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Abstract

Econometrics has traditionally revolved around point identification. Much effort has
been devoted to finding the weakest set of assumptions that, together with the available
data, deliver point identification of population parameters, finite or infinite dimensional
that these might be. And point identification has been viewed as a necessary prerequi-
site for meaningful statistical inference. The research program on partial identification
has begun to slowly shift this focus in the early 1990s, gaining momentum over time
and developing into a widely researched area of econometrics. Partial identification has
forcefully established that much can be learned from the available data and assumptions
imposed because of their credibility rather than their ability to yield point identification.
Within this paradigm, one obtains a set of values for the parameters of interest which are
observationally equivalent given the available data and maintained assumptions. I refer
to this set as the parameters’ sharp identification region.

Econometrics with partial identification is concerned with: (1) obtaining a tractable
characterization of the parameters’ sharp identification region; (2) providing methods to
estimate it; (3) conducting test of hypotheses and making confidence statements about the
partially identified parameters. Each of these goals poses challenges that differ from those
faced in econometrics with point identification. This chapter discusses these challenges
and some of their solution. It reviews advances in partial identification analysis both
as applied to learning (functionals of) probability distributions that are well-defined in
the absence of models, as well as to learning parameters that are well-defined only in
the context of particular models. The chapter highlights a simple organizing principle:
the source of the identification problem can often be traced to a collection of random
variables that are consistent with the available data and maintained assumptions. This
collection may be part of the observed data or be a model implication. In either case, it
can be formalized as a random set. Random set theory is then used as a mathematical
framework to unify a number of special results and produce a general methodology to
conduct econometrics with partial identification.
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1 Introduction

1.1 Why Partial Identification?

Knowing the population distribution that data are drawn from, what can one learn about

a parameter of interest? It has long been understood that assumptions about the data

generating process (DGP) play a crucial role in answering this identification question at

the core of all empirical research. Inevitably, assumptions brought to bear enjoy a varying

degree of credibility. Some are rooted in economic theory (e.g., optimizing behavior) or

in information available to the researcher on the DGP (e.g., randomization mechanisms).

These assumptions can be argued to be highly credible. Others are driven by concerns for

tractability and the desire to answer the identification question with a certain level of precision

(e.g., functional form and distributional assumptions). These are arguably less credible.

There has also been a widespread perception that in order to be useful, the answer to the

identification question needs to be that the parameter of interest can be learned exactly. As

a result, point identification has traditionally been regarded as a necessary prerequisite for

meaningful statistical inference. Fundamental contributions in the econometrics and statistics

literature on semiparameteric and nonparametric methods have characterized sufficient sets of

assumptions, that exclude many suspect ones (sometimes as many as possible), to guarantee

that point identification attains (see, e.g., Matzkin, 2007, for a recent review).

In a given application, however, some assumptions required for point identification may

not be tenable. Early on, Koopmans and Reiersol (1950) cautioned against allowing the quest

for point identification to drive the choice of maintained assumptions, stating (p. 169): “One

might regard problems of identifiability as a necessary part of the specification problem. We

would consider such a classification acceptable, provided the temptation to specify models

in such a way as to produce identifiability of relevant characteristics is resisted.” They then

went on to recommend that restrictions should be imposed based on prior knowledge of the

phenomenon under analysis and some criteria of simplicity, but not on the desire to achieve

point identification of a parameter that the researcher happens to be interested in.

This principle is systematically embodied in the research program on partial identification

analysis that was put forward by Chuck Manski and developed by several authors since the

early 1990s (starting with Manski, 1989). Earlier important contributions exist, but had re-

mained fragmented and unable to shift the point identification paradigm.1 Manski forcefully

argued that identification is not an “all or nothing” concept: much can be learned about

parameters of interest from the available data and credible assumptions, even if not every-

thing. He proposed that empirical analysis begin by asking what can the data alone reveal

about the parameters of interest. This is a nonparametric approach that dispenses with all

1Examples include Frisch (1934), Reiersol (1941), Marschak and Andrews (1944), Fréchet (1951), Duncan
and Davis (1953), Peterson (1976), Klepper and Leamer (1984), Leamer (1987), Jovanovic (1989), and Phillips
(1989).
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assumptions, except basic restrictions on the sampling process such that the distribution of

the observable variables can be learned as data accumulate. In subsequent steps, one incor-

porates additional assumptions into the analysis, reporting how each assumption (or set of

assumptions) affects what one can learn about the parameter of interest. Point identification

may result from the process of increasingly strengthening the maintained assumptions, but it

is not the goal in itself. Rather, the objective is to make transparent the relative role played

by the data and the assumptions in shaping the inference that one draws.

The resulting partial identification paradigm yields a shift of focus to the parameter’s

sharp identification region: the collection of values that can generate the same distribution of

observables as the one in the data for some DGP consistent with the maintained assumptions

(the observationally equivalent values).

While the first reactions to partial identification were tepid, the paradigm gained mo-

mentum over time, developing into a widely researched area of econometrics and a valued

approach to empirical research in economics and more broadly.

1.2 Goals and Structure of this Chapter

In order to carry out econometric analysis with partial identification, one needs: (1) computa-

tionally feasible characterizations of the parameters’ sharp identification region; (2) methods

to estimate this region; and (3) methods to test hypotheses and construct confidence sets.

The goal of this chapter is to provide insights into the challenges posed by each of these

desiderata, and into some of their solutions. In order to discuss these issues in some level of

detail while keeping the chapter to a manageable length, I focus on a selection of papers and

not on a complete survey of the literature. As a consequence, many relevant contributions

are left out of the presentation and the references. I also do not discuss the important but

separate topic of statistical decisions in the presence of partial identification, for which I refer

to the textbook treatment in Manski (2005) and to the review by Hirano and Porter (2019,

Chapter XXX in this Volume).

The presumption in identification analysis that the distribution from which the data are

drawn is known allows one to keep separate the identification question from the distinct

question of statistical inference from a finite sample. I use the same separation in this

chapter. I assume solid knowledge of the topics covered in first year Economics PhD courses

in econometrics and microeconomic theory.

I begin in Section 2 with the analysis of what can be learned about features of probability

distributions that are well defined in the absence of an economic model, such as moments,

quantiles, cumulative distribution functions, etc., when one faces measurement problems.

Specifically, I focus on cases where the data is incomplete, either due to sample selection or

to interval measurements. I lay out formally the maintained assumptions for several examples,

and then discuss in detail what is the source of the identification problem. I conclude with
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providing tractable characterizations of what can be learned about the parameters of interest,

with formal proofs. I show that even in simple problems, great care may be needed to obtain

the sharp identification region. It is often easier to characterize an outer region, i.e., a

collection of values for the parameter of interest that contains the sharp one but may contain

also additional values. Outer regions are useful because of their simplicity and because in

certain applications they may suffice to answer questions of great interest, e.g., whether a

policy intervention has a nonnegative effect. However, compared to the sharp identification

region they may afford the researcher less useful predictions, and a lower ability to test for

misspecification, because they do not harness all the information in the observed data and

maintained assumptions.

In Section 3, I use the same approach to study what can be learned about features of

parameters of structural econometric models when the model is incomplete (Tamer, 2003;

Haile and Tamer, 2003; Ciliberto and Tamer, 2009). Specifically, I discuss single agent dis-

crete choice models under a variety of challenging situations (interval measured as well as

endogenous explanatory variables; unobserved as well as counterfactual choice sets); finite

discrete games with multiple equilibria; auction models under weak assumptions on bidding

behavior; and network formation models. Again I formally derive sharp identification regions

for several examples.

I conclude each of these sections with a brief discussion of further theoretical advances

and empirical applications that is meant to give a sense of the breadth of the approach, but

not to be exhaustive. I refer to the recent survey by Ho and Rosen (2017) for a thorough

discussion of empirical applications of partial identification methods.

In Section 4, I discuss finite sample inference. I limit myself to highlighting the challenges

that one faces for consistent estimation when the identified object is a set, and several coverage

notions and requirements that have been proposed over the last 20 years. I refer to the recent

survey by Canay and Shaikh (2017) for a thorough discussion of methods to tests hypotheses

and build confidence sets in moment inequality models.

In Section 5, I discuss the distinction between refutable and non-refutable assumptions,

and how model misspecification may be detectable in the presence of the former, even within

the partial identification paradigm. I then highlight certain challenges that model misspeci-

fication presents for the interpretation of sharp identification (as well as outer) regions, and

for the construction of confidence sets.

In Section 6, I highlight that while most of the sharp identification regions characterized in

Section 2 can be easily computed, many of the ones in Section 3 are more challenging. This is

because the latter are obtained as level sets of criterion functions in moderately dimensional

spaces, and tracing out these level sets or their boundaries is a non-trivial computational

problem. In Section 7, I conclude providing some considerations on what I view as open

questions for future research.

I refer to Manski (1995, 2003, 2007a) for textbook treatments of partial identification of
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probability distributions, and to Lewbel (2018) for a careful presentation of the many notions

of identification that are used in the literature.2

1.3 Random Set Theory as a Tool for Partial Identification Analysis

Throughout Sections 2 and 3, a simple organizing principle for much of partial identification

analysis emerges. The cause of the identification problems discussed can be traced back to

a collection of random variables that are consistent with the available data and maintained

assumptions. For the problems studied in Section 2, this set is often a simple function of the

observed variables. The incompleteness of the data stems from the fact that instead of observ-

ing the singleton variables of interest, one observes set-valued variables to which these belong,

but one has no information on their exact value within the sets. For the problems studied

in Section 3, the collection of random variables consistent with the maintained assumptions

comprises what the model predicts for the endogenous variable(s). The incompleteness of the

model stems from the fact that instead of making a singleton prediction for the variable(s)

of interest, the model makes multiple predictions but does not specify how one is chosen.

The central role of set-valued objects, both stochastic and nonstochastic, in partial iden-

tification renders random set theory a natural toolkit to aid the analysis.3 This theory

originates in the seminal contributions of Choquet (1953/54), Aumann (1965), and Debreu

(1967), with the first self contained treatment of the theory given by Matheron (1975). I re-

fer to Molchanov (2017) for a textbook presentation, and to Molchanov and Molinari (2014,

2018) for a treatment focusing on its applications in econometrics.

Beresteanu and Molinari (2008) introduce the use of random set theory in econometrics to

carry out identification analysis and statistical inference with incomplete data. Beresteanu,

Molchanov, and Molinari (2011, 2012) propose it to characterize sharp identification regions

both with incomplete data and with incomplete models. Galichon and Henry (2011) propose

the use of optimal transportation methods that in some applications deliver the same char-

acterizations as the random set methods. I do not discuss optimal transportation methods

in this chapter, but refer to Galichon (2016) for a thorough treatment.

Over the last ten years, random set methods have been used to unify a number of spe-

cific results in partial identification, and to produce a general methodology for identification

analysis that dispenses completely with case-by-case distinctions. In particular, as I show

throughout the chapter, the methods allow for simple and tractable characterizations of sharp

identification regions. The collection of these results establishes that indeed this is a useful

tool to carry out econometrics with partial identification, as exemplified by its prominent

role both in this chapter and in Chapter XXX in this Volume by Chesher and Rosen (2019),

which focuses on general classes of instrumental variable models. The random sets approach

2Lewbel (2018) also provides an important historical account of how these notions developed over time.
3Random elements whose realizations are sets appeared a long time ago in statistics and econometrics in

the form of confidence regions, which can be naturally described as random sets. Their role here is different.
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complements the more traditional one, based on mathematical tools for (single valued) ran-

dom vectors, that proved extremely productive since the beginning of the research program

in partial identification.

This chapter shows that to fruitfully apply random set theory for identification and in-

ference, the econometrician needs to carry out three fundamental steps. First, she needs to

define the random closed set that is relevant for the problem under consideration using all

information given by the available data and maintained assumptions. This is a delicate task,

but one that is typically carried out in identification analysis regardless of whether random

set theory is applied. Indeed, throughout the chapter I highlight how relevant random closed

sets were characterized in partial identification analysis since the early 1990s, albeit the con-

nection to the theory of random sets was not made. As a second step, the econometrician

needs to determine how the observable random variables relate to the random closed set. Of-

ten, one of two cases occurs: either the observable variables determine a random set to which

the unobservable variable of interest belongs with probability one, as in incomplete data sce-

narios; or the (expectation of the) (un)observable variable belongs to (the expectation of) a

random set determined by the model, as in incomplete model scenarios. Finally, the econo-

metrician needs to determine which tool from random set theory should be utilized. To date,

new applications of random set theory to econometrics have fruitfully exploited (Aumann)

expectations and their support functions, (Choquet) capacity functionals, and laws of large

numbers and central limit theorems for random sets. Appendix A reports basic definitions

and results from random set theory defining these concepts, as well as some useful theorems.

The chapter explains in detail through applications to important identification problems how

these steps can be carried out.

1.4 Notation

This chapter employs consistent notation that is summarized in Table 1.1. Some important

conventions are as follows: y denotes outcome variables, (x,w) denote explanatory variables,

and z denotes instrumental variables (i.e., variables that satisfy some form of independence

with the outcome or with the unobservable variables, possibly conditional on x,w).

I denote by P the joint distribution of all observable variables. Identification analysis is

carried out using the information contained in this distribution, and finite sample inference

is carried out under the presumption that one draws a random sample of size n from P. I

denote by Q the joint distribution whose features the researcher wants to learn. If Q were

identified given the observed data (e.g., if it were a marginal of P), point identification of the

parameter or functional of interest would attain. I denote by R the joint distribution of all

variables, observable and unobservable ones; both P and Q can be obtained from it. I use

S to denote any distribution that is not revealed by the data, other than Q; this also can

be obtained from R. In the context of structural models, I denote by M a distribution for

7



Table 1.1: Notation Used

(Ω,F,P) Nonatomic probability space
Rd, ‖ · ‖ Euclidean space equipped with the Euclidean norm
F ,G,K Collection of closed, open, and compact subsets of Rd (respectively)
Sd−1 = {x ∈ Rd : ‖x‖ = 1} Unit sphere in Rd
Bd = {x ∈ Rd : ‖x‖ ≤ 1} Unit ball in Rd
conv(A) Convex hull of a set A ⊂ Rd
cl(A) Closure of a set A ⊂ Rd
|A| Cardinality of a finite set A ⊂ Rd
x,y, z, . . . Random vectors
x, y, z, . . . Realizations of random vectors or deterministic vectors
X,Y ,Z, . . . Random sets
X,Y, Z, . . . Realizations of random sets or deterministic sets
ε, ε, ν, ζ Unobserved random variables (heterogeneity)
θ,Θ Parameter vector and its parameter space

R Joint distribution of all variables (observable and unobservable)
P Joint distribution of the observable variables
Q Joint distribution whose feature one wants to learn
S Other distribution or functional of R, not revealed by the observable data
Eτ Expectation operator associated with distribution τ ∈ {R,P,Q,S}
qτ (α) Quantile function at level α ∈ (0, 1) for a random variable distributed τ
τ(K) Probability that distribution τ assigns to set K
TX(K) = P{X ∩K 6= ∅}, K ∈ K Capacity functional of random set X
CX(F ) = P{X ⊂ F}, F ∈ F Containment functional of random set X
p→ Convergence in probability

a.s.→ Convergence almost surely

x
d
= y x and y have the same distribution
⇒ Weak convergence

HP[·] Sharp identification region of the functional in square brackets (a function of P)
OP[·] An outer region of the functional in square brackets (a function of P)

the observable variables that is consistent with the model. I note that model incompleteness

typically implies that M is not unique. I let HP[·] denote the sharp identification region of

the functional in square brackets, and OP[·] an outer region. In both cases, the regions are

indexed by P, because they depend on the distribution of the observed data.

2 Partial Identification of Probability Distributions

The partial identification approach to empirical research finds its genesis in Manski’s analysis

of what can be learned about functionals of probability distributions that are well-defined

in the absence of a model. The proposed approach is nonparametric, and it is typically

constructive, in the sense that it leads to “plug-in” formulae for the bounds on the functionals

of interest. In this section I review the first partial identification problem studied by Manski,

and discuss several important extensions of his original idea.
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2.1 Selectively Observed Data

The basic features of Manski’s nonparametric bounds are clearly put forward in the analysis

of the following identification problem, carried out in Manski (1989).

Identification Problem 2.1 (Conditional Expectation of Selectively Observed Data):

Let y ∈ Y ⊂ R and x ∈ X ⊂ Rd be, respectively, an outcome variable and a vector of

covariates with support Y and X respectively, with Y a compact set. Let d ∈ {0, 1}. Suppose

that the researcher observes a random sample of realizations of (x,d) and, in addition,

observes the realization of y when d = 1. Hence, the observed data is (yd,d,x) ∼ P. Let

G be the space of measurable functions that map Y into R and that attain their lower and

upper bounds g0 = miny∈Y g(y) and g1 = maxy∈Y g(y), and assume that −∞ < g0 < g1 <∞.

Let g be a function in G, so that there exists a yj ∈ Y such that g(yj) = gj , j = 0, 1. In the

absence of additional information, what can the researcher learn about EQ(g(y)|x = x), with

Q the distribution of (y,x)? 4

Manski’s analysis of this problem begins with a simple application of the law of total

probability, that yields

Q(y|x = x) = P(y|x = x,d = 1)P(d = 1|x = x) + S(y|x = x,d = 0)P(d = 0|x = x). (2.1)

Equation (2.1) lends a simple but powerful anatomy of the selection problem. While P(y|x =

x,d = 1) and P(d|x = x) can be learned from the observable distribution P(yd,d,x), under

the maintained assumptions the sampling process reveals nothing about S(y|x = x,d = 0).

Hence, Q(y|x = x) is not point identified.

If one were to assume exogenous selection (or data missing at random conditional on

x), i.e., S(y|x,d = 0) = P(y|x,d = 1), point identification would obtain. However, that

assumption is non-refutable and it is well known that it may fail in applications.4 Let T
denote the space of all probability measures with support in Y. The unknown functional

vector is {τ(x), υ(x)} ≡ {Q(y|x = x), S(y|x = x,d = 0)}. What the researcher can learn, in

the absence of additional restrictions on Q(y|x = x,d = 0), is the region of observationally

equivalent distributions for y|x = x, and the associated set of expectations taken with respect

to these distributions.

Theorem SIR-2.1 (Conditional Expectations of Selectively Observed Data): Under the

assumptions in Identification Problem 2.1,

HP[EQ(g(y)|x = x)] =
[
EP(g(y)|x = x,d = 1)P(d = 1|x = x) + g0P (d = 0|x = x),

EP(g(y)|x = x,d = 1)P(d = 1|x = x) + g1P(d = 0|x = x)
]

(2.2)

4Section 5 discusses the consequences of model misspecification (with respect to refutable assumptions).
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is the sharp identification region for EQ(g(y)|x = x).

Proof. Due to the discussion following equation (2.1), the collection of observationally equiv-

alent distribution functions for y|x = x is

HP[Q(y|x = x)] =
{
τ(x) ∈ T : τ(x) = P(y|x = x,d = 1)P(d = 1|x = x)

+ υ(x)P(d = 0|x = x), for some υ(x) ∈ T
}
. (2.3)

Next, observe that the lower bound in equation (2.2) is achieved by integrating g(y) against

the distribution τ(x) that results when υ(x) places probability one on y0. The upper bound

is achieved by integrating g(y) against the distribution τ(x) that results when υ(x) places

probability one on y1. Both are contained in the set HP[Q(y|x = x)] in equation (2.3).

There are the worst case bounds, so called because assumptions free and therefore repre-

senting the widest possible range of values for the parameter of interest that are consistent

with the observed data. A simple “plug-in” estimator for HP[EQ(g(y)|x = x)] replaces all

unknown quantities in (2.2) with consistent estimators, obtained, e.g., by kernel or sieve

regression. I return to consistent estimation of partially identified parameters in Section 4.

Here I emphasize that identification problems are fundamentally distinct from finite sample

inference problems. The latter are typically reduced as sample size increase (because, e.g.,

the variance of the estimator becomes smaller). The former do not improve, unless a differ-

ent and better type of data is collected, e.g. with a smaller prevalence of missing data (see

Dominitz and Manski, 2017, for a discussion).

Manski (2003, Section 1.3) shows that the proof of Theorem SIR-2.1 can be extended to

obtain the smallest and largest points in the sharp identification region of any parameter that

respects stochastic dominance.5 This is especially useful to bound the quantiles of y|x = x.

For any given α ∈ (0, 1), let q
g(y)
P (α, 1, x) ≡ {min t : P(g(y) ≤ t|d = 1,x = x) ≥ α}. Then

the smallest and largest admissible values for the α-quantile of y|x = x are, respectively,

r(α, x) ≡

q
g(y)
P

([
1− (1−α)

P(d=1|x=x)

]
, 1, x

)
if P(d = 1|x = x) > 1− α,

g0 otherwise;

s(α, x) ≡

q
g(y)
P

([
α

P(d=1|x=x)

]
, 1, x

)
if P(d = 1|x = x) ≥ α,

g1 otherwise.

The lower bound on EQ(g(y)|x = x) is informative only if g0 > −∞, and the upper bound

is informative only if g1 < ∞. By comparison, for any value of α, r(α, x) and s(α, x) are

5Recall that a probability distribution F ∈ T stochastically dominates F′ ∈ T if F(−∞, t] ≤ F′(−∞, t] for
all t ∈ R. A real-valued functional d : T → R respects stochastic dominance if d(F) ≥ d(F′) whenever F
stochastically dominates F′.
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generically informative if, respectively, P(d = 1|x = x) > 1 − α and P(d = 1|x = x) ≥ α,

regardless of the range of g.

Stoye (2010) further extends partial identification analysis to the study of spread pa-

rameters in the presence of missing data (as well as interval data, data combinations, and

other applications). These parameters include ones that respect second order stochastic dom-

inance, such as the variance, the Gini coefficient, and other inequality measures, as well as

other measures of dispersion which do not respect second order stochastic dominance, such

as interquartile range and ratio. Stoye shows that the sharp identification region for these

parameters can be obtained by fixing the mean or quantile of the variable of interest at a

specific value within its sharp identification region, and deriving a distribution consistent

with this value which is “compressed” with respect to the ones which bound the cumulative

distribution function (CDF) of the variable of interest, and one which is “dispersed” with

respect to them. Heuristically, the compressed distribution minimizes spread, while the dis-

persed one maximizes it (the sense in which this optimization occurs is formally defined in

the paper). The intuition for this is that a compressed CDF is first below and then above

any non-compressed one; a dispersed CDF is first above and then below any non-dispersed

one. Second-stage optimization over the possible values of the mean or the quantile delivers

unconstrained bounds. The main results of the paper are sharp identification regions for

the expectation and variance, for the median and interquartile ratio, and for many other

combinations of parameters.

Key Insight 2.1 (Identification is not a binary event): Identification Problem 2.1 is

mathematically simple, but it puts forward a completely new approach to empirical research.

The traditional approach aims at finding a sufficient (possibly minimal) set of assumptions

guaranteeing point identification of parameters, viewing identification as an “all or nothing”

notion, where either the functional of interest can be learned exactly or nothing of value can

be learned. The partial identification approach pioneered by Manski (1989) points out that

much can be learned from combination of data and assumptions that restrict the functionals of

interest to a set of observationally equivalent values, even if this set is not a singleton. Along

the way, Manski (1989) points out that in Identification Problem 2.1 the observed outcome is

the singleton y when d = 1, and Y when d = 0. This is a random closed set, see Definition

A.1. I return to this connection in Section 2.3.

Despite how transparent the framework in Identification Problem 2.1 is, important sub-

tleties arise even in this seemingly simple context. For a given t ∈ R, consider the function

g(y) = 1(y ≤ t), with 1(A) the indicator function taking the value one if the logical condition

in parentheses holds and zero otherwise. Then equation (2.2) yields pointwise-sharp bounds

11



CDF

t0 1 2 3

P(y ≤ t|d = 1)P(d = 1) + P(d = 0)

P(y ≤ t|d = 1)P(d = 1)

F(t)

1

1/3

2/3
5/9

Figure 2.1: The tube defined by inequalities (2.4) in the set-up of Example 2.1, and the CDF in (2.7).

on the CDF of y at any fixed t ∈ R:

HP[Q(y ≤ t|x = x)] = [P(y ≤ t|x = x,d = 1)P(d = 1|x = x) ,

P(y ≤ t|x = x,d = 1)P(d = 1|x = x) + P(d = 0|x = x)] . (2.4)

Yet, the collection of CDFs that belong to the band defined by (2.4) is not the sharp identi-

fication region for the CDF of y|x = x. Rather, it constitutes an outer region, as originally

pointed out by Manski (1994, p. 148 and note 2).

Theorem OR-2.1 (Cumulative Distribution Function of Selectively Observed Data): Let

C denote the collection of cumulative distribution functions on Y. Then, under the assump-

tions in Identification Problem 2.1,

OP[F(y|x = x)] = {F ∈ C : P(y ≤ t|x = x,d = 1)P(d = 1|x = x) ≤ F(t|x) ≤

P(y ≤ t|x = x,d = 1)P(d = 1|x = x) + P(d = 0|x = x) ∀t ∈ R} (2.5)

is an outer region for the CDF of y|x = x.

Proof. Any admissible CDF for y|x = x belongs to the family of functions in equation (2.5).

However, the bound in equation (2.5) does not impose the restriction that for any t0 ≤ t1,

Q(t0 ≤ y ≤ t1|x = x) ≥ P(t0 ≤ y ≤ t1|x = x,d = 1)P(d = 1|x = x). (2.6)

This restriction is implied by the maintained assumptions, but is not necessarily satisfied by

all CDFs in OP[F(y|x = x)], as illustrated in the following simple example.

12



Example 2.1. Omit x for simplicity, let P(d = 1) = 2
3 , and let

P(y ≤ t|d = 1)


0 if t < 0,
1
3 t if 0 ≤ t < 3,

1 if t ≥ 3.

The bounding functions and associated tube from the inequalities in (2.4) are depicted in

Figure 2.1. Consider the cumulative distribution function

F(t) =



0 if t < 0,
5
9 t if 0 ≤ t < 1,
1
9 t+ 4

9 if 1 ≤ t < 2,
1
3 t if 2 ≤ t < 3,

1 if t ≥ 3.

(2.7)

For each t ∈ R, F(t) lies in the tube defined by equation (2.4). However, it cannot be the

CDF of y, because F(2) − F(1) = 1
9 < P(1 ≤ y ≤ 2|d = 1)P(d = 1), directly contradicting

equation (2.6). 4

How can one characterize the sharp identification region for the CDF of y|x = x un-

der the assumptions in Identification Problem 2.1? In general, there is not a single answer

to this question: different methodologies can be used. Here I use results in Manski (2003,

Corollary 1.3.1) and Molchanov and Molinari (2018, Theorem 2.25), which yield an alter-

native characterization of HP[Q(y|x = x)] that translates directly into a characterization of

HP[F(y|x = x)].6

Theorem SIR-2.2 (Conditional Distribution and CDF of Selectively Observed Data):

Under the assumptions in Identification Problem 2.1,

HP[Q(y|x = x)] =
{
τ(x) ∈ T : τK(x) ≥ P(y ∈ K|x = x,d = 1)P(d = 1|x = x), ∀K ⊂ Y

}
,

(2.8)

where K is measurable. If Y is countable,

HP[Q(y|x = x)] =
{
τ(x) ∈ T : τy(x) ≥ P(y = y|x = x,d = 1)P(d = 1|x = x), ∀y ∈ Y

}
.

(2.9)

6Whereas Manski (1994) is very clear that the collection of CDFs in (2.4) is an outer region for the CDF
of y|x = x, and Manski (2003) provides the sharp characterization in (2.8), Manski (2007a, p. 39) does not
state all the requirements that characterize HP[F(y|x = x)].

13



If Y is a bounded interval,

HP[Q(y|x = x)] =
{
τ(x) ∈ T : τ[t0,t1](x) ≥

P(t0 ≤ y ≤ t1|x = x,d = 1)P(d = 1|x = x), ∀t0 ≤ t1, t0, t1 ∈ Y
}
. (2.10)

Proof. The characterization in (2.8) follows from equation (2.3), observing that if τ(x) ∈
HP[Q(y|x = x)] as defined in equation (2.3), then there exists a distribution υ(x) ∈ T
such that τ(x) = P(y|x = x,d = 1)P(d = 1|x = x) + υ(x)P(d = 0|x = x). Hence, by

construction τK(x) ≥ P(y ∈ K|x = x,d = 1)P(d = 1|x = x), ∀K ⊂ Y. Conversely,

if one has τK(x) ≥ P(y ∈ K|x = x,d = 1)P(d = 1|x = x), ∀K ⊂ Y, one can define

υ(x) = τ(x)−P(y|x=x,d=1)P(d=1|x=x)
P(d=0|x=x) . The resulting υ(x) is a probability measure, and hence

τ(x) ∈ HP[Q(y|x = x)] as defined in equation (2.3). When Y is countable, if τy(x) ≥ P(y =

y|x = x,d = 1)P(d = 1|x = x) it follows that for any K ⊂ Y,

τK(x) =
∑
y∈K

τy(x) ≥
∑
y∈K

P(y = y|x = x,d = 1)P(d = 1|x = x)

= P(y ∈ K|x = x,d = 1)P(d = 1|x = x).

The result in equation (2.10) is proven in Molchanov and Molinari (2018, Theorem 2.25)

using elements of random set theory, to which I return in Section 2.3. Using elements of

random set theory it is also possible to show that the characterization in (2.8) requires only

to check the inequalities for K the compact subsets of Y.

This section provides sharp identification regions and outer regions for a variety of func-

tionals of interest. The computational complexity of these characterizations varies widely.

Sharp bounds on parameters that respect stochastic dominance only require computing the

parameters with respect to two probability distributions. An outer region on the CDF can be

obtained by evaluating all tail probabilities of a certain distribution. A sharp identification

region on the CDF requires evaluating the probability that a certain distribution assigns to

all intervals. I return to computational challenges in partial identification in Section 6.

2.2 Treatment Effects with and without Instrumental Variables

The discussion of partial identification of probability distributions of selectively observed data

naturally leads to the question of its implications for program evaluation. The literature on

program evaluation is vast. The purpose of this section is exclusively to show how the ideas

presented in Section 2.1 can be applied to learn features of treatment effects of interest, when

no assumptions are imposed on treatment selection and outcomes. I also provide examples of

assumptions that can be used to tighten the bounds. To keep this chapter to a manageable

length, I discuss only partial identification of the average response to a treatment and of the
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average treatment effect (ATE). There are many different parameters of interest. Examples

include the local average treatment effect of Imbens and Angrist (1994) and the marginal

treatment effect of Heckman and Vytlacil (1999, 2001, 2005). For thorough discussions of

the literature on program evaluation, I refer to the textbook treatments in Manski (1995,

2003, 2007a) and Imbens and Rubin (2015), to the Handbook chapters by Heckman and

Vytlacil (2007a,b) and Abbring and Heckman (2007), and to the review articles by Imbens

and Wooldridge (2009) and Mogstad and Torgovitsky (2018).

Using standard notation (e.g., Neyman, 1923), let y : T 7→ Y be an individual-specific

response function, with T = {0, 1, . . . , T} a finite set of mutually exclusive and exhaustive

treatments, and let s denote the individual’s received treatment (taking its realizations in

T).7 The researcher observes data (y, s,x) ∼ P, with y ≡ y(s) the outcome corresponding

to the received treatment s, and x a vector of covariates. The outcome y(t) for s 6= t is

counterfactual, and hence can be conceptualized as missing. Hence, we are in the framework

of Identification Problem 2.1 and all the results from Section 2.1 apply in this context too,

subject to adjustments in notation.8 For example,

HP[EQ(y(t)|x = x)] =
[
EP(y|x = x, s = t)P(s = t|x = x) + y0P (s 6= t|x = x),

EP(y|x = x, s = t)P(s = t|x = x) + y1P (s 6= t|x = x)
]
, (2.11)

where y0 ≡ infy∈Y y, y1 ≡ supy∈Y y. If y0 < ∞ and/or y1 < ∞, these worst case bounds

are informative. When both are infinite, the data is uninformative in the absence of addi-

tional restrictions. If the researcher is interested in an Average Treatment Effect (ATE), e.g.

EQ(y(t1)|x = x)−EQ(y(t0)|x = x) with t0, t1 ∈ T, sharp worst case bounds on this quantity

can be obtained by subtracting the upper bound on EQ(y(t0)|x = x) from the lower bound

on EQ(y(t1)|x = x) (to get a lower bound on the ATE), and by subtracting the lower bound

on EQ(y(t0)|x = x) from the upper bound on EQ(y(t1)|x = x) (to get an upper bound on

the ATE). The resulting bounds have width equal to |y1−y0| and hence are informative only

if both y0 <∞ and y1 <∞. These bounds always cover zero.

Key Insight 2.2: How should one think about the finding on the size of the worst case

bounds on the ATE? On the one hand, if both y0 <∞ and y1 <∞ the bounds are informative,

because they are a strict subset of the ATE’s possible realizations. On the other hand, they

reveal that the data alone are silent on the sign of the ATE. This means that assumptions

play a crucial role in delivering stronger conclusions about this policy relevant parameter.

The partial identification approach to empirical research recommends that as assumptions are

added to the analysis, one systematically reports how each contributes to shrinking the bounds,

7Here the treatment response is a function only of the (scalar) treatment received by the given individual,
an assumption known as stable unit treatment value assumption (Rubin, 1978).

8Beresteanu, Molchanov, and Molinari (2012) and Molchanov and Molinari (2018, Section 2.5) provide a
characterization of the sharp identification region for the joint distribution of [y(t), t ∈ T].
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making transparent their role in shaping inference.

What assumptions may researchers bring to bear to learn more about treatment effects of

interest? The literature has provided a wide array of well motivated and useful restrictions.

Here I consider two examples. The first one entails shape restrictions on the treatment re-

sponse function, leaving selection unrestricted. Manski (1997b) obtains bounds on treatment

effects under the assumption that the response functions are monotone, semi-monotone, or

concave-monotone. These restrictions are motivated by economic theory, where it is com-

monly presumed, e.g., that demand functions are downward sloping and supply functions are

upward sloping. Let the set T be ordered in terms of degree of intensity. Then Manski’s

monotone treatment response assumption requires that

t1 ≥ t0 ⇒ Q(y(t1) ≥ y(t0)) = 1 ∀t0, t1 ∈ T.

Under this assumption, one has that

y(t) ∈


(−∞,y] ∩ Y if t < s,

{y} if t = s,

[y,∞) ∩ Y if t > s.

(2.12)

Using this information, the sharp bounds on EQ(y(t)|x = x) are

HP[EQ(y(t)|x = x)] =
[
EP(y|x = x, s ≤ t)P(s ≤ t|x = x) + y0P (s > t|x = x),

EP(y|x = x, s ≥ t)P(s ≥ t|x = x) + y1P (s < t|x = x)
]
. (2.13)

This finding highlights some important facts. Under the monotone treatment response as-

sumption, the bounds on EQ(y(t)|x = x) are obtained using information from all (y, s) pairs

(given x = x), while the bounds in (2.11) only use the information provided by (y, s) pairs

for which s = t (given x = x). As a consequence, the bounds in (2.13) are informative even

if P(s = t|x = x) = 0, whereas the worst case bounds are not.

Concerning the ATE with t1 > t0, under monotone treatment response its lower bound

is zero, and its upper bound is obtained by subtracting the lower bound on EQ(y(t0)|x = x)

from the upper bound on EQ(y(t1)|x = x), where both bounds are obtained as in (2.13).

The second example entails exclusion restrictions, as in, e.g., Manski (1990). Suppose the
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researcher observes a random variable z, taking its realizations in Z, such that9

EQ(y(t)|z,x) = EQ(y(t)|x) ∀t ∈ T, x-a.s.. (2.14)

This assumption is treatment-specific, and requires that the treatment response to t is mean

independent with z. It is easy to show that under the assumption in (2.14), the bounds on

EQ(y(t)|x = x) become

HP[EQ(y(t)|x = x)] =
[
ess sup

z
EP(y|x = x, s = t, z)P(s = t|x = x, z)+y0P (s 6= t|x = x, z),

ess inf
z

EP(y|x = x, s = t, z)P(s = t|x = x, z) + y1P (s 6= t|x = x, z)
]
. (2.15)

These are called intersection bounds because they are obtained as follows. Given x and z, one

uses (2.11) to obtain sharp bounds on EQ(y(t)|z = z,x = x). Due to the mean independence

assumption in (2.14), EQ(y(t)|x = x) must belong to each of these bounds z-a.s., hence to

their intersection. The expression in (2.15) follows. If the instrument affects the probability

of being selected into treatment, or the average outcome for the subpopulation receiving

treatment t, the bounds on EQ(y(t)|x = x) shrink. If the bounds are empty, the mean

independence assumption can be refuted (see Section 5 for a discussion of misspecification in

partial identification). Manski and Pepper (2000, 2009) generalize the notion of instrumental

variable to monotone instrumental variable, and show how these can be used to obtain

tighter bounds on treatment effect parameters.10 They also show how shape restrictions and

exclusion restrictions can jointly further tighten the bounds. Manski (2013) generalizes these

findings to the case where treatment response may have social interactions – that is, each

individual’s outcome depends on the treatment received by all other individuals.

2.3 Interval Data

Identification Problem 2.1, as well as the treatment evaluation problem in Section 2.2, is an

instance of the more general question of what can be learned about (functionals of) probability

distributions of interest, in the presence of interval valued outcome and/or covariate data.

Such data have become commonplace in Economics. For example, since the early 1990s the

Health and Retirement Study collects income data from survey respondents in the form of

brackets, with degenerate (singleton) intervals for individuals who opt to fully reveal their

income (see, e.g., Juster and Suzman, 1995). Due to concerns for privacy, public use tax

data are recorded as the number of tax payers which belong to each of a finite number of

9Stronger exclusion restrictions include statistical independence of the response function at each t with z:
Q(y(t)|z,x) = Q(y(t)|x) ∀t ∈ T, x-a.s.; and statistical independence of the entire response function with
z: Q([y(t), t ∈ T]|z,x) = Q([y(t), t ∈ T]|x), x-a.s. Examples of partial identification analysis under these
conditions can be found in Balke and Pearl (1997), Manski (2003), Kitagawa (2009), Beresteanu, Molchanov,
and Molinari (2012), Machado, Shaikh, and Vytlacil (2018), and many others.

10See Chesher and Rosen (2019, Chapter XXX in this Volume) for further discussion.
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cells (see, e.g., Picketty, 2005). The Occupational Employment Statistics (OES) program at

the Bureau of Labor Statistics (Bureau of Labor Statistics, 2018) collects wage data from

employers as intervals, and uses these data to construct estimates for wage and salary workers

in more than 800 detailed occupations. Manski and Molinari (2010) and Giustinelli, Manski,

and Molinari (2019b) document the extensive prevalence of rounding in survey responses to

probabilistic expectation questions, and propose to use a person’s response pattern across

different questions to infer his rounding practice, the result being interpretation of reported

numerical values as interval data. Other instances abound. Here I focus first on the case of

interval outcome data.

Identification Problem 2.2 (Interval Outcome Data): Assume that in addition to

being compact, either Y is countable or Y = [y0, y1], with y0 = miny∈Y y and y1 = maxy∈Y y.

Let (yL,yU,x) ∼ P be observable random variables and y be an unobservable random variable

whose distribution (or features thereof) is of interest. Suppose that (yL,yU,y) are such that

P(yL ≤ y ≤ yU) = 1.11 In the absence of additional information, what can the researcher

learn about features of Q(y|x = x), the conditional distribution of y given x = x?

It is immediate to obtain the sharp identification region

HP[EQ(y|x = x)] = [EP(yL|x = x),EP(yU|x = x)] .

Similarly to the discussion in the previous section, it is also easy to obtain sharp bounds on

parameters that respect stochastic dominance, and pointwise-sharp bounds on the CDF of y

at any fixed t ∈ R:

P(yU ≤ t|x = x) ≤ P(y ≤ t|x = x) ≤ P(yL ≤ t|x = x). (2.16)

In this case too, however, as in Theorem OR-2.1, the tube of CDFs satisfying equation (2.16)

for all t ∈ R is an outer region for the CDF of y|x = x, rather than its sharp identification

region. Indeed, also in this context it is easy to construct examples similar to Example 2.1.

How can one characterize the sharp identification region for the probability distribution

of y|x when one observes (yL,yU,x) and assumes P(yL ≤ y ≤ yU) = 1? Again, there is not a

single answer to this question. Depending on the specific problem at hand, e.g., the specifics

of the interval data and whether y is assumed discrete or continuous, different methods can

be applied. I use random set theory to provide a characterization of HP[Q(y|x = x)]. Let

Y ≡ [yL,yU] ∩ Y.

11In Identification Problem 2.1 the observable variables are (yd,d,x), and (yL,yU) are determined as
follows: yL = yd + y0(1− d), yU = yd + y1(1− d). For the analysis in Section 2.2, the data is (y, s,x) and
yL = y(t)1(s = t) + y01(s 6= t), yU = y(t)1(s = t) + y11(s 6= t). Hence, P(yL ≤ y ≤ yU) = 1 by construction.
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Then Y is a random closed set according to Definition A.1.12 The requirement P(yL ≤ y ≤
yU) = 1 can be equivalently expressed as

y ∈ Y almost surely. (2.17)

Equation (2.17), together with knowledge of P, exhausts all the information in the data and

maintained assumptions. In order to harness such information to characterize the set of

observationally equivalent probability distributions for y, one can leverage a result due to

Artstein (1983) (and Norberg, 1992), reported in Theorem A.1 in Appendix A, which allows

one to translate (2.17) into a collection of conditional moment inequalities. Specifically, let

T denote the space of all probability measures with support in Y.

Theorem SIR-2.3 (Conditional Distribution of Interval-Observed Outcome Data): Un-

der the assumptions in Identification Problem 2.2, the sharp identification region for Q(y|x =

x) is

HP[Q(y|x = x)] =
{
τ(x) ∈ T : τK(x) ≥ P(Y ⊂ K|x = x), ∀K ⊂ Y, K compact

}
(2.18)

When Y = [y0, y1], equation (2.18) becomes

HP[Q(y|x = x)] =
{
τ(x) ∈ T : τ[t0,t1](x) ≥ P(yL ≥ t0,yU ≤ t1|x = x), ∀t0 ≤ t1, t0, t1 ∈ R

}
.

(2.19)

Proof. Theorem A.1 yields (2.18). If Y = [y0, y1], Molchanov and Molinari (2018, Theorem

2.25) show that it suffices to verify the inequalities in (2.19) for sets K that are intervals.

Compare equation (2.18) with equation (2.8). Under the set-up of Identification Problem

2.1, when d = 1 we have Y = {y} and when d = 0 we have Y = Y. Hence, for any K ( Y,

P(Y ⊂ K|x = x) = P(y ∈ K|x = x,d = 1)P(d = 1).13 It follows that the characterizations

in (2.18) and (2.8) are equivalent. If Y is countable, it is easy to show that (2.18) simplifies

to (2.8) (see, e.g., Beresteanu, Molchanov, and Molinari, 2012, Proposition 2.2).

Key Insight 2.3 (Random set theory and partial identification): The mathematical

framework for the analysis of random closed sets embodied in random set theory is naturally

suited to conduct identification analysis and statistical inference in partially identified models.

This is because, as argued by Beresteanu and Molinari (2008) and Beresteanu, Molchanov,

and Molinari (2011, 2012), lack of point identification can often be traced back to a collection

of random variables that are consistent with the available data and maintained assumptions.

In turn, this collection of random variables is equal to the family of selections of a properly

12For a proof of this statement, see Molchanov and Molinari (2018, Example 1.11).
13For K = Y, both (2.18) and (2.8) hold trivially.
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specified random closed set, so that random set theory applies. The interval data case is a

simple example that illustrates this point. More examples are given throughout this chapter.

As mentioned in the Introduction, the exercise of defining the random closed set that is rel-

evant for the problem under consideration is routinely carried out in partial identification

analysis, even when random set theory is not applied. For example, in the case of treat-

ment effect analysis with monotone response function, Manski (1997b) derived the set in the

right-hand-side of 2.12, which satisfies Definition (A.1).

An attractive feature of the characterization in (2.18) is that it holds regardless of the

specific assumptions on yL, yU, and Y. Later sections in this chapter illustrate how Theorem

A.1 delivers the sharp identification region in other more complex instances of partial identi-

fication of probability distributions, as well as in structural models. In Chapter XXX in this

Volume, Chesher and Rosen (2019) apply Theorem A.1 to obtain sharp identification regions

for functionals of interest in the important class of generalized instrumental variable models.

To avoid repetitions, I do not systematically discuss that class of models in this chapter.

It is possible to relate the random set theory approach to partial identification to the

selection mechanism approach in Tamer (2010) and Ponomareva and Tamer (2011).14 Take

a random variable u with values in [0, 1] whose distribution conditional on yL,yU is left

completely unspecified and can be any probability distribution on [0, 1]. Define

yu = uyL + (1− u)yU. (2.20)

The set of admissible distributions for y is given by the collection of distributions of all possible

random variables yu as defined in (2.20). This is because each yu is a (stochastically) convex

combination of yL,yU, hence each of these random variables satisfies P(yL ≤ ys ≤ yU) = 1

and has a distribution that is a mixture of the distributions of yL and yU. At the same time,

the collection of random variables yu equals the collection of measurable selections of the

random closed set Y ≡ [yL,yU] (see Definition A.3). Theorem A.1 provides a characterization

of the distribution of any yu that satisfies yu ∈ Y a.s., based on a dominance condition that

relates the distribution of yu to the distribution of the random set Y . Such dominance

condition is given by the inequalities in (2.18).

Horowitz and Manski (1998, 2000) study nonparametric conditional prediction problems

with missing outcome and/or missing covariate data. Their analysis shows that this problem

is considerably more pernicious than the case where only outcome data are missing. For

the case of interval covariate data, Manski and Tamer (2002) provide a set of sufficient

conditions under which simple and elegant sharp bounds on functionals of Q(y|x) can be

obtained, even in this substantially harder identification problem. Their assumptions are

listed in Identification Problem 2.3, and their result (with proof) in Theorem SIR-2.4.

14Berry and Tamer (2006) and Ciliberto and Tamer (2009) use this approach in the context of structural
models of entry. I discuss these models in Section 3
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Identification Problem 2.3 (Interval Covariate Data): Let (y,xL,xU) ∼ P be observ-

able random variables in R×R×R and x ∈ R be an unobservable random variable. Suppose

that R, the joint distribution of (y,x,xL,xU), is such that: (I) R(xL ≤ x ≤ xU) = 1; (M)

EQ(y|x = x) is weakly increasing in x; and (MI) ER(y|x,xL,xU) = EQ(y|x). In the absence

of additional information, what can the researcher learn about EQ(y|x = x) for given x ∈ X ?

Compared to the earlier discussion for the interval outcome case, here there are two ad-

ditional assumptions. The monotonicity condition (M) is a simple shape restrictions, which

however requires some prior knowledge about the joint distribution of y|x. The mean inde-

pendence restriction (MI) requires that if x were observed, knowledge of (xL,xU) would not

affect the conditional expectation of y|x. The assumption is not innocuous, as pointed out

by the authors. For example, it may fail if censoring is endogenous.15

Theorem SIR-2.4 (Conditional Expectation with Interval-Observed Covariate Data):

Under the assumptions of Identification Problem 2.3, the sharp identification region for

EQ(y|x) for given x ∈ X is

HP[EQ(y|x = x)] =

[
sup
xU≤x

EP(y|xL,xU), inf
xL≥x

EP(y|xL,xU)

]
. (2.21)

Proof. The law of iterated expectations and the independence assumption yield EP(y|xL,xU) =∫
EQ(y|x)dR(x|xL,xU). For all x ≤ x̄, the monotonicity assumption and the fact that x ∈

[xL,xU]-a.s. yield EQ(y|x = x) ≤
∫
EQ(y|x)dR(x|xL = x,xU = x̄) ≤ EQ(y|x = x̄). Putting

this together with the previous result, EQ(y|x = x) ≤ EP(y|xL = x,xU = x̄) ≤ EQ(y|x = x̄).

Then (using again the monotonicity assumption) for any x ≥ x̄, EP(y|xL = x,xU = x̄) ≤
EQ(y|x = x) so that the lower bound holds. The bound is weakly increasing as a function of

x, so that the monotonicity assumption on EQ(y|x = x) holds and the bound is sharp. The

argument for the upper bound can be concluded similarly.

Learning about functionals of Q(y|x = x) naturally implies learning about predictors of

y|x = x. For example, HP[EQ(y|x = x)] yields the collection of values for the best predictor

under square loss; HP[MQ(y|x = x)], with MQ the median with respect to distribution Q,

yields the collection of values for the best predictor under absolute loss. And so on. A related

but distinct problem is that of parametric conditional prediction. Often researchers specify

not only a loss function for the prediction problem, but also a parametric family of predictor

functions, and wish to learn the member of this family that minimizes expected loss. To

avoid confusion, let me specify that here I am not referring to a parametric assumption on

the best predictor, e.g., that EQ(y|x) is a linear function of x. In the example of linearity

15For the case of missing covariate data, which is a special case of interval covariate data similarly to
arguments in footnote 11, Aucejo, Bugni, and Hotz (2017) show that the MI restriction implies the assumption
that data is missing at random.
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and square loss, I am referring to best linear prediction, i.e., best linear approximation to

EQ(y|x). Manski (2003, pp. 56-58) discusses what can be learned about the best linear

predictor of y conditional on x, when only interval data on (y,x) is available.

I treat first the case of interval outcome and perfectly observed covariates.

Identification Problem 2.4 (Parametric Prediction with Interval Outcome Data):

Maintain the same assumptions as in Identification Problem 2.2. Let (yL,yU,x) ∼ P be

observable random variables and y be an unobservable random variable, with P(yL ≤ y ≤
yU) = 1. In the absence of additional information, what can the researcher learn about the

best linear predictor of y given x = x?

For simplicity suppose that x is a scalar, and let θ = [θ0 θ1]> ∈ Θ ⊂ R2 denote the

parameter vector of the best linear predictor of y|x. Assume that V ar(x) > 0. Combining

the definition of best linear predictor with a characterization of the sharp identification region

for the joint distribution of (y,x), we have that

HP[θ] =

{
ϑ = arg min

∫
(y − θ0 − θ1x)2 dη, η ∈ HP[Q(y,x)]

}
, (2.22)

where, using an argument similar to the one in Theorem SIR-2.3,

HP[Q(y,x)] =
{
η : η([t0,t1],(−∞,s]) ≥ P(yL ≥ t0,yU ≤ t1,x ≤ s)

∀t0 ≤ t1, t0, t1 ∈ R,∀s ∈ R
}
. (2.23)

Beresteanu and Molinari (2008, Proposition 4.1) show that (2.22) can be re-written in an

intuitive way that generalizes the well-known formula for the best linear predictor that arises

when y is perfectly observed. Define the random segment G and the random matrix ΣP as

G =

{(
y

yx

)
: y ∈ Sel(Y )

}
⊂ R2, and ΣP = EP

(
1 x

x x2

)
, (2.24)

where Sel(Y ) is the set of all measurable selections from Y , see Definition A.3. Then,

Theorem SIR-2.5 (Best Linear Predictor with Interval Outcome Data): Under the as-

sumptions of Identification Problem 2.4, the sharp identification region for the parameters of

the best linear predictor of y|x is

HP[θ] = Σ−1
P EPG, (2.25)

where EPG is the (Aumann or selection) expectation of the random closed set G as in Defi-

nition A.4.
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Proof. By Theorem A.1, (ỹ, x̃) ∈ (Y ×x) (up to an ordered coupling as discussed in Appendix

A), if and only if the distribution of (ỹ, x̃) belongs to HP[Q(y,x)]. The result follows.

In either representation (2.22) or (2.25), HP[θ] is the collection of best linear predictors for

each selection of Y .16 Why should one bother with the representation in (2.25)? The reason

is that HP[θ] is a convex set, as it can be clearly evinced from representation (2.25): the

Aumann expectation of a convex set is convex, and G has almost surely convex realizations

that are segments.17 Hence, it can be equivalently represented through its support function

hHP[θ], see Definition A.5 and equation (A.2). In particular,

hΣ−1
P EPG

(u) = EP[(yL1(f(x, u) < 0) + yU1(f(x, u) ≥ 0))f(x, u)], u ∈ S, (2.26)

where f(x, u) ≡ [1 x]Σ−1
P u.18 The characterization in (2.26) results from Theorem A.2,

which yields hΣ−1
P EPG

(u) = EPhΣ−1
P G(u), and the fact that EPhΣ−1

P G(u) equals the expression

in (2.26). As I discuss in Section 4 below, because the support function fully characterizes

the boundary of HP[θ], (2.26) allows for a simple sample analog estimator, and for inference

procedures with desirable properties. It also immediately yields sharp bounds on linear

combinations of θ by judicious choice of u.19 Stoye (2007) and Magnac and Maurin (2008)

provide the same characterization as in (2.26) using, respectively, direct optimization and the

Frisch-Waugh-Lovell theorem.

I conclude this section by discussing a generalization of Identification Problem 2.4.

Identification Problem 2.5 (Parametric Prediction with Interval Outcome and Co-

variate Data): Maintain the same assumptions as in Identification Problem 2.4, but with

x ∈ X ⊂ R unobservable. Suppose the researcher observes (yL,yU,xL,xU) such that

P{yL ≤ y ≤ yU,xL ≤ x ≤ xU} = 1. Let X ≡ [xL,xU] and let X be bounded. In

the absence of additional information, what can the researcher learn about the best linear

predictor of y given x = x?

Abstractly, HP[θ] is as given in (2.22), with

HP[Q(y,x)] = {η : ηK ≥ P((Y ×X) ⊂ K) ∀compact K ⊂ Y × X}

replacing (2.23) by an application of Theorem A.1. While this characterization is sharp, it is

16Under our assumption that Y is a bounded interval, all the selections of Y are integrable. Beresteanu and
Molinari (2008) consider the more general case where Y is not required to be bounded.

17In R2 in our example, in Rd if x is a d− 1 vector and the predictor includes an intercept.
18This result appears in Beresteanu and Molinari (2008, p. 808) and Bontemps, Magnac, and Maurin (2012,

p. 1136).
19For example, in the case that x is a scalar, sharp bounds on θ1 can be obtained by choosing u = [0 1]> and

u = [0 −1]>, which yield θ1 ∈ [θ1L, θ1U ] with θ1L = miny∈[yL,yU]
Cov(x,y)
V ar(x)

= EP[(x−EPx)(yL1(x>EPx)+yU1(x≤Ex))]

EPx
2−(EPx)2

and θ1U = maxy∈[yL,yU]
Cov(x,y)
V ar(x)

= EP[(x−EPx)(yL1(x<EPx)+yU1(x≥Ex))]

EPx
2−(EPx)2

.
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cumbersome to apply in practice.

On the other hand, when both y and x are perfectly observed, the best linear predictor

is simply equal to the parameter vector that yields a mean zero prediction error that is

uncorrelated with x. How can this basic observation help in the case of interval data? The

idea is that one can use the same insight applied to the set-valued data, and obtain HP[θ] as

the collection of θ’s for which there exists a selection (ỹ, x̃) ∈ Sel(Y ×X), and associated

prediction error εθ = ỹ − θ0 − θ1x̃, satisfying EPεθ = 0 and EP(εθx̃) = 0 (as shown by

Beresteanu, Molchanov, and Molinari, 2011).20 To obtain the formal result, define the θ-

dependent set21

Eθ =

{(
ỹ − θ0 − θ1x̃

(ỹ − θ0 − θ1x̃)x̃

)
: (ỹ, x̃) ∈ Sel(Y ×X)

}
.

Theorem SIR-2.6 (Best Linear Predictor with Interval Outcome and Covariate Data):

Under the assumptions of Identification Problem 2.5, the sharp identification region for the

parameters of the best linear predictor of y|x is

HP[θ] = {θ ∈ Θ : 0 ∈ EPEθ} =

{
θ ∈ Θ : min

u∈Bd
EPhEθ(u) = 0

}
, (2.27)

where hEθ(u) = maxy∈Y ,x∈X [u1(y − θ0 − θ1x) + u2(yx− θ0x− θ1x
2)] is the support function

of the set Eθ in direction u ∈ Sd−1, see Definition A.5.

Proof. By Theorem A.1, (ỹ, x̃) ∈ (Y ×X) (up to an ordered coupling as discussed in Ap-

pendix A), if and only if the distribution of (ỹ, x̃) belongs to HP[Q(y,x)]. For given θ, one

can find (ỹ, x̃) ∈ (Y ×X) such that EPεθ = 0 and EP(εθx̃) = 0 with εθ ∈ Eθ if and only if the

zero vector belongs to EPEθ. By Theorem A.2, EPEθ is a convex set and by (A.9), 0 ∈ EPEθ
if and only if 〈0, u〉 ≤ hEPEθ(u) ∀u ∈ Bd. The final characterization follows from (A.7).

The support function hEθ(u) is an easy to calculate convex sublinear function of u, regard-

less of whether the variables involved are continuous or discrete. The optimization problem

in (2.27), determining whether θ ∈ HP[θ], is a convex program, hence easy to solve. See for

example the CVX software by Grant and Boyd (2010). It should be noted, however, that the

set HP[θ] itself is not necessarily convex. Hence, tracing out its boundary is non-trivial. I

discuss computational challenges in partial identification in Section 6.

20Here for simplicity I suppose that both xL and xU have bounded support. Beresteanu, Molchanov, and
Molinari (2011) do not make this simplifying assumption.

21Note that while G is a convex set, Eθ is not.
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2.4 Measurement Error and Data Combination

One of the first examples of bounding analysis appears in Frisch (1934), to assess the impact

in linear regression of covariate measurement error. The more recent literature in partial iden-

tification has provided important advances to learn features of probability distributions when

the observed variables are error-ridden measures of the variables of interest. Here I briefly

mention some of the papers in this literature, and refer to Chapter XXX in this Volume by

Schennach (2019) for a thorough treatment of identification and inference with mismeasured

and unobserved variables. In an influential paper, Horowitz and Manski (1995) study what

can be learned about features of the distribution of y|x in the presence of contaminated

or corrupted outcome data. Whereas a contaminated sampling model assumes that data

errors are statistically independent of sample realizations from the population of interest,

the corrupted sampling model does not. These models are regularly used in the important

literature on robust estimation (e.g., Huber, 1964, 2004; Hampel, Ronchetti, Rousseeuw, and

Stahel, 2011). However, the goal of that literature is to characterize how point estimators

of population parameters behave when data errors are generated in specified ways. As such,

the inference problem is approached ex-ante: before collecting the data, one looks for point

estimators that are not greatly affected by error. The question addressed by Horowitz and

Manski (1995) is conceptually completely distinct. It asks what can be learned about spe-

cific population parameters ex-post, that is, after the data has been collected. For example,

whereas the mean is well known not to be a robust estimator in the presence of contaminated

data, Horowitz and Manski (1995) show that it can be (non-trivially) bounded provided the

probability of contamination is strictly less than one. Dominitz and Sherman (2004, 2005)

extend the results os Horowitz and Manski’s 1995 to allow for (partial) verification of the

distribution from which the data are drawn. They apply the resulting sharp bounds to learn

about school performance when the observed test scores may not be valid for all students.

Molinari (2008) provides sharp bounds on the distribution of a misclassified outcome variable

under an array of different assumptions on the extent and type of misclassification.

A completely different problem is that of data combination. Applied economists often

face the problem that no single data set contains all the variables that are necessary to con-

duct inference on a population of interest. When this is the case, they need to integrate the

information contained in different samples; for example, they might need to combine survey

data with administrative data (see Ridder and Moffitt, 2007, for a survey of the econometrics

of data combination). From a methodological perspective, the problem is that while the

samples being combined might contain some common variables, other variables belong only

to one of the samples. When the data is collected at the same aggregation level (e.g., indi-

vidual level, household level, etc.), if the common variables include a unique (and correctly

recorded) identifier of the units constituting each sample, and there is a substantial overlap

of units across all samples, then exact matching of the data sets is relatively straightforward,

25



and the combined data set provides all the relevant information to identify features of the

population of interest. However, it is rather common that there is a limited overlap in the

units constituting each sample, or that variables that allow identification of units are not

available in one or more of the input files, or that one sample provides information at the

individual or household level (e.g., survey data) while the second sample provides information

at a more aggregate level (e.g., administrative data providing information at the precinct or

district level). Formally, the problem is that one observes data that identify the joint dis-

tributions P(y,x) and P(x,w), but not data that identifies the joint distribution Q(y,x,w)

whose features one wants to learn. The literature on statistical matching has aimed at using

the common variable(s) x as a bridge to create synthetic records containing (y,xw) (see, e.g.,

Okner, 1972, for an early contribution). As Sims (1972) points out, the inherent assumption

at the base of statistical matching is that conditional on x, y and w are independent. This

conditional independence assumption is strong and untestable. While it does guarantee point

identification of features of the conditional distributions Q(y|x,w), it often finds very little

justification in practice. Early on, Duncan and Davis (1953) provided numerical illustrations

on how one can bound the object of interest, when both y and w are binary variables. Cross

and Manski (2002) provide a general analysis of the problem. They obtain bounds on the

long regression EQ(y|x,w), under the assumption that w has finite support. They show that

sharp bounds on EQ(y|x,w = w) can be obtained using the results in Horowitz and Manski

(1995), thereby establishing a connection with the analysis of contaminated data. They then

derive sharp identification regions for [EQ(y|x = x,w = w), x ∈ X , w ∈ W]. They show that

these bounds are sharp when y has finite support, and Molinari and Peski (2006) establish

sharpness without this restriction. Fan, Sherman, and Shum (2014) address the question of

what can be learned about counterfactual distributions and treatment effects under the data

scenario just described, but with x replaced by s, a binary indicator for the received treatment

(using the notation of the previous section). In this case, the exogenous selection assumption

(conditional on w) does not suffice for point identification of the objects of interest. The

authors derive, however, sharp bounds on these quantities using monotone rearrangement

inequalities. Pacini (2017) provides partial identification results for the coefficients in the

linear projection of y on (x,w).

2.5 Further Theoretical Advances and Empirical Applications

In order to discuss the partial identification approach to learning features of probability

distributions in some level of detail while keeping this chapter to a manageable length, I

have focused on a selection of papers. In this section I briefly mention several other excellent

theoretical contributions that could be discussed more closely, as well as several papers that

have applied partial identification analysis to answer important empirical questions.

While selectively observed data are commonplace in observational studies, in randomized
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experiments subjects are randomly placed in designated treatment groups conditional on

x, so that the assumption of exogenous selection is satisfied with respect to the assigned

treatment. Yet, identification of some highly policy relevant parameters can remain elusive

in the absence of strong assumptions. One challenge results from noncompliance, where

individuals’ received treatments differs from the randomly assigned ones. Balke and Pearl

(1997) derive sharp bounds on the ATE in this context, when Y = T = {0, 1}. Even if one is

interested in the intention-to-treat parameter, selectively observed data may continue to be a

problem. For example, Lee (2009) studies the wage effects of the Job Corps training program,

which randomly assigns eligibility to participate in the program. Individuals randomized

to be eligible were not compelled to receive treatment, hence Lee (2009) focuses on the

intention-to-treat effect. Because wages are only observable when individuals are employed,

a selection problem persists despite the random assignment of eligibility to treatment, as

employment status may be affected by the training program. Lee obtains sharp bounds on the

intention-to-treat effect, through a trimming procedure that leverages results in Horowitz and

Manski (1995). Molinari (2010) analyzes the problem of identification of the ATE and other

treatment effects, when the received treatment is unobserved for a subset of the population.

Missing treatment data may be due to item or survey nonresponse in observational studies,

or noncompliance with randomly assigned treatments that are not directly monitored. She

derives sharp worst case bounds leveraging results in Horowitz and Manski (1995), and she

shows that these are a function of the available prior information on the distribution of

missing treatments. If the response function is assumed monotone as in (2.13), she obtains

informative bounds without restrictions on the distribution of missing treatments.

Even randomly assigned treatments and perfect compliance with no missing data may

not suffice for point identification of all policy relevant parameters. Important examples are

given by Heckman, Smith, and Clements (1997) and Manski (1997a). Heckman, Smith, and

Clements show that features of the joint distribution of the potential outcomes of treatment

and control, including the distribution of treatment effects impacts, cannot be point identified

in the absence of strong restrictions. This is because although subjects are randomized

to treatment and control, nobody’s outcome is observed under both states. Nonetheless,

the authors obtain bounds for the functionals of interest. Manski shows that features of

outcome distributions under treatment rules in which treatment may vary within groups

cannot be point identified in the absence of strong restrictions. This is because data resulting

from randomized experiments with perfect compliance allow for point identification of the

outcome distributions under treatment rules that assign all persons with the same x to the

same treatment group. However, such data only allow for partial identification of outcome

distributions under rules in which treatment may vary within groups. Manski derives sharp

bounds for functionals of these distributions.

Analyses of data resulting from natural experiments also face identification challenges.

Hotz, Mullin, and Sanders (1997) study what can be learned about treatment effects when
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one uses a contaminated instrumental variable, i.e. when a mean-independence assumption

holds in a population of interest, but the observed population is a mixture of the population

of interest and one in which the assumption doesn’t hold. They extend the results of Horowitz

and Manski (1995) to learn about the causal effect of teenage childbearing on a teen mother’s

subsequent outcomes, using the natural experiment of miscarriages to form an instrumental

variable for teen births. This instrument is contaminated because miscarriges may not occur

randomly for a subset of the population (e.g., higher miscarriage rates are associated with

smoking and drinking, and these behaviors may be correlated with the outcomes of interest).

Of course, analyses of selectively observed data present many challenges, including but

not limited to the ones described in Section 2.1. Motivated by the question of whether the

age-adjusted mortality rate from cancer in 2000 was lower than that in the early 1970s,

Honoré and Lleras-Muney (2006) study partial identification of competing risk models (see

Peterson, 1976, for earlier partial identification results). To answer this question, they need

to contend with the fact that mortality rate from cardiovascular disease declined substantially

over the same period of time, so that individuals that in the early 1970s might have died from

cardiovascular disease before being diagnosed with cancer, do not in 2000. In this context,

it is important to carry out the analysis without assuming that the underlying risks are

independent. Honoré and Lleras-Muney show that bounds for the parameters of interest can

be obtained as the solution to linear programming problems. The estimated bounds suggest

much larger improvements in cancer than previously estimated.

Blundell, Gosling, Ichimura, and Meghir (2007) use UK data to study changes over time

in the distribution of male and female wages, and in wage inequality. Because the composition

of the workforce changes over time, it is difficult to disentangle that effect from changes in

the distribution of wages, given that the latter are observed only for people in the workforce.

Blundell, Gosling, Ichimura, and Meghir begin their empirical analysis by reporting worst

case bounds (as in Manski, 1994) on the CDF of wages conditional on covariates. They then

consider various restrictions on treatment selection, e.g., a first order stochastic dominance

assumption according to which people with higher wages are more likely to work, and derive

tighter bounds under this assumption (and under weaker ones). Finally, they bring to bear

shape restrictions. At each step of the analysis, they report the resulting bounds, thereby

illuminating the role played by each assumption in shaping the inference. Chandrasekhar,

Chernozhukov, Molinari, and Schrimpf (2018) provide best linear approximations to the

identification region for the quantile gender wage gap using CPS repeated cross-sections data

from 1975-2001, using treatment selection assumptions in the spirit of Blundell, Gosling,

Ichimura, and Meghir (2007) as well as exclusion restrictions.

Bhattacharya, Shaikh, and Vytlacil (2012) study the effect of Swan-Ganz catheterization

on subsequent mortality.22 Previous research had shown, using propensity score matching

22The Swan-Ganz catheter is a device placed in patients in the intensive care unit to guide therapy.
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(assuming that there are no unobserved differences between catheterized and non catheterized

patients) that Swan-Ganz catheterization increases the probability that patient die within

180 days from admission to the intensive care unit. Bhattacharya, Shaikh, and Vytlacil

re-analyze the data using (and extending) bounds results obtained by Shaikh and Vytlacil

(2011). These results are based on exclusion restrictions combined with a threshold crossing

structure for both the treatment and the outcome variables in problems where Y = T =

{0, 1}. Bhattacharya, Shaikh, and Vytlacil use as instrument for Swan-Ganz catheterization

the day of the week that the patient was admitted to the intensive care unit. The reasoning

is that patients are less likely to be catheterized on the weekend, but the admission day to

the intensive care unit is plausible uncorrelated with subsequent mortality. Their results

confirm that for some diagnoses, Swan-Ganz catheterization increases mortality at 30 days

after catheterization and beyond.

Manski and Pepper (2018) use data from Maryland, Virginia and Illinois to learn about

the impact of laws allowing individuals to carry concealed handguns (right-to-carry laws)

on violent and property crimes. Point identification of these treatment effects is possible

under invariance assumptions that certain features of treatment response are constant across

states and years. Manski and Pepper propose the use of weaker but more credible restrictions

according to which these features exhibit bounded variation – the invariance case being the

limit where the bound equals zero. They carry out their analysis under different combinations

of the bounded variation assumptions, and at each step they report the resulting bounds,

thereby illuminating the role played by each assumption in shaping the inference.

Mourifié, Henry, and Méango (2018) provide sharp bounds on the joint distribution of

potential (binary) outcomes in a Roy model with sector specific unobserved heterogeneity

and self selection based on potential outcomes. The key maintained assumption is that the

researcher has access to data that includes a stochastically monotone instrumental variable.

This is a selection shifter that is restricted to affect potential outcomes monotonically. An

example is parental education, which may not be independent from potential wages, but

plausibly does not negatively affect future wages. Under this assumption, Mourifié, Henry,

and Méango show that all observable implications of the model are embodied in the stochastic

monotonicity of observed outcomes in the instrument, hence Roy selection behavior can be

tested by checking this stochastic monotonicity. They apply the method to estimate a Roy

model of college major choice in Canada and Germany, with special interest in the under-

representation of women in STEM.

Mogstad, Santos, and Torgovitsky (2018) provide a general method to obtain sharp

bounds on a certain class of treatment effects parameters. This class is comprised of pa-

rameters that can be expressed as weighted averages of marginal treatment effects (Heckman

and Vytlacil, 1999, 2001, 2005). Torgovitsky (2019b) provides a general method, based on

copulas, to obtain sharp bounds on treatment effect parameters in semiparametric binary

models. A notable feature of both Mogstad, Santos, and Torgovitsky (2018) and Torgovitsky
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(2019b) is that the bounds are obtained as solutions to convex (even linear) optimization

problems, rendering them computationally attractive.

3 Partial Identification of Structural Models

The partial identification approach to learning structural parameters in economic models is

often semiparametric: the underlying models are specified up to parameters that are finite

dimensional (often preference parameters) along with parameters that are infinite dimensional

(often distribution functions). Contrary to the nonparametric bounds results discussed in

Section 2, structural partial identification usually yields an identification region that is not

constructive, in the sense that the boundary of the set is not obtained in closed form as a

functional of the distribution of the observable data. Rather, the identification region can

often be characterized as a level set of a properly specified criterion function.

While several early examples of set identification (e.g., Frisch, 1934; Marschak and An-

drews, 1944; Klepper and Leamer, 1984; Jovanovic, 1989; Phillips, 1989; Hansen, Heaton,

and Luttmer, 1995) were concerned with learning about parameters of structural models, the

systematic research program on partial identification of structural economic models finds its

genesis in the work of Manski and Tamer (2002), Tamer (2003) and Ciliberto and Tamer

(2009), and Haile and Tamer (2003). Each of these papers has advanced the literature in

fundamental ways, studying conceptually very distinct problems.

Manski and Tamer (2002) are concerned with partial identification (and estimation) of

nonparametric, semiparametric, and parametric conditional expectation functions when one

of the conditioning variables is interval valued. Hence, in their analysis, the root cause of the

identification problem is that the data is incomplete.

Tamer (2003) and Ciliberto and Tamer (2009) are concerned with identification (and

estimation) of simultaneous equation models with dummy endogeneous variables which are

representations of two-player entry games with multiple equilibria.23 Haile and Tamer (2003)

are concerned with nonparametric identification and estimation of the distribution of valua-

tions in a model of English auctions under weak assumptions on bidders’ behavior. In both

cases, the root cause of the identification problem is that the structural model is incomplete.

This is because the model makes multiple predictions for the observed outcome variables, but

does not specify a selection mechanism to pick one of them.24

Set-valued predictions for the observable outcome (endogenous variables) are a key feature

of partially identified structural models. The goal of this section is to explain how they

result in a wide array of theoretical frameworks, and how sharp identification regions can

be characterized using a unified approach based on random set theory. Although the work

23Ciliberto and Tamer (2009) consider more general multi-player entry games.
24In Haile and Tamer (2003), the observable outcome variables are the bidders’ bids. In Tamer (2003) and

Ciliberto and Tamer (2009), the observable outcome variables are the players’ actions.
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of Manski and Tamer (2002), Tamer (2003) and Ciliberto and Tamer (2009), and Haile and

Tamer (2003) has spurred many of the developments discussed in this section, for pedagogical

reasons I organize the presentation based on application topic rather than chronologically.

The work of Pakes (2010) and Pakes, Porter, Ho, and Ishii (2015) further stimulated a large

empirical literature that applies partial identification methods to a wide array of questions

of substantive economic importance, to which I return in Section 3.5.

3.1 Discrete Choice in Single Agent Random Utility Models

Let I denote a population of decision makers and Y = {c1, . . . , c|Y|} a finite universe of

potential alternatives (feasible set henceforth). Let U be a family of real valued functions

defined over the elements of Y. Let ∈∗ denote “is chosen from.” Then observed choice is

consistent with a random utility model if there exists a function πi drawn from U according

to some probability distribution, such that P(c ∈∗ C) = P(πi(c) ≥ πi(b) ∀b ∈ C) for all c ∈ C,

all non empty sets C ⊂ Y, and all i ∈ I (Block and Marschak, 1960). See Manski (2007a,

Chapter 13) for a textbook presentation of this class of models, and Matzkin (2007) for a

review of sufficient conditions for point identification of nonparametric and semiparametric

limited dependent variables models.

As in the seminal work of McFadden (1973), assume that the decision makers and alter-

natives are characterized by observable and unobservable vectors of real valued attributes.

Denote the observable attributes by xi ≡ {x1
i , (x

2
ic, c ∈ Y)}, i ∈ I. These include attribute

vectors x1
i that are specific to the decision maker, as well as attribute vectors x2

ic that include

components that are specific to the alternative and components that are indexed by both.

Denote the unobservable attributes (preferences) by νi ≡ (ζi, {εic, c ∈ Y}), i ∈ I. These are

idiosyncratic to the decision maker and similarly may include alternative and decision maker

specific terms. Denote X ,V the supports of x, ν, respectively.

In what follows, I label “standard” a random utility model that maintains some form of

exogeneity for xi (e.g., mean or quantile or statistical independence with νi) and presupposes

observation of data that include {(Ci,yi,xi) : yi ∈∗ Ci}, i = 1, . . . , n, with |Ci| ≥ 2 (e.g.,

Manski, 1975, Assumption 1). Often it is also assumed that all members of the population

face the same choice set, so that Ci = D for all i ∈ I and some known D ⊆ Y, although this

requirement is not critical to identification analysis.

3.1.1 Semiparametric Binary Choice Models with Interval Valued Covariates

Manski and Tamer (2002) provide inference methods for nonparametric, semiparametric, and

parametric conditional expectation functions when one of the conditioning variables is interval

valued. I have discussed their nonparametric sharp bounds on conditional expectations with

interval valued covariates in Identification Problem 2.3 and Theorem SIR-2.4. Here I focus

on their analysis of semiparametric binary choice models. Compared to the generic notation
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set forth at the beginning of Section 3.1, I let Ci = Y = {0, 1} for all i ∈ I, and with some

abuse of notation I denote the vector of observed covariates (xL,xU,w).

Identification Problem 3.1 (Semiparametric Binary Regression with Interval Covari-

ate Data): Let (y,xL,xU,w) ∼ P be observable random variables in {0, 1} × R × R × Rd,
d <∞, and let x ∈ R be an unobservable random variable. Suppose that y = 1(wθ+δx+ε >

0). Here ε is an unobserved heterogeneity term with continuous distribution conditional on

(w,x,xL,xU), (w,x,xL,xU)-a.s., and θ ∈ Θ ⊂ Rd is a parameter vector with compact pa-

rameter space Θ. Suppose δ > 0, and further normalize δ = 1 because the threshold-crossing

condition is invariant to the scale of the parameters. Assume that R, the joint distribution of

(y,x,xL,xU,w, ε), is such that R(xL ≤ x ≤ xU) = 1; R(ε|w,x,xL,xU) = R(ε|w,x); and for

a specified α ∈ (0, 1), qεR(α,w,x) = 0 and R(ε ≤ 0|w,x) = α. In the absence of additional

information, what can the researcher learn about θ?

Compared to Identification Problem 2.3 (see p. 21), here one continues to impose x ∈
[xL,xU] a.s. The sign restriction on δ replaces the monotonicity restriction (M) in Identi-

fication Problem 2.3, but does not imply it unless the distribution of ε is independent of x

conditional on w. The quantile independence restriction is inspired by Manski (1985).

For given θ ∈ Θ, this model yields set valued predictions because y = 1 can occur

whenever ε > −wθ−xU, whereas y = 0 can occur whenever ε ≤ −wθ−xL, and −wθ−xU ≤
−wθ−xL. Conversely, observation of y = 1 allows one to conclude that ε ∈ (−wθ−xU,+∞),

whereas observation of y = 0 allows one to conclude that ε ∈ (−∞,−wθ − xL], and these

regions of possible realizations of ε overlap. In contrast, when x is observed the prediction

is unique because the value −wθ − x partitions the space of realizations of ε in two disjoint

sets, one associated with y = 1 and the other with y = 0. Figure 3.125 depicts the model’s

set-valued predictions for y given (w,xL,xU) as a function of ε, and the model’s set valued

predictions for ε given (w,xL,xU) as a function of y.26

Why does this set-valued prediction hinder point identification? The reason is that the

distribution of the observable data relates to the model structure in an incomplete man-

ner: P(y = 1|w,xL,xU) =
∫
R(y = 1|w,x,xL,xU)dR(x|w,xL,xU) =

∫
R(ε > −wθ −

x|w,x)dR(x|w,xL,xU), (w,xL,xU)-a.s. Because the distribution R(x|w,xL,xU) is left

completely unspecified, one can find multiple values for θ, for R(x|w,xL,xU), and for R(ε|w,x),

satisfying the assumptions in Identification Problem 3.1, such that they yield the observed

value of P(y = 1|w,xL,xU), (w,xL,xU)-a.s. Nonetheless, in general, not all values of θ ∈ Θ

can be paired with some R(x|w,xL,xU) and R(ε|w,x) so that they are compatible with

P(y = 1|w,xL,xU), (w,xL,xU)-a.s. Hence, θ can be partially identified using the informa-

25This figure is based on Figure 1 in Manski and Tamer (2002).
26See Chesher and Rosen (2019, Chapter XXX in this Volume) for an extensive discussion of the duality

between the model’s set valued predictions for y as a function of ε and for ε as a function of y, in both cases
given the observed covariates.
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ε

Model predicts y = 0

when ε is realized here

Model predicts y = 1

when ε is realized here

Model predicts

y = 0 or y = 1

when ε is realized here

−wθ − xU −wθ − x −wθ − xL

Model admits ε ∈ (−∞,−wθ − xL] when y = 0

Model admits ε ∈ (−wθ − xU,+∞) when y = 1

Figure 3.1: Predicted value of y as a function of ε, and admissible values of ε for each realization of
y, in Identification Problem 3.1, conditional on (w,xL,xU).

tion in the model and observed data.

Theorem SIR-3.1 (Semiparametric Binary Regression with Interval Covariate Data):

Under the Assumptions of Identification Problem 3.1, the sharp identification region for θ is

HP[θ] =
{
ϑ ∈ Θ : P

(
(w,xL,xU) : {0 ≤ wϑ+ xL ∩ P(y = 1|w,xL,xU) ≤ 1− α}

∪ {wϑ+ xU ≤ 0 ∩ P(y = 1|w,xL,xU) ≥ 1− α}
)

= 0
}
. (3.1)

Proof. Define the set of possible values for the unobservable associated with the possible

realizations of (y,w,xL,xU), illustrated in Figure 3.1, as27

Eθ(y,w,xL,xU) =

{
(−∞,−wθ − xL] if y = 0,

[−wθ − xU,+∞) if y = 1.

Then Eθ(y,w,xL,xU) is a random closed set. To simplify notation, I write Eθ(y) ≡ Eθ(y,w,xL,xU),

suppressing this set’s dependence on (w,xL,xU). Let (Eθ(y),w,xL,xU) = Eθ(y)×(w,xL,xU) =

{(e,w,xL,xU) : e ∈ Eθ(y)}. If the model is correctly specified, (ε,w,xL,xU) ∈ (Eθ(y),w,xL,xU)

a.s. for the data generating value of θ. By Theorem A.1 and Theorem 2.33 in Molchanov

and Molinari (2018), this occurs if and only if

R(ε ∈ C|w,xL,xU) ≥ P(Eθ(y) ⊂ C|w,xL,xU), (w,xL,xU)-a.s. ∀C ∈ F,

where F here denotes the collection of closed subsets of R. The above condition can be

rewritten as∫
R(ε ∈ C|w,x,xL,xU)dR(x|w,xL,xU) ≥ P(Eθ(y) ⊂ C|w,xL,xU), (w,xL,xU)-a.s. ∀C ∈ F.

27In the definition of Eθ(1,w,xL,xU) I exploit the fact that under the maintained assumptions P(ε =
−wθ − xU|w,x,xL,xU) = 0 to enforce its closedness.
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The assumption that R(ε|w,x,xL,xU) = R(ε|w,x) yields that the above system of inequali-

ties reduces to∫
R(ε ∈ C|w,x)dR(x|w,xL,xU) ≥ P(Eθ(y) ⊂ C|w,xL,xU), (w,xL,xU)-a.s. ∀C ∈ F.

Next, note that given the possible realizations of Eθ(y), the above inequality is trivially

satisfied unless C = (−∞, t] or C = [t,∞) for some t ∈ R. Finally, the only restriction on the

distribution of ε is the quantile independence condition, hence it suffices to consider t = 0.

That, together with the definition of Eθ(y), reduces the above inequalities to

1− α ≥ P(y = 1|w,xL,xU) for all (w,xL,xU) such that wθ + xU ≤ 0, (3.2)

1− α ≤ P(y = 1|w,xL,xU) for all (w,xL,xU) such that wθ + xL ≥ 0. (3.3)

Any given ϑ ∈ Θ, ϑ 6= θ, violates the above conditions if and only if P
(
(w,xL,xU) : {0 ≤

wϑ+xL∩P(y = 1|w,xL,xU) ≤ 1−α}∪{wϑ+xU ≤ 0∩P(y = 1|w,xL,xU) ≥ 1−α}
)
> 0.

Key Insight 3.1: The analysis in Manski and Tamer (2002) systematically studies what

can be learned under increasingly strong sets of assumptions. These include both assumptions

that constrain the model from fully nonparametric to semiparametric to parametric, as well

as assumptions that constrain the distribution of the observable covariates. For example,

Manski and Tamer (2002, Corollary to Proposition 2) provide sufficient conditions on the

joint distribution of (w,xL,xU) that allow for identification of the sign of components of

θ, as well as for point identification of θ.28 The careful analysis of the identifying power

of increasingly stronger assumptions is the pillar of the partial identification approach to

empirical research put forward by Manski, as illustrated in Section 2. The work of Manski

and Tamer (2002) was the first example of this kind in semiparametric structural models.

Revisiting Manski and Tamer’s 2002 study of Identification Problem 3.1 nearly 20 years

later yields important insights on the differences between point and partial identification

analysis. It is instructive to take as a point of departure the analysis of Manski (1985), which

under the additional assumption that (y,w,x) is observed implies that

wθ + x > 0⇔ P(y = 1|w,x) > 1− α.

Hence, θ is identified relative to ϑ ∈ Θ if

P ((w,x) : {wθ + x ≤ 0 < wϑ+ x} ∪ {wϑ+ x ≤ 0 < wθ + x}) > 0. (3.4)

Manski and Tamer extend this reasoning to the case that x is unobserved, but known to

satisfy x ∈ [xL,xU] a.s. The first part of their analysis, collected in their Proposition 2,

28This Corollary is related in spirit to the analysis in Manski (1988).
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characterizes the collection of values that cannot be distinguished from θ on the basis of

P(w,xL,xU) alone, through a clear generalization of (3.4):

{ϑ ∈ Θ : P ((w,xL,xU) : {wθ + xU ≤ 0 < wϑ+ xL} ∪ {wϑ+ xU ≤ 0 < wθ + xL}) = 0}.
(3.5)

It is worth emphasizing that the characterization in (3.5) depends on θ, and makes no use

of the information in P(y|w,xL,xU). The Corollary to Proposition 2 yields conditions on

P(w,xL,xU) under which either the sign of components of θ, or θ itself, can be identified,

regardless of the distribution of y|w,xL,xU.

Manski and Tamer (2002, Lemma 1) provide a second characterization, which presupposes

knowledge of P(y,w,xL,xU), yields a set smaller than the one in (3.5), and coincides with

the result in Theorem SIR-3.1. Manski and Tamer (2002) use the same notation for the

two sets, although the sets are conceptually and mathematically distinct.29 The result in

Theorem SIR-3.1 is due to Manski and Tamer (2002, Lemma 1), but the proof provided here

is new, as is the use of random set theory in this application.30

Key Insight 3.2: The preceding discussion allows me to draw a novel connection between

the two characterizations in Manski and Tamer (2002), and the distinction put forward by

Chesher and Rosen (2017b) and Chesher and Rosen (2019, Chapter XXX in this Volume,

Definition 2) between potential observational equivalence and observational equivalence with

partial identification. Applying Chesher and Rosen’s definition, parameter vectors θ and

ϑ are potentially observationally equivalent if there exists some distribution of y|w,xL,xU

for which conditions (3.2)-(3.3) hold. Simple algebra confirms that this yields the region in

(3.5). This notion of potential observational equivalence parallels one of the notions used to

obtain sufficient conditions for point identification in the semiparametric literature (as in,

e.g. Manski, 1985). Both notions, as explained in Chesher and Rosen (2019, Section 4.1),

make no reference to the conditional distribution of outcomes given covariates delivered by

the process being studied. To obtain that parameters θ and ϑ are observationally equivalent

one requires instead that conditions (3.2)-(3.3) hold for the observed distribution P(y =

1|w,xL,xU) (as opposed to “for some distribution” as in the case of potential observational

equivalence). This yields the sharp identification region in (3.1).

Magnac and Maurin (2008) consider a different but closely related model to the one

studied by Manski and Tamer. They assume that an instrumental variable z is available,

that ε is independent of x conditional on (w, z), and that Corr(z, ε) = 0. They assume

29This was confirmed in personal communication with Chuck Manski and Elie Tamer.
30The proof closes a gap in the argument in Manski and Tamer (2002) connecting their Proposition 2 and

Lemma 1, due to the fact that for a given ϑ the sets {(w,xL,xU) : {wθ+xU ≤ 0 < wϑ+xL} ∪ {wϑ+xU ≤
0 < wθ + xL}} and {(w,xL,xU) : {0 < wϑ + xL ∩ P(y = 1|w,xL,xU) ≤ 1 − α} ∪ {wϑ + xU ≤ 0 ∩ P(y =
1|w,xL,xU) > 1− α}} need not coincide, with the former being a subset of the latter due to part (c) of the
proof of Proposition 2 in Manski and Tamer (2002).
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that the distribution of x is absolutely continuous with support [v1, vk], and that x is not

a deterministic linear function of (w, z). They consider the case that x is unobserved but

known to belong to one of the fixed (and known) intervals [vi, vi+1), i = 1, . . . , k − 1, with

P[x ∈ [vi, vi+1)|w, z] > 0 almost surely for all i. Finally, they assume that (−wθ−ε) ∈ [v1, vk]

with probability one. They do not, however, make quantile independence assumptions.

Their point of departure is the fact that under these conditions, if x were observed, one

could employ a transformation proposed by Lewbel (2000) for the binary outcome y, such

that θ can be identified through a simple linear moment condition. Specifically, let

ỹ =
y − 1x>0

fx(x|w, z)
,

where fx(·|w, z) is the conditional density function of x. Then, using the assumption that z

and ε are uncorrelated, one has

EP(zỹ)− EP(zw>)θ = 0. (3.6)

With interval valued x, Magnac and Maurin (2008) denote by x∗ the random variable

that takes value i ∈ {1, . . . , k − 1} if x ∈ [vi, vi+1), so that the observed data are draws from

the joint distribution of (y,w, z,x∗). They let δ(x∗) = vx∗+1 − vx∗ denote the length of the

x∗-th interval, and define the transformed outcome variable:

y∗ =
δ(x∗)

P(x∗ = i|w, z)
y − vk.

The assumptions on x yield that, given z and w, ε does not depend on x∗. Moreover,

P(y = 1|x∗,w, z) is non-decreasing in x∗ and Fε(·|z,w,x,x∗) = Fε(·|z,w). Magnac and

Maurin (2008) show that the sharp identification region for θ is

HP[θ] = EP(zw>)−1EP(zy∗ + zU), (3.7)

where EP(zy∗+ zU) is the (Aumann or selection) expectation of the random interval zy∗+

zU , see Definition A.4, with

U =

[
−
k−1∑
i=1

(ri(w, z)− ri−1(w, z))(vi+1 − vi),
k−1∑
i=1

(ri+1(w, z)− ri(w, z))(vi+1 − vi)

]
.

In this expression, rx∗(w, z) ≡ P(y = 1|x∗,w, z) and by convention r0(w, z) = 0 and

rK(w, z) = 1, see Magnac and Maurin (2008, Theorem 4). If ri(w, z), i = 0, . . . , k, were

observed, this characterization would be very similar to the one provided by Beresteanu and

Molinari (2008) for Identification Problem 2.4, see equation (2.25). However, these random

functions need to be estimated. While the first-stage estimation of ri(w, z), i = 0, . . . , k,
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does not affect the identification arguments, it does complicate inference, see Chandrasekhar,

Chernozhukov, Molinari, and Schrimpf (2018) and the discussion in Section 4.

Manski and Tamer (2002) also study identification of parametric regression models under

the assumptions in Identification Problem 3.2; Theorem SIR-3.2 below reports the result.31

The proof is omitted because it follows immediately from the proof of Theorem SIR-2.4.32

Identification Problem 3.2 (Parametric Regression with Interval Covariate Data):

Let (y,xL,xU,w) ∼ P be observable random variables in R × R × R × Rd, d < ∞, and

let x ∈ R be an unobservable random variable. Assume that the joint distribution R of

(y,x,xL,xU) is such that R(xL ≤ x ≤ xU) = 1 and ER(y|w,x,xL,xU) = EQ(y|w,x).

Suppose that EQ(y|w,x) = f(w,x; θ), with f : Rd×R×Θ 7→ R a known function such that

for each w ∈ R and θ ∈ Θ, f(w, x; θ) is weakly increasing in x. In the absence of additional

information, what can the researcher learn about θ?

Theorem SIR-3.2 (Parametric Regression with Interval Covariate Data): Under the

Assumptions of Identification Problem 3.2, the sharp identification region for θ is

HP[θ] =
{
ϑ ∈ Θ : f(w,xL;ϑ) ≤ EP(y|w,xL,xU) ≤ f(w,xU;ϑ), (w,xL,xU)-a.s.

}
. (3.8)

Aucejo, Bugni, and Hotz (2017) study Identification Problem 3.2 for the case of missing

covariate data without imposing the mean independence restriction of Manski and Tamer

(2002) (Assumption MI in Identification Problem 2.3). As discussed in Section 2.3, restriction

MI is undesirable in this context because it implies the assumption that data are missing at

random. Aucejo, Bugni, and Hotz (2017) characterize HP[θ] under the weaker assumptions,

but face the problem that this characterization is usually too complex to compute or to use

for inference. They therefore provide outer regions that are easier to compute, and they show

that these regions are informative and relatively easy to use.

Manski (2010) studies random expected utility models, where agents choose the alternative

that maximizes their expected utility. The core difference with standard models is that

Manski does not fully specify the subjective beliefs that agents use to form their expectations,

but only a set of such beliefs. Manski shows that the resulting, partially identified, discrete

choice model can be formulated similarly to how Manski and Tamer (2002)’s treat interval

valued covariates, and leverages their results to obtain bounds on preference parameters.

31Their analysis applies to parametric regression models that go beyond the ones for binary choice.
32Beresteanu, Molchanov, and Molinari (2011, Supplementary Appendix F) extend the analysis of Manski

and Tamer (2002) to multinomial choice models with interval covariates.
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3.1.2 Endogenous Explanatory Variables

Whereas the standard random utility model presumes some form of exogeneity for xi, in

practice often some explanatory variables are endogenous. This problem has been addressed

in the literature to obtain point identification of the model through a combination of several

assumptions, including large support conditions, special regressors, control function restric-

tions, and more (see, e.g., Matzkin, 1993; Berry, Levinsohn, and Pakes, 1995; Lewbel, 2000;

Petrin and Train, 2010). Here I discuss how to carry out identification analysis in the absence

of such assumptions when instrumental variables z are available, as proposed by Chesher,

Rosen, and Smolinski (2013).33

Identification Problem 3.3 (Discrete Choice with Endogenous Explanatory Vari-

ables): Let (y,x, z) ∼ P be observable random variables in Y × X × Z. Suppose that

all members of the population face the same choice set Y. Suppose that each alternative has

one unobservable attribute εc, c ∈ Y and let ν ≡ (εc1 , . . . , εc|Y|).
34 Let ν ∼ Q and assume that

ν ⊥⊥ z. Suppose Q belongs to a specified family of distributions T , and that the conditional

distribution of ν|x, z, denoted S(ν|x, z), is absolutely continuous with respect to Lebesgue

measure with everywhere positive density on its support, (x, z)-a.s. Suppose utility is sepa-

rable in unobservables and has a functional form known up to finite dimensional parameter

vector δ ∈ ∆ ⊂ Rm, so that πi(c) = g(xc; δ) + εc, (xc, εc)-a.s., for all c ∈ Y. Maintain the

normalizations g(xc|Y| ; δ) = 0 for all δ ∈ ∆ and all x ∈ X , and g(x0
c ; δ) = ḡ for known (x0

c , ḡ)

for all δ ∈ ∆ and c ∈ Y.35 Given (x, z, ν), suppose y is the utility maximizing choice in Y.

In the absence of additional information, what can the researcher learn about (δ,Q)?

The key challenge to identification here results because the distribution of ν can vary

across different values of x, both conditional and unconditional on z. Why does this fact

hinder point identification? For any c ∈ Y and x ∈ X , the model yields that c is optimal,

and hence chosen, if and only if ν realizes in the set

Eδ(c, x) = {e ∈ V : g(xc; δ) + ec ≥ g(xd; δ) + ed ∀d ∈ Y}. (3.9)

Figure 3.2 plots the set Eδ(y,x) in a stylized example with Y = {1, 2, 3} and X = {x1, x2}, as

a function of (ε1 − ε3, ε2 − ε3).36 Consider the model implied distribution, denoted M below,

33Chesher, Rosen, and Smolinski (2013) consider a more general case than I do here, with utility function
that is not parametrically specified and not restricted to be separable in the unobservables. Even in that more
general case, the identification analysis follows through similar steps as reported here.

34Compared to the general model put forward in Section 3.1, in this model there are no preference hetero-
geneity terms ζ (random coefficients) that vary only across decision makers.

35Of course, under these conditions one can work directly with utility differences. To try and economize on
notation, I do not explicitly do so here.

36This figure is based on Figures 1-3 in Chesher, Rosen, and Smolinski (2013).
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of the optimal choice. Then, recalling the restriction z ⊥⊥ ν, we have

M(c|x ∈ Rz, z = z; δ) =

∫
x∈Rz

S(Eδ(c,x)|x = x, z = z)dP(x|z), ∀ Rz ⊆ X , z-a.s. (3.10)

Q(F ) =

∫
x∈X

S(F |x = x, z = z)dP(x|z), ∀ F ⊆ Z, z-a.s., (3.11)

Because the joint distribution of (x, ν) conditional on z is left completely unrestricted (except

for (3.11)), one can find multiple triplets (δ,Q,S) satisfying the maintained assumptions and

such that M(c|x ∈ Rv, z = z; δ) = P(c|x ∈ Rz, z = z) for all c ∈ Y and Rz ⊆ X , z-a.s.

It is instructive to compare (3.10)-(3.11) with McFadden’s 1973 conditional logit. Under

the standard assumptions, x ⊥⊥ ν so that no instrumental variables are needed. This yields

S = Q x-a.s., and in addition Q is typically known, with corresponding simplifications in

(3.10). The resulting system of equalities can be inverted under standard order and rank

conditions to yield point identification of δ.

Further insights can be gained by looking at Figure 3.2. As the value of x changes from x1

to x2, the region of values where, say, alternative 1 is optimal changes. When x is exogenous,

say independent of ν, this yields a system of inequalities relating (δ,Q) to the observed

distribution P(y,x) which, as stated above, can be inverted to obtain point identification.

When x is endogenous, this reasoning breaks down because the conditional distribution

S(ν|x, z) may change across realizations of x. Figure 3.2 also offers an instructive way to

connect Identification Problem 3.3 with the identification problem studied in the previous

Section 3.1.1 (as well as with those in Sections 3.2-3.3 below). In the latter, the model has set-

valued predictions for the outcome variable given realizations of the covariates and unobserved

heterogeneity terms. In the problem studied here, the model has singleton-valued predictions

for the outcome variable of interest y as a function of the observable explanatory variables

x and unobservables ν. However, for given realization of ν, the model admits sets of values

for the endogenous variables (y,x). Because the model is silent on the joint distribution of

(x, ν) (except for requiring that the marginal distribution of ν does not depend on z), partial

identification results.

It is possible to couple the maintained assumptions with the observed data to learn

features of (δ,Q). Because the observed choice y is assumed to maximize utility, for the data

generating (δ,Q) the model yields

ν ∈ Eδ(y,x)-a.s., (3.12)

with Eδ(y,x) a random closed set as per Definition A.1. Equation (3.12) exhausts the mod-

eling content of Identification Problem 3.3. Theorem A.1 (as expressed in (A.5)) can then

be leveraged to extract its empirical content from the observed distribution P(y,x, z). As a

preparation for doing so, note that for given F ∈ F (with F the collection of closed subsets
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Figure 3.2: The set Eδ in equation (3.9) and the corresponding admissible values for (y,x) as a
function of (ε1 − ε3, ε2 − ε3) under the simplifying assumption that X = {x1, x2} and Y = {1, 2, 3}.
The admissible values for (y,x) are {(c, x1)} in the gray area, and {(c, x2)} in the area with vertical
lines. Because the two areas overlap, the model has set-valued predictions for (y,x).

of V) and δ ∈ ∆m, we have

P(Eδ(y,x) ⊆ F |z) =

∫
x∈X

∑
c∈Y

1(Eδ(c, x) ⊆ F )P(y = c|x = x, z)dP(x|z),

so that this probability can be learned from the observed data.

Theorem SIR-3.3 (Discrete Choice with Endogenous Explanatory Variables): Under

the assumptions of Identification Problem 3.3, the sharp identification region for (δ,Q) is

HP[δ,Q] = {δ ∈ ∆,Q ∈ T : Q(F ) ≥ P(Eδ(y,x) ⊆ F |z), ∀F ∈ F , z-a.s.} . (3.13)

Proof. To simplify notation, I write Eδ ≡ Eδ(y,x). Let (Eδ,x, z) = {(e,x, z) : e ∈ Eδ}. If the

model is correctly specified, (ν,x, z) ∈ (Eδ,x, z)-a.s. for the data generating value of (δ,Q).

By Theorem A.1 and Theorem 2.33 in Molchanov and Molinari (2018), this occurs if and

only if

S(F |x, z) ≥ P(Eδ(y,x) ⊆ F |x, z), ∀F ∈ F , (x, z)-a.s.

Since the distribution of ν is only restricted so that z ⊥⊥ ν, one can integrate both sides of the

inequality with respect to x. The final result follows because Q does not depend on z.

While Theorem SIR-3.3 relies on checking inequality (3.13) for all F ∈ F , the results

in Chesher, Rosen, and Smolinski (2013, Theorem 2) and Molchanov and Molinari (2018,

Chapter 2) can be used to obtain a smaller collection of sets over which to verify it.

Key Insight 3.3: A conceptual contribution of Chesher, Rosen, and Smolinski (2013)

is to show that one can frame models with endogenous explanatory variables as incomplete

models. Incompleteness here results from the fact that the model does not specify how the

endogenous variables x are determined. One can then think of these as models with set-
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valued predictions for the endogeneous variables (y and x in this application), even though the

outcome of the model (y) is uniquely predicted by the realization of the observed explanatory

variables (x) and the unobserved heterogeneity terms (ν). Random set theory can again be

leveraged to characterize sharp identification regions.

Chesher and Rosen (2019, Chapter XXX in this Volume) discuss related generalized

instrumental variables models where random set methods are used to obtain characterizations

of sharp identification regions in the presence of endogenous explanatory variables.

3.1.3 Unobserved Heterogeneity in Choice Sets and/or Consideration Sets

As pointed out in Manski (1977), often the researcher observes (yi,xi) but not Ci, i =

1, . . . , n. Even when Ci is observable, the researcher may be unaware of which of its elements

the decision maker actually evaluates before selecting one. In what follows, to shorten expres-

sions, I refer to both the measurement problem of unobserved choice sets and the (cognitive)

problem of limited consideration as “unobserved heterogeneity in choice sets.”

Learning features of preferences using discrete choice data in the presence of unobserved

heterogeneity in choice sets is a formidable task. When a decision maker chooses an alterna-

tive, this may be because her choice set equals the feasible set and the chosen alternative is

the one yielding the highest utility. Then observed choice reveals preferences. But it can also

be that the decision maker has access to/considers only the chosen alternative (e.g., Block

and Marschak, 1960, p. 99). Then observed choice is driven entirely by choice set compo-

sition, and is silent about preferences. A plethora of scenarios between these extremes is

possible, but the researcher does not know which has generated the observed data. This fun-

damental identification problem calls either for restrictions on the random utility model and

consideration set formation process, or for collection of richer data that eliminates unobserved

heterogeneity in Ci or allows for enhanced modeling of it (see, e.g., Caplin, 2016).

A sizable literature spanning behavioral economics, econometrics, experimental economics,

marketing, microeconomics, and psychology, has put forward different models to formalize the

complex process that leads to the formation of the set of alternatives that the agent considers

or can choose from (see, e.g., Simon, 1959; Howard, 1963; Tversky, 1972, for early contri-

butions). Manski (1977) proposes both a general econometric model where decision makers

draw choice sets from an unknown distribution, as well as a specific model of choice set for-

mation, independent from preferences, and studies their implications for the distributional

structure of random utility models.37

However, assumptions about the choice set formation process are often rooted in a desire

to achieve point identification rather than in information contained in the model or observed

37The specific model in Manski (1977, Section II-A) is often used in applications. It posits that each
alternative c ∈ Y enters the decision maker’s choice set with probability φc, independently of the other
alternatives. The probability φc may depend on observable individual characteristics, and φc = 1 for at least
one option c ∈ Y (the “default” good).
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ν
ν̄|Y|−2,|Y| · · · ν̄2,4 ν̄1,3ν̄|Y|−1,|Y| ν̄2,3 ν̄1,2

Model predicts

y = c|Y|−1 or y = c|Y|
· · · Model predicts

y = c2 or y = c3

Model predicts

y = c1 or y = c2

Figure 3.3: Predicted value of y in Identification Problem 3.4 as a function of ν for κ = |Y| − 1. In
this case, C = Y \ {c} for some c ∈ Y, and the model predicts either the first or the second best
alternative in Y.

data.38 It is then important to ask what can be learned about decision maker’s preferences

under minimal assumptions on the choice set formation process. Allowing for unrestricted

dependence between choice sets and preferences, while challenging for identification analysis,

is especially relevant. Indeed, decision makers’ unobserved attributes may determine both

their preferences and which items in the feasible set they pay attention to or are available to

them (e.g., through unobserved liquidity constraints, unobserved characteristics such as reli-

gious preferences in the context of school choice, or behavioral phenomena such as aversion

to extremes, salience, etc.). Here I use the framework put forward by Barseghyan, Cough-

lin, Molinari, and Teitelbaum (2019) to study identification of discrete choice models with

unobserved heterogeneity in choice sets and preferences.

Identification Problem 3.4 (Discrete Choice with Unobserved Heterogeneity in Choice

Sets and Preferences): Let (y,x) ∼ P be observable random variables in Y × X . Assume

that there exists a real valued function g, which for simplicity I posit known up to parameter

δ ∈ ∆ ⊂ Rm and continuous in its second argument, such that πi(c) = g(xic, νi; δ), (xic, νi)-

a.s., for all c ∈ Y, i ∈ I, where xic denotes the vectors of attributes relevant to alternative c,

and includes attributes that are alternative invariant (x1
i in the general notation laid out in

Section 3.1). Suppose that y = arg maxc∈C g(xc, ν; δ), where ties are assumed to occur with

probability zero and C is an unobservable choice set drawn from the subsets of Y according

to some unknown probability distribution. Suppose P(|C| ≥ κ) = 1 for some known constant

κ ≥ 2. Let Q denote the distribution of ν, and assume that it is known up to a finite

dimensional parameter γ ∈ Γ ⊂ Rk. For simplicity, assume that ν ⊥⊥ x.39 In the absence of

additional information, what can the researcher learn about θ ≡ [δ; γ]?

The model just laid out has set valued predictions for the decision maker’s optimal choice,

because different alternatives might be optimal depending on which choice set the decision

maker draws. Figure 3.3, which is based on the analysis in Barseghyan, Coughlin, Molinari,

and Teitelbaum (2019), illustrates the set valued predictions in a stylized example. In the

38These assumptions are akin to assumptions about selection mechanisms in models with multiple equilibria.
The latter are discussed further below in Section 3.2.1, along with their criticisms.

39This assumption can be relaxed as discussed in Matzkin (2007). The procedure proposed here can also
be adapted to allow for endogenous explanatory variables as in Section 3.1.2 by combining the results in
Barseghyan, Coughlin, Molinari, and Teitelbaum (2019) with those in Chesher, Rosen, and Smolinski (2013).
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figure ν is assumed to be a scalar; ν̄j,m denotes the threshold value of ν above which cj

yields higher utility than cm and below which cm yields higher utility than cj (the threshold’s

dependence on (x; δ) is suppressed for notational convenience). Consider the case that ν ∈
[ν̄2,3, ν̄1,2], so that c2 is the option yielding the highest utility among all options in Y. When

κ = |Y| − 1, the agent may draw a choice set that does not include one of the alternatives in

Y. If the excluded alternative is not c2 (or if C realizes equal to Y), the model predicts that

the decision maker chooses c2. If C realizes equal to Y \ {c2}, the model predicts that the

decision maker chooses the second best: c1 if ν ∈ [ν̄1,3, ν̄1,2], and c3 if ν ∈ [ν̄2,3, ν̄1,3].

Why does this set valued prediction hinder point identification? The reason is similar

to the explanation given for Identification Problem 3.1: the distribution of the observable

data relates to the model structure in an incomplete manner, because the distribution of

the (unobserved) choice sets is left completely unspecified. Barseghyan, Coughlin, Molinari,

and Teitelbaum (2019) show that one can find multiple candidate distributions for C and

parameter vectors ϑ, such that together they yield a model implied distribution for y|x that

matches P(y|x), x-a.s.

Barseghyan, Coughlin, Molinari, and Teitelbaum propose to work directly with the set

of model implied optimal choices given (x, ν) associated with each possible realization of C,

which is depicted in Figure 3.3 for a specific example. The key idea is that, according to

the model, the observed choice maximizes utility among the alternatives in C. Hence, for

the data generating value of θ, it belongs to the set of model implied optimal choices. With

this, the authors are able to characterize HP[θ] through Theorem A.1 as the collection of

parameter vectors that satisfy a finite number of conditional moment inequalities.

Key Insight 3.4: Barseghyan, Coughlin, Molinari, and Teitelbaum (2019) show that

working directly with the set of model implied optimal choices given (x, ν) allows one to

dispense with considering all possible distributions of choice sets that are allowed for in Iden-

tification Problem 3.4 to complete the model. Such distributions may depend on ν even after

conditioning on observables and may constitute an infinite dimensional nuisance parameter,

which creates great difficulties for the computation of HP[θ] and for inference.

Identification Problem 3.4 sets up a structure where preferences include idiosyncratic

components ν that are decision maker specific and can depend on C, and where heterogeneity

in C can be driven either by a measurement problem, or by the decision maker’s limited

attention to the options available to her. However, it restricts the family of utility functions

to be known up to a finite dimensional parameter vector δ.

A rich literature in decision theory has analyzed a different framework, where the decision

maker’s choice set is observable to the researcher, but the decision maker does not consider all

alternatives in it (for recent contributions see, e.g., Masatlioglu, Nakajima, and Ozbay, 2012;

Manzini and Mariotti, 2014). In this literature, the utility function is left completely unspec-

ified, so that interest focuses on identification of preference rankings of the available options.
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Unobserved heterogeneity in preferences is assumed away, so that heterogeneous choice is

driven by randomness in consideration sets. If the consideration set formation process is

left unspecified or is subject only to weak restrictions, point identification of the preference

orderings is not possible even if preferences are homogeneous and the researcher observes a

representative agent facing multiple distinct choice problems with varying choice sets. Catta-

neo, Ma, Masatlioglu, and Suleymanov (2017) propose a general model for the consideration

set formation process where the only restriction is a weak and intuitive monotonicity condi-

tion: the probability that any particular consideration set is drawn does not decrease when

the number of possible consideration sets decreases. Within this framework, they provide

revealed preference theory and testable implications for observable choice probabilities.

Identification Problem 3.5 (Homogeneous Preferences Ranking in Random Attention

Models): Let (y,C) ∼ P be a pair of observable random variable and random set in Y ×D,

where D = {D : D ⊆ Y} \ ∅.40 Let µ : D × D → [0, 1] denote an attention rule such that

µ(A|G) ≥ 0 for all A ⊆ G, µ(A|G) = 0 for all A * G, and
∑

A⊂G µ(A|G) = 1, A,G ∈ D.

Assume that for any b ∈ G \A,

µ(A|G) ≤ µ(A|G \ {b}), (3.14)

and that the decision maker has a strict preference ordering � on Y (but no other restriction

is placed on it).41 In the absence of additional information, what can the researcher learn

about �?

Cattaneo, Ma, Masatlioglu, and Suleymanov (2017) posit that an observed distribution

of choice P(y|C) has a random attention representation, and hence they name it a random

attention model, if there exists a preference ordering � over Y and a monotonic attention

rule µ such that

p(c|G) ≡ P(y = c|C = G) =
∑
A⊆G

1(c is � -best in A)µ(A|G), ∀c ∈ G, ∀G ∈ D. (3.15)

Hence, the sharp identification region for the preference ordering, denoted HP[�], is given

by the collection of preference orderings for which one can find a monotonic attention rule

to pair it with, so that (3.15) holds. Of course, an observed distribution of choice can be

represented by multiple preference orderings and attention rules. The authors, however, show

that if for some G ∈ D with {b, c} ∈ G,

p(c|G) > p(c|G \ {b}), (3.16)

40Here I omit observable covariates x for simplicity.
41Specifically, � is an asymmetric, transitive and complete binary relation.
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then c � b for any � for which one can find a monotonic attention rule µ such that (3.15)

holds. Because of preference transitivity, one can also learn a � b if in addition to the above

condition one has p(a|G) > p(a|G \ {c}) for some c ∈ G. This yields a system of linear

inequalities in P(y|C) that fully characterize HP[�]. Let ~p denote the vector with elements

[p(c|G) : c ∈ G,G ∈ D] and Π� denote a conformable matrix collecting the constraints on

P(y|C) embodied in (3.16) and its generalizations based on transitive closure. Then

HP[�] = {�: Π�~p ≤ 0}. (3.17)

The authors show that for any given preference ordering �, the matrix Π� characterizing

whether �∈ HP[�] through the system of linear inequalities in (3.17) is unique, and they

provide a simple algorithm to compute it.

Key Insight 3.5: Cattaneo, Ma, Masatlioglu, and Suleymanov (2017) show that learning

features of preference orderings in Identification Problem 3.5 requires the existence in the data

of choice problems where the choice probabilities satisfy (3.16). The latter is a violation of

the principle of “regularity” (Luce and Suppes, 1965) according to which the probability of

choosing an alternative from any set is at least as large as the probability of choosing it

from any of its supersets. Regularity is a monotonicity property of choice probabilities, and

it is implied by a wide array of models of decision making. The monotonicity of attention

rules in (3.14) can be viewed as regularity of the process that chooses a consideration set

from the subsets of the choice set. Cattaneo, Ma, Masatlioglu, and Suleymanov (2017) show

that it is implied by various models of limited attention. While the violation required in

(3.16) is weak in that it needs only to occur for some G, it sheds a different light on the

severity of the identification problem described at the beginning of this section. Regularity of

choice probabilities and (partial) identification of preference orderings can co-exist only under

restrictions on the consideration set formation process that are stronger than the regularity

of attention rules in (3.14).

Abaluck and Adams (2018) and Barseghyan, Molinari, and Thirkettle (2019) provide

different sets of sufficient conditions for point identification of models of limited considera-

tion. In both cases, the authors assume that unobserved heterogeneity in preferences and

in consideration sets are independent. Both also posit specific models of consideration set

formation. With that structure in place, they show semi-nonparametric identification of the

distribution of preferences and consideration under exclusion and large support assumptions.

To do so, Abaluck and Adams (2018) exploit violations of Slutsky symmetry that result from

inattention, assuming that for each alternative there is an observable characteristic with large

support that does not affect the consideration probability of the other options. Barseghyan,

Molinari, and Thirkettle (2019) exploit a requirements of standard economic theory –the sin-

gle crossing property of utility functions– coupled with a slight strengthening of the classic
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conditions for semi-nonparametric identification of discrete choice models with full consid-

eration and identical choice sets (see, e.g., Matzkin, 2007), assuming that there is a single

decision maker-specific characteristic with large support that does not affect consideration.

3.1.4 Prediction of Choice Behavior with Counterfactual Choice Sets

Manski (2007b) studies a question related but distinct from those in Identification Problems

3.4-3.5. He is concerned with prediction of choice behavior when decision makers face coun-

terfactual choice sets. Manski frames this question as one of predicting treatment response

(see Section 2.2). Here the collection of potential treatments is given by D, the nonempty

subsets of the universe of feasible alternatives Y, and the response function specifies the al-

ternative chosen by a decision makes when facing choice set G ∈ D. Manski assumes that

the researcher observes realized choice sets and chosen alternatives, (y,C) ∼ P.42 Under the

standard assumptions laid out at the beginning of Section 3.1, specifically if utility functions

are (say) linear in εic and the distribution of εic is (say) Type I extreme value or multivari-

ate normal, prediction of choice behavior with counterfactual choice sets is immediate (and

point identified). Manski, however, leaves utility functions completely unspecified, and in fact

works directly with preference orderings, which he labels decision maker’s types. He places no

restriction on the distribution of preference types, except requiring that they are independent

of the observed choice sets. Manski shows that under these rather weak assumptions, the

distribution of predicted choices from counterfactual choice sets can be partially identified,

and characterized as the solution to linear programs.

Specifically, let y∗(G) denote the decision maker’s optimal choice when facing choice set

G ∈ D. Assume y∗(·) ⊥⊥ C, and let yk denote the choice function for a decision maker of

type k –that is, a decision maker with a specific preference ordering labeled k. One example

of such preference ordering might be c1 � c2 � · · · � c|Y|. If a decision maker of this type

faces, say, choice set G = {c2, c3, c4}, then she chooses alternative c2. Let K denote the set

of logically possible types, and θk the probability that a decision maker in the population is

of type k. Suppose that the researcher posits a behavioral model that can be expressed as

an assumption that θ lies in some specified set of distributions, and let Θ denote the values

of ϑ that satisfy this requirement plus the conditions ϑk ≥ 0 for all k ∈ K and
∑

k∈K θk = 1.

Then for any c ∈ Y and ϑ ∈ Θ, the model predicts

Q(y∗(G) = c) =
∑
k∈K

1(yk(G) = c)ϑk.

How can one partially identify this probability based on the observed data? Suppose C is

42Here I suppress covariates for simplicity.
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observed to take realizations D1, . . . , Dm. Then the data reveal

P(y(Dj) = dj) =
∑
k∈K

1(yk(Dj) = dj)θk ∀dj ∈ Dj , j = 1, . . . ,m.

This yields that the sharp identification region for θ is

HP[θ] = {ϑ ∈ Θ : P(y(Dj) = dj) =
∑
k∈K

1(yk(Dj) = dj)ϑk ∀dj ∈ Dj , j = 1, . . . ,m}.

If the behavioral model is correctly specified, HP[θ] is non-empty. In turn, the sharp identi-

fication region for each choice probability is

HP[Q(y∗(G) = c)] =

{∑
k∈K

1(yk(G) = c)ϑk : ϑ ∈ HP[θ]

}
,

and its extreme points can be obtained by solving linear programs.

Kitamura and Stoye (2019) provide closely related sharp bounds on features of counterfac-

tual choices in the nonparametric random utility model of demand, where observable choices

are repeated cross-sections and one allows for unrestricted, unobserved heterogeneity. Their

approach builds on the work of Kitamura and Stoye (2018), who test weather agents’ behavior

is consistent with the Axiom of Revealed Stochastic Preference (SARP) in a random utility

model in which the utility function of each consumer over commodity bundles is assumed

to satisfy only the basic restriction that “more is better” with no satiation. Because the

testing exercise is to be carried out using repeated cross-sections data, the authors maintain

the assumption that multiple populations of consumers who face distinct choice sets have the

same distribution of preferences. With this structure in place, de facto the task is to test the

full implications of rationality without functional form restrictions. Kitamura and Stoye’s ap-

proach is based on several novel and insightful ideas. As a first step, they leverage an earlier

insight of McFadden (2005) to discretize the data without loss of information, so that they

can define a large but finite set of rational preferences types. As a second step, they show

that this implies that rationality can be tested by checking whether observed behavior lies in

a cone corresponding to positive linear combinations of preference types. While the problem

is discrete, its dimension is at first sight prohibitive. Nonetheless, Kitamura and Stoye are

able to develop novel computational methods that render the problem tractable. They apply

their method to the U.K. Household Expenditure Survey, adapting to their framework results

on nonparametric instrumental variable analysis by Imbens and Newey (2009) so that they

can handle price endogeneity.

Kamat (2018) builds on Manski (2007b) to learn program effects when agents are ran-

domly assigned to control or treatment. The treatment group is provided access to the

program, while the control group is not. However, members of the control group may receive
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access to the program from outside the experiment, leading to noncompliance with the ran-

domly assigned treatment. The researcher wants to learn about the average effect of program

access on the decision to participate in the program and on the subsequent outcome. While

sufficiently rich data may allow the researcher to learn these effects, Kamat is concerned

with the identification problem that arises when the researcher only observes the treatment

assignment status, the program participation decision, and the outcome, but not the receipt

of program access for every agent. Kamat formalizes this problem as one where the received

treatment is selected from a choice set that depends on the assigned treatment and is un-

observable to the researcher, and the agents optimally choose whether to participate in the

program by maximizing their utility function over their choice set. Importantly, the utility

functions are not subject to parametric restrictions, as in Manski (2007b). But while Manski

assumed independence of choice sets and preference types, Kamat allows them to be arbitrar-

ily dependent on each other, as in Barseghyan, Coughlin, Molinari, and Teitelbaum (2019).

Kamat’s 2018 approach leverages specific assumptions on random assignment of treatments

and on compliance (or lack thereof) of participants to obtain nonparametric bounds on the

treatment effects of interest that can be characterized using tractable linear programs.

3.2 Static, Simultaneous-Move Finite Games with Multiple Equilibria

3.2.1 An Inference Approach Robust to the Presence of Multiple Equilibria

Tamer (2003) and Ciliberto and Tamer (2009) substantially enlarge the scope of partial iden-

tification analysis of structural models by showing how to apply it to learn features of payoff

functions in static, simultaneous-move finite games of complete with multiple equilibria. The

approach and considerations that follow can be extended to games of incomplete information,

as shown in Berry and Tamer (2006). To simplify notation here I focus on two-player entry

games with complete information.43

Identification Problem 3.6 (Complete Information Two Player Entry Game): Let

(y1,y2,x1,x2) ∼ P be observable random variables in {0, 1} × {0, 1} × Rd × Rd, d < ∞.

Suppose that (y1,y2) result from simultaneous move, pure strategy Nash play (PSNE) in a

game where the payoffs are πj(yj ,y3−j ,xj ;βj , δj) ≡ yj(xjβj + δjy3−j + εj), j = 1, 2 and the

strategies are “enter” (yj = 1) or “stay out” (yj = 0). Here (x1,x2) are observable payoff

shifters, (ε1, ε2) are payoff shifters observable to the players but not to the econometrician,

δ1 ≤ 0, δ2 ≤ 0 are interaction effect parameters, and β1, β2 are parameter vectors in B ⊂ Rd

reflecting the effect of the observable covariates on payoffs. Each player enters the market

if and only if entering yields non-negative payoff, so that yj = 1(xjβj + δjy3−j + εj ≥ 0).

For simplicity, assume that (ε1, ε2) are independent of (x1,x2) and have jointly Normal

43Completeness of information is motivated by the idea that firms in the industry have settled in a long-run
equilibrium, and have detailed knowledge of both their own and their rivals’ profit functions.
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ε1

ε2

Model predicts y = (0, 1)

Model predicts y = (1, 0)

Model predicts

y = (1, 0) or y = (0, 1)

−x2β2 − δ2

−x1β1 − δ1

Model predicts

y = (1, 1)

−x2β2 − δ2

Model predicts

y = (0, 0)

−x2β2

−x1β1

Figure 3.4: PSNE outcomes of the game in Identification Problem 3.6 as a function of (ε1, ε2).

distribution with mean vector zero, variances equal to one (a normalization required by the

threshold crossing nature of the model), and correlation ρ ∈ [−1, 1]. In the absence of

additional information, what can the researcher learn about θ = [δ1 δ2 β1 β2 ρ]?

From the econometric perspective, this is a generalization of a standard discrete choice

model to a bivariate simultaneous response model which yields a stochastic representation of

equilibria in a two player, two action game. Generically, for a given value of θ and realization

of the payoff shifters, the model just laid out admits multiple equilibria (existence of PSNE

is guaranteed because the interaction parameters are non-negative). In other words, it yields

set valued predictions as depicted in Figure 3.4.44

Why does this set valued prediction hinder point identification? Intuitively, the challenge

can be traced back to the fact that for different values of θ ∈ Θ, one may find different ways

to assign the probability mass in [−x1β1,−x1β1 − δ1) × [−x2β2,−x2β2 − δ2) to (0, 1) and

(1, 0), so as to match the observed distribution P(y1,y2|x1,x2).

More formally, multiplicity of equilibria implies that the mapping from the model’s exoge-

nous variables (x1,x2, ε1, ε2) to outcomes (y1,y2) is a correspondence rather than a function.

This violates the classical “principal assumptions” or “coherency conditions” for simultaneous

discrete response models discussed extensively in the econometrics literature (e.g., Heckman,

1978; Gourieroux, Laffont, and Monfort, 1980; Schmidt, 1981; Maddala, 1983; Blundell and

Smith, 1994). Such coherency conditions require the existence of a unique reduced form,

mapping the model’s exogenous variables and parameters to a unique realization of the en-

dogenous variable; hence, they constrain the model to be recursive or triangular in nature.

As pointed out by Bjorn and Vuong (1984), however, the coherency conditions shut down

exactly the social interaction effect of interest by requiring, e.g., that δ1δ2 = 0, so that at

least one player’s action has no impact on the other player’s payoff.

44This figure is based on Figure 1 in Tamer (2003).
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The desire to learn about interaction effects coupled with the difficulties generated by

multiplicity of equilibria prompted the earlier literature to provide at least two different ways

to achieve point identification. The first one relies on imposing simplifying assumptions that

shift focus to outcome features that are common across equilibria (e.g. Bresnahan and Reiss,

1988, 1990, 1991; Berry, 1992, who study entry games where the number, though not the

identities, of entrants is uniquely predicted by the model in equilibrium). Unfortunately,

however, these simplifying assumptions substantially constrain the amount of heterogeneity

in player’s payoffs that the model allows for. The second one relies on explicitly modeling

a selection mechanism which specifies the equilibrium played in the regions of multiplicity

(e.g. Bjorn and Vuong, 1984; Berry, 1992; Bajari, Hong, and Ryan, 2010, with Bjorn and

Vuong using a constant and Bajari et al. assuming a more flexible, covariate dependent

parametrization; while Berry considering two possible selection mechanism specifications,

one where the incumbent moves first, and the other where the most profitable player moves

first). Unfortunately, however, the chosen selection mechanism can have non-trivial effects

on inference, and the data and theory might be silent on which is more appropriate. A

nice example of this appears in Berry (1992, Table VII). Berry and Tamer (2006) review

and extend a number of results on the identification of entry models extensively used in the

empirical literature. Jovanovic (1989) discusses the observable implications of models with

multiple equilibria, and within the analysis of a model with homogeneous preferences shows

that partial identification is possible (see p. 1435). I refer to de Paula (2013) for a review of

the literature on econometric analysis of games with multiple equilibria.

Ciliberto and Tamer (2009) show, on the other hand, that it is possible to partially iden-

tify entry models that allow for rich heterogeneity in payoffs and for any possible selection

mechanism (even ones that are arbitrarily dependent on the unobservable payoff shifters

after conditioning on the observed payoff shifters). In addition, Tamer (2003) provides suf-

ficient conditions for point identification based on exclusion restrictions and large support

assumptions.45

Key Insight 3.6: An important conceptual contribution of Tamer (2003) is to clarify the

distinction between a model which is incoherent, so that no reduced form exists, and a model

which is incomplete, so that multiple reduced forms may exist. Models with multiple equilibria

belong to the latter category. Whereas the earlier literature in partial identification had been

motivated by measurement problems, e.g., missing or interval data, the work of Tamer (2003)

and Ciliberto and Tamer (2009) is motivated by the fact that economic theory often does not

specify how an equilibrium is selected in the regions of the exogenous variables which admit

multiple equilibria. This is a conceptually completely distinct identification problem.

Ciliberto and Tamer (2009) propose to use simple and tractable implications of the model

45Kline and Tamer (2012) analyze partial identification of nonparametric models of entry in a two-player
model, drawing connections with the program evaluation literature.
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to learn features of the structural parameters of interest. Specifically, they point out that

the probability of observing any outcome of the game cannot be smaller than the model’s

implied probability that such outcome is the unique equilibrium of the game, and cannot

be larger than the model’s implied probability that such outcome is one of the possible

equilibria of the game. Looking at Figure 3.4 this means, for example, that the observed

P((y1,y2) = (0, 1)|x1,x2) cannot be smaller than the probability that (ε1, ε2) realizes in

the dotted region, and cannot be larger than the probability that it realizes either in the

dotted region or in the gray region. Denote by Φ(A1, A2; ρ) the probability that the bivariate

normal with mean vector zero, variances equal to one, and correlation ρ assigns to the event

{ε1 ∈ A1, ε2 ∈ A2}. Then Ciliberto and Tamer (2009) show that any ϑ = [d1, d2, b1, b2, r]

that is observationally equivalent to the data generating value θ satisfies, (x1,x2)-a.s.,

P((y1,y2) = (0, 0)|x1,x2) = Φ((−∞,−x1b1), (−∞,−x2b2); r) (3.18)

P((y1,y2) = (1, 1)|x1,x2) = Φ([−x1b1 − d1,∞), [−x2b2 − d2,∞); r) (3.19)

P((y1,y2) = (0, 1)|x1,x2) ≤ Φ((−∞,−x1b1 − d1), (−x2b2,∞); r) (3.20)

P((y1,y2) = (0, 1)|x1,x2) ≥
{

Φ((−∞,−x1b1 − d1), (−x2b2,∞); r)

− Φ((−x1b1,−x1b1 − d1), (−x2b2,−x2b2 − d2); r)
}

(3.21)

While the approach of Ciliberto and Tamer (2009) is summarized here for a two player entry

game, it extends without difficulty to any finite number of players and actions and to solution

concepts other than pure strategy Nash equilibrium.

Aradillas-Lopez and Tamer (2008) build on the insights of Ciliberto and Tamer (2009)

to study what is the identification power of equilibrium in games. To do so, they compare

the set-valued model predictions and what can be learned about θ when one assumes only

level-k rationality as opposed to Nash play. In static entry games of complete information,

they find that the model’s predictions when k ≥ 2 are similar to those obtained with Nash

behavior and allowing for multiple equilibria and mixed strategies.46

The collections of parameter vectors satisfying (in)equalities (3.18)-(3.21) yields the sharp

identification region HP[θ] in the case of two player entry games with pure strategy Nash

equilibrium as solution concept, as shown by Beresteanu, Molchanov, and Molinari (2011,

Supplementary Appendix D, Corollary D.4). When there are more than two players or more

than two actions (or with different solutions concepts, such as, e.g., mixed strategy Nash

equilibrium; correlated equilibrium; or rationality of level k as in Aradillas-Lopez and Tamer,

2008), the characterization in Ciliberto and Tamer (2009) obtained by extending the reasoning

just laid out yields an outer region. Beresteanu, Molchanov, and Molinari (2011) use elements

of random set theory to provide a general and computationally tractable characterization of

46Molinari and Rosen (2008) extend the analysis of Aradillas-Lopez and Tamer (2008) to the class of
supermodular games.
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the identification region that is sharp, regardless of the number of players and actions, or the

solution concept adopted. For the case of PSNE with any finite number of players or actions,

Galichon and Henry (2011) provide a computationally tractable sharp characterization of the

identification region using elements of optimal transportation theory.

3.2.2 Characterization of Sharpness through Random Set Theory

Beresteanu, Molchanov, and Molinari (2011) provide a general approach based on random set

theory that delivers sharp identification regions on parameters of structural semiparametric

models with set valued predictions. Here I summarize it for the case of static, simultaneous

move finite games of complete information, first with PSNE as solution concept and then

with mixed strategy Nash equilibrium. Then I discuss games of incomplete information.

For a given ϑ ∈ Θ, denote the set of pure strategy Nash equilibria (depicted in Figure

3.4) as Yϑ(x, ε). It is easy to show that Yϑ(x, ε) is a random closed set as in Definition A.1.

Under the assumption in Identification Problem 3.6 that y results from simultaneous move,

pure strategy Nash play, at the true DGP value of θ ∈ Θ, one has

y ∈ Yθ a.s. (3.22)

Equation (3.22) exhausts the modeling content of Identification Problem 3.6. Theorem A.1

can be leveraged to extract its empirical content from the observed distribution P(y,x). For

a given set K ⊂ Y, let TYϑ(x,ε)(K; Φr) denote the probability of the event {Yϑ(x, ε)∩K 6= ∅}
implied when ε ∼ Φr, x-a.s., with Φr the bivariate Normal distribution with mean vector

zero, variances equal to one, and covariance equal to r.

Theorem SIR-3.4 (Structural Parameters in Static, Simultaneous Move Finite Games

of Complete Information with PSNE): Under the assumptions of Identification Problem 3.6,

the sharp identification region for θ is

HP[θ] = {ϑ ∈ Θ : P(y ∈ K|x) ≤ TYϑ(x,ε)(K; Φr)∀K ⊂ Y, x-a.s.}. (3.23)

Proof. To simplify notation, let Yϑ ≡ Yϑ(x, ε). In order to establish sharpness, it suffices to

show that ϑ ∈ HP[θ] if and only if one can complete the model with an admissible selection

mechanism, so that the probability distribution over outcome profiles implied by the model

with that selection mechanism is equal to the probability distribution of y observed in the

data. An admissible selection mechanism is a probability distribution conditional on (x, ε)

and possibly dependent on ϑ, with support contained in Yϑ, and with no further assumptions

placed on it (see, e.g., Berry and Tamer, 2006, for a formal definition). Suppose first that

ϑ is such that a selection mechanism with these properties is available. Then there exists

a selection of Yϑ which is equal to the prediction selected by the selection mechanism and

whose conditional distribution is equal to P(y|x), x-a.s., and therefore ϑ ∈ HP[θ]. Next take
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ϑ ∈ HP[θ]. Then by Theorem A.1, y and Yϑ can be realized on the same probability space as

random elements y′ and Y ′ϑ, so that y′ and Y ′ϑ have the same distributions, respectively, as

y and Yϑ, and y′ ∈ Sel(Y ′ϑ), where Sel(Y ′ϑ) is the set of all measurable selections from Y ′ϑ),

see Definition A.3. One can then complete the model with a selection mechanism that picks

y′ with probability 1, and the result follows.

The characterization provided in Theorem SIR-3.4 for games with multiple PSNE, taken

from Beresteanu, Molchanov, and Molinari (2011, Supplementary Appendix D), is equivalent

to the one provided by Galichon and Henry (2011). When J = 2 and Y = {0, 1}×{0, 1}, the

inequalities in (3.23) reduce to (3.18)-(3.21). With more players and/or more actions, the

inequalities in (3.23) are a superset of those in (3.18)-(3.21), and are more informative.

Key Insight 3.7: (Random set theory and partial identification – continued) In Identifi-

cation Problem 3.6 lack of point identification can be traced back to the set valued predictions

delivered by the model, which in turn derive from the model incompleteness defined by Tamer

(2003). As stated in the Introduction, constructing the (random) set of model predictions

delivered by the maintained assumptions is an exercise typically carried out in identification

analysis, regardless of whether random set theory is applied. Indeed, for the problem studied in

this section, Tamer (2003, Figure 1) put forward the set of admissible outcomes of the game.

Beresteanu, Molchanov, and Molinari (2011) propose to work directly with this random set

to characterize HP[θ]. The fundamental advantage of this approach is that it dispenses with

considering the possible selection mechanisms that may complete the model. Selection mech-

anisms may depend on the model’s unobservables even after conditioning on observables and

may constitute an infinite dimensional nuisance parameter, which creates great difficulties for

the computation of HP[θ] and for inference.

Next, I discuss the case that the outcome of the game results from simultaneous move,

mixed strategy Nash play.47 When mixed strategies are allowed for, the model predicts

multiple mixed strategy Nash equilibria (MSNE). But whereas when only pure strategies are

allowed for, if the model is correctly specified, the observed outcome of the game is one of the

predicted PSNE, with mixed strategy it is only the result of a random mixing draw from one

of the predicted MSNE. Hence, the identification problem is more complex, and in order to

obtain a tractable characterization of θ’s sharp identification region one needs to use different

tools from random set theory.

To keep the treatment simple here I continue to consider the case of two players with two

strategies, as in Identification Problem 3.6, with mixed strategies allowed for, and refer to

Molchanov and Molinari (2018, Section 3.4) for the general case. Fix ϑ ∈ Θ. Let σj : {0, 1} →
[0, 1] denote the probability that player j enters the market, with 1− σj the probability that

47The same reasoning given here applies if instead of mixed strategy Nash the solution concept is correlated
equilibrium, by replacing the set of MSNE below with the set of correlated equilibria.
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Figure 3.5: MSNE strategies (Sϑ), set of multinomial distributions over outcomes of the game (Qϑ),
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she stays out. With some abuse of notation, let πj(σj , σ−j ,xj , εj , ϑ) denote the expected

payoff associated with the mixed strategy profile σ = (σ1, σ2). For a given realization (w, e)

of (x, ε) and a given value of ϑ ∈ Θ, the set of mixed strategy Nash equilibria is

Sϑ(w, e) =

{
σ ∈ [0, 1]2 : πj(σj , σ−j , wj , ej ;ϑ) ≥ πj(σ̃j , σ−j , wj , ej ;ϑ) ∀σ̃j ∈ [0, 1] j = 1, 2

}
.

Beresteanu, Molchanov, and Molinari (2011) show that Sϑ ≡ Sϑ(x, ε) is a random closed set

in [0, 1]2. Its realizations are illustrated in Panel (a) of Figure 3.5 as a function of (ε1, ε2).48

Define the set of possible multinomial distributions over outcomes of the game associated

with the selections σ of each possible realization of Sϑ as

Qϑ =

q(σ) ≡


(1− σ1)(1− σ2)

σ1(1− σ2)

(1− σ1)σ2

σ1σ2

 : σ ∈ Sϑ)

 . (3.24)

As Qϑ is the image of a continuous map applied to the random compact set Sϑ, it is a

random compact set. Its realizations are plotted in Panel (b) of Figure 3.5 as a function of

48This figure is based on Figure 1 in Beresteanu, Molchanov, and Molinari (2011).
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(ε1, ε2).

The multinomial distribution over outcomes of the game determined by a given σ ∈ Sϑ

is a function of ε. In order to obtain the predicted distribution over outcomes of the game

conditional on observed payoff shifters, one needs to integrate out the unobservable payoff

shifters ε. Doing so requires care, as it needs to be done for each q(σ) ∈ Qϑ. First, observe

that all the q(σ) ∈ Qϑ are contained in the 3 dimensional unit simplex, and are therefore

integrable. Next, define the conditional selection expectation (see Definition A.4) of Qϑ as

EΦr(Qϑ|x) =
{
EΦr(q(σ)|x) : σ ∈ Sel(Sϑ)

}
,

where Sel(Sϑ) is the set of all measurable selections from Sϑ, see Definition A.3. By con-

struction, EΦr(Qϑ|x) is the set of probability distributions over action profiles conditional

on x which are consistent with the maintained modeling assumptions, i.e. with all the

model’s implications (including the assumption that ε ∼ Φr). If the model is correctly spec-

ified, there exists at least one vector θ ∈ Θ such that the observed conditional distribution

p(x) = [P(y = y1|x), . . . ,P(y = y4|x)]> almost surely belongs to the set EΦρ(Qθ|x). Indeed,

by the definition of EΦρ(Qθ|x), p(x) ∈ EΦρ(Qθ|x) almost surely if and only if there exists

q ∈ Sel(Qθ) such that EΦρ(q|x) = p(x) almost surely, with Sel(Qθ) the set of all measurable

selections from Qθ. Hence, the collection of parameter vectors ϑ ∈ Θ that are observationally

equivalent to the data generating value θ is given by the ones that satisfy p(x) ∈ EΦr(Qϑ|x)

almost surely. In turn, observing that by Theorem A.2 the set EΦr(Qϑ|x) is convex, we

have that p(x) ∈ EΦr(Qϑ|x) if and only if u>p(x) ≤ hEΦr (Qϑ|x)(u) for all u in the unit ball

(see, e.g., Rockafellar, 1970, Theorem 13.1), where hEΦr (Qϑ|x)(u) is the support function of

EΦr(Qϑ|x), see Definition A.5.

Theorem SIR-3.5 (Structural Parameters in Static, Simultaneous Move Finite Games

of Complete Information with MSNE): Under the assumptions in Identification Problem 3.6,

allowing for mixed strategies and with the observed outcomes of the game resulting from mixed

strategy Nash play, the sharp identification region for θ is

HP[θ] =

{
ϑ ∈ Θ :

(
max

u: ‖u‖≤1
u>p(x)− EΦr [hQϑ

(u)|x]

)
= 0, x-a.s.

}
(3.25)

=

{
ϑ ∈ Θ :

∫
‖u‖≤1

(u>p(x)− EΦr [hQϑ
(u)|x])+dµ(u) = 0, x-a.s.

}
, (3.26)

where µ is any probability measure on the unit ball in R4.

Proof. Theorem A.2 (equation (A.10)) yields (3.25), because by the arguments given before

the theorem, HP[θ] = {ϑ ∈ Θ : p(x) ∈ EΦr(Qϑ|x), x-a.s.}. The result in (3.26) follows

because the integrand in (3.26) is continuous in u and both conditions inside the curly brackets

are satisfied if and only if u>p(x)− EΦr [hQϑ
(u)|x] ≤ 0 ∀u ∈ B4 x-a.s.
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For a fixed u ∈ B4, the possible realizations of hQϑ
(u) are plotted in Panel (c) of Figure

3.5 as a function of (ε1, ε2). The expectation of hQϑ
(u) is quite straightforward to compute,

whereas calculating the set EΦr(Qϑ|x) is computationally prohibitive in many cases. Hence,

the characterization in (3.25) is computationally attractive, because for each ϑ ∈ Θ it requires

to maximize an easy-to-compute superlinear, hence concave, function over a convex set, and

check if the resulting objective value vanishes. This problem is computationally tractable and

several efficient algorithms in convex programming are available to solve it, see for example

the MatLab software for disciplined convex programming CVX (Grant and Boyd, 2010).

Nonetheless, HP[θ] itself is not necessarily convex, hence tracing out its boundary is non-

trivial. I return to computational challenges in partial identification in Section 6.

Key Insight 3.8 (Random set theory and partial identification – continued): Beresteanu,

Molchanov, and Molinari (2011) provide a general characterization of sharp identification

regions for models with convex moment predictions. These are models that for a given ϑ ∈ Θ

and realization of observable variables, predict a set of values for a vector of variables of

interest. This set is not necessarily convex, as exemplified by Yϑ and Qϑ, which are finite.

No restriction is placed on the manner in which, in the DGP, a specific model prediction

is selected from this set. When the researcher takes conditional expectations of the resulting

elements of this set, the unrestricted process of selection yields a convex set of moments

for the model variables (all possible mixtures). This is the model’s convex set of moment

predictions. If this set were almost surely single valued, the researcher would learn (features

of) θ by solving moment equality conditions involving the observed variables and predicted

ones. The approach reviewed in this section is a set-valued method of moments that extends

the singleton-valued one commonly used in econometrics.

I conclude this section discussing the case of static, simultaneous move finite games of

incomplete information, using the results in Beresteanu, Molchanov, and Molinari (2011,

Supplementary Appendix C).49 For clarity, I formalize the maintained assumptions.

Identification Problem 3.7 (Structural Parameters in Static, Simultaneous Move Fi-

nite Games of Incomplete Information with multiple BNE): Impose the same structure on

payoffs, entry decision rule, outcome space, parameter space, and observable variables as

in Identification Problem 3.6. Assume that the observed outcome of the game results from

simultaneous move, pure strategy Bayesian Nash play. Both players and the researcher ob-

serve (x1,x2). However, εj is private information to player j = 1, 2 and unobservable to

the researcher, with ε1 ⊥⊥ ε2|(x1,x2). Assume that players have correct common prior Fγ

49See Berry and Tamer (2006, Section 3) and Grieco (2014) for a thorough discussion of the literature on
identification problems in games of incomplete information with multiple Bayesian Nash equilibria (BNE).
Berry and Tamer (2006) explain how to extend the approach proposed by Ciliberto and Tamer (2009) to
obtain outer regions on θ when no restrictions are imposed on the equilibrium selection mechanism that
chooses among the multiple BNE.
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on the distribution of (ε1, ε2) and the researcher knows this distribution up to γ, a finite

dimensional parameter vector. Under these assumptions, multiple Bayesian Nash equilibria

(BNE) may result.50 In the absence of additional information, what can the researcher learn

about θ = [δ1 δ2 β1 β2 γ]?

With incomplete information, players’ strategies are decision rules that map the support

of (ε,x) into {0, 1}. The non-negativity condition on expected payoffs that determines each

player’s decision to enter the market results in equilibrium mappings (decision rules) that are

step functions determined by a threshold: yj(εj) = 1(εj ≥ tj), j = 1, 2. As a result, player

j’s beliefs about player 3 − j’s probability of entry under the common prior assumption is∫
y3−j(ε3−j)dFγ(ε3−j |x) = 1− Fγ(t3−j |x), and therefore player j’s best response cutoff is

tbj(t3−j ,x; θ) = −xjβj − δj(1− Fγ(t3−j |x)).

Hence, the set of equilibria can be defined as the set of cutoff rules:

Tθ(x) = {(t1, t2) : tj = tbj(t3−j ,x; θ), j = 1, 2}.

The equilibrium thresholds are functions of x and θ only. The set Tθ(x) might contain a finite

number of equilibria (e.g., if the common prior is the Normal distribution), or a continuum

of equilibria. For ease of notation I suppress its dependence on x in what follows.

Given the equilibrium decision rules (the selections of the set Tθ), it is possible to de-

termine their associated action profiles. Because in the simple two-player entry game that I

consider actions and outcomes coincide, I denote the set of admissible action profiles by Yθ:

Yθ =

y(t) ≡


1(ε1 < t1, ε2 < t2)

1(ε1 ≥ t1, ε2 < t2)

1(ε1 < t1, ε2 ≥ t2)

1(ε1 ≥ t1, ε2 ≥ t2)

 : t ∈ Sel(Tθ)

 , (3.27)

with Sel(Tθ) the set of all measurable selections from Tθ, see Definition A.3. To obtain

the predicted set of multinomial distributions for the outcomes of the game, one needs to

integrate out ε conditional on x. Again this can be done by using the conditional Aumann

expectation:

EFγ (Yθ|x) = {EFγ (y(t)|x) : t ∈ Sel(Tθ)}.

This set is closed and convex. Regardless of whether Tθ contains a finite number of equilibria

or a continuum, Yθ can take on only a finite number of realizations corresponding to each

of the vertices of the three dimensional simplex, because the vectors y(t) in (3.27) collect

50Both the independence assumption and the correct common prior assumption are maintained here to
simplify exposition. Both could be relaxed with no conceptual difficulty, though computation of the set of
Bayesian Nash equilibria, for example, would become more cumbersome.
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threshold decision rules. This implies that EFγ (Yθ|x) is a closed convex polytope x-a.s., fully

characterized by a finite number of supporting hyperplanes. Hence, it is possible to determine

whether ϑ ∈ HP[θ] using efficient algorithms in linear programming.

Theorem SIR-3.6 (Structural Parameters in Static, Simultaneous Move Finite Games

of Incomplete Information with BNE): Under the assumptions in Identification Problem 3.7,

the sharp identification region for θ is

HP[θ] =

{
ϑ ∈ Θ : max

u: ‖u‖≤1
u>p(x)− EFγ̃ [hYϑ(u)|x] = 0, x-a.s.

}
(3.28)

=

{
ϑ ∈ Θ : u>p(x) ≤ EFγ̃ [hYϑ(u)|x] = 0, ∀u ∈ D,x-a.s.

}
, (3.29)

=

{
ϑ ∈ Θ : P(y ∈ K|x) ≤ TYϑ(x,ε)(K;Fγ̃) ∀K ⊂ Y, x-a.s.

}
, (3.30)

where D = {u = [u1, . . . , u|Y|]
> : ui ∈ {0, 1}, i = 1, ..., |Y|}, ϑ = [d1, d2, b1, b2, γ̃], and

TYϑ(x,ε)(K;Fγ̃) denotes the probability of the event {Yϑ(x, ε)∩K 6= ∅} implied when ε ∼ Fγ̃,

x-a.s.

Proof. The result in (3.28) follows by the same argument as in the proof of Theorem SIR-3.5.

Next I show equivalence of the conditions

(i) p(x) ≤ EFγ̃ [hYϑ(u)|x] ∀u : ‖u‖ ≤ 1,

(ii) p(x) ≤ EFγ̃ [hYϑ(u)|x] ∀u ∈ D.

By the positive homogeneity of the support function, condition (i) is equivalent to p(x) ≤
EFγ̃ [hYϑ(u)|x] ∀u ∈ R|Y|, which implies condition (ii). Next I show that condition (ii) im-

plies condition (i). As explained before, the set Yθ, and hence also its convex hull conv(Yθ),

can take on only a finite number of realizations. Let Y1, . . . , Ym be convex compact sets

in the simplex of dimension |Y| − 1 equal to the possible realizations of conv(Yθ), and

let $1(x), . . . , $m(x) denote the probability of each of these realizations conditional on x.

Then by Theorem 2.1.34 in Molchanov (2017), EFγ̃ (Yθ|x) =
∑m

j=1 Yj$j(x). By the prop-

erties of the support function (see, e.g., Schneider, 1993, Theorem 1.7.5), hEFγ̃
(Yθ|x)(u) =∑m

j=1$j(x)hYj (u). For each j = 1, ...,m, the vertices of Yj are a subset of the vertices of the

(|Y| − 1)-dimensional simplex. Hence the supporting hyperplanes of Yj , j = 1, ...,m, are a

subset of the supporting hyperplanes of that simplex, which in turn are obtained through its

support function evaluated in directions u ∈ D. Finally, I show equivalence with the result

in (3.30). Because the vertices of Yj are a subset of the vertices of the (|Y| − 1)-dimensional

simplex, each direction u ∈ D determines a set Ku ⊂ Y. Given the choice of u, the value of
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u>y(t) equals one if y(t) ∈ Yu and zero otherwise. Hence, condition (3.29) reduces to

P(y ∈ Ku|x) = u>p(x) ≤ EFγ̃ [hYϑ(u)|x] = EFγ̃

[
sup

y(t)∈Yϑ
u>y(t)|x

]
= EFγ̃ [1(Yϑ ∩Ku 6= ∅)|x] = TYϑ(x,ε)(Ku;Fγ̃).

Observing that the collection D comprises the 2|Y| vectors with entries equal to either 1 or

0, and that these determine all possible subsets Ku of Y, yields condition (3.30).

One can use the same argument as in the proof of Theorem SIR-3.6, to show that the

Aumann expectation/support function characterization of the sharp identification region in

Theorem SIR-3.5 coincides with the characterization based on the capacity functional in

Theorem SIR-3.4, when only pure strategies are allowed for. This shows that in this class

of models, the capacity functional based characterization is a special case of the Aumann

expectation/support function based one.

Aradillas-Lopez and Tamer (2008) study what is the identification power of equilibrium

also in the case of static entry games with incomplete information. They show that in the

presence of multiple equilibria, assuming Bayesian Nash behavior yields more informative

regions for the parameter vector θ than assuming only rational behavior, but at the price of

a higher computational cost.

de Paula and Tang (2012) propose a procedure to test for the sign of the interaction

effects (which here I have assumed to be non-positive) in discrete simultaneous games with

incomplete information and (possibly) multiple equilibria. As a by-product of this procedure,

they also provide a test for the presence of multiple equilibria in the DGP. The test does not

require parametric specifications of players’ payoffs, the distributions of their private signals,

or the equilibrium selection mechanism. Rather, the test builds on the commonly invoked

assumption that players’ private signals are independent conditional on observed states.

Grieco (2014) introduces an important class of models with flexible information structure.

Each player is assumed to have a vector of payoff shifters unobservable by the researcher

composed of elements that are private information to the player, and elements that are

known to all players. The results of Beresteanu, Molchanov, and Molinari (2011) reported in

this section apply to this set-up as well.

3.3 Auction Models with Independent Private Values

3.3.1 An Inference Approach Robust to Bidding Behavior Assumptions

Haile and Tamer (2003) study what can be learned about the distribution of valuations in

an open outcry English auction where symmetric bidders have independent private values

for the object being auctioned. The standard theoretical model (Milgrom and Weber, 1982),

called “button auction” model, posits that each bidder holds down a button while the object’s
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Figure 3.6: A realization of the model predicted ordered bids B(~vn) in (3.31) for n = 3, ~vn = v0, δ = 0.

price rises continuously and exogenously, releasing it (in the dominant strategy equilibrium)

when it reaches her valuation or all her opponents have left. In this case, the distribution of

bidder’s valuation can be learned exactly. Haile and Tamer (2003) show that much can be

learned about the distribution of valuations, even allowing for the fact that real-life auctions

may depart from this stylized framework, as in the following identification problem.51

Identification Problem 3.8 (Incomplete Auction Model with Independent Private

Values): For a given auction with n < ∞ participating bidders, let vi ∼ Q, i = 1, . . . , n, be

bidder i’s valuation for the object being auctioned and assume that vi ⊥⊥ vj for all i 6= j.

Assume that the support of Q is [v, v̄] and that each bidder knows her own valuation but not

that of her opponents. Let the auctioneer set a minimum bid increment δ ∈ [0, v̄), and for

simplicity suppose there is no reserve price.52 Suppose the researcher observes order statistics

of the bids, ~bn ≡ (b1:n, . . . , bn:n) ∼ P in Rn+, with bi:n the i-th lowest of the n bids. Assume

that: (1) Bidders do not bid more than they are willing to pay; (2) Bidders do not allow an

opponent to win at a price they are willing to beat. In the absence of additional information,

what can the researcher learn about Q?

The model in Identification Problem 3.8 delivers set valued predictions because given

valuations (v1, . . . ,vn), the two fundamental assumptions about bidder’s behavior yield

~bn ∈ B(~vn) ≡

[{
n−1∏
i=1

[v,vi:n]

}
× [vn−1:n − δ,vn:n]

]
∩ Vn, (3.31)

where ~vn ≡ (v1:n, . . . ,vn:n) denotes the vector of order statistics of the valuations, and

51Examples of departures from the standard model include the case where active bidding by a player’s
opponents may eliminate her incentives to bid close to her valuation or at all; the econometrician does not
precisely observe the point at which each bidder drops out; there are discrete bid increments; etc.

52If there is a reserve price r > v, nothing can be learned about Q(v ∈ [v, v]) for any v < r. In that case,
one can learn features of the truncated distribution of valuations using the same insights summarized here.
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Vn = {v ∈ Rn : v ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ v̄}.53 Figure 3.6 provides a stylized depiction of a

realization of this set for ~vn = v0 when there are three bidders (n = 3), v = 0, and δ = 0. In

words, B(~vn) collects the model predicted values of ordered bids. The fact that bi:n ≤ vi:n

for all i results from assumption (1): since each bidder bids at most an amount equal to her

valuation, the i-th highest bid cannot exceed the i-th highest valuation (Haile and Tamer,

2003, Lemma 1).54 The fact that bn:n ≥ vn−1,n− δ follows immediately from assumption (2)

(Haile and Tamer, 2003, Lemma 3). The fact that ~bn has to lie in Vn follows because it is a

vector of ordered bids.

Why does this set-valued prediction hinder point identification? The reason is that the

distribution of the observable data relates to the model structure in an incomplete manner.55

Define a bidding rule B(b1:n, . . . , bn:n|v1:n, . . . ,vn:n) to be a conditional joint distribution for

the order statistics of the bids conditional on the order statistics of the valuations. Then,

for a given realization of the valuations v1:n = v1, . . . ,vn:n = vn, the model requires that the

support of Q is in B(~v) as defined in (3.31) with v1:n = v1, . . . ,vn:n = vn, but imposes no

other restriction on it. Hence, the model implied joint distribution of ordered bids is

M1,...,n:n(·;B,Q) ≡
∫
B(~v)

B(·|v1, . . . , vn)Q1,...,n:n(dv1, . . . , dvn), (3.32)

where Q1,...,n:n is the joint distribution of order statistics of the valuations implied by Q.

Since the bidding rule B is left completely unspecified (other than requiring it to be a valid

joint conditional probability distribution with support in B), one can find multiple pairs

(B,Q) satisfying the assumptions of Identification Problem 3.8, such that M1,...,n:n(·;B,Q) =

G1,...,n:n(·), with G1,...,n:n the observed joint distribution of the order statistics of the bids.

Haile and Tamer (2003) propose to use simple and tractable implications of the model to

learn features of Q. Recall that with i.i.d. valuations, the distribution of each order statistic

uniquely determines Q(v), with Q(v) ≡ Q(v ≤ v) for any v ≥ v, through:

Q(v) = qB(Qi:n(v); i, n− i+ 1), (3.33)

where Qi:n is the CDF of vi:n and qB(·; i, n−i+1) is the quantile function of a Beta-distributed

random variable with parameters i and n − i + 1. Using this, their Lemmas 1 and 3 yield,

53Using the same convention as for the bids, vi:n denotes the i-th lowest of the n valuations.
54Note that bi:n needs not be the bid made by the bidder with valuation vi:n.
55Haile and Tamer (2003, Appendix D) provide the discussion summarized here. Additionally, in their

Appendix B, they give a simple example of a two-bidder auction satisfying all assumptions in Identification
Problem 3.8, where two different distributions Q and Q̃ yield the same distribution of ordered bids.
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respectively,

Q(v) ≤ min
n,i

qB(Gi:n(v); i, n− i+ 1), ∀v ∈ [v, v̄], (3.34)

Q(v) ≥ max
n

qB(Gn:n(v − δ); i, n− i+ 1), ∀v ∈ [v, v̄], (3.35)

where, for any v ≥ v, Gi:n(v) ≡ P(bi:n ≤ v) denotes the observed CDF of bi:n for i = 1, . . . , n.

Key Insight 3.9: The model and analysis put forward by Haile and Tamer (2003) trade

point identification of the distribution of valuation under stringent assumptions on the bidding

rule, for a robust inference approach that yields informative bounds under weak and widely

credible assumptions on bidding behavior. Remarkably, “nothing is lost” due to the use of

their robust approach: point identification is recovered when the standard assumptions of

the button auction model hold.56 This is because in the dominant strategy equilibrium the

top losing bidder exits at her valuation, followed immediately by the winning bidder. Hence,

bn−1:n = vn−1:n = bn:n and δ = 0, so that the upper and the lower bound in (3.34)-(3.35)

coincide and point identify the distribution of valuations.

Haile and Tamer (2003) also provide sharp bounds on the optimal reserve price, which I

do not discuss here. However, they leave open the question of whether the collection of CDFs

satisfying (3.34)-(3.35) yields the sharp identification region for Q. As discussed in Sections

2.1-2.3, pointwise bounds on the CDF deliver tubes of admissible CDFs that in general yield

outer regions on the CDF of interest. But in this identification problem, the issue of sharpness

is even more subtle, and therefore addressed in the following subsection.

Before moving on to that discussion, I note that the work of Haile and Tamer (2003)

spurred a rich literature applying partial identification analysis to the study of auction models.

Tang (2011) studies first price sealed bid auctions with equilibrium behavior, where affiliated

valuations prevent –in the absence of parametric restrictions on the distribution of the model

primitives– point identification of the model. He derives bounds on seller revenue under

various counterfactual scenarios on reserve prices and auction formats. Armstrong (2013) also

studies first price sealed bid auctions with equilibrium behavior, but relaxes the independence

assumptions on symmetric valuations by requiring it to hold only conditional on unobserved

heterogeneity. He derives bounds on various functionals of the distributions of interest,

including the mean bid and mean valuation. Aradillas-López, Gandhi, and Quint (2013)

analyze second price auctions with correlated private values. In this case, the distribution

of valuations is not point identified even under the assumptions of the button auction model

(Athey and Haile, 2002, Theorem 4). Nonetheless, Aradillas-López, Gandhi, and Quint (2013)

show that interesting functionals of it (seller profits and bidder surplus) can be bounded, if one

assumes that transaction prices are determined by the second highest valuation and imposes

56The button auction model yields bidding behavior consistent with Identification Problem 3.8.
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some restrictions on the joint distribution of the number of bidders and distribution of the

valuations. Komarova (2013) studies a related model of second-price ascending auctions with

arbitrary dependence in bidders’ private values. She provides partial identification results

for the joint distribution of values for any subset of bidders under various assumptions about

what data the researcher observes. While in her framework the highest bid is never observed,

she considers the case where only the winner’s identity and the winning price are observed,

and the case where all the identities and all the bids except for the highest bid are known.

She also investigates the informational content of assuming positive dependence in bidders’

values. Gentry and Li (2014) are concerned with nonparametric identification of a two-

stage entry and bidding game. Potential bidders are assumed to have private valuations

and observe private signals before deciding whether to enter the auction. The dependence

between signals and valuations is only minimally restricted. Hence, even with some excluded

instruments that affect selection into the auction, the model primitives are only partially

identified. The authors derive bounds on these primitives, and provide conditions under

which point identification is restored.

3.3.2 Characterization of Sharpness through Random Set Theory

Haile and Tamer’s 2003 bounds exploit the information contained in the marginal distribu-

tions Gi:n for each i and n. However, in Identification Problem 3.8 additional information can

be extracted from the joint distribution of ordered bids. Chesher and Rosen (2017b) obtain

the sharp identification region HP[Q] using random set methods (Artstein’s characterization

in Theorem A.1) applied to a quantile function representation of the order statistics. Here I

provide an equivalent characterization that uses equation (3.31) directly. Let T denote the

space of probability distributions with support on [v, v̄], so that Q ∈ T . For a candidate

distribution Q̃ ∈ T , let Q̃1,...,n:n denote the implied distribution of order statistics of n i.i.d.

random variables distributed Q̃. Let B̃ be a random closed set defined as in (3.31) with

respect to order statistics of i.i.d. random variables with distribution Q̃. For a given set

K ∈ K, with K the collection of compact subsets of Rn, let TB̃(K; Q̃) denote the probability

of the event {B̃ ∩K 6= ∅} implied by Q̃.

Theorem SIR-3.7 (Distribution of Valuations in Incomplete Auction Model with In-

dependent Private Values): Under the assumptions of Identification Problem 3.8, the sharp

identification region for Q is

HP[Q] =
{
Q̃ ∈ T : P(~bn ∈ K) ≤ TB̃(K; Q̃) ∀K ∈ K

}
. (3.36)

Proof. The sharp identification region for Q is given by the collection of probability distri-

butions Q̃ ∈ T for which one can find a bidding rule B(·|·) with support in B̃ a.s. such that

G1,...,n:n(·) = M1,...,n:n(·;B, Q̃). Here M1,...,n:n(·;B, Q̃) is defined as in (3.32) with Q̃ replacing
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Q. Take a distribution Q̃ satisfying this definition of sharpness. Then there exists a selection

of B̃ determined by the bidding rule associated with Q̃, such that its distribution matches

that of ~bn. But then Theorem A.1 implies that the inequalities in (3.36) hold. Conversely,

take Q̃ satisfying the inequalities in (3.36). Then, by Theorem A.1, ~bn and B̃ can be realized

on the same probability space as random elements ~b′n and B̃′, ~bn
d
= ~b′n, B̃

d
= B̃′, such that

~b′n ∈ B̃′ a.s. One can then complete the auction model with a bidding rule that picks ~b′n

with probability 1, and the result follows.

In (3.36), P(~bn ∈ K) is determined by the joint distribution of the ordered bids and hence

can be learned from the data. On the other side, TB̃(K; Q̃) is a function of the model and

Q̃ ∈ T . Hence, it can be computed using (3.31), with B̃ defined with respect to order statistics

of i.i.d. random variables with distribution Q̃ ∈ T. To gain insights in the characterization

of HP[Q], consider for example the set K = {
∏n−1
i=1 (−∞,+∞)}× (−∞, v]. Plugging it in the

inequalities in (3.36), one obtains

Gn:n(v) ≤ Qn−1,n(v), for all n,

which, using (3.33), yields (3.35). Similarly, plugging in the sets Kj = {
∏j−1
i=1 (−∞,+∞)} ×

[v,∞)×{
∏n
j+1(−∞,+∞)}, j = 1, . . . , n, yields (3.34). So the inequalities proposed by Haile

and Tamer (2003) are a subset of the inequalities yielding the sharp identification region in

Theorem SIR-3.7. More information can be obtained by using additional setsK. For instance,

the set K = [v1,∞)× [v2,∞)× {
∏n
i=1(−∞,+∞)}, v2 ≥ v1, yields P(b1:n ≥ v1, b2:n ≥ v2) ≤

Q1,2:n([v1,∞)× [v2,∞)), which further restricts Q. Numerous examples can be given.

Characterization (3.36) is stated using inequality (A.4) for the collection of compact

subsets of Rn. One can instead use the (equivalent) inequality (A.5), and show that in fact

it suffices to check it for a much smaller collection of sets, as shown by Chesher and Rosen

(2017b) (see also Molchanov and Molinari, 2018, Section 2.2). Nonetheless, this collection

remains uncountable.

Key Insight 3.10 (Random set theory and partial identification – continued): As stated

in the Introduction, constructing the (random) set of model predictions delivered by the main-

tained assumptions is an exercise typically carried out in identification analysis, regardless of

whether random set theory is applied. Indeed, for the problem studied in this section, Haile

and Tamer (2003, equation D1) put forward the set of admissible bids in (3.31).57 With this

set in hand, the tools of random set theory (in this case, Theorem A.1) immediately deliver

the sharp identification region of interest.

Chesher and Rosen (2017a) further generalize the analysis in this section by dropping

the requirement of independent private values. This allows them, for example, to consider

57Equations D1 in Haile and Tamer and (3.31) here differ in that the latter also requires bids to be ordered.
This observation was besides the point in Haile and Tamer’s 2003 discussion that led to equation D1.
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affiliated private values. They show that even in this significantly more complex context, the

key behavioral restrictions imposed by Haile and Tamer (2003) to relate bids to valuations

can be coupled with the use of random set theory, to characterize sharp identification regions.

3.4 Network Formation Models

Strategic models of network formation generalize the frameworks of single agents and multiple

agents discrete choice models reviewed in Sections 3.1 and 3.2. They posit that pairs of agents

(nodes) form, maintain, or sever connections (links) according to an explicit equilibrium

notion and utility structure. Each individual’s utility depends on the links formed by others

(the network) and on utility shifters that may be pair-specific.

One may conjecture that the results reported in Sections 3.1-3.2 apply in this more general

context too. While of course lessons can be carried over, network formation models present

challenges that combined cannot be overcome without the development of new tools. These

include the issue of equilibrium existence and the possibility of multiple equilibria when they

exist, due to the interdependence in agents’ choices (this problem was already discussed in

Section 3.2). Another challenge is the degree of correlation between linking decisions, which

interacts with how the observable data is generated: one may observe a growing number

of independent networks, or a growing number of agents on a single network. Yet another

challenge, which substantially increases the difficulties associated with the previous two, is

the combinatoric complexity of network formation problems. The purpose of this section is

exclusively to discuss some recent papers that have made important progress to address these

specific challenges and carry out partial identification analysis. For a thorough treatment of

the literature on network formation, I refer to the reviews in Graham (2015), Chandrasekhar

(2016), de Paula (2017), and Graham (2019, Chapter XXX in this Volume).58

Depending on whether the researcher observes data from a single network or multiple

independent networks, the underlying population of agents may be represented as a contin-

uum or as a countably infinite set in the first case, or as a finite set in the second case.

Henceforth, I denote generic agents as i, j, k, and m. I consider static models of undirected

network formation with non-transferable utility.59 The collection of all links among nodes

forms the network, denoted y. For any pair (i, j) with i 6= j, yij = 1 if they are linked, and

yij = 0 otherwise (yii = 0 for all i by convention). The notation y−{ij} denotes the network

that results if a link present between nodes i and j is deleted, while y + {ij} denotes the

network that results if a link absent between nodes i and j is added. Denote agent i’s payoff

by πi(y,x, ε). This payoff depends on the network y and the payoff shifters (x, ε), with x

observable both to the agents and to the researcher, ε only to the agents, and (x, ε) collecting

58For a review of the literature on peer group effect analysis, see, e.g., Brock and Durlauf (2001), Blume,
Brock, Durlauf, and Ioannides (2011), de Paula (2017), and Graham (2019).

59These are models where if a link from node i to node j exists, then the link from j to i exists. The
discussion that follows can be generalized to the case of models with transferable utility.
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(xij , εij) for all i and j.60

Following much of the literature, I employ pairwise stability (Jackson and Wolinsky, 1996)

as equilibrium notion: y is a pairwise stable network if all linked agents prefer not to sever

their links, and all non-existing links are damaging to at least one agent. Formally,

∀(i, j) : yij = 1, πi(y,x, ε) ≥ πi(y − {ij},x, ε) and πj(y,x, ε) ≥ πj(y − {ij},x, ε),

∀(i, j) : yij = 0, if πi(y + {ij},x, ε) > πi(y,x, ε) then πj(y + {ij},x, ε) < πj(y,x, ε).

Under this equilibrium notion if equilibria exist multiplicity is likely; see, among others,

the examples in Graham (2015, p. 475), de Paula (2017, p. 301), and Sheng (2018, example

3.1). The model is therefore incomplete, because it does not specify how an equilibrium is

selected in the region of multiplicity. For the same reasons as discussed in the context of finite

games in Section 3.2, partial identification results (unless one is willing to impose restrictions

on the equilibrium selection mechanism). However, as I explain below, an immediate appli-

cation of the identification analysis carried out there presents enormous practical challenges

because there are 2n(n−1)/2 possible network configurations to be checked for stability (and

the dimensionality of the space of unobservables is also very large).

In what follows I consider two distinct frameworks that make different assumptions about

the utility function and how the data is generated, and discuss what can be learned about

the parameters of interest in these cases.

3.4.1 Data from Multiple Independent Networks

I first consider the case that the researcher observes data from multiple independent networks.

I follow the set-up put forward by Sheng (2018).

Identification Problem 3.9 (Network Formation Model with Multiple Independent

Networks): Let there be n ∈ N, n < ∞ agents, and let (x,y) ∼ P be observable random

variables in ×nj=1Rd × {0, 1}n(n−1)/2, d < ∞. Suppose that y is a pairwise stable network.

For each agent i, let the utility function be known up to finite dimensional parameter vector

δ ∈ ∆ ⊂ Rp, and given by

πi(y,x, ε; δ) =
n∑
j=1

yij(f(xi,xj ; δ1) + εij)

+ δ2

∑n
j=1

∑n
k 6=i,k=1 yijyjk

n− 2
+ δ3

∑n
j=1

∑n
k=j+1 yijyikyjk

n− 2
(3.37)

with f(·, ·; ·) a continuous function of its arguments.61 Suppose that εij are independent for

60Here I consider a framework where the agents have complete information.
61The effects of having friends in common and of friends of friends in (3.37) are normalized by n− 2. This

enforces that the marginal utility that i receives from linking with j is affected by j having an additional link
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all i 6= j and identically distributed with CDF known up to parameter vector γ ∈ Γ ⊂ Rm,

denoted Fγ . Assume that the support of Fγ is R, that Fγ is absolutely continuous with respect

to Lebesgue measure, and continuously differentiable with respect to γ ∈ Γ. Let Θ = ∆× Γ.

Assume that the researcher observes a random sample of networks and observable payoff

shifters drawn from P. In the absence of additional information, what can the researcher

learn about θ ≡ [δ1 δ2 δ3 γ]?

Sheng (2018) analyzes this problem. She establishes equilibrium existence provided that

δ2 ≥ 0 and δ3 ≥ 0 (Sheng, 2018, Proposition 2.2).62 Given payoff shifters (x, ε) and parame-

ters ϑ ≡ [δ̃1 δ̃2 δ̃3 γ̃] ∈ Θ, let Yϑ(x, ε) denote the collection of pairwise stable networks implied

by the model. It is easy to show that Yϑ(x, ε) is a random closed set as in Definition A.1.

The networks in Yϑ(x, ε) are n × n symmetric adjacency matrices with diagonal elements

equal to zero and off diagonal elements in {0, 1}. To ease notation, I omit Yϑ’s dependence

on (x, ε) in what follows. Under the assumption that y is a pairwise stable network, at the

true data generating value of θ ∈ Θ, one has

y ∈ Yθ a.s. (3.38)

Equation (3.38) exhausts the modeling content of Identification Problem 3.9. Theorem A.1

can be leveraged to extract its empirical content from the observed distribution P(y,x). Let

Y be the collection of n×n symmetric matrices with diagonal elements equal to zero and all

other entries in {0, 1}, so that |Y| = 2n(n−1)/2. For a given set K ⊂ Y, let TYϑ(K;Fγ) denote

the probability of the event {Yϑ ∩K 6= ∅} implied when ε ∼ Fγ , x-a.s.

Theorem SIR-3.8 (Structural Parameters in Network Formation Models with Multi-

ple Independent Networks): Under the assumptions of Identification Problem 3.9, the sharp

identification region for θ is

HP[θ] = {ϑ ∈ Θ : P(y ∈ K|x) ≤ TYϑ(K;Fγ̃) ∀K ⊂ Y, x-a.s.}. (3.39)

Proof. Follows from similar arguments as for the proof of Theorem 3.4 on p. 52.

The characterization of HP[θ] in Theorem SIR-3.8 is new to this chapter.63 While tech-

nically it entails a finite number of conditional moment inequalities, in practice their number

can be prohibitive as it can be as large as 22n(n−1)/2 − 2.64 Even using only a subset of the

with k to a smaller degree as n grows. This does not result in diminishing network effects.
62With transferable utility, Sheng (2018, Proposition 2.1) establishes existence for any δ2, δ3 ∈ R. See

Hellmann (2013) for an earlier analysis of existence and uniqueness of pairwise stable networks.
63Gualdani (2019) has previously used Theorem D.1 in Beresteanu, Molchanov, and Molinari (2011), as I do

here, to characterize sharp identification regions in unilateral and bilateral directed network formation games.
64This number may be reduced drastically using the notion of core determining class of sets, see Definition

A.8 and the discussion on p. 106. Nonetheless, even with relatively few agents, the number of inequalities in
(3.39) may remain overwhelming.
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inequalities in (3.39) to obtain an outer region, for example applying the insights in Ciliberto

and Tamer (2009), may not be practical (with n = 20, |Y| ≈ 1057). Moreover, computation

of TYϑ(K;Fγ) may require (depending on the set K) evaluation of rather complex integrals.

To circumvent these challenges, Sheng (2018) proposes to analyze network formation

through subnetworks. A subnetwork is the restriction of a network to a subset of the agents

(i.e., a subset of nodes and the links between them). For given A ⊂ {1, 2, . . . , n}, let yA =

{yij}i,j∈A,i 6=j be the submatrix in y with rows and columns in A, and let y−A be the remaining

elements of y after yA is deleted. With some abuse of notation, let (yA,y−A) denote the

composition of yA and y−A that returns y. Let

Y A
ϑ = {yA ∈ {0, 1}|A| : ∃y−A ∈ {0, 1}|−A| such that (yA,y−A) ∈ Yϑ}

denote the collection of subnetworks with rows and columns in A that can be part of a

pairwise stable network in Yϑ. Let xA denote the subset of x collecting xij for i, j ∈ A. For

a given yA ∈ {0, 1}|A|, let CY A
ϑ

(yA;Fγ) and TY A
ϑ

(yA;Fγ) denote, respectively, the probability

of the events {Y A
ϑ = {yA}} and {{yA} ∈ Y A

ϑ } implied when ε ∼ Fγ , x-a.s. The first event

means that only the subnetwork yA is part of a pairwise stable network, while the second

event means that yA is a possible subnetwork that is part of a pairwise stable network but

other subnetworks may be part of it too. Sheng (2018, Section 4.3) provides the following

outer region for θ by adapting the insight in Ciliberto and Tamer (2009) to subnetworks.

Theorem OR-3.1 (Subnetworks-based Outer Region on Structural Parameters in Net-

work Formation Models with Multiple Independent Networks): Under the assumptions of

Identification Problem 3.9,

OP[θ] = {ϑ ∈ Θ : CY A
ϑ

(yA;Fγ̃) ≤ P(yA = yA|xA) ≤ TY A
ϑ

(yA;Fγ̃)∀yA ⊂ YA, xA-a.s.},
(3.40)

where YA is the collection of |A| × |A| symmetric matrices with diagonal elements equal to

zero and all other elements in {0, 1} so that |YA| = 2|A|(|A|−1)/2.

Proof. Let u(ỹ|Yϑ) be a random variable in the unit simplex in Rn(n−1)/2 which assigns to

each possible pairwise stable network ỹ that may realize given (x, ε) and ϑ ∈ Θ the probability

that it is selected from Yϑ. Given y ∈ Y, denote by M(y|x) the model predicted probability

that the network realizes equal to y. Then the model yields

M(y|x) =

∫
u(y|Yϑ)dFγ =

∫
y∈Yϑ,|Yϑ|=1

dFγ +

∫
y∈Yϑ,|Yϑ|≥2

u(y|Yϑ)dFγ . (3.41)

The model implied distribution for subnetwork ỹA is obtained by taking the marginal of
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expression (3.41) with respect to ỹ−A

M(yA|x) =
∑
y−A

M((yA, y−A)|x) =

∫
yA∈Y Aϑ ,|Y

A
ϑ |=1

dFγ +

∫
yA∈Y Aϑ ,|Y

A
ϑ |≥2

∑
y−A

u((yA, y−A)|Yϑ)dFγ .

(3.42)

Replacing u in (3.42) with zero and one yields the bounds in (3.40). Sheng (2018, Section

4.2) shows that under the maintained assumptions on ε, these inequalities are invariant under

permutations of labels, so subnetworks in any two subsets A,A′ ⊆ {1, 2, . . . , n} with |A| = |A′|
and xA = xA′ yield the same inequalities for all yA = yA

′
. It is therefore sufficient to consider

subnetwork A and the inequalities in (3.40) associated with it.

As long as the subnetworks are chosen to be small, e.g., |A| = 2, 3, 4, the inequalities

in (3.40) can be computed even if the network is large. Moreover, Sheng (2018) shows

that the inequalities in (3.40) remain informative even as n grows. This fact highlights the

importance of working with subnetworks. One could have applied the insight of Ciliberto

and Tamer (2009) directly to the full network by setting u equal to zero and to one in (3.41).

The resulting bounds, however, would vanish to zero as n grows and become uninformative

for θ. The characterization in Theorem OR-3.1 can be refined to obtain a smaller region,

adapting the results in Beresteanu, Molchanov, and Molinari (2011, Supplementary Appendix

Theorem D.1) to subnetworks. The size of this refined region is weakly decreasing in |A|.65

However, the refinement does not yield HP[θ] because it is applied only to subnetworks.

Key Insight 3.11: At the beginning of this section I highlighted some key challenges to

inference in network formation models. Identification Problem 3.9 bypasses the concern on

the dependence among linking decisions through the independence assumption on εij and the

presumption that the researcher observes data from multiple independent networks. Sheng

(2018) takes on the remaining challenges by formally establishing equilibrium existence and

allowing for unrestricted selection among multiple equilibria. In order to overcome the compu-

tational complexity of the problem, she puts forward the important idea of inference based on

subnetworks. While of course information is left on the table, the approach remains feasible

even with large networks.

Miyauchi (2016) considers a framework similar to the one laid out in Identification Prob-

lem 3.9. He assumes non-negative externalities, and shows that in this case the set of pairwise

stable equilibria is a complete lattice with a smallest and a largest equilibrium.66 He then

uses moment functions that are monotone in the pairwise stable network (so that they take

their extreme values at the smallest and largest equilibria), to obtain moment conditions that

65The idea of using random set methods on subnetworks to obtain the refined region was put forward in an
earlier version of Sheng (2018). She provided a proof that the refined region’s size decreases weakly in |A|.

66This approach exploits supermodularity, and is related to Jia (2008) and Echenique (2005).
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restrict θ. Examples of the moment functions used include the proportion of pairs with a link,

the proportion of links belonging to traingles, and many more (see Miyauchi, 2016, Table 1).

Gualdani (2019) considers unilateral and bilateral directed network formation games,

still under a sampling framework where the researcher observes many independent networks.

The equilibrium notion that she uses is pure strategy Nash. She assumes that the payoff that

player i receives from forming link ij is allowed to depend on the number of additional players

forming a link pointing to j (but rules out other spillover effects). Under this assumption

and some regularity conditions, Gualdani shows that the network formation game can be

decomposed into local games (i.e., games whose sets of players and strategy profiles are

subsets of the network formation game’s ones), so that the network formation game is in

equilibrium if and only if each local game is in equilibrium. Thanks to this result, she obtains

a computationally feasible characterization of HP[θ] using elements of random set theory.

3.4.2 Data From a Single Network

When the researcher observes data from a single network, extra care has to be taken to

restrict the dependence among linking decisions. This can be done in various ways (see,

e.g., Chandrasekhar, 2016, for some examples). Here I consider a framework proposed by de

Paula, Richards-Shubik, and Tamer (2018).

Identification Problem 3.10 (Network Formation Model with a Single Network): Let

there be a continuum of agents j ∈ I = [0, µ], with µ > 0 their total measure, who choose

whom to link to based on a utility function specified below.67 Let y : I × I → {0, 1} be an

adjacency mapping with yjk = 1 if nodes j and k are linked, and yjk = 0 otherwise. Assume

that only connections up to distance d̄ affect utility and that preferences are such that agents

never choose to form more than a total of l̄ links.68 To simplify exposition, let d̄ = 2. Let each

agent j be endowed with characteristics xj ∈ X , with X a finite set in Rp, that are observable

to the researcher. Additionally, let each agent j be endowed with l̄ × |X | preference shocks

εj`(x) ∈ R, ` = 1, . . . , l̄, x ∈ X , that are unobservable to the researcher and correspond to the

possible direct connections and their characteristics.69 Suppose that the vector of preference

shocks is independent of x and has a distribution known up to parameter vector γ ∈ Γ ⊂ Rm,

denoted Qγ . Let I(j) = {k : yjk = 1}. Assume that agents with characteristics and preference

67This is an approximation to a framework with a large but finite number of agents. The utility function
can be less restrictive than the one considered here (see Assumptions 1 and 2 in de Paula, Richards-Shubik,
and Tamer, 2018).

68The distance measure used here is the shortest path between two nodes.
69Under this assumption, the preference shocks do not depend on the individual identities of the agents.

Hence, it agents k and m have the same observable characteristics, then j is indifferent between them.
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shocks (x, e) value links according to the utility function

πj(y, x, e) =
∑
k∈I(j)

(f(xj , xk) + ej`(k)(xk))

+ δ1

∣∣∣∣∣∣
⋃

k∈I(j)

I(k)− I(j)− {j}

∣∣∣∣∣∣+ δ2

∑
k∈I(j)

∑
m∈I(j):m>k

ykm −∞1(|I(k)| > l̄) (3.43)

Assume that the network y formed by agents with characteristics and shocks (x, ε) is pairwise

stable. Let Θ ≡ Υ×∆×Γ, with Υ the parameter space for f ≡ {f(x,w) : x ∈ X , w ∈ X}. In

the absence of additional information, what can the researcher learn about θ ≡ [f δ1 δ2 γ]?

Identification Problem 3.10 enforces dimension reduction through the restrictions on depth

and degree (the bounds d̄ and l̄), so that it is applicable to frameworks with networks that

have limited degree distribution (e.g., close friendships network, but not Facebook network).

It also requires that individual identities are irrelevant. This substantially reduces the richness

of unobserved heterogeneity allowed for and the dimensionality of the space of unobservables.

While the latter feature narrows the domain of applicability of the model, it is very beneficial

to obtain a tractable characterization of what can be learned about θ, and yields equilibria

that may include isolated nodes, a feature often encountered in networks data.

de Paula, Richards-Shubik, and Tamer (2018) study Identification Problem 3.10 focusing

on the payoff-relevant local subnetworks that result from the maintained assumptions. These

are distinct from the subnetworks used by Sheng (2018): whereas Sheng looks at subnetworks

formed by arbitrary individuals and whose size is chosen by the researcher on the base of

computational tractability, de Paula, Richards-Shubik, and Tamer look at subnetworks among

individuals that are within a certain distance of each other, as determined by the structure

of the preferences. On the other hand, Sheng’s 2018 analysis does not require that agents

have a finite number of types nor bounds the number of links that they may form.

To characterize the local subnetworks relevant for identification analysis in their frame-

work, de Paula, Richards-Shubik, and Tamer (2018) propose the concepts of network type

and preference class. A network type t = (a, v) describes the local network up to distance

d̄ from the reference node. Here a is a square matrix of size 1 + l̄
∑d̄

d=1(l̄ − 1)d−1 that de-

scribes the local subnetwork that is utility relevant for an agent of type t. It consists of the

reference node, its direct potential neighbors (l̄ elements), its second order neighbors (l̄(l̄−1)

elements), through its d̄-th order neighbors (l̄(l̄ − 1)d̄−1 elements). The other component of

the type, v, is a vector of length equal to the size of a that contains the observable character-

istics of the reference node and her alters. The bounds d̄ and l̄ enforce dimension reduction

by bounding the number of network types. The partial identification approach of de Paula,

Richards-Shubik, and Tamer depends on this number, rather than on the number of agents.

For example, the number of moment inequalities is determined by the number of network
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types, not by the number of agents. As such, it yields its highest dividends for dimension

reduction in large networks.

Let T denote the collection of network types generated from a preference structure π

and set of characteristics X . For given realization (x, e) of the observable characteristics and

preference shocks of a reference agent, and for given ϑ ∈ Θ, define the collection of network

types for which no agent wants to drop a link by

Hϑ(x, e) = {(a, v) ∈ T : v1 = x and π(a, v, e) ≥ π(a−`, v, e) ∀` = 1, . . . , l̄},

where a−` is equal to the local adjacency matrix a but with the `-th link removed (that is,

it sets the (1, ` + 1) and (` + 1, 1) elements of a equal to zero). In what follows I omit the

dependence of Hϑ on (x, e). Because (x, ε) are random vectors, Hϑ = Hϑ(x, ε) is a random

closed set as per Definition A.1. This random set takes on a finite number of realizations

(equal to the possible subsets of T ), so that its distribution is completely determined by the

probability with which it takes on each of these realizations. A preference class H ⊂ T is

one of the possible realizations of Hϑ for some ϑ ∈ Θ. The model implied probability that

Hϑ = H is given by

M(H|x;ϑ) ≡ Qγ̃(ε : Hϑ = H|x). (3.44)

Observation of data from one network allows the researcher, under suitable restrictions on the

sampling process, to learn the distribution of network types in the data (type shares), denoted

P(t).70 For example, in a network of best friends with l̄ = 1 and d̄ = 2, and X = {x1, x2} (e.g.,

a simplified framework with only two possible races), agents are either isolated or in a pair.

Network types are pairs for the agents’ race and the best friend’s race (with second element

equal zero if the agent is isolated). Type shares are the fraction of isolated blacks, the fraction

of isolated whites, the fraction of blacks with a black best friend, the fraction of whites with a

black best friend, and the fraction of whites with a white best friend. The preference classes

for a black agent are H1(b, e) = {(b, 0)}, H2(b, e) = {(b, 0), (b, b)}, H3(b, e) = {(b, 0), (b, w)},
H4(b, e) = {(b, 0), (b, w), (b, b)} (and similarly for whites). In each case, being alone is part

of the preference class, as there are no links to sever. In the second class the agent has a

preference for having a black friend, in the third class for a white friend, and in the last

class for a friend of either race. It is easy to see that the model is incomplete, as for a given

realization of ε it makes multiple predictions on the agent’s preference type.

de Paula, Richards-Shubik, and Tamer propose to map the distribution of preference

classes into the observed distribution of preference types in the data through the use of

allocation parameters, denoted αH(t) ∈ [0, 1]. These are distinct from but play the same role

as a selection mechanism. The model, augmented with them, implies a probability that an

70Full observation of the network is not required (and in practice it often does not occur). Sampling
uncertainty results from it because in this model there is a continuum of agents.
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agent with preferences in class H is of network type t given by:

M(t;ϑ, α) =
1

µ

∑
H⊂T

µv1(t)M(H|v1(t);ϑ)αH(t), (3.45)

where µv1(t) is the measure of reference agents with characteristics equal to the second com-

ponent of the preference type t, x = v1(t), and α ≡ {αH(t) : t ∈ T , H ⊂ T }.
de Paula, Richards-Shubik, and Tamer provide a characterization of an outer region for θ

based on two key implications of pairwise stability that deliver restrictions on α. They also

show that under some additional assumptions, this characterization yields HP[θ] (de Paula,

Richards-Shubik, and Tamer, 2018, Appendix B). Here I focus on their more general result.

The first implication that they use is that existing links should not be dropped:

t /∈ H ⇒ αH(t) = 0. (3.46)

The condition in (3.46) is embodied in ᾱ ≡ {αH(t) : t ∈ H,H ⊂ T }.
The second implication is that it should not be possible to establish mutually beneficial

links among nodes that are far from each other. Let t′ and s′ denote the network types that

are generated if one adds a link in networks of types t and s among two nodes that are at

distance at least 2d̄ from each other and each have less than l̄ links. Then the requirement is(∑
H⊂T

µv1(t)M(H|v1(t);ϑ)αH(t)1(t′ ∈ H)

)(∑
H⊂T

µv1(s)M(H|v1(s);ϑ)αH(s)1(s′ ∈ H)

)
= 0

(3.47)

In words, if a positive measure of agents of type t prefer t′ (i.e., αH(t) > 0 for some H

such that t′ ∈ H), there must be zero measure of type s individuals who prefer s′, because

otherwise the network is unstable. de Paula, Richards-Shubik, and Tamer show that the

conditions in (3.47) can be embodied in a square matrix q of size equal to the length of ᾱ.

The entries of q are constructed as follows. Let H and H̃ be two preference classes with

t ∈ H and s ∈ H̃. With some abuse of notation, let qαH(t),αH̃(s) denote the element of q

corresponding to the index of the entry in ᾱ equal to αH(t) for the row, and to αH̃(s) for the

column. Then set qαH(t),αH̃(s)(ϑ) = 1(t′ ∈ H)1(s′ ∈ H̃). It follows that this element yields

the term
(
αH(t)1(t′ ∈ H)

)(
αH̃(s)1(s′ ∈ H̃)

)
in the quadratic form ᾱ>qᾱ. As long as µv1(·)

and M(·|x;ϑ) in (3.44) are strictly positive, this term is equal to zero if and only if condition

(3.47) holds for types t and s.71

With this background, Theorem OR-3.2 below provides an outer region for θ. The proof

of this result follows from the arguments laid out above (see de Paula, Richards-Shubik, and

71The possibility that µv1(·) or M(·|x;ϑ) are equal to zero can be accommodated by setting qαH (t),α
H̃

(s)(ϑ) =

(µv1(t)M(H|v1(t);ϑ)1(t′ ∈ H))(µv1(s)M(H|v1(s);ϑ)1(s′ ∈ H̃)). However, in that case q depends on ϑ and its
computational cost increases.
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Tamer, 2018, Theorems 1 and 2, for the full details).

Theorem OR-3.2 (Outer Region on Parameters of a Network Formation Model with a

Single Network): Under the assumptions of Identification Problem 3.10,

OP[θ] =

ϑ ∈ Θ :


minᾱ ᾱ

>qᾱ

s.t. M(t;ϑ, ᾱ) = P(t) ∀ t ∈ T∑
t∈H ᾱH(t) = 1 ∀H ⊂ T

αH(t) ≥ 0 ∀t ∈ H,∀H ⊂ T

 = 0

 . (3.48)

The set in (3.48) does not equal HP[θ] in all models allowed for in Identification Problem

3.10 because condition (3.47) does not embody all implications of pairwise stability on non-

existing links. While the optimization problem in (3.48) is quadratic, it is not necessarily

convex because q may not be positive definite. Nonetheless, the simulations reported by de

Paula, Richards-Shubik, and Tamer suggest that OP[θ] can be computed rapidly, as least for

the examples they considered.

Key Insight 3.12: At the beginning of this section I highlighted some key challenges to

inference in network formation models. When data is observed from a single network, as

in Identification Problem 3.10, de Paula, Richards-Shubik, and Tamer’s 2018 proposal to

base inference on local networks achieves two main benefits. First, it delivers consistently

estimable features of the game, namely the probability that an agent belongs to one of a finite

collection of network types. Second, it achieves dimension reduction, so that computation of

outer regions on θ remains feasible even with large networks and allowing for unrestricted

selection among multiple equilibria.

3.5 Further Theoretical Advances and Empirical Applications

In order to discuss the partial identification approach to learning structural parameters of

economic models in some level of detail while keeping this chapter to a manageable length, I

have focused on a selection of papers. In this section I briefly mention several other excellent

theoretical contributions that could be discussed more closely, as well as several empirical

papers that have applied partial identification analysis of structural models to answer a wide

array of questions of substantive economic importance.

Pakes (2010) and Pakes, Porter, Ho, and Ishii (2015) propose to embed revealed preference-

based inequalities into structural models of both demand and supply in markets where firms

face discrete choices of product configuration or of location. Whereas using revealed prefer-

ence arguments is a trademark of the entire literature on discrete choice, Pakes (2010) and

Pakes, Porter, Ho, and Ishii (2015) propose to use a subset of the model’s implications to

obtain easy-to-compute moment inequalities. For example, in the context of entry games

such as the ones discussed in Section 3.2, they propose to base inference on the implication
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that a player enters the market if and only if (s)he expects to make non-negative profits.

This condition can be exploited even when players have heterogeneous (unobserved to the

researcher) information sets, and it implies that the expected profits for entrants should be

non-negative. Nonetheless, the condition does not suffice to obtain moment inequalities that

include only observed payoff shifters and preference parameters. This is because the expected

value of unobserved payoff shifters for entrants is not equal to zero, as the group of entrants

is selected. The authors require the availability of valid (monotone) instrumental variables to

solve this problem (see, e.g., Manski, 1990; Manski and Pepper, 2000, for uses of instrumental

variables and monotone instrumental variables in the analysis of treatment effects). Inter-

esting features of their approach include that the researcher does not need to solve for the

set of equilibria, nor to require that the distribution of unobservable payoff shifters is known

up to finite dimensional parameter vector. Moreover, the same basic ideas can be applied to

single agent models (with or without heterogeneous information sets). A shortcoming of the

method is that the set of parameter vectors satisfying the moment inequalities may be wider

than the sharp identification region under the maintained assumptions.

The breadth of applications of the approach proposed by Pakes (2010) and Pakes, Porter,

Ho, and Ishii (2015) is vast.72 For example, Ho (2009) uses it to model the formation of the

hospital networks offered by US health insurers, and Ho, Ho, and Mortimer (2012) and Lee

(2013) use it to obtain bounds on firm fixed costs as an input to modeling product choices in

the movie industry and in the US video game industry, respectively. Holmes (2011) estimates

the effects of Wal-Mart’s strategy of creating a high density network of stores. While the close

proximity of stores implies cannibalization in sales, Wal-Mart is willing to bear it to achieve

density economies, which in turn yield savings in distribution costs. His results suggest that

Wal-Mart substantially benefits from high store density. Ellickson, Houghton, and Timmins

(2013) measure the effects of chain economies, business stealing, and heterogeneous firms’

comparative advantages in the discount retail industry. Kawai and Watanabe (2013) estimate

a model of strategic voting and quantify the impact it has on election outcomes. As in other

models analyzed in this section, the one they study yields multiple predicted outcomes, so

that partial identification methods are required to carry out the empirical analysis if one does

not assume a specific selection mechanism to resolve the multiplicity. They estimate their

model on Japanese general-election data, and uncover a sizable fraction of strategic voters.

They also estimate that only a small fraction of voters are misaligned (voting for a candidate

other than their most preferred one). Eizenberg (2014) studies whether the rapid removal in

the market for personal computers of existing central processing units upon creation of new

ones through innovation reduces surplus. He finds that a limited group of price-insensitive

72Statistical inference in these papers is often carried out using the methods proposed by Chernozhukov,
Hong, and Tamer (2007), Beresteanu and Molinari (2008), and Andrews and Soares (2010). Model specification
tests, if carried out, are based on the method proposed by Bugni, Canay, and Shi (2015). See Sections 4.3 and
5, respectively, for a discussion of confidence sets and specification tests.
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consumers enjoys the largest share of the welfare gains from innovation. A policy that kept

older technologies on the shelf would allow for the benefits from innovation to reach price-

sensitive consumers thanks to improved access to mobile computing, but total welfare would

not increase because consumer welfare gains would be largely offset by producer losses. Ho

and Pakes (2014) analyze hospital referrals for labor and birth episodes in California in

2003, for patients enrolled with six health insurers that use to a different extent incentives

to referring physicians groups to reduce hospital costs (capitation contracts). The aim is

to learn whether enrollees with high-capitation insurers tend to be referred to lower-priced

hospitals (ceteris paribus) compared to other patients with same-severity conditions, and

whether quality of care was affected. Their model allows for an insurer-specific preference

function that is additively separable in the hospital price paid by the insurer (which is allowed

to be measured with error), the distance traveled, and plan and severity-specific hospital

fixed effects. Importantly, unobserved heterogeneity entering the preference function is not

assumed to be drawn from a distribution known up to finite dimensional parameter vector.

The results of the empirical analysis indicate that the price paid by insurers to hospitals has

an impact on referrals, with higher elasticity to price for insurers whose physicians groups

are more highly capitated. Dickstein and Morales (2018) study how the information that

potential exporters have to predict the profits they will earn when serving a foreign market

influences their decisions to export. They propose a model where the researcher specifies

and observes a subset of the variables that agents use to form their expectations, but may

not observe other variables that affect firms’ expectations heterogeneously (across firms and

markets, and over time). Because only a subset of the variables entering the firms’ information

set is observed, partial identification results. They show that, under rational expectations,

they can test whether potential exporters know and use specific variables to predict their

export profits. They also use their model’s estimates to quantify the value of information.

Wollmann (2018) studies the implications of the $85 billion automotive industry bailout in

2009 on the commercial vehicle segment. He finds that had Chrysler and GM been liquidated

(or aquired by a major competitor) rather than bailed out, the surviving firms would have

experienced a rise in profits high enough to induce them to introduce new products.

A different use of revealed preference arguments appears in the contributions of Blundell,

Browning, and Crawford (2008), Blundell, Kristensen, and Matzkin (2014), Hoderlein and

Stoye (2014), Manski (2014), Barseghyan, Molinari, and Teitelbaum (2016), Hausman and

Newey (2016), and many others. For example, Manski (2014) proposes a method to par-

tially identify income-leisure preferences and to evaluate the associated effects of tax policies.

He starts from basic revealed-preference analysis performed under the assumption that in-

dividuals prefer more income and leisure, and no other restriction. The analysis shows that

observing an individual’s time allocation under a status quo tax policy yields bounds on his

allocation that may or may not be informative, depending on how the person allocates his

time under the status quo policy and on the tax schedules. He then explores what more can
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be learned if one additionally imposes restrictions on the distribution of income-leisure pref-

erences, using the method put forward by Manski (2007b). One assumption restricts groups

of individuals facing different choice sets to have the same distribution of preferences. The

other assumption restricts this distribution to a parametric family. Kline and Tartari (2016)

build on and expand Manski (2014)’s framework to evaluate the effect of Connecticut’s Jobs

First welfare reform experiment on women’ labor supply and welfare participation decisions.

Barseghyan, Molinari, and Teitelbaum (2016) propose a method to learn features of house-

holds’ risk preferences in a random utility model that nests expected utility theory plus a

range of non-expected utility models.73 They allow for unobserved heterogeneity in prefer-

ences (that may enter the utility function non-separably) and leave completely unspecified

their distribution. The authors use revealed preference arguments to infer, for each household,

a set of values for its unobserved heterogeneity terms that are consistent with the household’s

choices in the three lines of insurance coverage. As their core restriction, they assume that

each household’s preferences are stable across contexts: the household’s utility function is

the same when facing distinct but closely related choice problems. This allows them to use

the inferred set valued data to partially identify features of the distribution of preferences,

and to classify households into preference types. They apply their proposed method to an-

alyze data on households’ deductible choices across three lines of insurance coverage (home

all perils, auto collision, and auto comprehensive).74 Their results show that between 70 and

80 percent of the households make choices that can be rationalized by a model with linear

utility and monotone, quadratic, or even linear probability distortions. These probability

distortions substantially overweight small probabilities. By contrast, fewer than 40 percent

can be rationalized by a model with concave utility but no probability distortions.

Hausman and Newey (2016) propose a method to carry out demand analysis while al-

lowing for general forms of unobserved heterogeneity. Preferences and linear budget sets

are assumed to be statistically independent (conditional on covariates and control functions).

Hausman and Newey show that for continuous demand, average surplus is generally not iden-

tified from the distribution of demand for a given price and income, and therefore propose

a partial identification approach. They use bounds on income effects to derive bounds on

average surplus. They apply the bounds to gasoline demand, using data from the 2001 U.S.

National Household Transportation Survey.

Another strand of empirical applications pertains to the analysis of discrete games. Cilib-

erto and Tamer (2009) use the method they develop, described in Section 3.2.1, to study

73Their model is based on the one put forward by Barseghyan, Molinari, O’Donoghue, and Teitelbaum
(2013). See Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2018) for a review of these and other non-
expected utility models in the context of estimation of risk preferences.

74Auto collision coverage pays for damage to the insured vehicle caused by a collision with another vehicle
or object, without regard to fault. Auto comprehensive coverage pays for damage to the insured vehicle from
all other causes, without regard to fault. Home all perils (or simply home) coverage pays for damage to the
insured home from all causes, except those that are specifically excluded (e.g., flood, earthquake, or war).
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market structure in the US airline industry and the role that firm heterogeneity plays in

shaping it. Their findings suggest that the competitive effects of each carrier increase in that

carrier’s airport presence, but also that the competitive effects of large carriers (American,

Delta, United) are different from those of low cost ones (Southwest). They also evaluate the

effect of a counterfactual policy repealing the Wright Amendment, and find that doing so

would see an increase in the number of markets served out of Dallas Love.

Grieco (2014) proposes a model of static entry that extends the one in Section 3.2 by

allowing individuals to have flexible information structures, where players’s payoffs depend

on both a common-knowledge unobservable payoff shifter, and a private-information one. His

characterization of HP[θ] is based on using an unrestricted selection mechanism, as in Berry

and Tamer (2006) and Ciliberto and Tamer (2009). He applies the model to study the impact

of supercenters such as Wal-Mart, that sell both food and groceries, on the profitability of

rural grocery stores. He finds that entry by a supercenter outside, but within 20 miles, of a

local monopolist’s market has a smaller impact on firm profits than entry by a local grocer.

Their entrance has a small negative effect on the number of grocery stores in surrounding

markets as well as on their profits. The results suggest that location and format-based

differentiation partially insulate rural stores from competition with supercenters.

A larger class of information structures is considered in the analysis of static discrete

games carried out by Magnolfi and Roncoroni (2017). They allow for all information struc-

tures consistent with the players knowing their own payoffs and the distribution of oppo-

nents’ payoffs. As solution concept they adopt the Bayes Correlated Equilibrium recently

developed by Bergemann and Morris (2016). Also with this solution concept multiple equi-

libria are possible. The authors leave completely unspecified the selection mechanism picking

the equilibrium played in the regions of multiplicity, so that partial identification attains.

Magnolfi and Roncoroni use the random sets approach to characterize HP[θ]. They apply

the method to estimate a model of entry in the Italian supermarket industry and quantify

the effect of large malls on local grocery stores. Berry and Compiani (2019) use the random

sets approach to partially identify and estimate dynamic discrete choice models with serially

correlated unobservables, under instrumental variables restrictions. They extend two-step

dynamic estimation methods to characterize a set of structural parameters that are consis-

tent with the dynamic model, the instrumental variables restrictions and the data. Gualdani

(2019) uses the random sets approach and a network formation model, to learn about Italian

firms’ incentives for having their executive directors sitting on the board of their competitors.

Barseghyan, Coughlin, Molinari, and Teitelbaum (2019) use the method described in Sec-

tion 3.1.3 to partially identify the distribution of risk preferences using data on deductible

choices in auto collision insurance.75 They posit an expected utility theory model and al-

low for unobserved heterogeneity in households’ risk aversion and choice sets, with unre-

75Statistical inference on projections of the partially identified parameters is carried out using the method
proposed by Kaido, Molinari, and Stoye (2019a).
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stricted dependence between them. Motivation for why unobserved heterogeneity in choice

sets might be an important factor in this empirical framework comes from the earlier anal-

ysis of Barseghyan, Molinari, and Teitelbaum (2016) and novel findings that are part of

Barseghyan, Coughlin, Molinari, and Teitelbaum’s 2019 contribution. They show that com-

monly used models that make strong assumptions about choice sets (e.g., the mixed logit

model with each individual’s choice set assumed equal to the feasible set, and various models

of choice set formation) can be rejected in their data. With regard to risk aversion, their key

finding is that their estimated lower bounds are an order of magnitude less than the point

estimates obtained in the related literature. This suggests that the data can be explained

by expected utility theory with lower and more homogeneous levels of risk aversion than it

had been uncovered before. This provides new evidence on the importance of developing

models that differ in their specification of which alternatives agents evaluate (rather than or

in addition to models focusing on how they evaluate them), and to data collection efforts

that seek to directly measure agents’ heterogeneous choice sets (Caplin, 2016).

Iaryczower, Shi, and Shum (2018) study the effect of pre-vote deliberation on the deci-

sions of US appellate courts. The question of interest is weather deliberation increases or

reduces the probability of an incorrect decision. They use a model where communication

equilibrium is the solution concept, and only observed heterogeneity in payoffs is allowed

for. In the model, multiple equilibria are again possible, and the authors leave the selection

mechanism completely unspecified. They characterize HP[θ] through an optimization prob-

lem, and structurally estimate the model on US Courts of Appeal data. Iaryczower, Shi,

and Shum compare the probability of making incorrect decisions under the pre-vote deliber-

ation mechanism, to that in a counterfactual environment where no deliberation occurs. The

results suggest that there is a range of parameters in HP[θ], for which judges have ex-ante

disagreement of imprecise prior information, for which deliberation is beneficial. Otherwise

deliberation leads to lower effectiveness for the court.

D’Haultfoeuille, Gaillac, and Maurel (2018) show that inference methods developed for

partially identified models can be useful even outside this context. They are concerned

with testing the hypothesis of rational expectations when one observes only the marginal

distributions of realizations and subjective beliefs, but not their joint distribution (e.g., when

subjective beliefs are observed in one dataset, and realizations in a different one, and the

two cannot be matched). They establish that the hypothesis of rational expectations can be

expressed as testing that a continuum of moment inequalities is satisfied, and they leverage

the results in Andrews and Shi (2017) to provide a simple-to-compute test for this hypothesis.

They apply their method to test for and quantify deviations from rational expectations about

future earnings, and examine the consequences of such departures in the context of a life-cycle

model of consumption.

Another important strand of theoretical literature is concerned with partial identification

of panel data models. Honoré and Tamer (2006) consider a dynamic random effects probit
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model, and use partial identification analysis to obtain bounds on the model parameters that

circumvent the initial conditions problem. Rosen (2012) considers a fixed effect panel data

model where he imposes a conditional quantile restriction on time varying unobserved het-

erogeneity. Differencing out inequalities resulting from the conditional quantile restriction

delivers inequalities that depend only on observable variables and parameters to be esti-

mated, but not on the fixed effects, so that they can be used for estimation. Chernozhukov,

Fernández-Val, Hahn, and Newey (2013) obtain bounds on average and quantile treatment

effects in nonparametric and semiparametric nonseparable panel data models. Torgovitsky

(2019a) provides a method to partially identify state dependence in panel data models where

individual unobserved heterogeneity needs not be time invariant.

4 Estimation and Inference

4.1 Framework and Scope of the Discussion

The identification analysis carried out in Sections 2-3 presumes knowledge of the joint dis-

tribution P of the observable variables. That is, it presumes that P can be learned with

certainty from observation of the entire population. In practice, one observes a sample of size

n drawn from P. For simplicity I assume it to be a random sample.76

Statistical inference on HP[θ] needs to be conducted using knowledge of Pn, the empirical

distribution of the observable outcomes and covariates. Because HP[θ] is not a singleton, this

task is particularly delicate. To start, care is required to choose a proper notion of consistency

for a set estimator ĤPn [θ] and to obtain palatable conditions under which such consistency

attains. Next, the asymptotic behavior of statistics designed to test hypothesis or build

confidence sets for HP[θ] or for ϑ ∈ HP[θ] might change with ϑ, creating technical challenges

for the construction of confidence sets that are not encountered when θ is point identified.

Many of the sharp identification regions derived in Sections 2-3 can be written as collections of

vectors ϑ ∈ Θ that satisfy conditional or unconditional moment (in)equalities. For simplicity,

I assume that Θ is a compact and convex subset of Rd, and I use the formalization for the

case of a finite number of unconditional moment (in)equalities:

HP[θ] = {ϑ ∈ Θ : EP(mj(wi;ϑ)) ≤ 0 ∀j ∈ J1, EP(mj(wi;ϑ)) = 0 ∀j ∈ J2}. (4.1)

In (4.1), wi ∈ W ⊆ RdW is a random vector collecting the observable variables, with w ∼ P;

76This assumption is often maintained in the literature. See, e.g., Andrews and Soares (2010) for a treatment
of inference with dependent observations. Epstein, Kaido, and Seo (2016) study inference in games of complete
information as in Identification Problem 3.6, imposing the i.i.d. assumption on the unobserved payoff shifters
{εi1, εi2}ni=1. The authors note that because the selection mechanism picking the equilibrium played in the
regions of multiplicity (see Section 3.2) is left completely unspecified and may be arbitrarily correlated across
markets, the resulting observed variables {wi}ni=1 may not be independent and identically distributed, and
they propose an inference method to address this issue.
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mj :W×Θ→ R, j ∈ J ≡ J1∪J2, are known measurable functions characterizing the model;

and J is a finite set equal to {1, . . . , |J |}.77 Instances where HP[θ] is characterized through a

finite number of conditional moment (in)equalities and the conditioning variables have finite

support can easily be recast as in (4.1).78 Consider, for example, the two player entry game

model in Identification Problem 3.6 on p. 48, where w = (y1,y2,x1,x2). Using (in)equalities

(3.18)-(3.21) and assuming that the distribution of (x1,x2) has k̄ points of support, denoted

(x1,k, x2,k), k = 1, . . . , k̄, we have |J | = 4k̄ and for k = 1, . . . , k̄,79

m4k−3(wi;ϑ) = [1((y1,y2) = (0, 0))− Φ((−∞,−x1b1), (−∞,−x2b2); r)]1((x1,x2) = (x1,k, x2,k))

m4k−2(wi;ϑ) = [1((y1,y2) = (1, 1))− Φ([−x1b1 − d1,∞), [−x2b2 − d2,∞); r)]1((x1,x2) = (x1,k, x2,k))

m4k−1(wi;ϑ) = [1((y1,y2) = (0, 1))− Φ((−∞,−x1b1 − d1), (−x2b2,∞); r)]1((x1,x2) = (x1,k, x2,k))

m4k(wi;ϑ) =
[
1((y1,y2) = (0, 1))−

{
Φ((−∞,−x1b1 − d1), (−x2b2,∞); r)

− Φ((−x1b1,−x1b1 − d1), (−x2b2,−x2b2 − d2); r)
}]

1((x1,x2) = (x1,k, x2,k)).

In point identified moment equality models it has been common to conduct estimation

and inference using a criterion function that aggregates moment violations (Hansen, 1982).

Manski and Tamer (2002) generalize this approach by proposing the use of a criterion function

qP : Θ → R+ such that qP(ϑ) = 0 if and only if ϑ ∈ HP[θ]. Many criterion functions can

be used (see, e.g. Manski and Tamer, 2002; Chernozhukov, Hong, and Tamer, 2007; Romano

and Shaikh, 2008; Rosen, 2008; Galichon and Henry, 2009; Andrews and Guggenberger,

2009; Andrews and Soares, 2010; Canay, 2010; Romano and Shaikh, 2010). Some simple and

commonly employed ones include

qP,sum(ϑ) =
∑
j∈J1

[
EP(mj(wi;ϑ))

σP,j(ϑ)

]2

+

+
∑
j∈J2

[
EP(mj(wi;ϑ))

σP,j(ϑ)

]2

, (4.2)

qP,max(ϑ) = max

{
max
j∈J1

[
EP(mj(wi;ϑ))

σP,j(ϑ)

]
+

,max
j∈J2

∣∣∣∣EP(mj(wi;ϑ))

σP,j(ϑ)

∣∣∣∣
}2

, (4.3)

where [x]+ = max{x, 0} and σP,j is the population standard deviation of mj(wi;ϑ). In (4.2)-

(4.3) the moment functions are studentized, as doing so is important for statistical power

77Examples where the set J is a compact set (e.g., a unit ball) rather than a finite set include the case of
best linear prediction with interval outcome and covariate data, see characterization (2.27) on p. 24, and the
case of entry games with multiple mixed strategy Nash equilibria, see characterization (3.25) on p. 55. A more
general continuum of inequalities is also possible, as in the case of discrete choice with endogenous explanatory
variables, see characterization (3.13) on p. 40. I refer to Andrews and Shi (2017) and Beresteanu, Molchanov,
and Molinari (2011, Supplementary Appendix B) for inference methods in the presence of a continuum of
conditional moment (in)equalities.

78I refer to Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013), Lee, Song, and Whang (2013),
Armstrong (2014, 2015), Armstrong and Chan (2016), Chernozhukov, Chetverikov, and Kato (2018), and
Chetverikov (2018), for inference methods in the case that the conditioning variables have a continuous dis-
tribution.

79In these expressions an index of the form jk not separated by a comma equals the product of j with k.
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(see, e.g., Andrews and Soares, 2010, p. 127). To simplify notation, I omit the label and

simply use qP(ϑ). Given the criterion function, one can rewrite (4.1) as

HP[θ] = {ϑ ∈ Θ : qP(ϑ) = 0}. (4.4)

To keep this chapter to a manageable length, I focus my discussion of statistical inference

exclusively on consistent estimation and on different notions of coverage that a confidence set

may be required to satisfy and that have proven useful in the literature.80 The topics of test

of hypotheses and construction of confidence sets in partially identified models are covered

in Canay and Shaikh (2017), who provide a comprehensive survey devoted entirely to them

in the context of moment inequality models. Molchanov and Molinari (2018, Chapters 4 and

5) provide a thorough discussion of related methods based on the use of random set theory.

4.2 Consistent Estimation

When the identified object is a set, it is natural that its estimator is also a set. In order to

discuss statistical properties of a set-valued estimator ĤPn [θ] (to be defined below), and in

particular its consistency, one needs to specify how to measure the distance between ĤPn [θ]

and HP[θ]. Several distance measures among sets exist (see, e.g., Molchanov, 2017, Appendix

D). A natural generalization of the commonly used Euclidean distance is the Hausdorff dis-

tance, which for A,B ⊂ Rd is defined as

dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

with d(a,B) ≡ infb∈B ‖a− b‖.81 In words, the Hausdorff distance between two sets measures

the furthest distance from an arbitrary point in one of the sets to its closest neighbor in the

other set. It is easy to verify that dH metrizes the family of non-empty compact sets; in

particular, given non empty compact sets A,B ⊂ Rd, dH(A,B) = 0 if and only if A = B. If

either A or B is empty, dH(A,B) =∞.

The use of the Hausdorff distance to conceptualize consistency of set valued estimators in

econometrics was proposed by Hansen, Heaton, and Luttmer (1995, Section 2.4) and Manski

and Tamer (2002, Section 3.2).82

80Using the well known duality between tests of hypotheses and confidence sets, the discussion could be
re-framed in terms of size of the test.

81The definition of the Hausdorff distance can be generalized to an arbitrary metric space by replacing the
Euclidean metric by the metric specified on that space.

82It was previously used in the mathematical literature on random set theory, for example to formalize
laws of large numbers and central limit theorems for random sets such as the ones in Theorems A.3 and A.4
(Artstein and Vitale, 1975; Giné, Hahn, and Zinn, 1983).
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Definition 4.1 (Hausdorff Consistency): An estimator ĤPn [θ] is consistent for HP[θ] if

dH(ĤPn [θ],HP[θ])
p→ 0 as n→∞.

Molchanov (1998) establishes Hausdorff consistency of a plug-in estimator of the set {ϑ ∈
Θ : gP(ϑ) ≤ 0}, with gP :W ×Θ→ R a lower semicontinuous function of ϑ ∈ Θ that can be

consistently estimated by a lower semicontinuous function gn. The set estimator is {ϑ ∈ Θ :

gn(ϑ) ≤ 0}. The fundamental assumption in Molchanov (1998) is that {ϑ ∈ Θ : gP(ϑ) ≤ 0} ⊆
cl({ϑ ∈ Θ : gP(ϑ) < 0}) (see Molchanov and Molinari, 2018, Section 5.2, for a discussion).

There are important applications where this condition holds. Chernozhukov, Kocatulum, and

Menzel (2015) provide results related to Molchanov (1998), as well as important extensions for

the construction of confidence sets, and show that these can be applied to carry out statistical

inference on the Hansen–Jagannathan sets of admissible stochastic discount factors (Hansen

and Jagannathan, 1991), the Markowitz–Fama mean–variance sets for asset portfolio returns

(Markowitz, 1952), and the set of structural elasticities in Chetty (2012)’s analysis of demand

with optimization frictions. However, these methods are not broadly applicable in the general

moment (in)equalities framework of this section, as Molchanov’s key condition generally fails

for the set HP[θ] in (4.4).

4.2.1 Criterion Function Based Estimators

Manski and Tamer (2002) extend the standard theory of extremum estimation of point iden-

tified parameters to partial identification, and propose to estimate HP[θ] using the collection

of values ϑ ∈ Θ that approximately minimize a sample analog of qP:

ĤPn [θ] =

{
ϑ ∈ Θ : qn(ϑ) ≤ inf

ϑ̃∈Θ
qn(ϑ̃) + τn

}
, (4.5)

with τn a sequence of non-negative random variables such that τn
p→ 0. In (4.5), qn(ϑ) is a

sample analog of qP(ϑ) that replaces EP(mj(wi;ϑ)) and σP,j(ϑ) in (4.2)-(4.3) with properly

chosen estimators, e.g.,

m̄n,j(ϑ) ≡ 1

n

n∑
i=1

mj(wi, ϑ), j = 1, . . . , |J |

σ̂n,j(ϑ) ≡

(
1

n

n∑
i=1

[mj(wi, ϑ)]2 − [m̄n,j(ϑ)]2

)1/2

, j = 1, . . . , |J |.

It can be shown that as long as τn = op(1), under the same assumptions used to prove

consistency of extremum estimators of point identified parameters (e.g., with uniform con-
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vergence of qn to qP and continuity of qP on Θ),

sup
ϑ∈ĤPn [θ]

inf
ϑ̃∈HP[θ]

‖ϑ− ϑ̃‖ p→ 0 as n→∞. (4.6)

This yields that asymptotically each point in ĤPn [θ] is arbitrarily close to a point in HP[θ]. I

refer to (4.6) as inner consistency henceforth.83 But Hausdorff consistency requires also that

sup
ϑ∈HP[θ]

inf
ϑ̃∈ĤPn [θ]

‖ϑ− ϑ̃‖ p→ 0 as n→∞,

i.e., that each point in HP[θ] is arbitrarily close to a point in ĤPn [θ]. To establish this result

for the sharp identification regions in Theorem SIR-3.1 (semiparametric binary model with

interval covariates) and Theorem SIR-3.2 (parametric regression with interval covariate),

Manski and Tamer (2002, Propositions 3 and 5) require the rate at which τn
p→ 0 to be

slower than the rate at which qn converges uniformly to qP over Θ.

What might go wrong in the absence of such a restriction? A simple stylized example can

help understand the issue. Consider a model with linear inequalities of the form

θ1 ≤ EP(w1),

−θ1 ≤ EP(w2),

θ2 ≤ EP(w3) + EP(w4)θ1,

−θ2 ≤ EP(w5) + EP(w6)θ1.

Suppose w ≡ (w1, . . . ,w6) is distributed multivariate normal, with EP(w) = [6 0 2 0 −2 0]>

and CovP(w) equal to the identity matrix. Then HP[θ] = {ϑ = [ϑ1 ϑ2]> ∈ Θ : ϑ1 ∈
[0, 6] and ϑ2 = 2}. However, with positive probability in any finite sample qn(ϑ) = 0 for ϑ in

a (random) triangle that only includes points that are close to a subset of the points in HP[θ].

Hence, with positive probability the minimizer of qn cycles between consistent estimators of

subsets of HP[θ], but does not estimate the entire set. Enlarging the estimator to include all

points that are close to minimizing qn up to a tolerance that converges to zero sufficiently

slowly removes this problem.

Chernozhukov, Hong, and Tamer (2007) significantly generalize the consistency results

in Manski and Tamer (2002). They work with a normalized criterion function equal to

qn(ϑ̃) − infϑ∈Θ qn(ϑ), but to keep notation light I simply refer to it as qn.84 Under suitable

regularity conditions, they establish consistency of an estimator that can be a smaller set

83See Redner (1981) for an early contribution establishing this type of inner consistency for maximum
likelihood estimators when the true parameter is not point identified, and Blevins (2015, Theorem 1) for a
pedagogically helpful proof for a semiparametric binary model.

84Using the normalized criterion function qn(ϑ̃) − infϑ∈Θ qn(ϑ) is especially important in light of possible
model misspecification, see Section 5.

84



than the one proposed by Manski and Tamer (2002), and derive its convergence rate. Some

of the key conditions required by Chernozhukov, Hong, and Tamer (2007, Conditions C1

and C2) to study convergence rates include that qn is lower semicontinuous in ϑ, satisfies

various convergence properties among which supϑ∈HP[θ] qn = Op(1/an) for a sequence of

normalizing constants an →∞, that τn ≥ supϑ∈HP[θ] anqn with probability approaching one,

and that τn/an → 0. They also require that there exist positive constants (δ, κ, γ) such that

for any ε ∈ (0, 1) there are (κε, nε) such that for all n ≥ nε, qn(ϑ) ≥ κ[min{δ,d(ϑ,HP[θ])}]γ

uniformly on {ϑ ∈ Θ : d(ϑ,HP[θ]) ≥ (κε/an)1/γ} with probability at least 1−ε. In words, the

assumption, referred to as polynomial minorant condition, rules out that qn can be arbitrarily

“flat” outside HP[θ]. It posits that qn changes as at least a polynomial γ in the distance of ϑ

from HP[θ]. Under some additional regularity conditions, Chernozhukov, Hong, and Tamer

(2007) establish that

dH(ĤPn [θ],HP[θ]) = Op(max{1, τn}/an)1/γ . (4.7)

What is the role played by the polynomial minorant condition for the result in (4.7)? In

moment (in)equalities models, Chernozhukov, Hong, and Tamer require γ = 2.85 Consider a

simple stylized example with (in)equalities of the form

−θ1 ≤ EP(w1),

−θ2 ≤ EP(w2),

θ1θ2 = EP(w3),

with EP(w1) = EP(w2) = EP(w3) = 0, and note that the sample means (w̄1, w̄2, w̄3) are
√
n-consistent estimators of (EP(w1),EP(w2),EP(w3)). Suppose (w1,w2,w3) are distributed

multivariate standard normal. Consider a sequence ϑn = [ϑ1n ϑ2n]> = [n−1/4 n−1/4]>.

Then [d(ϑn,HP[θ])]γ = Op(n
−1/2). On the other hand, with positive probability qn(ϑn) =

(w̄3 − ϑ1nϑ2n)2 = Op
(
n−1

)
, so that for n large enough qn(ϑn) < [d(ϑn,HP[θ])]γ , violating

the assumption. This occurs because the gradient of the moment equality vanishes as ϑ

approaches zero, rendering the criterion function flat in a neighborhood of HP[θ]. As intuition

would suggest, rates of convergence are slower the flatter qn is outside HP[θ].

Kaido, Molinari, and Stoye (2019b) show that in moment inequality models with smooth

moment conditions, the polynomial minorant assumption with γ = 2 implies the Abadie

constraint qualification (ACQ); see, e.g., Bazaraa, Sherali, and Shetty (2006, Chapter 5)

for a definition and discussion of ACQ. The example just given to discuss the role of the

polynomial minorant condition is in fact a known example where ACQ fails at ϑ = [0 0]>. The

connection with ACQ is somewhat of a cautionary tale, in that such constraint qualifications

85Chernozhukov, Hong, and Tamer (2007, equation (4.1) and equation (4.6)) set γ = 1 because they report
the assumption for a criterion function that does not square the moment violations.
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are notoriously difficult to verify.

Chernozhukov, Hong, and Tamer (2007, Condition C.3, referred to as degeneracy) also

consider the case that qn vanishes on subsets of Θ that converge in Hausdorff distance toHP[θ]

at rate a
−1/γ
n . While it might be difficult to verify degeneracy in practice, Chernozhukov,

Hong, and Tamer show that if it holds, τn can be set to a constant or zero.

Menzel (2014) studies estimation ofHP[θ] when the number of moment inequalities is large

relative to sample size (possibly infinite). He provides a consistency result for criterion-based

estimators that use a number of unconditional moment inequalities that grows with sample

size. He also considers estimators based on conditional moment inequalities, and derives the

fastest possible rate for estimating HP[θ] under smoothness conditions on the conditional

moment functions. He shows that the rates achieved by the procedures in Armstrong (2014,

2015) are (minimax) optimal, and cannot be improved upon.

Key Insight 4.1: Manski and Tamer (2002) extend the notion of extremum estimation

from point identified to partially identified models. They do so by putting forward a general-

ized criterion function whose zero-level set can be used to define HP[θ] in partially identified

structural semiparametric models. It is then natural to define the set valued estimator ĤPn [θ]

as the collection of approximate minimizers of the sample analog of this criterion function.

Manski and Tamer’s analysis of statistical inference focuses exclusively on providing consis-

tent estimators. Chernozhukov, Hong, and Tamer (2007) substantially generalize the analysis

of consistency of criterion function-based set estimators. They provide a comprehensive study

of convergence rates in partially identified models. Their work highlights the challenges a re-

searcher faces in this context, and puts forward possible solutions in the form of assumptions

under which specific rates of convergence attain.

4.2.2 Support Function Based Estimators

Beresteanu and Molinari (2008) introduce to the econometrics literature inference methods

for set valued estimators based on random set theory. They study the class of models where

HP[θ] is convex and can be written as the Aumann (or selection) expectation of a properly

defined random closed set.86 They propose to carry out estimation and inference leveraging

the representation of convex sets through their support function (given in Definition A.5),

as it is done in random set theory; see Molchanov (2017, Chapter 3) and Molchanov and

Molinari (2018, Chapter 4). Because the support function fully characterizes the boundary

of HP[θ], it allows for a simple sample analog estimator, and for inference procedures with

desirable properties.

86By Theorem A.2, the Aumann expectation of a random closed set defined on a nonatomic probability
space is convex. In this chapter I am assuming nonatomicity of the probability space. Even if I did not make
this assumption, however, when working with a random sample the relevant probability space is the product
space with n → ∞, hence nonatomic (Artstein and Vitale, 1975). If HP[θ] is not convex, Beresteanu and
Molinari’s analysis can be applied to its convex hull.
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An example of a framework where the approach of Beresteanu and Molinari can be applied

is that of best linear prediction with interval outcome data in Identification Problem 2.4.87

Recall that in that case, the researcher observes random variables (yL,yU,x) and wishes to

learn the best linear predictor of y|x, with y unobserved and P(yL ≤ y ≤ yU) = 1. For

simplicity let x be a scalar. Given a random sample {yLi,yUi,xi}ni=1 from P, the researcher

can construct a random segment Gi for each i and a consistent estimator Σ̂n of the random

matrix ΣP in (2.24) as

Gi =

{(
yi

yixi

)
: yi ∈ Sel(Yi)

}
⊂ R2, and Σ̂n =

(
1 x

x x2

)
,

where Yi = [yLi,yUi] and x,x2 are the sample means of xi and x2
i respectively. Because

in this problem HP[θ] = Σ−1
P EPG (see Theorem SIR-2.5 on p. 22), a natural sample analog

estimator replaces ΣP with Σ̂n, and EPG with a Minkowski average of Gi (see Appendix A,

p. 107 for a formal definition), yielding

ĤPn [θ] = Σ̂−1
n

1

n

n∑
i=1

Gi. (4.8)

The support function of ĤPn [θ] is the sample analog of that of HP[θ] provided in (2.26):

hĤPn [θ](u) =
1

n

n∑
i=1

[(yLi1(f(xi, u) < 0) + yUi1(f(xi, u) ≥ 0))f(xi, u)], u ∈ S,

where f(xi, u) = [1 xi]Σ̂
−1
n u. Beresteanu and Molinari (2008) use the Law of Large Numbers

for random sets reported in Theorem A.3 to show that ĤPn [θ] in (4.8) is
√
n-consistent under

standard conditions on the moments of (yLi,yUi,xi).

Bontemps, Magnac, and Maurin (2012) and Chandrasekhar, Chernozhukov, Molinari,

and Schrimpf (2018) significantly expand the applicability of Beresteanu and Molinari’s 2008

estimator. Bontemps, Magnac, and Maurin show that it can be used in a large class of

partially identified linear models, including ones that allow for the availability of instrumental

variables. Chandrasekhar, Chernozhukov, Molinari, and Schrimpf show that it can be used

for best linear approximation of any function f(x) that is known to lie within two identified

bounding functions. The lower and upper functions defining the band are allowed to be

any functions, including ones carrying an index, and can be estimated parametrically or

nonparametrically. The method allows for estimation of the parameters of the best linear

approximations to the set identified functions in many of the identification problems described

in Section 2. It can also be used to estimate the sharp identification region for the parameters

87Kaido, Molinari, and Stoye (2019a, Supplementary Appendix F) establish that if x has finite support,
HP[θ] in Theorem SIR-2.5 can be written as the collection of ϑ ∈ Θ that satisfy a finite number of moment
inequalities, as posited in this section.
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of a binary choice model with interval or discrete regressors under the assumptions of Magnac

and Maurin (2008), characterized in (3.7) in Section 3.1.1.

Kaido and Santos (2014) develop a theory of efficiency for estimators of sets HP[θ] as

in (4.1) under the additional requirements that the inequalities EP(mj(w, θ)) are convex in

θ ∈ Θ and smooth as functionals of the distribution of the data. Because of the convexity of

the moment inequalities, HP[θ] is convex and can be represented through its support function.

Using the classic results in Bickel, Klaassen, Ritov, and Wellner (1993), Kaido and Santos

show that under suitable regularity conditions, the support function admits for
√
n-consistent

regular estimation. They also show that a simple plug-in estimator based on the support

function attains the semiparametric efficiency bound, and the corresponding estimator of

HP[θ] minimizes a wide class of asymptotic loss functions based on the Hausdorff distance.

As they establish, this efficiency result applies to the estimators proposed by Beresteanu and

Molinari (2008), including that in (4.8), and by Bontemps, Magnac, and Maurin (2012).

Kaido (2016) further enlarges the applicability of the support function approach by es-

tablishing its duality with the criterion function approach, for the case that qP is a convex

function and qn is a convex function almost surely. This allows one to use the support func-

tion approach also when a representation of HP[θ] as the Aumann expectation of a random

closed set is not readily available. Kaido considers HP[θ] and its level set estimator ĤPn [θ] as

defined, respectively, in (4.4) and (4.5), with Θ a convex subset of Rd. Because qP and qn are

convex functions, HP[θ] and ĤPn [θ] are convex sets. Under the same assumptions as in Cher-

nozhukov, Hong, and Tamer (2007), including the polynomial minorant and the degeneracy

conditions, one can set τn = τ and have dH(ĤPn [θ],HP[θ]) = Op(a
−1/γ
n ). Moreover, due to its

convexit, HP[θ] is fully characterized by its support function hHP[θ](u) = maxanqn(ϑ)≤τ u
>ϑ,

which can be computed via convex programming.

Kitagawa and Giacomini (2018) consider consistent estimation of HP[θ] in the context

of Bayesian inference. They focus on partially identified models where HP[θ] depends on a

“reduced form” parameter φ (e.g., a vector of moments of random variables). They observe

that while a prior on φ can be revised in light of the data, a prior on θ cannot, due to the lack of

point identification. As such they propose to choose a single prior for the revisable parameters,

and a set of priors for the unrevisable ones. The latter is the collection of priors such that

the distribution of θ|φ places probability one on HP[θ]. A crucial observation in Kitagawa

and Giacomini is that once φ is viewed as a random vector, as in the Bayesian paradigm,

under mild regularity conditions HP[θ] is a random closed set, and Bayesian inference on it

can be carried out using elements of random set theory. In particular, they show that the

set of posterior means of θ|w equals the Aumann expectation of HP[θ] (with the underlying

probability measure of φ|w). They also show that this Aumann expectation converges in

Hausdorff distance to the “true” identified set if the latter is convex, or otherwise to its

convex hull.
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Key Insight 4.2: Beresteanu and Molinari (2008) show that elements of random set

theory can be employed to obtain inference methods for partially identified models that are

easy to implement and have desirable statistical properties. Whereas they apply their findings

to a specific class of models based on the Aumann expectation, the ensuing literature has

demonstrated that random set methods are widely applicable to obtain estimators of sharp

identification regions and establish their consistency.

Chernozhukov, Lee, and Rosen (2013) propose an alternative to the notion of consistent

estimator. Rather than asking that ĤPn [θ] satisfies the requirement in Definition 4.1, they

propose the notion of half-median-unbiased estimator. This notion is easiest to explain in the

case of interval identified scalar parameters. Take, e.g., the bound in Theorem SIR-2.1 for

the conditional expectation of selectively observed data. Then an estimator of that interval

is half-median-unbiased if the estimated upper bound exceeds the true upper bound, and the

estimated lower bound falls below the true lower bound, each with probability at least 1/2

asymptotically. More generally, one can obtain a half-median-unbiased estimator as

ĤPn [θ] =
{
ϑ ∈ Θ : nqn(ϑ) ≤ c1/2(ϑ)

}
, (4.9)

where c1/2(ϑ) is a critical value chosen so that ĤPn [θ] asymptotically contains HP[θ] (or any

fixed element in HP[θ]; see the discussion in Section 4.3.1 below) with at least probability

1/2. As discussed in the next section, c1/2(ϑ) can be further chosen so that this probability

is uniform over P ∈ P.

The requirement of half-median unbiasedness has the virtue that, by construction, an

estimator such as (4.9) is a subset of a 1−α confidence set as defined in (4.10) below for any

α < 1/2, provided c1−α(ϑ) is chosen using the same criterion for all α ∈ (0, 1). In contrast,

a consistent estimator satisfying the requirement in Definition 4.1 needs not be a subset of a

confidence set. This is because the sequence τn in (4.5) may be larger than the critical value

used to obtain the confidence set, see equation (4.10) below, unless regularity conditions such

as degeneracy or others allow one to set τn equal to zero. Moreover, choice of the sequence

τn is not data driven, and hence can be viewed as arbitrary. This raises a concern for the

scope of consistent estimation in general settings.

However, reporting a set estimator together with a confidence set is arguably important

to shed light on how much of the volume of the confidence set is due to statistical uncertainty

and how much is due to a large identified set. One can do so by either using a half-median

unbiased estimator as in (4.9), or the set of minimizers of the criterion function in (4.5) with

τn = 0 (which, as previously discussed, satisfies the inner consistency requirement in (4.6)

under weak conditions, and is Hausdorff consistent in some well behaved cases).
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4.3 Confidence Sets Satisfying Various Coverage Notions

4.3.1 Coverage of HP[θ] vs. Coverage of θ

I first discuss confidence sets Cn ⊂ Rd defined as level sets of a criterion function:

Cn = {ϑ ∈ Θ : nqn(ϑ) ≤ c1−α(ϑ)} . (4.10)

In (4.10), c1−α(ϑ) may be constant or vary in ϑ ∈ Θ. It is chosen to that Cn satisfies

(asymptotically) a certain coverage property with respect to either HP[θ] or each ϑ ∈ HP[θ].

Correspondingly, different appearances of c1−α(ϑ) may refer to different critical values as-

sociated with different coverage notions. The challenging theoretical aspect of inference in

partial identification is the determination of c1−α and of methods to approximate it.

A first classification of coverage notions pertains to whether the confidence set should cover

HP[θ] or each of its elements with a prespecified asymptotic probability. Early on, within

the study of interval-identified parameters, Horowitz and Manski (1998, 2000) put forward

a confidence interval that expands each of the sample analogs of the extreme points of the

population bounds by an amount designed so that the confidence interval asymptotically

covers the population bounds with prespecified probability.

Chernozhukov, Hong, and Tamer (2007) study the general problem of inference for a set

HP[θ] defined as the zero-level set of a criterion function. The coverage notion that they

propose is pointwise coverage of the set, whereby c1−α is chosen so that:

lim inf
n→∞

P(HP[θ] ⊆ Cn) ≥ 1− α for all P ∈ P. (4.11)

Chernozhukov, Hong, and Tamer (2007) provide conditions under which Cn satisfies (4.11)

with c1−α constant in ϑ, yielding the so called criterion function approach to statistical in-

ference in partial identification. Under the same coverage requirement, Bugni (2010) and

Galichon and Henry (2013) introduce novel bootstrap methods for inference in moment in-

equality models. Henry, Méango, and Queyranne (2015) propose an inference method for

finite games of complete information that exploits the structure of these models.

Beresteanu and Molinari (2008) propose a method to test hypotheses and build confidence

sets satisfying (4.11) based on random set theory, the so called support function approach,

which yields simple to compute confidence sets with asymptotic coverage equal to 1 − α

when HP[θ] is strictly convex. The reason for the strict convexity requirement is that in its

absence, the support function of HP[θ] is not fully differentiable, but only directionally differ-

entiable, rendering the classical delta method inapplicable and complicating inference. Fang

and Santos (2018) provide bootstrap methods that remain valid even with only directional

differentiability. Chandrasekhar, Chernozhukov, Molinari, and Schrimpf (2018) propose a

data jittering method that enforces full differentiability at the price of a small conservative
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distortion. Kaido and Santos (2014) extend the applicability of the support function approach

to other moment inequality models and establish important efficiency results. Chernozhukov,

Kocatulum, and Menzel (2015) show that an Hausdorff distance-based test statistic can be

weighted to enforce either exact or first-order equivariance to transformations of parameters.

Adusumilli and Otsu (2017) provide empirical likelihood based inference methods for the sup-

port function approach. The test statistics employed in the criterion function approach and

in the support function approach are asymptotically equivalent in specific moment inequality

models (Beresteanu and Molinari, 2008; Kaido, 2016), but the criterion function approach is

more broadly applicable.

The field’s interest changed to a different notion of coverage when Imbens and Manski

(2004) pointed out that often there is one “true” data generating θ, even if it is only partially

identified. Hence, they proposed confidence sets that cover each ϑ ∈ HP[θ] with a prespecified

probability. For pointwise coverage, this leads to choosing c1−α so that:

lim inf
n→∞

P(ϑ ∈ Cn) ≥ 1− α for all P ∈ P and ϑ ∈ HP[θ]. (4.12)

If HP[θ] is a singleton then (4.11) and (4.12) both coincide with the pointwise coverage

requirement employed for point identified parameters. However, as shown in Imbens and

Manski (2004, Lemma 1), if HP[θ] contains more than one element, the two notions differ,

with confidence sets satisfying (4.12) being weakly smaller than ones satisfying (4.11). Rosen

(2008) provides confidence sets for general moment (in)equalities models that satisfy (4.12)

and are easy to compute.

Although confidence sets that take each ϑ ∈ HP[θ] as the object of interest (and which

satisfy the uniform coverage requirements described in Section 4.3.2 below) have received the

most attention in the literature on inference in partially identified models, this choice merits

some words of caution. First, Henry and Onatski (2012) point out that if confidence sets are

to be used for decision making, a policymaker concerned with robust decisions might prefer

ones satisfying (4.11) (respectively, (4.13) below once uniformity is taken into account) to

ones satisfying (4.12) (respectively, (4.14) below with uniformity). Second, while in many

applications a “true” data generating θ exists, in others it does not. For example, Manski

and Molinari (2010) and Giustinelli, Manski, and Molinari (2019a) query survey respondents

(in the American Life Panel and in the Health and Retirement Study, respectively) about

their subjective beliefs on the probability chance of future events. A large fraction of these

respondents, when given the possibility to do so, report imprecise beliefs in the form of inter-

vals. In this case, there is no “true” point-valued belief: the “truth” is interval-valued. If one

is interested in (say) average beliefs, the sharp identification region is the (Aumann) expec-

tation of the reported intervals, and the appropriate coverage requirement for a confidence

set is that in (4.11) (respectively, (4.13) below with uniformity).

91



4.3.2 Pointwise vs. Uniform Coverage

In the context of interval identified parameters, such as, e.g., the mean with missing data in

Theorem SIR-2.1 with θ ∈ R, Imbens and Manski (2004) pointed out that extra care should

be taken in the construction of confidence sets for partially identified parameters, as otherwise

they may be asymptotically valid only pointwise (in the distribution of the observed data) over

relevant classes of distributions.88 For example, consider a confidence interval that expands

each of the sample analogs of the extreme points of the population bounds by a one-sided

critical value. This confidence interval controls the asymptotic coverage probability pointwise

for any DGP at which the width of the population bounds is positive. This is because the

sampling variation becomes asymptotically negligible relative to the (fixed) width of the

bounds, making the inference problem essentially one-sided. However, for every n one can

find a distribution P ∈ P and a parameter ϑ ∈ HP[θ] such that the width of the population

bounds (under P) is small relative to n and the coverage probability for ϑ is below 1 − α.

This happens because the proposed confidence interval does not take into account the fact

that for some P ∈ P the problem has a two-sided nature.

This observation naturally leads to a more stringent requirement of uniform coverage,

whereby (4.11)-(4.12) are replaced, respectively, by

lim inf
n→∞

inf
P∈P

P(HP[θ] ⊆ Cn) ≥ 1− α, (4.13)

lim inf
n→∞

inf
P∈P

inf
ϑ∈HP[θ]

P(ϑ ∈ Cn) ≥ 1− α, (4.14)

and c1−α is chosen accordingly, to obtain either (4.13) or (4.14). Sets satisfying (4.13) are

referred to as confidence regions for HP[θ] that are uniformly consistent in level (over P ∈ P).

Romano and Shaikh (2010) propose such confidence regions, study their properties, and

provide a step-down procedure to obtain them.

Sets satisfying (4.14) are referred to as confidence regions for points in HP[θ] that are

uniformly consistent in level (over P ∈ P). Within the framework of Imbens and Manski

(2004), Stoye (2009) shows that one can obtain a confidence interval satisfying (4.14) by

pre-testing whether the lower and upper population bounds are sufficiently close to each

other. If so, the confidence interval expands each of the sample analogs of the extreme

points of the population bounds by a two-sided critical value; otherwise, by a one-sided.

Stoye provides important insights clarifying the connection between superefficient (i.e., faster

than Op(1/
√
n)) estimation of the width of the population bounds when it equals zero, and

certain challenges in Imbens and Manski’s proposed method.89 Bontemps, Magnac, and

Maurin (2012) leverage Stoye (2009)’s results to obtain confidence sets satisfying (4.14) using

88This discussion draws on many conversations with Jörg Stoye, as well as notes that he shared with me,
for which I thank him.

89Indeed, the confidence interval proposed by Stoye (2009) can be thought of as using a Hodges-type
shrinkage estimator (see, e.g., van der Vaart, 1997) for the width of the population bounds.
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the support function approach for set identified linear models.

Obtaining confidence sets that satisfy the requirement in (4.14) becomes substantially

more complex in the context of general moment (in)equalities models. One of the key chal-

lenges to uniform inference stems from the fact that the behavior of the limit distribution

of the test statistic depends on
√
nEP(mj(wi;ϑ)), j = 1, . . . , |J |, which cannot be consis-

tently estimated. Romano and Shaikh (2008); Andrews and Guggenberger (2009); Andrews

and Soares (2010); Canay (2010); Andrews and Barwick (2012); Romano, Shaikh, and Wolf

(2014), among others, make significant contributions to circumvent these difficulties in the

context of a finite number of unconditional moment (in)equalities. Andrews and Shi (2013);

Chernozhukov, Lee, and Rosen (2013); Lee, Song, and Whang (2013); Armstrong (2014,

2015); Armstrong and Chan (2016); Chetverikov (2018), among others, make significant con-

tributions to circumvent these difficulties in the context of a finite number of conditional

moment (in)equalities (with continuously distributed conditioning variables). Chernozhukov,

Chetverikov, and Kato (2018) and Andrews and Shi (2017) study, respectively, the challeng-

ing frameworks where the number of moment inequalities grows with sample size and where

there is a continuum of conditional moment inequalities.

I refer to Canay and Shaikh (2017, Section 4) for a thorough discussion of these methods

and a comparison of their relative (de)merits (see also Bugni, Canay, and Guggenberger,

2012; Bugni, 2016).

4.3.3 Coverage of the Vector θ vs. Coverage of a Component of θ

The coverage requirements in (4.13)-(4.14) refer to confidence sets in Rd for the entire θ

or HP[θ]. Often empirical researchers are interested in inference on a specific component

or (smooth) function of θ (e.g., the returns to education; the effect of market size on the

probability of entry; the elasticity of demand for insurance to price, etc.). For simplicity,

here I focus on the case of a component of θ, which I represent as u>θ, with u a standard

basis vector in Rd. In this case, the (sharp) identification region of interest is

HP[u>θ] = {s ∈ [−hΘ(−u), hΘ(u)] : s = u>θ and θ ∈ HP[θ]}.

One could report as confidence interval for u>θ the projection of Cn in direction ±u. The

resulting confidence interval is asymptotically valid but typically conservative. The extent of

the conservatism increases with the dimension of θ and is easily appreciated in the case of

a point identified parameter. Consider, for example, a linear regression in R10, and suppose

for simplicity that the limiting covariance matrix of the estimator is the identity matrix.

Then a 95% confidence interval for u>θ is obtained by adding and subtracting 1.96 to that

component’s estimate. In contrast, projection of a 95% confidence ellipsoid for θ on each

component amounts to adding and subtracting 4.28 to that component’s estimate.

It is therefore desirable to provide confidence intervals CIn specifically designed to cover
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u>θ rather then the entire θ. Natural counterparts to (4.13)-(4.14) are

lim inf
n→∞

inf
P∈P

P(HP[u>θ] ⊆ CIn) ≥ 1− α, (4.15)

lim inf
n→∞

inf
P∈P

inf
ϑ∈HP[θ]

P(u>ϑ ∈ CIn) ≥ 1− α. (4.16)

As shown in Beresteanu and Molinari (2008) and Kaido (2016) for the case of pointwise

coverage, obtaining asymptotically valid confidence intervals is simple if the identified set is

convex and one uses the support function approach. This is because it suffices to base the test

statistic on the support function in direction u, and it is often possible to easily characterize

the limiting distribution of this test statistic. See Molchanov and Molinari (2018, Chapters

4 and 5) for details.

The task is significantly more complex in general moment inequality models when HP[θ]

is non-convex and one wants to satisfy the criterion in (4.15) or that in (4.16). Romano and

Shaikh (2008) and Bugni, Canay, and Shi (2017) propose confidence intervals of the form

CIn =

{
s ∈ [−hΘ(−u), hΘ(u)] : inf

ϑ∈Θ(s)
nqn(ϑ) ≤ c1−α(s)

}
, (4.17)

where Θ(s) = {ϑ ∈ Θ : u>ϑ = s} and c1−α is such that (4.16) holds. An important idea in

this proposal is that of profiling the test statistic nqn(ϑ) by minimizing it over all ϑs such that

u>ϑ = s. One then includes in the confidence interval all values s for which the profiled test

statistic’s value is not too large. Romano and Shaikh (2008) propose the use of subsampling

to obtain the critical value c1−α(s) and provide high-level conditions ensuring that (4.16)

holds. Bugni, Canay, and Shi (2017) substantially extend and improve the profiling approach

by providing a bootstrap-based method to obtain c1−α so that (4.16) holds which is more

powerful than subsampling (for reasonable choices of subsample size).

Kaido, Molinari, and Stoye (2019a) propose a bootstrap-based calibrated projection ap-

proach where

CIn = [−hCn(c1−α)(−u), hCn(c1−α)(u)], (4.18)

with

hCn(c1−α)(u) ≡ sup
ϑ∈Θ

u>ϑ s.t.

√
nm̄n,j(ϑ)

σ̂n,j(ϑ)
≤ c1−α(ϑ), j = 1, . . . , |J | (4.19)

and c1−α a critical level function calibrated so that (4.16) holds. Compared to the simple

projection of Cn mentioned at the beginning of the discussion of inference for components of

θ, calibrated projection (weakly) reduces the value of c1−α so that the projection of θ, rather

than θ itself, is asymptotically covered with the desired probability uniformly.
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4.3.4 A Brief Note on Bayesian Methods

The confidence sets discussed in this section are based on the frequentist approach to infer-

ence. It is natural to ask whether in partially identified models, as in well behaved point

identified models, one can build Bayesian credible sets that at least asymptotically coincide

with frequentist confidence sets. This question was first addressed by Moon and Schorfheide

(2012), with a negative answer for the case that the coverage in (4.14) is sought out. In

particular, they showed that the resulting Bayesian credible sets are a subset of HP[θ], and

hence too narrow from the frequentist perspective. This discrepancy can be ameliorated

when inference is sought out for HP[θ] rather than for each ϑ ∈ HP[θ]. Kline and Tamer

(2016) and Kitagawa and Giacomini (2018) propose Bayesian credible regions that are valid

for frequentist inference in the sense of (4.11). Chen, Christensen, and Tamer (2018) propose

both Bayesian credible sets that satisfy the (frequentist) criterion in (4.13), and ones that

satisfy the (frequentist) criterion in (4.15). Their method is based on level sets of criterion

functions constructed using cutoffs that are computed via Monte Carlo simulations from

the quasi-posterior distribution of the criterion, and is shown to have asymptotically valid

frequentist coverage.

5 Misspecification in Partially Identified Models

Although partial identification often results from reducing the number of assumptions main-

tained in counterpart point identified models, care still needs to be taken in assessing the

possible consequences of misspecification. This section’s goal is to discuss the existing litera-

ture on the topic, and to provide some additional observations. To keep the notation light, I

refer to the functional of interest as θ throughout, without explicitly distinguishing whether

it belongs to an infinite dimensional parameter space (as in the nonparametric analysis in

Section 2), or to a finite dimensional one (as in the semiparametric analysis in Section 3).

The original nonparametric “worst-case” bounds proposed by Manski (1989) for the anal-

ysis of selectively observed data and discussed in Section 2 are not subject to the risk of

misspecification, because they are based on the empirical evidence alone. However, often

researchers are willing and eager to maintain additional assumptions that can help shrink the

bounds, so that one can learn more from the available data. Indeed, early on Manski (1990)

proposed the use of exclusion restrictions in the form of mean independence assumptions.

Section 2.2 discusses related ideas within the context of nonparametric bounds on treatment

effects, and Manski (2003, Chapter 2) provides a thorough treatment of other types of ex-

clusion restriction. The literature reviewed throughout this chapter provides many more

examples of assumptions that have proven useful for empirical research.

Broadly speaking, assumptions can be classified in two types (Manski, 2003, Chapter 2).

The first type is non-refutable: it may reduce the size of HP[θ], but cannot lead to it being
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empty. An example in the context of selectively observed data is that of exogenous selection,

or data missing at random conditional on covariates and instruments (see Section 2.1 on p. 9):

under this assumption HP[θ] is a singleton, but the assumption cannot be refuted because it

poses a distributional (independence) assumption on unobservables.

The second type is refutable: it may reduce the size of HP[θ], and it may result in

HP[θ] = ∅ if it does not hold in the DGP. An example in the context of treatment effects is

the assumption of mean independence between response function at treatment t and instru-

mental variable z, see (2.14) in Section 2.2. There the sharp bounds on EQ(y(t)|x = x) are

intersection bounds as in (2.15). If the instrument is invalid, the bounds can be empty.

Ponomareva and Tamer (2011) consider the impact of misspecification on semiparametric

partially identified models. One of their examples concerns a linear regression model of the

form EQ(y|x) = θ>x when only interval data is available for y (as in Section 2.3). In this

context, HP[θ] = {ϑ ∈ Θ : EP(yL|x) ≤ ϑ>x ≤ EP(yU|x), x-a.s.}. The concern is that the

conditional expectation might not be linear. Ponomareva and Tamer make two important

observations. First, they argue that the set HP[θ] is of difficult interpretation when the model

is misspecified. When y is perfectly observed, if the conditional expectation is not linear, the

output of ordinary least squares can be readily interpreted as the best linear approximation

to EQ(y|x). This is not the case for HP[θ] when only the interval data [yL,yU] is observed.

They therefore propose to work with the set of best linear predictors for y|x even in the

partially identified case (rather than fully exploit the linearity assumption). The resulting

set is the one derived by Beresteanu and Molinari (2008) and reported in Theorem SIR-2.5.

Ponomareva and Tamer work with projections of this set, which coincide with the bounds in

Stoye (2007).

Ponomareva and Tamer also point out that depending on the DGP, misspecification can

cause HP[θ] to be spuriously tight. This can happen, for example, if EP(yL|x) and EP(yU|x)

are sufficiently nonlinear, even if they are relatively far from each other (e.g., Ponomareva and

Tamer, 2011, Figure 1). Hence, caution should be taken when interpreting very tight partial

identification results as indicative of a highly informative model and empirical evidence, as

the possibility of model misspecification has to be taken into account. These observations

naturally lead to the questions of how to test for model misspecification in the presence of

partial identification, and of what are the consequences of misspecification for the confidence

sets discussed in Section 4.3.

With partial identification, a null hypothesis of correct model specification (and its alter-

native) can be expressed as

H0 : HP[θ] 6= ∅; H1 : HP[θ] = ∅.

Tests for this hypothesis have been proposed both for the case of nonparametric as well as

semiparametric partially identified models. I refer to Santos (2012) for specification tests
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in a partially identified nonparametric instrumental variable model; to Kitamura and Stoye

(2018) for a nonparametric test in random utility models that checks whether a repeated cross

section of demand data might have been generated by a population of rational consumers

(thereby testing for the Axiom of Revealed Stochastic Preference); and to Guggenberger,

Hahn, and Kim (2008) and Bontemps, Magnac, and Maurin (2012) for specification tests in

linear moment (in)equality models.

For the general class of moment inequality models discussed in Section 4, Romano and

Shaikh (2008), Andrews and Guggenberger (2009), and Andrews and Soares (2010) propose

a specification test that rejects the model if Cn in (4.10) is empty, where Cn is defined

with c1−α(ϑ) determined so as to satisfy (4.14) and approximated according to the methods

proposed in the respective papers. The resulting test, commonly referred to as by-product

test because obtained as a by-product to the construction of a confidence set, takes the form

φ = 1(Cn = ∅) = 1

(
inf
ϑ∈Θ

nqn(ϑ) > c1−α(ϑ)

)
.

Denoting by P0 the collection of P ∈ P such that HP[θ] 6= ∅, one then has that test BP

achieves uniform size control (Bugni, Canay, and Shi, 2015, Theorem C.2):

lim sup
n→∞

sup
P∈P0

EP(φ) ≤ α. (5.1)

An important feature of test BP is that the critical value c1−α(ϑ) is not obtained to test

for model misspecification, but it is obtained to insure the coverage requirement in (4.14);

hence, it is obtained by working with the asymptotic distribution of nqn(ϑ). Bugni, Canay,

and Shi (2015) propose more powerful model specification tests, using a critical value c1−α

that they obtain to ensure that (5.1), rather than (4.14), holds. In particular, Bugni, Canay,

and Shi (2015) show that their tests dominate test BP in terms of power in any finite sample

and in the asymptotic limit. Their critical value is obtained by working with the asymptotic

distribution of infϑ∈Θ nqn(ϑ). As such, their proposal resembles the classic approach to model

specification testing (J-test) in point identified generalized method of moments models.

While it is possible to test for misspecification also in partially identified models, a word of

caution is due on what might be the effects of misspecification on confidence sets constructed

as in (4.10) with c1−α determined to insure (4.14), as it is often done in empirical work.

Bugni, Canay, and Guggenberger (2012) show that in the presence of local misspecification,

confidence sets Cn designed to satisfy (4.14) fail to do so. In practice, the concern is that

when the model is misspecified Cn might be spuriously small. Indeed, we have seen that it

can be empty if the misspecification is sufficiently severe. If it is less severe but still present,

it may lead to inference that is erroneously interpreted as precise.

It is natural to wonder how this compares to the effect of misspecification on inference
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in point identified models.90 In that case, the rich set of tools available for inference allows

one to avoid this problem. Consider for example a point identified generalized method of

moments model with moment conditions EP(mj(w; θ)) = 0, j = 1, . . . , |J |. Let m denote the

vector that stacks each of the mj functions, and let the estimator of θ be

θ̂n = arg min
ϑ∈Θ

nm̄n(ϑ)Ξ̂−1m̄n(ϑ), (5.2)

with Ξ̂ a consistent estimator of Ξ = EP[m(w; θ)>m(w; θ)] and m̄n(ϑ) the sample analog of

EP(m(w;ϑ)). Let Λ = EP[∂(m(w; θ))>/∂ϑ], and let Σ̂ be a consistent and robust estimator

of Σ = (Λ>Ξ−1Λ)−1. Define a Wald-statistic based confidence ellipsoid as

{ϑ ∈ Θ : n(θ̂n − ϑ)Σ̂−1(θ̂n − ϑ) ≤ cd,1−α}, (5.3)

with cd,1−α the 1 − α critical value of a χ2
d (chi-squared random variable with d degrees of

freedom). Under standard regularity conditions the confidence set in (5.3) covers θ with

asymptotic probability 1 − α if the model is correctly specified. If the model is incorrectly

specified, it covers a pseudo-true vector (the probability limit of (5.2)) with asymptotic

probability 1− α. In either case, (5.3) is never empty and its volume depends on Σ̂.

Even in the point identified case a confidence set constructed similarly to (4.10), i.e.,

{ϑ ∈ Θ : nm̄n(ϑ)Ξ̂−1m̄n(ϑ) ≤ c|J |,1−α}, (5.4)

where c|J |,1−α is the 1 − α critical value of a χ2
|J |, incurs the same problems as its partial

identification counterpart. Under standard regularity conditions, if the model is correctly

specified, the confidence set in (5.4) covers θ with asymptotic probability 1 − α, because

nm̄n(ϑ)Ξ̂−1m̄n(ϑ) ⇒ χ2
|J |. However, this confidence set is empty with asymptotic prob-

ability P(χ2
|J |−d > c|J |,1−α) (due to the facts that P(Cn = ∅) = P(θ̂n /∈ Cn) and that

nm̄n(θ̂n)Ξ̂−1m̄n(θ̂n)⇒ χ2
|J |−d), and it can be arbitrarily small.

In the very special case of a linear regression model with interval outcome data studied by

Ponomareva and Tamer (2011), the procedure proposed by Beresteanu and Molinari (2008)

yields confidence sets satisfying (4.11) that are always non-empty and robust to misspecifi-

cation. The test statistic they use is based on the Hausdorff distance between the estimator

and the hypothesized set, and as such is a generalization of the standard Wald-statistic to the

set-valued case. For some related moment inequality models, Kaido and White (2013) pro-

pose to build a pseudo-true set H∗P[θ] that is obtained through a two-step procedure. In the

first step one obtains a nonparametric estimator of the function(s) for which the researcher

wants to impose a parametric structure. In the second step one obtains the set H∗P[θ] as

the collection of least squares projections of the set in the first step, on the parametric class

90The considerations that I report here are based on a conversation with Joachim Freyberger and notes that
he subsequently shared with me, for which I thank him.
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imposed. Kaido and White show that under regularity conditions the pseudo-true set can be

consistently estimated, and derive rates of convergence for the estimator; however, they do

not provide methods to obtain confidence sets. While conceptually valuable, their construc-

tion appears to be computationally difficult. Masten and Poirier (2018) propose that when a

model is falsified (in the sense that HP[θ] is empty) one should report the falsification fron-

tier : the boundary between the set of assumptions which falsify the model and those which

do not, obtained through continuous relaxations of the baseline assumptions of concern. The

researcher can then present the set HP[θ] that results if the true model lies somewhere on

this frontier. This set can be interpreted as a pseudo-true set. However, Masten and Poirier

do not provide methods for inference.

How to build confidence sets that are robust to model misspecification and that cannot

be empty or arbitrarily small in general moment inequality models remains an open and

important question in the literature.

6 Computational Challenges

As a rule of thumb, the difficulty in computing estimators of identification regions and confi-

dence sets depends on whether a closed form expression is available for the boundary of the

set. For example, often nonparametric bounds on functionals of partially identified distribu-

tion are known functionals of observed conditional distributions, as in Section 2. In this case

“plug in” estimation is possible, and the computational cost is the same as for estimation and

construction of confidence intervals (or confidence bands) for point-identified nonparametric

regressions (incurred twice, once for the lower bound and once for the upper bound).

Similarly, support function based inference is easy to implement when HP[θ] is convex.

Sometimes the extreme points of HP[θ] can be expressed as known functions of observed

distributions. Even if not, level sets of convex functions are easy to compute.

But as it was shown in Section 3, many problems of interest yield a set HP[θ] that is not

convex. In this case, HP[θ] is obtained as a level set of a criterion function. Because HP[θ]

(or its associated confidence set) is often a subset of Rd (rather than R), even a moderate

value for d, e.g., 8 or 10, can lead to extremely challenging computational problems. This is

because if one wants to computeHP[θ] or a set that covers it or its elements with a prespecified

asymptotic probability (possibly uniformly over P ∈ P), one has to map out a level set in

Rd. If one is interested in scalar projections or smooth functions of ϑ ∈ HP[θ], one needs to

solve nonlinear optimization problems, as for example in (4.19). The latter can be difficult

to do, especially because c1−α(ϑ) is typically an unknown function of ϑ for which gradients

are not available in closed form.

Mirroring the fact that computation is easier when the boundary of HP[θ] is a known

function of observed conditional distributions, several portable software packages are available

to carry out estimation and inference in this case. For example, Beresteanu and Manski
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(2000) provide STATA and MatLab packages implementing the methods proposed by Manski

(1989, 1990, 1994, 1995, 1997b); Horowitz and Manski (1998, 2000); Manski and Pepper

(2000). Tauchmann (2014) provides a STATA package to implement the bounds proposed

by Lee (2009). McCarthy, Millimet, and Roy (2015) provide a STATA package to implement

bounds on treatment effects with endogenous and misreported treatment assignment and

under the assumptions of monotone treatment selection, monotone treatment response, and

monotone instrumental-variables as in Manski (1997b), Manski and Pepper (2000), Kreider

and Pepper (2007), Gundersen, Kreider, and Pepper (2012), Kreider, Pepper, Gundersen, and

Jolliffe (2012). The code computes the confidence intervals proposed by Imbens and Manski

(2004). In the more general context of inference for a one-dimensional parameter defined by

intersection bounds, as for example the one in (2.15), Chernozhukov, Kim, Lee, and Rosen

(2015) and Andrews, Kim, and Shi (2017) provide portable STATA code implementing,

respectively, methods to test hypotheses and build confidence intervals in Chernozhukov,

Lee, and Rosen (2013) and Andrews and Shi (2013).

Beresteanu, Molinari, and Morris (2010) provide portable STATA code implementing

Beresteanu and Molinari (2008)’s method for estimation and inference for best linear pre-

diction with interval outcome data as in Identification Problem 2.4. Chandrasekhar, Cher-

nozhukov, Molinari, and Schrimpf (2012) provide R code implementing Chandrasekhar, Cher-

nozhukov, Molinari, and Schrimpf (2018)’s method for estimation and inference for best linear

approximations of set identified functions.

On the other hand, there is a paucity of portable software implementing the theoretical

methods for inference in structural partially identified models discussed in Section 4. Ciliberto

and Tamer (2009) compute Chernozhukov, Hong, and Tamer (2007) confidence sets for a

parameter vector in Rd, with d in the order of 20 and with tens of thousands of inequalities,

through a “guess and verify” algorithm based on simulated annealing (with no cooling) that

visits many candidate values of ϑ ∈ Θ, evaluates qn(ϑ), and builds Cn as in (4.10) with c1−α

defined to satisfy (4.12). This is a tremendously hard task, due to the dimension of θ and

the number of moment inequalities.

In terms of general purpose portable code, I am only aware of the MatLab package pro-

vided by Kaido, Molinari, Stoye, and Thirkettle (2017) to implement the inference method

of Kaido, Molinari, and Stoye (2019a) for projections of parameter vectors in models defined

by a finite number of unconditional moment (in)equalities. Their framework can be used to

further highlight why the computational task is challenging even in the case of projections.

The confidence interval in (4.18)-(4.19) requires solving two nonlinear programs, each with

a linear objective and nonlinear constraints involving a critical value which in general is an

unknown function of ϑ, with unknown gradient. When the dimension of the parameter vector

is large, directly solving optimization problems with such constraints can be expensive even if
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evaluating the critical value at each ϑ is cheap.91 Hence, Kaido, Molinari, and Stoye propose

an algorithm (called E-A-M for Evaluation-Approximation-Maximization) to approximate

c1−α through a Gaussian process, and determine evaluation points of the nonlinear program

in (4.19) based on the expected improvement for the value of the program assessed based on

the approximating surface. Their algorithm belongs to the family of expected improvement

algorithms (see e.g. Jones, Schonlau, and Welch, 1998; Schonlau, Welch, and Jones, 1998;

Jones, 2001, and references therein). Bull (2011) establishes convergence, as the number of

evaluation points increases, of an expected improvement algorithm for unconstrained opti-

mization problems where the objective is a “black box” function. The rate of convergence

that he derives depends on the smoothness of the black box objective function. Kaido, Moli-

nari, and Stoye (2019a) substantially extend his results to show convergence, at a slightly

slower rate, of their related algorithm for constrained optimization problems in which the

constraints are sufficiently smooth “black box” functions. Their Monte Carlo experiments

suggest that the E-A-M algorithm is fast and accurate at computing the confidence intervals

in Kaido, Molinari, and Stoye (2019a). The E-A-M algorithm also allows for very rapid com-

putation of projections of the confidence set proposed by Andrews and Soares (2010), and

for a substantial improvement in the computational time of the profiling-based confidence

intervals proposed by Bugni, Canay, and Shi (2017).92 In all cases, the speed improvement

results from a reduced number of evaluation points required to approximate the optimum.

7 Conclusions

This chapter provides a discussion of the econometrics literature on partial identification.

It first reviews what can be learned about (functionals of) probability distributions in the

absence of parametric restrictions, under various scenarios of data incompleteness. It then

reviews what can be learned about functionals characterizing semiparametric structural eco-

nomic models, under various scenarios of model incompleteness. It then discusses finite sam-

ple inference, the consequences of misspecification, and the computational challenges that a

researcher needs to face when implementing partial identification methods.

Taking stock, I argue that several areas emerge where more progress is needed to bring the

partial identification approach to empirical research to full fruition. Whereas the last twenty

years have seen the development of a burgeoning theoretical literature on the topic, empirical

applications of the methods still lag behind. I conjecture that part of the reason for this

discrepancy is due to the lack of easy-to-implement procedures for computation of estimators

and confidence sets (or intervals) in complex structural models. While the literature so far

91Kaido, Molinari, and Stoye (2019a) propose a linearization method whereby c1−α is calibrated through
repeatedly solving bootstrap linear programs, hence it is reasonably cheap to compute.

92Bugni, Canay, and Shi (2017)’s method does not require solving a nonlinear program such as the one in
(4.19). Rather it obtains CIn as in (4.17). However, it approximates c1−α by repeatedly solving bootstrap
nonlinear programs, thereby incurring a very high computational cost at that stage.
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has aimed at developing methods that have desirable asymptotic properties for very general

classes of models, there is arguably scope for more problem-specific methods that exploit the

particularities of a certain model to obtain easy to implement statistical procedures. It would

also seem desirable that portable software accompanies the proposed methodologies, perhaps

more in line with the current practice in the Statistics literature.

However, computational concerns cannot be the cause of the relative paucity of appli-

cations of partial identification methods as the ones reviewed in Section 2, e.g., bounds on

treatment effects. These bounds are extremely easy to estimate and confidence intervals

covering them can readily be computed. I therefore conjecture that the lack of applications

might be due to a misconception, whereby nonparametric bounds are perceived as “always

too wide to learn anything”. While it is true that, for example, worst-case nonparametric

bounds on the average treatment effect cover zero by construction, the partial identification

approach to empirical research proposes a wide array of assumptions that can be brought

to bear to augment the empirical evidence and tighten the bounds. The philosophy of the

method is that the systematic reporting of bounds obtained under an increasingly strong set

of assumptions illuminates the relative role of assumptions and data in shaping the conclu-

sions that the researcher draws. Point identification is the limit of this process, and carefully

assessing how this limit is reached is key to learning about the quantities of interest.

In Sections 2 and 3, special attention is devoted to characterizing sharp identification

regions. Sharpness often requires many moment inequalities, the number of which can exceed

the available sample size. Hence, there is a need of appropriate statistical inference methods.

As briefly mentioned in Section 4, some methods designed to provide valid test of hypotheses

and confidence sets in this scenario already exist. However, I would argue that there is a need

to better understand the trade-off between sharpness of the population identification region,

and statistical efficiency, especially in the context of conditional moment inequalities where

instrument functions are needed to transform the inequalities in unconditional ones. Similarly,

there is a need of more research on data driven procedures for the choice of tuning parameters

for the construction of confidence sets, in particular in the case of projection inference where

the question has not yet been addressed. Another open and arguably important question in

the literature, is how to build confidence sets for moment inequality models that are robust

to model misspecification and that cannot be empty or arbitrarily small.
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A Basic Definitions and Facts from Random Set Theory

This appendix provides basic definitions and results from random set theory that are used

throughout this chapter.93 I refer to Molchanov (2017) for a textbook presentation of random

set theory, and to Molchanov and Molinari (2018) for a discussion focusing on its applications

to econometrics.

The theory of random closed sets generally applies to the space of closed subsets of a

locally compact Hausdorff second countable topological space X, see Molchanov (2017). In

this chapter I let X = Rd to simplify the exposition. Closedness is a property satisfied

by random points (singleton sets), so that the theory of random closed sets includes the

classical case of random points or random vectors as a special case. A random closed set is

a measurable map X : Ω 7→ F , where measurability is defined by specifying the family of

functionals of X that are random variables.

Definition A.1 (Random closed set): A map X from a probability space (Ω,F,P) to the

family F of closed subsets of Rd is called a random closed set if

X−(K) = {ω ∈ Ω : X(ω) ∩K 6= ∅} (A.1)

belongs to the σ-algebra F on Ω for each compact set K in Rd.

A random compact set is a random closed set which is compact with probability one, so

that almost all values of X are compact sets. A random convex closed set is defined similarly,

so that X(ω) is a convex closed set for almost all ω.

Definition A.1 means that X is explored by its hitting events, that is the events where

X hits a compact set K. The corresponding hitting probabilities are very important in

random set theory, because they uniquely determine the probability distribution of a random

closed set X, see Molchanov (2017, Ch. 1, Sec. 1.1.3). The formal definition of the hitting

probabilities, and the closely related containment probabilities, follows.

Definition A.2 (Capacity functional and containment functional): 0

1. A functional TX(K) : K 7→ [0, 1] given by

TX(K) = P{X ∩K 6= ∅}, K ∈ K,

is called capacity (or hitting) functional of X.

2. A functional CX(F ) : F 7→ [0, 1] given by

CX(F ) = P{X ⊂ F}, F ∈ F ,
93The treatment here summarizes a few of the topics presented in Molchanov and Molinari (2018).
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is called the containment functional of X.

I write T(K) instead of TX(K) and C(K) instead of CX(K) where no ambiguity occurs.

Ever since the seminal work of Aumann (1965), it has been common to think of random

sets as bundles of random variables – the selections of the random sets.

Definition A.3 (Measurable selection): For any random set X, a (measurable) selection

of X is a random element x with values in Rd such that x(ω) ∈X(ω) almost surely. I denote

by Sel(X) the set of all selections from X.

The space of closed sets is not linear, which causes substantial difficulties in defining

the expectation of a random set. One approach, inspired by Aumann (1965) and pioneered

by Artstein and Vitale (1975), relies on representing a random set using the family of its

selections, and considering the set formed by their expectations. If X possesses at least one

integrable selection, then X is called integrable. The family of all integrable selections of X

is denoted by Sel1(X).

Definition A.4 (Unconditional and conditional Aumann –or selection– expectation):

The (selection or Aumann) expectation of an integrable random closed set X is given by

EX = cl

{∫
Ω
xdP : x ∈ Sel1(X)

}
.

For each sub-σ-algebra B ⊂ F, the conditional selection or Aumann expectation of X given

B is the B-measurable random closed set Y = E(X|B) such that the family of B-measurable

integrable selections of Y , denoted Sel1B(Y ), satisfies

Sel1B(Y ) = cl
{
E(x|B) : x ∈ Sel1(X)

}
,

where the closure in the right-hand side is taken in L1.

If X is almost surely non-empty and its norm ‖X‖ = sup{‖x‖ : x ∈X} is an integrable

random variable, then X is said to be integrably bounded and all its selections are integrable.

In this case the family of expectations of these integrable selections is already closed and there

is no need to take an additional closure as required in Definition A.4, see Molchanov (2017,

Theorem 2.1.37). The selection expectation depends on the probability space used to define

X, see Molchanov (2017, Section 2.1.2) and Molchanov and Molinari (2018, Section 3.1). In

particular, if the probability space is non-atomic and X is integrably bounded, the selection

expectation EX is a convex set regardless of whether or not X might be non-convex itself

Molchanov and Molinari (2018, Theorem 3.4). This convexification property of the selection

expectation implies that the expectation of the closed convex hull of X equals the closed

convex hull of EX, which in turn equals EX. It is then natural to describe the Aumann
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expectation through its support function, because this function traces out a convex set’s

boundary and therefore knowing the support function is equivalent to knowing the set itself,

see equation (A.2) below.

Definition A.5 (Support function): Let K be a convex set. The support function of K

is

hK(u) = sup{k>u : k ∈ K} , u ∈ Rd ,

where k>u denotes the scalar product.

The support function is finite for all u if K is bounded, and is sublinear (positively

homogeneous and subadditive) in u. Hence, it can be considered only for u ∈ Bd or u ∈ Sd−1.

Moreover, one has

K = ∩u∈Bd{k : k>u ≤ hK(u)} = ∩u∈Sd−1{k : k>u ≤ hK(u)}. (A.2)

Next, I define the Hausdorff metric, a distance on the family K of compact sets:

Definition A.6 (Hausdorff metric): Let K,L ∈ K. The Hausdorff distance between K

and L is

dH(K,L) = inf
{
r > 0 : K ⊆ Lr, L ⊆ Kr

}
,

where Kr = {x : (.x,K) ≤ r} is the r-envelope of K.

Since K ⊆ L if and only if hK(u) ≤ hL(u) for all u ∈ Sd−1 and hKr(u) = hK(u) + r, the

uniform metric for support functions on the sphere turns into the Hausdorff distance between

compact convex sets. Namely,

dH(K,L) = sup
{
|hK(u)− hL(u)| : ‖u‖ = 1

}
. (A.3)

It follows that

‖K‖ = dH(K, {0}) = sup
{
|hK(u)| : ‖u‖ = 1

}
.

Finally, I define independently and identically distributed random closed sets (see Molchanov,

2017, Proposition 1.1.40 and Theorem 1.3.20, respectively):

Definition A.7 (i.i.d. random closed sets): Random closed sets X1, . . . ,Xn in Rd are

independent if and only if P{X1 ∩ K1 6= ∅, . . . ,Xn ∩ Kn 6= ∅} =
∏n
i=1 TXi(Ki) for all

K1, . . . ,Kn ∈ K. They are identically distributed if and only if for each open set G, P{X1 ∩
G 6= ∅} = P{X2 ∩G 6= ∅} = · · · = P{Xn ∩G 6= ∅}.

With these definitions in hand, I can state the theorems used throughout the chapter. The

first is a dominance condition due to Artstein (1983) (and Norberg, 1992) that characterizes

probability distributions of selections (see Molchanov and Molinari, 2018, Section 2.2):
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Theorem A.1 (Artstein). A probability distribution µ on Rd is the distribution of a selection

of a random closed set X in Rd if and only if

µ(K) ≤ T(K) = P{X ∩K 6= ∅} (A.4)

for all compact sets K ⊆ Rd. Equivalently, if and only if

µ(F ) ≥ C(F ) = P{X ⊂ F} (A.5)

for all closed sets F ⊂ Rd. If X is a compact random closed set, it suffices to check (A.5)

for compact sets F only.

If µ from Theorem A.1 is the distribution of some random vector x, then it is not guar-

anteed that x ∈ X a.s., e.g. x can be independent of X. Theorem A.1 means that for each

such µ, it is possible to construct x with distribution µ that belongs to X almost surely. In

other words, x and X can be realized on the same probability space (coupled) as random

elements x′ and X ′ such that x
d
= x′ and X

d
= X ′ with x′ ∈X ′ a.s.

The definition of the distribution of a random closed set (Definition A.2) and the charac-

terization results for its selections in Theorem A.1 require working with functionals defined

on the family of all compact sets, which in general is very rich. It is therefore important

to reduce the family of all compact sets required to describe the distribution of the random

closed set or to characterize its selections.

Definition A.8: A family of compact sets M is said to be a core determining class for

a random closed set X if any probability measure µ satisfying the inequalities

µ(K) ≤ P{X ∩K 6= ∅} (A.6)

for all K ∈ M, is the distribution of a selection of X, implying that (A.6) holds for all

compact sets K.

The notion of a core determining class was introduced by Galichon and Henry (2006). A

simple and general, but still mostly too rich, core determining class is obtained as a subfamily

of all compact sets that is dense in a certain sense in the family K. For instance, in the

Euclidean space, it suffices to consider compact sets obtained as finite unions of closed balls

with rational centers and radii (e.g., Galichon and Henry, 2006, Theorem 3c). For the case

that X is a subset of a finite space, Beresteanu, Molchanov, and Molinari (2008, Algorithm

5.1) propose a simple algorithm to compute core determining classes. Chesher and Rosen

(2012) provide a related algorithm. Throughout this chapter, several results are mentioned

where the class of sets over which (A.4) is verified is reduced from the class of compact subsets

of the carrier space, to a (significantly) smaller collection.
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The next result characterizes a dominance condition that can be used to verify the exis-

tence of selections of X with specific properties for their means (see Molchanov and Molinari,

2018, Sections 3.2-3.3)

Theorem A.2 (Convexification in Rd). Let X be an integrable random set. If X is defined

on a non-atomic probability space, or if X is almost surely convex, then EX = E convX and

EhX(u) = hEX(u), u ∈ Rd. (A.7)

If P is atomless over B,94 then E(X|B) is convex and

E(hX(u)|B) = hE(X|B)(u), u ∈ Rd. (A.8)

Hence, for any vector b ∈ Rd, it holds that

b ∈ EX ⇔ b>u ≤ EhX(u) ∀u ∈ Sd−1, (A.9)

b ∈ E(X|B)⇔ b>u ≤ E(hX(u)|B) ∀u ∈ Sd−1. (A.10)

An important consequence of Theorem A.2 is that it allows one to verify whether b ∈ EX
without having to compute EX but only EhX(u) (and similarly for the conditional case), a

substantially easier task.

Finally, i.i.d. random closed sets satisfy a law of large numbers and a central limit theorem

that are similar to these for random singletons. Recall that the Minkowski sum of two sets

K and L in a linear space (which in this chapter I assume to be the Euclidean space Rd) is

obtained by adding each point from K to each point from L, formally,

K + L =
{
x+ y : x ∈ K, y ∈ L

}
.

Below, X1 + · · ·+Xn denotes the Minkowski sum of the random closed sets X1, . . . ,Xn, and

(X1 + · · ·+ Xn)/n denotes their Minkowski average.

Theorem A.3 (Law of large numbers for integrably bounded random sets). Let X,X1,X2, . . .

be i.i.d. integrably bounded random compact sets. Define Sn = X1 + · · ·+ Xn. Then

dH

(
Sn
n
,EX

)
→ 0 a.s. as n→∞. (A.11)

The support function of a random closed set X such that E‖X‖2 < ∞, is a random

continuous function hX(u) on Sd−1 with square integrable values. Define its covariance

94An event A′ ∈ B is called a B-atom if P{0 < P(A|B) < P(A′|B)} = 0 for all A ⊂ A′ such that A ∈ F.
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function as

ΓX(u, v) ≡ E [(hX(u)− hEX(u))(hX(v)− hEX(v))] , u, v ∈ Sd−1. (A.12)

Let ζ(u) be a centered Gaussian random field on Sd−1 with the same covariance structure

as X, i.e. E
[
ζ(u)ζ(v)

]
= ΓX(u, v), u, v ∈ Sd−1. Since the support function of a compact

set is Lipschitz, it is easy to show that the random field ζ has a continuous modification by

bounding the moments of |ζ(u)− ζ(v)|.

Theorem A.4 (Central limit theorem). Let X1,X2, . . . be i.i.d. copies of a random closed

set X in Rd such that E‖X‖2 <∞, and let Sn = X1 + · · ·+ Xn. Then as n→∞,

√
n
(
hSn

n
(u)− hEX(u)

)
⇒ ζ (A.13)

in the space of continuous functions on the unit sphere with the uniform metric. Furthermore,

√
ndH

(
Sn
n
,EX

)
⇒ ‖ζ‖∞ = sup

{
|ζ(u)| : u ∈ Sd−1

}
. (A.14)
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son, vol. 1 of Econometric Society Monographs, p. 268–323. Cambridge University Press.

de Paula, A., S. Richards-Shubik, and E. Tamer (2018): “Identifying Preferences in

Networks With Bounded Degree,” Econometrica, 86(1), 263–288.

de Paula, A., and X. Tang (2012): “Inference of Signs of Interaction Effects in Simulta-

neous Games With Incomplete Information,” Econometrica, 80(1), 143–172.

Peterson, A. V. (1976): “Bounds for a Joint Distribution Function with Fixed Sub-

Distribution Functions: Application to Competing Risks,” Proceedings of the National

Academy of Sciences of the United States of America, 73(1), 11–13.

Petrin, A., and K. Train (2010): “A Control Function Approach to Endogeneity in

Consumer Choice Models,” Journal of Marketing Research, 47(1), 3–13.

126

https://ssrn.com/abstract=2043117


Phillips, P. C. B. (1989): “Partially Identified Econometric Models,” Econometric Theory,

5(2), 181–240.

Picketty, T. (2005): “Top Income Shares in the Long Run: An Overview,” Journal of the

European Economic Association, 3, 382–392.

Ponomareva, M., and E. Tamer (2011): “Misspecification in moment inequality models:

back to moment equalities?,” The Econometrics Journal, 14(2), 186–203.

Redner, R. (1981): “Note on the Consistency of the Maximum Likelihood Estimate for

Nonidentifiable Distributions,” The Annals of Statistics, 9(1), 225–228.

Reiersol, O. (1941): “Confluence Analysis by Means of Lag Moments and Other Methods

of Confluence Analysis,” Econometrica, 9(1), 1–24.

Ridder, G., and R. Moffitt (2007): “Chapter 75 The Econometrics of Data Combina-

tion,” in Handbook of Econometrics, ed. by J. J. Heckman, and E. E. Leamer, vol. 6, pp.

5469 – 5547. Elsevier.

Rockafellar, R. (1970): Convex Analysis, Princeton landmarks in mathematics and

physics. Princeton University Press.

Romano, J. P., and A. M. Shaikh (2008): “Inference for identifiable parameters in par-

tially identified econometric models,” Journal of Statistical Planning and Inference, 138(9),

2786 – 2807.

(2010): “Inference for the Identified Set in Partially Identified Econometric Models,”

Econometrica, 78(1), 169–211.

Romano, J. P., A. M. Shaikh, and M. Wolf (2014): “A practical two-step method for

testing moment inequalities,” Econometrica, 82(5), 1979–2002.

Rosen, A. M. (2008): “Confidence sets for partially identified parameters that satisfy a

finite number of moment inequalities,” Journal of Econometrics, 146(1), 107 – 117.

(2012): “Set identification via quantile restrictions in short panels,” Journal of

Econometrics, 166(1), 127 – 137.

Rubin, D. B. (1978): “Bayesian Inference for Causal Effects: The Role of Randomization,”

The Annals of Statistics, 6(1), 34–58.

Santos, A. (2012): “Inference in nonparametric instrumental variables with partial identi-

fication,” Econometrica, 80(1), 213–275.

Schennach, S. M. (2019): “Mismeasured and unobserved variables,” in Handbook of Econo-

metrics. Elsevier.

127



Schmidt, P. (1981): “Constraints on the Parameters in Simultaneous Tobit and Probit

Models,” in Structural Analysis of Discrete Data and Econometric Applications, ed. by

C. F. Manski, and D. McFadden, chap. 12, pp. 422–434. MIT Press.

Schneider, R. (1993): Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of

Mathematics and its Applications. Cambridge University Press, 1 edn.

Schonlau, M., W. J. Welch, and D. R. Jones (1998): “Global versus Local Search

in Constrained Optimization of Computer Models,” Lecture Notes-Monograph Series, 34,

11–25.

Shaikh, A. M., and E. J. Vytlacil (2011): “Partial identification in triangular systems

of equations with binary dependent variables,” Econometrica, 79(3), 949–955.

Sheng, S. (2018): “A structural econometric analysis of network formation games through

subnetworks,” Econometrica, accepted for publication.

Simon, H. A. (1959): “Theories of Decision-Making in Economics and Behavioral Science,”

The American Economic Review, 49(3), 253–283.

Sims, C. A. (1972): “Comments and Rejoinder On Okner (1972),” Annals of Economic and

Social Measurement, 1(3), 343–345 and 355–357.

Stoye, J. (2007): “Bounds on Generalized Linear Predictors with Incomplete Outcome

Data,” Reliable Computing, 13(3), 293–302.

(2009): “More on Confidence Intervals for Partially Identified Parameters,” Econo-

metrica, 77(4), 1299–1315.

(2010): “Partial identification of spread parameters,” Quantitative Economics, 1(2),

323–357.

Tamer, E. (2003): “Incomplete Simultaneous Discrete Response Model with Multiple Equi-

libria,” The Review of Economic Studies, 70(1), 147–165.

(2010): “Partial Identification in Econometrics,” Annual Review of Economics, 2,

167–195.

Tang, X. (2011): “Bounds on revenue distributions in counterfactual auctions with reserve

prices,” The RAND Journal of Economics, 42(1), 175–203.

Tauchmann, H. (2014): “Lee (2009) treatment-effect bounds for nonrandom sample selec-

tion,” Stata Journal, 14(4), 884–894.

Torgovitsky, A. (2019a): “Nonparametric Inference on State Dependence in Unemploy-

ment,” Econometrica, forthcoming.

128



(2019b): “Partial identification by extending subdistributions,” Quantitative Eco-

nomics, 10(1), 105–144.

Tversky, A. (1972): “Elimination by aspects: A theory of choice,” Psychological review,

79(4), 281.

van der Vaart, A. (1997): “Superefficiency,” in Festschrift for Lucien Le Cam, ed. by

D. Pollard, E. Torgersen, and G. L. Yang, chap. 27, pp. 397–410. Springer.

Wollmann, T. G. (2018): “Trucks without Bailouts: Equilibrium Product Characteristics

for Commercial Vehicles,” American Economic Review, 108(6), 1364–1406.

129


	CEMMAP WP2519
	Molinari_EwPI
	Introduction
	Why Partial Identification?
	Goals and Structure of this Chapter
	Random Set Theory as a Tool for Partial Identification Analysis
	Notation

	Partial Identification of Probability Distributions
	Selectively Observed Data
	Treatment Effects with and without Instrumental Variables
	Interval Data
	Measurement Error and Data Combination
	Further Theoretical Advances and Empirical Applications

	Partial Identification of Structural Models
	Discrete Choice in Single Agent Random Utility Models
	Semiparametric Binary Choice Models with Interval Valued Covariates
	Endogenous Explanatory Variables
	Unobserved Heterogeneity in Choice Sets and/or Consideration Sets
	Prediction of Choice Behavior with Counterfactual Choice Sets

	Static, Simultaneous-Move Finite Games with Multiple Equilibria
	An Inference Approach Robust to the Presence of Multiple Equilibria
	Characterization of Sharpness through Random Set Theory

	Auction Models with Independent Private Values
	An Inference Approach Robust to Bidding Behavior Assumptions
	Characterization of Sharpness through Random Set Theory

	Network Formation Models
	Data from Multiple Independent Networks
	Data From a Single Network

	Further Theoretical Advances and Empirical Applications

	Estimation and Inference
	Framework and Scope of the Discussion
	Consistent Estimation
	Criterion Function Based Estimators
	Support Function Based Estimators

	Confidence Sets Satisfying Various Coverage Notions
	Coverage of HP[] vs. Coverage of 
	Pointwise vs. Uniform Coverage
	Coverage of the Vector  vs. Coverage of a Component of 
	A Brief Note on Bayesian Methods


	Misspecification in Partially Identified Models
	Computational Challenges
	Conclusions
	Basic Definitions and Facts from Random Set Theory




