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Abstract

We consider the estimation and inference in a system of high-dimensional regression equations
allowing for temporal and cross-sectional dependency in covariates and error processes, covering
rather general forms of weak dependence. A sequence of regressions with many regressors using
LASSO (Least Absolute Shrinkage and Selection Operator) is applied for variable selection purpose,
and an overall penalty level is carefully chosen by a block multiplier bootstrap procedure to account
for multiplicity of the equations and dependencies in the data. Correspondingly, oracle properties
with a jointly selected tuning parameter are derived. We further provide high-quality de-biased
simultaneous inference on the many target parameters of the system. We provide bootstrap con-
sistency results of the test procedure, which are based on a general Bahadur representation for the
Z-estimators with dependent data. Simulations demonstrate good performance of the proposed
inference procedure. Finally, we apply the method to quantify spillover effects of textual sentiment

indices in a financial market and to test the connectedness among sectors.

JEL classification: C12, C22, C51, C53
Keywords: LASSO, time series, simultaneous inference, system of equations, Z-estimation, Bahadur

representation, martingale decomposition

1 Introduction

Many applications in statistics, economics, finance, biology and psychology are concerned with
a system of ultra high-dimensional objects that communicate within complex dependency chan-
nels. Given a complex system involving many factors, one builds a network model by taking
a large set of regressions, i.e. regressing every factor in the system on a large subset of other

factors. Examples include analysis of financial systemic risk by quantile predictive graphical
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models with LASSO (Hautsch et al., 2015; Hardle et al., |2016; Belloni et all |2016), limit or-
der book network modeling via the penalized vector autoregressive approach (Héardle et al.,
2018]), analysis of psychology data with temporal and cross- sectional dependencies (Epskamp
et al.| (2016])). Another example is quantifying the spillover effects or externalities for a social
network, especially when the social interactions (or the interconnectedness) is not obvious (Man-
resa, |2013). Besides, there are numerous applications concerning association network analysis
in other fields of applied statistics, see Chapter 7 in Kolaczyk and Csardi (2014)) and Epskamp
et al.| (2018)). In general, a step-by-step LASSO procedure is very helpful for the correlation
network formation. In pursuing a highly structural approach, one certainly favors a simple set
of regressions that allows multiple insights on the statistical structure of the data. Therefore,
a sequence of regressions with LASSO is a natural path to take. Especially in cases of reduced
forms of simultaneous equation models and structural vector autoregressive (VAR) models, one
can attain valuable pre-information on the core structure by running a set of simple regressions
with LASSO shrinkage.

A first important question arising in this framework is how to decide on a unified level of
penalty. In this article we advocate an approach to selecting the overall level of the tuning pa-
rameter in a system of equations after performing a set of single step regressions with shrinkage.
A feasible (block) bootstrap procedure is developed and the consistency of parameter estimation
is studied. In addition, we provide a uniform near-oracle bound for the joint estimators. The
proposed technique is applicable to ultra-high dimensional systems of regression equations with
high-dimensional regressors.

A second crucial issue is to establish simultaneous inference on parameters, which is an im-
portant question regarding network topology inference.For example, in a large-scale linear factor
pricing model, it is of great interest to check the significance of the intercepts of cross sectional
regressions (connected with zero pricing errors), e.g. [Pesaran and Yamagatal (2017). Our ap-
proach is an alternative testing solution compared to the Wald test statistics proposed therein.
To achieve the goal of simultaneous inference, we develop a uniform robust post-selection or
post-regularization inference procedure for time series data. This method is generated from
a uniform Bahadur representation of de-biased instrumental variable estimators. In particu-
lar, we need to establish maximal inequalities for empirical processes for a general Huber’s
Z-estimation. Note that the commonly used technique for independent data, such as the sym-
metrization technique, is not directly applicable in the dependent data case, see Chapter 11.6
of [Kosorok] (2008]) for a related overview.

Our contribution lies in three aspects. First, we select the penalty level by controlling
the aggregated errors in a system of high-dimensional sparse regressions, and we establish the
bounds on the estimated coefficients. Furthermore, we show the implication of the restricted
eigenvalue (RE) condition at a population level. Secondly, an easily implemented algorithm
for effective estimation and inference is proposed. In fact, the offered estimation scheme al-
lows us to make local and global inference on any set of parameters of interest. Thirdly, we
run numerical experiments to illustrate good performance of our joint penalty relative to the
single equation estimation, and we show the finite sample improvement of our multiplier block

bootstrap procedure on the parameter inference. Finally, an application of textual sentiment



spillover effects on the stock returns in a financial market is presented.

In the literature, the fundamental results on achieving near oracle rate for penalized /¢;-
norm estimators are developed by Bickel et al.| (2009). There are many related articles on
deriving near-oracle bounds using the ¢1-norm penalization function for the i.i.d. case, such as
Belloni et al.| (2011)); Belloni and Chernozhukov| (2013). There are also many extensions to the
LASSO estimation with dependent data. For example, Kock and Callot| (2015) consider the
high-dimensional near-oracle inequalities in large vector autoregressive models. However, the
majority of the literature imposes a sub-Gaussian assumption on the error distribution; this
is rather restrictive and excludes heavy tail distributions. For dependent data, [Wu and Wu
(2016) discuss the possibility of relaxing the sub-Gaussian assumption by generalizing Nagaev-
type inequalities allowing for only moment assumptions. For the case of LASSO the analysis
assumes the fixed design, which rules out the most important applications mentioned earlier in
the introduction.

Theoretically, the LASSO tuning parameter selection requires characterizing the asymptotic
distribution of the maximum of a high dimensional random vector. |(Chernozhukov et al.| (2013a))
develop a Gaussian approximation for the maximum of a sum of high-dimensional random
vectors, which is in fact the basic tool for modern high-dimensional estimation. Here it is
applied to the LASSO inference. Moreover, Chernozhukov et al.| (2013b) deliver results for the
case of S-mixing processes. Although it is quite common to assume a mixing condition which
is at base a concept yielding asymptotic independence, it is not in general easy to verify the
condition for a particular process, and some simple linear processes can be excluded from the
strong mixing class, |Andrews| (1984). With an easily accessible dependency concept, [Zhang and
Wu (2017a)) derive Gaussian approximation results for a wide class of stationary processes. Note
that the dependence measure is linked to martingale decompositions and is therefore readily
connected with a pool of results on tail probabilities, moment inequalities and central limit
theorems of martingale theory. Our results are built on the above-mentioned theoretical works
and we extend them substantially to fit into the estimation in a system of regression equations.
In particular, our LASSO estimation is with random design for dependent data; therefore, we
need to deal with the population implications of the Restricted Eigenvalue (RE) condition.
Moreover, we show the interaction between the tail assumption and the dimensionality of the
covariates in our theoretical results.

In the meantime, the issue of simultaneous inference is challenging and has motivated a
series of research articles. For the case of i.i.d. data, Belloni et al.| (2011, 2014), Zhang and
Zhang| (2014), |[Javanmard and Montanari| (2014), van de Geer et al. (2014]), Neykov et al.
(2015)), |(Chernozhukov et al.| (2016]), Zhu and Bradic| (2018), among others, develop confidence
intervals of low-dimensional variables in high-dimensional models with various forms of de-
biased/orthogonalization methods. Still in the case of i.i.d. data, Belloni et al.|(2015b) establish
a uniform post-selection inference for the target parameters defined via de-biased Huber’s Z-
estimators when the dimension of the parameters of interest is potentially larger than the sample
size, where they employ the multiplier bootstrap to the estimated residuals. Wild and residual
bootstrap-assisted approaches are also studied in Dezeure et al.|(2017);|Zhang and Cheng| (2017)

for the case of mean regression. We pick up the line of the inference analysis of [Belloni et al.



(2015b)) and employ it in a temporal and cross-sectional dependence framework, thus making it
applicable to a rich class of high-dimensional time series. The core proof strategy is different,
as it is well known that the technique for handling the suprema of empirical processes indexed
by functional classes with dependent data is not the same as in i.i.d. cases. For instance, the
key Bahadur representation in Belloni et al. (2015b)) applies maximal inequalities derived in
Chernozhukov et al.| (2014) for i.i.d. random variables, while we derive the key concentration
inequalities based on a martingale approximation method.

Our proposed estimation framework is complement to the literature on model selection for
Gaussian Graphical model (GGM), see e.g. [Yuan and Lin| (2007), which has a wide spectrum
of applications in statistics. A GGM can be connected with LASSO regression for estimating
sparse correlation networks, and therefore is equivalent to our context with a partial correla-
tion network, Meinshausen et al,| (2006)). In particular, we may find an equation-by-equation
relationship to the GGM, and we acknowledge that a similar framework with spatial temporal
dependence can be developed. In addition, there is a big literature on social network analysis,
which embeds the network information into a dynamic model in advance, see for example [Zhu
et al. (2017, 2019)); |Chen et al. (2019); Huang et al.| (2016). Relatively, our approach is less
structural as we treat the network structure to be unknown and uncover it using LASSO.

The following notations are adopted throughout this paper. For a vector v = (v1,...,v,) ",

def

let |v]oo e maxi<j<p [vj] and [v]s = ( ?Zl\vj\s)l/s, s = 1. For a random variable X, let

1 X 1|4 e (E|X|?)'/4, ¢ > 0. For any function on a measurable space g : W — R, E,(¢g) o

n~t S {g(w)} and G, (9) e 172 Yoiqlg(we) — E{g(we)}]. Given two sequences of positive
numbers x,, and y,, write x,, < yj, if there exists constant C' > 0 such that z,,/y, < C. For any
finitely discrete measure Q on a measurable space, let £9(Q) denote the space of all measurable
functions f : Z — IR such that || f||gq e (Q|f|9)"/4 < oo, where Qf e J fdQ. For a class of
measurable functions F, the e-covering number with respect to the £7(Q)-semimetric is denoted
as N(e, F, | - laq), and let ent(e, F) = logsupg N (€||Fllg,q: F, || - llaq) With F = supcr|f]

(the envelope) denote the uniform entropy number. It should be noted that we suppress the

notation of the outer expectation E* to E and outer probability P* to P when measurability
issues are encountered. Details may be found in the Chapter 1 of [Van Der Vaart and Wellner
(1996)).

The rest of the article is organized as follows. Section [2| shows the system model with a
few examples. Section [3] introduces the sparsity method for effective prediction and provides
an algorithm for the joint penalty level of LASSO via bootstrap. In Section [4] we propose
approaches to implementing individual and simultaneous inference on the coefficients. Main
theorems are listed in Section Bl In Section [ and [0 we deliver the simulation studies and
an empirical application on textual sentiment spillover effects. The technical proofs and other
details are given in the supplementary materials. The codes to implement the algorithms are

publicly accessible via the website @Q www.quantlet.de.


https://github.com/QuantLet/LASSO_Time_Space

2 The System Model

In this section, we present a general framework which covers many applications in statistics.

Consider the system of regression equations (SRE):
Vie=X\B8) +ejp, EejpXje=0, j=1,..J t=1...n,

where X;; = (X jkt)fi - Without loss of generality, we assume the dimension of the covariates
is identical among all equations thereafter, namely K; = dim(X,;) = K, for j =1,...,J. We
allow the dimension K of X;; and the number of equations, J to be large, potentially larger than
n, which creates an interplay with the tail assumptions on the error processes €;;. Both spatial
and temporal dependency are allowed and we will obtain results on prediction and inference.
The SRE framework is a system of regression equations, which includes the following im-

portant special cases.

Example 1 (Many Regression Models). Suppose that we are interested in estimating the

predictive models for the response variables Uy, ;:
_ v TA0 K _ _
Uth—Xt Ym T Em.ts X e R, E€m7tXt—0, m=1,..., M,
with auxiliary regressions to model predictive relations between covariates:
X=X 00+ vy, EvpgX_ py =0, k=1,... K,

where X_j = (Xp¢)etr € R, and 62 is defined by the OLS estimator in population, namely
arg n%in% SP E(Xgs — X, ,6k)?. This is a special SRE model with
k b

(Y},hXj,hgj,hB?) = (Uj,taXta 6j,t7’7]0)7 ] = 17 R Mv

(Y},thj,tagj,taB?) = (X(j—M),hX—(j—M),taV(j—M),t75(0ij))> J=M+1,....J =M+ K.

It can be seen that we only put contemporaneous exogeneity conditions for X;. It is worth
mentioning that this SRE case is closely related to the semiparametric estimation framework
studied in Section 2.4 in Belloni et al.| (2015b)). Here, the understanding of the predictive
relations between covariates is important for constructing joint confidence intervals for the entire
parameter vector {(72,)K 3™ | in the main regression equations. Indeed, the construction
relies on the semi-parametrically efficient point estimators obtained from the empirical analog

of the following orthogonalized moment equation:
El(Upis — Xea Vo)Vt =0, k=1,...,K, m=1,...,M, (2.1)

where U%k’t = Unys — X——rk,ﬂ?n(fk) is the response variable minus the part explained by the
covariates other than k. Note that the empirical analog would have all unknown nuisance

parameters replaced by the estimators.

Example 2 (Simultaneous Equation Systems (SES)). Suppose there are many regression



equations in the following form:

Upns=U_ 521—1—XJ721+5m7t, m=1,...,M.

s —m,t

Move all the endogenous variables to the left-hand side and rewrite the model in the vector

form
DUt = FXt + &4,

which is also called the structural form of the model. Suppose that D is invertible. Then the

corresponding reduced form is given by
Ut:BXt—I—Vt, El/mﬂgXt:O, m = 1,...,M, (22)

with B = DT and v, = D~ '¢;. In this case the Y;+’s and Xj;’s in SRE have no overlapping

variables. A high-dimensional SES can be considered as a special case of SRE with
(}/},ta Xj,t7 Ej,ts B;)) = (Uj,t7 Xta Vjt, B;r)a ] = 17 s 7M'

Example 3 (Large Vector Autoregression Models). In the case where the covariates
involve lagged variables of the response, SRE can be written as a large vector autoregression
model. For example, the VAR(p) model,

p
Uy=Y BUy+e, EenlUie=0, m=1,....M, (2.3)
/=1
where Uy = (U4, Uag, ..., U M7t)—|—, and ¢ is an M-dimensional white noise or innovation process;

see e.g. Chapter 2.1 in |Litkepohl (2005). It is a special SRE case again with
(i/jj,ta Xj,t7 5j,t7 B?) - (Uj,t7 (Ut—[b ey Ut—[p)T7 6j,t7 (B}7 o 7Bp.>—r)7 j - 17 R M.

Such dynamics are of interest in biology to understand dynamic gene expression network
association using micro array data, see for example Opgen-Rhein and Strimmer| (2007)); [Ramirez
et al.| (2017); Dimitrakopoulou et al.| (2011)). It is understood that a crucial feature for many gene
networks is their inherent sparsity. The issue of the number of variables involved is potentially
larger than the sample size can be addressed by LASSO. Our methodology can help to analyze
a gene interaction correlation network in a high dimensional regression scheme. In particular,
suppose that each vertex represents a gene j collected at time point ¢ with Uj,; as its gene

expression and an edge connects two genes if they are correlated.

We refer to Section in the supplementary materials for more practical examples.

3 Effective Prediction Using Sparsity Method

In this section, we present our model setup and the LASSO estimation algorithm, including the

joint penalty selection procedure.



3.1 Sparsity in SRE

The general SRE structure makes it possible to predict Y} ; using X ; effectively. Note that the
dimension of X ; is large, potentially larger than n. Without loss of generality we assume exact

sparsity of B}) throughout the paper:

sjzlﬁj(-)\ogs:o(n), j=1,...J (3.1)

Comment 3.1. It is now well understood that sparsity can be easily extended to approximate
sparsity, in which the sorted absolute values of coefficients decrease fast to zero. To be

more specific, when BO is not sparse we shall define an intermediary optimal value for our

true coefficients, i.e. 37,. Let LC) = n‘lin [En{X]Tt(Bj — 5?)}2]1/2, additionally with proper
Bilo< ’
conditions on the design matrix, the optimal sparsity level is given by s¥ =  min LC’f, +

J 0<p< (K An)

(lg}ﬁaé(\ll w)p/n, where \Ifz.k is the long run variance of ﬁ > t—1€jtXjkt- Then the oracle 57,

is defined to be arg nlnn E.{X; ( ,6’0)}2 Thus an additional term involving LC- will

1B jlo<s
appear in the bound in case of the true signal B?k, is not sparse. With approximate sparsity

we mean that the true signal is not sparse but nevertheless can be approximated by an exact
sparsity set-up well, namely | 6 .| < Ak™7Y (ranked in descending order), where v > 0.5, and by

taking s7 o n'/(27) the goal would be achieved.
For this situation one employs an ¢1-penalized estimator of [3]0 of the form:

n

_ 1 A&
Bj = arg min — Z(Yj,t - X]Ttﬁ)Q + - Z |1Bjk|V (3.2)
k=1

FERT Moy

where A is the joint "optimal" penalty level and V¥ ;;’s are penalty loadings, which are defined

below in (3.3]).

A first aim is to obtain performance bounds with respect to the prediction norm:

1/2

~ of [1 & ~
1B — Bligr = [n S {xLB -0
t=1

where the outside j indicates to use the covariates in the jth equation X;; in computing the

prediction norm, and the Euclidean norm:
d f X 1/2

o e
|6j - 5;)|2 = Z B]k - .

To achieve good performance bounds, we first consider "ideal" choices of the penalty level and

the penalty loadings. Let
jk - \/» 25] thk ts

where for a moment we assume to be able to observe ¢;; = Y;; — Xt ﬂ In practice one obtains



an approximation by stepwise LASSO. Set

W o avar(Sji), (3.3)

N1 - ) def (1 — @) — quantile of 26‘/51@551,?@@ |Sik/ Yk, (3.4)

where ¢ > 1, e.g., ¢ = 1.1, and 1 — « is a confidence level, e.g. a = 0.1, where the long run
variance is denoted by avar.

Theoretically, we can characterize the rate of A°(1 — «) by the tail probability of Sj, see

Theorem also via Gaussian Approximation as in corollary To calculate \°(1 — a) from

data, we can also use a Gaussian approximation based on:

Q(1 —«) def (1 — a) — quantile of 26%1@5&?2%}( | Zik )V ]
where {Z;} are multivariate Gaussian centered random variables with the same long run co-
variance structure as {S;,}. Alternatively, we can employ a multiplier bootstrap procedure to
estimate IC empirically to achieve a better finite sample performance; see for example [Cher-
nozhukov et al. (2013a). In case of dependent observations over time, it is understood that data
cannot be resampled directly as in the the i.i.d. case, as the dependency structure of the under-
lying processes will be lost. A usual solution to this problem is to consider a block bootstrap
procedure, where the data are grouped into blocks, resampled and concatenated. In particular,
we will adopt an estimate of IC by a multiplier block bootstrap procedure. The theoretical

properties of LASSO and the tuning parameter choices are presented in Section [5.1

3.2 Multiplier Bootstrap for the Joint Penalty Level

In this subsection, we introduce an algorithm to approximate the joint penalty level via a block
multiplier bootstrap procedure, which is particularly nonoverlapping block bootstrap (NBB).

Consider the system of equations with dependent data:
Vie=X\B) +eju, EeuXju=0, j=1,..J t=1,..n, (3.5)

S1 Run the initial ¢1-penalized regression equation by equation, i.e. for the jth equation,

Kv
~ 1 P -
B; = arg min — Y-,t—XTﬁQ—l——] Bik| Vi, 3.6
)= o iy S (%= X0+ 2 3l (36)
where A; are the penalty levels and W;, are the penalty loadings. For instance, we
can take the X-independence choice using Gaussian approximation (in the heteroscedas-
ticity case): 2cy/n® {1 — o//(2K)} for Aj, where ®(-) denotes the cdf of N(0,1),
o' = 0.1, ¢ = 0.5, and choose /lvar(Xjj£;;) for the penalty loadings, where ¢;; are

preliminary estimated errors and Ivar(Xj€;¢) is an estimate of the long-run variance



S2

S3

D02 oo E( Xk €54 Xk (1—0) € (1—0)), €8 the Newey-West estimator is given by

Pn
> k(/pn) cov(Xjnaéit, Xk -0, t-0)»
ez*pn
with k(z) = (1 —|2])1(|z| < 1). We note that the X-independent penalty (using Gaussian
approximation) is more conservative, as the correlations among regressors can be adapted

in the X-dependent case (using a multiplier bootstrap) with a less aggressive penalty level.

Obtain the residuals for each equation by €;; = Yj; — XjT,tij and compute WV, =
lvar(Xjk,t§j7t).

Divide {€;.} into I, blocks containing the same number of observations b,, n = by,l,,

where b,,,l, € Z. Then choose \ = QCﬁqEﬂa), where qg?la) is the (1 — a) quantile of

(B] (B]
max 75 /Wa|, and Z5,7 are defined as
1<j<J,1<k<K‘ ik / ]k|’ ik

iby
Jk —fZ i > EXgk, (3.7)

I=(i—1)bn+1

e;; are i.i.d. N(0,1) random variables independent of the data.

The bootstrap consistency regarding ZJ[.]:] is proved in Theorem

Comment 3.2 (Block bootstrap procedures). (i) Concerning the determination of b,, we

shall report the prediction norm with several block sizes b, and select the one with the
best prediction performance in the simulation study. In addition, if it is the case that n
cannot be divided by b, with no remainder, one can simply take l,, = |n/b,]| and drop

the remaining observations.

Other forms of multiplier bootstrap with any random multipliers centered around 0 can

also be considered.

Alternative block bootstrap procedures can be adopted, such as the circular bootstrap
and the stationary bootstrap among others; see for example Lahiri et al,| (1999)) for an

overview.

4 Valid Inference on the Coefficients

With a reasonable fitting of LASSO on hand, we can proceed to investigate the issue of simul-

taneous inference. This section focuses on SRE of Example 2. We allow the covariates in each

equation to be different.

The basic idea to facilitate inference is to formulate the estimation in a semi-parametric

framework. With partialing out the effect of the nonparametric coefficient(s), we can achieve

the desired estimation accuracy of the parametric component of interest. This trick is referred

to as "Neyman orthogonalization'. Notably, the procedure is equivalent to the well known de-

sparsification procedure in the mean square loss case, which is developed for the inference on the



estimated zero coefficients by LASSO. It thus serves the same purpose of generating a (robust)
de-sparsified estimation for LASSO inference.

We list three algorithms to estimate ?k. Algorithm 1 is easy to implement and algorithm 2
is tailored to the cases of heavy-tailed distribution of the error term, as Least Absolute Deviation
(LAD) regression is well known to be robust against outliers. Algorithm 3 considers a double
selection procedure aimed at remedying the bias due to omitted variables by one step selection,
while also accounting for the cases of heteroscedastic errors.

Algorithm 1: LS-based algorithm

S1 Consider Yj; = Xjkﬂfﬁ‘?k + X;E—k) tﬁjo(fk) +¢j¢, run (post) LS LASSO procedure (for each
j), and keep the quantity XjT(_k) ]ﬁj[?_k) for each k.

S2 Run LASSO (for each j,k) by regressing X, = XjT(_k) ﬂ?(—k) + vjkt, and keep the
residuals as Uj; = Xjgs — XjT(_k)yﬁj(,k).

S3 Run LS IV regression of Y ; — XjT(_k)’tB][.l(]_k) on X ¢ using U3 as an instrument variable,

attaining the final estimator Bﬁ}
Algorithm 2: LAD-based algorithm
S1 and S2 are the same as Algorithm

S3’ Run LAD IV regression of Yj; — XjT(_ k), tﬁ}}[k) on X ; using v ; as an instrument vari-
able, attaining the final estimator Bﬁ] We refer to Belloni et al.| (2015b)); |Chernozhukov

and Hansen (2008]) for more details about how to achieve the estimator in this step.

The theoretical properties of the estimators B][l(]_k) and ;) in S1 and S2 are provided
in Corollary or (see Corollary or in the supplementary correspondingly if the
joint penalty over equations is employed), and Theorem for post LASSO, respectively. The
uniform Bahadur representation and the Central Limit Theorem of the estimator Bﬁ] in S3 or
S3’ are established in Theorem [5.4] and [5.5

Comment 4.1. Our algorithms follow patterns discussed in [Belloni et al.| (2015bja) in the i.i.d.
settings. The IV estimator obtained in S3 of Algorithm [I] reduced to the de-biased LASSO
estimator (Zhang and Zhang), [2014; van de Geer et al., 2014) and is also first-order equivalent
to the double LASSO method in Belloni et al.| (2011, |2014). In particular, the estimator under

LS TV regression (2-step least square regression) is given by

5][ I _ (U;Xjk) lvg—‘l;q(yj - X;E*k)ﬁy['(]—k))
03 Xim o

5T x ., Tame
mzhk VjkX ik

= (OhX) M TRY; - (41)
The second line in (4.1]) is exactly the same as the de-biased or de-sparsified LASSO estimator
given in Eq. (5) in|{Zhang and Zhang| (2014)) or Eq. (5) injvan de Geer et al. (2014). As remarked

in Belloni et al.| (2015blal), one can alternatively implement an algorithm via double selection
as in Belloni et al.| (2011} [2014)). In particular, heteroscedastic LASSO is employed in S2” and
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the IV regression is replaced by a either LASSO or LAD regression on the target variable and

all covariates selected in the first two steps. O
Algorithm 3: Double selection-based algorithm

S1” Run LS LASSO (for each j) of Y;; on X ;:

n

~ 1
BJ[.I] :argmin—Z(Y X B)? f|\I'jB|1
o

S2"” Run Heteroscedastic LASSO (for each j, k) of X, on Xj(_p 4

n

~ 1 N o~
Vj(~k) = argmin — Z(Xjk,t - X]'T(fk),ﬂ)2 + =T,
T n — n

where penalty loadings fj can be initialized as \/lvar{Xj“(Xjk,t — %Z?:l Xjke)} and
then refined by /lvar(X,,05), for € # k, and vy = Xjps — XjT(_k) Aj(—k) can be

obtained by using the initial ones.

S3” Run LS regression of Yj; on Xji; and the covariates selected in S1” and S2”:
~12] 1 & Al
B = arg mﬂin{ﬁ > (Yie = X48)% : supp(B-1) C supp(B;_y)) Usupp(F(—x))}-
t=1
S3"” Run LAD regression of Yj; on X, and the covariates selected in S1” and S2”:

3[2] = arg mﬁln{ Z Y — ;tﬁ] : supp(f_x) C supp(,gj[l(}_k)) U supp(5(—k)) }-
t=1

As shown in Belloni et al.[ (2011) and Belloni et al. (2015al), the double selection approach in S3”
or S3" creates an orthogonality condition with respect to the space spanned by the covariates
selected by both steps, and thus generates an orthogonal relation to any space spanned by a
linear projection of the covariates, e.g. v;,. Therefore, the inference on the parameters may
still be applied as in the framework of Algorithm [I] and Therefore, one may still find the
theoretical properties of estimators in S1”, S2”, S3” (S3") in Section [5| according to the links

mentioned above.

4.1 Confidence Interval for a Single Coefficient

We discuss an inference framework developed for a single coefficient obtained from the afore-
mentioned algorithms.
Let v ( jt7/8jk; h;ji) denote the score function, where Z;; = (Y],t,XT)T, hjk(X-( k),t) =

( tﬁj Vi k:)) Consider the LAD-based case with ©;5(Z; ¢, Bjk, hjr) = {1/2—
def
(Y‘,t < X ktﬁgk + X k)t Bi(—k)) F0jkg, define wjp = E{(\f S V)t = Ze—_(n (=
¢ def def O E{9;x(Z;,0,8,h9
) cov (i U0 g) With Oy, Oji(Zia, B 1Y), and ¢y S =g i |8=p0, -

11



Suppose we are interested in testing Hy : B?k = 0. For this purpose we employ the uniform
Bahadur representation (Theorem [5.4)) to construct the confidence interval via a multiplier

bootstrap procedure. In particular, the distribution of the asymptotically pivotal statistics:

221 _ 50
Tj = —\/ﬁ(ﬂjfc Jk), (4.2)
Ujk

is approximated via its block multiplier bootstrap counterpart:

ibn

ﬁ=f2% 2 G (4.3)
I=(i—1)bn+1
where ij,t are pre-estimators of (ji; = —gzﬁj_klaj_klw?kt such that max |Z§T;1 Nitk! ik —

(5,k), (4" k")
In _ . def ibn,
S njw il = op({log(JK)} %), with s = = 5220 1y, 4y G and
Tjksi def lebnz bt 1 Cjk,la e;i are independently drawn from N(0,1), I, and b, are the
numbers of blocks and block size, respectively.

Let o5 be any consistent estimator of ;. Then the confidence interval is given by
* 72 ~ — * 72 ~ — *
CTy(0) : 1B — 6™ a5(1 = @), B + n ™ g5,.(1 — )], (1.4)
where ¢7;.(1 — ) is the (1 — ) quantile of the bootstrapped distribution of |17 |.

Comment 4.2 (Asymptotic Normality of B\ﬁ]) As shown in Corollary we have the limit
distribution of Bﬁ]

_ 2 L

oind (B — 5%) 5 N(0,1), (4.5)

where 05, = ((bj_kajk)l/ 2. Therefore, the two-sided 100(1 — «) confidence interval by asymptotic

normality for ﬁ;-)k is given by
Clix(a) : (B — Gn V2071 (1 — a/2), B + G V2071 (1 - a/2)). (4.6)

Comment 4.3 (Residual Multiplier Bootstrap). Alternative bootstrap procedures may be con-

sidered as well, e.g. the residual multiplier bootstrap procedure:
Ejit = -X Ttﬁ
then divide {&;} into l,, blocks of size b,, where byl, = n, and for each block i =1,...,1,,

5= (Eje — Ze]t eji, fort € {(i— )by +1,...,ib,}.

t 1

Define Y, = X jTtB][” + £, and compute the bootstrap counterpart as

I

. V(B - B

kT e
]k
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where ﬂ ' and 07, are estimated using the bootstrap sample {Y X}

4.2 Joint Confidence Region for Simultaneous Inference

We now continue to extend the single coefficient inference to simultaneous inference on a set
of coefficients. As shown in the practical examples in Section it is essential to conduct
simultaneous inference on a group of parameters GG. In this case, the null hypothesis is: Hy :
ﬁ h. =0, VY(j,k) € G, and the alternative Hy4 : ?k # 0, for some (j,k) € G, where the group
G is a set of coefficients with cardinality |G|. Suppose for the j-th equation there are p; target
coefficients and the cardinality |G| = Z}']:1 pj. This can be understood as a multiple estimation
problem compared to Section Without loss of generality, we can rearrange the order of
the variables and rewrite the regression equation for each j as (consider the LAD-based model
here)
Jt_ZXﬂt 2+ Z XjaB + €jas Fe,(0) =1/2 (4.7)
= I=p;+1
One follows the algorithms to obtain le(l < | < pj) for each j. Then the idea of simul-
taneous inference is very straightforward. We aggregate the statistics T} in by taking
the maximum and minimum over the set G. Finally, the component-wise confidence interval is
constructed with the quantiles of the bootstrap statistics over all bootstrap samples.

Denote ¢ (1 — «) as the (1 — «) quantile of (HIS:LX |T7;|- A joint confidence region is then:
€G

)

{8 e RI%: max Ty < q5(1—a) and min Tie > —g5(1 - a)}, (4.8)

and for each component (7, k) € G, the confidence interval @vljk( ) is given by [B[k] —0jKn /2% (1=
a), Bﬁ] +6xn2g%(1 — a)]. We show in Corollary the consistency of this bootstrap con-
fidence band for simultaneous inference. Note that when there is only one parameter in G
for inference, the joint confidence region (4.8]) will reduce to the single parameter confidence

interval (4.4]) as a special case.

5 Main Theorems

In this section, we present the theoretical foundations for the procedures given earlier. In
particular, we discuss the properties of the theoretical choices of penalty level and the validity
of the other two empirical choices, as well as the theoretical support for the simultaneous
inference.

Throughout the whole section, we define Sjk def -1/ Y165 Xjk s Sj. = (Sjk)le, and
Wi, def avar(Sj;), which is the square root of the long-run variance of Xjj:c;;, namely
{2 E( Xkt jk7(t,g)€j7t€j’(t,g))}1/2. Recall that for a single equation LASSO, we select the

penalty in the following ways:

a) theoretically, for each regression, A; is AJ(1 — @) (IC), i.e. the (1 — @) quantile of
20\/7111;1}5%( |Sjk/V k| (note that this penalty takes into account the correlation among

regressors and is design adaptive);

13



b) an empirical choice given a Gaussian approximation result is Q;(1 — «), which is defined
to be the (1 — «) quantile of 26115632%\/5]ij/\ij|, where Zj;,’s are multivariate Gaussian
centered random variables with the same long run covariance structure as Sj;. Alterna-
tively, a canonical choice disregarding the correlation among regressors can be considered
as @j(l — ) def 2c/n® {1 — a/(2K)}. We shall note that Q;(1 — ) is not feasible but
can be estimated by simulations of Gaussian random variable Z;; with estimated long run

variance covariance matrix. Typically Q;(1 — «) is more conservative than Q;(1 — ).

c) another empirical choice of the penalty level is Aj(1 — o) as the (1 — «) quantile of
20\/7112}635( |Z ][f] /U ikl (Z J[.f} ’s are defined in (3.7))), and obtainable via the multiplier block

bootstrap technique.

5.1 Near Oracle Inequalities under 1C

We first provide the near oracle inequalities for the single equation LASSO estimation Bj ob-
tained from (3.6) under the ideal choices (IC). For this purpose, a few assumptions and defini-

tions are required.

(A1) For j = 1,...,J,k = 1,...,K, let X, and ¢;; be stationary processes admitting the
following representation forms Xji; = gj(Ft) = gju(...,&—1,&) and €5, = hi(F) =
hj(...,m—1,m:), where &, are i.i.d. random elements (innovations or shocks, allowing

for overlap, see Comment across t, Fy = (..., &—1,M—1,&, M), gjk(-) and hj;(-) are
measurable functions (filters). E(Xjj€;:) =0, for any j,ke1,---,J,1,--- | K.

Definition 5.1. Let & be replaced by an i.i.d. copy of §, and X3}, = ik(o - &5 &—1, &)

. def % .
For g > 1, define the functional dependence measure 8q ;s = || Xjk,e — X5y 4llq, which measures

the dependency of §o on X . Also define Ay, 4k def

2 Oq.j.kt, Which measures the cumu-
lative effect of &9 on Xk t>m. Moreover, we introduce the dependence adjusted norm of X,
as | Xk, lq.c def SUPs0(m + 1) Ay, ik (s > 0). Similarly, let ng be replaced by an i.i.d. copy of
05, and €5, = hi(..n5, . m1,m), we define [|ej, q.c = Supyzo(m+ 1S 2, g0 — €54l

def
and || Xji. €. llgs = suppmzo(m + 1) S, 1Xjreeie — Xy illq-

It should be noted that |(Al)|admits a wide class of processes. The largest value of ¢ which
ensures a finite dependence adjusted norm characterizes the dependency structure of the process.
The moment-based measure is directly connected with the impulse functions. A few examples

for univariate time series Z; are listed in Appendix in the supplementary materials.

(A2) Restricted eigenvalue (RE): given ¢ > 1, for § € R¥, with probability 1 — o(1),

= min
breli<elor, 1,640 071

57|0|;
HJ(E) def . \/7’ ‘jvpr > 0’

where T; © {k : 89, # 0} and s; = |T}| = o(n), dg,x = 0k if k € Ty, dgyp = 0 if k ¢ T

(A3) HEJ}-Hq,C < oo and ||Xjk,-Hq7§ < oo (¢ =8).

14



Comment 5.1. We allow for overlap in the elements in & and 7, as long as the contempora-
neous exogeneity condition E(Xj,€j¢) = 0 is satisfied. For example, consider the VAR(1)
model: Y; = AY;_1 + &, with Y;,e; € IR’, and suppose that Y; admits the representa-
tion V; = Y.7°, Ale; ; with g;,_; as measurable functions of ¢ o,...,& ;. Thus Xkt =
gik(o o &m1) = S20lAYker—1-1, where [Al] is the kth row of the matrix Al, k = 1,...,.J.

In this case no serial correlation in the innovations e;’s would be sufficient for E(Xje5:) = 0.

Comment 5.2. We show in Theorem [B.1| (see the supplementary materials) that the RE
(A2){and RSE|(A5)|conditions can be implied by assumptions on the corresponding population

variance-covariance matrix. This illustrates the feasibility of the RE/RSE assumption.

Lemma 5.1 (Prediction Performance Bound of Single Equation LASSO). Suppose|(A1) and
(A2) (with ¢ = <t} ¢ > 1), under the exact sparsity assumption ([3.1) and given the event
Aj = 20\/ﬁlr<r}€a%}§(|5jk/\lfjk] and another event which RE holds, then with probability 1 —o(1), f;

obtained from (3.6) satisfy

Aiv/35
. < - .
7,pT X (1 + 1/6) nﬁj(é) 12}@1}% \Ij]k (5 1)

1B, — B3

In addition, if [(A2) (with 2¢) holds, then with probability 1 — o(1),

> 1+ 2¢),/55 -
0 ( j 0
1Bj — Bl < W’Bj — B ljpr- (5.2)
Lemma follows Theorem 1 of Belloni and Chernozhukov| (2013). As the proof is built
on inequalities and for the case of dependent data |(A1)| they remain unchanged, we omit the

detailed proof here. To further characterize the rate of IC, we provide a tail probability for

20\/ﬁlr<r}§35§< |Sjk/ V| under the moment assumption (A3), In particular, the rate depends on

AU

the dependence adjusted norm || X €. |g.c-

Theorem 5.1. Under|(A1) and|(A3), we have

K
P(2c\/ﬁlg}%>§<\5jk/\lljk| > ) <C’1wnnr*q;

1 Xk,-€5, 12 ¢

_037.2\1}?16 )
137 ’

K
+Cy Y exp (—
kzz:l nHXjk»'Ejy'H%,c

(5.3)

where for ¢ > 1/2—1/q (weak dependence case), w, = 1; for ¢ < 1/2—1/q (strong dependence

case), wy, = nd/2=1=s4_ | Cy,C3 are constants depending on q and .

Comment 5.3. It can be seen in Theorem that the rate of the dependence adjusted norm

l¢,c plays an important role in the tail probability for 20\/512}?%{ |Sjk/V k| Here we

discuss the rate under some special cases.

1. VAR(1): Consider the VAR(1) model given by V; = AY;_| + ¢, where Y;,¢;, € IR”,
and &, ~ 1.i.d.N(0,X). In this case X5, = Yj;—1 and K = J. Suppose there exists a
stationary representation of the model as Y; = Y2, Ale,_;. Then we have | X jnest —

_ _ def
Xika&hila = 1Yiereia =Y agjulle = A j(c0—€d)ejally < 20[A™jl1g, where pig =

15



max; [gj¢]l; and [A*71]; is the jth row of the matrix A'~!. Assume max;|[A%;|1 < |c[f
with |¢|] < 1 (a geometric decay rate). It follows that || X .€;.|l¢c = IQ_LfC‘supm%(m +
D2, el =t < (C/le)) v{C(m*+1)|¢|™ ~1}, where m* = (—/log|c|—1)VO0and C > 0
depends on p,. Moreover, to justify the geometric decay rate, we consider the example of
Network Autoregressive (NAR) model as in Zhu et al.| (2017)) with A = pW, where W is
a row-normalized adjacency matrix which is pre-specified to indicate the social network
connectedness and p is the network parameter suggesting the strength of the network
effects. In that case, assuming a geometric decay rate max; |[A"];|; < |c|* with |¢] < 1

again gives similar results.

2. Spatial MA structure in ¢;: Consider the model Y} ; = XjT,tﬂj +ejt, with e, = pWeg+n;,
where W' is a spatial weight matrix, 7; are i.i.d. and have finite ¢gth moments 1 def
max; ||1;.]lq- For simplicity, here we assume X;; and €;; are independent. Suppose
there exists a stationary representation of the error process given by e = > 72, P Wiy,
Then we have || Xjeiese — Xi€iela < 1(XGke — Xiooeielle + 1Xjealese — 50lly <
150 = X llallesella+ 1l W (0 — 1) g < [1CT— o)~ Tyl X — X g+
2|0 W [ | Xjr,ellg- Assume max; [p"W' 1 < |cf* with |¢] < 1. Tt follows that
1 Xk, €5 llas < CrllXji, llgs + Co2suppzo(m + 1) 322, [ef' < Chl[ Xk, [lgc + Cs(m* +
1)|e/™ 1, where m* = (—¢/log|c| —1) V0 and C4, Cy, C3 > 0 depend on pg and [| Xk ¢l g-

3. General linear processes: To study more general spatial and temporal dependency,
consider the model Y;; = XjT,tBj + g4, with g, = Y772 Aln,_;. Again n, are i.i.d. and
have finite gth moments 1 aof max; ||7;|lq- If all the A’ are diagonal matrices, there
is just temporal dependence, and if A = 0 for I > 1 there exists only spatial depen-
dence. Let aﬁ-k o [A"];x be the element on the jth row and kth column of A'. As-
sume Y3720 3 a%,| < oo, Xj; and €54 to be independent. We have [[Xjk ;. llgs <
C1l| Xk, |lg,c + Cosupyso(m + 1)S 3222, >0 |a§-k.|, where C1,C2 > 0 depend on pyl and
[ReP g|| max; ;.
particularly [|[e¢]oollq < || max; 37, aé‘k(nk,o — Mho)llg S ¢ll maxy max; aﬁ'k(nk,o = Mio)llg +
VaTog T{3y max; (aty)2(u)2H/2 S q Xy max; Jaby|ug v v/gTog T{Xy max;(aty)2}/2u,
where the Rosenthal-Burkholder inequality is applied. Suppose that > 72 (3, max; ]az- ) S

q- Moreover, we have ||max;,(Xjk.€j.)|lgc < || max;p Xk,

g, and

J(m Vv 1)7¢, for some constant ¢ > 0. If ¢ < ¢, we have || max;e;.|qc < C3sup,,>1(m +
1)(m Vv 1)~¢JylogJ < C3sup,,>1(m + 1)°7¢J/log J, where C3 > 0 depends on .

To summarize, if the ¢th moments are bounded by constant, the dependence adjusted norm

coefficients is assumed; while in the case of general linear processes, it would depend on the

lg,c is also bounded in the first two examples where a geometric decay rate on the

rate of 33720 3 [a%|. In particular, suppose 3372, 3y |al| S (m Vv 1)7¢ for ¢ > 0. If ¢ >,

| X jk,.€j..]lq,c is bounded (assume || X .||, is bounded).

Under the choice (IC) A)(1 — a) is given by the (1 — a) quantile of 20\/51252%|Sjk/‘1’jk|,
combining the results of Lemma |5.1| and Theorem [5.1{ we can get the bounds for )\?(1 —«) and
further obtain the oracle inequalities as in Corollary
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Corollary 5.1 (Bounds for )\(J]-(l — «) and Oracle Inequalities under IC). Under |(A1){(A3)
given )\9(1 — ) satisfying

2901 = ) £ s {IXesellac/nlog(K/a) V [ Xe, 25 laclnmnE /)7, (5.4)

and the exact sparsity assumption (3.1)), then Bj obtained from (3.6 under IC satisfies

- 5 log(K/«) _
185 = BYljor S K\ﬁ(g)  max ‘I’Jk{H k,fj,~||2,<T VI Xk, €5, llg.en'/e l(wnK/a)l/q},
)

(5.5)
with probability 1 — a — o(1), where for ¢ > 1/2 —1/q (weak dependence case), w, = 1; for
¢ < 1/2—1/q (strong dependence case), w, = nd/?=1-,

Comment 5.4. The Nagaev type of inequality in (5.3]) has two terms, namely an exponential
term and a polynomial term. It should be noted that if the polynomial term dominates, the
above bound does not allow for ultra high dimension of K. Basically, we only allow for a

polynomial rate K = O(n°), and the rate of K interplays with the dependence adjusted norm

| Xk, .€j.llq- In particular, to make sure that the estimators are consistent (i.e. the error
bounds tend to zero for sufficiently large n), for example, we need ¢ < ¢ — 1 — vgq/2 — dq, if

there exists ¢ to guarantee || Xy €;.[qc = O(nd) and 0 < v < 1 such that s; = O(nV).

We now discuss the case of sub-Gaussian tail or sub-exponential tail, which is mostly assumed

in the literature.

Comment 5.5. Suppose a stronger exponential moment condition is satisfied,

1k 25l = sUP g1 Xk €5, llg.c < 00, (5.6)
q/
where || Xj.€j. |y, is interpreted as the dependence adjusted sub-exponential (v = 2) or

sub-Gaussian (v = 1) norm. Consider the special case of VAR(1). As shown above, we have
| X kit — X g 15 4llg < 2 [A"1]5]1 2. In particular, it is known that i S ¢ for sub-exponential
variables and g, < /g for sub-Gaussian variables. Let v = 2 and v = 1 for the two cases
respectively, || Xk €5 [lgnc S (m* + 1)[c/™ ~L. Then applying the exponential tail bounds as
in Lemma in the supplementary material, we arrive at the following error bounds with
probability 1 — a — o(1),

~ S log(K /a) /7
By = B < Y max WX o CBELOT o), ()

K;(C) 1<h<K vn ’
as )\?(1 —a) < v/n(log K)l/vlg}i’%HXjk,-ej,-H%,O- The bound (5.7) works with ultra-high di-
mensional rate exp(n™) (r < 1) of K as only the exponential term shows in the inequality. In
particular, suppose s; = O(n%), and || Xj,.€j.|ly,.0 = O(n?), then r +d+v/2 < 1/2 is required

to ensure the consistency.
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5.2 (Gaussian Approximation for Dependent Data

Now we look at the validity of the choice of @;(1—c), which relies on a Gaussian approximation

theorem. First we define the Kolmogorov distance between any two K-dim random vectors.

Definition 5.2. Let X = (X1, ,Xg) e RE, Y = (Y1, ,Yx)" € RX. The Kolmogorov
distance between X and 'Y is defined as

p(X,Y) = sup | P(X|ow > 1) = P(IY o > 7)]
Tz

For each single equation j, aggregate the dependence adjusted norm over k =1,..., K:
def . def
€ e *
11X loollas = sup(m +1)° > Sagits gt = 11X = Xtloollgs (5.8)
mz t=m

where ¢ > 1 and ¢ > 0. Moreover, define the following quantities

K 2/q
def def 2
DQjgc = 212}%}%HXjk,-Hq@H@w”q,o Ljgs = QHEJ}~Hq,c(k§1: HXjk:"‘gé)

def

Ol = Ljgs A {2”|X}~|00Hq,<”5jw q,<(10g K)g/Q}‘ (5.9)

It is worth noting that the norm ||| X;.|o|lq is a kind of aggregated dependence adjusted
norm for a vector of processes in comparison to the dependence adjusted norm for a univariate
process as in Definition [5.1]

Some additional assumptions are required. Define L1 ; = {®;4,®P;4,0(log K)Q}l/g, Wi, =
(D9 6,01+ g0){log(Kn)}", Wy ; =%, {log(Kn)}*, W3 = [n~{log(Kn)}3/20, 9,/ (/27510

Jy4,8
N1 = (n/log K)Q/Q@;{Qq’g, No; =n(log K)72®.2 | Ny j = {n'/?(log K)_1/2®j’721q,§}1/(1/2_§).

Jy4,8?

(A4) i) (weak dependency case) Given Oja,¢ < oo with ¢ > 4 and ¢ > 1/2 — 1/q, then
0, 240172 {log(Kn)}3/? — 0 and Ly max(W7 ;, Wa ;) = o(1) min(Ny j, Na ;).
i) (strong dependency case) Given 0 < ¢ < 1/2 — 1/g, then 09, (log K)'/? = o(n°) and
Ly max(Wy j, Wa j, Ws ;) = o(1) min(Na j, N3 ;).

The assumptions impose mild restrictions on the dependency structure of covariates and
error terms. They include a wide class of potential correlation and heterogeneity (including
conditional heteroscedasticity), with possible allowance of the lagged dependent variables. Two
examples of large VAR and ARCH for high-dimensional time series can be found in Appendix
[C2]in the supplementary materials.

Comment 5.6. [Admissible Dimension Rates by the Conditions for Gaussian Approximation]
As discussed in Zhang and Wul (2017a)), consider the case with 02, = O(KY9) and ®, 9, =
O(1), where ¢ > 1/2 — 1/q. Then 65, n"/71/2{log(Kn)}*/? — 0 becomes K {log(nK)}?¥/? =
o(n9/271), which implies that L; max(Wy, Ws) = o(1) min(Ny, No). This means with the
dimension K has to satisfy the condition K (log K)3%/2 = o(n?/?~1).

Theorem 5.2 (Gaussian Approximation Results for Dependent Data). Under|(A1) and|(A3)

(A4), foreachj =1,...,J assume that there exists a constant ¢; > 0 such that 1<1rr}1€inK avar(Sj;) >

X
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cj, then we have

p(Dj_lSj., Dj_le) — 0, asn— oo, (5.10)

where Z; ~ N(0,%;), ¥; is the K x K long-run variance-covariance matriz of Xjejs, and D;

is a diagonal matriz with the square root of the diagonal elements of X;, namely

1/2
{ Z E Jkt gk, (t— g)é“jtz’f (t—f))} = avar(Sjk), fO’l"kZl,...,K.

l=—00

Comment 5.7. The conclusion in Theorem can be held with stronger tail assumptions,
following Theorem 5.2 in Zhang and Wu| (2017a).

Theorem |5.2 justifies the choice of \; and Qj(l — «v), which leads to the following corollary:

Corollary 5.2. Under the conditions of Theorem[5.3, for each j we have

sup |P{ max 26f|5’]k/\11]k| QRQil—a)—a| =0, asn— . (5.11)

ae(0,1) <k<
It is worth noting that in practice the variance involved in the Gaussian approximation in
is not known; we shall discuss how we estimate the variance and also the validity of the Gaussian
approximation result with an estimated variance. Given the realization Xj1€;1,...,X;n€jn,
we propose to estimate the K x K long-run variance-covariance matrix »; for j = 1,...,J as

follows, given E Xj;c;; = 0, and consider:

ibn ibn

1 In T
Soppl( Y Xumdl X X (512

"i=1 |=(i—1)bp+1 (i—1)bn+1

Moreover, the following corollary ensures that the Gaussian approximation results still hold if

we use the estimate in ((5.12)).

Corollary 5.3. Let the conditions of Theorem hold, and assume ®;o4. < 00 with q > 4,

b, = O(n") for some 0 < n < 1. Let F. = n, forc > 1—2/q; F. = lnb%/z_gqn, for
1/2 -2/¢g < ¢ < 1— 2/q, ¢ lq/%gq/zbq/%gq/2 for ¢ < 1/2 —2/q. PFurther assume
n~log? K max {n'/2b;/*02,, w268 g K2 2 FIT2 5, K210 0®; 5.0 (bn)n/vIog K} =
o(1), with v'(b,) = (b, + 1) +2vn,2/bn, Vn,2 = logby, (resp. by T or 1) forc =1 (resp. ¢ <1
ors > 1). Then for each j we have

,0(]_3;13]:, D;le) — 0, asn — oo, (5.13)
where D = {diag(Z Y2

It should be noted that given the Gaussian approximation results in Theorem [5.2] we can

have a refined bound for )\9»(1 — «a) and also the oracle inequalities under IC.

Corollary 5.4 (Bounds for )\?(1 — «) and Oracle Inequalities under IC with Gaussian Approx-
imation Results). Under the conditions of Theorem together with let 2(log K)~/% +
p(D}lsj., D;le) = o(a) and Zy > 2¢\/nlog K, where ¢ is no less than the c in the definition

19



of )\?(1 — «), then we have )\?(1 — ) satisfying
A1 — @) < Za, (5.14)
and given the exact sparsity assumption (3.1)), then Bj obtained from (3.6) under IC satisfies

5. _ g0 < V5 Vg K
185 = Bjlipr S %;(©) fg}i}%‘l’]k Jn (5.15)

with probability 1 — o — o(1).

We note that the allowed dimension K is still of polynominal rate restricted by |(A4)

5.3 Multiplier Block Bootstrap Procedure

In this subsection, we discuss how A;(1 — «) is attainable via block bootstrap. The data over
t = 1,...,n are divided into [,, blocks with the same number of observations b,, n = b,l,
(without loss of generality), where by, [, € Z.

B B . . B
Recall that A;(1 — ) = 26\/%(]][-’(]17&), qj[‘7(}1ia) is the (1 — a) quantile of 12}%}%|Zﬂ[k}/qjjk|’

where Z J[.f] are defined as

I ib
1 & n

Z][f] =/ Do > Xk, (5.16)
I =G Dbt

and e;; are i.i.d. N(0,1) random variables independent of X and e.
In fact, the above construction relies on knowing the true residuals €;;. In practice, one
needs to pre-estimate them using a conservative choice of penalty levels and loadings. The issue

of generated errors can be dealt with using a similar argument as in the proof of Corollary [5.3]

Theorem 5.3 (Validity of Multiplier Block Bootstrap Method). Under|(A1) and|(A3), and
assume Pjoq < 00 with ¢ > 4, by, = O(n) for some 0 < n <1 (the detailed rate is calculated
in (B.2) in the supplementary materials), then we have

(B]
azl(lol,)l) | P (12}%}% |Sik/ | > q],(l_a)) af =0, asn — (5.17)

5.4 Joint Penalty over Equations

Recall that the theoretical choice A°(1—a) is defined as the (1—a) quantileof ~ max  2cy/n|Sjk/ V-
1<h<K,1<j<]

The empirical choices of the joint penalty level can be:

a) Q(1 — a): the (1 — «) quantile of chékgrrll(?ﬁj<J\/ﬁ|ij/\Iljk" In practice, one can take

an alternative choice such that Q(1 — a) o 2cy/n® Y1 — a/(2KJ)}.

b) A(1—«) def Qc\/ﬁq([]lg}_a), where qyf}_a) is the (1 — a) quantile of 1<k<nl1(a1x<j<J|Z][,f]/\I/jk\.

Section [A] in the supplementary material provides the main theorems for joint equation

estimation. In particular, the dimension along k =1,..., K and j = 1,...,J will be considered
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together by vectorization, resulting in the dimension of KJ. Following the results for the single
equation (where j is fixed), we generalize the theorems above to multiple equations case by

changing the dimension from K to K.J, see Section [A]in the Appendix for more details.

5.5 Post-Model Selection Estimation

LASSO estimation is known to be biased especially for large coefficients. Therefore, a post-
selection step helps to reduce the bias by running an OLS as a second step on the selected

covariates in the first step. In particular, we consider the 2-step OLS post-LASSO estimator:

i) ¢1-penalized regression (LASSO selection)

y 18 s
i = arg min — Vi, — X132+ 2 it Wi, 5.18
ﬁ] gﬁEIRK n ;( g5t J,tﬁ) n kzzzl |ﬁjk‘| Jjk ( )

where A is the joint penalty level.

ii) We run the post-selection regression (OLS estimation)
3P AN 7
B =arg min {= > (Vj, - X[18)%: B = 0,k ¢ T}, (5.19)
FERT Ty

where T} o supp(f;) = {k e {1,..., K} : ,é’jk # 0}.

To provide the prediction performance bounds for the OLS post-LASSO estimators, we need

the following restricted sparse eigenvalue (RSE) condition:

(A5) Restricted sparse eigenvalue (RSE): given p < n, for § € R¥, with probability 1 — o(1),
; 6]

~ 9 def ‘5 J,pr def DT
Rki(p)” = mi >0, ¢i(p) = ma;
i(p) lorelo<p.o20 |0[3 - 4(0) 6relo<p.o20 |0[3

Here p denotes the restriction on the length of the active set of 7. When T} = 0, is

) déf V ¢j(p)

) and denote

reduced to the standard sparse eigenvalue condition. Moreover, let p;(p

by D; %ef ﬂA}\TJ\ the number of components outside 7’ e supp(67) = {k e {1,..., K} : ?k #0}
selected by LASSO in the first step.
The performance bounds for the OLS post-LASSO estimator are shown in Theorem [A4] in

the supplementary materials.

5.6 Simultaneous Inference

This subsection develops theory corresponding to Section [4 A key Bahadur representation
which linearize the estimator for a proper application of the central limit theorem for inference

is provided.
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Recall that for each j =1,...,J, the following model is considered

pj K
Yie = > XpiBp+ > XjpiBjp+ein E(ej:Xj0) =0, F(0) =1/2,
k=1 k=pj;+1
Xy = X[ 0 . E(vig X =0, k=1 - 5.20
jkit = j(fk),tryj(fk) + Vjk.ts (U]k,t ](—k),t) ) =L...,Dy, ( . )

where we define fy?(_ ) def arg ”/Ij?ir;:) E(X jkyt—XjT(_ k)t Vi~ k))Q, and let F;, denote the distribution
function of ;. In this subsection, we show the validity of the joint confidence region for
simultaneous inference on Hy : B?k = 0,Y(j,k) € G, with |G| = Z}']:1 pj. In particular, for
j=1,...,J, ng, (k = 1,...,p;) are the target parameters. Theoretically, we formulate the
estimation as a general Z-estimation problem, with the leading examples as the LAD/LS cases.
Nevertheless, it can also include a more general class of loss functions.

For each (j,k) € G, we define the score function as ¥ji{Z;+, Bjk, hjr(Xj(—r)e)}, where
AT
to RM (M is fixed). In particular, in our linear regression case we have Pk (Xj(—pye) =
(X;E—k),tﬁj(—k% X;E—k),ﬂj(—k))—r7 and for the LAD regression 5 {Zj +, Bjk, hjr(Xj—r) )} = {1/2—
1(Yie < XikaBin + Xy 1Bi-0)} Kiika = Xy 4 Vi-k))-

Assume that there exists s = s,, > 1 such that |B?(_k)|0 < s, |7?(_k)|0 < s, for each (4, k) € G.
Jm=1

(Yj,t,XjT’t)T and the vector-valued function hji(-) is a measurable map from IR¥~!

Moreover, we assume that the nuisance function h?k = (Y admits a sparse estimator

Jjk,m

o~ ~

hji = (hjkm)%[:l of the form

~

Rt (Xi k) = Xy iOpoms Okmlo <5, m=1,..., M,

where the sparsity level s is small compared to n (s < n).

The true parameter B?k is identified as a unique solution to the moment condition

Elvjr{Zit, B, B (Xj (k)] = 0. (5.21)

However, the object arg zero E, [[v;x{Z; ¢, Bk, hgk(Xj(—k),t)}” does not necessarily exist due
Bk EBjik
to the discontinuity of the function ;. The estimator 3;; is obtained as a Z-estimator by

solving the sample analogue of ([5.21))
En[wjk{Zj,taBjkaﬁjk(Xj(fk),t)}] < infﬁjkegjk | Enw}jk{Zj,ty,Bjka/ﬁjk(Xj(—k),t)}” +o(n g,

where gy, e {log(e|G|)}'/? and gjk is defined in |(C2)
We now lay out the following conditions needed in this section, which are assumed to hold

uniformly over (j,k) € G.

(C1) Orthogonality condition:

E [811 E{¥u(Zjt, B, h)!Xj(—k),t}\h:h?k( h(Xj(—k),t)} =0, (5.22)

Xi(—k),e)

for any h € H;, U {h?k}, where Hj; is defined in |(C5)
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C2) The true parameter (Y, satisfies (5.21)). Let B;; be a fixed and closed interval and B ir be
Jk J J
a possibly stochastic interval such that with probability 1—o(1), [ 0 +eyr,) C gjk C Bj,

de
h et —1/2 1 " 1/2 1 " 3/2 < pn
where 1, % 07112 (log ) /2 mave 169l + n~'re(log an) 2 masx 03, I, o 7o S 0
(pr, is defined in |(C5H)), an def max(JK,n,e), and 1/1 et def Vil Zjs, kah?k(X( k),t) )

re =n'/4 for ¢ >1/2 —1/q and 7. = n'/2~< for ¢ < 1/2 — 1/q.

(C3) Properties of the score function: the map (8, h) — E{t;1(Zj, B, h)| X;(_k)+} is twice con-
tinuously differentiable, and for every ¥ € {53, h1,...,ha},
E[supﬁegjk |09 E{%Z)jk(zj,t,ﬁ,h?k( =k X~ t}\Q] < C1; moreover, there exist mea-
surable functions £1(-), f2(-), constants Lipn, Lo, > 1, v > 0 and a cube Tjp(Xj_p)¢) =
XM Tk (X (g ¢) in IRM with center hgk(Xj(—k),O such that for every 9,9 € {8, h1,...,hap}
we have Sup(ﬁ MEBX k(X1 ) 10909 E{ji(Zj 1, B, h)| X - t}\ O (K- 1)
E{]01(Xj(—k))[*} < L1p, and for everyﬁ B € Bji, h, 1 € Tk( —k)t )We have E[{¢;x(Z;+, B, h)—
Yik(Zjt: B 7h')}2! Xk ) < (Xjn))(IB=B'["+h=N']5), and E{|€2( me)l't < Lop.

(C4) Tdentifiability: 2| E[vi{Zjs, B, h§ (X r),0) HI = (8558 — BJi)| A c1 holds for all 8 € By,

(- |
def
where ¢jx = 95 E[Vje{Zjt, B W1 (Xj(—ry.0)}] and @] = 1
(C5) Properties of the nuisance function: with probability 1 — o(1), iAij € H;i, where M, =
Xn]\fleﬂjk,m and each H;i,, being the class of functions of the form Bjk,m(Xj(—k),t) =

X].T(_k) Bikmy 1Ojkmlo < s, Ejk’m € Tjk,m- There exists sequence of constants p,, | 0 such

that E[{;Ljhm(Xj(_k),t) - hghm(Xj(—k),t)}z} S per'

(C6) The class of functions Fj = {z — ¢jk{z,5,ﬁ($j(_k))} . B € Bjr,h € Hjp U {hgk}} (z
is a random vector taking values in a Borel subset of a Euclidean space which contains

the vectors w;_y) as subvectors) is pointwise measurable and has measurable envelope

J
Fji > sup |f], such that F' = max Fj satisfies E{F(2)} < oo for some ¢q > 4.

fe€Fjk (4,k)EG
(C7) The second-order moments of scores are bounded away from zero: w; = E{(ﬁ Yo ¢?k7t)2} >

C1.

(C8) Dimension growth rates:  py . (Lanslogan)'/? + n=Y2r (slogan ) 2| F(z)|, + pin'/? =
o(g;1). In particular, for the mean regression case Pnw = pps and pp, = pn/ for the

median regression case. n~Y%(slogay, )1/2max||f(zt)||2 + n~tre(slogan)? 2| F'(2)|lq =

Olpn).  F' = {2z ¥z B, h(zj_p)} ( k) € G, B € Bjx,h € Hy U{hS,}} with

F' = sup|f]|.
feF

"h

(C9) Let B = max ®" Bl = max QF . Bf'= max Ph

me{1,2} me{1,2} me{1,2}
(see (B.9), (B 10) and (B.15) in the supplementary for the definitions of ®”

B
P qu,

2,67

m,2,¢) m,2,G?

m,2,¢7 “fm,q,$>

m 2.6 Qn g @f o Qq’g). The following restrictions are assumed:

spn(log an)V2BE + n =121 p,s?(log an)*/* Bl = o(gy ),

pn(slogan)'/2®) +n 2 p,(slogan)*?Qf = o(g,"),
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B pus'/? = O(mae | (z0)]l2). B pus'’? = OIF (1))

By pn = O(max[|f (z0)ll2), Qo = O(IF(z0)lo)-

(C9) Consider the stronger exponential moment condition as in (5.6) and corresponding to
(C5)|, assume that E[{fzjk,m(Xj( k).t ) h?km(XJ(,k),t)}ﬂ < (p%)?%. Recall the definitions

of ‘I’Zwmov @ﬁmo, CID;;L@V’O, @;fu’o in 7)) and (B.20)) in the supplementary. The following
restrictions are assumed:

—-1/2 1/~ 0 <
n loga ma, : T,
(log ax) (j,k)é(c”wm”wu,ow n

(s1ogan)!"[pf, V A (12 oo @, )V @Y o}] = 0lgi").

w2 s log a,) V7 max 12 w0 = ()

P52 max @1 o)V @ o} = Olmax (=) u,.0)

. . : (g — € € — € i
in particular, for the mean regression case p;, , = pp,s and pf, , = /pf, for the median

regression case.

(C10) The density of error f.,(-) is continuously differentiable and both of f.(-) and fZ (-) are

bounded from the above.

Conditions|(C1)H(C4)land|(C7)|assume mild restrictions on the Z-estimation problems. They
include the LAD-based regression (used in Algorithm . with nonsmooth score function. Con-
ditions |(C2)| and |(C8)| imply that (II;?XG”QZJ?IC.HQS < 51/2max\|f(zt)|]2 and || HL;:LX |¢?k il

j7 e ’

~

‘ICN

2| F'(z)4 In @, we suppose that the nuisance parameters have estimators with good
sparsity and convergence rate properties. As discussed in previous sections, given the ideal
choice of the tuning parameter, the oracle inequalities provided in Corollary [5.1] ensures
that our proposed algorithms can produce the estimator of the form ‘3[1] ﬁ;)( K lipr S

slog(an)/n V n'/9 (w,a )l/q}lg}i)%HXﬂk £,

dence case), w, = 1; for ¢ < 1/2 — 1/q (strong dependence case), w, = n?/?71754 The
moments of the envelopes are assumed to be finite in [(C6)

where for ¢ > 1/2 — 1/q (weak depen-

Comment 5.8. [Discussion on the dimension growth rates] Consider the special case of VAR(1)
model. Following the discussion in Comment [5.3] given a geometric decay rate, we have

LszgnB:bha‘Pg,ga‘I’Qia?éa]_ziuf(zt)"%(ﬁ?éicmwgk,,m% < M,, where M, only depends on the

2q th moments of €; and ¢. Moreover, suppose these quantities are bounded by constant and let

, & (|G| v J), we have Bj, Bl < d}/q(l v s12p,), Qqﬁg, Q/qfi < d}/qslﬂpn for mean regression

case, and BJ, B < di/(4q)(1 Vv s2p,), Qqﬁg,Qlﬁ < d/ @0 1/2p,, for the median regression.

mmwwnmmwmmswﬁvnumawmu<$Ww%»mmmm1

qs ~

derivation of these rates can be found in the Comment B3 in the supplementary. Inserting
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them into and yields
22 (log an)? + n~r s (log a,)*2dY 1 + n 1 ?r 532 (log a,)dY 1 = o(1),
and
n_1/4s3/4(10g an)5/4 + n_1/2r§1/255/4(10g an)7/4di/(8‘n + n_1/2r<s3/2(log an)Qdi/(4q) =o(1),

for the smooth and non-smooth cases respectively. As a result, we only allow the dimension
(IG| v J) is of polynomial order with respect to n if ¢ is not tending to infinity. In particu-
lar, under the case of ¢ > 1/2 and ¢ = oo, the required rate reduces to n~'/2s%(log a,)*? +
n~1s%(log a,)®? + n=1253/2(loga,)? = o(1) or n=Y4s3/*(log a,)®* + n=1255/*(log a,)"/* +
n~1253/2(log a,)? = o(1), respectively. In the ideal case where we have weak dependency, the
dimension growth rates are slightly slower than the i.i.d. case as in Belloni et al.| (2015b) (i.e.,
s?logal = o(n) or s?loga’ = o(n) for the smooth or non-smooth case, respectively), as we
apply a different way to bound the dependence adjusted norm in the concentration inequality.

More generally, suppose max { Loy, BE, B @gg, <I>/2'B§, IfnaXHf(Zt)HQ? (Hé?x 1 W(‘)k I, (} = O(nk),
j

and max { B, By, Q7 .0 HF(zouq,uF/zt . | o rwkwqg} O(nk2), with 0 < ky < ko,

q,5? qC’

and let s = O(n"), loga, = O(n"). Then and 9)| imply that

1—4v—2k 2 2—6v—2ky 1 1—3v—2k2},
oM 2 s A C T e o> 1/2 -1
r<max{ 3 , 5q+ 3 , 2q+ 1 yif ¢ >1/ /4,
1 —4v—2k 2c+1—6v—2ky 2¢ —3v—2k
7“<max{ v 2k 204 1= 6v =2k 20— 3v 2},if§<1/2—1/q,
3 5 4
and
1-3v—4k;, 2 2—50—2ky 1 1—3v—2k2},
< oM 2 e A C s e e >1/2 -1
r max{ 5 , 7q+ - , 2q+ 1 yife>1/ /4,

1—-3v—4k1 2¢+1—5v—2ky 2¢ — 3v —
3 ’ 7 ’ 4

2k
7“<max{ 2},if§<1/2—1/q,

for the smooth and non-smooth cases.

Theorem 5.4. [Uniform Bahadur Representation] Under conditions |(A1){(A4) and |(C1)
(C10), with probability 1 — o(1), we have

n
[ In' 20 (Bie — B%) + 1 2o ot ST wd il = olg, ), asn— oo, (5.23)
k] t:].

def , 9o 2
where o2 ik = Pji Wiks W]k = E(\f P lekt) :

Comment 5.9. The same conclusion as in Thereom can be drawn with assuming stronger

exponential moment conditions in (5.6) and using [(C97)| instead of [(C6)] [(C8)] and [(C9)l This
is implied by Lemma [B.8| [B.9] and [B.10] in the supplementary material.

We now discuss the rates implication under |(C9’)l Suppose all the dependence adjusted

norms are bounded by constant with an appropriately chosen v, the restrictions in |(C9’)| would
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imply n~'/2(log a, )%/ 7+1/252/7+1 = 5(1) for the case of smooth score, and
n~Y4(log a,,)?/ M s3/(20)+1/2 = (1) for the non-smooth case, where v = 2/(2v + 1). For
example, when v = 1/2,v = 1 the required rates would be s%log®a,, = o(n) and s%log®a, =

o(n) for the smooth and non-smooth cases respectively.

The results in Theorem imply the asymptotic normality of the proposed estimator by
Algorithm [T] and [2] by applying central limit theorems and Gaussian Approximation.

Corollary 5.5. Under conditions [(A1}{(A4) and |(C10), for any (j,k) € G the estimators
obtained by Algorithm [1] and[3 satisfy

o ln 25— %) 5 N(0,1).

Theorem 5.5. [Uniform-Dimensional Central Limit Theorem] Under the same conditions as
in Theoremﬂ assume that ||¢?k,-”27< < 00, we have

oint (B — %) 5 N(0, 1),

uniformly over (j,k) € G.

. > def def 1 ,—
Consider the vector ¢, = vec{ (Gik,t) ket Cikt = —ojkl jyliq/}?k,t, and define the aggre-
gated dependence adjusted norm as follows:
1Cllgs < sup (m+1 Z 11G = & loolla, (5.24)

where ¢ > 1, and ¢ > 0. Moreover, define the following quantities

1/q
. q
N q,§> ?

def ~
OS¢ = T A{IIC 14 (log |G*2}. (5.25)

def def
B max Gl TS & (5
g (k)ea

Define L§ = {®5 @3 o(log |G])2}V/S, Wi = {(®5,0)5+(®§ ) Hlog(|G|n)}T, W = (@5 )*{log(|G|n)},
%—[ﬁmmmw%WW+Ww%MmmWW%%%ZWMWW%J%
N§ = {n/?(log |G|)~1/2(85 )/ (1/2=).

(A6) i) (weak dependency case) Given 64 < oo with ¢ > 2 and ¢ > 1/2 — 1/q, then
8 nt/171/2{1og(|G|n)}*/2 = 0 and LS max(Wl,WQ) o(1 )Hlln(Nl,N2)
ii) (strong dependency case) Given 0 < ¢ < 1/2 — 1/q, then @gs(log |G|)Y/? = o(nS) and
LS max(WS, W$, W$) = o(1) min(NS, NY).

Corollary 5.6 (Consistency of the Bootstrap Confidence Interval). Under|(A6) and the same
conditions as in Theorem 4, for each (j, k) € G assume that there exists a constant ¢ > 0 such

that (ILI)IHG avar (n=Y2 "0 Cigy) = ¢, with probability 1 — o(1), we have
Jk)€E

sup | P(8Y% € CLix(), V(j, k) € G) — (1 — )| = o(1), asn — oo, (5.26)
ae(0,1)
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where CNIjk(oz) e [Bjk +Gn2q(1 - a)}, and q(1—a) is the (1—«) quantile of the (%?XG|ij|,
€

)

where Zj;.’s are the standard normal random variables and i, is a consistent estimator of 0.

Following Theorem [5.4] a joint confidence region and the corresponding confidence interval
for each component can be constructed via a block bootstrap method. In particular, the boot-
strap statistic are defined by ﬁ Zégl €j.i Z?b:”(i_l)bn 41 ij’l, where e;;’s are independent and
identically distributed draws of standard normal random variables and are independent with
respect to the data sample (Zj7t)3-]:1. Recall that @k,t are pre-estimators with a certain range

of accuracy.

Corollary 5.7 (Validity of Multiplier Bootstrap). Under the same conditions as in Theorem
assume (I)g,c < oo with ¢ > 4, b, = O(n) for some 0 < n < 1 (the detailed rate is specified

in (B.27) ), we have

sup |P(8% € CLy(a), ¥(j.k) € G) — (1 —a)| = o(1), asn — oo, (5.27)
ae(0,1)

where CNI:k(oz) e |:Bjk +Gn Y2q4 (1 - oz)} , and ¢*(1 — ) is the (1 — «) conditional quantile

1 ln ibn, ~
of (ﬁ?é((;%| Doim1 € Zz:(iq)bnﬂ Cjk,l|-

6 Simulation Study

In this section, we illustrate the performance of our proposed methodology under different
simulation scenarios. The first part concerns the performance of the jointly selected penalty

level over equations, and the second part discusses the simultaneous inference.

6.1 Estimation with a Jointly Selected Penalty Level

Consider the system of regression equations:
Yie=XB)+eju,, t=1,...,nj=1,...J, (6.1)

where X; € R¥. We generate X; independently from N(0, ), where Yhike = ylk1=ka| = 0.5,
€t LLg N(0,1). The coefficient vectors (; are assumed to be sparse. In particular, we divide
the indices {1,..., K} evenly into blocks with fixed block size 5. ﬂ?k =10 if k£ and j belong to
the same block and 0 otherwise.

We take n = 100, # of bootstrap replications = 5000. We set J, K = 50,100 and 150.
The prediction norm | Bj — ﬁ?\ jpr and the Euclidean norm | Bj - 5?\2 ratios are presented in
Table The ratios measure the relative difference between the results using the penalty level
determined from the equation-by-equation case and from the joint equation case (A; and A are
selected by the multiplier bootstrap procedure). In particular, a ratio smaller than 1 indicates

a better performance of using the jointly selected penalty level.
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J=K=50 J=K=100 J=K =150
Prediction norm

Mean 0.9634 0.9474 0.9347

Median 0.9695 0.9516 0.9371

Std. 0.0323 0.0272 0.0254
Euclidean norm

Mean 0.9590 0.9429 0.9286

Median 0.9679 0.9468 0.9316

Std. 0.0367 0.0292 0.0286

Table 6.1: Prediction norm and Euclidean norm ratios (overall A relative to equation-by-
equation \;’s, average over equations). Results (mean, median and standard deviation) are
computed over 1000 replications.

It is evident from Table that the proposed estimation procedure delivers much better
performance in terms of the two measures. In particular, the superiority tends to be more
evident (more than 10%) with higher dimension of the covariates and more equations.

Still consider the system of regression equations as in , but here we generate the data
with dependency by following the Appendix D in|Zhang and Wu| (2017b)). In particular, assume
the linear process such that X; = >.0°, A&y, with Ay = (¢ + 1)7P~tM,, where M, are
independently drawn from Ginibre matrices, i.e. all the entries of M, are i.i.d. N(0,1), and in

practice the sum is truncated to Z}:%O. We set p to be 1.0 for the weaker dependence and 0.1

for the stronger dependence cases respectively. Let & ; = €k,t(0-8€%,t_1 + 0.2)1/2 where ey ; are
i.i.d. distributed as t(d)/\/d/(d — 2) and t(d) is the Student’s t with degree of freedom d (take
d = 8 for example). &; are generated by following the same fashion independently.

We take n = 100, # of bootstrap replications = 5000, J, K = 50,100 and 150. Based on
bias-variance tradeoff, several approaches were suggested to determine the optimal choice of b,
for univariate case. Concerning the high-dimensional case, we propose to take the one which
gives the lowest prediction norm as the optimal choice. Below we report the average prediction
norm J ! ijl ] Bj - ﬁ?\ jpr With several block sizes b,, under different settings and the minimal

ones are in bold.

p = 0.1 (stronger dependency) p = 1.0 (weaker dependency)
J=K=50 J=K=100 J=K =150 J=K=50 J=K=100 J=K=150
b, =2 2.0721 2.9122 3.5932 2.0165 2.6270 3.2286
b, =4 2.0627 2.8924 3.5617 2.0303 2.6183 3.2225
b, =6 2.0487 2.9007 3.5235 2.0834 2.6288 3.2198
b, =8 2.0388 2.8841 3.5073 2.2149 2.6502 3.2320
b, =10 2.0521 2.8836 3.5268 2.3576 2.7099 3.2975
b, =12 2.0581 2.9065 3.5687 2.5592 2.8310 3.3895

Table 6.2: The prediction norm (average over equations) using several choices of b,. Results
are computed over 1000 simulations.

From Table[6.2] it is apparent that a larger block size is required for the stronger dependency
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case. Moreover, the choice also depends on the dimensionality, which is more evident for
relatively weaker dependent data. We note that when J = K = 50, p = 1.0 the ordinary
multiplier bootstrap (with b, = 1) produces 2.1003 as the average prediction norm, therefore
we suggest b, = 2 for this case.

The prediction norm |Ej - B§)| j.pr and the Euclidean norm |BJ —ﬁjo\g ratios (using the optimal
b, suggested in Table for each case correspondingly) are presented in Table Again we
report the results with the jointly estimated A (selected by multiplier block bootstrap) relative
to using the single equation A;’s (selected by the multiplier bootstrap).

p = 0.1 (stronger dependency) p = 1.0 (weaker dependency)
J=K=50 J=K=100 J=K =150 J=K=50 J=K=100 J=K =150
Prediction norm

Mean 0.9141 0.8534 0.8250 0.9356 0.8786 0.8326

Median 0.9165 0.8532 0.8255 0.9384 0.8792 0.8330

Std. 0.0436 0.0377 0.0326 0.0380 0.0338 0.0296
Euclidean norm

Mean 0.9017 0.8447 0.8114 0.9251 0.8648 0.8154

Median 0.9062 0.8453 0.8135 0.9290 0.8652 0.8157

Std. 0.0515 0.0401 0.0348 0.0453 0.0368 0.0317

Table 6.3: Prediction norm and Euclidean norm ratios (overall A relative to equation-by-
equation \;’s, average over equations). Results (mean, median and standard deviation) are
computed over 1000 replications.

The results show that the coefficient estimation performance measured by both the predic-
tion norm and the Euclidean norm is in favor of the joint penalty level with multiplier block
bootstrap approach. The results are robust over different dimension cases with stronger or

weaker dependency.

6.2 Simultaneous Inference

In this subsection we consider the following regression model for the purpose of simultaneous

inference on the parameters within a system of equations

Yo =djad + X, B+ g4, djp =X 00 +vjy, t=1,...,m, j=1,...,J, (6.2)
where Oz? = o for all j. Also, ]Q, 09 € RY are assumed to be sparse. In particular, we divide

the indices 1,..., K evenly into blocks with a fixed block size 5, ﬁjgk and G?k are independently
drawn from Unif]0, 5] and Unif[0, 0.25] respectively, if k£ and j belong to the same block and 0
otherwise. The way to generate Xy, €; and vy is same as the dependent data setting above.
We consider the sample size n = 100. Our goal is to estimate and make inferences on the
target variables d;;’s based on the procedure proposed in Section 4, We evaluate and compare
the empirical power and size performance of the confidence intervals constructed by the asymp-
totic distribution theory , block bootstrap and the simultaneous confidence regions
via block bootstrap . The bootstrap statistics are computed based on 5000 replications and

we also take the optimal block size according to the numerical comparison conducted above.
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Note that the case of a” = 0 gives the size performance under the null hypothesis, while o’
uniformly lies in [0, 2.5] and [0, 5] illustrate the power results.

Table shows the average rejection rate of Hg : 04? = 0 over j for individual (or multiple)
inference and the rejection rate of Hy : o = --- = o = 0 for simultaneous inference under
different settings of J, K and p. Multiple testing procedure via step-down method, see e.g.
Romano and Wolf (2005); |Chernozhukov et al.| (2013a), is considered to control the false positives

in evaluating the power performance. The rejection rates are computed over 1000 simulation

samples.
p = 0.1 (stronger dependency) p = 1.0 (weaker dependency)
J=K=50 J=K=100 J=K =150 J=K=50 J=K=100 J=K=150
a¥ =0

Ind. Asym. 0.0166 0.0126 0.0126 0.0242 0.0148 0.0119

Ind. Boot. 0.0303 0.0202 0.0155 0.0224 0.0169 0.0141

Simult. Boot. 0.0260 0.0473 0.0527 0.0520 0.0547 0.0587
a® ~ Unif|0, 2.5]

Ind. Asym. 0.8714 0.8558 0.8553 0.8763 0.8622 0.8572

Ind. Boot. 0.8746 0.8573 0.8566 0.8761 0.8629 0.8578

Mult. Boot. 0.8413 0.8027 0.8004 0.8438 0.8249 0.8091
a® ~ Unif]0, 5]

Ind. Asym. 0.9376 0.9247 0.9282 0.9380 0.9319 0.9269

Ind. Boot. 0.9390 0.9254 0.9331 0.9288 0.9325 0.9273

Mult. Boot. 0.9282 0.9070 0.9072 0.9262 0.9182 0.9082

Table 6.4: Average rejection rate of Hg : a? = 0 over j for the individual (or multiple) inference

and the rejection rate of Hy : af = --- = o = 0 for simultaneous inference under several true

aV values (given the significance level = 0.05).

It is shown that for individual inference our proposed individual bootstrap approach pro-
vides a closer size control to the nominal o and more powerful empirical rejection probabilities
compared to constructing the confidence intervals by asymptotic normality in most of the cases.
Moreover, the simultaneous inference outperforms the individual inference in size accuracy and
in terms of the power performance, the multiple testing is relatively conservative after control-
ling the false positives. Overall, we observe that the results using bootstrap approach are robust

over different dimension settings under either stronger or weaker dependency cases.

7 Empirical Analysis: Textual Sentiment Spillover Effects

Financial markets are driven by information, and this is a well-known phenomenon among
investors. More frequent news and availability of sentiment data allows study of the impact of
firm-specific investor sentiment on market behavior such as stock returns, volatility and liquidity;
see [Baker and Wurgler| [2006; [Tetlockl, 2007, among others. Moreover, powerful statistical
tools (e.g. LASSO-type estimators) are being used to model complex relationships among
individuals. For example, |Audrino and Tetereval (2017) analyze the influence of news on US

and European companies by constructing a sparse predictive network via adaptive LASSO and
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related testing procedures. In this section the developed technology is applied to study textual
sentiment spillover effects across individual stocks. This is different from the "equation-by-
equation" analysis in |Audrino and Tetereval (2017), since we build up a system of regression

equations and implement the estimation and the inference of the network jointly.

7.1 Data Source

The empirical study in this paper is carried out based on the financial news articles published
on the NASDAQ community platform from January 2, 2015 to December 29, 2015 (252 trading
days). The data were gathered via a self-written web scraper to automate the downloading
process. The dataset is available at the Research Data Centre (RDC), Humboldt-Universitét zu
Berlin. Moreover, unsupervised learning approaches are employed to extract sentiment variables
from the articles. Two sentiment dictionaries: the BL option lexicon (Hu and Liu, 2004) and the
LM financial sentiment dictionary (Loughran and McDonald} 2011) were used in [Zhang et al.
(2016)). For each article ¢ (published on day t), the average proportion of positive/negative
words using BL or LM lexica - Posf%’t, N egfiljt, Pos;%, N egjljli\flt - are considered as the text
sentiment variables. Furthermore, the bullishness indicator for stock j on day ¢ with the related
articles i = 1,...,m (based on a particular lexicon) is constructed by following Antweiler and

Frank| (2004])

m m
Bj: =log[{1+ m~! Z 1(Posj;+ > Negjir)}/{1+ m1 Z 1(Posj;+ < Negjir)}. (7.1)
i=1 i=1
We refer to Zhang et al|(2016) for more details about the data gathering and processing pro-
cedure. 63 individual stocks which are S&P 500 component stocks from 9 Global Industrial
Classification Standard (GICS) sectors are considered. They are traded at NSDAQ Stock Ex-
change or NYSE. The list of the stock symbols and the corresponding company names can be
found in Table in Appendix [D]in the supplementary materials.
The daily log returns R;; and log volatilities log(a]%t) for the stocks over the same time
span are taken as response variables. More precisely, the Garman and Klass (1980)) range-based

measure to represent the volatility level is employed:
03, = 0.511(u;z — djz)® — 0.019{r; (ujs + djz) — 2ujed;s} — 0.383r7 (7.2)

where uj; = log(Pﬁ) — log(P]?t),dji = log(Pj%t) — log(P]?t),rM = log(Pft) — log(P]%), with
Pﬁ,P]ﬁ,, Pj?t, and PJ% denote the highest, lowest, opening and closing prices, respectively.
In addition, the S&P 500 index returns and Chicago Board Options Exchange volatility index
(VIX) are included as the state variables. The financial time series data were originally obtained

from Datastream, and GICS sector information was found at Compustat.
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7.2 Model Setting and Results

We now construct a network model to detect the spillover effects from sentiment variables to

financial variables by

rie = ¢+ B B+ 2 v+ 1j-105 + g5,
log o, = ¢ + By B + 2/ 7j +log o}, 10 + &, (7.3)

where j = 1,...,J indicate the stock symbols, By = (Bi, ... ,BJyt)T and z; includes the state
variables.

It is of interest to make inferences on the parameters g; € R’, j = 1,...J. Following
the framework introduced in Section [ an estimation procedure with three steps needs to be

implemented.
S1 For each j, run LASSO on ((7.3) and keep the estimator Bj[.l(Lj), ﬁjm, gjm and ’c\g.l].

S2 For each j, run LASSO on Bj; = (Bjj’t,z;,rji_l)THj + v;; to model the dependence
among sentiment variables. In particular, we propose to take the joint penalty level ob-
tained via block multiplier bootstrap (discussed in Section |3.2)) for this regression system.

Keep the residuals as U = Bj; — (B, 2 ,rj-1)" ;.

S3 For each (j, k), run IV regression of r;; — 65-1] - B—_'—MB][.I(L” — ,zt—'—ﬁm — 7‘j7t,13][-1] on By,

J
using ¥y as an instrument variable. Then we obtain the final estimator Bﬁ}

If for stock j, the sentiment variable of firm k is selected into the active set after the individual
significance test i.e., the null hypothesis Hgk : Bjr = 0 is rejected under the block multiplier
bootstrap procedure (as discussed in Section we pre-determine b, = 5 by choosing the one
gives the lowest prediction norm in the LASSO estimation in S1 on a grid search), then we put
a directional edge from k to j. As a result, we achieve a 0 — 1 adjacency matrix describing
the dependency network from sentiment variable to financial variable. Note that the diagonal
elements in the matrix show the self-effect of stocks.

The graphical network for stock returns and volatility modelled by based on BL and
LM lexica (from 01/02/15 to 12/29/15) is depicted in Figures 7.2
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Figure 7.1: The dependency network among individual stocks from sentiment variables to re-
turn.
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Figure 7.2: The dependency network among individual stocks from sentiment variables to
volatility.

Figures depict the dependency networks among individual stocks. Given that the
time series of returns and volatility are scaled and centered before implementing the estimation
procedure, we find even denser spillover effects in the volatility analysis. This indicates the
stock volatility is more sensitive to sentiment than returns. Moreover, the relationships between
sectors are also of interest. The simultaneous confidence region constructed via the bootstrap

approach introduced in Section [£.2] may help us to detect whether the sentiment information
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from one sector has joint influence on the returns of the stocks in another sector. In particular,
we look at the null hypothesis: Hgl’SQ : Bjr =0, Vj € S1, k € S2, where S7 and S> represent
two groups of stocks that belong to two sectors, respectively. The conclusion that the sentiment
from sector Sy has a joint effect on the returns or volatility of sector S; can be drawn if the
null hypothesis is rejected with the simultaneous confidence region under the significance
level = 0.05.
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Figure 7.3: The dependency network among sectors from sentiment variables to financial vari-
ables.

Figure describes the spillover effect network from sentiment to financial variables on the
sector levels. In particular, the connections from energy to health care is found to be signifi-
cant in the analysis of stock returns; while if volatility is focused on then the spillover effects
from financials to health care, from information technology to energy, also from consummer

discretionary to utilities are detected.

Comment 7.1 (Link to GGM). Another popular way to conduct the network analysis in the
literature is the GGM, which is corresponding to the estimation of a high dimensional precision
matrix. And under the Gaussian assumption our SRE can be linked to a nodal wise GGM. In

particular, one can estimate the coefficients in each equation of SRE by using a sparse Graphical

model estimation, for example the LASSO type estimation as in [Yuan and Lin| (2007)), and thus

we build the link equation-by- equation.
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Consider the VAR(1) as an example, the jth equation in the SRE is given by Y;; = ®;.Y;_1 +
€jt, where Y} is covariance stationary with Var(Y;) =T (p.d.). Correspondingly, we look at the

vector }7j7t =Y, Y11, ., YJ¢,1)T belonging to an undirected graph (V}, E;) with vertex set

_ r,, ®.T
(1,...,J +1). Suppose ¥j; ~ MVN(0,%;), ;= | % "7 |. Define C; & ®,I'¢], then
(@, 0)T T
(L5 —Cj)~" —(Lj; — Cj) 7',

we have the precision matrix as ©; = yol= [ 3 3 a )
’ —®(Lj; —C)~" I1+a[(Ly; — C) '

It can be seen that ®;, = 0 would imply that the (1,% + 1)th element of ©; is zero and vice
versa. In addition, a LASSO type estimator proposed in [Yuan and Lin/ (2007) can be obtained
by solving
(:)j = arg Ingx{— log det(©) + trace(S;0) + A, Z 1Ok},
Lk
def 1< v 9T
where S; = n"" 31, V.Y
In an unreported simulation study we compare the estimation performance between our
proposed approach and the nodal wise GGM under the VAR(1) model. The results show that
the nodal wise GGM which is approximated to SRE has worse prediction performance than our

method, which can be obtained from the authors upon request.
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Supplementary Material

A Theorems for Joint Penalty over Equations

Recall that the theoretical choice \°(1 — «) is defined as the (1 — «) quantile of

a 2 S/ .k|. First, we provide the analogue results of Theorem [5.1|and Corolla
ke iSj<) cy/n|Sjr /W x|. First, we provi nalogue resu r m nd Corollary

Theorem A.1l. Under|(Al) and|(A3), we have

1 Xk, €5, 11
P(2Cﬁ1<k<1%?f{<jy i/ W3] 2 1) SCrezanr™ Z Z v
j=1k=1 j
K Oy
3r k
+ Cy exp —_— I (A1)
22 (nHXjk,fj,-Hg,g)

j=1k=1

where for ¢ > 1/2—1/q (weak dependence case), wy, = 1; for ¢ <1/2—1/q (strong dependence

case), wy = nd/2=1=sa_ C, Cy,C43 are constants depending on q and s.

Corollary A.1 (Bound for A°(1 — ) and Oracle Inequalities under IC). Under and
given \°(1 — ) satisfies

01 _ < .
-0y s o L%k e laey/nlog(KI/a) V[ X, .

additionally assume that the RE condition [(A2) holds uniformly over equations j = 1,...,J
with probability 1 — o(1), and under the exact sparsity assumption (3.1]), then Bj obtained from

(3-2) under IC satisfy

, (nwnKJ/oz)l/q}, (A.2)

log(KJ/a)

Bi=BSlyar 5 OV e W e {12 Y5

1<k<K 1<5<d

B R S/

(A.3)
with probability 1 — a — o(1), where for ¢ > 1/2 — 1/q (weak dependence case), w, = 1; for
¢ < 1/2 —1/q (strong dependence case), w, = n¥/?>~1=59 and the constant C' depends on the
RE constants.

The other empirical choices of the joint penalty level can be:
a 1 — «a): the (1 — o) quantile of 2¢ ma n|Z:./V.|. In practice, one can take
) Q1 —a): the (1=a) q x| Zi Wil T practice,

an alternative choice such that Q(1 — «) dof 2cy/n® Y1 — a/(2KJ)}.

def B B . . B
b) A(1—-a) = 20\/ﬁq£11a), where qula) is the (1 — a) quantile of 1<kgnll(?1xgj<J|ZJ['k]/qjjk"

For @ again we need the Gaussian approximation results for the vectorized process S dof

vec[{(Sjk)le}}]:l] = ﬁ S X, where X, def vec[{(ijej’t)f:l}}-]:l] similar to Theorem
and Corollary to justify the choice of A as Q(1 — «).
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Let &, % vec[{(Xjk’t)le}szl]. We first aggregate the dependence adjusted norm over
j=1....,Jand k=1,... K:

def *
11 foollg.s = Sup(m+1 Z5qt, gt = 1% = X lsollg, (A.4)

t=m

where ¢ > 1, and ¢ > 0. Moreover, define the following quantities

2/q
def def 2
R T B P S S q<—2(z||ej,||q/ ) (kzuzlnx )

def

CH = Nl (log K.J)*/?}. (A.5)

Let Ly = [P, ®40{log(KJ)}2]1/s, Wy = <<1>60+<1>4 ){log(K Jn)}7, Wy = 82 {log(K Jn)}*,
Ws = [n={log(K Jn)}*/204, ]/ 127710, Ny = {n/log(K J)}*/?04, ., Na = n{log(KJ)}*@;2,
N3 = [n'/*{log(K.J)} /203, ]/ (/279).

(A4’) i) (weak dependency case) Given Oy, < oo with ¢ >4 and ¢ > 1/2 —1/q, then
Ogq. 1712 {log(K Jn)}3/? — 0 and Ly max(W7, Wa) = o(1) min(Ny, Na).
i) (strong dependency case) Given 0 < ¢ < 1/2 — 1/q, then g, {log(KJ)}'/? = o(n®)
and L1 max (Wi, Wa, W3) = o(1) min(NVa, N3).

Theorem A.2. Under|(A1), [(A3) and|(A4’), for each k=1,...,K, j=1,...,J assume that

there exists a constant ¢ > 0 such that min avar(Sjk) > ¢, then we have
I<Sk<K, 1< <d

p(Dilg, Dilg) — 0, asn— oo, (A.6)

where Z ~ ~N(0,25), ¥5 is the JK x JK long-run variance-covariance matriz of X,, and D is

a diagonal matriz with the square root of the diagonal elements of X5, namely

() 1/2
{ Z E(Xjk,thk,(t—é)gj,tgj,(t—é))} = avar(Sjk), fOT’ k= 1, ey K,j = 1, ceey J.

l=—00

Corollary A.2. Under the conditions of Theorem[A.3, we have

a?(l(}?l) \ P{Kk&?@@%\/ﬁ'&k/q’j’“‘ >Ql—a)}—al—=0, asn— oco. (A.7)
Corollary A.3. Under the conditions of Theorem@ and assume Py o < 00 with q > 4, b, =
O(n) for some 0 <n < 1. Let F. =n, for¢>1—2/q; F. = lnb%/%gqﬂ, for1l/2 —2/q <<
1-2/q; Fo = = (/45922 mea/2 fors <1/2—2/q. Given n~*{log( KJ)}2 max {n1/2b1/2 3, ¢
n1/2b1/2\/10g7KJ(I>8g,Fg/qf‘%qjg(KJ)Q/q,@2704327{1) wn/1og(KJ)} = o(1), where v'(b,) =
(b, +1)7 +2v,2/bp, vpo =logby, (resp. b, or 1) forc =1 (resp. ¢ <1 ors > 1), then we
have

p(ﬁ_lg’, D_lg) —0, asn— oo, (A.8)

ibn ibn ST
where D = {dlag( )}1/2 ENanan (Zb (i 1)but1 )(Zlb(z Db n+1X) )
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Similar to Corollary we can provide a refined bound for A°(1 — a) and also the oracle

inequalities under IC as follows.

Corollary A.4 (Bounds for A\°(1 —a) and Oracle Inequalities under IC with Gaussian Approxi-
mation Results). Under the conditions of Theorem suppose 2{log(K J)}/24p(D~1S, D1 Z) =
o(a) and let Z, > 2é\/nlog(KJ), where & is no less than the ¢ in the definition of \°(1 — ),
then we have \°(1 — «) satisfying

N1 —a) < Za, (A.9)

additionally assume that the RE condition [(A2) holds uniformly over equations j = 1,...,J
with probability 1 — o(1), and given the exact sparsity assumption (3.1), then Bj obtained from

(13.2) under IC satisfies

log(KJ)
T/

with probability 1 — o — o(1), where the constant C' depends on the RE constants.

Next, we need to show the validity of Let 2B & Vec[{(Z][f])szl}jzl] and U
Vec[{(\lfjk)le}jzl]. Similarly to Theorem |5.3| we have the following results:

18; — Y

jor S CVs max W (A.10)

Theorem A.3. Under and assume Poqc < 00 with ¢ > 4, b, = O(n) for some
0<n<1 (the detailed rate is calculated in (B.3|)), then

pn % sup |P(IZP)T] o < r|X,e) = P12/ T]se < 7)| — 0, as n — o0, (A.11)
relR

and
[B]

sup |P \S/\IJ|OO/ 4(1-a)

a€e(0,1)

) —al =0, as n — oo. (A.12)

Lastly, we show the performance bounds for the OLS post-LASSO estimator in the following
theorem.

For each p < n, TJ c {1,-- K} |T \T}| < p, we define the class of functions
Gz, = {5 X0/10
given by supg N (e, g~ |- llo1)- Also define F;, = {g~ Ty {1,---,K},|T;\Tj| < p}. For
any f € Fjp, there ex1sts a set Fj, such that mingcp, Hf f'llo1 < e, and the cardinality of
the set is denoted by |F} p|. Consider the vector ¥; of length |F} |, such that for I =1,...,|F} |,
there is ¥y, = (f — E f)/4; with ¢y = {avar(G,(f))}!/?, corresponding to each f € Fj,. The

aggregated dependence adjusted norm is given by

jprssupp(6) € Tj,|6]2 = 1}. The covering number of the function class is

A sup (m+1 Z [0 = 9¢locll, (A.13)

where ¢ > 1, and ¢ > 0. Moreover, define the following quantities (for simplicity we drop the
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subscripts j, p)

9 def max Hﬁ ” 1_‘19 d£f<|Fj,p|
DS LBy | Lllgs) g6 =

1/q
q> ’

)3/21. (A.14)

def
@g,g = Fg,c N {Hﬂ-”q,c(l(’g |Fj,p

To evoke the Gaussian approximation on G (f)/v¢ ¢, we need to impose the following assump-

tions additionally. Define LY = {®Y Y ((log |Fjp|)2}/s, W = {(®5 1)+(®Y o) }H{log(| FjpIn)}7,

Wy = (23 )2{10g(|F,p|n)}4v Wy = [n=*{log(| Ejp|n) }*/20; ]/ (/2= 1/a),

Ny = (n/loglF,p!)Q/z( % NS = n(log | Fp|)2(@5,) 72, Ny = {n'/2(log |Ej,|)~1/2(05 1)V (/7).

(A7) i) (weak dependency case) Given @19 < oo with ¢ > 2 and ¢ > 1/2 — 1/q, then
®g7<n1/q_1/2{log(]Fj7p\n)}3/2 — 0 and Ly max(W{, W¥) = o(1) min(N{, N).
ii) (strong dependency case) Given 0 < ¢ < 1/2—1/q, then G)gyg(log |Fjp|)1/? = o(nf) and

Ly max(W{, WY W¥) = o(1) min(NY, N?).

Comment A.1l. For a random vector z; € R¥, suppose there exist constants C, D > 0, such
that maxy E{exp(|zx+/D|?)} < C. Then by Jensen’s inequality it follows that |||2¢|ecllq <
D(log K + log C)'/4. In particular, for the case of sub-Gaussian random variables, there exists
constant D > 0 such that E{exp(|zx¢/D|?)} — 1 < 1, which implies [||2¢|oo||2 < Dv/Iog K.
Similar to the discussion in Remark m consider the case with @gx = O((log|Fj,|)"9)
and CID’;’g = O(1), where ¢ > 1/2 — 1/q. Then @g&nl/q_lﬂ{log(\F}7p|n)}3/2 — 0 becomes
log |Fj p|{log(n|F;,)}>¥? = o(n%/?~1), which implies that LY max(Wy, WY) = o(1) min(Ny, NY).
As shown in the proof of Theorem [A.4] |F;,| < KP(6p;(p)o/e)*P with
€= \/p log K + (p + s)log(6p;(p)o)(4y/n)~t. This means with (A7), the dimension K has to
satisfy the condition {plog K + (s 4 p)log(y/n)}'T34/? = o(n%/2~T), where we consider the case
such that |F},| is larger than n.

Theorem A.4 (Prediction Performance Bounds for OLS Post-LASSO). Given[(A1),[(A3) and
m suppose m )| (with ¢ = 1,¢ > 1) andm (with p; = |T; \ T;]) hold umformly over
equations with probability 1 — o(1), then under the exact sparsity assumption (3.1), for any

7> 0, there is a constant C independent of n, for all j =1,...,J we have

Vp log K + (p + 5){log(6;(p)) + logn/2}

n

log(KJ/« _
2 IO o )9,

(A.15)

1B — B9,

ior < Cr max W
X TlngK Jk

T; ¢ Tj)C/'s mé%(\lfjklrgaé]{ﬂ ke, E

with probability 1 — o — 7 — o(1), where for ¢ > 1/2 —1/q (weak dependence case), wy, = 1; for
s < 1/2—1/q (strong dependence case), wy, = n¥/?>7170. ¢ = max;{avar(n /237 ;) }1/2
and the constant C' depends on the RE constants.

In particular, suppose the Gaussian approximation results hold for A°(1 — «), the bound for

it can be replaced according to Corollary [A.4]
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B Detailed Proofs

B.1 Proofs of Single Equation Estimation

Proof of Theorem For each j =1,...J, k=1,..., K, applying Theorem 2 of [Wu and
Wu| (2016)) gives

—031'2
n|| Xk, 5.3,

Cloopn|| Xip.€:.1|2
1Wn ” Jky < g, Hq’g—l—CéeXp(

P(\/n|Sjr] > z) < ),

xd

where for ¢ > 1/2 — 1/q, w, = 1; for ¢ < 1/2 — 1/q, w, = n¥/271=54. " C% Cs are three

constants depending on ¢ and ¢. It follows that the conclusion holds if we set x = (20)_1\I/jkr.

O
Proof of Theorem According to the Minkowski’s inequality and Holder’s inequality, we
have
o0 o0
Z | Xk €5t — k:t5] itllg < Z {HXJkt €t — ]t)”q + Xk — ;k,t)f‘:;tuq}
o0

< {IXGrellagllese — €5 4ll2g + 1 X ks — X5
=m

Thus, it is easy to see that

1 Xjk,€5 g < N Xk, ll2g,0ll€5, 12,6 + 11Xk, 20,6 15, 120.0 < 2[1 Xk, 20,6 1€5,- |2g.-

Consequently, we have the following relationships:

lg}%(ux koSiellas < 2 max |1 Xk, Jaqclle,

ZH b€ 180T < 2llej, HmZH

||Xj,~5j,-”q,g < 201X, ll2q e,

2‘1&7

1/q

)

2q,5+

Therefore, the conditions in Theorem 3.2 of [Zhang and Wu| (2017a) can be verified for the
K-dimensional stationary process Xj;e;;. Finally, applying that theorem yields the Gaussian
approximation results. O

Proof of Corollary It follows directly from the Gaussian approximation results in The-

orem [5.2] O
Proof of Corollary The proof follows that of Corollary 5.4 in Zhang and Wu (2017a).

For w > 0, we have
p(D;'S;.. D' Z;) = sup |P(ID;'S).lo0 = 1) = P(ID; ' Zjloo = 1))
Tz
< p(D;'8;., D' Z;) + sggP(HD;le\oo —r| <w) + P((D;" — D7) S} )00 = w)
rz

< p(D;'S;., D' Zj) + wy/log K + P(|(D;" = Dj1)Sj. | = w),
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where the last line uses the arguments of Theorem 3 in |Chernozhukov et al. (2015). Let V;, ; ey

def = — ~_ —
lg}€a<>§<l‘11gk/‘1f & — 1l and Ly, ; = max (W2, — U2 |. Then [(D;" — D ")Sjlo0 < Vil D; 'S |oo-

As 1£r}g1<n \I/ >cj, let w=u2xy, 0<z<c¢;/2,y >0, then

P(|(D;" = D; 1S ]oe > w)

: 2w /cj) + P(\D;lsj.|oo > cjy/2)

)+ p(D; 'S5, D7 Zy) + P(ID; ' Zjl o = cjy/2).

’

P(Va,;
P(Ly,;

< Z
< Z

It follows that

p(D;1S;., D71 Z;) < p(D;'S;., D' Z;) + wyy/log K + P(Ly; > ) + P(ID;' Zj |0 > cjy/2).

In particular, L, ; < Lpj1 + Lynj2, wWith Ly ;1 = maxicp<k |\P§k — E\Tl?k| and Ly 2 =
As for Ly, ;1, applying Theorem 5.1 of |Zhang and Wu| (2017a)), for u > 1/261/2<I>2 og.cr We

have

F.11 Cju?
) < J,2¢,
Plnlnja 2 u) 3 iz T exp ( nb qﬁsg)’

where the constants C; depend on 7, ¢, and ¢. Then we have P(L,, j1 > z) — 0, as n — oo, if
we set z = @ max {n1/2b£/2¢?72q7§, n”%iﬂméi&g, F2/qF2 2 o)

For Ly, jo, define v/(b,) = (by, + 1) + 2v,2/bp, vpo = logby, (vesp. b,T! or 1) for ¢ =1
(resp. ¢ < 1or¢ > 1). It can be shown that L, jo < ®;20P;j2.0'(by). Note that v'(b,) is
a special case of v(b,) in the proof of Theorem given n — oo, and the conclusion follows
similarly.

It follows that P(L, ; > ) — 0, as n — oo, if we set

log K
JJ:\/nTmaX{n1/2b1/2(b§ 2,67 1/2b1/2\/@¢]8<,}72 F]2qga(bj,Q,O(bj,Z,gvl(bn)n/m}.

Moreover, given Theorem and choosing y = C'y/log K (the constant C' > 0 is sufficiently
large) yields the conclusion. O
Proof of Corollary Let py, def p( j_lSj., Dj_le) and by its definition, we have

P2evn max |Sjk/Yjel < Za) > P(2ev/n max |Zje/Yjkll < Za) = pn
K
>1- Z P{|Zjk/ k| = Za/(2¢V/n)} = fn
>1- Z 2{Za/(2¢v/n)} " exp[—Z3/{2(2¢v/n)*}] —
>1-— 2(10g K) V2 —p,,
where we have applied the union bound, the tail probability of Gaussian random variable and the

fact that Z, = 2¢y/nlog K > 2¢y/nlog K (¢ is no less than the ¢ in the definition of /\9(1 —a)).
It follows that )\?(1 —a) < Zyasl—a = P{QC\/ﬁlg}E%Sjk/\I/jk] < )\?(1 —a)} <
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P(ZC\/ﬁlg}ng%Sjk/\Ifjﬂ < Za), given 2(log K)~'/2 + j,, = o(a) (note that Theorem en-

sures that p, — 0 with a polynomial rate as n — o).

O
Proof of Theorem |5 . Let Sjk; = f Z“’"Z Don+1 Xiki€j0, we first need to prove that
def (B] W) <
prg = sub [P { max (750 Wik) < rlX; €55 =P { max Zin/ V) <1}
I
= sup|P{ max Zeﬂ Siki/ Vi) <7Xj., €.} — P{ max Jk/\lfjk <1} —0,as n— oo.
relR

Given the sample variance covariance matrix (K x K) ¥;, = > j__,(1 — [¢|/n)';(¢), where
Ti(0) = E(Xjueu X, ogjir), let Z] = (Z]k)szl ~ N(0,%;,). In addition, define ¥;; =
ZZ__b (1 —1/b,)T'j(£) and Ej =>4 m, where Sj; = (Sjri)K_|. Let ¥; = diag(¥;z),
3j = 051+0j2, with 6,1 = [0 '5;0 7 1—\Ilj 12],bn 7 max and &jp = (W58 W0 U
where |+ |max is the maximum norm of a matrix. According to Theorem 2 of |(Chernozhukov et al.
(2015)), py, ; is bounded by m(d;1) V7 (d;2), with m(d;) = o 051/3{1 Va Vlog(1/8;) /3 (log K)'/3,
where ax = E( max Zik) Vi) < V21og K.

For the first part,

I
5= max | 2im ik iSiki _ In E(Sjk1.iSiks 1)
=

1<k k<K | Wi Wk, Wik, Wk,

l
_ 1<,§{{%§<K| >y SikriSika,i — bn E(Sjky iSika i)

Lo Wik Wi,
We need to analyze the tail probability of ;1. Applying Theorem 5.1 of Zhang and Wu| (2017a)),

for z > nl/2by/* @]2 92,69

T KFI? 2 C; x2
P<"5j1> in U, 0, )~ q/]équrK?eXp( b<I>4>’
1<kr1r}]1€121<K Jik1 * joko x n 7,8,

we have

for all large n, where F. = n, for ¢ > 1 —2/q; F. = lnb%/%gq/z, for 1/2—-2/qg < ¢ <1-2/q;

F. = lz/4_§q/2b?/2_gq/2 for ¢ < 1/2—2/q. The constants C; depend on 7, ¢, and ¢. This ensures

that when z = max {n'/2b /2¢'2 o 1/213111/2 log K 1/2<I>2 Cn K2/‘1F2/qf‘2 ety el = o(1),
7,29, ,8,6 7,24, n

the tail probability tends to 0, as n — oo.
It follows that 7(d;1) — 0 as n — oo, given z = o{n(log K)~2}, which implies the following
conditions on b,:

bp = of{n(log K)~2®-3 An(logK)°® 4

P2 F. = o{n?(log K) “K T4 ¢ 97},

]8<n ) 32q<n

. def .
For the second part, by defining ¢; =  min Wz, W,,, we have
1<k, koK

dj2 <

X a-mmno+ Y 0y mno)

bn<|t|<n t=—b,

max
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Recall that

o0
Ik ke (O] = | D E{(Pr(X;jk,0850) Pr( Xy e850) }
h 0
Z 1 X k1,050 — XGky n€5nll2l Xk hre€jnve — Xy nvenrell2s

where the operator is given by Py,(-) e E(-|Fn) — E(-|Fr—1). It follows that

bn,
S (1= /)T (0) + S |f<—1/n+1/bn>rj,k1,k2<£>\

bn<|f|<n {=—by,

2 — by,
< D02,k Aby41,2,5,ks + *Ao 2,j,k1 Z AVER P b, = A0.2,j.k Z AVE RN (B.1)

{=bp+1 (=1

where Ap, ok = Do | Xjkieie — X;k,ts;,tH?' Given the fact that Ago i < Pja0, Ar2jk <
®j407%, (B) is bounded by ®;40®jac{(bn +1)7 + 207130, 4 L7 42050 0 45} =
P;4,0P;j4,0(by) for any kq, ko, where v(by,) is a function with respect to b,. Note that v(b,) <
(b, + 1)75 + 201 /0 + 2(n — bp)vna/(nby), where v,1 = log{n/(b, + 1)} (resp. n—<*! or

(b +1)=<t1) for ¢ = 1 (resp. ¢ < 1 or ¢ > 1), v,z = logh, (resp. b,“"! or 1) for ¢ = 1 (resp.

¢ < 1lorg >1). Therefore, the bound of §;2 would decrease as b,, increases. In particular, we
need to impose an addition assumption such that ®;40®;4cv(b,) = o{(log K)~2} to guarantee
m(d;2) = 0.

The results for the two parts above ensure that p, ; — 0 as n — oo, given z = o{n(log K )2}
and ®;40P;4,0(b,) = of(log K)~2}, which imply the following conditions on by,

by = o{n(log K)~*®-3 An(log K)5®-4 ¢},

7,2q,S ]8§ n
F, = o{n??(og K) K 'T;§ ¢, "?}, with ¢,' = o(1).
Dj40Pj4,6{b," +1og(n/by)/n + (n = bn)logbu/(nby)}(log K)? = o(1), if ¢ = 1;

040400yt + 07"+ (0= bp)by T/ (nby) }(log K)* = o(1), if ¢ < 1;
©ja0Pjacl{by +n7 0+ (n = by)/(nba)}(log K)* = o(1), if ¢ > 1. (B.2)

At last, combining the Gaussian approximation results for S /W, and applying Theorem
3.1 in |Chernozhukov et al.| (2013al), we have

P Sik/ ¥
JSup P ma 190/ Vel 2 Tia

)) —a| S pny +7'(2) + PO > 2),

where 7'(2) = 2'/3{1 v log(K/2)}*/3. We need to pick z such that 7'(2) + P(6; > 2) — 0 as

n — oo and it can be obtained by taking z = rqll/Q/(log K), with

r, = n~!max {nl/Qbiﬂ@?’Qq’g, nl/Qb}/Q(log K)1/2<I>§7 K2/‘1F2/QI‘j2 94.cCn> n®;20®P;j2..0(bn)},
—1

¢, =o(l).

O]

Comment B.1 (Admissible rate of b,). Consider the special case with ®;2,. = O(1) and
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[jogc = O(1), for ¢ > 4. Let K = O(n"), log K = O(rlogn) = O(n"), ¢, = n® with s > 0 and
assume 1/2 —2/q < ¢ < 1 —2/q. Then (B.2) implies an admissible rate of b, = O(n") such
that 27/¢ < n < max{l — 57 —2s,(¢/2 — qr —qs/2 —r—1)/(q/2 —sq/2 — 1)}.

Comment B.2 (Validity of multiplier block bootstrap under stronger tail assumptions). Note
that in case with stronger exponential moment conditions on the underlying processes, we shall
change the tail probabilities to bound ;.

Let @4, c = = max 51>1}2)q "I Xk, €5, ]l < 00, then according to Theorem 5.2 of Zhang and
>

Wul (2017a)), for all > 0, we have

x z7
P(ndj; > —— )SKQeXp(— 2 >
mﬁggx‘l’jlkl ok ey (Vnba®5 o)

where v = 1/(2v + 1). This implies that when z = (log K\/ﬁbnqﬁwwo)l”cn, with ¢! = o(1),
the tail probability tends to 0, as n — oo. It follows that m(d;1) — 0 as n — oo, given
x = (log K+/nby, <I>] 6o 0 o) = o{n(log K)~2}. As a result, (B.2) will be replaced by

by, = o{n" "2 (log K)~2/~ 1<I>]w 0% '} with ;' = o(1).

®j40P54,6{0," +log(n/b )/n+ (n—by)logby/(nbn)}(log K)* = o(1), if ¢ = 1;
©j4,0Pja,c{bn " 17+ (= bn)b, T/ (nby)}(log K)? = o(1), if ¢ < 1;
0ja0%jac{b," + 170, + (n = by)/(nby) }(log K)? = o(1), if ¢ > 1,

B.2 Proofs of Joint Equation Estimation

Proof of Theorem Analogue to the proof of Theorem the conclusions are implied
by

_ JKFETY Ca?

. 1 2

> P < 4, )2

P (n51 = 1<k1’k2<lKIllil<j17j2<J\I/]1k1 ]2k2) m) ~ 24/2 (J ) exp ( - nbnq)él’g)’

for x > nl/Qb,l/QCI%%C and all large n, where

def

l
| de 21 Sinkr.iSjskai _ tn E(Sjiky,iSjaks i)

\Iljlkl \I’j2k2 \Ilhkl \Ilj2k2

max
1<k ko <K, 1< 1,j2<J

In particular, when x = max {n1/2b711/2<1>%q7 1/2b1/2{log(JK)}1/2<I>8 <Cn (JK)Q/sz/quqg -
¢l = o(1), the tail probability tends to 0, as n — oo.

By similar proof to that of Theorem it follows that p, — 0 as n — oo, given z =
o[n{log(KJ)} 2] and @404 v(b,) = of(log K.J)~2}, which imply the following conditions on
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by = oln{log(KJ)} 1@y, An{log(K.J)} g {c,?],
F, = o[n?*{log(K J)} (K J)"'T3J c;9/?], with ¢;;! = o(1).

Dy 0Py b, ! +log(n/by)/n+ (n— by)log b,/ (nby) Hlog(KJ)}? = o(1), if ¢ = 1;
Dy 0Py byt + 07+ (n—by)b, T/ (nby) Hlog(KJ)}2 = o(1), if ¢ < 1;
Dy 0Py byt + 0710, T 4 (0 — by,)/ (nbp) Hlog(KJ)}? = o(1), if ¢ > 1. (B.3)

Recall that F. = n, for ¢ > 1 —2/q; F. = lnb%ﬂ_gqm, for 1/2-2/¢ < ¢ <1-2/q; F, =
l%“igq/zb%/%gq/z, for ¢ <1/2—-2/q.
The rest of the proof is similar to that of Theorem and thus is omitted.

Proof of Theorem [A.4l For any 8,6 € RX in Gz , we have
J

T T T N TF T%
oG- Rl )
7 ‘5|j,p7“ |6‘j,pr ’ |5|j,pr ‘51',77? |5|j,pr
T N TF TF
<l N e o
7 ‘5’j7p7’ g lé‘jypr ‘5’j,pr
XT (85— &) 2y /2 5l — 16050
< (Eneit)l/Q{En e } + (Ensit)”z(’ i o v )
|0];,pr |6];,pr

< 20015(p)|8 — 5.

Then by following the proof of Lemma 5 (Step 2) in Belloni and Chernozhukov| (2013)), we have
supg N'(€, G, || - llo.1) S (6pj(p)or/e)™™P. And it follows that [Fjp| S (%) (65 (p)o/e)**?.

Moreover, it is not hard to see that supser, [Gn(f)| < 2v/ne + supsep,  |Gn(f)]. Let
¢ =maxyer; , V5 (assume 1) is bounded by constant) and applying the Gaussian approximation
results on the vector Gy, (f)/v¥¢ (given |(A6)), we have

P{ sup |Gn(f)| = kn/2} < P{ sup |Gn(f)/¢s] = rn/(2¢0)}

fE€F)p fEF;p
2| Fjpl{1 — @(kn/(2¢))} + dn

<
< 2KP (615 (p)or /)P exp{— 2 /(80%)} wn/(20)} 1 + dh,

as ([p() < KP. Therefore, for k, = w\/plogK—i—(p—i—s){log(Guj(p)a)+logn/2} and € =

\/p log K + (p + s) log(6p;(p)o)(4y/n) 71, it follows that supser; , |Gn(f)| < Ky (note that dn, —
0 with a polynomial rate as n — oo).

The rest of the proof is a direct application of Theorem 5 of Belloni and Chernozhukov| (2013)
by inserting the bound for A\°(1 — «) (A.2)) provided in Corollary and thus is omitted. [

B.3 Plausibility of RE and RSE Conditions

Define the s-sparse sphere as Fs = {0 : |d]op < s,|d]2 = 1}. According to Rudelson and Zhou
(2012)), the e-covering number of Fs w.r.t. the Euclidean metric is [ = exp(slog(3eK/me)), with

46



m > 1. This is the cardinality of the e-cover set Il5 of F5. Moreover, for any point 6 € Fy, let 7
denote the closest point to ¢ within IT;. Let X;SS) def {)N(jTtﬂ(é)}Q —ntr(6)T E{Xj,thT,t}W(‘s)a
where )Z'j def nil/QXj and Xj(n x K) is a matrix of X;;. Note that th(d) is a vector of the
cardinality of II.

Theorem B.1 (Plausibility of RE and RSE). For any j =1,...,J, suppose the vectors X, of
length K satisfy

0<k< min 0 EX:,X/)0< max 6 EX:,;X/])d<< o0
B |5‘0<S,|5‘1=1 ( It ],t) X |5|0<S,|6‘1=1 ( 7t ]7t) X Q;Z) )

... . < def o
where ¢ and r are positive constants.  Given ®g . = (r(];l)ax ||X]7~r_(5)H27g < 00, and for q > 2,
w(d)€Elly ’

I e 17O, < oo,
w()ell I S

— < — (6
n~Y2(log)/2dy 4+ n 1r§(logl)3/2|‘w(rgl)ae>ﬁ6\X~7,( )|Hq7g =o(1),

where re = n'/4 for ¢ > 1/2 — 1/q and r. = n*/?>=S for ¢ < 1/2 —1/q, then the RE and RSE

conditions hold with probability 1 — o(1), with p + s; < s.

Proof of Theorem [B.1l
Firstly, we need to check the implication of the population matrix. We know that 5TX]TX j6/n =
|)~( 50 2. Then we have the following inequalities for any point 6 € Fy,

—XH{8 = 7(O)}2 + 1X;m(6)2 < |X;0l2 < |XH{8 — 7(8)}2 + | X;m(6)2- (B.4)

We first check the right hand side of (B.4). Define || X jll2, Fy o sup| X j0l2. As indicated in the
0€F}s

proof of Theorem 16 in Rudelson and Zhou! (2012), we have |X;{6 — 7(6)}|2 < €[|X;
bound (Igl)a)ﬁ | X;7(6)|2, we invoke the tail probability inequality in Lemma which gives
m(o)ells

‘27F6‘ To

P( max |S X7V >2) =P[ max ||X;m(6)3 — ()T E{X;, X }m(8)| = 2] = 0,a8 n — o0,
W((S)EH(; =1 ’ W(5)6H5 ’

if > /nlogl®s + rc(logl)?/?|| max \)V(Tr,(é)m :
’ W(5)€H5 ’ 4

Therefore, given k,1 > 0, k — x, < |X;7(6)|3 < 2, + % holds with probability 1 — o(1)
for all 7(d) € Ils, where def Vnlogldy  + re(log1)*/?|| gl)a)lg[ y)“(;.r_(‘”mqg. In particular, the
m(6)ells ’ ’
assumption

_ ¥ _ (8
n~2(logl)* Py +n 1T<(10gl)3/2||ﬂgl)8€t>ﬁ5!X-,.( M, =o(1)

ensures that =, = o(1).
Hence, the right inequality in (B-4) leads to |X;d|s < €| X;llo.r; + v/@n + v/ Taking the
supremum over all 6 € F5 on both sides shows that sup\f(j(ﬂg < (Von + V) /(1 — €) with
0EF}s

probability 1 — o(1). Moreover, by the left hand side of (B.4]), we have |)~(j5 lo > VK — oy —
€(v/Zn + V1) /(1 — €), with probability 1 — o(1).
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Collecting the results together, we have shown that for all § € Fj,

,/H_xn_Mgng‘QgM (B.5)

with probability 1 — o(1).

Let ¢*(s) = maxsery |)Z'j6\2, c«(s) = mingep, |)Z'j5|2, with properly chosen €, ¢*(s), c«(s) are
bounded from above and below, and the desired results follow by the fact x3(p) > c.(s; + p),
¢j(p) < c*(sj +p), with s; +p < s. O
B.4 Proofs of Simultaneous Inference

B.4.1 Some Useful Lemmas

Lemma B.1 (Burkholder| (1988)). Let ¢ > 1, ¢’ = min(q,2). Let M,, = >_;" | &; where & € L

(i.e., ||&]lq < 00) are martingale differences. Then

1Mol < KD NENT where Ky =max((¢—1)7", Vg - 1).
t=1

Lemma B.2 (Theorem 6.2 of Zhang and Wu (2017a)) Tail probabilities for high dimensional

partial sums). For a zero-mean p-dimensional random variable X; € RP, let S, = >"1; X+ and

assume that ||| X |s||q,c < 00, where ¢ > 2 and ¢ >0, and $o ¢ = Jax 1 X ]]2,c < o0.

i) If ¢ > 1/2 —1/q, then for x 2 \/nlog p®Pa . + nl/q(logp)?’/QH\X.\Oquvg,

Cq,gn(l()gp)q/2|||X~‘00”Z,g +C, . exp (_Cq,cx2>
9 @e n<I>%7g )

i) If 0 < ¢ < 1/2 — 1/q, then for x 2 \/nlog p®s + n'/?~<(log p)*/?(|| X |l s

Cq,cnqm_gq(bgp)q/zn|X-|OO||q (‘Cq,<$2)
x4 '

S
=5 4 Cqc €xp 2
n®3; c

Lemma B.3 (Tail probabilities for high dimensional partial sums with strong tail assumptions).
For a zero-mean p- dimensional random variable X; € RP, let S, = >"i"; X; and assume that

Py, .« = max supq V|| Xj.||qc < 00 for somev >0, and let v =2/(1+2v). Then for all x > 0,
v 1P g2 T

we have
P(|Sh|eo = ) < pexp{—waV/(\/ﬁ(I)wy’O)'y}.

Lemma B.4 (Theorem 1 of El Machkouri et al.| (2013)). Denote Y; = f(F:), where f is some

measurable function. Let S, = Y 1 1Y, and dcy = ||Y: — Y*|lc. IfE(Y:) = 0, > 5200 < 00,

some s =2, and o2 e E(S2%) — oo, then

018, 5 N(0,1).

Lemma B.5. Under the same conditions as in Theorem let Bjk: be any estimator such that
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|Bjr — yk| Cpyn with probability 1 — o(1). Then we have

-1 A, < 1/24-1 B.6
no max, o(n™%g,"), (B.6)

holds with probability 1 — o(1), where A, def nl/QGn{LZij(Zj,t, Bjk,ﬁjk) (VA t,ﬁ?k, h?k)}.

Proof of Lemma [B.5l

As indicated in the proof of Theorem 2 in Belloni et al. (2015b) the entropy ent(e, F) <
cslog(ay/e) for the function class F = {z — ¢;1{z, 5, ( &)} — Yz, ﬁjk,hjk( J(—k))}
(4, k) € G,B € Bj, |- \ Cpn, h € M1}, which has 2F as the envelope (the definition of F'
is given in|(C6)). Therefore, for any f € F, there exists a set F}, such that min e p, ||f—f'||02 <
€, where € « €||2F|| g2 and the cardinality of the set |F,| = (an/€)*. Then we have

S = 7(f) — E{f — n(£)}]] < 26m.

t=1

sup
f eF

where 7(f) def arg min|| f — f’||o2. Hence, with probability 1 — o(1),
feF

max A, < n'/? su Gy
s sup Go(1)

=nsup [[En(f) = En{n(f)} — E(f) + E{n(/)}] + [En{n(f)} — E{n()}]]
feF
<2n€+n§n€%§|En(f)—E(f)l

<2n€+n]£%§pX’En(f) n E(flFi-1, X k)t)!+”maX|E E(fIFi—1, Xj(—r),e) — E(f)]

— 2mé+ K, + N, (B.7)

Next, we look for the bounds for K, and N,, respectively. Note the summands of K,
form martingale differences. Consider the function set F;,, for each f € F,,, let ¢;+ def f(z) and
P def o1 —E(p1¢| Fi—1, Xj(—r),t)- Note that ¢ and @, are vectors of length |Fy,| = (an/€)**. For
l=1,...,|F,|, the dependence adjusted norm of @;;+ obeys that ||@;.||2.c < 2(|@1¢ll2 < 8||witll2-
Moreover, we have |[l¢||3 S Lanps,. In particular, for the mean regression case ppo = pns,
while p,, = pn Y2 for the median regression case (by |(C5)]).

Apply the tail inequality as in Lemma ’m‘ to the vector @;. As r{la‘)lgn 1212, < VLonpnw
(2)]lq (by |(C6)]), then we can see that with probability greater than

1<IK| n|
O(|F,| ! + (10gan|)_q),

K, S y/nslog(an/e) max ||y [lzc + refslog(an/e)}*?|| max @ [l

1<I<| Fy| 1<I<| |

V1 Lons10g(an/€)pno + re{slog(an/) /2 8F (20) .

Hence, we have
K, < pin, (B.8)
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def . def def
where px, = 71 + rrge With 731 = /nLans1og(an/€)pnw, rhe = {slog(an/e)}2|I8F (20|,
and r. = n/% for ¢ > 1/2 —1/q and r. = n'/?= for ¢ < 1/2 —1/q.
Then we handle the term N,,. Again consider the function set Fj,, for each f € F,, let
o def
@i = E(@rilFi1, Xj(—kyt) — E(prs), where @11 = f(z;). Then

N, <
131%"53@”'

Moreover, for [ = 1,...,|F),|, there is a function g corresponding to each f € F;, such that
Gre = g(z, B, k), where 3 € B, |8 — 5;)k| < Cpp, h € Hjk, (j, k) € G. By the mean value

theorem and the continuity of the function g, we have
g(Zj,t7 Bv il‘) :aﬁg(zj,ta Ba E)(B - ?k‘)

2
> O 9(Zjs B ) (X)) = B (K =iy ) )

where (3, h(-)) is the corresponding point which joins the line segment between (3,k(-)) and
(ﬂ;‘)kvh?k('))* Then

max Z @+ = max Z 039(Z 5 )(B— )

1<l<|Fn ,BG nt 1

+maxzzahm j,hﬂy ){h ( ) h]km( ](*k),t)}7

heFp 21 i1

where F;ff and Fg collect all the points of 3 and h according to Fn, respectively.
Recall that in our linear model setting, ho‘k(XJ(Tfk),t) = (X j(Tk t,@’ k), ;E k), ﬂ?( ))T =

ijm ( = 1 2) are vectors of length K —1. Let T0 def {1 K 1 ]klé # O,GJkN # 0},

= def ¢
T = {1< —1: 05310 # 0,852 # 0}, and X% < Vec{(Xj(—k),t,Z)geTokUfjk}' Now we
J

apply Lemmaon St Onn 9 Zj s By I (X ) )=y (X i)} and 320y D59 (Zi, B, 1) (B~
?k). To this end, we define the following quantities:

def
mqq -

h def

mas = max H\Xﬂkahm (Zjs By 1) oo 5,0 © | max |X70y,,9(Z;,., ;1) - (B9)
heF, heFEh ’

n

Let xi" e Onm9(Zj 1, B, B){fzm(Xj(,k)’t) - h’?k,m(Xj(*k),t)} and define the projector operator
Pir(x7) f g E(x7"|F) — E(x]*|Fi—1). According to Theorem 1(i) of Wul (2005), it is not hard to
see that [ X7 [|qc S supgso(d+1)° 3272, [[Po(xi") ¢, for m = 1,2. Moreover, as 101.m—0

]O'k m‘l S
V/3iPn < \/5pn, we have

1Po () la < (E[Po{10n9(Zjt, By 1) X7 oo bt — 0% 1))
< V5P (EPo{|00,,9(Z51, B, ) X7 9) /1.
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It follows that [|[x™lg.c S Vool X7 oolOn,.9(Z;., 5, l_1)|||q .- Then applying the tail probability
bounds in Lemma yields with probability approaching 1,

max | Zahmg Zj, By W) (X)) = P (X)) S PN 1m + e N2ms
€y =1

where 7n1.m = v/nspn{log(a /e)}1/2<1>m2 o TN2m = s puflog(a a2k .o and the rates of
®h , and QF  _ are restricted in |(C9)

m,2,¢ m,q,s

Similarly, by defining

||maX|8ﬂg Zjes B, o0 (B.10)

q,s

def S 7
(Pg,g é I,na}é ||aﬁg(Zj7’/8’h)||27g7
BeF,

we have

max | Z 939(Zjz B, h) (B — BY)| S rto + rernz,0,
BeF] 1=

where ry10 = ppy/ns log(an/e)@gﬁ, TN2,0 = pn{slog(an/e)}?’/QQqﬁyg. And |(C9)| constrains the
rates of <I>§7< and ngg.
As a result, with probability 1 — o(1),

N, < pnw,,, (B.11)

by letting max {ryi1m +rervem}t = O(pn,)-
me{0,1,2}

As P(K,, + N, > z) < P(K,, > z/2) + P(N,, > x/2) and collecting the results from (B.7)),
(B.8)), and (B.11)), we have shown that A,, satisfies

-1
n~ " max Ap S pa,,

(5,k)eG

where pa, = n" (px, + pn,) = o(n"1/2g; 1) (given ¢ is sufficiently small, and using and

(C9).
O

Comment B.3. [The rates of Q7 __ and Qg} ] It is worth discussing the rates of QF,  _ and

m,q,S m,q,S
Qgg by the definition under some special cases. For example, consider the VAR(1) model as in

Comment given by Y, = AY;_1 + &, where V;,&, € R/, and ¢, ~ i.i.d. N(0, Y). At first, as
shown in the proof of Theorem we have

Qb o=l max|XJk8hm (Zj,, B, 1)ooll, S|l m;),é(G‘XJﬂOOHQqSH}_rlréaF)Fglﬁhmg(Zj7.,,B,f_l)||2qyg.

For the first term, it is not hard to see that

Xjk . Xjk * < At—l < Jl/(Qq)
||(ﬁ?§g{| 7o = 1(X7") oo Hlgg S 1Alss llleolooll2g S ,

where the last inequality is by the union bound, assuming |A|,, < 1, and the gth moments of
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€j0 (Vj) are bounded by a constant j,. As for the second term, let d,, e |G|V J. In the mean

regression case, for f € F, E(f(z)|Fio1) = {Xju.(5° 0 — B) + 1Y — hi}(vjke + BY — ha), it can

be seen that

Hma)é{ahlg(zj,taﬁah) O, 9( Jt’ J }HQ
heFER
T * 0 5
< H (]IE%—L?G ‘Ujk,t ]k t’HQq + H (Hliag{G {’X i(—k)t (Xj(—k),t) ‘,{2?‘2() "Yj(—k) - fyj(*k)’}HQq
< dY/RO(1v s12p,,),

while in the median regression case, for f € F, E(f(z)|Fi_1) = 12— FEj,t‘]'—tfl{Xjkvt('B;)k -B8)+
— ha}](vjne + b3 = ha),

| max {0h,9(Z, 8. 1) = On.9(Zj B, )},

T * 0 —
S ||(}E?§G|Ujk,t ]kt|||4q+” max. (1% e — (X i) |%}?}f§) ik = Vic=m) [}l 4

<1y M2,

)

where we use the assumption such that the 4gth moment of the conditional density is bounded.

Moreover, we have

| maé{amg(zj,t,ﬁ, h) = 0n,9(Z5 4 B 1)}y,

|| max |(Xj_p) — X;(_k),t)(ﬁ?k - /6)|H2q

(4,k)eG
. _
+H(H,1€agG{| jekye = (Xjpa)” \ﬂlﬁi‘x 185k = Bit=m [} 5

< d}l/(2q)(1 V 51/2pn)’

or HmaXBeFﬁ{ahzg( Zj 1, B,h) — On,9(Z3,, B, h) }||2 = O(1) for the two cases. Therefore, we are
able to conclude that Q < d}/q(l v si2p)or Q< d3/(4Q)(1 Vv s1/2p,), respectively.

m,q,6 ~J m,q,s ~o

Similarly, it can be shown that Qgg Sd /qsl/Qpn or Qg,g S drll/@q) 1/2p,, for the two cases,

since

| max 1089(Z;, B, W),

S (GheG Xyt = (X ) qu”( ke ’{X ¢ = (X ) H e — Tiew Hg,

< d}/qsl/zpn,
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or
| ma 030(2.. .

S H m?X Xy = (X s) gl 1 x {X w0 = (Ken) Hjen = Tien i,

< dlCog2,,

In addition, a similar derivation can show that ||F(z)|lq < d /q(l V pp) and || m?XGW) |||q S
e k)

d711/q(1 \ pn)-

Lemma B.6. Under the same conditions as in Theorem we have with probability 1 — o(1),

By B (G )} S (B.12)

Proof of Lemma Consider the class of function Fg = {z — %Hz,ﬁ?k,h?k(a:j(,k))} :
(j,k) € G}, the cardinality of the set is |G|. Therefore, the corresponding covering number
is given by supg N (€| Falloz2, Fa: |l - llo2) = |Gl/e, with Fg = supscr, |f|. Let 1/}0 o
Vi{Zje, ﬁ]k, h]k( (—k),t)} and applying the tail probability bounds in Lemma we have
with probability 1 — o(1),

x| Ent S0t (1 +rera) S, (B.13)

where 71 = (nloga,)'/? max Hlﬁ?k’_HQS, ry = (logan)®?|| max | ro = n'/4 for ¢ >

(4:k)EG (J:k)ed
1/2 —1/qand r, = n'/?= for ¢ < 1/2 — 1/q. O

Lemma B.7. Under the same conditions as in Theorem consider the class of functions
F' ={z—¢{z, B, B(xj(_k))} :(J,k) €GB e Bjk,ﬁ € HjrU {h?k}}, we have with probability
1—o0(1),

n-1/2 sup [Ga(£)] S o (B.14)

Proof of Lemma The covering number of the function class F’ is given by
supg N (€| F' |l 2, F', || - [lo,2) = (an/€)*, with F' = supscz |f|. Also, for any f € F', there
exists a set F}, such that minpep ||f — f'|lg2 < €| F'||g,2 and the cardinality of the set [F)| =

(an/€)*

One can apply the technique we used in the proof of Lemma [B.5|to achieve the concentration

inequality.  Similarly, consider the function set F,, for each f € F}, let ¢, def f(z) and
_ def
gol,t é (pu — E(()Dl,t‘ftf].)Xj(—k),t)a l = 1, ey |F1;| We have

n!maXIEnf En E(fIFi1, X )\<4\/n810g(an/6)maxHf(Zt)H2+7'<{8log(an/f)}3/2!!4F' (2)lq-

For each f € F!, there exists a function g such that g(z, 3, h) = B{f(2t)|Fi—1, Xj(—p) e} —
E{f(z)}, where 6 € Bjr,h € 1, U {h .}, (4, k) € G. As by the mean value theorem and the
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continuity of the function g, we have
9(Zjt, B, h) :aﬁg(th757 h)(5 - Q )
+ Z Onn9(Zits By h) i (X)) = B (Xi(—iyt)
where (3, h(-)) is the corresponding point which joins the line segment between (3, k(-)) and

(89 ke h k(). Let F;LB and F,/fl collect all the points of 8 and h according to F), and define the
followmg quantities (m =1, 2)

Ol E max ||| X750y, 9(7;., 8, D)ooy, g | a1 X01,,9(Z5 B, Bl lol

heFh
'8 def /5 def
g = max [1959(Z;., B, )|, 2 H max 959(Z;.. B, )l (B.15)
BEFn F

Then we have with probability approaching 1,

}?612_«3% | Zahm j,ta B, ){h ( i(—k), t) hgk,m(Xj(—k),t)H 5 rff\/'l,m + T§T§V2,ma m =12,
t=1

max | Zaﬁg 7, 1 B, )(5 - 6?k)| S T§V1,0 + 7"<7“§V2,07
ger’ 1=

where r?\fl,m fspn{log(an/e)}l/zq)m 12,87 TNQ moT s pn{log( /6)}3/2Qm ,4,S? and r?\/’l 0 =
Pn/NS lo/g(an/e <I>27§, TN2o = pn{slog(an/e)}?’/zﬁqfi. Also |(C9)| constrains the rates of (I>m2§,
Qrﬁqg, q)fg, and Qfg.

The rest of the proof is similar as for Lemma and thus is omitted. O

Lemma B.8. Under the same conditions as in Lemma |B.5 with |(C9’) instead of |(C6)

and

-1 A, < o(n~H2g 1 B.16
ne max, o(n™%g, "), (B.16)

holds with probability 1 — o(1).
Proof of Lemma We now study the tail probability under stronger tail assumptions. In

particular, we need to carry out an analogue proof of Lemma under |(C9’)]
Specifically, by Lemma we have K,, < n'/?(sloga,)" 7pf,. (in particular, for the mean

regression case pﬁw = pfs and pgv = \/PT%), and
1/2 1 1/2
Nu < 2 (slog(an /)i (52 max @], 0V @0, o),
h def

def = 7
‘I’mwy,o = }anaXH\X]kc?hm 9(Zj.. B7 |0<>H¢,, 0’ i 0 = Bné?}%”aﬂg(zjwﬁah)ku,o' (B.17)

The rest of the proof is similar as for Lemma and thus is omitted.
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Lemma B.9. Under the same conditions as in Lemma |B.6| with |(C9’) instead of |(C6)
and|(C9), and assume that (%?XGngk Ml 0 < 00, we have with probability 1 — o(1),
Jk)e '

E, ¥i{Z; ho (X <n~12( 1/ 0 <r, (B.18
(]II;;JJX ‘ Qp]k{ Jst> ]k7 ]k( i(—k), )}’ n (Oga’) (Ir]i»?é(GHw]k’.Hw”’ONT ( )

Proof of Lemma The proof is similar to the proof of Lemma by replacing the tail
probability bounds therein by Lemma [B.3] O

Lemma B.10. Under the same conditions as in Lemma [B.7 with[(C97) instead of [(C6)
and|(C9), and assume that g@gsllf(z)llwu,o < 00, we have with probability 1 — o(1),

n~2 sup [Gu(f)| S 05 (B.19)
fer

Proof of Lemma The proof is similar to the proof of Lemma [B.7] by replacing the tail
probability bounds therein by Lemma [B:3] In particular, it can be shown that

n 2 sup |Ga(f)] S 2 (slog(an /€)Y [mas |1 £(2) 0 V PG {(s"? max @k )V @0 Y,

feF feF! me{1,2}
/ def T / def
(I)mh7’¢1u,0 = }fnaXH‘X]kahm 9(Zj., B, h')|<>0H¢l,,ov f 0 = maxHﬁﬁg gy 7/8 h H¢ 0 (B.20)
BeFy,
The final conclusion can be achieved by [(C9’)| O

B.4.2 Proofs of Section [5.6]

Proof of Theorem The sketch of the proof follows the proof of Theorem 2 in Belloni
et al. (2015b).

Step 1: Let Bjk be any estimator such that max;r)ecq |B]k jk] Cp,, with probability
1 — o(1). By rewriting (using the fact that E[¢;,{Z;, Jk,hjk( X))} = 0), we have

EnlviedZis. Biks hin (X)) H = Enliud{ Zit, B W% (Xj(—y.)
+ E[Yjk{Zj1, B, B(Xj(—k),t)}]\ﬁzgjk,;;:ﬁjk +n7'A, (B.21)

where Ay 012G (i1 Zt, Bips Bn (X100} = Vind Zits B (X ) )-
B We first observe that with probabiljty 1 —o(1), max(jp)ec Ay < \/ﬁsupfef |Gr(f)|, where
F is the class of functions defined by F = {2 — {2z, 8, h(wj_r))} — iz, B?k, 9k( k)
(4, k) € G, B € Bji, |B—p | Cpn, he H;i}. The key to our proof is to achieve a concentratlon
inequality for A, such that n~tmax(j pea An S o(n ~1/2g—1) holds with probability 1 — o(1).
This is done in Lemma [B.5l

Then we expand the second term in by Taylor expansion. Pick any 8 € Bj; such
that |5 — ﬁ?k| < Cpp and h € M j,. For any (j,k) € G, let (B,B(Xj(_k)yt)T)T lie on the
line segment between (ﬁ,?l(Xj(,k)’t)T)T and ( Jk.,hgk(X( k)’t)T)T. Therefore, we can write
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E[Yjx{Zj1, B, h(X j(—k),t)}] as follows

E[Wix{Zjt, B3 B3 (X(—iy) }) + B0 E[ii{ Zj 5 Bkr W (X (—0) HXj(—y,t)) (B — Be)

+§1Eah’" E[54d Z5,0: B 1 (X)) Xy ] om (X)) = P (K ) ))
45 BB EW Zs B G iy )iy )6 — B9
+;m§1E<ahmah, Elsd Zsa: B By, X ol (X5 i) = o (K1)
{ R (X)) = Wemr (X190 })
;% E(Oh,, 03 E[Wii{ Zj., By (X =iy ) HX iyt P (K= ) — P (X)) (B — B

(B.22)

It can be seen from the orthogonality condition (5.22)) that the third term in is zero.
By|(C3)|we have E(9s E[¢4{Z;, ?kah?k(Xj(—k),t)}\Xj(— ]) 95 ElYju{Zje, B k:?hgk( J(—k),t) ]
= ¢ji. Moreover, each of the last three terms in is O(Linp2) = o( —1/2 _1) (by
[(C3)] [(C5)| and [([C8)). Therefore, we have shown that the second term in equals
oir(Bj — B+ o(n~1/2¢ 1), uniformly over (j,k) € G. Then, combining the results in Lemma
gives

En[vied{Zi, Bk, hjn(Xjiy ) H = Enlvie{Zis, e W (X —.) 1]
+ 6k (B — BY%) + o(n2g, 0. (B.23)

Step 2: Next, we need to prove that infﬂegjk |Enliid Zj e, B, hjr(Xj -y ) | = o(n~12g-1)

holds with probability 1 — o(1). For any (j,k) € G, we focus on any point (7, = ﬁ?k -
¢;kl Enltjr{Zje, B?k’ h?k(Xj(—k),t)}]v thus

(ﬂ§gg\ﬁjk Bl <C [ |Enlvii{Zit, B Bk (Xjry ) HI-

By Lemma we have |37, — ﬂ?k\ < 7y, uniformly over (j, k) € G. By |(C2) [B?k +ery] C
Bjj, with probability 1 —o(1 ) thus 37, is contained in B]k with probability 1 — o(1). Using the
continuity argument as in with 5]k = B} and combining the fact that ¢; k( e — 5]0k;) =
—En[vielZ;s, ﬁjqka h?k(Xj(—k),t)}L we have,

Enlia{ Zit: B it (X)) = En[Wind Zis B B4 (X5 i) H + (B3, — B%) + o(n™/2g, )
= o(n~ g ")

Therefore,

f|E hin(X; = o(n~?g 1
(]r};?g%ler;kl ik Zit, By (X —ry,) NI <V Bl Zis Bl B (Xj iy ) H| = o(n ™ 2gh),
(B.24)
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holds with probability 1 — o(1) uniformly over (j,k) € G.
Step 3: Lastly, it is left to prove that with probability 1 — o(1), max; iyec |B]k — B?k| <
Cpy, which will lead to the desired Bahadur representation. Consider the class of functions
={z— ¢jk{z,5,ﬁ($j(_k))} 1 (j,k) € G,B € Bjg, he Hjr U {h .1}, From and by the

definition of Bjk we have

| Enl584Z5 0 Bies (X iy ) Y| = [ E[5d 50, B, B(Xj(fk),t)}”g:gjkﬁ:gjk‘—“71/2 o Gn(£)

holds with probability 1 — o(1) uniformly over (j,k) € G.
Lemma [B.7] ensures that n~'/2sup |G,.(f)| = O(pn). Furthermore, applying the expansion
f /

in (B.22]) with ]k = [ implies that

|E[jid{ Zjt, B (X j—iy) ] — E[ie{ Zst, B, B3 (X iy ) ] < Clpn + Linpl) = Olpn).-

By [(C3)| along with the fact that E[{ﬁm(Xj(,k)i) - h?k’m(Xj(,k)i)}Q] < Cp? for all m =
., M and any h = (hy,)M_; € Hji, we have with probability 1 — o(1),

| Bl Z3 B G iy MWl _5, s | = TER3#d Zias B, W (X ) 55, | — O(pn), (B.25)

uniformly over (j,k) € G.

From we can see that the left-hand side of is o(n~12g-1). Moreover, due
to the identification condition the first term on the right-hand side of is bounded
from below by %{\qﬁjk(ﬁjk - ?k)| A c1} and this results in \Byk — ?k’ < o(n™ V2971 + O(pn),
with probability 1 — o(1).

In summary, we have shown that, with probability 1 — o(1),

EnlWird Zjt, Bites b (Xj -y 1) = Enltbjud Zjt, B WSk (Xj(—ny.0) ]
+ ¢k (B — BY%) + o(n2g, 1), (B.26)

uniformly over (j,k) € G. And with probability 1 — o(1), the left-hand side is o(n~'/2g;1)
uniformly over (j,k) € G. Lastly, the uniform Bahadur representation can be obtained by
solving with respect to (ng - B?k).

O]
Proof of Corollary The proof is an application of Theorem with verification of

conditions [(C1)H(C9)]

Here we focus on the estimator by Algorithm [2] as the proof of Algorithm [I] is basically

the same. In particular, with the LAD regression case, we have |G| =1, a, = max(JK n),
gn =1, M =2, h]k( (= k)t) (XJ—E k).t J( k) X( ){Yj ) Vir{Zjt: Bjk, gk( )} =
{1/2 = 1Y+ < XjpiBj + X, J(—k).t J(—k))}(Xkat XJ(_ ),t’YJ(—k))

Verlﬁcatlon ofm Our model setting assumes F. (0) = 1/2 and E(vjXj—p):) = 0;
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hence we have

E(On, B[ Zjits B M9k (X 5,0 HX e Pa (X~ )
T—k) E{fe; (0)vjxt Xj(—)e} =0
E(Oh, W’jk{tha ?kvhjk( ), HXG(r) el P2 (X hy t)
E[{1/2 — F¢;(0)}Xj(—p)4] = 0

Verification of |[(C2); The true parameter ,8 . satisfies 1) given F¢,(0) = 1/2. Moreover,

based on the fact that |ﬁj[}€] = ,B?k\ ior S V/s(logan)/n (according to Corollary and by
Remark 2 in Belloni et al| (2015a)), with probability 1 — o(1), |8ﬁ} - B?k| = o(1/logn), so that
for some sufficiently small ¢ > 0, | ?k +¢/logn| C gjk C By, with probability 1 — o(1). Then
the condition holds.

Verification of The map

(57 HE{#’M( Jta/Ba )‘Xj(fk),t}
= E([1/2 = Fe, {Xu0(B = B3%) — X}y o B3y + P (X — B2) | Xy 1)

is twice continuously differentiable as féj is continuous. For every ¥ € {3, h1, ha},

O B{¥j(Zj1, B, h)| X - t}iS—E[faj{Xjkt(ﬁ—ﬁfk) S By T Xt (X —ha) | X
(wr.t. B) or —E[f{ ]k7t(6 ) — XT( It j( g P (X — h2)|Xj(—py el (Wrt. ha) or
—E[1/2—-F, {Xjk’t(ﬂ—,@?k)— (—k), tﬁ +h1}|X k)] (W.r.t. ha). Hence, for every 8 € By,

109 E{¥k(Zj 4, B, W9 (X (=), Xj -kt < CrE(1 X jieavstl 1 X)) V C1E(|vjke| [ Xy ) V1

Therefore, the expectation of the square of the right-hand side is bounded. Moreover, let
Tik(Xj(—p)e) = {7 € R?: | X]—E k).t ?(7,6)\ < c3}, where ¢3 > 0 is a constant. Then for every
19 = {ﬁ hl,hQ} 5 S Bjk, h e Tk( G(—k),t ) we have

10909 E{thjx( at,ﬁ P)IX(— k) ]
< C1[1VE{| X3 1 (Xjne — ha) [ 1Xj(hy i} V E{I Xkt (X — P2)| 1 X2y} V E( Xkt 1X(—pye)
VE(| Xkt — ha [Xj(—r)0)]-

In particular,

E{|X32k,t(Xjk,t — ha) [ X (—r)e} < E{I(X] t’YJ( k) T Ujk, )2 (c3 + [kt D1 X<k e
<2 E{H( t’Yg( k;)) + ’Ujk,t}(CS + vkt DX (k) e}
< C j(fk),t’Yj(fk)‘ :

And by similar computation we can show that |09y E{tji.(Zj1, B, h)| Xj—py ¢} < 01 (Xj—pye) =
c'\xl (k). t’y (—k )] , where the constants C,C" dependd on c3 and Cj. Lastly, for every 3,3 €

o8

)



Bjk, h,h' € Ek(Xj(*k),t) we have

ELwin(Zis By 1) — bin(Zie B B2 X pya] < CvE{Xjn(Xjhe — ho)?| [ X _rya}1B = 5]
+ O E{(Xj1s — h2)? [ X ‘(%)t}!tl—t'ﬂ—i—(tg—tg)z
< C"X} (= k)t’Y] (18 =B+ [t — 1)) + + (t2 — th)?
< V2C"IX i+ 2¢3) (1B = B + [t = ¥']2),

where constant C” depends on c¢3 and Cy. Consequently, we have verified the last condition

in by taking fo(X;(_g)4) = V2 C’”\XT ﬂj( k) | + 2¢3) and v = 1. And given the finite

moments conditions on X;, we have E{|[¢1(X;(_g)+)|*} < Lin, E{[la(Xj_)1)[*} < Lon.
Verification of ((C4)r For any 3 € Bjy, there ex1sts B’ between ﬁ e and (8 such that

{2y, B, WO (X .0 }) =05 Bl Zyos B K (X5 ) H (B — B%)
1 /
+ 58% EWir{Z;¢, B 7hjk(Xj(*k)7t)}] (8- ﬁjk)z'

Let ¢jk = s E[Wiud{ Zjt, B D9(Xj—iy)}] = . Since 93 E[{Zjs, B, h(Xj(—iye)}] <
CiE|X ktvjk +| < Cq, we have

21 E[vhjk{ Zj: B, ik (X)) Y| = 2005518 — Bkl — Ca(B — Bj1)* = bl B — Bkl

whenever |3 — B?k\ < 32/Cs.
Verification of [(C5); According to Corollary with probability 1 — o(1) we have

[ ~
1834y = Byl S /s00gan) /ns [Fjty = Wiyl S /5008 an)/n,

which means the algorithms can provide an estimator of the nuisance function with good
sparsity and rate properties given IC A. Thus, by Lemma 7 in |Belloni et al.| (2015a), we have
holds.
Verification of We refer to the proof of Theorem 1 in Belloni et al.| (2015al).
Verification ofm Recall that t ={1/2—1(gj; < 0)}vjrs. Hence, (ﬁ S ¢?k,t)2 =
?:_i(n_l)(l = [€]/n) E(lb?k,tw?k,t—é) > i ?—i(n 1)( — [€l/n) E(vj4vjke—0) = c1/4.
Verification of and See Comment - 8| where we discuss the admissible dimension
rates either under the special case of VAR(1) with geometric decay rate (which gives bounded
dependence adjusted norm) or more generally with finite dependence adjusted norm in polyno-
mial rates.
Verification of See Comment, and the discussion can be generalized to the case of
finite dependence adjusted norm in polynomial rates easily.
O

d f d f _
Lemma B.11. Let wo = VidZis, ]k,h]k( Xj—m) b T3 7k < 1¢]k Py 11/ijt, and assume
that ||1/J kN2, < oo Then

I3 )l = O/nl[¥5h Nl2.c), and n™/*T3% 5 N(0, 1)
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Proof of Lemma Define the projector operator P;(Xy) ey E(X:|F1) — E(X¢|Fi1).

Note that the projection operator is directly linked to the dependence adjusted norm for
Xjkt = gjk(Ft) = gj(- - &—1,&), and ||Po(Xjre)ll2 < [lgjk(Ft) — gk (F)ll2 < 2[Po(Xjk,e) |2
(by Theorem 1(i) in Wu, 2005).
Let JIJZ & aj_kld)j_kl pyan Pt,l(wgk,t), and it is not hard to see that TJ*F = >, Jljf’; As
Uj;lgb;klpt_l(w?k?t)’s form the martingale differences over t, according to Lemma we can
. ik _
apply the Burkholder Inequality and get HJl]nH% < (ojdjr) 2 it Pl ?kt)H% < n(éfw)z,

where 8%, |40, — (W0 ) lo- Thus, | T3l S Vi 2520 75, < vAll0d llac = O(l[w, ll2)-
Then the conclusion that n~/2Tjk 5 N(0,1) follows from Lemma in light of the fact that
Ezb?k’t =0 and ||¢;)k,’ 2,¢ < 00. O
Proof of Theorem [5.5] The proof follows directly from Lemma O
Proof of Corollary |§_6|. We apply the high-dimensional central limit theorem (Theorem
3.2 in Zhang and Wul (2017a)) to the vector S o ﬁ S ¢ and Z e Vec[{(ij),f;l}jzl]

is the corresponding standard Gaussian random vector, with the same correlation structure.

Then we have p(D™!'S,D1Z) — 0, as n — oo, where D is a diagonal matrix with the
square root of the diagonal elements of the long-run variance-covariance matrix of 5,5, namely
{Zﬁ:foo E(Cjk7thk7(t_Z))}1/2, fork=1,...,K,j=1,...,J. The rest of the proof is similar to
Corollary [5.2] and thus is omitted. O
Proof of Corollary The proof is similar to that of Theorem and Theorem
therefore, we omit the detailed proof here. In particular, the following conditions on b, are

required:

bn = o{n(log|G|) (25, ~* A n(log |G|) ~°(®5 ) e %},

F, = o{n??(log |G|) |G| 71T ) "9e, 2}, with ¢! = o(1).

®5 0 BS {by " +1og(n/bn)/n + (n = by) log b/ (nbn) }log |G|)* = o(1), if ¢ = 1;

®5 (D5 {by ' + 17 + (1 — by)b, T/ (nbn) Y(log |G))* = o(1), if ¢ < 1;

B (5 {by ! +n b, T+ (0 — by)/(nby) }(log|G)? = o(1), if ¢ > 1. (B.27)

where F,. = n, for ¢ > 1 —2/q; F. = lnb?/Q_gq/z, for 1/2 —-2/qg < ¢ < 1-2/q; F. =
l%/4_§Q/2b%/2_gq/2, for¢ < 1/2—2/q. O

C Supplementary Examples

C.1 Practical Examples of SRE

Example 4 (Identification Test for Large Structural Vector Autoregression Models).
Denote Uy = (U1, Uay, .. -, UM¢)T. A large structural VAR can be represented in the following

form (without loss of generality, consider only lag one):

AUt = BUt_l + Et,
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where A (invertible) and B are M x M matrices. The structural shocks e, satisfy E(¢;) = 0 and

Var(e¢) = Ins. The corresponding reduced form is given by
Ui =DU;_q + 1y, (Cl)

with D = A7!'B and v, = A~'e;, where 1, is denoted as the reduced form VAR shocks.
Suppose v spans the space of €. The crucial question is the identification of A. Typically,
the covariance matrix of the reduced form shock vy is estimated with M (M + 1)/2 restrictions,
which are smaller than the M? restrictions needed to pin down &;. Adopting the identification
approach proposed by |Stock and Watson| (2012)), we may use external instruments that are
correlated with the shock of interest and are uncorrelated with other shocks. Without loss of
generality, suppose the structural shock of interest is €;;. Then we can define z;; as an external

instrument for the jth structural shock satisfying

E(ejezje) # 0,
E(gj’,tzj,t) = O, forj’;éj.

Thus, we propose to regress Zjt ON Vg:
— 15, )
Z]ﬂg =V 5j + €J7t.

In practice, v, are replaced by the residuals obtained from a large VAR reduced form regres-
sion as in Example The estimator of ; is denoted as SJ It can be obtained by LASSO
estimation, which give us a sparse estimator of the jth row of the matrix A~! up to a scaling
factor. Repeating this step for any j, one may formulate estimators for each row and perform
simultaneous inference/hypothesis testing on the structural matrix A =1,

In summary, this is also a special case of SRE with
(Yrj,ta Xj,ta Ejts B?) = (Uj,ta Ufj,tflv Vi, D;r)v j = ]-a cee 7M’

(}/j,thj,tygj,tvﬁg) = (Z(j—M),ta Vt, 6(j—M),t7 6(]—M))7 .7 =M + 17 ceey 2M.

Example 5 (Cross-sectional Asset Pricing). Denote Yj; as the excess return for asset j
and period t. Asset pricing models explain the cross sectional variation in expected returns
across assets; see e.g. |(Cochrane (2009). In particular, the variation of expected cross sectional
returns is explained by the exposure to K — 1 factors Xj;;, k = 1,..., K — 1. One commonly

used way to estimate an asset pricing model is to run a system of regression equations:

K-1
Y = Bjo + Z BikXjk,t + €t (C.2)

k=1
where X ,’s are the factor returns (assumed to be excess returns of zero-cost portfolios).
The selection of factors is a critical issue and the SRE framework addresses this issue, in
particular when the number of factors K is large. See Feng et al| (2017) for a detailed model-

selection exercise on picking asset pricing factors. The factor premiums are E(X¢) and the
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pricing errors are 3;o. Usually, asset pricing imposes the restriction that all 3;0’s are zero. Our
simultaneous inference framework naturally serves the purpose of simultaneously testing the
zero pricing errors in a cross sectional regression setup. Namely, we are interested in testing
Hy: Bjo=0,Vj =1,...,J versus Hy : 3j such that ;o # 0. Our test procedure in Section
can be directly applied to achieve this goal.

Example 6 (Network Formation and Spillover Effects). There is an emerging literature in
economics concerning quantifying spillover effects and network formation. One leading example
is as in Manresa| (2013), which attempts to quantify social returns to research and development
(R&D). Here, Uj; is taken to be the log output for firm j and time ¢. This output is loading
on Dj; (capital stock for firm j and period t), and the aggregated spill-overs from the capital
stock of other firms Zi# w;; D; ¢ The regression equation also controls for other covariates X ;

(e.g., log labor, log capital etc.):

Uje = Bi Dy + Y wijDig + 7] Xje + ), (C.3)
i#]
where w;; is referred to as the spillover effects of the R&D development of firm ¢ on firm j. This

again is contained in the SRE with

(Y t)X]tagjt)B]) ( ]t)(D]tvD—jthT)Tvej,ta(ﬁjvw?—j)jvvj—'r)—r% j:17)‘]

Our simultaneous inference procedure (Section can be applied to check the significance of
the spillover effects for any set of parameters of interest. As an analogy, the presented framework
displays a general class of network models, where U;; is taken to be the nodal response, and D; ;
are the nodal covariates. Global or local inference on the network parameters w;; is the subject
of research. Section [7] is devoted to inference on the spillover effects of a textual sentiment

index.

Comment C.1. Suppose there is unobserved heterogeneity in U s, e.g. Ujt = aj+3 ;25 wij Diy
+¢€,,t, where w;; characterizes the spillover of individual ¢ on j, and «; is the individual fixed
effect. For this situation consider the demeaned version to eliminate the individual specific
effects and work with the new model: ﬁj,t = Z#] ijDZ ¢+ +¢€j,t, where th =Ujt— Et 1Ujt,
Diy=D;; — % Yoie1 Dit, €t =¢€j1— % > i1 €jt, under the condition that U;; has no feedback

effects on D;; (for example, D;; should not be the lagged variable of Uj).

C.2 Examples of the Dependence Measure

1. AR(1): Y; follows Y; = aY;_1 + &, with |a| < 1, g ~ i.i.d.(0,0%). Therefore, the
MA representation is given by ¥; = >7/2, ale;_; and Yy = Yoo ale,_; + atel — aleo.

Ve = Y llg = lal*lleo — €6llgs Amg < lal™, [[Y-llgc S suppzo(m + 1)%al™ < oo.

2. ARCH(1): An ARCH (Autoregressive conditionally heteroscedastic) model is given by
Zy = o, 0F = w+ o?Z} |, with w > 0, & are i.i.d. shocks and Var(Z;) = o? <
co. Thus, it is not hard to see that Z7 = w Y% a? [[i_ge? .. Rewrite the model

as Zy = R(Zi—1,e¢t) = \/(w+a2Z2% |)er. According to [Wu and Shao (2004), we have
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the Lipschitz constant involved in the Lyapunov type condition ensuring the forward

_ / def
w < |agg|. Let u = E|ago| < 1 and assume

iteration contraction sup,_.,
|aeg| + |R(to,0)| has finite gth moment. Then the process Z; has stationary solutions.
Moreover, [|Z; — Z |l < |ultlleo — €fllg, and thus Ay, 4 < Ju|™. Given |u| < 1, then we

have || Z.{|g¢ S supyzo(m 4 1)°[p|™ < oo

. TAR (Threshold autoregressive model): V; = 01Y;_11{Y;_1 <7} + 62, 11{Y;_1 > 7} +
et, where 6 and 2 are two parameters and ; are i.i.d. shocks. If 6 e max{|01],]62]} < 1
and &; has a finite a-th order moment, then the TAR model admits a stationary solution
with [|Y[|g,c < sup,,so(m +1)560™ < oo.

. VAR (Vector autoregressive model): Without loss of generality we focus on VAR(1)
given by Y; = AY,_1 + &, where Y;, e, € R7, and & ~ i.i.d. N(0,X). If the spectral
radius of ATA, p(ATA) < 1, then n%gnooHAHm — 0, where || - || denotes the spectral
norm of a matrix. Rewrite the model as ¥; = 72 Alg, ;. The existence of a stationary
solution can be checked by Kolmogorov’s three series theorem. For each equation j,
Y=Y = [A"]j(e0—¢€p), where [A"]; is the jth row of the matrix A’. (E(D/},t—Y}’ft\q))l/q <
1431 lleo = edlocllg- Tt follows that (E(|Yje — Y;3I")"/* < 2/[A%;|11g, where gy <

max [0l Suppose max (A% < [al’ (ja] < 1). Then we have max |V, lys S i

1<y
(ot 15,1401 S T g, and [V, |sollgs S ()9 by union bounds.

. High-dimensional ARCH: Consider Y; € IR, a high-dimensional ARCH(1) model fol-
lows for example the general specification from Bollerslev et al.| (1988) and Hansen and
Rahbek (1998): 2, = H,'*c;, and E(Z,Z, |F,_1) = H,, with & ~ ii.d.N(0,I,). The
specification of the conditional covariance matrix H; = Q + AZ; 1 Z' {AT, where Q is
positive definite and A is a J x J matrix. Studying the stationarity condition of the
process is not trivial. Define h; def vech(Hy), the selection matrix Dy (J? x J(J +1)/2)
gives vec(H;) = D yh; and its generalized inverse matrix D} such that DjDJ =1j041)/2-
The vech notation of the iterations follows hy = vech(Q2) + D} (A ® A)D jvech(Y;—1Y,l;).
Define A % DY (A® A)Dy, w def vech(Q2). For simplicity, we look at the process hy,
with the state space representation hy = w + G(hi—1,61-1) = F(hi—1,61-1) = w +
Avech({vech™ (hs_1)}'/?e; 1] ;{vech™ (hs_1)}~"/?). The partial derivative matrix is
Ay = A(hy, &) = Ohyy1/Oh) = AD}'(Htl/Qgtngt_l/Q ® 1;)Dy, and EA; = A. Therefore,
the spectral radius of AAT, p(AAT) < 1 ensures a stationary solution to the process
hi. Moreover, by solving the state space iteration recursively, we have E|h; — hf|1 <
2E |Po(he)|1 < |AH{vech(X) +w} + At lvech(X)|; < {tr(AAT)}, where the projector op-
erator Py(h) & E(he|F;) — E(h¢|Fi—1) and ¥ = EHy = 352, A'Q(A)T.  Assume that

{tr(AAT)H < leff, with |¢] < 1, we have Y772 |1y e S J(J +1)/2.

According to Hafner and Preminger| (2009), the iteration formulae are given by h; =
w(h? 4, 5t_1)+27lzl HézlA(ﬁf_k, 5t,k)w(ﬁf_l_1, 5t,l,1)+H?:1A(?Lf_k, t—k)ht—m, where
w(h,e) =w+ G(h*,e) — A(h,e)h*, h* is the contraction state, and h} ,’s lie on the line
segment between h* and h;_j. For ease of derivation, we assume a strong assumption
such that Esup,, [|A(hm,em)||? < s < 1forall m > 1 and ¢ > 2, where || - || denotes
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the spectral norm of a matrix. Let h™ = {(h{,...,h))T : |helo = 1,t =1,...,m}, it fol-
lows Esuppm [Ty A(hm k11, em—rr) |7 < Ty Esupy, 0 (1A m—kt1; em—r1) |7 <

. Hence, | max [y los < €. lelos S Nbdselly S {707+ 1)/2)9, and

J(J
(ST g lg )9 S {T(T + 1) /230,
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