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Abstract

This paper studies inference for the average treatment effect in randomized controlled trials where

treatment status is determined according to a “matched pairs” design. By a “matched pairs” design,

we mean that units are sampled i.i.d. from the population of interest, paired according to observed,

baseline covariates and finally, within each pair, one unit is selected at random for treatment. This type

of design is used routinely throughout the sciences, but results about its implications for inference about

the average treatment effect are not available. The main requirement underlying our analysis is that

pairs are formed so that units within pairs are suitably “close” in terms of the baseline covariates, and

we develop novel results to ensure that pairs are formed in a way that satisfies this condition. Under

this assumption, we show that, for the problem of testing the null hypothesis that the average treatment

effect equals a pre-specified value in such settings, the commonly used two-sample t-test and “matched

pairs” t-test are conservative in the sense that these tests have limiting rejection probability under the

null hypothesis no greater than and typically strictly less than the nominal level. We show, however,

that a simple adjustment to the standard errors of these tests leads to a test that is asymptotically exact

in the sense that its limiting rejection probability under the null hypothesis equals the nominal level.

We also study the behavior of randomization tests that arise naturally in these types of settings. When

implemented appropriately, we show that this approach also leads to a test that is asymptotically exact

in the sense described previously, but additionally has finite-sample rejection probability no greater than

the nominal level for certain distributions satisfying the null hypothesis. A simulation study confirms

the practical relevance of our theoretical results.
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1 Introduction

This paper studies inference for the average treatment effect in randomized controlled trials where treatment

status is determined according to a “matched pairs” design. By a “matched pairs” design, we mean that

units are sampled i.i.d. from the population of interest, paired according to observed, baseline covariates

and finally, within each pair, one unit is selected at random for treatment. This method is used routinely

in all parts of the sciences. Indeed, commands to facilitate its implementation are included in popular

software packages, such as sampsi in Stata. References to a variety of specific examples can be found,

for instance, in the following surveys of various field experiments: Riach and Rich (2002), List and Rasul

(2011), White (2013), Crépon et al. (2015), Bertrand and Duflo (2017), and Heard et al. (2017). See also

Bruhn and McKenzie (2009), who, based on a survey of selected development economists, report that 56% of

researchers have used such a design at some point. Despite the widespread use of “matched pairs” designs,

results about its implications for inference about the average treatment effect are not available. The main

requirement underlying our analysis is that pairs are formed so that units within pairs are suitably “close”

in terms of the baseline covariates. We develop novel results to ensure that pairs are formed in a way that

satisfies this condition. See, in particular, Theorems 4.1–4.3 below. Under this assumption, we derive a

variety of results pertaining to the problem of testing the null hypothesis that the average treatment effect

equals a pre-specified value in such settings.

We first study the behavior of the two-sample t-test and “matched pairs” t-test, which are both used

routinely in the analysis of this type of data. Several specific references are provided in Sections 3.1 and

3.2 below. Our first pair of results establish that these commonly used tests are conservative in the sense

that these tests have limiting rejection probability under the null hypothesis no greater than and typically

strictly less than the nominal level. For each of these tests, we additionally provide a characterization of

when the limiting rejection probability under the null hypothesis is in fact strictly less than the nominal

level. In a simulation study, we find that the rejection probability of these tests may in fact be dramatically

less than the nominal level, and, as a result, they may have very poor power when compared to other tests.

Intuitively, the conservative feature of these tests is a consequence of the dependence in treatment status

across units and between treatment status and baseline covariates resulting from the “matched pairs” design.

We show, however, that a simple adjustment to the usual standard error of these tests leads to a test that

is asymptotically exact in the sense that its limiting rejection probability under the null hypothesis equals

the nominal level.

Next, we study the behavior of some randomization tests that arise naturally in these types of settings.

More specifically, we study randomization tests based on the idea of permuting only treatment status for

units within pairs. When implemented with a suitable choice of test statistic, we show that this approach

also leads to a test that is asymptotically exact in the sense described previously. We emphasize, however,

that this result relies heavily upon the choice of test statistic. Indeed, as explained further in Remark 3.11,

when implemented with other choices of test statistics, randomization tests may behave in large samples like

the “matched pairs” t-test described above. On the other hand, regardless of the specific way in which they

are implemented, these tests have the attractive feature that they have finite-sample rejection probability
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no greater than the nominal level for certain distributions satisfying the null hypothesis. We highlight these

properties in a simulation study.

The remainder of the paper is organized as follows. In Section 2, we describe our setup and notation. In

particular, there we describe the precise sense in which we require that units in each pair are “close” in terms

of their baseline covariates. Our main results concerning the two-sample t-test, the “matched pairs” t-test,

and randomization tests are contained in Section 3. In Section 4, we develop some results that ensure that

units in each pair are suitably “close” in terms of their baseline covariates. Finally, in Section 5, we examine

the finite-sample behavior of these tests via a small simulation study. Proofs of all results are provided in

the Appendix.

2 Setup and Notation

Let Yi denote the (observed) outcome of interest for the ith unit, Di denote the treatment status of the ith

unit, and Xi denote observed, baseline covariates for the ith unit. Further denote by Yi(1) the potential

outcome of the ith unit if treated and by Yi(0) the potential outcome of the ith unit if not treated. As usual,

the (observed) outcome and potential outcomes are related to treatment status by the relationship

Yi = Yi(1)Di + Yi(0)(1−Di) . (1)

For a random variable indexed by i, Ai, it will be useful to denote by A(n) the random vector (A1, . . . , A2n).

Denote by Pn the distribution of the observed data Z(n), where Zi = (Yi, Di, Xi), and by Qn the distribution

of W (n), where Wi = (Yi(1), Yi(0), Xi). Note that Pn is jointly determined by (1), Qn, and the mechanism

for determining treatment assignment. We assume throughout that W (n) consists of 2n i.i.d. observations,

i.e., Qn = Q2n, where Q is the marginal distribution of Wi. We therefore state our assumptions below in

terms of assumptions on Q and the mechanism for determining treatment assignment. Indeed, we will not

make reference to Pn in the sequel and all operations are understood to be under Q and the mechanism for

determining treatment assignment.

Our object of interest is the average effect of the treatment on the outcome of interest, which may be

expressed in terms of this notation as

∆(Q) = E[Yi(1)− Yi(0)] . (2)

For a pre-specified choice of ∆0, the testing problem of interest is

H0 : ∆(Q) = ∆0 versus H1 : ∆(Q) 6= ∆0 (3)

at level α ∈ (0, 1).

We now describe our assumptions on Q. We restrict Q to satisfy the following mild requirement:

Assumption 2.1. The distribution Q is such that
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(a) 0 < E[Var[Yi(d)|Xi]] for d ∈ {0, 1}.

(b) E[Y 2
i (d)] <∞ for d ∈ {0, 1}.

(c) E[Yi(d)|Xi = x] and E[Y 2
i (d)|Xi = x] are Lipschitz for d ∈ {0, 1}.

Assumptions 2.1(a)–(b) are mild restrictions imposed, respectively, to rule out degenerate situations and

to permit the application of suitable laws of large numbers and central limit theorems. See, in particular,

Lemma 6.3 in the Appendix for a novel law of large numbers for independent and non-identically distributed

random variables that is useful in establishing our results. Assumption 2.1(c), on the other hand, is a

smoothness requirement that ensures that units that are “close” in terms of their baseline covariates are

suitably comparable.

Next, we describe our assumptions on the mechanism determining treatment assignment. In order to

describe these assumptions more formally, we require some further notation to define the relevant pairs of

units. The n pairs may be represented by the sets

{π(2j − 1), π(2j)} for j = 1, . . . , n ,

where π = πn(X(n)) is a permutation of 2n elements. Because of its possible dependence on X(n), π

encompasses a broad variety of different ways of pairing the 2n units according to the observed, baseline

covariates X(n). Given such a π, we assume that treatment status is assigned as described in the following

assumption:

Assumption 2.2. Conditional on X(n), (Dπ(2j−1), Dπ(2j)), j = 1, . . . , n are i.i.d. and each uniformly dis-

tributed over the values in {(0, 1), (1, 0)}.

Our analysis will require some discipline on the way in which the pairs are formed. In particular, we will

require that the units in each pair are “close” in terms of their baseline covariates in the sense described by

the following assumption:

Assumption 2.3. The pairs used in determining treatment status satisfy

1

n

∑
1≤j≤n

|Xπ(2j) −Xπ(2j−1)|r
P→ 0

for r = 1 and r = 2.

It will at times be convenient to require further that units in consecutive pairs are also “close” in terms of

their baseline covariates. One may view this requirement, which is formalized in the following assumption,

as “pairing the pairs” so that they are “close” in terms of their baseline covariates.

Assumption 2.4. The pairs used in determining treatment status satisfy

1

n

∑
1≤j≤bn2 c

|Xπ(4j−k) −Xπ(4j−`)|2
P→ 0
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for any k ∈ {2, 3} and ` ∈ {0, 1}.

In Section 4 below, we provide results to facilitate constructing pairs satisfying Assumptions 2.3–2.4 under

weak assumptions on Q. We emphasize, however, that Assumption 2.4, in contrast to Assumptions 2.1–2.3,

will not be required for many of our results. Furthermore, given pairs satisfying Assumption 2.3, it will

frequently be possible to “re-order” them so that Assumption 2.4 is satisfied. See Theorem 4.3 below for

further details.

Remark 2.1. Note that Assumption 2.2 implies that

(Y (n)(1), Y (n)(0)) ⊥⊥ D(n)
∣∣X(n) . (4)

In this sense, treatment status is determined exogenously conditional on X(n).

Remark 2.2. At the expense of some additional notation, it is straightforward to allow π to depend further

on a uniform random variable U that is independent of (Y (n)(1), Y (n)(0), X(n)), but we do not pursue this

generalization here.

Remark 2.3. The treatment assignment scheme described in this section is an example of what is termed

in some parts of the literature as a covariate-adaptive randomization scheme, in which treatment status is

assigned so as to “balance” units assigned to treatment and the units assigned to control in terms of their

baseline covariates. For a review of these types of treatment assignment schemes focused on their use in

clinical trials, see Rosenberger and Lachin (2015). In some such schemes, units are sampled i.i.d. from the

population of interest, stratified into a finite number of strata according to observed, baseline covariates, and

finally, within each stratum, treatment status is assigned so as to achieve “balance” within each stratum. For

instance, within each stratum, a researcher may assign (uniformly) at random half of the units to treatment

and the remainder to control. Bugni et al. (2018, 2019) develop a variety of results pertaining to these

ways of assigning treatment status, but their analysis relies heavily upon the requirement that the units

are stratified using the baseline covariates into only a finite number of strata. As a result, their framework

cannot accomodate “matched pairs” designs, where the number of strata is equal to the number of pairs and

therefore proportional to the sample size.

3 Main Results

3.1 Two-Sample t-Test

In this section, we consider using the two-sample t-test to test (3) at level α ∈ (0, 1). In order to define this

test, for d ∈ {0, 1}, define

µ̂n(d) =
1

n

∑
1≤i≤2n:Di=d

Yi (5)

σ̂2
n(d) =

1

n

∑
1≤i≤2n:Di=d

(Yi − µ̂n(d))2 (6)

4



and let

∆̂n = µ̂n(1)− µ̂n(0) . (7)

The two-sample t-test is given by

φt−test
n (Z(n)) = I{|T t−test

n (Z(n))| > z1−α2 } , (8)

where

T t−test
n (Z(n)) =

√
n(∆̂n −∆0)√
σ̂2
n(1) + σ̂2

n(0)
(9)

and z1−α2 is the 1− α
2 quantile of the standard normal distribution. While its properties are far from clear in

our setting, this classical test is used routinely in the analysis of such data. See, for example, Riach and Rich

(2002), Gelman and Hill (2006, page 174), Duflo et al. (2007), Bertrand and Duflo (2017) and the references

therein. See also Imai et al. (2009) for the use of an analgous test in a setting with cluster-level treatment

assignment.

The following theorem establishes the asymptotic behavior of the two-sample t-statistic defined in (9)

and, as a consequence, the two-sample t-test defined in (8). In particular, the theorem shows that the

limiting rejection probability of the two-sample t-test under the null hypothesis is generally strictly less than

the nominal level.

Theorem 3.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Then, √
n(∆̂n −∆(Q))√
σ̂2
n(1) + σ̂2

n(0)

d→ N(0, ς2t−test) , (10)

where

ς2t−test = 1− 1

2

E
[
((E[Yi(1)|Xi]− E[Yi(1)]) + (E[Yi(0)|Xi]− E[Yi(0)]))

2
]

Var[Yi(1)] + Var[Yi(0)]
.

Thus, for the problem of testing (3) at level α ∈ (0, 1), φt−testn (Z(n)) defined in (8) satisfies

lim
n→∞

E[φt−testn (Z(n))] = P{ςt−test |G| > z1−α2 } ≤ α , (11)

where G ∼ N(0, 1), whenever Q additionally satisfies the null hypothesis, i.e., ∆(Q) = ∆0. Furthermore,

the inequality in (11) is strict unless

E[Yi(1) + Yi(0)] = E[Yi(1) + Yi(0)|Xi] (12)

with probability one under Q.

Remark 3.1. Theorem 3.1 shows that the limiting rejection probability of the two-sample t-test under

the null hypothesis is strictly less than the nominal level unless the baseline covariates are irrelevant for

potential outcomes in the sense described by (12). We note that the conservativeness of the two-sample

t-test is mentioned in Athey and Imbens (2017), but without any formal results. The magnitude of the

difference between the limiting rejection probability and the nominal level, however, will depend further on
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Q through the value of ς2t−test. In our simulation study in Section 5, we find that the rejection probability

can be severely less than the nominal level and that this difference translates into significant power losses

when compared with tests studied below that are (asymptotically) exact in the sense that they have limiting

rejection probability under the null hypothesis equal to the nominal level.

Remark 3.2. In our definition of the two-sample t-test above, we have used the unpooled estimator of

the variance rather than the pooled estimator of the variance. Using Lemma 6.5 in the Appendix, it is

straightforward to show that the unpooled estimator of the variance tends in probability to

Var[Yi(1)] + Var[Yi(0)]

2
+

(E[Yi(1)]− E[Yi(1)])2

4
.

From this and Lemma 6.4 in the Appendix, it is possible to deduce that with this choice of an estimator

of the variance the test may even have limiting rejection probability under the null hypothesis that strictly

exceeds the nominal level.

3.2 “Matched Pairs” t-Test

Instead of the two-sample t-test studied in the preceding section, it is often recommended to use a “matched

pairs” t-test when analyzing such data, which treats the differences of the outcomes within a pair as the

observations. This test is also sometimes referred to as the “paired difference-of-means” test. For some

examples of its use, see Athey and Imbens (2017), Hsu and Lachenbruch (2007), and Armitage et al. (2008).

Formally, this test is given by

φpaired
n (Z(n)) = I{|T paired

n (Z(n))| > z1−α2 } , (13)

where

T paired
n (Z(n)) =

√
n(∆̂n −∆0)√

1
n

∑
1≤j≤n(Yπ(2j) − Yπ(2j−1))2 − ∆̂2

n

(14)

and, as before, z1−α2 is the 1− α
2 quantile of the standard normal distribution. Again, despite its widespread

use, the properties of this test are not transparent in our setting.

The following theorem describes the asymptotic behavior of the “matched pairs” t-statistic defined in

(14), and, as a consequence, the “matched pairs” t-test defined in (13). The theorem shows, in particular,

that the behavior of the “matched pairs” t-test is qualitatively similar to that of the two-sample t-test studied

in the preceding section.

Theorem 3.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Then,

√
n(∆̂n −∆(Q))√

1
n

∑
1≤j≤n(Yπ(2j) − Yπ(2j−1))2 − ∆̂2

n

d→ N(0, ς2paired) , (15)
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where

ς2paired = 1− 1

2

E
[
((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)]))

2
]

E[Var[Yi(1)|Xi]] + E[Var[Yi(0)|Xi]]

+ E
[
((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)]))

2
] .

Thus, for the problem of testing (3) at level α ∈ (0, 1), φpairedn (Z(n)) defined in (13) satisfies

lim
n→∞

E[φpairedn (Z(n))] = P{ςpaired |G| > z1−α2 } ≤ α , (16)

where G ∼ N(0, 1), whenever Q additionally satisfies the null hypothesis, i.e., ∆(Q) = ∆0. Furthermore,

the inequality in (16) is strict unless

E[Yi(1)− Yi(0)] = E[Yi(1)− Yi(0)|Xi] (17)

with probability one under Q.

Remark 3.3. While Theorem 3.2 is qualitatively similar to Theorem 3.1, it is worth emphasizing the

difference between (12) and (17). Both conditions determine a sense in which the baseline covariates are

irrrelevant for potential outcomes, but the latter condition holds, in particular, whenever the treatment effect

Yi(1)− Yi(0) is constant.

Remark 3.4. The test statistic in (14) is particularly convenient for the purposes of constructing a confidence

interval for ∆(Q), but we note that it is possible to studentize differently if one is only interested in testing

(3). In particular, the result in (16) continues to hold for the test formed by replacing the ∆̂n in the

denominator on the right-hand side of (14) with ∆0.

Remark 3.5. The literature has also at times advocated estimation of ∆(Q) via estimation by ordinary

least squares of the coefficient on Di in

Yi = βDi +
∑

1≤j≤n

λjI{i ∈ {π(2j), π(2j − 1)}}+ εi . (18)

See, for example, Duflo et al. (2007) and Glennerster and Takavarasha (2013, page 363) as well as Crépon

et al. (2015), who estimate ∆(Q) in the same way, but in a setting with cluster-level treatment assignment.

In our setting, it is straightforward to see that the ordinary least squares estimator of β in (18) equals ∆̂n.

It is also possible to show that the usual heteroskedasticity-consistent estimator variance equals

1

n

∑
1≤j≤n

(Yπ(2j) − Yπ(2j−1))
2 − ∆̂2

n .

Hence, the resulting test is identical to the “matched pairs” t-test studied in this section.
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3.3 “Adjusted” t-Test

The proofs of Theorems 3.1 and 3.2 in the Appendix rely upon Lemma 6.4, which establishes that

√
n(∆̂n −∆(Q))

d→ N(0, ν2) ,

where

ν2 = Var[Yi(1)] + Var[Yi(0)]− 1

2
E
[
((E[Yi(1)|Xi]− E[Yi(1)]) + (E[Yi(0)|Xi]− E[Yi(0)]))

2
]
. (19)

Using this observation, it is possible to provide an adjustment to these tests that leads to a test that is

exact in the sense that its limiting rejection probability under the null hypothesis equals the nominal level

by providing a consistent estimator of (19). As discussed further in Remark 3.7 below, there exist multiple

consistent estimators of (19), but a convenient one for our purposes is given by

ν̂2
n = τ̂2

n −
1

2
(λ̂2
n + ∆̂2

n) , (20)

where

τ̂2
n =

1

n

∑
1≤j≤n

(Yπ(2j) − Yπ(2j−1))
2 (21)

λ̂2
n =

2

n

∑
1≤j≤bn2 c

(
(Yπ(4j−3) − Yπ(4j−2))(Yπ(4j−1) − Yπ(4j))

×(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j))
)
. (22)

The following theorem shows that the “adjusted” t-test, given by

φt−test,adj
n (Z(n)) = I{|T t−test,adj

n (Z(n))| > z1−α2 } (23)

with

T t−test,adj
n (Z(n)) =

√
n(∆̂n −∆0)

ν̂n
, (24)

satisfies the desired property.

Theorem 3.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.4. Then, √
n(∆̂n −∆(Q))

ν̂n

d→ N(0, 1) . (25)

Thus, for the problem of testing (3) at level α ∈ (0, 1), φt−test,adjn (Z(n)) defined in (23) satisfies

lim
n→∞

E[φt−test,adjn (Z(n))] = α , (26)

whenever Q additionally satisfies the null hypothesis, i.e., ∆(Q) = ∆0.

Remark 3.6. While our discussion has focused on two-sided null hypotheses as described in (3), the con-
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vergence in distribution results described in (10), (15) and (25) have straightforward implications for other

tests, such related tests of one-sided null hypotheses.

Remark 3.7. As mentioned previously, other consistent estimators of (19) exist. For instance, one may

consider the estimator given by

ν̃2
n = σ̂2

n(1) + σ̂2
n(0)− 1

2

(
λ̃2
n − (µ̂n(1) + µ̂n(0))2

)
, (27)

where

λ̃2
n =

2

n

∑
1≤j≤bn2 c

(Yπ(4j−3) + Yπ(4j−2))(Yπ(4j−1) + Yπ(4j)) .

Using arguments similar to those used in establishing Theorem 3.3, it is possible to show that Theorem 3.3

remains true when ν̂2
n defined in (20) is replaced by ν̃2

n defined in (27).

3.4 Randomization Tests

In this section, we study the properties of randomization tests based on the idea of permuting treatment

status for units within pairs. For ease of exposition, it is convenient to describe the test for the problem

of testing (3) with ∆0 = 0; for the problem of testing (3) more generally, the construction below may be

applied with Yi replaced with Yi −Di∆0. See Remark 3.10 below for further details.

In order to describe the test formally, it is useful to introduce some further notation. To this end, denote

by Gn the group of all permutations of 2n elements and by Gn(π) the subgroup that only permutes elements

within the the pairs defined by π, i.e.,

Gn(π) = {g ∈ Gn : {π(2j − 1), π(2j)} = {g(π(2j − 1)), g(π(2j)) for 1 ≤ j ≤ n}} .

Define the action of g ∈ Gn(π) on Z(n) as follows:

gZ(n) = {(Yi, Dg(i), Xi) : 1 ≤ i ≤ 2n} ,

i.e., g ∈ Gn(π) acts on Z(n) by permuting treatment assignment. For a given choice of test statistic Tn(Z(n)),

the randomization test is given by

φrand
n (Z(n)) = I{Tn(Z(n)) > R̂−1

n (1− α)} , (28)

where

R̂n(t) =
1

|Gn(π)|
∑

g∈Gn(π)

I{Tn(gZ(n)) ≤ t} . (29)

Here, R̂−1
n (1−α) is understood to be inf{t ∈ R : R̂n(t) ≥ 1−α}. We also emphasize that difference choices

of Tn(Z(n)) lead to different randomization tests and some of our results below will rely upon a particular

choice of Tn(Z(n)).
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Remark 3.8. In some situations, |Gn(π)| = 2n may be too large to permit computation of ĉrand
n (1 − α)

defined in (29). In such cases, a stochastic approximation to the test may be used by replacing Gn(π) with

Ĝn = {g1, . . . , gB}, where g1 is the identity permutation and let g2, . . . , gB are i.i.d. Unif(Gn(π)). Theorem

3.4 below remains true with such an approximation; Theorem 3.5 below also remains true with such an

approximation provided that B →∞ as n→∞.

3.4.1 Finite-Sample Results

Before developing the large-sample properties of the randomization test given by (28), we present some

finite-sample properties of the test. We show, in particular, that for any choice of test statistic the random-

ization test defined in (28) has rejection probability no greater than the nominal level for the following more

restrictive null hypothesis:

H̃0 : Yi(1)|Xi
d
= Yi(0)|Xi . (30)

While the proof of the result follows closely classical arguments that underlie the finite-sample validity of

randomization tests more generally, it is presented in the Appendix for completeness. Similar results can

also be found in Heckman et al. (2011) and Lee and Shaikh (2014).

Theorem 3.4. Suppose the treatment assignment mechanism satisfies Assumption 2.2. For the problem of

testing (30) at level α ∈ (0, 1), φrand
n (Z(n)) defined in (28) with any Tn(Z(n)) satisfies

E[φrand
n (Z(n))] ≤ α (31)

whenever Q additionally satisfies the null hypothesis, i.e., Yi(1)|Xi
d
= Yi(0)|Xi.

Remark 3.9. By modifying the test defined in (28) so that it rejects with positive probability when

Tn(Z(n)) = ĉrand
n (1 − α), it is possible to ensure that the test has rejection probability exactly equal to

α whenever Q satisfies the null hypothesis, rather than simply less than or equal to α, as described in (31).

See Lehmann and Romano (2005, Chapter 15) for further details.

3.4.2 Large-Sample Properties

In this section, we establish the large-sample validity of the randomization test given by (28) with a suitable

choice of test statistic for testing (3). In particular, we show that the limiting rejection probability of the

proposed test equals the nominal level under the null hypothesis.

Theorem 3.5. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.4. Let Tn(Z(n)) = |T t−test,adjn (Z(n))|, where T t−test,adjn (Z(n)) is defined in (24). For such a

choice of Tn(Z(n)),

sup
t∈R

∣∣∣R̂n(t)− (Φ(t)− Φ(−t))
∣∣∣ P→ 0 , (32)

where Φ(·) is the standard normal c.d.f. Thus, for the problem of testing (3) with ∆0 = 0 at level α ∈ (0, 1),
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φrand
n (Z(n)) with such a choice of Tn(Z(n)) satisfies

lim
n→∞

E[φrand
n (Z(n))] = α , (33)

whenever Q additionally satisfies the null hypothesis, i.e., ∆(Q) = 0.

Remark 3.10. For completeness, we briefly describe the way in which Theorem 3.5 extends to testing (3)

with ∆0 6= 0 in further detail. To this end, let Z̃i = (Yi −Di∆0, Di, Xi) and define the action of g ∈ Gn(π)

on Z̃(n) as follows:

gZ̃(n) = {(Yi −Di∆0, Dg(i), Xi) : 1 ≤ i ≤ 2n} .

Consider the test, φrand
n (Z̃(n)), obtained by replacing Z(n) in the test described in Theorem 3.5 with Z̃(n).

For such a test, we have, under the assumptions of Theorem 3.5, that

lim
n→∞

E[φrand
n (Z̃(n))] = α

whenever Q additionally satisfies the null hypothesis, i.e., ∆(Q) = ∆0.

Remark 3.11. The conclusion in Theorem 3.5 depends heavily on the choice of test statistic in the definition

of (28). In order to illustrate this phenomenon, consider the test defined by (28) with Tn(Z(n)) = |
√
n∆̂n|.

Using Lemmas 6.4 and 6.8 in the Appendix, it is possible to show that this test behaves similarly under

the null hypothesis to the “matched pairs” t-test described in Section 3.2. In particular, it has limiting

rejection probability under the null hypothesis no greater than α and strictly less than α unless (17) holds.

A growing literature suggests that it should be possible to achieve limiting rejection probability under the

null hypothesis equal to α by studentizing the test statistic using a consistent estimator of (19). See, for

example, Janssen (1997), Chung and Romano (2013), DiCiccio and Romano (2017) and Bugni et al. (2018).

The problem considered here, however, illustrates that this need not be sufficient. To see this, consider the

test defined by (28) with Tn(Z(n)) = |
√
n∆̂n|
ν̃n

, where ν̃2
n is defined in (27). Even though ν̃2

n is consistent for

(19), as discussed in Remark 3.7, it is possible to show using arguments similar to those used in establishing

Theorem 3.3 that this test also behaves similarly under the null hypothesis to the “matched pairs” t-test

described in Section 3.2.

4 Algorithms for Pairing

In this section, we describe different algorithms for pairing units so that Assumptions 2.3–2.4 are satisfied.

For the case where dim(Xi) = 1, a particularly simple algorithm leads to pairs that satisfy these assumptions.

In particular, we show that in order to satisfy Assumptions 2.3–2.4 it suffices to pair units simply by first

ordering the units from smallest to largest according to Xi and then defining pairs according to adjacent

units.

Theorem 4.1. Suppose dim(Xi) = 1 and E[X2
i ] < ∞. Let π be any permutation of 2n elements such that

that

Xπ(1) ≤ · · · ≤ Xπ(2n) .
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Then, π satisfies Assumptions 2.3–2.4.

For the case where dim(Xi) > 1, it is helpful to assume that supp(Xi) lies in a known, bounded set,

which, without loss of generality, we may assume to be [0, 1]k. Because u2 ≤ u for all 0 ≤ u ≤ 1, it follows

that for any permutation π̌ of 2n elements

1

n

∑
1≤j≤n

|Xπ̌(2j−1) −Xπ̌(2j)|2 ≤
1

n

∑
1≤j≤n

|Xπ̌(2j−1) −Xπ̌(2j)| . (34)

In order to satisfy Assumption 2.3, it is therefore natural to choose π so as to minimize the right-hand side

of (34). Algorithms for solving this minimization problem in a polynomial number of operations exist. See,

for example, the “blossom” algorithm described in Edmonds (1965) as well as the algorithm described in

Derigs (1988) and implemented in the R package nbpMatching. The following theorem derives a finite-

sample bound on the right-hand side of (34) for π minimizing the right-hand side of (34), which implies, in

particular, that pairing units in this way satisfies Assumption 2.3.

Theorem 4.2. Suppose supp(Xi) ⊆ [0, 1]k. Let π be any permutation of 2n elements minimizing the right-

hand side of (34). Then, for each integer m > 1, we have that

1

n

∑
1≤j≤n

|Xπ(2j) −Xπ(2j−1)| ≤
√
k

m
+
mk−12

√
k

n
. (35)

In particular, if m � n 1
k , then π satisfies Assumption 2.3.

Given a pairing satisfying Assumption 2.3, we now turn our attention to ensuring that the pairing further

satisfies Assumption 2.4. To this end, choose π̄ so as to minimize

2

n

∑
1≤j≤bn2 c

|X̄π̌(2j) − X̄π̌(2j−1)| , (36)

where

X̄j =
Xπ(2j) +Xπ(2j−1)

2
. (37)

We note that the aforementioned algorithms may also be used to solve this minimization problem in a

polynomial number of operations. The following theorem establishes that by re-ordering the pairs according

to π̄, we can ensure that the pairing satisfies Assumption 2.4 in addition to Assumption 2.3.

Theorem 4.3. Suppose supp(Xi) ⊆ [0, 1]k. Let π be a permutation of 2n elements such that Assumption 2.3

is satisfied and π̄ be any permutation of n elements minimizing (36). Define a permutation π̃ of 2n elements

so that

π̃(2j) = π(2π̄(j)) and π̃(2j − 1) = π(2π̄(j)− 1) (38)

for 1 ≤ j ≤ n. Then, π̃ satisfies Assumptions 2.3–2.4.
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5 Simulations

In this section, we examine the finite-sample behavior of several different tests of (3) with ∆0 = 0 at nominal

level α = .05 with a simulation study. For d ∈ {0, 1} and 1 ≤ i ≤ 2n, potential outcomes are generated

according to the equation:

Yi(d) = µd +md(Xi) + σd(Xi)εd,i ,

where µd, md(Xi), σd(Xi) and εd,i are specified in each model as follows. In each of following specifications,

n = 100, (Xi, ε0,i, ε1,i), i = 1 . . . 2n are i.i.d., µ0 = 0 and µ1 = ∆, where ∆ = 0 to study the behavior of

the tests under the null hypothesis and ∆ = 1
4 to study the behavior of the tests under the alternative

hypothesis.

Model 1: Xi ∼ Unif[0, 1]; m1(Xi) = m0(Xi) = γ(Xi− 1
2 ); εd,i ∼ N(0, 1) for d = 0, 1; σ0(Xi) = σ0 = 1

and σ1(Xi) = σ1.

Model 2: As in Model 1, but m1(Xi) = m0(Xi) = sin(γ(X − 1
2 )).

Model 3: As in Model 2, but with m1(Xi) = m0(Xi) +X2
i − 1

3 .

Model 4: As in Model 1, but m0(Xi) = 0 and m1(Xi) = 10(X2
i − 1

3 ).

Model 5: As in Model 4, but m0(Xi) = −10(X2
i − 1

3 ).

Model 6: As in Model 4, but σ0(Xi) = X2
i and σ1(Xi) = σ1X

2
i .

Model 7: Xi = (Φ(Vi1),Φ(Vi2))′, where Φ(·) is the standard normal c.d.f. and

Vi ∼ N

((
0

0

)
,

(
1 ρ

ρ 1

))
;

m1(Xi) = m0(Xi) = γ′Xi − 1; εd,i ∼ N(0, 1) for d = 0, 1; σ0(Xi) = σ0 = 1 and σ1(Xi) = σ1.

Model 8: As in Model 7, but m1(Xi) = m0(Xi) + 10(Φ−1(Xi1)Φ−1(Xi2)− ρ).

Model 9: As in Model 7, but m0(Xi) = 5(Φ−1(Xi1)Φ−1(Xi2)− ρ) and m1(Xi) = −m0(Xi).

For our subsequent discussion, it is useful to note that Models 5 and 9 satisfy (12), Models 1–2 and 7 satisfy

(17), and Models 1-2 and 7 with σ1 = 1 satisfy (30) under the null hypothesis.

Treatment status is determined according to Assumption 2.2, where the pairs are calculated as follows. If

dim(Xi) = 1, then pairs are calculated by sorting the Xi as described in Theorem 4.1. Note that this ensures

that both Assumptions 2.3 and 2.4 are satisfied. If dim(Xi) > 1, then the pairs are calculated by finding π

that minimizes the right-hand side of (34) using the R package nbpMatching. Theorem 4.2 ensures that

these pairs satisfy Assumption 2.3. In order to further ensure that the pairs satisfy Assumption 2.4, we

re-order the pairs by finding π̄ that minimizes (36) using the same R package and applying Theorem 4.3.

The results of our simulations are presented in Tables 1–3 below. Columns are labeled in the following

way:
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t-test: The two-sample t-test studied in Theorem 3.1.

näıve: The randomization test defined in (28) with Tn(Z(n)) = |
√
n∆̂n| and discussed in Remark 3.11.

We henceforth refer to this test as the näıve randomization test.

MP-t: The “matched pairs” t-test studied in Theorem 3.2.

t-adj: The “adjusted” t-test studied in Theorem 3.3.

R-adj: The randomization test studied in Theorem 3.5. We henceforth refer to this test as the

“adjusted” randomization test.

The tables vary according to the values of γ, σ1 and ρ, which were not specified in the description of

the different models above. Rejection probabilities are calculated using 104 replications and presented in

percentage points. Because 2n is large, we employ a stochastic approximation as described in Remark 3.8

with B = 1000 when computing each of the randomizaton tests. We organize our discussion of the results

by test:

t-test: As expected in light of Theorem 3.1, the two-sample t-test has rejection probability under the

null hypothesis no greater than the nominal level. In some cases, the rejection probability under the

null hypothesis is far below the nominal level – see, for instance, Models 4 and 6–8. In other cases, the

rejection probability is close to the nominal level – see, in particular, Models 5 and 9, which satisfy

(12) and are therefore expected to exhibit this phenomenon. In almost all cases, the two-sample t-test

is among the least powerful tests, but, as expected, this feature is especially acute when it has rejection

probability under the null hypothesis severely below the nominal level.

näıve: As expected following the discussion in Remark 3.11, the näıve randomization test has rejection

probability under the null hypothesis no greater than the nominal level. In some cases, the rejection

probability under the null hypothesis is far below the nominal level – see, for instance, Models 4–6

and 8–9. In other cases, the rejection probability is close to the nominal level – see, in particular,

Models 1–2 and 7, which satisfy (17) and are therefore expected to exhibit this phenomenon. Models

1–2 and 7 with σ1 = 1 (corresponding to Tables 1 and 3) in fact satisfy (30) under the null hypothesis,

so the rejection probability is exactly equal to the nominal level up to simulation error, in agreement

with Theorem 3.4. If its rejection probability is close to the nominal level, then it is also among the

most powerful tests, but it otherwise fares poorly in terms of power, especially when compared to the

“adjusted” randomization test.

MP-t: As expected in light of Theorem 3.2, the “matched pairs” t-test has rejection probability under

the null hypothesis no greater than the nominal level. In some cases, the rejection probability under

the null hypothesis is far below the nominal level – see, for instance, Models 4–6 and 8–9. In other

cases, the rejection probability is close to the nominal level – see, in particular, Models 1–2 and 7,

which satisfy (17) and are therefore expected to exhibit this phenomenon. In almost all cases, the

“matched pairs” t-test is among the least powerful tests, but, as expected, this feature is especially

acute when it has rejection probability under the null hypothesis severely below the nominal level.
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t-adj: As expected in light of Theorem 3.3, the “adjusted” t-test has rejection probability under the

null hypothesis close to the nominal level in all cases. In all cases, it is the most powerful test.

R-adj: As expected in light of Theorem 3.5, the “adjusted” randomization test has rejection probability

under the null hypothesis close to the nominal level in almost all cases. The exception is Model 8, for

which the test exhibits some under-rejection under the null hypothesis. For Models 1–2 and 7 with

σ1 = 1 (corresponding to Tables 1 and 3), which, as mentioned previously, satisfy (30) under the null

hypothesis, the rejection probability is again exactly equal to the nominal level up to simulation error,

in agreement with Theorem 3.4. In all cases, it is nearly as powerful as our most powerful test, the

“adjusted” t-test.

We conclude with some recommendations for empirical practice based on our theoretical results as well

as the simulation study above. We do not recommend the two-sample t-test, the “matched pairs” t-test

or the näıve randomization test, which are often considerably less powerful than both the “adjusted” t-

test and the “adjusted” randomization test. In our simulations the “adjusted” t-test is always the most

powerful among the tests we consider, though sometimes by a small margin in comparison to the “adjusted”

randomization test. We also note that the modest gain in power of the “adjusted” t-test is accompanied by the

generally higher rejection probability under the null hypothesis of the “adjusted” t-test as well. As mentioned

previously, the “adjusted” randomization test retains the attractive feature that the finite-sample rejection

probability under the null hypothesis is no greater than the nominal size for certain distributions satisfying

the null hypothesis. To the extent that this feature is deemed important, the “adjusted” randomization test

may be preferred to the “adjusted” t-test despite having slightly lower power.
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Under H0 — ∆ = 0 Under H1 — ∆ = 1/4
Model t-test näive MP-t t-adj R-adj t-test näive MP-t t-adj R-adj

1 4.25 5.02 5.31 5.29 4.97 40.16 41.87 43.20 43.17 41.44
2 4.32 4.93 5.43 5.42 4.93 39.23 41.37 42.52 42.29 40.78
3 3.51 4.73 5.04 5.15 4.73 35.90 40.09 41.56 42.05 40.67
4 1.28 1.13 1.29 4.89 4.27 5.43 5.12 5.51 15.97 14.45
5 5.69 0.79 0.90 5.68 4.98 9.65 1.94 2.18 9.61 8.60
6 0.87 0.65 0.75 5.33 4.83 4.80 4.03 4.70 19.41 17.36
7 3.29 4.94 5.30 5.44 5.28 35.82 41.56 43.07 43.17 42.16
8 1.00 0.93 1.03 4.56 4.26 0.94 0.93 0.96 4.75 4.37
9 5.30 0.65 0.71 4.28 3.87 7.18 1.52 1.65 6.17 5.83

Table 1: Rej. prob. for Models 1–9 with γ = 1 for Models 1–6, γ′ = (1, 1) for Models 7–9, σ1 = 1, ρ = 0.2.

Under H0 — ∆ = 0 Under H1 — ∆ = 1/4
Model t-test näive MP-t t-adj R-adj t-test näive MP-t t-adj R-adj

1 4.75 5.11 5.37 5.46 5.06 29.46 30.26 31.51 31.49 30.24
2 4.23 4.59 5.03 5.20 4.70 29.33 29.99 31.39 30.89 29.52
3 4.16 4.84 5.27 5.39 5.09 26.60 28.78 30.07 30.30 29.27
4 1.65 1.53 1.65 5.24 4.74 5.80 5.31 5.91 14.95 13.72
5 5.27 0.68 0.81 5.21 4.67 9.59 2.19 2.53 9.54 8.45
6 0.83 0.81 0.91 5.50 4.86 4.89 4.23 4.66 18.25 16.43
7 0.39 5.21 5.66 5.85 5.54 7.38 30.04 31.01 31.20 30.56
8 1.50 1.58 1.66 5.71 5.27 0.69 0.70 0.77 4.80 4.36
9 5.73 1.34 1.42 5.24 4.87 8.28 2.13 2.22 7.33 6.93

Table 2: Rej. prob. for Models 1–9 with γ = 1 for Models 1–6, γ′ = (1, 4) for Models 7–9, σ1 = 2, ρ = 0.7.

Under H0 — ∆ = 0 Under H1 — ∆ = 1/4
Model t-test näive MP-t t-adj R-adj t-test näive MP-t t-adj R-adj

1 4.51 5.19 5.62 5.66 5.24 39.09 40.88 42.09 41.92 40.56
2 4.09 4.68 5.03 5.08 4.58 39.95 41.59 42.84 42.43 41.20
3 3.67 4.91 5.26 5.55 5.26 35.10 39.48 40.89 41.48 40.15
4 1.07 0.98 1.13 4.83 4.28 5.43 5.00 5.47 16.52 14.95
5 5.21 0.69 0.79 5.21 4.61 9.98 2.17 2.35 9.93 8.89
6 0.67 0.65 0.69 5.17 4.44 5.11 4.50 4.89 19.03 17.23
7 0.28 4.91 5.19 5.50 5.23 11.20 41.61 43.01 43.18 42.06
8 0.70 0.67 0.81 4.41 4.03 0.95 0.96 1.11 5.26 4.75
9 5.37 0.71 0.79 4.30 4.00 6.93 0.95 1.02 5.52 5.10

Table 3: Rej. prob. for Models 1–9 with γ = 1 for Models 1–6, γ′ = (4, 1) for Models 7–9, σ1 = 1, ρ = 0.
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6 Appendix

Please note that in what follows we will use the notation a . b to denote a ≤ cb for some constant c.

6.1 Proof of Theorem 3.1

The theorem follows immediately upon noting that (10) follows from Lemmas 6.4–6.5 below.

6.2 Proof of Theorem 3.2

The theorem follows immediately upon noting that (15) follows from Lemmas 6.4–6.5 and 6.6 below.

6.3 Proof of Theorem 3.3

From Lemma 6.4, we see that it suffices to show that ν̂2
n defined in (20) tends in probability to (54). Since

E[Var[Yi(1)|Xi]] + E[Var[Yi(0)|Xi]] +
1

2
E
[
((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)]))2

]
= E[Var[Yi(1)|Xi]] + E[Var[Yi(0)|Xi]] +

1

2

(
E
[
(E[Yi(1)|Xi]− E[Yi(0)|Xi])2

]
− (E[Yi(1)]− E[Yi(0)])2

)
.

the desired conclusion follows immediately from Lemmas 6.5–6.7.

6.4 Proof of Theorem 3.4

Let Q satisfying (30) be given. For such a Q, we first argue that

gZ(n)|X(n) d
= Z(n)|X(n) . (39)

Since π = πn(X(n)), we have from Assumption 2.2 that

gD(n)|X(n) d
= D(n)|X(n) . (40)

Furthermore,

Y (n) ⊥⊥ D(n)|X(n) . (41)

To see this, note for any set A and any d and d′ in the support of D(n)|X(n) that

P{Y (n) ∈ A|D(n) = (d1, . . . d2n), X(n)} = P{(Y1(d1), . . . Y2n(d2n)) ∈ A|D(n) = (d1, . . . d2n), X(n)}

= P{(Y1(d1), . . . Y2n(d2n)) ∈ A|X(n)}

= P{(Y1(d′1), . . . Y2n(d′2n)) ∈ A|X(n)}

= P{(Y1(d′1), . . . Y2n(d′2n)) ∈ A|D(n) = (d′1, . . . d
′
2n), X(n)}

= P{Y (n) ∈ A|D(n) = (d′1, . . . d
′
2n), X(n)} ,

where the first and fifth equalities follow from (1), the second and fourth equalities follow from (4), the third follows from the

fact that Q satisfies (30). It now follows from (40) and (41) that (39) holds.

Next, observe that

E

 ∑
g∈Gn(π)

φrand
n (gZ(n))

 = E

E
 ∑
g∈Gn(π)

φrand
n (gZ(n))

∣∣∣∣∣∣X(n)


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= E

 ∑
g∈Gn(π)

E
[
φrand
n (Z(n))

∣∣∣X(n)
]

= E
[
2nE

[
φrand
n (Z(n))

∣∣∣X(n)
]]

= 2nE
[
φrand
n (Z(n))

]
, (42)

where the first and final equalities follow from the law of iterated expectations, the second follows from (39), and the third

exploits the fact that |Gn(π)| = 2n. Using the fact that Gn(π) is a group, we have with probability one that∑
g∈Gn(π)

φrand
n (gZ(n)) ≤ 2nα .

Hence,

E

 ∑
g∈Gn(π)

φrand
n (gZ(n))

 ≤ 2nα . (43)

Combining (42) and (43), we see that (31) holds, as desired.

6.5 Proof of Theorem 3.5

Note that

∆̂n =
1

n

∑
1≤j≤n

(Yπ(2j) − Yπ(2j−1))(Dπ(2j) −Dπ(2j−1)) .

This observation, together with the definition of ν̂n in (20), implies that

R̂n(t) = P


∣∣∣ 1√

n

∑
1≤j≤n εj(Yπ(2j) − Yπ(2j−1))(Dπ(2j) −Dπ(2j−1))

∣∣∣
ν̌n(ε1, . . . , εn)

≤ t

∣∣∣∣∣W (n)

 ,

where, independently of W (n), εj , j = 1, . . . , n are i.i.d. Rademacher random variables and ν̌2
n is defined as in (79). Note further

that

R̂n(t) = Řn(t)− Řn(−t) ,

where

Řn(t) = P

{ 1√
n

∑
1≤j≤n εj(Yπ(2j) − Yπ(2j−1))(Dπ(2j) −Dπ(2j−1))

ν̌n(ε1, . . . , εn)
≤ t

∣∣∣∣∣W (n)

}
.

The desired conclusion now follows immediately from Lemmas 6.8–6.9 together with Theorem 5.2 of Chung and Romano (2013).

6.6 Proof of Theorem 4.1

For 1 ≤ i ≤ 2n, let Ui = |Xi| and write U(1) ≤ · · · ≤ U(2n). Note that

1

n

∑
1≤j≤n

|Xπ(2j) −Xπ(2j−1)| =
1

n

∑
1≤j≤n

(Xπ(2j) −Xπ(2j−1))

≤
1

n
(Xπ(2n) −Xπ(1))

≤
1

n
2U(2n)

P→ 0 ,

where the equality exploits the fact that Xπ(2j−1) ≤ Xπ(2j), the two inequalities follow by inspection, and the convergence in

probability to zero follows from Lemma 6.1. Similarly,

1

n

∑
1≤j≤n

|Xπ(2j) −Xπ(2j−1)|2 ≤ |Xπ(2n) −Xπ(1)|

 1

n

∑
1≤j≤n

|Xπ(2j) −Xπ(2j−1)|


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≤
(
U(2n)√

n

)2

P→ 0 ,

where the first inequality follows by inspection, the second follows by arguing as before, and the convergence in probability to

zero again follows from Lemma 6.1. Finally, for any k ∈ {2, 3} and ` ∈ {0, 1}, we have that

2

n

∑
1≤j≤n

2

|Xπ(4j−k) −Xπ(4j−`)|2 ≤
2

n

∑
1≤j≤n

2

|Xπ(4j−3) −Xπ(4j)|2

≤ |Xπ(2n) −Xπ(1)|

 2

n

∑
1≤j≤n

2

|Xπ(4j−3) −Xπ(4j)|


≤

(
U(2n)√

n

)2

P→ 0 ,

where the first and second inequalities follow by inspection, the third follows by arguing as before, and the convergence in

probability to zero again follows from Lemma 6.1. It thus follows that Assumptions 2.3–2.4 hold.

6.7 Proof of Theorem 4.2

We describe an algorithm that leads to a pairing that does not minimize the right-hand side of (34) exactly, but which leads to

the desired bound, from which the result follows.

In order to describe the algorithm, it is useful to introduce some further notation. For an integer m > 1, divide [0, 1]k into

mk hypercubes with sides of length m−1. We index these cubes by k-tuples of the form (i1, . . . , ik) with 1 ≤ ij ≤ m for all

1 ≤ j ≤ k. Specifically, the k-tuple (i1, . . . , ik) corresponds to the (closed) cube with vertices{
1

m
(i1 − 1 + δ1, . . . , ik − 1 + δk) : δj ∈ {0, 1} for all 1 ≤ j ≤ k

}
.

We further order these cubes in a “contiguous” way. We do so by defining an algorithm fk that takes as an input a k-

dimensional hypercube of the form (i1, . . . , ik) with ij ∈ {1,m} for all 1 ≤ j ≤ k and returns a “path” starting from (i1, . . . , ik)

and ending at (i′1, . . . , i
′
k) with i′j ∈ {1,m} for all 1 ≤ j ≤ k that traverses all mk of the possible k-dimensional hypercubes. We

define f1 so that

f1((i1)) =

(1) 7→ (2) 7→ · · · 7→ (m− 1) 7→ (m) if (i1) = (1)

(m) 7→ (m− 1) 7→ · · · 7→ (2) 7→ (1) if (i1) = (m) .
(44)

Given fk−1, we define fk((i01, . . . , i
0
k)) as follows. If i0k = 1, then fk((i01, . . . , i

0
k)) equals

(i01, . . . , i
0
k−1, 1) 7→ · · · 7→ (i11, . . . , i

1
k−1, 1)

7→ (i11, . . . , i
1
k−1, 2) 7→ · · · 7→ (i21, . . . , i

2
k−1, 2)

...

7→ (ij−1
1 , . . . , ij−1

k−1, j) 7→ · · · 7→ (ij1, . . . , i
j
k−1, j)

...

7→ (im−1
1 , . . . , im−1

k−1 ,m) 7→ · · · 7→ (im1 , . . . , i
m
k−1,m) ,

where in the preceding display it is understood that the “path” for a fixed “row,” i.e.,

(ij−1
1 , . . . , ij−1

k−1, j) 7→ · · · 7→ (ij1, . . . , i
j
k−1, j) , (45)

is given by applying fk−1 first to obtain a “path” starting from (ij−1
1 , . . . , ij−1

k−1) and ending at (ij1, . . . , i
j
k−1) and then “ap-
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pending” j to obtain a “path” of the form (45). If, on the other hand, i0k = m, then fk((i01, . . . , i
0
k)) equals

(i01, . . . , i
0
k−1,m) 7→ · · · 7→ (i11, . . . , i

1
k−1,m)

7→ (i11, . . . , i
1
k−1,m− 1) 7→ · · · 7→ (i21, . . . , i

2
k−1,m− 1)

...

7→ (ij−1
1 , . . . , ij−1

k−1,m− j + 1) 7→ · · · 7→ (ij1, . . . , i
j
k−1,m− j + 1)

...

7→ (im−1
1 , . . . , im−1

k−1 , 1) 7→ · · · 7→ (im1 , . . . , i
m
k−1, 1) ,

where, as before, in the preceding display it is understood that the “path” for a fixed “row,” i.e.,

(ij−1
1 , . . . , ij−1

k−1,m− j + 1) 7→ · · · 7→ (ij1, . . . , i
j
k−1,m− j + 1) , (46)

is given by applying fk−1 first to obtain a “path” starting from (ij−1
1 , . . . , ij−1

k−1) and ending at (ij1, . . . , i
j
k−1) and then “ap-

pending” m− j + 1 to obtain a “path” of the form (45).

(a) (b)

1

Figure 1: (a) Illustration of the “path” obtained by applying fk with k = 2 and m = 4; (b) Illustration of a
pairing obtained by applying Algorithm 6.1 with k = 2, n = 12 and m = 4. Note that the endpoints of the
line segments correspond to units and the pairs correspond to units connected by a line segments.

With fk so defined, we may obtain a “path” starting with (1, . . . , 1). Figure 1(a) above illustrates the “path” obtained

in this way for the case of k = 2 and m = 4. Using this “path,” we are now prepared to describe our algorithm for pairing

units below. We emphasize that the algorithm depends on the choice of m. For clarity, we also note that when we say in our

description of the algorithm that a unit i belongs to a hypercube, we mean that Xi belongs to the hypercube. To avoid any

ambiguity, whenever a unit belongs to more than one hypercube, we assign it the hypercube that appears earliest along the

“path.”

Algorithm 6.1.

Begin with the first nonempty hypercube along the “path.” If there are an even number of units in that

hypercube, pair them together in any fashion; if there are an odd number of units in that hypercube, pair as

many as possible together. Now proceed to the “next” nonempty hypercube along the “path.” If in the previous

hypercube there was an unpaired unit, pair one of the units in the present hypercube with the remaining unit

from the previous hypercube. If, after doing so, there are an even number of unpaired units in the hypercube,
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pair them in any fashion; if, after doing so, there are an odd number of unpaired units in the hypercube, pair as

many as possible together. Proceed to the next nonempty hypercube along the “path.” Continue in this fashion

until there are no more nonempty hypercubes.

Figure 1(b) above illustrates a pairing obtained by applying Algorithm 6.1 with k = 2, n = 12 and m = 4.

We now argue that Algorithm 6.1 leads to a pairing satisfying the desired bound. To this end, first note that the maximum

distance between any two points in the a k-dimensional hypercube with sides of length 1
m

is
√
k
m

. Note further that the maximum

distance between two points in two such cubes that are contiguous (as understood according to ordering described in Section

4) is 2
√
k

m
. Using these facts, the bound in (35) now easily follows. Indeed, simply note that the sum that appears on the

left-hand side of (35) may contain at most n terms corresponding to pairs of points within hypercubes and at most mk terms

corresponding to pairs of points in contiguous hypercubes. The desired conclusion now follows immediately.

6.8 Proof of Theorem 4.3

We prove the result for k = 3 and ` = 0; the other values of k and ` can be handled similarly.

By arguing as in the proof of Theorem 4.2 and using (34), we see that

2

n

∑
1≤j≤bn

2
c
|X̄π̌(2j) − X̄π̌(2j−1)|2

P→ 0 . (47)

Note that

1

n

∑
1≤j≤n

2

|Xπ̃(4j−3) −Xπ̃(4j)|2

=
1

n

∑
1≤j≤n

2

|Xπ̃(4j−3) − X̄π̄(2j−1) + X̄π̄(2j−1) − X̄π̄(2j) + X̄π̄(2j) −Xπ̃(4j)|2

.
1

n

∑
1≤j≤n

2

|Xπ̃(4j−3) − X̄π̄(2j−1)|2 + |X̄π̄(2j−1) − X̄π̄(2j)|2 + |X̄π̄(2j) −Xπ̃(4j)|2

.
1

n

∑
1≤j≤n

2

|Xπ̃(4j−3) −Xπ̃(4j−2)|2 + |X̄π̄(2j−1) − X̄π̄(2j)|2 + |Xπ̃(4j−1) −Xπ̃(4j)|2

.
1

n

∑
1≤j≤n

|Xπ(2j) −Xπ(2j−1)|2 +
1

n

∑
1≤j≤n

2

|X̄π̄(2j−1) − X̄π̄(2j)|2

P→ 0 ,

where the first equality follows by inspection, the first inequality follows using the fact that |a + b|2 ≤ 2(|a|2 + |b|2) for any

real vectors a and b, the second inequality follows from (37) and (38), the second equality follows again from (38), and the

convergence to zero in probability follows from the assumption that π satisfies Assumption 2.3 and (47).

6.9 Auxiliary Results

Lemma 6.1. Let Ui, i = 1, . . . , n an i.i.d. sequence of random vectors such that E[|Ui|r] <∞. Then,

n−
1
r max

1≤i≤n
|Ui|

P→ 0

as n→∞.

Proof: Let ε > 0 be given. Note that

P

{
n−

1
r max

1≤i≤n
|Ui| > ε

}
= P

 ⋃
1≤i≤n

{|Ui|r > εrn}


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≤
∑

1≤i≤n
P{|Ui|r > εrn}

≤
1

nεr

∑
1≤i≤n

E[|Ui|rI{|Ui|r > εrn}]

=
1

εr
E[|Ui|rI{|Ui|r > εrn}]

→ 0

as n → ∞, where the first equality follows by inspection, the first inequality follows from Bonferonni’s inequality, the second

inequality follows from Markov’s inequality, the final equality follows from the i.i.d. assumption, and the convergence to zero

follows from the assumption that E[|Ui|r] <∞.

Lemma 6.2. For n ≥ 1, let Un and Vn be real-valued random variables and Fn a σ-field. Suppose

P{Un ≤ u|Fn} → Φ(u/τ1) a.s. , (48)

where Φ(·) is the standard normal c.d.f. Further assume Vn is Fn-measurable and

Vn
d→ N(0, τ2

2 ) .

Then,

Un + Vn
d→ N(0, τ2

1 + τ2
2 ) .

Proof: Note that the convergence (48) holds with probability one for all u in a countable dense set, and hence the conditional

distributions converge weakly to N(0, τ2
1 ) with probability one. Use characteristic functions and calculate

E exp[it(Un + Vn)] = E{exp(itVn)E[exp(itUn)|Fn]} .

But, E[exp it(Vn)] → exp(− t
2

2
τ2
2 ). Also, on the set where we have weak convergence, we have convergence of characteristic

functions, so that

E[exp(itUn)|Fn]→ exp

(
−
t2

2
τ2
1

)
a.s.

The result follows from dominated convergence.

Lemma 6.3. Let (Un,1, . . . , Un,n) ∼ G∗n =
⊗

1≤i≤nGn,i with µ(Gn,i) = 0 for all 1 ≤ i ≤ n. Define

Ḡn =
1

n

∑
1≤i≤n

Gn,i .

If

lim
λ→∞

lim sup
n→∞

EḠn [|U |I{|U | > λ}] = 0 , (49)

then Ūn
G∗n→ 0.

Proof: Define

Zn,i = Un,iI{|Un,i| ≤ n} .

Let mn,i = E[Zn,i] and m̄n = E[Z̄n]. For any ε > 0, we have that

P{|Ūn − m̄n| > ε} ≤ P{|Z̄n − m̄n| > ε}+ P{Ūn 6= Z̄n} .

Furthermore,

P{Ūn 6= Z̄n} ≤ P

 ⋃
1≤i≤n

{Un,i 6= Zn,i}

 ≤ ∑
1≤i≤n

P{Un,i 6= Zn,i} =
∑

1≤i≤n
P{|Un,i| > n} .

By Chebychev’s inequality, we have that

P{|Z̄n − m̄n| > ε} ≤
Var[Z̄n]

ε2
=

1

n

∑
1≤i≤n

Var[Zn,i]

nε2
≤

1

n

∑
1≤i≤n

E[Z2
n,i]

nε2
.
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Hence,

P{|Ūn − m̄n| > ε} ≤
1

n

∑
1≤i≤n

E[Z2
n,i]

nε2
+

1

n

∑
1≤i≤n

nP{|Un,i| > n} .

For t > 0, let

τn,i(t) = tP{|Un,i| > t} = t(1−Gn,i(t) +Gn,i(−t))

κn,i(t) =
1

t
E[Z2

n,i] =
1

t

∫ t

−t
x2dGn,i(t) .

In this notation, we have that

P{|Ūn − m̄n| > ε} ≤
1

n

∑
1≤i≤n

κn,i(n)

ε2
+

1

n

∑
1≤i≤n

τn,i(n) . (50)

Since

tP{|Un,i| > t} ≤ E[|Un,i|I{|Un,i| > t}] , (51)

we see that
1

n

∑
1≤i≤n

τn,i(t) ≤
1

n

∑
1≤i≤n

E[|Un,i|I{|Un,i| > t}] = EḠn [|U |I{|U | > t}] .

Hence,
1

n

∑
1≤i≤n

τn,i(n)→ 0 .

Using integration by parts, it is possible to show that

κn,i(t) = −τn,i(t) +
2

t

∫ t

0
τn,i(x)dx .

In order to show that the left-hand side of (50) tends to zero, it therefore suffices to argue that

1

n

∑
1≤i≤n

1

n

∫ n

0
τn,i(x)dx→ 0 . (52)

To this end, note that (51) implies that

1

n

∑
1≤i≤n

1

n

∫ n

0
τn,i(x)dx ≤

1

n

∑
1≤i≤n

1

n

∫ n

0
E[|Un,i|I{|Un,i| > x}]dx

=
1

n

∫ n

0
EḠn [|U |I{|U | > x}]dx .

Let δ > 0 be given and choose n0 and λ0 so that

EḠn [|U |I{|U | > x}] <
δ

2

whenever n > n0 and x > λ0. For x ≤ λ0 and n > n0, we have that

EḠn [|U |I{|U | > x}] ≤ EḠn [|U |] = EḠn [|U |I{|U | ≤ λ0}] + EḠn [|U |I{|U | > λ0}] ≤ λ0 +
δ

2

It follows that
1

n

∫ n

0
EḠn [|U |I{|U | > x}]dx ≤

λ0(λ0 + δ
2

)

n
+
δ

2

for n > n0 and n > λ0, which is less than δ for all n sufficiently large. Since the choice of δ > 0 was arbitrary, (52) follows. To

complete the proof, note that

|m̄n| ≤
1

n

∑
1≤i≤n

E[|Un,i|I{Un,i| > n}] = EḠn [|U |I{|U | > n}] ,

which tends to zero by assumption.

Lemma 6.4. If Assumptions 2.1–2.3 hold, then

√
n(∆̂n −∆(Q))

d→ N(0, ν2) , (53)
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where

ν2 = E[Var[Yi(1)|Xi]] + E[Var[Yi(0)|Xi]]

+
1

2
E
[
((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)]))2

]
(54)

= Var[Yi(1)] + Var[Yi(0)]−
1

2
E
[
((E[Yi(1)|Xi]− E[Yi(1)]) + (E[Yi(0)|Xi]− E[Yi(0)]))2

]
as n→∞.

Proof: Note that

1

n

∑
1≤i≤2n:Di=1

Yi =
1

n

∑
1≤i≤2n

Yi(1)Di

1

n

∑
1≤i≤2n:Di=0

Yi =
1

n

∑
1≤i≤2n

Yi(0)(1−Di) .

Hence, we may write
√
n(∆̂n −∆(Q)) = An −Bn + Cn −Dn ,

where

An =
1
√
n

∑
1≤i≤2n

(
Yi(1)Di − E[Yi(1)Di|X(n), D(n)]

)
Bn =

1
√
n

∑
1≤i≤2n

(
Yi(0)(1−Di)− E[Yi(0)(1−Di)|X(n), D(n)]

)
Cn =

1
√
n

∑
1≤i≤2n

(
E[Yi(1)Di|X(n), D(n)]−DiE[Yi(1)]

)
Dn =

1
√
n

∑
1≤i≤2n

(
E[Yi(0)(1−Di)|X(n), D(n)]− (1−Di)E[Yi(0)]

)
.

Note that, conditional on X(n) and D(n), An and Bn are independent and Cn and Dn are constant.

We first analyze the limiting behavior of An. Conditional on X(n) and D(n), the terms in this sum are independent, but not

identically distributed. We proceed by verifying that the condition in Linderberg’s Central Limit Theorem holds in probability

conditional on X(n) and D(n). To that end, define

s2n = s2n(X(n), D(n)) =
∑

1≤i≤2n

Var[Yi(1)Di|X(n), D(n)]

and note that

s2n =
∑

1≤i≤2n:Di=1

Var[Yi(1)|X(n), D(n)]

=
∑

1≤i≤2n:Di=1

Var[Yi(1)|X(n)]

=
∑

1≤i≤2n:Di=1

Var[Yi(1)|Xi] ,

where the first equality follows from Assumption 2.2 and the second follows from the fact that Qn = Qn. It follows that

s2n
n

=
1

2n

∑
1≤i≤2n

Var[Yi(1)|Xi] +

 1

2n

∑
1≤i≤2n:Di=1

Var[Yi(1)|Xi]−
1

2n

∑
1≤i≤2n:Di=0

Var[Yi(1)|Xi]

 .

Using Assumption 2.1(b), we have that

1

2n

∑
1≤i≤2n

Var[Yi(1)|Xi]
P→ E[Var[Yi(1)|Xi]] .
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Note further that ∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n:Di=1

Var[Yi(1)|Xi]−
1

2n

∑
1≤i≤2n:Di=0

Var[Yi(1)|Xi]

∣∣∣∣∣∣
≤

1

2n

∑
1≤j≤n

∣∣Var[Yπ(2j)(1)|Xπ(2j)]−Var[Yπ(2j−1)(1)|Xπ(2j−1)]
∣∣

.
1

n

∑
1≤j≤n

|Xπ(2j) −Xπ(2j−1)|
P→ 0 ,

where the first inequality follows by inspection, the second inequality exploits Assumption 2.1(c) and the convergence to zero

follows from Assumption 2.3. Hence,
s2n
n

P→ E[Var[Yi(1)|Xi]] > 0 , (55)

where the final inequality exploits Assumption 2.1(a). Next, we argue for any ε > 0 that

1

s2n

∑
1≤i≤2n

E[|Yi(1)Di − E[Yi(1)Di|X(n), D(n)]|2I{|Yi(1)Di − E[Yi(1)Di|X(n), D(n)]| > εsn}|X(n), D(n)]
P→ 0 .

To this end, first note that for any m > 0 we have that

P{εsn > m} → 1 . (56)

Note further that Assumption 2.2 implies that

E[Yi(1)Di|X(n), D(n)] = DiE[Yi(1)|Xi] , (57)

so the lefthand-side of the preceding display may be written as

1

s2n

∑
1≤i≤2n:Di=1

E[|Yi(1)− E[Yi(1)|Xi]|2I{|Yi(1)− E[Yi(1)|Xi]| > εsn}|X(n), D(n)]

≤
(
s2n
n

)−1
1

n

∑
1≤i≤2n

E[|Yi(1)− E[Yi(1)|Xi]|2I{|Yi(1)− E[Yi(1)|Xi]| > εsn}|X(n), D(n)]

≤
(
s2n
n

)−1
1

n

∑
1≤i≤2n

E[|Yi(1)− E[Yi(1)|Xi]|2I{|Yi(1)− E[Yi(1)|Xi]| > m}|X(n), D(n)] + oP (1)

=

(
s2n
n

)−1
1

n

∑
1≤i≤2n

E[|Yi(1)− E[Yi(1)|Xi]|2I{|Yi(1)− E[Yi(1)|Xi]| > m}|Xi] + oP (1)

P→ (E[Var[Yi(1)|Xi]])−1E[|Yi(1)− E[Yi(1)|Xi]|2I{|Yi(1)− E[Yi(1)|Xi]| > m}] ,

where the first inequality follows by inspection, the second inequality exploits (55)–(56), the equality follows from Assumption

2.2 and the fact that Qn = Qn, and the convergence in probability follows from (55) and the fact that Assumption 2.1(b)

implies

E[|Yi(1)− E[Yi(1)|Xi]|2] = E[Var[Yi(1)|Xi]] ≤ E[Y 2
i (1)] <∞ . (58)

Note further that (58) implies that

lim
m→∞

E[|Yi(1)− E[Yi(1)|Xi]|2I{|Yi(1)− E[Yi(1)|Xi]| > m}] = 0 .

The condition in Lindeberg’s Central Limit Theorem therefore holds in probability. It follows by a subsequencing argument

similar to that used in the proof of Lemma 6.5 below that

sup
t∈R

∣∣∣P{An ≤ t|X(n), D(n)} − Φ(t/
√
E[Var[Yi(1)|Xi]])

∣∣∣ P→ 0 .

A similar argument establishes that

sup
t∈R

∣∣∣P{Bn ≤ t|X(n), D(n)} − Φ(t/
√
E[Var[Yi(0)|Xi]])

∣∣∣ P→ 0 .
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Since An and Bn are independent conditional on X(n) and D(n), it follows by another subsequencing argument that

sup
t∈R

∣∣∣P{An −Bn ≤ t|X(n), D(n)} − Φ(t/
√
E[Var[Yi(0)|Xi]] + E[Var[Yi(0)|Xi]])

∣∣∣ P→ 0 . (59)

To analyze Cn, first note that (57) implies that

Cn =
1
√
n

∑
1≤i≤2n

Di (E[Yi(1)|Xi]− E[Yi(1)]) , (60)

so

E[Cn|X(n)] =
1

2
√
n

∑
1≤i≤2n

(E[Yi(1)|Xi]− E[Yi(1)]) . (61)

Furthermore,

Var[Cn|X(n)] = Var[Cn − E[Cn|X(n)]|X(n)]

= Var

 1
√
n

∑
1≤i≤2n

(
Di −

1

2

)
(E[Yi(1)|Xi]− E[Yi(1)])

∣∣∣∣∣X(n)


= Var

 1
√
n

∑
1≤i≤2n

(
Di −

1

2

)
E[Yi(1)|Xi]

∣∣∣∣∣X(n)


=

1

4n

∑
1≤j≤n

(
E[Yπ(2j)(1)|Xπ(2j)]− E[Yπ(2j−1)(1)|Xπ(2j−1)]

)2
.

1

n

∑
1≤j≤n

(
Xπ(2j) −Xπ(2j−1)

)2 P→ 0 ,

where the first equality exploits properties of conditional variances, the second follows from (60)–(61), the third exploits the

fact that
∑

1≤i≤2nDi = n, the fourth exploits the distribution of D(n)|X(n), the inequality follows from Assumption 2.1(c),

and the convergence in probability follows from Assumption 2.3. For any ε > 0, it thus follows from Chebychev’s inequality

that

P{|Cn − E[Cn|X(n)]| > ε|X(n)} ≤
Var[Cn|X(n)]

ε2
P→ 0 .

Since probabilities are bounded, we have further that

P{|Cn − E[Cn|X(n)]| > ε} P→ 0 .

Hence,

Cn =
1

2
√
n

∑
1≤i≤2n

(E[Yi(1)|Xi]− E[Yi(1)]) + oP (1) . (62)

A similar argument establishes that

Dn =
1

2
√
n

∑
1≤i≤2n

(E[Yi(0)|Xi]− E[Yi(0)]) + oP (1) . (63)

Hence,

Cn −Dn =
1

2
√
n

∑
1≤i≤2n

((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)])) + oP (1)

=

√
2

2

1
√

2n

∑
1≤i≤2n

((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)])) + oP (1)

d→ N

(
0,

1

2
E
[
((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)]))2

])
,

where the first equality follows from (62)–(63), the second equality follows by inspection, and the convergence in distribution

follows from Slutsky’s theorem and the Central Limit Theorem.

The desired conclusion (53) now follows by a subsequencing argument. To see this, suppose by way of contradiction that
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(53) fails. This implies that there exists δ > 0 and a subsequence nk along which

sup
t∈R
|P{√nk(∆̂nk −∆(Q)) ≤ t} − Φ(t/ν)| → δ . (64)

By considering a further subsequence if necessary, which, by an abuse of notation, we continue to denote by nk, it follows from

(59) that

Ank −Bnk
d→ N(0, E[Var[Yi(0)|Xi]] + E[Var[Yi(0)|Xi]]) w.p.1 (conditional on X(nk) and D(nk)) .

Since Cnk −Dnk is constant conditional on X(nk) and D(nk), Lemma 6.2 establishes that

√
nk(∆̂nk −∆) = Ank −Bnk + Cnk −Dnk

d→ N(0, ν2) ,

which, by Polya’s Theorem, implies a contradiction to (64).

Finally, in order to complete the proof, note that

E[Var[Yi(1)|Xi]] + E[Var[Yi(0)|Xi]] +
1

2
E
[
((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)]))2

]
= Var[Yi(1)] + Var[Yi(0)]−Var[E[Yi(1)|Xi]]−Var[E[Yi(0)|Xi]]

+
1

2
E
[
((E[Yi(1)|Xi]− E[Yi(1)])− (E[Yi(0)|Xi]− E[Yi(0)]))2

]
= Var[Yi(1)] + Var[Yi(0)]−

1

2
Var[E[Yi(1)|Xi]]−

1

2
Var[E[Yi(0)|Xi]]

−E[(E[Yi(1)|Xi]− E[Yi(1)])(E[Yi(0)|Xi]− E[Yi(0)])]

= Var[Yi(1)] + Var[Yi(0)]−
1

2
E
[
((E[Yi(1)|Xi]− E[Yi(1)]) + (E[Yi(0)|Xi]− E[Yi(0)]))2

]
,

which establishes that the two expressions for ν2 in the statement of the theorem are in fact equivalent.

Lemma 6.5. If Assumptions 2.1–2.3 hold, then µ̂n(d)
P→ E[Yi(d)]and σ̂2

n(d)
P→ Var[Yi(d)], where µ̂n(d) and σ̂2

n(d) are defined

in (5) and (6), respectively.

Proof: Note that

µ̂n(d) =
1

n

∑
1≤i≤2n

Yi(d)I{Di = d}

σ̂2
n(d) =

1

n

∑
1≤i≤2n

(Yi − µ̂n(d))2I{Di = d}

=
1

n

∑
1≤i≤2n

Y 2
i (d)I{Di = d} − µ̂2

n(d) .

It therefore suffices to show that
1

n

∑
1≤i≤2n

Y ri (d)I{Di = d} P→ E[Y ri (d)]

for r ∈ {1, 2}. We prove this result only for r = 1 and d = 1; the other cases can be proven similarly. To this end, write

1

n

∑
1≤i≤2n

Yi(1)I{Di = 1} =
1

n

∑
1≤i≤2n

Yi(1)Di

=
1

n

∑
1≤i≤2n

(
Yi(1)Di − E[Yi(1)Di|X(n), D(n)]

)
+

1

n

∑
1≤i≤2n

E[Yi(1)Di|X(n), D(n)] .

Next, note that

1

n

∑
1≤i≤2n

E[Yi(1)Di|X(n), D(n)]

=
1

n

∑
1≤i≤2n

DiE[Yi(1)|Xi]

=
1

n

∑
1≤i≤2n:Di=1

E[Yi(1)|Xi]
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=
1

2n

∑
1≤i≤2n

E[Yi(1)|Xi] +

 1

2n

∑
1≤i≤2n:Di=1

E[Yi(1)|Xi]−
1

2n

∑
1≤i≤2n:Di=0

E[Yi(1)|Xi]

 ,

where the first equality exploits (57) and the second and third equalities follow by inspection. Note further that∣∣∣∣∣∣ 1

2n

∑
1≤i≤2n:Di=1

E[Yi(1)|Xi]−
1

2n

∑
1≤i≤2n:Di=0

E[Yi(1)|Xi]

∣∣∣∣∣∣
≤

1

2n

∑
1≤j≤n

|E[Yπ(2j)(1)|Xπ(2j)]− E[Yπ(2j−1)(1)|Xπ(2j−1)]|

.
1

n

∑
1≤j≤n

|Xπ(2j) −Xπ(2j−1)|
P→ 0 ,

where the first inequality follows by inspection, the second exploits Assumption 2.1(c) and the convergence in probability follows

from Assumption 2.3. Since Assumption 2.1(b) implies that E[|E[Yi(1)|Xi]|] ≤ E[|Yi(1)|] <∞, it follows that

1

n

∑
1≤i≤2n

E[Yi(1)Di|X(n), D(n)]
P→ E[E[Yi(1)|Xi]] = E[Yi(1)] .

To complete the argument, we argue that

1

n

∑
1≤i≤2n

(
Yi(1)Di − E[Yi(1)Di|X(n), D(n)]

)
P→ 0 . (65)

For this purpose, we proceed by verifying that (49) in Lemma 6.3 holds in probability conditional on X(n) and D(n). To that

end, note for any m > 0 that

1

2n

∑
1≤i≤2n

E[|Yi(1)Di − E[Yi(1)Di|X(n), D(n)]|I{|Yi(1)Di − E[Yi(1)Di|X(n), D(n)]| > m}|X(n), D(n)]

=
1

2n

∑
1≤i≤2n

E[|Yi(1)Di −DiE[Yi(1)|Xi]|I{|Yi(1)Di −DiE[Yi(1)|Xi]| > m}|X(n), D(n)]

≤
1

2n

∑
1≤i≤2n

E[|Yi(1)− E[Yi(1)|Xi]|I{|Yi(1)− E[Yi(1)|Xi]| > m}|X(n), D(n)]

=
1

2n

∑
1≤i≤2n

E[|Yi(1)− E[Yi(1)|Xi]|I{|Yi(1)− E[Yi(1)|Xi]| > m}|Xi]

P→ E[|Yi(1)− E[Yi(1)|Xi]|I{|Yi(1)− E[Yi(1)|Xi]| > m}] , (66)

where the first and fourth equalities follow from (57), the inequality follows by inspection, and the convergence in probability

follows from (58). The desired conclusion (65) now follows by a subsequencing argument. To see this, suppose by way of

contradiction that (65) fails. This implies that there exists ε > 0, δ > 0 and a subsequence nk along which

P


∣∣∣∣∣∣ 1

nk

∑
1≤i≤2nk

(
Yi(1)Di − E[Yi(1)Di|X(nk), D(nk)]

)∣∣∣∣∣∣ > ε

→ δ . (67)

By considering a further subsequence if necessary, which, by an abuse of notation, we continue to denote by nk, it follows from

(57), (58) and (66) that

lim
m→∞

lim sup
k→∞

1

2n

∑
1≤i≤2n

(
E[|Yi(1)Di − E[Yi(1)Di|X(n), D(n)]|

× I{|Yi(1)Di − E[Yi(1)Di|X(n), D(n)]| > m}|X(n), D(n)]
)

= 0

w.p.1 (conditional on X(nk) and D(nk)). Lemma 6.3 implies, however, that

1

nk

∑
1≤i≤2nk

(
Yi(1)Di − E[Yi(1)Di|X(nk), D(nk)]

)
→ 0 w.p.1 (conditional on X(nk) and D(nk)) ,

which implies a contradiction to (67).
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Lemma 6.6. If Assumptions 2.1–2.3 hold, then

τ̂2
n
d→ E[Var[Yi(1)|Xi]] + E[Var[Yi(0)|Xi]] + E

[
(E[Yi(1)|Xi]− E[Yi(0)|Xi])2

]
,

where τ̂2
n is defined in (21).

Proof: Note that

τ̂2
n =

1

n

∑
1≤j≤n

(Yπ(2j) − Yπ(2j−1))
2 =

1

n

∑
1≤i≤2n

Y 2
i −

2

n

∑
1≤j≤n

Yπ(2j)Yπ(2j−1) .

Since
1

n

∑
1≤i≤2n

Y 2
i = σ̂2

n(1)− µ̂2
n(1) + σ̂2

n(0)− µ̂2
n(0) ,

it follows from Lemma 6.5 that
1

n

∑
1≤i≤2n

Y 2
i

P→ E[Y 2
i (1)] + E[Y 2

i (0)] .

Next, we argue that
2

n

∑
1≤j≤n

Yπ(2j)Yπ(2j−1)
P→ 2E[µ1(Xi)µ0(Xi)] ,

where we use the notation µd(Xi) to denote E[Yi(d)|Xi]. To this end, first note that

E
[
Yπ(2j)Yπ(2j−1)

∣∣∣X(n)
]

=
1

2
µ1(Xπ(2j))µ0(Xπ(2j−1)) +

1

2
µ0(Xπ(2j))µ1(Xπ(2j−1)) , (68)

so

E

 2

n

∑
1≤j≤n

Yπ(2j)Yπ(2j−1)

∣∣∣∣∣X(n)


=

2

n

∑
1≤j≤n

E
[
Yπ(2j)Yπ(2j−1)

∣∣∣X(n)
]

=
1

n

∑
1≤j≤n

µ1(Xπ(2j))µ0(Xπ(2j−1)) + µ0(Xπ(2j))µ1(Xπ(2j−1))

=
1

n

∑
1≤j≤n

(
µ1(Xπ(2j))(µ0(Xπ(2j−1))− µ0(Xπ(2j))) + µ1(Xπ(2j))µ0(Xπ(2j))

+µ1(Xπ(2j−1))(µ0(Xπ(2j))− µ0(Xπ(2j−1))) + µ1(Xπ(2j−1))µ0(Xπ(2j−1))
)

=
1

n

∑
1≤i≤2n

µ1(Xi)µ0(Xi) +
1

n

∑
1≤j≤n

(µ1(Xπ(2j−1))− µ1(Xπ(2j)))(µ0(Xπ(2j))− µ0(Xπ(2j−1))) ,

where the second equality follows from (68) and the other equalities follow by inspection. Assumption 2.3 implies that∣∣∣∣∣∣ 1n
∑

1≤j≤n
(µ1(Xπ(2j−1))− µ1(Xπ(2j)))(µ0(Xπ(2j))− µ0(Xπ(2j−1)))

∣∣∣∣∣∣ . 1

n

∑
1≤j≤n

|Xπ(2j−1))−Xπ(2j))|2
P→ 0 .

Furthermore, since

E[|µ1(Xi)µ0(Xi)|] . E[µ2
1(Xi)] + E[µ2

1(Xi)] ≤ E[Y 2
i (1)] + E[Y 2

i (0)] <∞ ,

we have that

E

 2

n

∑
1≤j≤n

Yπ(2j)Yπ(2j−1)

∣∣∣∣∣X(n)

 P→ 2E[µ1(Xi)µ0(Xi)] .

To complete the argument, we show that

1

n

∑
1≤j≤n

(
Yπ(2j)Yπ(2j−1) − E

[
Yπ(2j)Yπ(2j−1)

∣∣∣X(n)
])

P→ 0 . (69)

For this purpose, we proceed by verifying that (49) in Lemma 6.3 holds in probability conditional on X(n). In what follows,

we make repeated use of the following facts for any real numbers a and b and λ > 0:

|a+ b|I{|a+ b| > λ} ≤ 2|a|I
{
|a| >

λ

2

}
+ 2|b|I

{
|b| >

λ

2

}
(70)
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|ab|I{|ab| > λ} ≤ a2I{|a| >
√
λ}+ b2I{|b| >

√
λ} . (71)

Note that the second of these facts follows from the first together with the inequality 2|ab| ≤ a2 + b2. Next, note that

1

n

∑
1≤j≤n

E
[∣∣∣Yπ(2j)Yπ(2j−1) − E

[
Yπ(2j)Yπ(2j−1)

∣∣∣X(n)
]∣∣∣ I {∣∣∣Yπ(2j)Yπ(2j−1) − E

[
Yπ(2j)Yπ(2j−1)

∣∣∣X(n)
]∣∣∣ > λ

} ∣∣∣X(n)
]

.
1

n

∑
1≤j≤n

E

[∣∣Yπ(2j)Yπ(2j−1)

∣∣ I {∣∣Yπ(2j)Yπ(2j−1)

∣∣ > λ

2

} ∣∣∣X(n)

]

+
1

n

∑
1≤j≤n

E

[∣∣∣E [Yπ(2j)Yπ(2j−1)

∣∣∣X(n)
]∣∣∣ I {∣∣∣E [Yπ(2j)Yπ(2j−1)

∣∣∣X(n)
]∣∣∣ > λ

2

} ∣∣∣X(n)

]

≤
1

n

∑
1≤j≤n

E

[
Y 2
π(2j)I

{∣∣Yπ(2j)

∣∣ >√λ

2

}∣∣∣X(n)

]
+

1

n

∑
1≤j≤n

E

[
Y 2
π(2j−1)I

{∣∣Yπ(2j−1)

∣∣ >√λ

2

}∣∣∣X(n)

]

+
1

n

∑
1≤j≤n

∣∣∣E [Yπ(2j)Yπ(2j−1)

∣∣∣X(n)
]∣∣∣ I {∣∣∣E [Yπ(2j)Yπ(2j−1)

∣∣∣X(n)
]∣∣∣ > λ

2

}

.
1

n

∑
1≤j≤n

E

[
Y 2
π(2j)I

{∣∣Yπ(2j)

∣∣ >√λ

2

}∣∣∣X(n)

]
+

1

n

∑
1≤j≤n

E

[
Y 2
π(2j−1)I

{∣∣Yπ(2j−1)

∣∣ >√λ

2

}∣∣∣X(n)

]

+
1

n

∑
1≤j≤n

∣∣µ1(Xπ(2j))µ0(Xπ(2j−1))
∣∣ I {∣∣µ1(Xπ(2j))µ0(Xπ(2j−1))

∣∣ > λ

2

}

+
1

n

∑
1≤j≤n

∣∣µ0(Xπ(2j))µ1(Xπ(2j−1))
∣∣ I {∣∣µ0(Xπ(2j))µ1(Xπ(2j−1))

∣∣ > λ

2

}

.
1

n

∑
1≤j≤n

E

[
Y 2
π(2j)I

{∣∣Yπ(2j)

∣∣ >√λ

2

}∣∣∣X(n)

]
+

1

n

∑
1≤j≤n

E

[
Y 2
π(2j−1)I

{∣∣Yπ(2j−1)

∣∣ >√λ

2

}∣∣∣X(n)

]

+
1

n

∑
1≤j≤n

µ2
1(Xπ(2j))I

{∣∣µ1(Xπ(2j))
∣∣ >√λ

2

}
+

1

n

∑
1≤j≤n

µ2
0(Xπ(2j−1))I

{∣∣µ0(Xπ(2j−1))
∣∣ >√λ

2

}

+
1

n

∑
1≤j≤n

µ2
0(Xπ(2j))I

{∣∣µ0(Xπ(2j))
∣∣ >√λ

2

}
+

1

n

∑
1≤j≤n

µ2
1(Xπ(2j−1))I

{∣∣µ1(Xπ(2j−1))
∣∣ >√λ

2

}

.
1

n

∑
1≤j≤n

E

[
Y 2
π(2j)(1)I

{∣∣Yπ(2j)(1)
∣∣ >√λ

2

}∣∣∣X(n)

]
+

1

n

∑
1≤j≤n

E

[
Y 2
π(2j)(0)I

{∣∣Yπ(2j)(0)
∣∣ >√λ

2

}∣∣∣X(n)

]

+
1

n

∑
1≤j≤n

E

[
Y 2
π(2j−1)(1)I

{∣∣Yπ(2j−1)(1)
∣∣ >√λ

2

}∣∣∣X(n)

]
+

1

n

∑
1≤j≤n

E

[
Y 2
π(2j−1)(0)I

{∣∣Yπ(2j−1)(0)
∣∣ >√λ

2

}∣∣∣X(n)

]

+
1

n

∑
1≤j≤n

µ2
1(Xπ(2j))I

{∣∣µ1(Xπ(2j))
∣∣ >√λ

2

}
+

1

n

∑
1≤j≤n

µ2
0(Xπ(2j−1))I

{∣∣µ0(Xπ(2j−1))
∣∣ >√λ

2

}

+
1

n

∑
1≤j≤n

µ2
0(Xπ(2j))I

{∣∣µ0(Xπ(2j))
∣∣ >√λ

2

}
+

1

n

∑
1≤j≤n

µ2
1(Xπ(2j−1))I

{∣∣µ1(Xπ(2j−1))
∣∣ >√λ

2

}

.
1

n

∑
1≤i≤2n

E

[
Y 2
i (1)I

{
|Yi(1)| >

√
λ

2

}∣∣∣Xi]+
1

n

∑
1≤i≤2n

E

[
Y 2
i (0)I

{
|Yi(0)| >

√
λ

2

}∣∣∣Xi]

+
1

n

∑
1≤i≤2n

µ2
0(Xi)I

{
|µ0(Xi)| >

√
λ

2

}
+

1

n

∑
1≤i≤2n

µ2
1(Xi)I

{
|µ1(Xi)| >

√
λ

2

}

P→ E

[
Y 2
i (1)I

{
|Yi(1)| >

√
λ

2

}]
+ E

[
Y 2
i (0)I

{
|Yi(0)| >

√
λ

2

}]

+E

[
µ2

1(Xi)I

{
|µ1(Xi)| >

√
λ

2

}]
+ E

[
µ2

0(Xi)I

{
|µ0(Xi)| >

√
λ

2

}]

where the third inequality exploits (68). Since E[Y 2
i (d)] <∞ and E[µ2

d(Xi)] ≤ E[Y 2
i (d)], we have that

lim
λ→∞

E

[
µ2
d(Xi)I

{
|µd(Xi)| >

√
λ

2

}]
= 0
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lim
λ→∞

E

[
Y 2
i (1)I

{
|Yi(1)| >

√
λ

2

}]
= 0 .

It now follows from a subsequencing argument as in the proof of Lemma 6.5 that (69) holds. Hence,

τ̂2
n

P→ E[Y 2
i (1)] + E[Y 2

i (0)]− 2E[µ1(Xi)µ0(Xi)]

= E[Var[Yi(1)|Xi]] + E[Var[Yi(0)|Xi]] + E
[
(µ1(Xi)− µ0(Xi))

2
]

= E[Var[Yi(1)|Xi]] + E[Var[Yi(0)|Xi]] + E
[
(E[Yi(1)|Xi]− E[Yi(0)|Xi])2

]
,

as desired.

Lemma 6.7. If Assumptions 2.1–2.4 hold, then

λ̂2
n
P→ E[(E[Yi(1)|Xi]− E[Yi(0)|Xi])2] , (72)

where λ̂n is defined in (22).

Proof: Let µd(Xi) denote E[Yi(d)|Xi] and note that

E
[
(Yπ(4j−3) − Yπ(4j−2))(Yπ(4j−1) − Yπ(4j))(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j))

∣∣∣X(n)
]

=
1

4
(µ1(Xπ(4j−3))− µ0(Xπ(4j−2)))(µ1(Xπ(4j−1))− µ0(Xπ(4j)))

−
1

4
(µ0(Xπ(4j−3))− µ1(Xπ(4j−2)))(µ1(Xπ(4j−1))− µ0(Xπ(4j)))

−
1

4
(µ1(Xπ(4j−3))− µ0(Xπ(4j−2)))(µ0(Xπ(4j−1))− µ1(Xπ(4j)))

+
1

4
(µ0(Xπ(4j−3))− µ1(Xπ(4j−2)))(µ0(Xπ(4j−1))− µ1(Xπ(4j)))

=
1

4

∑
k∈{2,3},`∈{0,1}

µ1(Xπ(4j−k))µ1(Xπ(4j−`)) +
1

4

∑
k∈{2,3},`∈{0,1}

µ0(Xπ(4j−k))µ0(Xπ(4j−`))

−
1

4

∑
k∈{2,3},`∈{0,1}

(
µ0(Xπ(4j−k))µ1(Xπ(4j−`)) + µ1(Xπ(4j−k))µ0(Xπ(4j−`))

)
.

Hence, in order to show that

E[λ̂2
n|X(n)]

P→ E[(µ1(Xi)− µ0(Xi))
2] , (73)

it suffices to show that

1

2n

∑
1≤j≤n

2

∑
k∈{2,3},`∈{0,1}

µ1(Xπ(4j−k))µ1(Xπ(4j−`))
P→ E[µ2

1(Xi)] (74)

1

2n

∑
1≤j≤n

2

∑
k∈{2,3},`∈{0,1}

µ0(Xπ(4j−k))µ0(Xπ(4j−`))
P→ E[µ2

0(Xi)] (75)

1

2n

∑
1≤j≤n

2

∑
k∈{2,3},`∈{0,1}

(
µ0(Xπ(4j−k))µ1(Xπ(4j−`)) + µ1(Xπ(4j−k))µ0(Xπ(4j−`))

)
P→ 2E[µ1(Xi)µ0(Xi)] . (76)

We first prove (74). To see this, note that

µ1(Xπ(4j−k))µ1(Xπ(4j−`)) = µ2
1(Xπ(4j−k)) + µ1(Xπ(4j−k))(µ1(Xπ(4j−`))− µ1(Xπ(4j−k)))

µ1(Xπ(4j−k))µ1(Xπ(4j−`)) = µ2
1(Xπ(4j−`))− µ1(Xπ(4j−`))(µ1(Xπ(4j−`))− µ1(Xπ(4j−k))) ,

so

µ1(Xπ(4j−k))µ1(Xπ(4j−`)) =
1

2
µ2

1(Xπ(4j−k)) +
1

2
µ2

1(Xπ(4j−`))−
1

2
(µ1(Xπ(4j−`))− µ1(Xπ(4j−k)))

2 .

It follows that

1

2n

∑
1≤j≤n

2

∑
k∈{2,3},`∈{0,1}

µ1(Xπ(4j−k))µ1(Xπ(4j−`))
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=
1

2n

∑
1≤i≤2n

µ2
1(Xi)−

1

4n

∑
k∈{2,3},`∈{0,1}

∑
1≤j≤n

2

(µ1(Xπ(4j−`))− µ1(Xπ(4j−k)))
2 .

But, Assumption 2.1 implies that

1

4n

∑
k∈{2,3},`∈{0,1}

∑
1≤j≤n

2

(µ1(Xπ(4j−`))− µ1(Xπ(4j−k)))
2 .

1

n

∑
1≤j≤n

2

|Xπ(4j−k) −Xπ(4j−`)|2
P→ 0 ,

where the convergence in probability to zero follows from Assumption 2.4. Since E[µ2
1(Xi)] ≤ E[Y 2

i (1)], we have that

1

2n

∑
1≤i≤2n

µ2
1(Xi)

P→ E[µ2
1(Xi)] .

It thus follows that (74) holds. Similar arguments may be used to establish (75)-(76), from which (73) follows.

To complete the proof, it remains only to show that

λ̂2
n − E[λ̂2

n|X(n)]
P→ 0 .

This fact may be established by verifying that (49) in Lemma 6.3 holds in probability conditionally on X(n), which may be

accomplished by repeated application of (70) and (71), as in the proof of Lemma 6.6.

Lemma 6.8. Let

R̃n(t) = P

 1
√
n

∑
1≤j≤n

εj(Yπ(2j) − Yπ(2j−1))(Dπ(2j) −Dπ(2j−1)) ≤ t

∣∣∣∣∣W (n)

 ,

where, independently of W (n), εj , j = 1, . . . , n are i.i.d. Rademacher random variables. If Assumptions 2.1–2.3 hold, then

sup
t∈R

∣∣∣R̃n(t)− Φ(t/τ)
∣∣∣ P→ 0 ,

where

τ2 = E[Var[Yi(1)|Xi]] + E[Var[Yi(0)|Xi]] + E
[
(E[Yi(1)|Xi]− E[Yi(0)|Xi])2

]
. (77)

Proof: Using the fact that εj , j = 1, . . . , n and εj(Dπ(2j) −Dπ(2j−1)), j = 1, . . . , n have the same distribution conditional on

W (n), we have that

R̃n(t) = P

 1
√
n

∑
1≤j≤n

εj(Yπ(2j) − Yπ(2j−1)) ≤ t

∣∣∣∣∣W (n)

 .

We now proceed by applying part (ii) of Lemma 11.3.3 in Lehmann and Romano (2005) with Cn,j = (Yπ(2j)−Yπ(2j−1)), which

requires
max1≤j≤n C

2
n,j∑

1≤j≤n C
2
n,j

P→ 0 . (78)

From Lemma 6.6, we see that 1
n

∑
1≤j≤n C

2
n,j = τ̂2

n
P→ τ2 > 0, where the inequality exploits Assumption 2.1(a). Furthermore,

max1≤j≤n C
2
n,j

n

P→ 0 .
max1≤j≤n(Y 2

π(2j−1)
+ Y 2

π(2j)
)

n

.
max1≤i≤2n Y

2
i

n

.
max1≤i≤2n(Yi(1)2 + Yi(0)2)

n
P→ 0 ,

where the first inequality follows by exploiting the fact that |a − b|2 ≤ 2(a2 + b2) for any real numbers a and b, the second

and third inequalities follow by inspection, and the convergence in probability to zero follows from Lemma 6.1 and Assumption

2.1(b). Hence, (78) holds, from which the desired conclusion now follows easily by appealing to the aforementioned lemma and

Polya’s theorem.

Lemma 6.9. Let

ν̌2
n(ε1, . . . , εn) = τ̂2

n −
1

2
(λ̌2
n(ε1, . . . , εn) + ∆̌2

n(ε1, . . . , εn)) , (79)
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where τ̂2
n is defined in (21),

λ̌2
n(ε1, . . . , εn)

=
2

n

∑
1≤j≤bn

2
c
ε2j−1ε2j(Yπ(4j−3) − Yπ(4j−2))(Yπ(4j−1) − Yπ(4j))(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j))

∆̌n(ε1, . . . , εn)

=
1

n

∑
1≤j≤n

εj(Yπ(2j) − Yπ(2j−1))(Dπ(2j) −Dπ(2j−1)) ,

and, independently of W (n), εj , j = 1, . . . , n are i.i.d. Rademacher random variables. If Assumptions 2.1–2.3 hold, then

ν̌2
n(ε1, . . . , εn)

P→ τ2 ,

where τ2 is defined in (77).

Proof: From Lemma 6.6, we see that τ̂2
n

P→ τ2. From Lemma 6.8, we have further that ∆̌n(ε1, . . . , εn)
P→ 0. It therefore

suffices to show that λ̌2
n(ε1, . . . , εn)

P→ 0. In order to do so, note that λ̌2
n(ε1, . . . , εn) may be decomposed into sums of the form

2

n

∑
1≤j≤bn

2
c
ε2j−1ε2jYπ(4j−k)Yπ(4j−`)Dπ(4j−k′)Dπ(4j−`′) . (80)

where (k, k′) ∈ {2, 3}2 and (`, `′) ∈ {0, 1}2. Furthermore, conditional on W (n), the terms in any such sum are independent

with mean zero. We may therefore argue that any such sum tends to zero in probability by verifying that (49) in Lemma 6.3

holds in probability conditional on W (n). To this end, note that

2

n

∑
1≤j≤bn

2
c
E
[
|ε2j−1ε2jYπ(4j−k)Yπ(4j−`)Dπ(4j−k′)Dπ(4j−`′)|

× I
{
|ε2j−1ε2jYπ(4j−k)Yπ(4j−`)Dπ(4j−k′)Dπ(4j−`′)| > λ

} ∣∣∣W (n)
]

≤
2

n

∑
1≤j≤bn

2
c
E
[
|Yπ(4j−k)Yπ(4j−`)|I

{
|Yπ(4j−k)Yπ(4j−`)| > λ

} ∣∣∣W (n)
]

≤
2

n

∑
1≤j≤bn

2
c
|Yπ(4j−k)Yπ(4j−`)|I

{
|Yπ(4j−k)Yπ(4j−`)| > λ

}
≤

2

n

∑
1≤j≤bn

2
c
Y 2
π(4j−k)|I

{
|Yπ(4j−k)| >

√
λ
}

+
2

n

∑
1≤j≤bn

2
c
Y 2
π(4j−`)|I

{
|Yπ(4j−`)| >

√
λ
}

.
1

n

∑
1≤i≤2n

Y 2
i I
{
|Yi| >

√
λ
}

≤
1

n

∑
1≤i≤2n

(Y 2
i (1) + Y 2

i (0))|I
{

(Y 2
i (1) + Y 2

i (0))
1
2 >
√
λ
}

P→ E
[
(Y 2
i (1) + Y 2

i (0))|I
{

(Y 2
i (1) + Y 2

i (0))
1
2 >
√
λ
}]

,

where the first inequality follows from the fact that |εj | = 1 for all 1 ≤ j ≤ n and |Di| ≤ 1 for all 1 ≤ i ≤ 2n, the second

inequality exploits the fact that π = πn(X(n)) and both Y (n) and X(n) are contained in W (n), the third inequality follows

from (71) used in the proof of Lemma 6.6, the fourth inequality follows by inspection, the fifty inequality uses the fact that

Y 2
i ≤ Y 2

i (1) + Y 2
i (0), and the convergence in probability follows from Assumption 2.1(b). Since E[Y 2

i (d)] <∞, we have that

lim
λ→∞

E
[
(Y 2
i (1) + Y 2

i (0))|I
{

(Y 2
i (1) + Y 2

i (0))
1
2 >
√
λ
}]

= 0 .

It now follows from a subsequencing argument as in the proof of Lemma 6.5 that (80) tends to zero in probability. The desired

result thus follows.
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