
Giacomini, Raffaella; Kitagawa, Toru; Uhlig, Harald

Working Paper

Estimation under ambiguity

cemmap working paper, No. CWP24/19

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Giacomini, Raffaella; Kitagawa, Toru; Uhlig, Harald (2019) : Estimation
under ambiguity, cemmap working paper, No. CWP24/19, Centre for Microdata Methods and
Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2019.2419

This Version is available at:
https://hdl.handle.net/10419/211117

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2019.2419%0A
https://hdl.handle.net/10419/211117
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Estimation Under Ambiguity

Raffaella Giacomini 
Toru Kitagawa 
Harald Uhlig

The Institute for Fiscal Studies 
Department of Economics, 
UCL 

cemmap working paper CWP24/19



Estimation Under Ambiguity∗

Raffaella Giacomini†, Toru Kitagawa‡, and Harald Uhlig§

This draft: May 2019

Abstract

To perform Bayesian analysis of a partially identified structural model, two distinct ap-

proaches exist: standard Bayesian inference, which assumes a single prior for the structural

parameters, including the non-identified ones; and multiple-prior Bayesian inference, which

assumes full ambiguity for the non-identified parameters. The prior inputs considered by

these two extreme approaches can often be a poor representation of the researcher’s prior

knowledge in practice. This paper fills the large gap between the two approaches by propos-

ing a multiple-prior Bayesian analysis that can simultaneously incorporate a probabilistic

belief for the non-identified parameters and a concern about misspecification of this belief.

Our proposal introduces a benchmark prior representing the researcher’s partially credible

probabilistic belief for non-identified parameters, and a set of priors formed in its Kullback-

Leibler (KL) neighborhood, whose radius controls the “degree of ambiguity.” We obtain

point estimators and optimal decisions involving non-identified parameters by solving a

conditional gamma-minimax problem, which we show is analytically tractable and easy to

solve numerically. We derive the remarkably simple analytical properties of the proposed

procedure in the limiting situations where the radius of the KL neighborhood and/or the

sample size are large. Our procedure can also be used to perform global sensitivity analysis.
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1 Introduction

This paper develops a formal framework for robust Bayesian inference in partially identified

structural models that accommodates a concern for misspecification of the researcher’s prior

knowledge. The framework can be used to perform global sensitivity analysis by constructing

a class of priors in a neighborhood of a benchmark prior and obtaining the optimal posterior

minimax decision (e.g., a point estimator) over this class.

The focus on partially identified models is a novel and natural starting point of the anal-

ysis, for two main reasons. First, prior misspecification is more of a concern under partial

identification, because the effect of the prior does not disappear asymptotically, unlike in the

point identified case (Poirier, 1998). Second, in partially identified models we can overcome a

challenge that would arise under point identification. In that case, the priors in the class would

generally correspond to different marginal likelihoods, and thus the minimax decision could be

driven by a worst-case prior that fits the data very poorly. We believe that a more empirically

useful characterization of sensitivity instead considers perturbations that preserve the marginal

likelihood of the benchmark prior. This is readily accomplished under partial identification,

where it is arguably natural to only perturb the unrevisable component of the prior.1

To motivate and illustrate our approach, consider the setting of a partially identified model.

Following Poirier (1998) and Moon and Schorfheide (2012), suppose that the distribution of

observables can be indexed by a vector of finite-dimensional reduced-form parameters φ ∈ Φ,

but that knowledge of φ and additional a-priori restrictions fails to point identify the structural

parameters θ ∈ Θ and the scalar object of interest α = α(θ, φ) ∈ R. We thus suppose that

φ is identifiable (i.e., there are no φ, φ′ ∈ Φ, φ 6= φ′, that are observationally equivalent),

while θ and α are not, even with the a-priori restrictions (which can depend on φ), denoted as

θ ∈ ΘR(φ) ⊂ Θ.

Let X be a random sample and x its realization. The value of the likelihood l(x|θ, φ)

depends only on φ for every realization of X, or, equivalently, X ⊥ θ|φ. We refer to the set of

θ compatible with the value of φ and the a-priori restrictions as the identified set of θ, ISθ(φ).

The identified set of α is accordingly defined by the values of α(θ, φ) when θ varies over ISθ (φ),

ISα(φ) ≡ {α(θ, φ) : θ ∈ ISθ(φ)} , (1)

which can be viewed as a set-valued map from φ to R.
1A way to partially overcome the challenge in point-identified models would be to shrink the class of priors,

possibly adaptively to the data, for example by considering only priors with marginal likelihood above a certain

threshold. We leave this extension for future work.
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The following examples illustrate the set-up. Appendix D contains a further detailed illus-

tration in the context of an entry game.

Example 1.1 (Supply and demand) Suppose the object of interest α is a structural param-

eter in a system of simultaneous equations, e.g., a classical model of labor supply and demand:

Axt = ut, (2)

where: xt = (Δwt, Δnt) with Δwt and Δnt the growth rates of wages and employment, respec-

tively; ut are shocks assumed to be i.i.d. N (0, D) with D = diag(d1, d2); and A =

[
−βd 1

−βs 1

]

with βs the short-run wage elasticity of supply and βd the short-run wage elasticity of demand.

The a-priori restrictions are βs ≥ 0 and βd ≤ 0. The reduced-form representation is

xt = εt, (3)

with E (εtε
′
t) = Ω = A−1D

(
A−1

)′
. The reduced-form parameters are φ = (w11, w12, w22)′,

with wij the (i, j) − th element of Ω. Let βs be the parameter of interest. The full vector of

structural parameters is (βs, βd, d1, d2)′, which can be reparameterized to (βs, w11, w12, w22).2

In our notation, θ can thus be set to βs, and the object of interest α is θ = βs itself. The

identified set of α when w12 > 0 can be obtained as (see Leamer, 1981):

ISα(φ) = {α : w12/w11 ≤ α ≤ w22/w12}. (4)

Example 1.2 (Impulse-response analysis) Suppose that the object of interest is an impulse-

response in a partially identified structural vector autoregression (SVAR) for a vector xt:

A0xt =
p∑

j=1

Ajxt−j + ut, (5)

where ut is i.i.d.N (0, I), with I the identity matrix. The reduced-form VAR representation is

xt =
p∑

j=1

Bjxt−j + εt, εt ∼ N (0, Ω),

The reduced-form parameters are φ = (vec(B1)′, . . . , vec(Bp)′, vech(Ω)′)′ ∈ Φ, where vech(Ω)

is the vectorization of the lower triangular portion of Ω (see Lütkepohl, 1991), Φ is restricted

to the set of φ such that the reduced-form VAR can be inverted into a V MA(∞) model:

xt =
∞∑

j=0

Cjεt−j . (6)

2See Section 6.1 below for the transformation. If βd is the parameter of interest, an alternative reparameter-

ization transforms the structural parameters into (βd, w11, w12, w22).
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The non-identified parameter is θ = vec(Q), where Q is the orthonormal matrix tranforming

reduced-form residuals into structural shocks (i.e., ut = Q′Ω−1
tr εt, where Ωtr is the Cholesky

factor from the factorization Ω = ΩtrΩ′
tr). The object of interest is the (i, j) − th impulse

response at horizon h, capturing the effect on the i-th variable in xt+h of a unit shock to the

j-th element of ut: α = e′iChΩtrQej , with ei the i − th column of I. The identified set of the

(i, j) − th impulse response in the absence of identifying restrictions is

ISα(φ) = {α = e′iChΩtrQej : Q ∈ O}, (7)

where O is the space of orthonormal matrices. Additional a priori restrictions may be imposed,

such as sign restrictions on the impulse responses (e.g., Uhlig, 2005).

The identified set collects all the admissible values of α that satisfy the imposed identify-

ing assumptions, given the data. Often, however, the researcher has some form of additional

but only partially credible assumptions about structural parameters based on economic the-

ory, background knowledge, or empirical studies that use different data. Alternatively, she

may wish to impose a-priori indifference among the parameters within the identified set. The

standard Bayesian recommendation is to incorporate this information by specifying a prior for

(θ, φ). For instance, in the case of Example 1.1, Baumeister and Hamilton (2015) propose

a prior that draws on estimates of the elasticity parameters obtained in macroeconomic and

microeconometric studies, and consider independent Student’s t distributions calibrated to as-

sign 90% probability to the intervals βs ∈ (0.1, 2.2), and βd ∈ (−2.2,−0.1). Another example

in Baumeister and Hamilton (2015) is a prior that incorporates long-run identifying restric-

tions in SVARs non-dogmatically, as a way to capture uncertainty about these controversial

restrictions. See also Baumeister and Hamilton (2018) and Baumeister and Hamilton (2019)

for further applications of this approach. In situations where the researcher wants to impose in-

difference among values within the identified set, a uniform prior has often been recommended.

For example, in SVARs subject to sign restrictions (Uhlig, 2005) it is common to use the uni-

form distribution (the Haar measure) over the set of orthonormal matrices in (7) that satisfy

the sign restrictions. Other examples of the uniform prior appear in Moon and Schorfheide

(2012) for an entry game and in Norets and Tang (2014) for a dynamic discrete choice model.

At the opposite end of the standard Bayesian spectrum, Giacomini and Kitagawa (2018)

advocate adopting a fully ambiguous multiple-prior Bayesian approach when one has no further

information about θ besides a set of exact restrictions that can be used to characterize the

identified set. While maintaining a single prior for φ, the set of priors consists of any conditional
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prior for θ given φ, πθ|φ, supported on the identified set ISθ(φ). Giacomini and Kitagawa (2018)

propose to conduct a posterior bound analysis based on the resulting class of posteriors, which

leads to an estimator for ISα (φ) with an associated “robust” credible region that asymptotically

converges to the true identified set with a desired frequentist coverage.

The motivation for the methods we propose in this paper is the observation that the prior

inputs considered by the two extreme approaches discussed above – a precise specification of

a prior for (θ, φ), or full ambiguity about the conditional prior of θ given φ – could be a poor

representation of the belief that the researcher possesses in a given application. For example, the

prior specified by Baumeister and Hamilton (2015) in Example 1.1 builds on the set of plausible

values of the elasticity parameters obtained by previous empirical studies. Such prior evidence,

however, may not be sufficient for the researcher to be confident in the particular shape of

the prior. At the same time, the fully ambiguous approach may not be attractive because it

entirely discards available prior evidence for the elasticity parameters. In another example,

a researcher who expresses indifference over values within the identified set by specifying a

uniform prior for θ given φ may worry that this can induce unintentionally informative priors

for α or other parameters (as discussed by Baumeister and Hamilton, 2015). On the other

hand, full ambiguity may also be an unappealing representation of prior indifference, since, for

example, it treats equally priors that support any value in the identified set and priors that are

degenerate at extreme values in the identified set, which could appear less sensible.

The main contribution of this paper is to fill the large gap between the two extreme ap-

proaches by proposing a method that can simultaneously incorporate a probabilistic belief for

structural parameters and a misspecification concern about this belief. Our idea is to replace

the fully ambiguous beliefs considered in Giacomini and Kitagawa (2018) by a class of pri-

ors defined in a KL neighborhood of a benchmark prior for θ given φ. The benchmark prior

represents the researcher’s reasonable but partially credible prior knowledge about θ given φ,

and the class of priors in the neighborhood captures ambiguity or misspecification concerns

about the benchmark prior. The radius of the neighborhood is chosen by the researcher and

controls the degree of confidence in the benchmark prior. We then obtain point estimators of

α and other statistical decisions involving α by minimizing the worst-case (minimax) posterior

expected loss with respect to the priors in the neighborhood. The proposed framework is useful

for assessing the sensitivity of the posterior for α to perturbations of the unrevisable component

of the benchmark prior. The fact that we perturb the prior for θ given φ, while keeping the

prior for φ fixed, implies that all priors in the class share the same marginal likelihood. This

ensures that posterior sensitivity is not driven by priors that poorly fit the data.
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Our paper makes the following unique contributions: (1) we clarify that estimation of a

nonidentified parameter under vague prior knowledge can be formulated as a decision under

ambiguity, as considered in the literature on robust control methods (e.g., Hansen and Sargent,

2001); (2) we provide an analytically tractable and numerically convenient way to solve the

estimation problem in general cases; (3).we give simple analytical solutions for the special cases

of a quadratic and a check loss function and for the limit case when the shape of the benchmark

prior is irrelevant; and (4) we derive the properties of our method in large samples.

1.1 Related Literature

The idea of introducing a set of priors to draw robust posterior inference goes back to the

robust Bayesian analysis of Robbins (1951), whose basic premise is that the decision-maker

cannot specify a unique prior distribution for the parameters due to limited prior knowledge or

limited ability to elicit the prior. Good (1965) argues that the prior input that is easier to elicit

in practice is a class of priors rather than a single prior. When the class of priors is used as

prior input, however, there is no consensus in the literature on how to update after observing

the data. One extreme is the Type-II maximum likelihood (empirical Bayes) updating rule

of Good (1965) and Gilboa and Schmeidler (1993), while the other extreme is what Gilboa

and Marinacci (2016) call the full Bayesian updating rule, considered in Jaffray (1992) and

axiomatized by Pires (2002). Here we introduce a single prior for the reduced-form parameters

and a class of priors for the non-identified parameters, which corresponds to the part of the

prior distribution that is unrevisable by the data. Since any prior in the class leads to the same

value of the marginal likelihood due to the single prior for the reduced-form parameters, we

obtain the same set of posteriors no matter what updating rule we apply.

We perform minimax estimation by applying the minimax criterion to the set of posteriors,

which is referred to as the conditional gamma-minimax criterion in the statistics literature

(e.g., DasGupta and Studden, 1989; Betró and Ruggeri, 1992). This is distinguished from the

(unconditional) gamma-minimax criterion where minimax is performed before observing the

data (e.g., Manski, 1981; Berger, 1985; Chamberlain, 2000; Vidakovic, 2000). An analogue to

gamma-minimax analysis in economic decision theory is the maximin expected utility theory

axiomatized by Gilboa and Schmeidler (1989).

The existing gamma-minimax analyses focus on identified models and have considered var-

ious ways of constructing a prior class, including the class of bounded and unbounded vari-

ance priors (Chamberlain and Leamer, 1976; Leamer, 1982), the ε-contaminated class of priors
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(Berger and Berliner, 1986), the class of priors built on a nonadditive lower probability (Wasser-

man, 1990), and the class of priors with a fixed marginal distribution (Lavine et al., 1991), to

list a few. This paper focuses on partially-identified models where the sensitivity of the pos-

terior remains present even in large samples due to the lack of identification. The class of

priors proposed in this paper consists of those belonging to a specified Kullback-Leibler (KL)

neighborhood around the benchmark prior. As shown in Lemma 2.2 below, the conditional

gamma-minimax analysis with this class of priors is closely related to the multiplier minimax

problem considered in Peterson et al. (2000) and Hansen and Sargent (2001). When the bench-

mark prior covers the entire identified set, the KL class of priors with an arbitrarily large radius

can replicate the class of priors considered in Giacomini and Kitagawa (2018).

Our procedure can be used for global sensitivity analysis. See Moreno (2000) and references

therein for existing approaches in the statistics literature. For global sensitivity analysis in

point-identified models, Ho (2019) considers a KL based class of priors similar to ours. His

approach, if applied to set-identified models, would differ from ours in the following aspects.

First, all priors in our prior class share a single prior for the reduced-form parameters, while

this is not necessarily the case in Ho (2019). Allowing for multiple priors for the reduced-form

parameters implies that a prior that fits the data poorly, i.e., that is far from the observed

likelihood, will yield the worst-case posterior. Obtaining a large range of posteriors could thus

be due to allowing for priors that are severely in conflict with the data, rather than being an

indication of posterior non-robustness (i.e., the lack of information in the observed likelihood).

In our approach, in contrast, all the posteriors in the class share the same value of the marginal

likelihood. This allows us to assess posterior sensitivity while keeping the denominator of

the Bayes rule constant. Second, our approaches differ in how to select the radius of the KL

neighborhood. Ho (2019) recommends to set the radius so that the set of priors can span the

posterior means around the Gaussian-approximated benchmark posterior. This approximation

is reasonable only when the model is point-identified. In contrast, we propose to specify the

radius by matching the set of prior means or other quantities for a parameter with available

prior knowledge about it. We consider this empirically appealing, because a researcher often

has access to prior knowledge in the form of inequalities or an interval for a parameter.

The robustness concern we address is about misspecification of the prior in a Bayesian set-

ting. The frequentist approach to robustness concerns instead misspecification of the likelihood,

identifying assumptions, moment conditions, or the distribution of unobservables. This type of

sensitivity analysis is considered by, e.g., Andrews et al. (2017), Armstrong and Kolesár (2019),

Bonhomme and Weidner (2018), Christensen and Connault (2019), Kitamura et al. (2013).
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1.2 Roadmap

The remainder of the paper is organized as follows. Section 2 introduces the analytical frame-

work and formulates the statistical decision problem with multiple priors localized around the

benchmark prior. Section 3 solves the constrained posterior minimax problem for a general

loss function. Section 4 applies the framework to global sensitivity analysis. For the quadratic

and check loss functions, Section 5 analyzes point and interval estimation of the parameter of

interest. Section 5 also considers two types of limiting situations: (1) the radius of the set of

priors goes to infinity (fully ambiguous beliefs) and (2) the sample size goes to infinity. Section

6 discusses the implementation of the method with particular emphasis on how to elicit the

benchmark prior and how to select the tuning parameter that governs the size of the prior class.

Section 7 provides an empirical illustration of the method. Appendix A contains the proofs;

Appendix B considers the asymptotic analysis for a discrete benchmark prior; Appendix C

provides details about the construction of the benchmark prior in the empirical analysis and

Appendix D discusses the approach in the contest of an entry game example.

2 Estimation as Statistical Decision under Ambiguity

2.1 Setting up the Set of Priors

The starting point of the analysis is to express a joint prior of (θ, φ) by πθ|φπφ, where πθ|φ is

a conditional prior probability measure of the structural parameter θ on Θ given the reduced-

form parameter φ and πφ is a marginal prior probability measure of φ. Imposing the additional

a priori restrictions θ ∈ ΘR(φ) implies that the support of πθ|φ is a subset of or all of ISθ(φ).

Since α = α(θ, φ) is a function of θ given φ, πθ|φ induces a conditional prior distribution of α

given φ, the domain of which is a subset of or equal to ISα(φ) if the a priori restrictions are

imposed. While sample data X are informative about φ and enable the researcher to update

the prior πφ to obtain the posterior πφ|X , the conditional prior πθ|φ (and hence πα|φ) can never

be updated by data and posterior inference for α remains sensitive to the choice of conditional

prior no matter how large the sample size is. Therefore, misspecification of the unrevisable part

of the prior πα|φ may be a major concern in conducting posterior inference for a decision-maker

in practice.

Suppose that the decision-maker can form a benchmark prior π∗
θ|φ and possibly imposes

additional a priori restrictions θ ∈ ΘR(φ), so that the support of π∗
θ|φ is a subset of or equal to

ISθ(φ). The benchmark prior captures information about θ that is available before the model
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is brought to the data (see Section 6 for discussions on how to elicit a benchmark prior). The

benchmark prior for θ given φ induces a benchmark prior for α given φ, denoted by π∗
α|φ. If one

were to impose a sufficient number of restrictions to point-identify α, this would reduce π∗
α|φ

to a point mass measure supported at the singleton identified set, and the posterior of φ would

induce the single posterior of α. Generally, though, π∗
θ|φ determines how the probabilistic belief

is allocated within the identified non-singleton set ISα (φ).

We consider a set of priors (ambiguous beliefs) in a neighborhood of π∗
θ|φ – while maintaining

a single prior for φ – and find the estimator for α that minimizes the worst-case posterior

expected loss as the priors range over this neighborhood.

Given some specification for the distance R(πθ|φ‖π
∗
θ|φ) between two probability measures

πθ|φ and π∗
θ|φ, a λ-neighborhood around the benchmark conditional prior at φ is the set

Πλ
(
π∗

θ|φ

)
≡
{

πθ|φ : R(πθ|φ‖π
∗
θ|φ) ≤ λ

}
. (8)

For the specification of the distance R(πθ|φ‖π
∗
θ|φ), and in line with Hansen and Sargent (2001)

and a considerable literature, we choose the KL divergence from π∗
θ|φ to πθ|φ, or equivalently

the relative entropy of πθ|φ relative to π∗
θ|φ, defined by

R(πθ|φ‖π
∗
θ|φ) =

∫

ISθ(φ)
ln

(
dπθ|φ

dπ∗
θ|φ

)

dπθ|φ.

R(πθ|φ‖π
∗
θ|φ) is finite if and only if πθ|φ is absolutely continuous with respect to π∗

θ|φ. Otherwise,

we define R(πθ|φ‖π
∗
θ|φ) = ∞ following the convention. As is well known in information theory,

R(πθ|φ‖π
∗
θ|φ) = 0 if and only if πθ|φ = π∗

θ|φ (see, e.g., Lemma 1.4.1 in Dupuis and Ellis, 1997).

Since the support of the benchmark prior π∗
θ|φ coincides with or is contained by ISθ(φ), any

πθ|φ belonging to Πλ(π∗
θ|φ) satisfies πθ|φ(ISθ(φ)) = 1.

An analytically attractive property of the KL divergence is its convexity in πθ|φ, which

guarantees that the constrained minimax problem (11) below has a unique solution under

mild regularity conditions. Note that the KL neighborhood is constructed at each φ ∈ Φ

independently, and no constraint is imposed to restrict the priors in Πλ
(
π∗

θ|φ

)
across different

values of φ, i.e., fixing πθ|φ ∈ Πλ
(
π∗

θ|φ

)
at one value of φ does not restrict feasible priors in

Πλ
(
π∗

θ|φ

)
for the remaining values of φ. We denote the class of joint priors of (θ, φ) formed

by selecting πθ|φ ∈ Πλ(π∗
θ|φ) for each φ ∈ Φ by

Πλ
θφ ≡

{
πθφ = πθ|φπφ : πθ|φ ∈ Πλ(π∗

θ|φ), ∀φ ∈ Φ
}

.
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Alternatively, one could form the KL neighborhood for the unconditional prior of (θ, φ) around

its benchmark, as considered in Ho (2019). However, our approach to constructing priors

simplifies the multiple-priors analysis both analytically and numerically.

In the class of partially identified models we consider, there are several reasons why we prefer

to introduce ambiguity to the unrevisable part of the prior πθ|φ rather than to the unconditional

prior πθφ. First, the major source of posterior sensitivity comes from πθ|φ, because the effect of

the prior for φ on the posterior is tempered by the likelihood. Our aim is to make estimation

and inference robust to the prior input that can not be updated by the data. Second, allowing

for multiple priors for φ, a prior that fits the data poorly (i.e., a prior that gives small marginal

likelihood) will yield the worst-case posterior. Then, the range of posteriors would mix up

the posterior sensitivity due to the lack of information in the likelihood (numerator in the

Bayes formula) and the possibility that some priors in the class are severely in conflict with

the data (denominator in the Bayes formula). Keeping πφ fixed, in contrast, ensures that the

marginal likelihood is common among the class so that the range of posteriors reflect purely

the posterior sensitivity. Third, keeping πφ fixed implies that the updating rules for the set of

priors proposed in the literature on decision theory under ambiguity, including, for instance,

the full Bayesian updating rule axiomatized by Pires (2004), the maximum likelihood updating

rule axiomatized by Gilboa and Schmeidler (1993), and the hypothesis-testing updating rule

axiomatized by Ortoleva (2012), all lead to the same set of posteriors. This means that the

minimax decision after X is observed is invariant to the choice of the updating rule, which is

not necessarily the case if one allows for multiple priors for φ.

The radius λ is the scalar choice parameter that represents the researcher’s degree of cred-

ibility placed on the benchmark prior. Since our construction of the prior class is pointwise at

each φ ∈ Φ, the radius λ could in principle differ across φ, but we set λ to a positive constant

independent of φ in order to simplify the analysis and its elicitation. The radius parameter λ

itself does not have an easily interpretable scale. It is therefore challenging to translate the

subjective notion of “credibility” of the benchmark prior into a choice of λ. Section 6 below

proposes a practical way to elicit λ.

2.2 Posterior Minimax Decision

We first consider statistical decision problems in the presence of multiple priors and posteriors

generated by Πλ(π∗
θ|φ). We focus on point estimation of the scalar parameter of interest α.

However, the framework and the main results shown below can be applied to other statistical
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decision problems, including interval estimation and statistical treatment choice (Manski, 2004).

Let δ(X) be a statistical decision function that maps the data X to a space of actions

D ⊂ R, and let h(δ(X), α) be a loss function. In the context of point estimation, the loss

function can be, for instance, the quadratic loss

h(δ(X), α) = (δ(X) − α)2 , (9)

or the check loss for the τ -th quantile, τ ∈ (0, 1),

h(δ(X), α) = ρτ (α − δ(X)) , (10)

ρτ (u) = τu ∙ 1 {u > 0} − (1 − τ)u ∙ 1 {u < 0} .

Given a conditional prior πθ|φ and the single posterior for φ, the posterior expected loss is

∫

Φ

[∫

ISθ(φ)
h(δ(x), α (θ, φ))dπθ|φ

]

dπφ|X .

We assume an ambiguity-averse decision-maker reaches an optimal decision by applying

the conditional gamma-minimax criterion, i.e., by choosing δ(x) to minimize the worst-case

posterior expected loss when πθ|φ varies over Πλ(π∗
θ|φ) for every φ ∈ Φ. We call this the

constrained posterior minimax problem, formally given by

min
δ(x)∈D

max
πθφ∈Πλ

θφ

∫

Φ

[∫

ISθ(φ)
h(δ(x), α (θ, φ))dπθ|φ

]

dπφ|X

= min
δ(x)∈D

∫

Φ
max

πθ|φ∈Πλ
(
π∗

θ|φ

)

[∫

Θ
h(δ(x), α (θ, φ))dπθ|φ

]

dπφ|X . (11)

The equality follows by noting that the class of joint priors Πλ
θφ is formed by an independent

selection of πθ|φ ∈ Πλ(π∗
θ|φ) at each φ ∈ Φ. Note also that, since any πθ|φ ∈ Πλ(π∗

θ|φ) has the

support contained in ISθ(φ), the region of integration with respect to θ can be extended from

ISθ(φ) to the whole parameter space Θ without changing the value of the integral, so that
∫

ISθ(φ)
h(δ(x), α (θ, φ))dπθ|φ =

∫

Θ
h(δ(x), α (θ, φ))dπθ|φ

for any πθ|φ ∈ Πλ(π∗
θ|φ).

Since the loss function h (δ, α (θ, φ)) depends on θ only through the parameter of interest α,

we can work with the set of priors for α given φ instead of θ given φ. Specifically, we consider
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the KL neighborhood around π∗
α|φ, the benchmark conditional prior for α given φ constructed

by marginalizing π∗
θ|φ to α,

Πλ(π∗
α|φ) =

{
πα|φ : R(πα|φ‖π

∗
α|φ) ≤ λ

}
,

and solve the following constrained posterior minimax problem:

min
δ(x)∈D

∫

Φ
max

πα|φ∈Πλ(π∗
α|φ)

[∫

ISα(φ)
h(δ(x), α)dπα|φ

]

dπφ|X . (12)

Πλ(π∗
α|φ) nests and is generally larger than the set of priors formed by α|φ -marginals of

πθ|φ ∈ Πλ(π∗
θ|φ), as shown in Lemma A.1 in Appendix A. Nevertheless, the next lemma implies

that the minimax problems (11) and (12) lead to the same solution.

Lemma 2.1 Fix φ ∈ Φ and δ ∈ R, and let λ ≥ 0 be given. For any measurable loss function

h (δ, α(θ, φ)), it holds

max
πθ|φ∈Πλ(π∗

θ|φ)

[∫

ISθ(φ)
h(δ, α (θ, φ))dπθ|φ

]

= max
πα|φ∈Πλ(π∗

α|φ)

[∫

ISα(φ)
h(δ, α)dπα|φ

]

.

Proof. See Appendix A.

This lemma implies that, no matter whether we introduce ambiguity for the entire non-

identified parameter θ conditional on φ or only for the parameter of interest α conditional on

φ while being agnostic about the conditional prior of θ|α, φ , the constrained minimax problem

supports the same decision as optimal, as far as a common λ is specified. This lemma therefore

justifies ignoring ambiguity about the set-identified parameters other than α and focusing only

on the set of priors of α|φ that ultimately matter for the posterior expected loss.

A minimax problem closely related to the constrained posterior minimax problem formu-

lated in (12) above is the multiplier posterior minimax problem :

min
δ(x)∈D

∫

Φ

[

max
πα|φ∈Π∞(π∗

α|φ)

{∫

ISα(φ)
h(δ(x), α)dπα|φ − κR(πα|φ‖π

∗
α|φ)

}]

dπφ|X , (13)

where κ ≥ 0 is a fixed constant. The next lemma, borrowed from the robust control literature,

shows the relationship between the inner maximization problems in (12) and (13):

12



Lemma 2.2 (Lemma 2.2. in Peterson et al. (2000), Hansen and Sargent (2001)) Fix δ ∈ D

and let λ > 0. Define

rλ(δ, φ) ≡ max
πα|φ∈Πλ

(
π∗

α|φ

)

[∫

ISα(φ)
h(δ, α)dπα|φ

]

. (14)

If rλ(δ, φ) < ∞, then there exists a κλ (δ, φ) ≥ 0 such that

rλ(δ, φ) = max
πα|φ∈Π∞(π∗

α|φ)

{∫

ISα(φ)
h(δ, α)dπα|φ − κλ (δ, φ)

(
R(πα|φ‖π

∗
α|φ) − λ

)
}

. (15)

Furthermore, if π0
α|φ ∈ Πλ

(
π∗

α|φ

)
is a maximizer in (14), π0

α|φ also maximizes (15) and satisfies

κλ (δ, φ)
(
R(π0

α|φ‖π
∗
α|φ) − λ

)
= 0.

In this lemma, κλ (δ, φ) is interpreted as the Lagrangian multiplier in the constrained opti-

mization problem (14), whose value depends on λ. Furthermore, the κλ (δ, φ) that makes the

constrained optimization (14) and the unconstrained optimization (15) equivalent depends on

φ and δ through π∗
α|φ and the loss function h (δ, α) (See Theorem 3.1 below). Conversely, if we

formulate the robust decision problem starting from (13) with constant κ > 0 independent of φ

and δ, an implied value of λ that equalizes (14) and (15) depends on φ and δ, i.e., the radii of

the implied sets of priors vary across φ and depend on the loss function h (δ, α). The multiplier

posterior minimax problem with constant κ appears analytically and numerically simpler than

the constrained posterior minimax problem with constant λ. However, its non-desirable fea-

ture is that the implied class of priors (or the radius of the KL neighborhood) is endogenously

determined depending on what loss function one specifies. Since our robust Bayes analysis sets

the set of priors as the primary input which is invariant to the choice of loss function, we focus

on the constrained posterior minimax problem (12) with constant λ rather than the multiplier

posterior minimax problem (13) with fixed κ. This approach is also consistent with the stan-

dard Bayesian global sensitivity analysis where the sets of posterior quantities are computed

with the same set of priors no matter whether one focuses on posterior means or quantiles.

3 Solving the Constrained Posterior Minimax Problem

3.1 Finite-Sample Solution

The inner maximization in the constrained minimax problem of (12) has an analytical solution,

as shown in the next theorem.
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Theorem 3.1 Assume at any δ ∈ D and κ > 0,
∫
ISα(φ) exp(h(δ, α)/κ)dπ∗

α|φ < ∞ and the

distribution of h (δ, α) induced by α ∼ π∗
α|φ is nondegenerate, πφ-a.s. The constrained posterior

minimax problem (12) is then equivalent to

min
δ∈D

∫

Φ
rλ (δ, φ) dπφ|X , (16)

where rλ (δ, φ) =
∫

ISα(φ)
h(δ, α)dπ0

α|φ,

dπ0
α|φ =

exp {h(δ, α)/κλ(δ, φ)}
∫
ISα(φ) exp {h(δ, α)/κλ(δ, φ)} dπ∗

α|φ

∙ dπ∗
α|φ,

and κλ(δ, φ) > 0 is the unique solution to

min
κ≥0

{

κ ln
∫

ISα(φ)
exp

{
h(δ, α)

κ

}

dπ∗
α|φ + κλ

}

.

Proof. See Appendix A.

This theorem is valid for any sample size and any realization of X. The benchmark prior

π∗
α|φ can be continuous, discrete, or their mixture as long as it generates stochastic variation

in h(δ, α) as assumed in the theorem. The obtained representation simplifies the analytical

investigation of the minimax decision, and offers a simple way to approximate the objective

function in (16) using Monte Carlo draws of (α, φ) sampled from the benchmark conditional

prior π∗
α|φ and the posterior πφ|X . The minimization for δ can be performed, for instance, by

a grid search using the Monte Carlo-approximated objective function. Note also that the the

worst-case prior π0
α|φ and the minimizer of the worst-case risk rλ(δ, φ) is invariant to monotonic

affine transformations to the loss function.

3.2 Large-Sample Behavior

Investigating the large-sample approximation of the minimax decision can suggest further com-

putational simplifications. Let n denote the sample size and φ0 ∈ Φ be the value of φ that

generated the data (the true value of φ). To establish asymptotic convergence of the minimax

optimal decision, we impose the following set of regularity assumptions.

Assumption 3.2
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(i) (Posterior consistency) The posterior of φ is consistent to φ0 almost surely, in the sense

that for any open neighborhood G of φ0, πφ|X (G) → 1 as n → ∞ for almost every

sampling sequence.

(ii) (Bounded loss) The loss function h(δ, α) is bounded,

|h(δ, α)| ≤ H < ∞,

for every (δ, α) ∈ D ×A.

(iii) (Compact action space) D, the action space of δ, is compact.

(iv) (Nondegeneracy of loss) There exists G0 ⊂ Φ an open neighborhood of φ0 and positive

constants c > 0 and ε > 0 such that

π∗
α|φ

({(
h(δ, α) − h̃

)2
≥ c

})

≥ ε

holds for all δ ∈ D, h̃ ∈ R, and φ ∈ G0.

(v) (Continuity of π∗
α|φ) The benchmark prior satisfies

∥
∥
∥π∗

α|φ − π∗
α|φ0

∥
∥
∥

TV
≡ sup

B∈B

∣
∣
∣π∗

α|φ (B) − π∗
α|φ0

(B)
∣
∣
∣→ 0

as φ → φ0, where B is the class of measurable subsets in A.

(vi) (Differentiability of benchmark prior means) There exists G0 ⊂ Φ an open neighborhood

of φ0 such that for any κ ∈ (0,∞),

supδ∈D,φ∈G0

∥
∥
∥ ∂

∂φE∗
α|φ(h(δ, α))

∥
∥
∥ < ∞,

supδ∈D,φ∈G0

∥
∥
∥ ∂

∂φE∗
α|φ

(
h(δ, α) exp

(
h(δ,α)

κ

))∥∥
∥ < ∞,

where E∗
α|φ(∙) is the expectation with respect to the benchmark conditional prior π∗

α|φ.

(vii) (Continuity of the worst-case loss and uniqueness of minimax action) rλ (δ, φ0) defined

in Lemma 2.2 and shown in Theorem 3.1 is continuous in δ and has a unique minimizer

in δ.

Assumption 3.2 (i) assumes that the posterior of φ is well-behaved and the true φ0 can be

estimated consistently in the Bayesian sense. The posterior consistency of φ can be ensured
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by imposing higher level assumptions on the likelihood of φ and the prior for φ. We do

not present them here for brevity (see, e.g., Section 7.4 of Schervish (1995) for details about

posterior consistency). Boundedness of the loss function imposed in Assumption 3.2 (ii) can

be implied by assuming, for instance, that h(δ, α) is continuous and D and A are compact.

The nondegeneracy condition of the benchmark conditional prior stated in Assumption 3.2

(iv) requires that ISα(φ) is non-singleton at φ0 and in its neighborhood G0 since otherwise

π∗
α|φ supported only on ISα(φ) must be a Dirac measure at the point-identified value of α.

Assumption 3.2 (v) says that the benchmark conditional prior for α given φ is continuous at φ0

in the total variation distance sense. When πα|φ supports the entire identified set ISα(φ), this

assumption requires that ISα(φ) is a continuous correspondence at φ0. This assumption also

requires that any measures dominating π∗
α|φ0

have to dominate π∗
α|φ for φ in a neighborhood

of φ0, as otherwise
∥
∥
∥π∗

α|φ − π∗
α|φ0

∥
∥
∥

TV
= 1 holds for some φ → φ0. It hence rules out the

cases such as (1) ISα(φ0) is a singleton (i.e., π∗
α|φ0

is the Dirac measure) while ISα(φ) has

a nonempty interior with continuously distributed π∗
α|φ for φ’s in a neighborhood of φ0, and

(2) π∗
α|φ0

and π∗
α|φ, φ ∈ G0 are discrete measures with different support points.3 In addition,

Assumption 3.2 (vi) imposes smoothness of the conditional average loss functions with respect

to φ. Assumption 3.2 (vii) assumes that, conditional on the true reduced-form parameter value

φ = φ0, the constrained minimax objective function is continuous in the action and has a

unique optimal action.

Under these regularity assumptions, we obtain the following asymptotic result about con-

vergence of the constrained posterior minimax decision.

Theorem 3.3 (i) Let δ̂λ ∈ arg minδ∈D
∫
Φ rλ (δ, φ) dπφ|X . Under Assumption 3.2,

δ̂λ → δλ (φ0) ≡ arg min
δ∈D

rλ (δ, φ0) ,

as n → ∞ for almost every sampling sequence.

(ii) Furthermore, for any φ̂ such that
∥
∥
∥φ̂ − φ0

∥
∥
∥→p 0 as n → ∞, δλ(φ̂) ∈ arg minδ∈D rλ

(
δ, φ̂
)

converges in probability to δλ (φ0) as n → ∞.

Proof. See Appendix A.

3We treat the case of discrete benchmark prior in Appendix B, where the loss function is specified to be the

quadratic or the check loss function.
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Theorem 3.3 shows that the finite-sample constrained posterior minimax decision has a

well-defined large-sample limit that coincides with the minimax decision under the knowledge

of the true value of φ. In other words, the posterior uncertainty of the reduced-form parameters

vanishes in large samples and what matters asymptotically for the posterior minimax decision

is the ambiguity of the unrevisable part of the prior given φ = φ0. The second claim of the

theorem has a useful practical implication: when the sample size is large, so that the posterior

distribution of φ is concentrated around its maximum likelihood estimator (MLE) φ̂ML, the

finite-sample posterior minimax decision is well approximated by minimizing the “plug-in”

objective function, where the averaging with respect to the posterior of φ in (16) is replaced by

plugging φ̂ML in rλ (δ, φ). This reduces the computational cost of approximating the objective

function since only Monte Carlo draws of θ (or α) from πθ|φ̂ML
(or πα|φ̂ML

) are needed.

4 Set of Posteriors and Sensitivity Analysis

The analysis so far focused on the minimax decision with a given loss function h(δ, α). The

robust Bayes framework with multiple priors is also useful to computing the set of the pos-

terior quantities (e.g., mean, median, probability of a hypothesis) as the prior varies over the

KL neighborhood of the benchmark prior. These sets of posterior quantities can be used in

global sensitivity analysis in which one can explore the robustness of posterior inference to

perturbations of the benchmark prior.

Given the posterior for φ and the class of priors Πλ
(
π∗

α|φ

)
, the set of posterior means of

f (α) is defined by

Eα|X(f(α)) ∈




∫

Φ
min

πα|φ∈Πλ
(
π∗

α|φ

)

(∫
f(α)dπα|φ

)

dπφ|X ,

∫

Φ
max

πα|φ∈Πλ
(
π∗

α|φ

)

(∫
f(α)dπα|φ

)

dπφ|X



 .

(17)

The set of posterior means of α can be obtained by setting f(α) = α, and the set of posterior

probabilities on a subset B ⊂ B is obtained by setting f(α) = 1 {α ∈ B}. The set of posterior

quantiles of α can be computed by inverting the set of the cumulative distribution functions

(CDFs) of the posteriors of α, which corresponds to setting f(α) = 1{α ≤ t} in (17). The

optimization problems to derive the bounds (17) are identical to the inner maximization in

(12), with h(δ, α) replaced by f(α) or −f(α).

Applying the expression for the worst-case posterior expected loss shown in Theorem 3.1

to the current setting, we obtain analytical expressions for the posterior sets. By replacing

h (δ, α) in rλ (δ, φ) in Theorem 3.1 with f(α) or −f(α), the set of posterior means of f(α) can
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be expressed as
[∫

Φ

(∫
f(α)dπ`

α|φ

)

dπφ|X ,

∫

Φ

(∫
f(α)dπu

α|φ

)

dπφ|X

]

, (18)

where π`
α|φ and πu

α|φ are the exponentially tilted conditional priors solving the optimizations in

(17):

dπ`
α|φ ≡

exp{−f(α)/κ`
λ(φ)}

∫
exp{−f(α)/κ`

λ(φ)}dπ∗
α|φ

∙ dπ∗
α|φ, (19)

dπu
α|φ ≡

exp{f(α)/κu
λ(φ)}

∫
exp{f(α)/κu

λ(φ)}dπ∗
α|φ

∙ dπ∗
α|φ,

κ`
λ(φ) ≡ arg min

κ≥0

{

κ ln
∫

exp

{
−f(α)

κ

}

dπ∗
α|φ + κλ

}

,

κu
λ(φ) ≡ arg min

κ≥0

{

κ ln
∫

exp

{
f(α)

κ

}

dπ∗
α|φ + κλ

}

.

The large-sample convergence of the worst-case risk shown in Theorem 3.3 immediately

leads to the convergence of the set of posterior means of f(α). In addition to Assumptions 3.2

(i) and (v), if (ii), (iv), and (vi) hold in terms of f(α) instead of h(δ, α), the set of posterior

means (18) converges to [∫
f(α)dπ`

α|φ0
,

∫
f(α)dπu

α|φ0

]

,

as n → ∞, where π`
α|φ0

and πu
α|φ0

are the exponentially tilted conditional priors π`
α|φ and πu

α|φ

conditional on φ = φ0.

A robust Bayesian version of an interval estimator for α is the robust credible region Cγ ⊂ R

with credibility γ ∈ (0, 1), defined by an interval satisfying

inf
{πα|φ∈Πλ(π∗

α|φ):φ∈Φ}
πα|X(Cγ) ≥ γ.

Cγ can be interpreted as an interval estimate for α on which any posterior belonging to the

posterior class assigns probability at least γ. While we might prefer the shortest interval among

those satisfying this constraint (Giacomini and Kitagawa (2018)), one simple approach is an

equal-tailed robust credible region formed by the lower bound of the 1−γ
2 -th quantile and the

upper bound of the 1+γ
2 -th quantile,

Cγ,ET ≡

[

F−1
α|X

(
1 − γ

2

)

, F̄−1
α|X

(
1 + γ

2

)]

,

where Fα|X(t) and F̄α|X(t) are pointwise lower and upper bounds of the posterior CDFs,

πα|X({α ≤ t}).
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Note that the set of prior means of f(α) is obtained similarly by replacing πφ|X in (17) with

the prior πφ:

Eα(f(α)) ∈

[∫

Φ

(∫
f(α)dπ`

α|φ

)

dπφ,

∫

Φ

(∫
f(α)dπu

α|φ

)

dπφ

]

. (20)

The set of prior means of α or another parameter is a useful object for the purpose of eliciting a

reasonable value of λ in light of the researcher’s partial prior knowledge for f(α). In Sections 6

and 7 below, we discuss and perform elicitation of λ using the set of prior means and quantiles

of α.

5 Large-λ Asymptotics

This section analyzes how the robust Bayes procedures proposed in the previous section perform

when the decision-maker has almost no confidence on the benchmark prior, or equivalently,

possesses almost no prior belief for the set-identified parameters. We analyze such extreme

ambiguity scenario by performing large-λ asymptotic analysis of the gamma-minimax point

estimation and the set of posteriors. Our interest in this section is to analytically investigate as

λ → ∞, (i) whether or not the influence of the benchmark prior can vanish (ii) how the gamma-

minimax estimator relates to the identified set, and (iii) whether or not the set of posteriors can

recover the underlying identified set, i.e., consistent with the robust Bayes analysis of Giacomini

and Kitagawa (2018) imposing the full ambiguity on the identified set.

Maintaining the finite-sample analysis of Section 3.1, we first focus on the limiting situation

of λ → ∞. We subsequently consider the large sample asymptotics in addition. For gamma-

minimax point estimation, we consider two common choices of statistical loss, the quadratic

loss and the check loss.

The sets Πλ
(
π∗

α|φ

)
are increasing with respect to λ in terms of inclusion, and its large λ

limit can be defined by

Π∞(π∗
α|φ) ≡

⋃

λ>0

Πλ
(
π∗

α|φ

)

=
{

πα|φ : R(πα|φ‖π
∗
α|φ) < ∞

}
,

which contains any probability measure that is absolutely continuous with respect to π∗
α|φ. We

can also consider the closure Π̄∞(π∗
α|φ) of Π∞(π∗

α|φ) with respect to the weak∗-topology, i.e.

Π̄∞(π∗
α|φ) is the set of all probability measures that are weak limits of probability measures

in Π∞(π∗
α|φ). Π̄∞(π∗

α|φ) contains all the probability measures whose support is the same as or

contained in the support of π∗
α|φ.
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5.1 Large-λ Asymptotics in Finite Samples

As λ → ∞, the benchmark conditional prior π∗
α|φ will affect the gamma-minimax decision

only by determining the support of πα|φ. To have a precise characterization of this claim and a

formal investigation of the limiting behavior of δ̂λ as λ → ∞, we impose the following regularity

assumptions restricting the topological properties of ISα (φ) and the tail behavior of π∗
α|φ.

Assumption 5.1

(i) ISα(φ) has a nonempty interior πφ-a.s. and the benchmark prior marginalized to α, π∗
α|φ,

is absolutely continuous with respect to the Lebesgue measure πφ-a.s.

(ii) Let [α∗(φ), α∗ (φ)] be the convex hull of
{

α :
dπ∗

α|φ

dα > 0
}

. There exists ᾱ < ∞ such that

[α∗(φ), α∗ (φ)] ⊂ [−ᾱ, ᾱ] holds for all φ ∈ Φ.

(iii) At πφ-almost every φ, there exist η > 0 such that [α∗(φ), α∗(φ) + η) ⊂ ISα(φ) and

(α∗(φ) − η, α∗(φ)] ⊂ ISα(φ) hold and the probability density function of π∗
α|φ is real

analytic on [α∗(φ), α∗(φ) + η) and on (α∗(φ) − η, α∗(φ)], i.e.,

dπ∗
α|φ

dα
(α) =

∞∑

k=0

ak(α − α∗(φ))k for α ∈ [α∗(φ), α∗(φ) + η),

dπ∗
α|φ

dα
(α) =

∞∑

k=0

bk(α
∗(φ) − α)k for α ∈ (α∗(φ) − η, α∗(φ)].

(iv) Let φ0 be the true value of the reduced-form parameters. Assume α∗(φ) and α∗ (φ) are

continuous in φ at φ = φ0.

Assumption 5.1 (i) rules out point-identified models, as in Assumption 3.2 (iv) and (vi).

Assumption 5.1 (ii) assumes that the benchmark conditional prior has bounded support, which

automatically holds if the identified set ISα(φ) is bounded. In particular, if the benchmark

conditional prior supports the entire identified set, i.e., [α∗(φ), α∗ (φ)] is the convex hull of

ISα(φ), Assumption 5.1 (iii) imposes a mild restriction on the behavior of the benchmark

conditional prior locally around the boundary points of the support. It requires that the

benchmark conditional prior can be represented as a polynomial series in a neighborhood of

the support boundaries, where the neighborhood parameter η and the series coefficients can

depend on the conditioning value of the reduced-form parameters φ (our notation leaves this

implicit). Assumption 5.1 (iv) will be imposed only in the large-sample asymptotics of the next
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subsection. It implies that the support of the benchmark conditional prior varies continuously

in φ.

The next theorem characterizes the asymptotic behavior of the conditional gamma-minimax

decisions for the cases of quadratic loss and check loss, in the limiting situation of λ → ∞ with

a fixed sample size. We notate max{a, b} by a ∨ b.

Theorem 5.2 Suppose Assumptions 3.2 (ii) and (iv), and Assumption 5.1 (i) – (iii) hold.

(i) When h(δ, α) = (δ − α)2 ,

lim
λ→∞

∫

Φ
rλ (δ, φ) dπφ|X =

∫

Φ

[
(δ − α∗(φ))2 ∨ (δ − α∗(φ))2

]
dπφ|X

holds whenever the right-hand side integral is finite.

(ii) When h(δ, α) = ρτ (α − δ) ,

lim
λ→∞

∫

Φ
rλ (δ, φ) dπφ|X =

∫

Φ
[(1 − τ)(δ − α∗(φ)) ∨ τ (α∗(φ) − δ)] dπφ|X

holds, whenever the right-hand side integral is finite.

Proof. See Appendix A.

Theorem 5.2 shows that in the most ambiguous situation of λ → ∞, only the boundaries

of the support of the benchmark prior, [α∗ (φ) , α∗ (φ)] , and the posterior of φ matter for the

conditional gamma-minimax decision. Other than the tail condition of Assumption 5.1 (iii),

the specific shape of π∗
α|φ is irrelevant for the minimax decision. The intuition behind this result

is that, as λ → ∞, any prior with the same support as the benchmark prior is included in the

prior class, and the worst-case conditional prior is the point-mass prior that assigns probability

one to the furthest point from δ (α∗(φ) or α∗(φ)).4

The large-λ asymptotics for the risk yield the following corollary concerning the set of

posterior means.

Corollary 5.1 Suppose Assumptions 5.1 (i) – (iii) hold. The set of posterior means of α, i.e.,

equation (18) with f(α) = α, converges to

[
Eφ|X(α∗(φ)), Eφ|X(α∗(φ))

]
,

4Such a point-mass prior is included in Π̄∞(π∗
α|φ) (the weak*-closure of Π∞(π∗

α|φ)) but not in Π∞(π∗
α|φ) itself,

since the point-mass prior is not absolutely continuous with respect to π∗
α|φ satisfying Assumption 5.1 (i).
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as λ → ∞. In particular, if α∗(φ) = infα ISα(φ) and α∗(φ) = supα ISα(φ) for πφ-almost every

φ, the set of posterior means coincides with that of Giacomini and Kitagawa (2018) in which

the class of conditional priors πα|φ consists of any prior satisfying πα|φ(ISα(φ)) = 1 for all

φ ∈ Φ.

This corollary implies that, in terms of the set of posterior means, the class of KL neighbor-

hood priors with large λ can mimic Giacomini and Kitagawa’s class of priors, which introduce

full ambiguity within the identified set. Since the latter class of priors leads to posterior infer-

ence about the identified set, the robust Bayesian inference performed by our class of priors by

varying λ = 0 to λ → ∞ effectively bridges the gap between single-prior Bayesian inference and

Bayesian analysis of the identified set as in Kline and Tamer (2016) and Chen et al. (2018).

5.2 Large-λ Asymptotics in Large Samples

Theorem 5.3 concerns the large-sample (n → ∞) asymptotics with large λ.

Theorem 5.3 Suppose Assumption 3.2 and Assumption 5.1 hold. Let

δ̂∞ = arg min
δ∈D

{

lim
λ→∞

∫

Φ
rλ (δ, φ) dπφ|X(φ)

}

be the conditional gamma-minimax estimator in the limiting case λ → ∞.

(i) When h(δ, α) = (δ − α)2 , δ̂∞ → 1
2 (α∗(φ0) + α∗(φ0)) as the sample size n → ∞ for

almost every sampling sequence.

(ii) When h(δ, α) = ρτ (α − δ) , ρτ (u) = τu ∙ 1 {u > 0} − (1 − τ)u ∙ 1 {u < 0} , δ̂∞ →

(1 − τ) α∗(φ0) + τα∗(φ0) as the sample size n → ∞ for almost every sampling sequence.

Proof. See Appendix A.

Theorem 5.3 (i) shows that in large samples, the minimax decision under quadratic loss

converges to the midpoint of the boundary points of the support of the benchmark prior

evaluated at the true reduced-form parameters. When the benchmark prior supports the entire

identified set, this means that the minimax decision at the limit is to report the midpoint of

the true identified set. When the loss is the check function associated with the τ -th quantile,

the minimax decision at the limit is given by the convex combination of the boundary points

with weights τ and 1 − τ . Hence, the limit of the minimax quantile estimator δ∗ (τ) always

lies in the true identified set for any τ , even in the most conservative case, λ → 0. This
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means that, if we use [δ∗ (0.05) , δ∗(0.95)] as a posterior credibility interval for α, this interval

estimate will be asymptotically strictly narrower than the frequentist confidence interval for α,

because [δ∗ (0.05) , δ∗(0.95)] is contained in the true identified set asymptotically. This result is

similar to the finding in Moon and Schorfheide (2012) for the single-posterior Bayesian credible

interval.

One useful implication of Theorem 5.3 is that if the identified set ISα(φ) is a connected

interval, the large-λ minimax estimators for the posterior mean and the τ -th posterior quantiles

asymptotically agree with the Bayes estimator that assumes a uniform conditional prior for α.

Viewing large-λ asymptotics as the lack of prior belief for the nonidentified parameter, this

observation offers a novel justification for the use of the uniform prior for α given φ as a

reference prior in the single-prior Bayesian approach.

Assuming additionally the continuity of α∗(φ) and α∗(φ) at φ0, we obtain the large-sample

version of Corollary 5.1.

Corollary 5.2 Assume Assumptions 3.2 (i) and 5.1. Then, the large-λ set of posterior means

of α converges to [α∗(φ0), α
∗(φ0)] as n → ∞. Hence, if ISα(φ0) is convex, and α∗(φ0) =

infα ISα(φ0) and α∗(φ0) = supα ISα(φ0) hold, the large-λ set of posterior means of α converges

to the true identified set.

The latter statement of this corollary is analogous to the consistency of the set of posterior

means shown in Giacomini and Kitagawa (2018), but in the case of the KL neighborhood class

with large λ.

The asymptotic results of Theorems 5.2 and 5.3 assume that the benchmark prior is ab-

solutely continuous with respect to the Lebesgue measure. We can instead consider a setting

where the benchmark prior is given by a nondegenerate probability mass measure, which can

naturally arise if the benchmark prior comes from a weighted combination of multiple point-

identified models. This case leads to asymptotic results similar to Theorems 5.2 and 5.3. We

present a formal analysis of the discrete benchmark prior case in Appendix B.

6 Implementation

To implement our robust estimation and inference procedures, the key inputs that the re-

searcher has to specify are the benchmark conditional prior π∗
θ|φ and the radius parameter for

the KL neighborhood. This section discusses how to choose these inputs carefully as well as
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computational methods to numerically approximate the worst-case posterior expected loss and

the set of posteriors.

6.1 Constructing the Benchmark Prior

Our construction of the prior class takes the conditional prior π∗
θ|φ as given. The benchmark

prior should represent or be implied by a probabilistic belief that is reasonable and credible. De-

pending on which parametrization facilitates the elicitation process, we can form the benchmark

prior directly through the conditional prior for θ|φ and the single prior for φ, or alternatively

construct a prior for a one-to-one reparametrization of (θ, φ), θ̃, which would typically be a

vector of structural parameters. For concreteness, we consider applying the latter approach to

the simultaneous equation model of Example 1.1, because we think eliciting a benchmark prior

for the demand and supply elasticities is easier than for the reduced-form parameters and θ|φ

separately.

Let us denote the full vector of the structural parameters by θ̃ = (βs, βd, d1, d2), and

its prior probability density by
dπ∗

θ̃

dθ̃
(βs, βd, d1, d2). As in Leamer (1981) and Baumeister and

Hamilton (2015), it is natural to impose the sign restrictions for the slopes of supply and demand

equations, βs ≥ 0, βd ≤ 0. These a priori restrictions can be incorporated by trimming the

support of π∗
θ̃

such that π∗
θ̃
({βs ≥ 0, βd ≤ 0}) = 1. Baumeister and Hamilton (2015) specify the

prior for θ̃ as the product of independent truncated Student’s t distributions for (βs, βd) and

independent inverse gamma distributions for (d1, d2)|(βs, βd), with hyperparameters chosen

through careful elicitation.

Having specified the prior for θ̃ and setting α = βs as a parameter of interest, the benchmark

conditional prior for α given φ = (ω11, ω12, ω22) can be derived by reparametrizing θ̃ to (α, φ).

Since Ω = A−1D
(
A−1

)′
, we have that

ω11 =
d1 + d2

(α − β)2
, ω12 =

αd1 + βd2

(α − β)2
, ω22 =

α2d1 + β2d2

(α − β)2
, (21)

which implies the following mapping between (βs, βd, d1, d2) and (α, ω11, ω12, ω22) :

βs = α, (22)

βd =
αω12 − ω22

αω11 − ω12
≡ βd (α, φ) ,

d1 = ω11

(

α −
αω12 − ω22

αω11 − ω12

)2

− α2ω11 + 2αω12 − ω22 ≡ d1 (α, φ) ,

d2 = α2ω11 − 2αω12 + ω22 ≡ d2 (α, φ) .
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Since the conditional prior πα|φ is proportional to the the joint prior for (α, φ), the benchmark

conditional prior π∗
α|φ satisfies

dπ∗
α|φ

dα
(α|φ) ∝ πθ̃ (α, β (α, φ) , d1 (α, φ) , d2 (α, φ)) × |det (J (α, φ))| , (23)

where J (α, φ) is the Jacobian of the mapping (22), and |det (∙)| is the absolute value of the

determinant. This prior supports the entire identified set ISα (φ) if πθ̃ (∙) supports any value of

(βs, βd) satisfying the sign restrictions. An analytical expression of the posterior of φ could be

obtained by integrating out α in the right-hand side of (23) and by multiplying the reduced-

form likelihood. When the analytical expression of the posterior of φ is not easy to derive or

drawing φ directly from its posterior is challenging, an alternative is to obtain posterior draws

of φ by transforming the posterior draws of θ̃ according to Ω = A−1D
(
A−1

)′.

Since φ involves a nonlinear transformation of θ̃, a diffuse prior for θ̃ can imply an informa-

tive prior for φ. In finite samples, this can downplay the sample information for φ by distorting

the shape of the likelihood. Given that our analysis can be motivated by concern about the

robustness of posterior inference with respect to the choice of prior for θ̃, one may not want to

force the prior for φ to be informative as a result of this transformation. Such a concern might

make the following hybrid approach attractive: the prior for θ̃ is used solely to construct the

benchmark conditional prior π∗
α|φ via (23), while the prior for φ is separately specified from

the prior for θ̃ and is used to draw from the posterior of φ. Although the implied prior for

θ̃ resulting from this approach may be inconsistent with the prior initially specified for θ̃, a

benefit is that one can flexibly elicit a reasonable benchmark conditional prior with maintaining

the noninformative prior for the reduced-form parameters.

6.2 Eliciting the Robustness Parameter λ

The radius of the KL neighborhood λ ≥ 0 is an important prior input that directly controls the

degree of ambiguity in the robust Bayes analysis. Its elicitation should be based on the degree

of confidence or fear of misspecification that the analyst has about the benchmark prior. Since

λ itself does not have an interpretable scale, it is necessary to map it into some prior quantity

that the analyst can easily interpret and elicit.

Along this line, we propose to elicit λ by mapping it into the set of prior quantities (means,

quantiles, probabilities, etc.) and finding the value of λ such that the implied prior range

matches best the available (partial) prior knowledge. Thanks to the invariance of λ with

respect to reparametrization or marginalization (shown in Lemma 2.1), we can focus on a

subset of the parameters θ̃ or on transformations of (θ, φ) to find an appropriate choice of λ.
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To be specific, let α̃ = α̃(θ, φ) be a scalar parameter for which the analyst can feasibly

assess the range of its prior beliefs. Depending on the application, it can be different from

the parameter of interest α = α(θ, φ). Given the benchmark conditional prior πα̃|φ and the

single prior πφ, for each candidate choice of λ we can compute the set of prior means of f(α̃) by

applying expression (20). We then select λ that best matches with available but imprecise prior

knowledge about f(α̃). We illustrate this way of eliciting λ in the SVAR example of Section 7.

6.3 Computation

This section discusses how to compute the set of posterior means and posterior minimax deci-

sion. The algorithms below assume that the posterior draws of φ are given, and either α can

be drawn from the benchmark conditional prior or its probability density can be evaluated up

to a proportional constant.

We first present an algorithm that approximates the set of posterior means of f(α) shown

in (18).

Algorithm 6.1 Let M posterior draws of φ, (φ1, . . . , φM ), and benchmark conditional prior

π∗
α|φ be given. In Scenario 1 when we can draw α directly from the benchmark conditional prior

π∗
α|φ, we follow Steps 1a and 1b. Otherwise, in Scenario 2 when the probability density of π∗

α|φ

can be evaluated up to a proportional constant, i.e.,
dπ∗

α|φ

dα ∝ cg(α, φ), c > 0, where g(∙, ∙) is

known, we follow Steps 2a and 2b that implement importance sampling.

Scenario 1

1a. For each m = 1, . . . ,M , obtain N independent draws of α, αmi ∼ π∗
α|φ, i = 1, . . . , N .

We approximate the Lagrange multipliers κ`
λ(φm) and κu

λ(φm) by solving the following

optimizations:

κ̂`
λ(φm) = arg min

κ≥0

{

κ ln

(

N−1
N∑

i=1

exp

{
−f(αmi)

κ

})

+ κλ

}

,

κ̂u
λ(φm) ≡ arg min

κ≥0

{

κ ln

(

N−1
M∑

i=1

exp

{
f(αmi)

κ

})

+ κλ

}

.

1b. We approximate the posterior mean bounds of f(α) by


 1
M

M∑

m=1





∑N
i=1 f(αmi) exp

{
−f(αmi)

κ̂`
λ(φm)

}

∑N
i=1 exp

{
−f(αmi)

κ̂`
λ(φm)

}



 ,
1
M

M∑

m=1





∑N
i=1 f(αmi) exp

{
f(αmi)
κ̂u

λ(φm)

}

∑N
i=1 exp

{
f(αmi)
κ̂u

λ(φm)

}







 .
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Scenario 2

2a. For each m = 1, . . . ,M , obtain N independent draws of α, (αm1, . . . , αmN ), from a pro-

posal distribution π̃α|φ (α|φm) (e.g., the uniform distribution on ISα (φm)). We approxi-

mate the Lagrange multipliers κ`
λ(φm) and κu

λ(φm) by solving the following optimizations:

κ`
λ(φm) = arg min

κ≥0

{

κ ln

(

N−1
N∑

i=1

wmi exp

{
−f(αmi)

κ

})

+ κλ

}

,

κu
λ(φm) ≡ arg min

κ≥0

{

κ ln

(

N−1
N∑

i=1

wmi exp

{
f(αmi)

κ

})

+ κλ

}

,

where

wmi ≡
g(αmi, φm)

dπ̃α|φ(αmi,φm)

dα

, i = 1, . . . , N.

2b. We approximate the posterior mean bounds of f(α) by



 1
M

M∑

m=1





∑N
i=1 wmif(αmi) exp

{
−f(αmi)

κ̂`
λ(φm)

}

∑N
i=1 wmi exp

{
−f(αmi)

κ̂`
λ(φm)

}



 ,
1
M

M∑

m=1





∑N
i=1 wmif(αmi) exp

{
f(αmi)
κ̂u

λ(φm)

}

∑N
i=1 wmi exp

{
f(αmi)
κ̂u

λ(φm)

}







 .

For computation of the posterior gamma-minimax estimator, Algorithm 6.1 is used to ap-

proximate the worst-case risk of decision δ, i.e., the objective function in (16).

Algorithm 6.2 Let M posterior draws of φ, (φ1, . . . , φM ), and benchmark conditional prior

π∗
α|φ be given. Let h(δ, α) be the loss function, and Scenarios 1 and 2 be as defined in Al-

gorithm 6.1. We approximate the posterior gamma minimax estimator by a minimizer of
1
M

∑M
m=1 r̂λ(δ, φm) in δ, where r̂λ(δ, φm) is computed from Step 1c or 2c below:

Scenario 1

1c. Following Step 1a of Algorithm 6.1, let N draws of α from π∗
α|φ, (α1, . . . , αN ), be given.

We approximate the Lagrange multipliers κλ(δ, φm) by

κ̂λ(δ, φm) = arg min
κ≥0

{

κ ln

(

N−1
N∑

i=1

exp

{
h(δ, αmi)

κ

})

+ κλ

}

.

Then, compute

r̂λ (δ, φm) =

∑N
i=1 h(δ, αmi) exp {h(δ, αmi)/κ̂λ(δ, φm)}
∑N

i=1 exp {h(δ, αmi)/κ̂λ(δ, φm)}
,
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Scenario 2

2c. Following Step 2a of Algorithm 6.1, let N draws of α, (αm1, . . . , αmN ), be drawn from

a proposal distribution π̃α|φ (α|φ) (e.g., the uniform distribution on ISα (φm)) and let

(wm1, . . . , wmN ) be the importance weights as defined in Algorithm 6.1. We approximate

the Lagrange multipliers κλ(δ, φm) by

κ̂λ(δ, φm) = arg min
κ≥0

{

κ ln

(

N−1
N∑

i=1

wmi exp

{
h(δ, αmi)

κ

})

+ κλ

}

.

Then, compute

r̂λ (δ, φm) =

∑N
i=1 wmih(δ, αmi) exp {h(δ, αmi)/κ̂λ(δ, φm)}
∑N

i=1 wmi exp {h(δ, αmi)/κ̂λ(δ, φm)}
.

The optimization for the Lagrange multiplier in these algorithms is a convex program so that a

gradient-based algorithm can quickly solve the optimizations. For optimizing 1
M

∑M
m=1 r̂λ(δ, φm)

in δ, we can use the gradient-based optimization algorithm by keeping the draws of α same in

evaluating r̂λ(δ, φm) if the loss is differentiable in δ. Even when the loss is non-differentiable,

since δ is a scalar valued, it is also not computationally costly to perform brute-force grid

search.

In the limiting case λ → ∞, with the quadratic loss (or a check loss), Theorem 5.2 implies

that Algorithm 6.2 can be skipped and we can directly approximate the worst-case risk by

1
M

M∑

m=1

[
(δ − α(φm))2 ∨ (δ − ᾱ(φm))2

]

for the quadratic loss case, where [α(φm), ᾱ(φm)] are the lower and upper bounds of the iden-

tified set of α if π∗
α|φ supports the entire identified set.

If one is interested in the large-sample approximation of the worst-case posterior expected

loss, Theorem 3.3 (ii) justifies replacing the approximated worst-case risk 1
M

∑M
m=1 r̂λ(δ, φm)

with r̂λ

(
δ, φ̂ML

)
, where φ̂ML is the MLE for φ. This large-sample approximation further

simplifies the computation.

7 Empirical Example

This section applies our procedure to the dynamic labor supply and demand model analysed

in Baumeister and Hamilton (2015). Our motivation of this empirical application are three-

folds. First, we want to explore the robustness of the results in Baumeister and Hamilton
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(2015) to their choice of prior for the structural parameters by computing the set of posterior

quantities. Second, we want to construct robust point estimators for the elasticity parameters

with different KL-neighborhoods. Third, we want to illustrate how to specify a benchmark

prior and the radius parameter λ for the KL-neighborhood.

We use the data available in the supplementary material of Baumeister and Hamilton (2015).

The endogenous variables are the growth rate of total US employment Δnt and the growth rate

of hourly real compensation Δwt, xt = (Δwt, Δnt). The observations are quarterly and run

from t=1970:Q1 to 2014:Q4. Following the convention of time-series analysis, here we denote

the sample size by T instead of n.

7.1 Specification and Parameterization

The model is a bivariate SVAR with L = 8 lags and a constant,

A0xt = c +
L∑

l=1

Alxt−l + ut, ut ∼iid N (0, D) , t = 1, . . . , T,

where A0 =

[
−βd 1

−βs 1

]

and D = diag(d1, d2) as defined in Example 1.1. The reduced-form

VAR is

xt = b +
L∑

l=1

Blxt−l + εt,

where b = A−1
0 c, Bl = A−1

0 Al, and εt = A−1
0 ut with E(εtε

′
t) = Ω. The reduced-form parameters

are φ = (Ω, B) , B = (b,B1, . . . , BL), and the full vector of structural parameters is θ̃ =

(βs, βd, d1, d2, vec(A)), A = (c, A1, . . . , AL).

We set the supply elasticity as the parameter of interest, α = βs. The mapping between θ̃

and (α, φ) is given by (22) and

A = A0 (α, φ) B ≡ A(α, φ), (24)

where A0 (α, φ) =

[
−βd(α, φ) 1

−α 1

]

. Hence, if the benchmark prior is specified in terms of θ̃,

the conditional benchmark prior for α given φ is

dπ∗
α|φ

dα
(α|φ) ∝ πθ̃ (α, βd (α, φ) , d1 (α, φ) , d2 (α, φ) , A(α, φ)) × |det (J (α, φ))| , (25)

where πθ̃ (βs, βd, d1, d2, A) is a prior distribution for θ̃ that induces the benchmark conditional

prior for α|φ and the single prior for φ, and J(α, φ) is the Jacobian of the transformations (22)

and (24).
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7.2 Benchmark Prior

We construct the benchmark conditional prior π∗
α|φ by setting the prior for θ̃ to the one used

in Baumeister and Hamilton (2015) and applying formula (25). Decomposing a prior for θ̃ as

πθ̃ = π(βs,βd) ∙ π(d1,d2)|(βs,βd) ∙ πA|(d1,d2,βs,βd),

Baumeister and Hamilton (2015) recommend to elicit each of the components by spelling out

the class of structural models that the researcher has in mind and/or referring to the existing

studies providing prior evidence about these parameters. In the current context of labor supply

and demand, the prior elicitation process of Baumeister and Hamilton (2015) is summarized

as follows. For completeness, Appendix C presents the specific choice of hyperparameters.

1. Elicitation of π(βs,βd): Independent truncated t-distributions are used as priors for βs

and βd, where the truncations incorporate the dogmatic sign restrictions that with prior

probability one, βs ≥ 0 and βd ≤ 0. Their hyperparameters are chosen based on meta-

analysis of microeconomic and macroeconomic studies that estimate the labor supply

and demand elasticities. Specifically, Baumeister and Hamilton (2015) identify that most

of these estimates fall in the interval βs ∈ [0.1, 2.2] and βd ∈ [−2.2,−0.1], and they

accordingly choose the hyperparameters of the t-distribution so that πβs
([0.1, 2.2]) = 0.9

and πβd
([−2.2,−0.1]) = 0.9.

2. Elicitation of π(d1,d2)|(βs,βd): Independent natural conjugate priors (inverse gamma family)

are specified for d1 and d2. To reflect the scale of the errors in the choice of hyperparam-

eters, they set the prior means to the diagonal terms in A0Ω̂A′
0, where Ω̂ is the maximum

likelihood estimate of the reduced-form error variances E(εtε
′
t).

3. Elicitation of πA|(d1,d2,βs,βd): Since the reduced-form VAR coefficients satisfy B = A−1
0 A,

elicitation of the conditional prior for A given (βs, βd, d1, d2) can be facilitated by available

prior knowledge about the reduced-form VAR coefficients. Prior choice for the reduced-

form VAR parameters is well studied in the literature as in Doan et al. (1984) and Sims

and Zha (1998). Building on the proposals in these works, Baumeister and Hamilton

(2015) specify a prior for B as a multivariate normal with prior means corresponding to

(Δwt, Δnt) being independent random walk processes. The prior is diffuse for short-lag

coefficients and becomes tighter at longer lags.

In this elicitation process, available prior evidence suggests only vague restrictions on the

prior and certainly is not precise enough to pin down the exact shape of a prior distribution.
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For instance, the elicitation of a prior for βs and βd relies on a belief that some large amount of

prior probability should be assigned to the ranges identified by the meta-analysis, but it cannot

pin down the shape of the prior to a t-distribution. In the step of eliciting the conditional priors

for (d1, d2) and A, the available prior knowledge can reasonably be translated into the location

and scale of the prior distributions, but the shape of the prior is chosen for computational

convenience. In addition, the independence of the priors invoked in each step is convenient

and simplifies the construction of the prior but is not innocuous. It is important to be aware

that prior independence among the parameters does not represent lack of knowledge about the

prior dependence among them.

The issues raised here apply to many contexts of Bayesian analysis, and they can be a

source of concern about the robustness of posterior. The situation is worse in set-identified

models, since robustness concerns are magnified due to the lack of identification.

7.3 Results

Figure 1 summarizes the set of posterior means for each choice of λ ∈ {0, 0.1, 0.5, 1, 2, 8}.

To compute them, we approximate the integration with respect to πφ|X by plugging in the

maximum likelihood estimator of φ, as justified by the large-sample result of Theorem 3.3 (ii).

That is, these plots summarize the set of posteriors spanned by Πλ(π∗
α|φ̂ML

) for each λ =0.1,

0.5, 1, 2, 8. The top-left panel corresponds to the single prior/posterior case (λ = 0), which

corresponds to the benchmark conditional prior π∗
α|φ given φ = φ̂MLE . The benchmark prior

(truncated t-distribution) results in the asymmetric posterior (black solid density) that has the

heavy right-tail and concentrates near the origin. The identified set estimate ISα(φ̂ML), on

the other hand, spans 0 to 5.2 (the red horizontal segment in the plots). The concentration

of the posterior toward the lower bound of the identified set is driven by the specification of

the prior, since the likelihood function is flat with respect to α over the identified set. This

motivates exploring the robustness of posterior inference to the choice of conditional prior for

α. To this end, we conduct a global sensitivity analysis by varying λ and computing the set of

posterior means.

The other five panels in Figure 1 show the set of posterior means produced by our pro-

cedures. As we increase λ, the set of posterior means indeed expands, and its upper bound

reaches the middle point of the identified set at λ = 2. A larger choice of λ such as λ = 8 leads

to a set of posterior means that is nearly identical to the estimate of the identified set, which

is consistent with the large-λ asymptotic result of Corollary 5.1.

31



The black square in each of the panels in Figure 1 shows the conditional gamma-minimax

estimator for α under the quadratic loss. The gamma-minimax estimator of α is larger than

the posterior mean under the benchmark conditional prior. This is because the set of posteriors

include those that put substantially more probability masses toward the upper bound of the

identified set. In the large-λ case of λ = 8, the gamma-minimax estimator coincides with the

midpoint of the identified set, as predicted by Theorem 5.3.

In Figure 2, we perform robust Bayes analyses for the posterior median instead of the mean,

where the choices of λ are the same as in Figure 1. The gamma-minimax estimators reported

in Figure 2 are obtained under the absolute loss (i.e., check loss with τ = 0.5). Due to the

asymmetry of the benchmark posterior, the posterior median under the benchmark lies closer

to the origin than the posterior mean. The sets of posterior medians, however, are overall

similar to the sets of posterior means of Figure 1. In case of λ = 8, we do not see any notable

differences between Figures 1 and 2.

Figure 3 plots the posteriors that attain the lower and upper bounds of the set of posterior

means for λ =0.1, 0.5, 1 and 2 shown in Figure 1. The posterior attaining the lower bound

(blue dashed density) concentrates toward zero more, and more sharply as λ increases, while

the posterior attaining the upper bound (red dashed density) becomes more spread out and

resembles the uniform distribution on the identified set at λ = 2.

7.4 Choice of λ

To apply the procedure for eliciting λ presented in Section 6.2, we focus on assessing how much

the marginal prior for α can vary with λ. Figure 4 presents the set of prior means for α for each

choice of λ ∈ {0.1, 0.5, 1, 2}. It also plots the marginal priors of α attaining the lower and upper

bounds of the prior mean. Our recommended elicitation procedure is to find a value of λ under

which the sets of the prior means or other features of the distribution match with the decision-

maker’s vague prior knowledge. Furthermore, as done in Figure 4, plotting the priors attaining

the lower and upper bounds of the set helps the elicitation process, since under a choice of λ

that can well represent the ambiguous beliefs of the decision-maker, the decision-maker should

be indifferent between the extreme priors attaining the bounds and the benchmark prior. For

instance, if the decision-maker believes that the prior mean of α is between [0.5, 1.5], and the

extreme priors plotted by the blue and red densities in the top right panel of Figure 4 appear

as plausible as the benchmark prior, his reasonable choice of λ would be 0.5.

To further summarize the set of prior distributions spanned by λ, Figure 5 plots the point-
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wise CDF bounds of the prior for α for each choice of λ ∈ {0.1, 0.5, 2}. Inverting the CDF

bounds at level τ gives the set of the τ -th quantile. For instance, λ = 0.5 spans the prior

median of α from 0.34 to 1.28 with the median of the benchmark prior being 0.80. The set

of prior quantiles can also be useful for eliciting λ, though it should be noted that the CDF

bounds of Figure 5 are valid only pointwise and no single prior in the class can attain the upper

or lower bound uniformly in α.5

Based on the meta-analysis revealing that the supply elasticity estimates previously re-

ported in the literature vary between 0.1 and 2.2, Baumeister and Hamilton (2015) specify the

hyperparameters in the prior for α so as to assign prior probability 90% on {α ∈ [0.1, 2.2]}. To

perform our robust Bayesian analysis, we may want to focus on the range of prior probabilities

on {α ∈ [0.1, 2.2]} in order to elicit λ. Specifically, we specify a lower bound of πα([0.1, 2.2])

and tune λ to match with this lower bound. For this purpose, Figure 6 plots the lower prior

probability on {α ∈ [0.1, 2.2]},

p ≡
∫

Φ

[

inf
πα|φ∈Πλ(π∗

α|φ)
πα|φ([0.1, 2.2])

]

dπφ, (26)

over λ ∈ [0, 8]. For instance, at each λ = 0.1, 0.5, 1, and 2, the corresponding prior lower

probability is computed as p = 0.81, 0.66, 0.53, and 0.37, respectively.

8 Concluding Remarks

This paper proposes a robust Bayes analysis in the class of set-identified models. The class

of priors considered is formed by the KL neighborhood of a benchmark prior. This way of

constructing the class of prior distinguishes the current paper from Giacomini and Kitagawa

(2018) and Giacomini et al. (2017). We show how to formulate and solve the conditional

gamma-minimax problem, and investigate its analytical properties in finite and large samples.

We illustrate a use of our robust Bayes methods in the SVAR anaysis of Baumeister and

Hamilton (2015).

When performing the gamma-minimax analysis, there is no consensus about whether we

should condition on the data or not. We perform the conditional gamma-minimax analysis

mainly due to analytical and computational tractability, and we do not intend to settle this

open question. In fact, compared with the unconditional gamma-minimax decision, less is

5This claim follows from the fact that priors maximizing or minimizing πα({α ≤ t}) are obtained by setting

f(α) = 1{α ≤ t} in the construction of πu
α|φ and π`

α|φ in (19) and plugging them into (20). Hence, varying t

alters the priors attaining the bounds of πα({α ≤ t}).
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known about statistical admissibility of the conditional one. As DasGupta and Studden (1989)

argue, the conditional gamma-minimax can often lead to a reasonable estimator with good

frequentist performance. Further decision-theoretic justifications for the conditional gamma-

minimax decision, including its statistical admissibility in set-identified models, remain open

questions.
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Figure 1: Range of posterior means for supply elasticity:

The top-left panel shows the prior and posterior for α obtained in Baumeister and Hamilton

(2015). We treat it as the benchmark prior and posterior in the rest of the panels. The red

horizontal segment shows ISα(φ̂ML). The blue vertical solid line is the posterior mean at the

benchmark. The blue vertical dashed lines show the set of posterior means. The black square

indicates the value of the conditional gamma-minimax estimator under quadratic loss.
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Figure 2: Range of posterior medians for supply elasticity:

The top-left panel shows the prior and posterior for α obtained in Baumeister and Hamilton

(2015). The blue vertical solid line is the posterior median at the benchmark. The blue vertical

dashed lines show the set of posterior medians. The black square indicates the value of the

conditional gamma-minimax estimator under absolute loss.
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Figure 3: Posteriors attaining the posterior mean bounds:

The density drawn by the black solid line is the benchmark posterior. The blue and red dashed

densities are the posteriors of α that attain the lower and upper bounds of the posterior mean

shown in Figure 1, respectively.
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Figure 4: Prior mean bounds and priors attaining the bounds:

The benchmark prior is the truncated t-distribution used in Baumeister and Hamilton (2015).

The vertical grey line with the grey triangle plots the mean of the benchmark prior. The blue

and red vertical lines show the lower and upper bounds of the prior mean of α, and the blue

and red densities are prior distributions attaining the prior mean bounds.
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The benchmark prior is the truncated t-distribution used in Baumeister and Hamilton (2015).

The red and blue curves plot the upper and lower bounds of πα(α ≤ t), t ∈ [0, 5] over πα|φ ∈

Πλ(π∗
α|φ), respectively, for λ ∈ {0.1, 0.5, 2}.
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Figure 6: Prior lower probabilities on α ∈ [0.1, 2.2]:

The benchmark prior is the truncated t-distribution used in Baumeister and Hamilton (2015).

Plotting the relationship of λ and p defined in equation (26).
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Appendix

A Lemmas and Proofs

This appendix collects lemmas and proofs that are omitted from the main text.

A.1 Proof of Lemma 2.1

The next set of lemmas are used to prove Lemma 2.1. Lemma A.1 derives a general formula

that links the KL distance of the probability distributions for θ and the KL distance of the

probability distributions for the transformation of θ to lower-dimensional parameter α. Lemma

A.2 shows the inclusion relationship between the KL neighborhood of π∗
α|φ and the projection

of the KL neighborhood of π∗
θ|α onto the space of α-marginals. Lemma 2.1 in the main text

then follows as a corollary of these two lemmas.

Lemma A.1 Given φ, let π∗
α|φ be the marginal distribution for α induced from π∗

θ|φ that has

a dominating measure, and πα|φ be the marginal distribution for α induced from πθ|φ. It holds

R(πα|φ‖π
∗
α|φ) = −

∫

ISα(φ)
R(πθ|αφ‖π

∗
θ|αφ)dπα|φ + R(πθ|φ‖π

∗
θ|φ), (27)

where πθ|αφ is the conditional distribution of θ given (α, φ) whose support is contained in

Θ(α, φ) ≡ {θ ∈ Θ : α = α (θ, φ)} , and R(πθ|αφ‖π
∗
θ|αφ) =

∫
Θ(α,φ) ln

(
dπθ|αφ

dπ∗
θ|αφ

)

dπθ|αφ ≥ 0. Ac-

cordingly, R(πα|φ‖π
∗
α|φ) ≤ R(πθ|φ‖π

∗
θ|φ) holds. In particular, R(πα|φ‖π

∗
α|φ) = R(πθ|φ‖π

∗
θ|φ) if

and only if πθ|αφ = π∗
θ|αφ, π∗

α|φ-almost surely.

Proof. We denote the densities of πθ|φ and its α-marginal distribution πα|φ (with respect to

their dominating measures) by
dπθ|φ

dθ and
dπα|φ

dα . Note they satisfy
dπα|φ(α)

dα =
∫
Θ(α,φ)

dπθ|φ(θ)

dθ dθ.
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Hence,

R(πα|φ‖π
∗
α|φ) =

∫

ISα(φ)
ln

(
dπα|φ

dπ∗
α|φ

)(∫

Θ(α,φ)
dπθ|φ

)

dα

=
∫

ISα(φ)

[∫

Θ(α,φ)
ln

(
dπα|φ

dπ∗
α|φ

)

dπθ|φ

]

dα

=
∫

ISα(φ)

∫

Θ(α,φ)

[

ln

(
dπα|φ

dπθ|φ
∙

dπ∗
θ|φ

dπ∗
α|φ

)

+ ln

(
dπθ|φ

dπ∗
θ|φ

)]

dπθ|φdα

=
∫

ISα(φ)

[∫

Θ(α,φ)

[

ln

(
dπα|φ

dπθ|φ
∙

dπ∗
θ|φ

dπ∗
α|φ

)]

dπθ|αφ

]

dπα|φ +
∫

ISθ(φ)
ln

(
dπθ|φ

dπ∗
θ|φ

)

dπθ|φ

=
∫

ISα(φ)

[∫

Θ(α,φ)

[

ln

(
dπα|φ/dα

dπθ|φ/dθ
∙

dπ∗
θ|φ/dθ

dπ∗
α|φ/dα

)]

dπθ|αφ

]

dπα|φ + R(πθ|φ‖π
∗
θ|φ),

where the second term in the fourth line uses
∫
ISα(φ)

∫
Θ(α,φ) f(θ)dπθ|φdα =

∫
ISθ(φ) f(θ)dπθ|φ for

any measurable function f (θ). Since

dπθ|αφ

dθ
=

(∫

Θ(α,φ)

dπθ|φ

dθ
dθ

)−1(
dπθ|φ

dθ

)

=

(
dπα|φ

dα

)−1(dπθ|φ

dθ

)

holds for θ ∈ Θ(α, φ), we obtain

R(πα|φ‖π
∗
α|φ) = −

∫

ISα(φ)

∫

Θ(α,φ)
ln

(
dπθ|αφ

dπ∗
θ|αφ

)

dπθ|αφdπα|φ +
∫

Θ
ln

(
dπθ|φ

dπ∗
θ|φ

)

dπθ|φ

= −
∫

ISα(φ)
R(πθ|αφ‖π

∗
θ|αφ)dπα|φ + R(πθ|φ‖π

∗
θ|φ).

Since R(πθ|αφ‖π
∗
θ|αφ) ≥ 0, R(πα|φ‖π

∗
α|φ) ≤ R(πθ|φ‖π

∗
θ|φ) holds. This inequality holds with

equality if and only if
∫
ISα(φ) R(πθ|αφ‖π

∗
θ|αφ)dπα|φ = 0. That is, πθ|αφ = π∗

θ|αφ for πα|φ-almost

surely, or equivalently π∗
α|φ-almost surely as πα|φ is dominated by π∗

α|φ.

Lemma A.2 Let φ and λ ≥ 0 be given. Consider the set of α-marginal distributions con-

structed by marginalizing πθ|φ ∈ Πλ
(
π∗

θ|φ

)
to α,

Π̄λ ≡
{

πα|φ : πθ|φ ∈ Πλ
(
π∗

θ|φ

)}
.

On the other hand, for α-marginal of π∗
θ|φ, π∗

α|φ, define its KL neighborhood with radius λ,

Πλ
(
π∗

α|φ

)
=
{

πα|φ : R(πα|φ‖π
∗
α|φ) ≤ λ

}
.

Then, Π̄λ ⊂ Πλ
(
π∗

α|φ

)
.
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Proof. By Lemma A.1, πα|φ ∈ Π̄λ implies R(πα|φ‖π
∗
α|φ) ≤ λ. Hence, Π̄λ ⊂ Πλ

(
π∗

α|φ

)
.

Proof of Lemma 2.1. At fixed δ and φ, h (δ, α(θ, φ)) depends on θ only through α(∙, φ).

Hence,

max
πθ|φ∈Πλ

(
π∗

θ|φ

)

[∫

ISθ(φ)
h(δ, α (θ, φ))dπθ|φ

]

= max
πα|φ∈Π̄λ

[∫

ISα(φ)
h(δ, α)dπα|φ

]

≤ max
πα|φ∈Πλ

(
π∗

α|φ

)

[∫

ISα(φ)
h(δ, α)dπα|φ

]

,

where the inequality follows by Lemma A.2. To show the reverse inequality, let π0
α|φ be a

solution of max
πα|φ∈Πλ

(
π∗

α|φ

)
[∫

ISα(φ) h(δ, α)dπα|φ

]
and construct the conditional distribution

of θ given φ by

π0
θ|φ =

∫

ISα(φ)
π∗

θ|αφdπ0
α|φ,

where π∗
θ|αφ is the conditional distribution of θ given (α, φ) induced by benchmark conditional

prior π∗
θ|φ. Since thus-constructed π0

θ|φ shares the conditional distribution of θ given (α, φ) with

π∗
θ|φ, Lemma A.1 implies R(π0

θ|φ‖π
∗
θ|φ) = R(π0

α|φ‖π
∗
α|φ) ≤ λ. Hence, π0

θ|φ ∈ Πλ
(
π∗

θ|φ

)
holds,

and this implies

max
πθ|φ∈Πλ

(
π∗

θ|φ

)

[∫

ISθ(φ)
h(δ, α (θ, φ))dπθ|φ

]

≥ max
πα|φ∈Πλ

(
π∗

α|φ

)

[∫

ISα(φ)
h(δ, α)dπα|φ

]

.

A.2 Proof of Theorem 3.1

Proof of Theorem 3.1. Let φ and δ = δ(x) be fixed. Let κλ (δ, φ) be as defined in Lemma

2.2. Since κλ (δ, φ) does not depend on πα|φ, we treat κ∗ ≡ κλ (δ, φ) as a constant, and we

focus on solving the inner maximization problem in the multiplier minimax problem (13).

We first consider the case where π∗
α|φ is a discrete probability mass measure with m support

points (α1, . . . , αm) in ISα(φ). Since the KL distance R(πα|φ‖π
∗
α|φ) is positive infinity unless

πα|φ is absolutely continuous with respect to π∗
α|φ, we can restrict our search of the optimal πα|φ

to those whose support points (the set of points that receive positive probabilities according

to πα|φ) are constrained to (α1, . . . , αm). Accordingly, let us denote a discrete πα|φ and the

discrete loss by

gi ≡ πα|φ (αi) , fi ≡ π∗
α|φ (αi) , hi ≡ h(δ, αi), for i = 1, . . . ,m. (28)
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Then, the inner maximization problem of (13) can be written as

max
g1,...,gm

m∑

i=1

higi − κ∗
m∑

i=1

gi ln

(
gi

fi

)

, (29)

s.t.
m∑

i=1

gi = 1.

With the Lagrangian multiplier ξ, the first order conditions in gi are obtained as

hi + κ∗ ln fi − κ∗ − κ∗ ln gi − ξ = 0, i = 1, . . . ,m. (30)

If κ∗ = 0, hi = ξ for all i, which contradicts the assumption of non-degeneracy of h (δ, α).

Hence, κ∗ > 0. Accordingly, these first order conditions lead to

gi =
fi exp (hi/κ∗)
exp(1 + ξ/κ∗)

.

∑m
j=1 gj = 1 pins down exp(1 + ξ/κ∗) =

∑m
j=1 fj exp(hj/κ∗), so the optimal gi is obtained as

g∗i =
fi exp (hi/κ∗)

∑m
j=1 fj exp(hj/κ∗)

. (31)

Plugging this back into the objective function, we obtain

κ∗
m∑

i=1



 fi exp(hi/κ∗)
∑m

j=1 fi exp(hi/κ∗)
ln




m∑

j=1

fj exp(hj/κ∗)







 (32)

= κ∗ ln




m∑

j=1

fj exp(hj/κ∗)



 ,

which is equivalent to κ∗ ln
(∫

ISα(φ) exp (h(δ(x), α)/κ∗) dπ∗
α|φ

)
with discrete π∗

α|φ.

We generalize the claim to arbitrary π∗
α|φ. Based on the optimal gi obtained in (31), we

guess that π0
α|φ ∈ Π∞

(
π∗

α|φ

)
maximizing

{∫
ISα(φ) h(δ(x), α)dπα|φ − κ∗R(πα|φ‖π

∗
α|φ)

}
satisfies

dπ0
α|φ =

exp(h(δ, α)/κ∗)
∫
ISα(φ) exp(h(δ, α)/κ∗)dπ∗

α|φ

∙ dπ∗
α|φ, α -a.e. (33)

with κ∗ > 0. Since exp(h(δ, α)/κ∗) is integrable with respect to π∗
α|φ, exp(h(δ, α)/κ∗) ∈ (0,∞)

holds, π∗
α|φ-a.s. Equation (33) then implies that π∗

α|φ is absolutely continuous with respect

to π0
α|φ, and any πα|φ with R(πα|φ‖π

∗
α|φ) < ∞ is absolutely continuous with respect to π0

α|φ.

Therefore, the objective function can be rewritten as
∫

ISα(φ)
h(δ, α)dπα|φ − κ∗R(πα|φ‖π

∗
α|φ)

=
∫

ISα(φ)
h(δ, α)dπα|φ − κ∗R(πα|φ‖π

0
α|φ) − κ∗

∫

ISα(φ)
ln

(
dπ0

α|φ

dπ∗
α|φ

)

dπα|φ.
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Plugging in (33) leads to

−κ∗R(πα|φ‖π
0
α|φ) +

∫

ISα(φ)
exp(h(δ, α)/κ∗)dπ∗

α|φ.

Since R(πα|φ‖π
0
α|φ) ≥ 0 for any πα|φ ∈ Π∞

(
π∗

α|φ

)
and equal to zero if and only if πα|φ =

π0
α|φ holds for almost every α, π0

α|φ defined in (33) solves uniquely (up to α-a.e.) the inner

maximization problem. Hence, analogous to the discrete benchmark prior case, it holds

max
πα|φ∈Π∞

(
π∗

α|φ

)

{∫

ISα(φ)
h(δ, α)dπα|φ − κ∗R(πα|φ‖π

0
α|φ)

}

= κ∗ ln

(∫

ISα(φ)
exp

(
h(δ, α)

κ∗

)

dπ∗
α|φ

)

.

(34)

By Lemma 2.2, π0
α|φ (α) derived in (33) solves the inner maximization problem of (11). Hence,

the value function is given by

max
πα|φ∈Πλ

(
π∗

α|φ

)

{∫

ISα(φ)
h(δ, α)dπα|φ

}

=
∫

ISα(φ)
h(δ, α)dπ0

α|φ

=
∫

ISα(φ)

h(δ, α) exp(h(δ, α)/κ∗)
∫
ISα(φ) exp(h(δ, α)/κ∗)dπ∗

α|φ

dπ∗
α|φ. (35)

Also, by the Kuhn-Tucker slackness condition stated in Lemma 2.2, κ∗ > 0 implies λ =

R(π0
α|φ‖π

∗
α|φ). It then translates to the following condition for κ∗:

λ + ln

(∫

ISα(φ)
exp (h(δ, α)/κ∗) dπ∗

α|φ

)

−

∫
ISα(φ) h(δ, α) exp(h(δ, α)/κ∗)dπ∗

α|φ

κ∗
∫
ISα(φ) exp(h(δ, α)/κ∗)dπ∗

α|φ

= 0. (36)

Note that this condition is obtained as the first-order condition of

fλ(κ) ≡ κ ln

(∫

ISα(φ)
exp (h(δ, α)/κ) dπ∗

α|φ

)

+ κλ

with respect to κ. Note that limκ→0 f ′
λ(κ) = −∞ and limκ→∞ f ′

λ(κ) = λ > 0. Furthermore,

it can be shown that the second derivative of fλ(κ) in κ equals to the variance of h (δ, α)

with α ∼ π0
α|φ, which is strictly positive by the imposed nondegeneracy assumption of h (δ, α).

Hence, fλ(κ) is strictly convex. Therefore, κ∗ solving the first-order condition is unique and

strictly positive.

The conclusion follows by integrating (35) with respect to πφ|X .
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A.3 Proof of Theorem 3.3

The following lemmas A.3 – A.6 are used to prove Theorem 3.3. Since the support of π∗
α|φ is

contained in ISα(φ) and any πα|φ ∈ Πλ(π∗
α|φ) is absolutely continuous with respect to π∗

α|φ,

for any measurable function f(α), it holds
∫
ISα(φ) f(α)dπα|φ =

∫
R f(α)dπα|φ for any πα|φ ∈

Πλ(π∗
α|φ). In the proofs to follow, we do not explicitly specify the limit of integration when the

integration of f(α) is over ISα(φ).

Lemma A.3 Under Assumption 3.2 (iv), we have

(i) inf
δ∈D,φ∈G0

V ar∗α|φ(h(δ, α)) > 0

(ii) inf
δ∈D,φ∈G0

E∗
α|φ

[
{h(δ, α) − E∗

α|φ(h(δ, α))}2 ∙ 1{h(δ, α) − E∗
α|φ(h(δ, α)) ≥ 0}

]
> 0,

where E∗
α|φ(∙) and V ar∗α|φ(∙) are the mean and variance with respect to the benchmark condi-

tional prior π∗
α|φ

Proof of Lemma A.3. Let h = h(δ, α). By Markov’s inequality and Assumption 3.2 (iv),

V ar∗α|φ(h) ≥ cπ∗
α|φ

({
(h − E∗

α|φ(h))2 ≥ c
})

≥ cε > 0.

This proves the first inequality.

To show the second inequality, suppose it is false. Then, there exists a sequence, (δν , φν),

ν = 1, 2, . . . , such that

lim
ν→∞

E∗
α|φν

[
{h(δν , α) − E∗

α|φν (h(δν , α))}2 ∙ 1{h(δν , α) − E∗
α|φν (h(δν , α)) ≥ 0}

]
= 0.

By Markov’s inequality, this means for any a > 0,

lim
ν→∞

π∗
α|φν

({
h(δν , α) − E∗

α|φν (h(δν , α)) ≥ a
})

= 0. (37)

In order for Assumption 3.2 (iv) to hold, we require

lim
ν→∞

π∗
α|φν

({
h(δν , α) − E∗

α|φν (h(δν , α)) ≤ −c
})

≥ ε. (38)

Equations (37) and (38) contradict E∗
α|φν

[
h(δν , α) − E∗

α|φν (h(δν , α))
]

= 0 for any ν, since if

(37) and (38) were true,

E∗
α|φν

[
h(δν , α) − E∗

α|φν (h(δν , α))
]

≤
∫ ∞

0
π∗

α|φν

({
h(δν , α) − E∗

α|φν (h(δν , α)) ≥ a
})

da − cπ∗
α|φν

({
h(δν , α) − E∗

α|φν (h(δν , α)) ≤ −c
})

≤− cε/2 < 0 (39)

would hold for all large ν.
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Lemma A.4 Suppose Assumption 3.2 (ii) and (iv) hold, and let λ > 0 be given. Let κλ(δ, α)

be the Lagrange multiplier defined in Lemma 2.2. We have

κλ(δ, φ) ≤
2H

λ
,

for all δ ∈ D and φ ∈ Φ, and

0 < C1(λ) ≤ κλ(δ, φ)

for all δ ∈ D and φ ∈ G0, where C1(λ) is a positive constant that depends on λ but does not

depend on δ and φ.

Proof of Lemma A.4. We first show the upper bound. Recall κλ(δ, φ) solves (see equation

(36))

λ = − ln

(∫
exp

(
h(δ, α)

κ

)

dπ∗
α|φ

)

+ E0
α|φ

[
h(δ, α)

κ

]

, (40)

where E0
α|φ(∙) is the expectation with respect to the exponentially tilted conditional prior π0

α|φ.

Boundedness of h(δ, α) implies that the first term in equation (40) is bounded from above by

H/κ and the second term can be also bounded from above by H/κ. Hence, we have

λ ≤
2H

κλ(δ, φ)
.

This leads to the upper bound.

To show the lower bound, let κ∗ = κλ(δ, φ) be a short-hand notation for the solution of

(40). Define

W ≡
h(δ, α)

κ∗ − ln

(∫
exp

(
h(δ, α)

κ∗

)

dπ∗
α|φ

)

. (41)

By rewriting equation (40), we obtain the following inequality:

λ = E0
α|φ(W ) = E∗

α|φ(W exp(W ))

≥ E∗
α|φ[W (1 + W ) ∙ 1{W ≥ 0}] + E∗

α|φ[W ∙ 1{W < 0}]

= E∗
α|φ(W ) + E∗

α|φ(W 2 ∙ 1{W ≥ 0}), (42)

where the inequality holds by ex ≥ 1 + x and ex ≤ 1 for x < 0. Applying Jensen’s inequality

to ln
(∫

exp
(

h(δ,α)
κ

)
dπ∗

α|φ

)
, we have

0 ≥ E∗
α|φ(W ) ≥ −

1
κ∗ c1, (43)

c1 ≡ H − inf
δ∈D,φ∈G0

E∗
α|φ(h(δ, α)) ≥ 0
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For the second term in (42),

E∗
α|φ

[
W 2 ∙ 1{W ≥ 0}

]
≥

1
(κ∗)2

E∗
α|φ

[
W̃ 2 ∙ 1{W̃ ≥ 0}

]
≥

1
(κ∗)2

c2 > 0, (44)

W̃ ≡ h(δ, α) − E∗
α|φ(h(δ, α)),

c2 ≡ inf
δ∈D,φ∈G0

E∗
α|φ

[
{h(δ, α) − E∗

α|φ(h(δ, α))}2 ∙ 1{h(δ, α) − E∗
α|φ(h(δ, α)) ≥ 0}

]
> 0,

where the first inequality follows since W ≥ W̃/κ∗ holds for any α, and the positivity of c2

follows by Lemma A.3 (ii).

Combining (42), (43), and (44), we obtain

λ ≥ −
1
κ∗ c1 +

1
(κ∗)2

c2.

Solving this inequality for κ∗ leads to

κ∗ ≥
−c1 +

√
c2
1 + 4λc2

2λ
≡ C1(λ) > 0.

Lemma A.5 Under Assumption 3.2 (ii) and (iv), we have

inf
δ∈D,φ∈G0

V ar0
α|φ(h(δ, α)) ≥ cε ∙ exp

(

−
H

C1(λ)

)

> 0,

where V ar0
α|φ(∙) is the variance with respect to the worst-case (exponentially tilted) conditional

prior π0
α|φ shown in Theorem 3.1.

Proof of Lemma A.5. Let c > 0 be the constant defined in Assumption 3.2 (iv), and

h = h(δ, α). By Markov’s inequality,

V ar0
α|φ(h) ≥ cE0

α|φ

(
1
{

(h − E0
α|φ(h))2 ≥ c

})

≥ c ∙ exp

(

−
H

C1(λ)

)

E∗
α|φ

(
1
{

(h − E0
α|φ(h))2 ≥ c

})

≥ cε ∙ exp

(

−
H

C1(λ)

)

,

where the second inequality follows by the lower bound of κλ(δ, φ) shown in Lemma A.4 and

E0
α|φ(f(α)) ≥ exp

(
− H

C1(λ)

)
E∗

α|φ(f(α)) for any nonnegative random variables f(α).
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Lemma A.6 Suppose Assumption 3.2 (ii), (iv), and (vi) hold. Then,

|κλ(δ, φ) − κλ(δ, φ0)| ≤ C2(λ)‖φ − φ0‖ (45)

holds for all δ ∈ D and φ ∈ G0, where 0 ≤ C2(λ) < ∞ is a constant that depends on λ > 0 but

does not depend on δ and φ.

Proof of Lemma A.6. By the mean value theorem, we have for φ ∈ G0,

|κλ(δ, φ) − κλ(δ, φ0)| ≤ sup
δ∈D,φ∈G0

{∥∥
∥
∥

∂κλ(δ, φ)
∂φ

∥
∥
∥
∥

}

∙ ‖φ − φ0‖.

Hence, it suffices to find C2(λ) that satisfies supδ∈D,φ∈G0

∥
∥
∥∂κλ(δ,φ)

∂φ

∥
∥
∥ ≤ C2(λ) < ∞.

We apply the implicit function theorem to κλ(δ, φ) defined as the solution to

g(δ, κ, φ) ≡ λ + ln

(∫
exp

(
h(δ, α)

κ

)

dπ∗
α|φ

)

− E0
α|φ

[
h(δ, α)

κ

]

= 0.

Since |∂g/∂κ| = V ar0
α|φ(h(δ, α)/κλ(δ, φ)), we obtain

sup
δ∈D,φ∈G0

∥
∥
∥
∥

∂κλ(δ, φ)
∂φ

∥
∥
∥
∥ ≤

(
H

λ

)2 supδ∈D,φ∈G0
‖∂g/∂φ‖

infδ∈D,φ∈G0 V ar0
α|φ(h(δ, α))

, (46)

where the differentiability of g with respect to φ requires Assumption 3.2 (vi). By Lemma A.5,

the variance lower bound in the denominator is bounded away from zero. For the numerator,

we have

∥
∥
∥
∥

∂g

∂φ

∥
∥
∥
∥ ≤

∥
∥
∥ ∂

∂φE∗
α|φ(exp(h/κ))

∥
∥
∥

E∗
α|φ(exp(h/κ))

+

∥
∥
∥ ∂

∂φE∗
α|φ[(h/κ) ∙ exp(h/κ)]

∥
∥
∥

E∗
α|φ(exp(h/κ))

+

∥
∥
∥ ∂

∂φE∗
α|φ(h/κ)

∥
∥
∥ ∙ E∗

α|φ[h/κ ∙ exp(h/κ)]

[E∗
α|φ(exp(h/κ))]2

≤

{

exp

(
H

C1(λ)

)

+
H

C1(λ)
exp

(
3H

C1(λ)

)}

∙ sup
δ∈D,φ∈G0

∥
∥
∥
∥

∂

∂φ
E∗

α|φ(h)

∥
∥
∥
∥

+ exp

(
H

C1(λ)

)

∙ sup
δ∈D,φ∈G0,κ∈[C1(λ),H/λ]

∥
∥
∥
∥

∂

∂φ
E∗

α|φ

[(
h

κ

)

∙ exp

(
h

κ

)]∥∥
∥
∥

≡ C2(λ) < ∞,

where the second inequality follows by noting E∗
α|φ(exp(h/κ)) ≥ exp(−H/C1(λ)) and E∗

α|φ[h/κ∙

exp(h/κ)] ≤ (H/C1(λ)) exp(H/C1(λ)), and the third inequality follows from Assumption 3.2

(vi).

Proof of Theorem 3.3. Since the posterior minimax decision is invariant to an additive

constant to the loss function, we assume without loss of generality that the loss function is

nonnegative.
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(i) By Assumption 3.2 (iii) and (vii) and the consistency theorem of the extremum estimator

(Theorem 2.1 in Newey and McFadden (1994)), a minimizer of the finite-sample objective

function
∫
Φ rλ (δ, φ) dπφ|X converges to δλ (φ0) almost surely (in probability) if

∫
Φ rλ (∙, φ) dπφ|X

converges to rλ (∙, φ0) uniformly almost surely (in probability).

For this goal, let

sλ (δ, φ) ≡
∫

exp

(
h(δ, α)
κλ(δ, φ)

)

dπ∗
α|φ ∈

[

1, exp

(
H

κλ(δ, φ)

)]

,

where sλ(δ, φ) ≥ 1 follows by the normalization of the loss function to being nonnegative. Since

sup
δ∈D

∣
∣
∣
∣

∫

Φ
rλ (δ, φ) dπφ|X − rλ (δ, φ0)

∣
∣
∣
∣ ≤

∫

Φ
sup
δ∈D

|rλ (δ, φ) − rλ (δ, φ0)| dπφ|X ,

we consider bounding supδ∈D |rλ (δ, φ) − rλ (δ, φ0)| for φ ∈ G0. In what follows, we omit the

arguments δ from rλ, sλ, and κλ unless doing so results in confusion.

By Lemma 2.2 and equation (34) in the proof of Theorem 3.1, rλ(φ) can be expressed as

rλ(φ) = κλ(φ) ln sλ(φ) + κλ(φ)λ.

Hence, we have

|rλ(φ) − rλ(φ0)| = κλ(φ) ln sλ(φ) − κλ(φ0) ln sλ(φ0) + (κλ(φ) − κλ(φ0))λ

≤ κλ(φ) |ln sλ(φ) − ln sλ(φ0)| + |κλ(φ) − κλ(φ0)| ln sλ(φ) (47)

+ |κλ(φ) − κλ(φ0)|λ.

By noting ln(x) ≤ x − 1, Lemma A.4, and sλ(φ) ≥ 1, we have

κλ(φ)| ln sλ(φ) − ln sλ(φ0)|

≤
2H

λ
∙
|sλ(φ) − sλ(φ0)|
sλ(φ) ∧ sλ(φ0)

=
2H

λ

∣
∣
∣
∣

∫
exp

(
h(δ, α)
κλ(φ)

)

dπ∗
α|φ −

∫
exp

(
h(δ, α)
κλ(φ0)

)

dπ∗
α|φ0

∣
∣
∣
∣

≤
2H

λ

∫ ∣∣
∣
∣exp

(
h(δ, α)
κλ(φ)

)

− exp

(
h(δ, α)
κλ(φ)

)∣∣
∣
∣ dπ∗

α|φ +
∫

exp

(
h(δ, α)
κλ(φ0)

)

|dπ∗
α|φ0

− dπα|φ|

≤
2H

λ

∫
exp

(
h(δ, α)
κλ(φ)

) ∣∣
∣
∣
h(δ, α)
κλ(φ)

−
h(δ, α)
κλ(φ0)

∣
∣
∣
∣ dπ∗

α|φ +
H

C1(λ)
‖π∗

α|φ0
− πα|φ‖TV

≤
2H2

λC1(λ)
exp

(
H

C1(λ)

)

|κλ(φ) − κλ(φ0)| +
H

C1(λ)
‖π∗

α|φ − πα|φ0
‖TV . (48)

Combining equations (47) and (48), and applying Lemma A.6, we obtain for φ ∈ G0,

sup
δ∈D

|rλ (δ, φ) − rλ (δ, φ0)| ≤
H

C1(λ)

∥
∥
∥π∗

α|φ − π∗
α|φ0

∥
∥
∥

TV
+ C3(λ)‖φ − φ0‖, (49)
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where C3(λ) =
[
λ + H

C1(λ) + H2

λC1(λ) exp
(

H
C1(λ)

)]
C2(λ). Thus,

∫

Φ
sup
δ∈D

|rλ (δ, φ) − rλ (δ, φ0)| dπφ|X ≤
∫

G0

sup
δ∈D

|rλ (δ, φ) − rλ (δ, φ0)| dπφ|X + 2Hπφ|X(Gc
0)

≤
H

C1(λ)

∫

G0

‖π∗
α|φ − π∗

α|φ0
‖TV dπφ|X

+ C3(λ)
∫

G0

‖φ − φ0‖dπφ|X + 2Hπφ|X(Gc
0). (50)

The almost-sure posterior consistency of πφ|X in Assumption 3.2 (i) implies πφ|X(Gc
0) → 0 as

n → ∞. Also, viewing ‖π∗
α|φ−πα|φ0

‖TV and ‖φ−φ0‖ as continuous functions of φ (Assumption

3.2 (v)), the continuous mapping theorem implies the other two terms in the right-hand side

of (50) converge to zero as n → ∞ almost surely. This completes the proof of claim (i).

(ii) When φ̂ →p φ0, the continuous mapping theorem and (49) imply that
∣
∣
∣rκ

(
δ, φ̂
)
− rκ (δ, φ0)

∣
∣
∣→p

0 as n → ∞ uniformly over δ. By the consistency theorem of the extremum estimator (Theorem

2.1 in Newey and McFadden (1994)), the claim follows.

Proof of Theorem 5.2. Fixing δ ∈ D, partition the reduced-form parameter space Φ by

Φ+
δ =

{

φ ∈ Φ :
α∗(φ) + α∗(φ)

2
≥ δ

}

,

Φ−
δ =

{

φ ∈ Φ :
α∗(φ) + α∗(φ)

2
< δ

}

.

We write the objective function of Theorem 3.1 as
∫

Φ−
δ

rλ (δ, φ) dπφ|X +
∫

Φ+
δ

rλ (δ, φ) dπφ|X ,

and aim to derive the limits of each of the two terms.

Since Assumption 5.1 (i) and (ii) imply Assumption 3.2 (ii) and (iv), we can apply Lemma

A.4. It implies that as λ → ∞, κλ(δ, φ) → 0 at every (δ, φ). Hence, to assess the point-

wise convergence behavior of rλ(δ, φ) as λ → ∞ at each (δ, φ), it suffices to analyze the limit

behavior with respect to κ → 0 of

rκ(δ, φ) ≡

∫
(δ − α)2 exp

{
(δ−α)2

κ

}
dπ∗

α|φ
∫

exp
{

(δ−α)2

κ

}
dπ∗

α|φ

.

For φ ∈ Φ−
δ , we rewrite rκ (δ, φ) as

rκ (δ, φ) = (δ − α∗(φ))2 +

∫
[(δ − α)2 − (δ − α∗(φ))2] exp

{
− (δ−α∗(φ))2−(δ−α)2

κ

}
dπ∗

α|φ
∫

exp
{
− (δ−α∗(φ))2−(δ−α)2

κ

}
dπ∗

α|φ

. (51)
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We proceed by showing that the second term in the right-hand side converges to zero.

For the denominator, let c(φ) = 2(δ − α∗(φ)) > 0 and note
∫

exp

{

−
(δ − α∗(φ))2 − (δ − α)2

κ

}

dπ∗
α|φ

=
∫

exp

{

−
c(φ)(α − α∗(φ)) − (α − α∗(φ))2

κ

}

dπ∗
α|φ

=
∫ α∗(φ)+η

α∗(φ)
exp

{

−
c(φ)(α − α∗(φ)) − (α − α∗(φ))2

κ

}

dπ∗
α|φ

+
∫ α∗(φ)

α∗(φ)+η
exp

{

−
c(φ)(α − α∗(φ)) − (α − α∗(φ))2

κ

}

dπ∗
α|φ

=
∫ η

0

(
∞∑

k=1

akz
k

)

exp

{

−
c(φ)z − z2

κ

}

dz

+
∫ α∗(φ)

α∗(φ)+η
exp

{

−
c(φ)(α − α∗(φ)) − (α − α∗(φ))2

κ

}

dπ∗
α|φ, (52)

where the third equality uses Assumption 5.1 (iii). The integrand of the second term in (52)

converges at an exponential rate as κ → 0 at every α ∈ [α∗(φ) + η, α∗(φ)]. Hence, by the

dominated convergence theorem, the second term in (52) converges at an exponential rate as

κ → 0. We apply the general Laplace approximation (see, e.g., Theorem 1 in Chapter 2 of

Wong (1989)) to the first term in (52). Let k∗ ≥ 0 be the least nonnegative integer k such that

ak 6= 0. Then, the leading term in the Laplace approximation is given by
∫ η

0

(
∞∑

k=0

akz
k

)

exp

{

−
c(φ)z − z2

κ

}

dz = Γ(k∗ + 1)

(
ak∗

c(φ)k∗+1

)

κk∗+1 + o(κk∗+1).

As for the numerator of the second term in the right-hand side of (51),
∫

[(δ − α)2 − (δ − α∗(φ))2] exp

{

−
(δ − α∗(φ))2 − (δ − α)2

κ

}

dπ∗
α|φ

=
∫

[−c(φ)(α − α∗(φ)) + (α − α∗(φ))2] exp

{

−
c(φ)(α − α∗(φ)) − (α − α∗(φ))2

κ

}

dπ∗
∗|φ

=
∫ α∗(φ)+η

α∗(φ)
[−c(φ)(α − α∗(φ)) + (α − α∗(φ))2] exp

{

−
c(φ)(α − α∗(φ)) − (α − α∗(φ))2

κ

}

dπ∗
∗|φ

+
∫ α∗(φ)

α∗(φ)+η
[−c(φ)(α − α∗(φ)) + (α − α∗(φ))2] exp

{

−
c(φ)(α − α∗(φ)) − (α − α∗(φ))2

κ

}

dπ∗
∗|φ

=
∫ η

0

(
∞∑

k=1

ãkz
k

)

exp

{

−
c(φ)z − z2

κ

}

dz

+
∫ α∗(φ)

α∗(φ)+η
[−c(φ)(α − α∗(φ)) + (α − α∗(φ))2] exp

{

−
c(φ)(α − α∗(φ)) − (α − α∗(φ))2

κ

}

dπ∗
α|φ
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where
∑∞

k=1 ãkz
k = (−c(φ)z + z2)

(∑∞
k=0 akz

k
)
. Similarly to the previous argument, the sec-

ond term in the right-hand converges to zero exponentially fast as κ → 0 by the dominated

convergence theorem. Regarding the first-term, the Laplace approximation yields

∫ η

0

(
∞∑

k=1

ãkz
k

)

exp

{

−
c(φ)z − z2

κ

}

dz = Γ(k∗ + 2)

(

−
ak∗

c(φ)k∗+1

)

κk∗+2 + o(κk∗+2).

Combining the arguments, the second term in the right-hand side of (51) is O(κ). Hence,

lim
κ→0

rκ (δ, φ) = (δ − α∗ (φ))2 .

for φ ∈ Φ−
δ pointwise.

The limit for rκ (δ, φ) on φ ∈ Φ+
δ can be obtained similarly, limκ→0 rκ (δ, φ) = (δ − α∗ (φ))2,

and we omit the detailed proof for brevity.

Since rκ (δ, φ) has an integrable envelope (e.g., (δ − α∗(φ))2 on φ ∈ Φ−
δ and (δ − α∗(φ))2 on

φ ∈ Φ+
δ ), the dominated convergence theorem leads to

lim
κ→0

∫

Φ
rκ (δ, φ) dπφ|X =

∫

Φ−
δ

lim
κ→0

rκ (δ, φ) dπφ|X +
∫

Φ+
δ

lim
κ→0

rκ (δ, φ) dπφ|X

=
∫

Φ−
δ

(δ − α∗ (φ))2 dπφ|X +
∫

Φ+
δ

(δ − α∗ (φ))2 dπφ|X

=
∫

Φ

(
(δ − α∗(φ))2 ∨ (δ − α∗(φ))2

)
dπφ|X ,

where the last line follows by noting that (δ − α∗ (φ))2 ≥ (δ − α∗ (φ))2 holds for φ ∈ Φ−
δ and

the reverse inequality holds for φ ∈ Φ+
δ .

(ii) Fix δ and set h(δ, α) = ρτ (α − δ). Partition the parameter space Φ by

Φ+
δ = {φ ∈ Φ : (1 − τ)α∗(φ) + τα∗(φ) ≥ δ} ,

Φ−
δ = {φ ∈ Φ : (1 − τ)α∗(φ) + τα∗(φ) < δ} ,

and write
∫
Φ rκ (δ, φ) dπφ|X as

∫

Φ−
δ

rκ (δ, φ) dπφ|X +
∫

Φ+
δ

rκ (δ, φ) dπφ|X .

We then repeat the proof techniques used in part (i). We omit the details for brevity.

Proof of Theorem 5.3. (i) Let rκ(δ, φ) be defined as in the proof of Theorem 5.2.

Since λ → ∞ asymtptotics imply κ → 0 asymptotics, we consider working with Rn (δ) ≡
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limκ→0

∫
Φ rκ (δ, φ) dπφ|X , which is equal to Rn (δ) =

∫
Φ r0 (δ, φ) dπφ|X where r0 (δ, φ) = (δ − α∗(φ))2∨

(δ − α∗(φ))2. Since the parameter space for α and the domain of δ are compact, r0 (δ, φ) is a

bounded function in φ. In addition, α∗(φ) and α∗(φ) are assumed to be continuous at φ = φ0,

so r0 (δ, φ) is continuous at φ = φ0. Hence, the weak convergence of πφ|X to the point-mass

measure implies the convergence in mean

Rn (δ) → R∞ (δ) ≡ lim
n→∞

∫

Φ

[
(δ − α∗(φ))2 ∨ (δ − α∗(φ))2

]
dπφ|X (53)

= (δ − α∗(φ0))
2 ∨ (δ − α∗(φ0))

2

pointwise in δ for almost every sampling sequence. Note that R∞ (δ) is minimized uniquely

at δ = 1
2 (α∗(φ0) + α∗(φ0)). Hence, by an analogy to the argument of the convergence of

extremum-estimators (see, e.g., Newey and McFadden (1994)), the conclusion follows if the

convergence of Rn (δ) to R∞ (δ) is uniform in δ. To show this is the case, define I(φ) ≡

[α∗(φ), α∗ (φ)] and note that (δ − α∗(φ))2 ∨ (δ − α∗(φ))2 can be interpreted as the squared

Hausdorff metric [dH (δ, I (φ))]2 between point {δ} and interval I(φ). Then

|Rn (δ) − R∞ (δ)| =

∣
∣
∣
∣

∫

Φ

(
[dH (δ, I (φ))]2 − [dH (δ, I (φ0))]

2
)

dπφ|X

∣
∣
∣
∣

≤ 2 (diam(D) + ᾱ)
∫

Φ
|dH (δ, I (φ)) − dH (δ, I (φ0))| dπφ|X

≤ 2 (diam(D) + ᾱ)
∫

Φ
dH (I(φ), I (φ0)) dπφ|X ,

where diam (D) < ∞ is the diameter of the action space and the third line follows by the triangu-

lar inequality of a metric, |dH (δ, I (φ)) − dH (δ, I (φ0))| ≤ dH (I(φ), I (φ0)). Since dH (I(φ), I (φ0))

is bounded by Assumption 5.1 (ii) and continuous at φ = φ0 by Assumption 5.1 (iv), it holds

that
∫
Φ dH (I(φ), I (φ0)) dπφ|X → 0 as πφ|X converges weakly to the point mass measure at

φ = φ0. This implies the uniform convergence of Rn (δ), i.e., supδ |Rn (δ) − R∞ (δ)| → 0 as

n → ∞.

We now prove (ii). Let l(δ, φ) ≡ (1−τ)(δ−α∗(φ))∨τ (α∗(φ) − δ). Similarly to the quadratic

loss case shown above, we have

Rn (δ) → R∞ (δ) ≡ (1 − τ)(δ − α∗(φ0)) ∨ τ (α∗(φ0) − δ) = l(δ, φ0),

which is minimized uniquely at δ = (1 − τ) α∗(φ0) + τα∗(φ0). Hence, the conclusion follows if

supδ |Rn (δ) − R∞ (δ)| → 0. To show this uniform convergence, define

Φ−
0 ≡ {φ ∈ Φ : (1 − τ)α∗(φ) + τα∗(φ) ≤ (1 − τ)α∗(φ0) + τα∗(φ0)} ,

Φ+
0 ≡ {φ ∈ Φ : (1 − τ)α∗(φ) + τα∗(φ) > (1 − τ)α∗(φ0) + τα∗(φ0)} .
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On φ ∈ Φ−
0 , l(δ, φ) − l(δ, φ0) can be expressed as

l(δ, φ) − l(δ, φ0) (54)

=






(1 − τ) [α∗ (φ0) − α∗(φ)] , if δ ≤ (1 − τ)α∗(φ) + τα∗(φ),

τ [α∗(φ) − α∗ (φ0)] − [δ − α∗ (φ0)] , if (1 − τ)α∗(φ) + τα∗(φ) < δ ≤ (1 − τ)α∗(φ0) + τα∗(φ0),

τ [α∗ (φ) − α∗ (φ0)] if δ > (1 − τ)α∗(φ0) + τα∗(φ0).

By noting that in the second case in (54), the absolute value of l(δ, φ)− l(δ, φ0) is maximized at

either of the boundary values of δ, it can be shown that |l(δ, φ) − l(δ, φ0)| can be bounded from

above by |α∗ (φ) − α∗(φ0)| + |α∗ (φ) − α∗ (φ0)|. Symmetrically, on φ ∈ Φ+
0 , |l(δ, φ) − l(δ, φ0)|

can be bounded from above by the same upper bound. Hence, supδ |Rn (δ) − R∞ (δ)| can be

bounded by

sup
δ

|Rn (δ) − R∞ (δ)| ≤ sup
δ

∫

Φ
|l(δ, φ) − l(δ, φ0)| dπφ|X

≤
∫

Φ
|α∗ (φ) − α∗(φ0)| dπφ|X +

∫

Φ
|α∗ (φ) − α∗ (φ0)| dπφ|X ,

which converges to zero by the weak convergence of πφ|X , boundedness of |α∗(φ)−α∗(φ)|, and

continuity of α∗ (φ) and α∗ (φ) at φ = φ0. This completes the proof.

B Asymptotic Analysis with Discrete Benchmark Prior

This appendix modifies the large-λ asymptotic analysis of Section 5 in the main text to allow

the benchmark prior π∗
α|φ to be discrete. In particular, suppose that the benchmark conditional

prior is a mixture of a finite number of multiple probability masses. Such a benchmark prior

can arise if the benchmark model corresponds to Bayesian model averaging over observationally

equivalent point-identified models, e.g., just-identified SVARs differing in terms of the causal

ordering assumptions. See, e.g., Giacomini et al. (2017) for the analysis of Bayesian model

averaging over the observationally equivalent candidate models. An alternative setting that

yields a discrete benchmark conditional prior is a locally-identified (but not globally-identified)

structural model in which knowledge of the reduced-form parameters can pin down the struc-

tural parameters up to a discrete set of values, i.e., ISθ(φ) is a set with a finite number of

elements. See Bacchiocchi and Kitagawa (2019) for a robust Bayesian approach to inference

on locally-identified SVARs.

Given the reduced-form parameter φ, we denote the discrete set of support points of π∗
α|φ

by {α1(φ), . . . , αM(φ)(φ)}, where M(φ) < ∞ is the number of support points that can depend
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on φ. We represent the benchmark prior as a discrete measure with those support points

π∗
α|φ(α) =

M(φ)∑

m=1

wm(φ) ∙ 1αm(φ)(α), wm(φ) > 0 ∀m,
M(φ)∑

m=1

wm(φ) = 1, (55)

where 1α′(α) is an indicator function for α = α′. We accordingly define α∗(φ) ≡ min1≤m≤M(φ) αm(φ)

and α∗(φ) ≡ max1≤m≤M(φ) αm(φ) for the discrete benchmark prior case.

In the context of the Bayesian model averaging over observationally equivalent models

(where M(φ) = M̄ should be independent of φ), the probability weights (w1(φ), . . . , wM̄ (φ))

specify benchmark credibility over each of M̄ point-identified models. Our robust Bayesian

analysis applied to the model averaging setting concerns ambiguity in the initial allocation of

the model weights.

To accommodate the discrete benchmark prior, we replace Assumption 5.1 in the main text

with the following.

Assumption B.1 At φ0 the true value of the reduced-form parameters, α∗(φ) and α∗(φ) are

continuous at φ = φ0.

With the discrete benchmark conditional prior, Theorem B.2 below shows large λ and large

n asymptotic results for the conditional minimax decision, which is analogous to Theorems 5.2

and 5.3 in the main text covering the case with the continuous benchmark prior.

Theorem B.2 Assume that the benchmark conditional prior π∗
α|φ is given in the form of (55).

Suppose Assumption 3.2 (ii) and (iv) hold.

(i) Let h(δ, α) = (δ − α)2.

lim
λ→∞

∫

Φ
rλ (δ, φ) dπφ|X =

∫

Φ

[
(δ − α∗(φ))2 ∨ (δ − α∗(φ))2

]
dπφ|X

holds whenever the right-hand side integral is finite.

(ii) When h(δ, α) = ρτ (α − δ) ,

lim
λ→∞

∫

Φ
rλ (δ, φ) dπφ|X =

∫

Φ
[(1 − τ)(δ − α∗(φ)) ∨ τ (α∗(φ) − δ)] dπφ|X

holds, whenever the right-hand side integral is finite.

Theorem B.3 Assume that the benchmark conditional prior π∗
α|φ is given in the form of (55).

Suppose Assumption 3.2 and Assumption B.1 hold. Let

δ̂∞ = arg min
δ∈D

{

lim
λ→∞

∫

Φ
rλ (δ, φ) dπφ|X(φ)

}
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be the conditional gamma-minimax estimator in the limiting case λ → ∞.

(i) When h(δ, α) = (δ − α)2 , δ̂∞ → 1
2 (α∗(φ0) + α∗(φ0)) as the sample size n → ∞ for

almost every sampling sequence.

(ii) When h(δ, α) = ρτ (α − δ) , ρτ (u) = τu ∙ 1 {u > 0} − (1 − τ)u ∙ 1 {u < 0} , δ̂∞ →

(1 − τ) α∗(φ0) + τα∗(φ0) as the sample size n → ∞ for almost every sampling sequence.

Proof of Theorem B.2. (i) Fix δ and φ. For short notation, denote
(
α1(φ), . . . , αM(φ)(φ)

)

by (α1, . . . , αM ). By Lemma A.4, λ → ∞ implies κλ(δ, φ) → 0. Hence, similarly to equation

(51) in the proof of Theorem 5.2, the pointwise limit limλ→∞ rλ(δ, φ) can be obtained by

lim
κ→0

∑
m(δ − αm)2 exp

{
(δ−αm)2

κ

}
wm

∑
m exp

{
(δ−αm)2

κ

}
wm

.

Let α? ≡ arg max{α1,...,αM}(δ − αm)2, M∗ = arg maxm(δ − αm)2, and w∗ =
∑

m∈M∗ wm > 0.

Then,

∑
m(δ − αm)2 exp

{
(δ−αm)2

κ

}
wm

∑
m exp

{
(δ−αm)2

κ

}
wm

=
(δ − α?)2w∗ +

∑
m/∈M∗(δ − αm)2 exp

{
− (δ−α?)2−(δ−αm)2

κ

}
wm

w∗ +
∑

m/∈M∗ exp
{
− (δ−α?)2−(δ−αm)2

κ

}
wm

→ (δ − α?)2 = (δ − α∗(φ))2 ∨ (δ − α∗(φ))2 ,

as κ → 0. The dominated convergence theorem leads to the conclusion of (i). The proof of (ii)

proceeds similarly, and we omit a proof for brevity.

Proof of Theorem B.3. (i) Posterior consistency of φ, compactness of the parameter

space of α (Assumption 3.2 (i) and (ii)), and Assumption B.1 imply the convergence of Rn(δ)

to R∞(δ), as shown in equation (53) in the proof of Theorem 5.3. Repeating the argument

of the proof of Theorem 5.3, this convergence can be shown to be uniform in δ. Hence,

δ̂∞ → arg minδ (δ − α∗(φ))2 ∨ (δ − α∗(φ))2 = 1
2 (α∗(φ0) + α∗(φ0)) holds.

The claim of (ii) can be shown similarly.

C The Benchmark Prior Specification in the SVAR application

This section provides the precise construction of the benchmark prior used in our empirical

application of Section 7.

Let ft(x; c, σ, ν) be the pdf of Student’s t-distribution with location c, scale σ, and degree

of freedom ν. The prior distribution of (βs, βd) are independent t-distributions truncated by
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the sign constraints βs ≥ 0 and βd ≤ 0:

∂2π(βs,βd)

∂βd∂βs

=
ft(βs; cs, σ, ν)

1 −
∫∞
0 ft(βs; cs, σ, ν)dβs

∙
ft(βd; cd, σ, ν)

∫ 0
−∞ ft(βd; cd, σ, ν)dβd

,

where cs = 0.6, cd = −0.6, σ = 0.6, and ν = 3.

Regarding the conditional prior of the structural variances (d1, d2) given (βs, βd), we spec-

ify independent independent inverse gamma distributions with shape parameter κi and scale

parameter τ i, i=1,2. We set the shape parameters to be common across the distributions,

with κ1 = κ2 = 2. Let ε̂t = (ε̂dt, ε̂st)′ be the residuals of the least-square estimation of the

reduced-form VAR, and let Ω̂ = (T − 8)−1
∑T

t=9 ε̂tε̂
′
t. We set scale parameters τ1 and τ2 to

τ i = κia
′
iΩ̂ai, where a′i is the i-th row vector of A0.

Next, we specify a conditional prior for the remaining structural coefficients, A = (c, A1, . . . , AL),

given (βs, βd, d1, d2). Let bi, i = 1, 2, be the i-th row vector of A with length (2L + 1). We

specify the prior for b1 and b2 to be independent multivariate Gaussian, and denote bi’s mean

vector and variance-covariance matrix by mi and Mi, respectively. We set m′
i = (0, a′i,0

′), and

let Mi be the diagonal matrix whose j-th element, j = 1, . . . , (2L + 1), corresponds to j-th

element of the following vector

v3 = η2
0

(
η2

1

v1 ⊗ v2

)

,

where η0 = 0.2, η1 = 100, v1 = (1/(12), 1/(22), . . . , 1/(L2))′, and v2 is the vector of diagonal

elements of Ω̂.

D Entry Game Example

As a microeconometric application, consider the two-player entry game in ? used as the

illustrating example in Moon and Schorfheide (2012). Let πM
ij = βj + εij , j = 1, 2, be firm j’s

profit in market i, i ∈ {1, . . . , n}, if firm j is monopolistic in market i, andπD
ij = βj − γj + εij

be firm j’s profit in market i if the competing firm also enters the market i (duopolistic).

εij represents components of firm j’s profits in market i that are known by the firms but

not observed by the econometrician. We assume (εi1, εi2) follow N (0, I2) independently and

identically over i. We restrict our analysis to the pure strategy Nash equilibrium, and assume

that the decisions are strategic substitutes, so γ1, γ2 ≥ 0. The data consist of iid observations

on entry decisions of the two firms. The non-redundant set of reduced-form parameters are

φ = (φ11, φ00, φ10) , which are, respectively, the probabilities of observing a duopoly, no entry, or
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the monopoly of firm 1. This game has multiple equilibria depending on (εi1, εi2); the monopoly

of firm 1 and the monopoly of firm 2 are pure strategy Nash equilibria if εi1 ∈ [−β1,−β1 + γ1]

and εi2 ∈ [−β2,−β2 + γ2]. Let ψ ∈ [0, 1] be a parameter for an equilibrium selection rule

representing the probability that the monopoly of firm 1 is selected given values of (εi1, εi2)

leading to multiplicity of equilibria. Let the parameter of interest be α = γ1, the substitution

effect for firm 1 from firm 2 entering. The vector of full structural parameters augmented by the

equilibrium selection parameter ψ is (β1, γ1, β2, γ2, ψ), with the additional a priori restriction

γ1, γ2 ≥ 0. This parameter vector can be reparametrized into (β1, γ1, φ11, φ00, φ10).
6 Hence, in

our notation, θ can be set to θ = (β1, γ1) and α = γ1. The identified set for θ does not have a

convenient closed-form, but it can be expressed implicitly as

ISθ(φ) =

{

(β1, γ1) : γ1 ≥ 0, min
β2∈R2,γ2≥0,ψ∈[0,1]

‖φ − φ (β1, γ1, β2, γ2, ψ)‖ = 0

}

, (56)

where φ (∙) is the map from structural parameters (β1, γ1, β2, γ2, ψ) to reduced-form parameters

φ. Projecting ISθ(φ) to the γ1-coordinate gives the identified set for α = γ1.

For this example the reduced-form parameters φ relates to the full structural parameter

θ̃ = (β1, γ1, β2, γ2, ψ) by

φ11 = G(β1 − γ1)G(β2 − γ2), (57)

φ00 = (1 − G(β1))(1 − G(β2)),

φ10 = G(β1) [1 − G(β2)] + G(β1 − γ1) [G(β2) − G(β2 − γ2)]

+ψ [G(β1) − G(β1 − γ1)] [G(β2) − G(β2 − γ2)] .

where G(∙) is the CDF of the standard normal distribution.

As a benchmark prior πθ̃ (β1, γ1, β2, γ2, ψ) , consider for example Priors 1 and 2 in Moon and

Schorfheide (2012). Posterior draws of θ̃ can be obtained by the Metropolis-Hastings algorithm

or its variants. Plugging them into (56) the yields the posterior draws of φ. The transformation

6See Appendix D below for concrete expressions of this transformation.
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(56) offers the following one-to-one reparametrization mapping between θ̃ and (β1, γ1, φ):

β1 = β1, (58)

γ1 = γ1,

β2 = G−1

(

1 −
φ00

1 − G(β1)

)

≡ β2 (β1, φ) ,

γ2 = G−1

(

1 −
φ00

1 − G(β1)

)

− G−1

(
φ11

G(β1 − γ1)

)

≡ γ2 (β1, γ1, φ) ,

ψ =
[1 − G(β1)] [φ10 + φ11 − G(β1 − γ1)] + [G(β1) − G(β1 − γ1)] φ00

[G(β1) − G(β1 − γ1)]
[
1 − G(β1) − φ00 −

1−G(β1)
G(β1−γ1)φ11

] ≡ ψ (β1, γ1, φ) .

As in the SVAR example above, the conditional benchmark prior for θ = (β1, γ1) given φ

satisfies

πθ|φ (β1, γ1) ∝ πθ̃ (β1, γ1, β2 (β1, φ) , γ2 (β1, γ1, φ) , ψ (β1, γ1, φ)) × |det (J(β1, γ1, φ))| ,

where J(β1, γ1, φ) is the Jacobian of the transformation shown in (57). Solving for the multiplier

minimax estimator for γ1 follows similar steps to those in Algorithm 6.1, except for a slight

change in Step 1. Now, in the importance sampling step given a draw of φ, we draw (β1, γ1)

jointly from a proposal distribution π̃θ|φ (β1, γ1) even though the object of interest is γ1 only.

That is, to approximate rκ (δ, φ) = ln
∫
ISγ1 (φ) exp {h(δ, γ1)/κ} dπ∗

γ1|φ
, we draw N draws of

(β1, γ1), from a proposal distribution π̃θ|φ (β1, γ1) (e.g., a diffuse bivariate normal truncated to

γ1 ≥ 0) and compute

r̂κ (δ, φm) = ln

[∑N
i=1 w (β1i, γ1i, φ) exp {h(δ, γ1i)/κ}

∑N
i=1 w (β1i, γ1i, φ)

]

,

where

w (β1, γ1, φ) =
πθ̃ (β1, γ1, β2 (β1, φ) , γ2 (β1, γ1, φ) , ψ (β1, γ1, φ)) × |det (J(β1, γ1, φ))|

π̃θ|φ (β1, γ1)
.
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