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Abstract

There exists a useful framework for jointly implementing Durbin-Wu-Hausman exogeneity

and Sargan-Hansen overidentification tests, as a single artificial regression. This note sets
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provides an empirical example and some Monte Carlo results.
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1 Introduction

Specification testing of structural linear simultaneous equations models with endogenous

regressors is comprehensively surveyed in Hausman [1983]. A commonly applied test of the

null hypothesis of exogenous regressors in linear regression models, under the maintained

assumption of the exogeneity of a set of instruments, is due to Durbin [1954], Hausman [1978],

Wu [1973]. If more instruments are available than necessary for identification, i.e. if the

model is overidentified, again under the maintained assumption of the exogeneity (validity)

of just identifying instruments, then a test of the validity of the imposed overidentifying

restrictions, due to Sargan [1958, 1988], is another useful specification test.1

This note shows how, following a first-stage regression, in a single linear regression – on

the independent variables, the first-stage residuals and a set of candidate overidentifying in-

struments – under the maintained assumption of the validity of just identifying instruments,

(i) the coefficients of the structural regression equation can be consistently estimated, (ii)

the null hypothesis of exogenous regressors can be tested and, in an overidentied model, (iii)

the null hypothesis of the validity of overidentifying restrictions can be tested as well.

Importantly, the analysis of the linear regression model is interesting because the insights

gained from it carry over to nonlinear models, such as nonlinear regression models and

Generalized Linear Models [McCullagh and Nelder, 1983] in which there typically exist a

variety of definitions for residuals – including Pearson, Anscombe, deviance residuals – and

it is not a priori clear which one to use as the basis to construct test statistics and measure of

fit. Such models can be estimated using an artificial or Gauss-Newton regression [Davidson

and MacKinnon, 1990, 1993, 2001], and this algorithm provides the conceptual link to the

analysis within the linear regression framework.

While the idea is straightforward it does not appear to be discussed in the literature,

so I hope that this paper can assist practitioners, by alerting them to a tool that can be

implemented easily and usefully in a variety of widely applied regression models.

2 Linear Model

2.1 Specification Testing

Consider the linear regression model

y = X1β1 + X2β2 + ε, (1)

1See also Hansen [1982] for applications to nonlinear models.
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where y is an N × 1 vector, X1 and X2 are N × n1 and N × n2 matrices of regressors

with full column rank, with β1 and β2 being commensurate n1- and n2-vectors of regression

coefficients, and ε an N -vector of disturbances satisfying E[X′2ε] = 0 and E[X′1ε] 6= 0, i.e.

the regressors X1 are endogenous.

Also, suppose that Z is an N×m matrix of instruments for X1, with m > n1, full rank m,

and E[Z′(I−PX2)X1] having full rank n1, where PX2 = X2(X
′
2X2)

−1X′2. i.e. the order and

rank conditions for identification of equation (1) are satisfied.2 The maintained assumption

is that a subset of n1 columns of Z is uncorrelated with the structural regression errors

ε. Furthermore, it is assumed that the elements of ε are mean zero and homoskedastic,

conditional on X and Z. The case of conditionally heteroskedastic errors is discussed in

section 2.4 below.

Let X = [X1,X2] denote the N × (n1 + n2) matrix of regressors, and W = [X2,Z] the

N × (n2 +m) matrix of instruments. Also, let PW = W(W’W)−1W′. For X̂1 = PWX1 the

fitted values of the first-stage regressions,

y = X̂1β1 + X2β2 +
(
X1 − X̂1

)
β1 + ε (2)

= X̂β + (I−PW ) X1β1 + ε (3)

= X̂β̂2SLS + X̂
(
β − β̂2SLS

)
+ (I−PW ) X1β1 + ε (4)

where X̂ = [X̂1,X2] = PWX and β̂2SLS denotes the two-stage least squares estimator for

β′ = [β′1, β
′
2].

We follow the interpretation of Stock [2015] that, under the maintained assumption that

at least n1 valid instruments are available, one can test the null hypothesis of all instruments

being valid, i.e. of the model being overidentified, against the alternative that up to m− n1

instruments are invalid. Define the second-stage regression residuals

ε̂ = y− X̂β̂2SLS (5)

= X̂
(
β − β̂2SLS

)
+ (I−PW ) X1β1 + ε, (6)

and notice that

ε̂ = −X̂ (X′PWX)
−1

X′PW ε+ (I−PW ) X1β1 + ε (7)

=
(
I−PWX (X′PWX)

−1
X′PW

)
ε+ (I−PW ) X1β1. (8)

2The relevance condition implies that, in the reduced form system for X1, X1 = X2Π1 + ZΠ2 + u, Π2 is

identified, Π2 =
(
E[Z′(I−PX2

)Z]
)−1 E[Z′(I−PX2

)X1].
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Therefore, a version of the Sargan test of the validity of the overidentifying restrictions in

this model is based on the test statistic

SN = ε̂′PW ε̂ (9)

= ε′
(
PW −PWX (X′PWX)

−1
X′PW

)
ε. (10)

Since the rank of the central matrix is equal to its trace, and its trace is equal to m − n1,

under the null hypothesis the statistic SN is asymptotically distributed σ2
εχ

2
m−n1

, where σ2
ε

is the conditional variance of the regression errors ε.

The Durbin-Wu-Hausman test examines the null hypothesis of the exogeneity of the

regressors X1, against the alternative that these regressors are correlated with the regression

error term. It is based on the OLS estimator of the n1-vector γ in the regression

y = X1β1 + X2β2 + Ûγ + ν, (11)

where Û = (I−PW ) X1 are the residuals of the first-stage regressions, or so-called control

functions. This regression can be interpreted as an “artificial regression” in the sense of

Davidson and MacKinnon [1990, 1993, 2001]3 because under the null hypothesis of exogeneity

the coefficient vector on the control functions γ = 0.4 The Durbin-Wu-Hausman test

therefore rejects the null hypothesis of exogeneity when γ̂ is statistically significant. It

is well known that the OLS estimator of β in this regression is identical to the two-stage

least squares estimator β̂2SLS.

Now consider the expanded artificial regression

y = X1β1 + X2β2 + Z̄δ + Ûγ + ξ (12)

= Xβ + Z̄δ + Ûγ + ξ, (13)

where Z̄ is an arbitrary subset of m − n1 columns of Z. Under the null hypothesis that all

overidentifying restrictions are valid, the m − n1-vector δ = 0. And if and only if the null

hypothesis is true, the OLS estimator of β is equal to the two-stage least squares estimator

and the OLS estimator of γ permits a Durbin-Wu-Hausman exogeneity test.5 Incidentally,

3See Davidson and MacKinnon [1993], chapters 3.6 and 6.
4This can be seen from the reduced form system X1 = X2Π1 + ZΠ2 + u, E

[
X′u

]
= 0 and E[Z′u] = 0,

so that X1 is correlated with ε if, and only if, E
[
X′1ε|X,Z

]
= E

[
Π′1X

′
2ε+ Π′2Z

′ε+ u′ε|X,Z
]

= E[ε′u|X,Z] =
γ′ 6= 0′ a.s.

5Analogous to the argument related to (11), this follows from the reduced form for X1, orthogonality
of Z and u - and hence, in particular, of Z̄ and u -, so that under the null hypothesis, E[ε′u|X,Z] =

E[δ′Z̄
′
u+ γ′u′u|X,Z] = γ′ 6= 0′ a.s.
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these considerations show that the exogeneity test is not independent of the validity of all

the instruments used to implement the test.

Since Û is orthogonal to W,

PWy = X̂β + Z̄δ + PW ξ. (14)

Here, PW ξ, captures the exogenous part of the disturbances under the hypothesis that all

instruments are valid. Define PX̂ = X̂
(
X̂
′
X̂
)−1

X̂
′
. Then,

δ̂ = δ +
(
Z̄
′
(I−PX̂) Z̄

)−1
Z̄
′
(I−PX̂) PW ξ (15)

= δ +
(
Z̄
′
(
I−PWX (X′PWX)

−1
X′PW

)
Z̄
)−1

× Z̄
′
(
I−PWX (X′PWX)

−1
X′PW

)
PW ξ. (16)

Therefore, under the null hypothesis, the statistic

S̃N = δ̂′
(
Z̄
′
(
I−PWX (X′PWX)

−1
X′PW

)
Z̄
)
δ̂ (17)

= ξ′
(
PW −PWX (X′PWX)

−1
X′PW

)
ξ (18)

has a σ2
ξχ

2
m−n1

distribution and thus S̃N/σ̂
2
ξ is equivalent to the test statistic SN/σ̂

2
ε , where

σ̂2 denotes the squared standard error of the respective regression.6

Hence, the expanded artificial regression (13) implements the Durbin-Wu-Hausman ex-

ogeneity and Sargan overidentification tests as a single regression. In this regression, the

null hypothesis that this paper focusses on is that δ = 0, given that the hypothesis γ = 0

is rejected. As the Monte Carlo simulations in subsection 2.3 show, the first test does not

significantly affect the size or power of the second test.

2.2 An Empirical Illustration

Table 1 provides an empirical example. It uses data provided by the statistical software Stata

for the purpose of illustrating the Sargan test.7 For the fifty US states, the data comprises

rental rates for apartments (rent), next to housing values (hsngval) and the percentage of the

state’s population living in urban areas (pcturban). The housing values regressor is treated

6The test of the null hypothesis that δ = 0 is typically implemented as an Fm−n1,N−(n2+m+1) test. For
large N , the squared standard error of the regression σ̂2

ξ converges in probability to σ2
ξ , so that this F -test

is asymptotically equivalent to a χ2
m−n1

test.
7The data can be downloaded from within Stata, using webuse hsng2.
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as potentially endogenous in the regression of rents on housing values and the percentage of

urban population at the state level. Median family income and 3 regional dummies - for the

state’s central, southern and western areas - are considered as instruments so that there are

three over-identifying restrictions. The example shows that both the Sargan test and the

test of the joint significance of Z̄, the three regional dummies, reject the null hypothesis of

the validity of the over-identifying restrictions.

2.3 Monte Carlo Simulation

The design of the Monte Carlo study follows Hahn and Hausman [2002] and Lee and Okui

[2009]. The data is generated as

y1i = βz′iπ + z′iγ + v1i

y2i = z′iπ + v2i, i = 1, · · · , n

where

zi
i.i.d.∼ N(0, IK), K = 5(

v1i

v2i

)
i.i.d.∼ N

((
0

0

)
,

[
1 ρ

ρ 1

])
.

Here, πk = φ, k = 1, · · · , K, and φ is chosen such that the theoretical R2 of the first-stage

regression, R2 = Kφ2

Kφ2+1
, equals 0.01 and 0.2, respectively; these two cases capture situations

with weak and strong instruments, respectively.8 The parameter ρ is set to 0.5 and 0.9, to

simulate cases of moderate and strong endogeneity. The parameter β is set such that the

errors in the structural equation y1i = βy2i + εi, i.e. εi = v1i − βv2i, have unit variance. We

investigate the size of specification tests when γ = 0, and their power when γ1 = 0.1 and

γk = 0, k = 2, · · · , K. We run 2000 simulations, for sample sizes of n = 250 and n = 1000.

Table 2 summarises the results of our simulations. The size of the proposed test is

generally slightly larger than the size of the conventional Sargan test, although the difference

diminishes the stronger the simulated endogeneity is. The power of the proposed test, on

the other hand, exceeds the one of the conventional Sargan test.9 The results also show that

both, the size and power of the proposed test, do not hinge on this being a second-stage test,

following a first-stage Durbin-Wu-Hausman exogeneity test.

8The values of φ are 0.04495 and 0.22361.
9The reason for the strong power is that in the simulations the additional instruments Z̄ improve the fit

of the model.
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2.4 Extension to Heteroskedastic Models

Davidson et al. [1985] and Wooldridge [1995] discuss diagnostic tests based on the score or

Lagrange multiplier principle that are heteroskedasticity robust.10 Their approach can be

adapted to the test proposed in this paper.

Let ν̂ denote the residuals of the regression (11). Note that this regression equation is

simply (13), subject to the restriction that δ = 0, i.e. subject to the null hypothesis of valid

overidentifying restrictions. And define R̂ as theN×(n2+m) matrix of residuals of the regres-

sion of Z̄ onto [X, Û]. Then, regress an n-vector of ones onto ν̂ ·R̂ = [ν̂iR̂ik]i=1,··· ,n;k=1,··· ,n2+m,

without intercept, and retrieve the sum of squared residuals, SSR. Then, the test statistic

N−SSR is distributed χ2
m−n1

under the null hypothesis that the overidentifying restrictions

are valid. Appendix A provides a formal derivation.

3 Extension to Nonlinear Models

A nonlinear version of model (1) is given by

y = x (β) + ε, (19)

where x(·) is a known, differentiable function of β ∈ Rn1+n2 . This function is the inverse

link function in the class of Generalized Linear Models discussed in McCullagh and Nelder

[1983] who also propose an estimation algorithm which amounts to an iterative weighted

least squares procedure, a variant of the Newton-Raphson algorithm.

Endogeneity in the nonlinear model amounts to n1 elements of E [∇βx(β)′ε] being non-

zero.11

Davidson and MacKinnon [1990, 1993, 2001] have shown how an “artificial regression”,

or Gauss-Newton regression, can be used to test the null hypothesis of exogeneity, i.e.

the consistency of the nonlinear least squares (NLS) estimator β̂, under the maintained

hypothesis of a set of valid instruments Z.

The NLS estimator solves

X
(
β̂
)′ (

y− x
(
β̂
))

= 0, (20)

where X(β) = ∇βx(β) is assumed to have full column rank in a neighborhood about the

10Wooldridge [2010] discusses a heteroskedastic robust version of the Durbin-Wu-Hausman test and the
Sargan test as in 9. See also Windmeijer et al. [2018] and Chao et al. [2014].

11This can be thought of as β′ = (β′1, β
′
2), where β1 ∈ Rn1 and β2 ∈ Rn2 , and X1 = ∇β1x(β) satisfying

E[X′1ε] 6= 0 at the true parameter vector β.

7



true population β.

As an analogue to the residual based exogeneity test in the linear model as implemented

in (11), Davidson and MacKinnon [1993] propose the test of the null hypothesis of τ = 0 in

the regression

y− x
(
β̂
)

= X
(
β̂
)
α + (I −PW )X∗

(
β̂
)
τ + ζ, (21)

where X∗ are the m−n1-columns of X that are not annihilated by the orthogonal projector

(I − PW ) and W = [X2,Z] is a set of m + n2 instruments.12 The contribution of (I −
PW )X∗

(
β̂
)

can again be viewed as a set of control functions. This is an artificial or Gauss-

Newton regression because under the null hypothesis one would expect the least squares

estimator of τ to be statistically insignificant.13 The regressand in this Gauss-Newton

regression is ε̂ = y− x
(
β̂
)

.

Now consider the instrumental variable estimator β̃ which satisfies

X
(
β̃
)′

PW

(
y− x

(
β̃
))

= 0. (22)

The residuals induced by the IV estimator are ε̃ = y−x
(
β̃
)

. The Sargan test of the validity

of over-identifying restrictions is14

TN = ε̃′PW ε̃ (23)

≈
(
y− x (β)−X (β)

(
β̃ − β

))′
PW

(
y− x (β)−X (β)

(
β̃ − β

))
(24)

=

((
I −X (β)

(
X
(
β̃
)′

PWX
(
β̃
))−1

X
(
β̃
)′

PW

)
ε

)′
PW

×

((
I −X (β)

(
X
(
β̃
)′

PWX
(
β̃
))−1

X
(
β̃
)′

PW

)
ε

)
(25)

= ε′

(
PW −PWX (β)

(
X
(
β̃
)′

PWX
(
β̃
))−1

X
(
β̃
)′

PW

)
ε. (26)

Under the null hypothesis, β̃ is consistent for β, and provided X(·) is continuous, X(β̃) tends

to X(β) in large samples. Then, under the null hypothesis, TN is asymptotically distributed

χ2
m−n1

.

12Here, X2 = ∇β2
x(β), satisfying E[X′2ε] = 0.

13As in the linear case, the reduced form for X1 = ∇β1
x(β) = ∇β2

x(β)Π1 + ZΠ2 + u, E[∇β1
x(β)′ε] = 0

and E[Z′ε] = 0, implies ∇β1x(β) is endogenous if, and only if, E[ε′u|X(β),Z] = τ ′ 6= 0′.
14In the approximation following the definition of TN , we ignore higher-order terms.
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Now consider an expanded Gauss-Newton regression,

ε̂ = X
(
β̂
)
α + Z̄π + (I −PW )X∗

(
β̂
)
τ + ζ, (27)

where Z̄ is an arbitrary subset of m − n1 columns of Z. Under the null hypothesis of

exogeneity, just as in (13), one would expect the least squares estimates τ̂ to be statistically

insignificant.15 Also, analogous to (13), since

PW ε̂ = PWX
(
β̂
)

+ Z̄π + PW ζ, (28)

it follows that

π̂ = π +

(
Z̄
′

(
I −PWX

(
β̂
)(

X
(
β̂
)′

PWX
(
β̂
))−1

X
(
β̂
)′

PW

)
Z̄

)−1

×Z̄
′

(
I −PWX

(
β̂
)(

X
(
β̂
)′

PWX
(
β̂
))−1

X
(
β̂
)′

PW

)
ζ, (29)

a test statistic based on π̂ satisfies

T̃N = π̂′

(
Z̄
′

(
I −PWX

(
β̂
)(

X
(
β̂
)′

PWX
(
β̂
))−1

X
(
β̂
)′

PW

)
Z̄

)
π̂ (30)

= ζ ′

(
PW −PWX

(
β̂
)(

X
(
β̂
)′

PWX
(
β̂
))−1

X
(
β̂
)′

PW

)
ζ. (31)

Under the null hypothesis, β̂ is consistent for β, and T̃N is distributed asymptotically

σ2
ζχ

2
m−n1

.

Hence, again, the expanded artificial regression implements the exogeneity and overiden-

tification test is a single regression.

4 Conclusions

This note presents a useful but not widely known framework for jointly implementing Durbin-

Wu-Hausam exogeneity and Sargan-Hansen overidentification tests, as a single artificial

regression. It covers linear models and discusses its extension to a class of non-linear models.

Future research might explore how to adapt this methodology to semi-parametric single

index models [Horowitz, 2009] and quantile regression models in which the control function

15Given the orthogonality of Z̄ and u in the reduced form system, under the null hypothesis,
E[ε′u|X(β),Z] = π′E[Z̄

′
u+ γ′u′u|X(β),Z] = τ ′ 6= 0.
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approach is already widely employed [Blundell and Powell, 2004, Lee, 2007].
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A Heteroskedasticity Robust Test

Assume the errors in (13) are i.i.d. normal, with mean zero and heteroskedastic variances,

conditional on X and Z.16 Then, under the null hypothesis δ = 0,

y′(I−PX,Û)Z̄ = ν ′(I−PX,Û)Z̄, (32)

with mean zero and variance-covariance matrix Z̄
′
(I − PX,Û)Ω(I − PX,Û)Z̄, where Ω is a

diagonal matrix when the errors are conditionally heteroskedastic. Therefore, under the

assumption of normality, the statistic

L = y′(I−PX,Û)Z̄
[
Z̄
′
(I−PX,Û)Ω(I−PX,Û)Z̄

]−1
Z̄
′
(I−PX,Û)y (33)

is distributed χ2
m−n1

. Using results in Davidson et al. [1985] and White et al. [1980], it can

be implemented by replacing Ω with Ω̂ = diag(ν̂i), where ν̂ is the vector of residuals of

regression (11). Let L̂ denote this feasible test statistic.

Now consider the regression of an n-vector of ones onto ν̂ · R̂. Notice, first, that

ν̂ · R̂ = diag(ν̂i)(I−PX,Û)Z̄ (34)

= ν̂ ′(I−PX,Û)Z̄ (35)

= y′(I−PX,Û)Z̄ (36)

Therefore, the resulting sum of squared residuals is

SSR = N − ν̂ ′(I−PX,Û)Z̄
[
Z̄
′
(I−PX,Û)diag(ν̂i)(I−PX,Û)Z̄

]−1
Z̄
′
(I−PX,Û)ν̂ (37)

= N − y′(I−PX,Û)Z̄
[
Z̄
′
(I−PX,Û)diag(ν̂i)(I−PX,Û)Z̄

]−1
Z̄
′
(I−PX,Û)y (38)

= N − L̂. (39)

Therefore, L̂ = N − SSR.

B Tables

16Absent the assumption of normality, the derivation of the distribution of the test statistic holds
asymptotically, under assumptions as in White et al. [1980].
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Table 1: Example

2SLSa DWHc Expandedc

rent rent rent
hsngval 0.00224∗∗∗ 0.00224∗∗∗ 0.00387∗∗∗

(6.82) (8.36) (9.64)

pcturban 0.0815 0.0815 -0.498∗

(0.27) (0.33) (-2.15)

Û -0.00159∗∗∗ -0.00322∗∗∗

(-3.99) (-6.86)

2.region 1.529
(0.23)

3.region 7.743
(1.14)

4.region -40.61∗∗∗

(-4.62)

constant 120.7∗∗∗ 120.7∗∗∗ 88.27∗∗∗

(7.93) (9.71) (6.22)
Test Sargand F-teste

p-value 0.00103 0.0002
N 50 50 50
R2 0.599 0.754 0.845

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes:
a 2SLS: hsngval instrumented by family income and 3 region dummies.
b Durbin-Wu-Hausman regression.
c Expanded artificial regression, as in equations (12) and (13).
d The Sargan test statistic has a χ2

3 distribution.
e The test statistic has an F3,43 distribution.
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Table 2: Monte Carlo Simulations

n ρ Instruments Sargan Testa Testa,
given

DWHb rejects H0

Sizec

250 0.5 strong 0.058 0.126 0.124
250 0.9 strong 0.051 0.062 0.068
250 0.5 weak 0.055 0.086 0.083
250 0.9 weak 0.041 0.058 0.061
1000 0.5 strong 0.061 0.146 0.146
1000 0.9 strong 0.051 0.066 0.068
1000 0.5 weak 0.076 0.121 0.106
1000 0.9 weak 0.046 0.068 0.059

Powerd

250 0.5 strong 0.947 0.998 0.998
250 0.9 strong 1.000 1.000 1.000
250 0.5 weak 0.725 0.985 0.977
250 0.9 weak 0.789 0.977 0.997
1000 0.5 strong 1.000 1.000 1.000
1000 0.9 strong 1.000 1.000 1.000
1000 0.5 weak 0.888 1.000 1.000
1000 0.9 weak 0.925 1.000 1.000

Notes:

2000 Simulation sample draws. The nominal size of all tests is 0.05.
a Proposed test of null hypothesis that δ = 0.
b Durbin-Wu-Hausman regression based exogeneity test.
c Here, γ = 0.
d Here, γ1 = 0.1 and γk = 0, k = 2, · · · , 5.
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