breargmﬁm r (ﬁ)"’_EHBHl )

where Q,(8) == E,[(Y; — 8X,)?]. Q(8) is a proxy for Q,(8) estimating the
approximate sparse part 57@ by B,EZ) = 0. Let

(B.6) A= Ve (1= /(2pd))

where 1 —+ is a confidence level associated with the probability of the event
(B.7), and ¢/ > ¢ is a slack constant. The first part of the analysis is to
control the event

(B.7) %

> ¢ max 1S,
where
E,[X, (Y, — BV X, — g2 X,)] En[X, &)

o 1/2 A =—
5r = 0@ gty VE(Ye — 89X, — 6P X,)2) Enler]

is the score of QY2 at ﬁ,(nl). Define
B X (e + 57 X,)]
VEal(er + B2 X,)?]

8 = 0sQ A (B) ) =
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The following conditions and lemma 1 are essentially the same as condition
WL and lemma L.4. in Belloni et al. (2018) [2]. Let C and C be some strictly
positive constants. Additionally let (¢n)n>1, (Pn)n>1, (Pn)n>1 and A, be
some sequences of positive constants converging to zero.

Condition WL The following conditions hold:

. 1/3 « _
(i) max,—i 4 max;=1,...p (]E [\Xr,jsr|3}) 3o 1 —~/(2pd)) < onnt/6;
(i) C <E[|X, e, ?] <C, forallr=1,...,d and j =1,...,p;
(iii) with probability at least 1 — LA,
Jmax max [E,[X7er] - E[Xe]] < 6
and

maxd |En[5f] — E[sz]] < @n.

r
r=1,...,

The following lemma proves that A satisfies (B.7) with high probability.

LEMMA 1. Suppose that condition WL holds. In addition suppose that
A satisfies (B.6) for some ¢ > ¢ and vy = 7, € [1/n,1/log(n)]. Then it holds

P ()\ > ¢ max ||Sr|]00> >1—v—o0(y) — A,
n r=1,....d
Under the same uniform sparsity and regularity conditions as in theorem 2
we are able to show that condition WL is satisfied and hence we can establish
uniform convergence rates of the square-root lasso estimator. In section B.2
we additionally assumed independence between the regressors and the error
terms. This eliminates the need to estimate the penalty loadings.

THEOREM 3. Suppose that the conditions B1-B/j hold. In addition sup-
pose that \ satisfies (B.6G) for some ¢ > ¢ and v = v, € [1/n,1/log(n)].
Then, with probability at least 1 — o(1) we have

(B.8) max |3, — Bl < €y 2108n)
=1,..d n
. 2log(an)
_ g, < s 1oglan)
(B.9) Jfnax |16, =5Vl < © .
with

(B.10) max 1B,]lo < Cs.
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B.3. Proofs.

PROOF OF THEOREM 2.
Due to condition B1 we can bound the ¢g-th moments of the maxima of the
regressors uniformly by

q
E [ maXdHX,«HgO} = | max ,H}axp’XnﬂHP,q

=1,..., e

< ¢l max max |Xr[ly,

=1,...,

19
Sq!]ogn (2)” max 'irié.l.}.(p’Xr,jmw;J

=1,...

1_ 1
< gllog? ™" (K log? (14 dp) max, max | Xsly,

< Clog? (an)

where C' does depend on ¢ and p but not on n. For the norm inequalities we
refer to van der Vaar and Wellner (1996) [17].

As in the previous proof we use C for a strictly positive constant, inde-
pendent of n, which may have a different value in each appearance. The
notation a, < b, stands for a, < Cb, for all n for some fixed C. Addition-
ally a, = o(1) stands for uniform convergence towards zero meaning there
exists sequence (by,)n>1 with |ay,| < by, by, is independent of P € P, for all n
and b, — 0. Finally, the notation a,, <p b, means that for any ¢ > 0, there
exists C' such that uniformly over all n we have Pp(a,, > Cb,) <.

We essentially modify the proof from theorem 4.2 from Belloni et al. (2018)
[2] to fit our setting and keep the notation as similar as possible.

We set U = {1,...,d} and

AW e argégR%E[; (Y; - BX: — ﬁ,ﬁ?)xr)g}

::M’I‘(YT‘)XT767CLT‘)

with a, = ﬁr(,z)Xr for all r = 1,...,d. Since the coefficient 3 is approx-
imately sparse by assumption we estimate the nuisance parameter a, with
ar = 0. Define

1
My (Y, Xy, ) 1= My(Yr, X, B,00) = 5 (Ve = BX,)".
Then we have

N A A
T i En Mr YvraXra - \Ilr
b € arg i (1, 04,05, X, 8)] + 9,11 )
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and

A~

By € arg min (E, [M: (Y, X;, 8)]) = supp(B) < supp(B,).

At first we verify the condition WL from Belloni et al. (2018) [2].
Since N,, = d we have N(e,U,dy) < Ny, for all € € (0,1) with

0 fori=j

du(i,5) = {1 for i # j.

To prove WL(i) observe that

Sy :8,3M7‘(Y;"7X7’767a7‘)‘ X

p=p = &7
Since ®~1(1 —t) < /log(1/t), uniformly over ¢ € (0,1/2) we have that
15311 P3® (1 = ~/2pd) = [ler Xyl p3® " (1 — ~/2pd)

< (lerllpellXrillpe) /2 @11 — v/2pd)
< Clog? (an) < gnns = o(1)

1
logz (ay,
ne

uniformly over all j = 1,...,pand r = 1,...,d by assumption B1 and B4.
Further, it holds

with

c<E[S;] =E [ X7)]
< E[E[X,)
<C

forallj=1,...,pand r =1,...,d by assumption B1 and B2 which implies
condition W L(i7). Observe that condition W L(ii7) reduces to

E, —E)[S%.]] <
max  max |(En = E)[SE]] < en

with probability 1—A,,. We use a maximal inequality, see for example lemma
0.2 from Belloni et al. (2018) [2]. Let W = (), X) with Y = (Y3,...,Yy) € Y
and X = (X1,...,X4) € X. Define

FimAfilr =1, 0dj =100}
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with

frj W=, X) =R
W = (Y,X) —> (Y} — ﬂrXr)Xr,j = 6,«Xr’j = ST’J'.

Observe that

Isup [flllpq = || max ~max If,]IHP,q
feF r=1

A yeeoP

) 1/q
=E Imax max 62‘1X 9
L..,dj=l,...p mJ

1/q
max €2q max max XT
r=1,....d r=1,....dj= J

<E
1/4 1 2
q /4q
max e E | max max X, 4q
r=1,dj=1,p "
<Clo

Since we have

— E[s%.] < E[8]PE[x8.]? <O
p M le = moe o B [Sr] < moxmox Bler] 7B [0,) T <

we can choose a constant with

sup [| f[[ B2 < C < | sup |f[|[p2.
feF feF

Additionally |F| = dp which implies

logsup N (el Plga. 7.1 o2) < log(dp) < og(a /0. 0 <e< 1.
Using lemma O.2 from Belloni et al. (2018) [2] we obtain with probability
not less than 1 — o(1)

Jfpax | max |(E, - E)] Szl =n""2 sup |G (f)]
Layd j= ’ feF

<n '2C ( log (an) +n~1/2F1/a log1+%(an))

:C<1%wm+méﬁmw>

n nl=1/4

< on = 0(1)
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by the growth condition B4.
We proceed by verifying assumption L.1. The function 5 — M, (Y,, X,, 3)
is convex, which is the first requirement of assumption L.1.

We now proceed with a simplified version of proof of J.1 from Belloni et al.
(2018) [2]. Define

G:={g: X = (BAX)?|r=1,....d}
with envelope

G := EaXdHXTHgoH@@)H%

=1,...,

Note that

1
2 q
16l = E | max 1,121

=

=1,..., =1l,...,

q
< mx (628 | mox 1,12

2
< max || log(an)?
r=1,...,d

=1,...,

and for all 0 < ¢ <1 we have
N(€HG”P727 g7 H : |

p}g) < d < d/&‘.
Since

sup |gl[po = max E[(BYX,)Y] S max |57
gEg r= 7"’7d r= 7...,d

we can use lemma O.2 from Belloni et al. (2018) [2] to obtain with probability
not less than 1 — o(1)

max |(E, — E)[(ﬁﬁz)Xry”

r=1,...,d
=n""2sup |Gn(g)|
geg

2
log(an) max 671

=1,... 2
<C e +n Y9 max 822 10g % (ay)
n r=1 d

e

B 1+2
sof ot ) 1og<an>+slog<an>\/n2/qlog )

n n n n

_ slog(an)

~ I

n
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for a suitable choice of ¢ where we used max,—;__q|| /852)“% < %
from condition B3 and the growth condition B4.
Using the triangle inequality and max,—; _qE [(BP)XT)Q] < 81%(“") from

condition B3 we obtain

max En[(/@gz)Xr)z] < max |(En — E)[(@SQ)XT)Z” + E}aXdE[(ﬁp)XT)Q]
SP S log(an) .
n

(B.11)

To show assumption L.1 (a), note that for all 6 € RP

r o

T
En |9Mr (Y, Xy, B1) = 9 My (Vs X, B0, a)] 5‘

T
= [ [052,)] 0] < 152, el XT Bl

for all  =1,...,d. Further we have

E, B (v - (6 + 5T>Xr)2} ~E, B (= ﬁ,ﬁ”Xr)Q}

E, [(67X,)?],

e[ s

where
—E, (¥ - 80X, ) 67X, | = By [05M, (¥, X, ﬁﬁ”)}T 5

and 1
iEn [(5TXr)2] = varéTXTHI%Dn,z

with /w, = 1/4. This gives us assumption L.1 (c¢) with A,, =0 and g4, =
oo. Since condition W L(ii) and W L(iii) hold we have with probability 1 —
o(1)

1/2
1 5 lr,j = (En[sg,j]) / SJ 1
uniformly over all r =1,...,d and 5 = 1,...,p, which directly implies

LS I eo = e lrgl 51

)
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and additionally

1S ) oo = max |1} S 1.
j=l,..p.

geee

For now, we suppose that m = 0 in algorithm 2. Uniformly over r = 1,...,d,
j=1,...,p we have

1/2
N i 1/2
b0 = (En[max x¢ >||§o]> > (E[IXE]) Y 2p 1

1<i<n

where the last inequality holds due to condition B2 and an application of
the maximal inequality lemma.
Also uniformly over r = 1,...,d, j = 1,...,p we have for an arbitrary ¢ > 0

lrjo = nax. X |

1 n 1/q
< plla| = X (94
< (L3I
= M (E,[|| X, [|2])"

with )
E[|| X, )12,]'/9 < log? (an)

By maximal inequality, we have with probability 1 — o(1) for a sufficiently
large ¢ > 0

max |En[[| X |5] — B[ X [&]]

2
log7q+1(an)

2 !/ ogi ™ (ay)

~

< log? (a,)
since
Efmax | X, 4799 < log? (an) and maxE[| X, |£]V2 < log? (an).
We conclude

b0 < 1 (Enl1X 4]
<9 (B X 1] = E{IX 1]+ EfIX 1)

<p nl/a log% (an).
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uniformly over r. Therefore assumption L.1(b) holds for some A,, = o(1),

L < nl/d log% (an) and [ 2 1. Hence, we can find a ¢; with [ > 1/¢;. Setting
ex > ¢ and v =y, € [1/n,1/log(n)] in the choice of A\, we have

P (A > ¢ maxd\\<\if§0>)11[«:n[sr]||oo) >1—y—o(y) —A,=1-0(1)
n

r=1,...,

due to lemma L.4 from Belloni et al. (2018) [2].
Now we uniformly bound the sparse eigenvalues. Set

I, = log% (an)nQ/q

for a ¢ > 5¢ with ¢ in B4. We apply Lemma P.1 in [2] with K < n'/2 log% (an)
and

6n < K\/slyn™Y?1og(sly) log%(an) log%(n)

4
slog' "7 (an)
n

< \/ n log(n) log?(sl,,)

which implies

10X 3, 2 10X 1%, 2

< min ——="= < max <1
I6lo<tns  ||0]13 I8lo<tns  [|0]|3

~

with probability 1 — o(1) uniformly over r =1,...,d.
Define T} := supp(ﬂﬁl)) and

5 Le+1 2 I -
6= T =1 e 1 e | (1) oo S L.

Let the restricted eigenvalues be definied as

B . ||5XT||Pn72
Kog = mmin TS,
r=1,...d 602, |07, |2
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where Aoz, := {6 : [|07, |1 < 2¢[|0r, ||1}. By the argument given in Bickel et
al. (2009) [4] we have

1/2 1/2
R min HdXTHI%"’Q 2¢ | max H(;XTHIQPnQ < $ )1/2
b > 0Arlip, 2 _ NoAriipy,,2 o
c I8llo<ins |13 lllo<tns  [|0]]3 sln

1/2 1/2
- 10X:113, o N 16X 13, 2
I6l0<tns  ||6]|2 I5lo<tas  ||6]3

1
with probability 1 — o(1) for a suitable choice of ¢ with ¢ > ¢. Since

Vv

Q=

Vv

Vv

% <Sn V207 (1 — 4 /(2dp)) S 0”2\ /log(2dp/7) S n Y log? (ay,)

and the penalty loading are uniformly bounded from above and away from
zero we have

A slog(a
max (B — B0 X, [l 2 <p Ly S 1280n)
r=1,....d n

by lemma L.1 from Belloni et al. (2018) [2].

To establish assumption L.1(b) for m > 1, we proceed by induction. As-
sume that the assumption holds for ¥, ,,_1 with some A, = o(1), 1 2 1

1 ~
and L < nt/4logr (an). We have shown that the estimator based on V¥, ,,_1
obeys

. slog(a
mas |Gy — B X, e, 2 5 1y 2B
r=1,....d n
with probability 1 — o(1). Observe that
log(ay,)
(2) x <, ) 5208Wn)
max 80X, s,5 S 1) 8

=1,...,

as shown in (B.11). Using the triangle inequality we obtain with probability
1—o0(1)

mac (B = 6) X, .2 < max (B = BO)X, 2+ max 3O X ], 2

r=1,....,d

< slog(an).
~ n
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This implies

‘l/\r’]’m - ZT’J| =

E, {((Y - 5.X,) Xm'>2] "k, (v = 8.%) X, v

5 [((G - sox) %))

S NBr = Br)Xrllp, 2 max max 11X

<

SpL

1+4
< \/n4/q8 og “7lan) _ 1)
n

uniformly over 7 =1,... ,d and 7 = 1,...,p. Therefore assumption L.1(b)
holds for V¥, ,,, for some A, =0(1),! 2 1and L S 1.
Consequently, we have

S log(an) nl/q log% (an)
n

log(ay)
MY X, 5108\an)
rfi??id”( = 67) X a2 S P

and

. s2log(an,
max ||, — BV < 1/ 108(an)

r=1,....d n

with probability 1 — o(1) due to lemma L.1 from Belloni et al. (2018) [2].
Observe that with probability 1 — o(1) uniformly over all » = 1,...,d we
have

T
‘ (050, (V2 X0, By) = 9 M (Ve X, 59)]) 6‘
‘ E, [(6 — W)X, XTD 5‘
<|l(a 5“ ) Xrlle, 210X [e, 2 < Lall0Xr e, 2

where L, < (slog(ay)/n)'/2. Since the maximal sparse eigenvalues

19X+118, 2

l S, )= max ——— 75—
Fmaa(lns,r) = max s
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are uniformly bounded from above, lemma L.2 from Belloni et al. (2018) [2]
directly implies

max |30 < s
JJoax [1Brflo S
with probability 1—o(1). Combining this result with the uniform restrictions
on the sparse eigenvalues from above we directly obtain

~ A slog(an,
a1 = 8012 S mas (B — B0 X, s, 2 5y )
with probability 1 — o(1).
We now proceed by using lemma L.3 from Belloni et al. (2018) [2]. We obtain
uniformly over all r =1,...,d

3 AL - .
En[MT(Y;" X”’ BT)] - EH[MT(KH Xr> Br)} < 7”67" - Br”l rgaxd H\Ij?(p)”oo

A

S *Hﬁr _BrHl
n

_ slog(a,)

~ n

~

with probability 1 — o(1), where we used L < 1 and {naXdH‘ilgﬂO)Hoo < 1.

=1,...

Since

1 A

Eqaxd [En[Sr]]loo < E%axd |’@£0)||OO||(®7(~0)) En[Srllle S = S n~1/? log%(an)

20ty

3

with probability 1 — o(1), we obtain
s slog(a
max (15, ~ )%, e, 2 5 1) 2R
r=1,...,d n

with probability 1 — o(1), where we used

max [|B[lo < 5, Cn < (slog(an)/n)"/?

=1,...

and that the minimum sparse eigenvalues are uniformly bounded away from
zero. With the same argument as above we directly obtain

_ ~ log(an)
a1 < -168) X < w
Tg:o}?id\\ﬁr By H2N£§§d\\(ﬁr B )Xl 2 S -

This finally completes the proof. L]
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Proor or LEMMA 1.
See the proof of lemma L.4 from Belloni et al. (2018) [2]. Since the regressors
are standardized for all j = 1,...,p and independent from the error terms
for all r =1,...,d, observe that

E[X?;e7]  E[X2JE[] B
E[2 ~ E[2] EX]=1.

r

We have due to WL(iii)

E,[X2.€2]
P T o
(Ei?.’idjﬂ??ip B2

E[X2 €] + ¢n
< rjer
<P (Tf{j‘?ﬁdﬁ}? » Ele2] — ¢, > Lden )+ A
E[€2] + @n
< T
=P (r:l?.).(,d ]E[é'?n] — ©n ks o)t An
Ele2] + ¢, E[e?
:P r - r n An
<T—1?.).(,d Ele2] — ¢, E[eZ] Zen) T
(El2] + ¢n) Ele?] — E[e]] (Ble?) — @)
:P r r u u n ATL
(uf?}id (B2 — o) EI2 SN
1+¢,)— (11—,
Y (ICEEARCEATR I
(1 - @n)
=0

for an suitable choice of ¢, = o(1), where @/, > C®,, and @, < C@,, due to
WL(ii) .

Next, for each 7 = 1,...,p and » = 1,...,d, we apply lemma O.1 from
Belloni et al. (2018) [2] with u = 1 and ¢, = "¢, !, where ¢ is a small
constant that can be chosen to depend only on C and C. Then conditions
WL(i) and WL(ii) imply

1/6 ,
2pd Ly
for My (j,r) = E[ijjsg]I/Q/E[|Xr7jar|3]1/3 for each r = 1,...,d and j =

1,...,p.
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Therefore, we have

p / —1/2(1)71 1— .
<Crn}?_}id”s7"”°° >cn 2pd
E, X,
=P | c max max M > dn72p71 <1 - 7)
r=l..dj=l..p \/E,[e2] 2pd

& V2R, (X,
<> (ol g (1_7)
E,[e2] 2pd
d p 2 2
3 (e bt [
E X2 52 2pd

[n'/?E, [ X, e ]|
<Z P \/1+S0n>C(D 1_ﬂ +An

r=1j=1 By, [)(3] r]
Y 1/3
<opd= 1 (14 0(p)™)) + A
>p 2]%1 + (g?n ) +An
<y+o(y) + A
for a sufficiently large n (implying cv/1 + ¢, < ¢).

PROOF OF THEOREM 3.

The proof is derived from the proof of lemma L.1. from Belloni et al. (2018)
[2]. At first we show that condition WL is fulfilled. Conditions WL (i), WL
(ii) and the first part of condition WL (iii) have been verified in the proof

of Theorem 2. Hence, we need to show

max |E,[?] — E[?]| < @y,

r=1,....d T

with probability converging to one.

Let W = (V,X) with Y = (Y,...,Yy) € Y and X = (X1,...,X,) € X.

Define F := {fy|r =1,...,d} with

fr W=, X) =R
W=(Y,X)— (Y, — 3.X,)? =&

For a constant C that does depend on ¢ but not on n, observe that

1/2q
F:=|sup|fllpg = max &lp,= (E [ max €2q] ) < Clog(d)»
fer r=1,....d d

9eeey
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where we used the same argument as in the beginning of the proof of The-
orem 2.

Due to Assumption B1 the second moments of the error terms are uniformly
bounded and hence we can choose a constant C' such that

2, <0< 2
max H&«HP,Q <C<| T§?§d5r|’P7q

r=1,...,
and since |F| = d we have

log Slép Nl Fllga2,F, |l - llgz2) <log(d).

Therefore we are able to use lemma O.2 from Belloni et al. (2018) [2], which
implies that with probability 1 — o(1)

max [E,[e}] - E[e]] = n~"/? sup [Gn(f))|

r=1,...,d fer
2
log(d)  log'"o(d)) _ _
<
N( n + nlfl/q S@n-

Due to the definition of BT we have

A . A A A A
QI2(Br) + SNBill < Q2 (B) + 2118V

implying

A
n

(B.12) Q2(Br) = Q2 (BY) < = (I6rr 1t = [18rzelln)

with 6, = 83, — ,Bﬁl). Due to the convexity of 8 — A}o/z(ﬂ) we have with

probability 1 —o(1):
Qi (B) = Q(B1) 2 6r S

slog(an)

For a sequence C), < >

independent from 7, it holds
1655 ] < 18:S7| + 16,(Sr = Sy)]
A N
<p |6:]|1— + |0-(S, — S,
< 6l + 15,5 — 5

A
SeI9rlli = + Cullor X[, 2-
nc
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To obtain the last inequality observe that
En[(er + 57(°2)Xr)2] = E,[e7] + 2En[5rﬁvg2)xr] + En[(ﬂg)Xr)Q]
N———

is uniformly bounded away from zero, since with probability 1 — o(1)

min En[e80X,] > — EaxdlEn[Erﬁﬁz)Xr]\

r=1,..., =1,...,

> max VBB (57X 2

r=1,...

=1,...d =1,..d n

S /slog(ay)
~ n

uniformly converges towards zero where we used that

< ‘\/ (Tmax Efe?] + %) (Tmax E[(8? X,)2] + lgU)

slog(an)
r=1,....d T n

max |E,[(8%X,)?] - E[(BPX,)?] <p

as shown in proof of Theorem 2.
This implies that

16,(Sr — S,)| = |6, (En[Xr(ér + 87 X,)] En[XrgT]) '

VB +57x7  VEE

_ |, Bl + B X)) VB - BalXe Y Bl + 57X,
T VEdl(er + 57X, B[22

o (Bl (52,1 o T

+EXe] (VBRI - Bl + 87507 )

En[(6:X,) (81 X0)|VEn[e?]

+ B0 | (VEE — yEalle, + 52 X,)2))|

<\VEA[(87 X,)2)

<r

<
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< VEAl(6, X, )2EL (B2 X, 2B €2
,SP CnH‘SrXTHJP’n,?

with an analogous argument as above. Hence, we have with probability 1 —

o(1)
A 5 A A A
(B13)  Q%(B) = Q2(BY) 2 6:50 2 —llorlli— = Culldr Xr[lp, 2-

Combining the inequalities (B.12) and (B.13) we obtain

A A
—N18rlhi— = Culldr Xz 2 Sp — (1077 l11 = [1dr7e 1)

c+1

c—1
~

=C

n c
B.14) = Prelh Sp S Ierl + 3 — = Callg: Xelp, 2

Further we have
Qr(Br) = Qr(BM) = 16, X1 If, 2 — 2En[(V — B X,)6, X, ]
with
En[(Y: — BV X,)6,X,] = Enle,6,X,] + En[(B%) X,)5, X, ]
e QB8 lsol[6r]11 + Crll, X lp,, 2

by Hélder inequality. Due to Lemma P.1 in [2] with K < n!/@ log%(an),
k < s for a suitable § > ¢ and

0n S K+/sn™ '/ log(s)log'/? (an) log"/?(n)

1+2(an)
S ntflog 2" =o(1)
n

by growth condition B4, it holds
c< ¢mzn(kvr) < ¢max(kvr) <C

with probability 1 — o(1) uniformly over r = 1,...,d. Hence, the restricted
eigenvalue
Ko = min 7H5XTH]P"’2
r=1,..,d6€Moz,  ||d]|2
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is bounded away from zero with probability 1 — o(1) where
Aoz = {6 : [|67e |l < 2|07 [11}-
If 6, € Aoz, then
16, X8, 2 = 2Bal(Yy = BV X0)6: X,] + [Q1/2(5r) + Q2 (BI]IQ(6r) — Q12 (B1))]
<P 2@ BIISH ool + 2C16- X I, 2

+1QY2 () + Q) (VIR s g )

n
Using

+ é\/gHérXTHPnQ
n Rog

QY%(B,) < QY (W)
we conclude
16, X112, 2 Sp 2@ (BE)[1Sk]loo16-] 1

o A/s||6r " A 5|0y n
n [QQ;/z(Bﬁl)) n A /8|67l ,2] A (\fﬂ e,z H(snTﬁHl))
n Rog n c
+20n||5rXrHPn,2

K2
A .
Sp 22 (QF2BM)16r Il = QFA(BD) 1orze 1)
é\/gH‘STXrHJP’nQ + <)‘ \/§||5TXT||IP’n,2
. : :

R2g n R2¢

2

+2012(50) )+ 2016 Xl
with

(@B 11611y = QX2(BM) |67l 1)

= Q2 (BN, 11 + (Qi/Q(ﬁﬁl)) - Q%/Q(@(«l))) 11671

< QP (BINNG 7,11 + 1B Xl 211811

<Sp QY2 (B)16r.1, |1 + Cn3él[6r.1, |1
With probability 1 — o(1) we have

A N
10, %13, 2 S 25110, 11 (Q2(B) + Cuse)

. A V5|6, X, A Vs6. X, 2
+2Q%/2(B7(‘1))7\/§H HP’IMZ + ( \/§H HPn;Q) +20n”5rXr||]P’n72
n Kog n Roé
A 6, X, A B
<92 V3l[0- X [P, 2 (Qi/Q(ﬁﬁl)) n Cn3c>
n K¢

N A 0, X, A 0, X,
+2Q7{/2(B7g1))n\/5| P2 n ( V3[16: Xo[lp, 2

2
) 2016, X, 2
Kog n R2¢
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and therefore obtain

2
(L(Xﬁ)>MX%M§PG@W@WXﬁ

n Ko n K¢

A
+C, (60\/ + 2> >||57~Xr||1pn,2,
n K

which implies

s

slog(a
16X, 2 S0 2V 4 0 5 28]

n

Here we used that

Q%/Q(@gl)) = En[(er + ﬁp)XT)Q]l/Q < llerllp,,2 + |’B1SQ)XTHIF’n,2 SpC+ @n+ Ch.

If 6, ¢ Aoz, (implying |6, 7¢|[1 > 2¢|[6r1,||1), (B.14) directly implies

28167, 11 Sp &l 1+ = N _1%n 16 Xr ||, 2
and therefore n
P <, 2
lorzlly P 5 =
due to ¢ > 1. Additionally (B.14) implies
[0r7elli Sp 5 H57~T 1+ X 7 Onllor Xellp, 2
and therefore 5
n o c
||57"T ||1 <P N\ c— 1CnH6rXr||IP’n,Qa

which, combined with the inequality above, implies

3n ¢
6.0 Sp 5

ICnH(SrXrH]P’n,Q-

Using

<
n

NP A
Q*(6,) = @2 (BY) < = (6rm, 1 — 107 l11) < ~lI6v
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and following the same argument as above we obtain with probability 1 —

o(1):

16: X112, 2 = 2Ea[(Y; = B X006, X,] + [Q2(B,) + @ (BM)]Q*(Br) — Q2 ()]
5 2@%/2(5£1))HSTHOO‘|5TH1 + 2CnH5rXT||1P’n,2

. A A
+ (2022060 + 31511 ) 216l
1 A 1 A A A
< (92 (V280 _ HL/2(5(1) - /2Ly . 2 2
< (25 (@) - Q) +2 (5 +1) QY2(6) + 2ol ) 31

SCn

+ QCNH(STXTHM,?

C, 1 . c

2
C
# (3510l XKlz) + 2010 X e

Hence,

2
Ch 1 A c
<1 - (3-50) ) 16,1, 506 (224 (3 41) Q65 ) 1015, X e

c

+ 2CnH5TXrH]P’n,2

which implies

slog(an)

H(STXTHPTLQ SP Cn S n .

~

To prove the second claim observe that

[6:111 = 15, €m0, 10711 + 15, ¢00:,1 16711
< Ls,enns,y (1 +26) [10rm Ml + Lis,¢n0:,3 167111

Vs 3n c
SP <<1 + 26) /:JQ + TC — 1Cn> H(ST'X’FH]P)7“2

s?log(an)
n

<r
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uniformly over all » =1,...,d. Now, we proof that

EaX’d HBT”O S S.

geee

This proof is derived from the proof of lemma L.2. from Belloni et al. (2018)
[2]. At first observe that

0<cSp min [+ BN, o< max e+ BOXR, 5 Sp C < o0

where the first inequality is shown above and the second follows with an
analogous argument. Additionally we obtain

max |||Y; — BTXTHI%H,Q — |ler + 57(*2)XT||I%>,L,2 SpCn+ 0721 =o(1)

r=1,...,d
due to
1Y, — BTXTHH%HQ = ler + ﬁq(ﬂQ)XrH]%na — 2E,[(er + 57(’2)Xr)5TXT} + H‘STXTH]%,L,Q
—_——
SpCR
with

Eal(er + 82X,)6,X,]| < VEal(er + 82X, [(6,X,)?)
< (C 4+ 0p(1)) 5, X, 17, 2
,SP Cn

uniformly over all 7 = 1, ..., d. This implies
16(95Q1*(B)] 55, — Sr)|
E,[X (Y, - BV X)) EalXo (Y, — 5,X)) ‘
VE - 89%,)2)  E[(Y, - 3.X,)2

s (En[xrm = BEOXONY: = e Xollpa2 = ller + 627 X, 2B X0 (Y — 5 TXT)]) ‘
ler + 887 X e, 21V — B Xr e, 2

<o (B0 = 8900 - a0 = A0 |

<[|0; Xr[lp, 2|6 Xr[lp,.2 SP CnlldXr[p, 2-

=\

By the definition of 3., there exists a subgradient 8/36?71«/2 (B) |5:Br of Qi/Q(ﬁAT)
such that for every j with | Bm" >0

A A
(@5QX2(8) 551l = =
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Let T := supp(f,) and |T}| := §,. We obtain

)\ ~
V= 10502 (B)] s )1, o

< ISrg ll2 + 1Sk = Sp) g ll2 + 1@ (B)] 5_p, — Sr)7. ll2

SJP V §7’”STHOO

+Cn sup [0X [,
I8ll2=1,I8l0<s"

+ osup  |6(95Q*(B) |4 — S0

16ll2=1,]6]l0 <37

— )\
Sp \/;* +2C, sup 10X |Ip, 25
ne [16]l2=1, 8]0 <57

where we used

1S =Sz lla<  sup  [8(5, = S)| SpCu sup  [[0Xc]|e, 2.
I61l2=1,8ll0<5r I6ll2=1,8ll0<5»

Hence with probability 1 — o(1),

. 20nC, \?
8 < ()\)) sup ”5Xr||]%’n,2

(1=1/¢) /) Jolz=1,]6ll0<s-
20nC, \? R R
(B.15) < < )\(1_71;0) ) ¢max($r, 7“) ,S S¢mam(8r7 ’I")
=L
where H5 ”2
“ XT P,.2
Sp,T) 1= MmMaxX ———m
$mas(3r.7) Isllo<s  1|6|3

We can find a suitable C' such that M = Cs € M, with
M, = {m € N:m > 2¢mas(m,r)L*}.

Suppose that §,. > M. By the sublinearity of the maximum sparse eigenvalue
(Lemma 3 in [1]), for any integer k£ > 0 and constant [ > 0, we have

Pmaz(lk,7) < [U]dmaz(k,T)
where [ denotes the ceiling of . Since [k] < 2k for any k > 1,
Sr §L2¢ma:r:(§rv T) = L2¢maa:(M§r/M’ T)

< HA L2 Gmaz(M, 1) <

25,

i L Grmaz(M, 1)
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that violates the condition that M € M,. Therefore, we have 3, < M.
Applying B.15, we obtain

max $, < max Gmaz(M,r)s Ss
r=1,....d r=1,...,

with probability 1 — o(1) and the stated claim follows:

3l <
‘max [|B]o S s.

=1,...

Since the maximal sparse eigenvalues are uniformly bounded from above,
we conclude

ma (15, = B0)2 S max (3 — )X, 2 S C

T [RAS}

with probability at least 1 — o(1). "
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