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Abstract

Factor structures or interactive effects are convenient devices to incorporate latent variables in

panel data models. We consider fixed effect estimation of nonlinear panel single-index models with

factor structures in the unobservables, which include logit, probit, ordered probit and Poisson

specifications. We establish that fixed effect estimators of model parameters and average partial

effects have normal distributions when the two dimensions of the panel grow large, but might

suffer from incidental parameter bias. We show how models with factor structures can also be

applied to capture important features of network data such as reciprocity, degree heterogeneity,

homophily in latent variables and clustering. We illustrate this applicability with an empirical

example to the estimation of a gravity equation of international trade between countries using a

Poisson model with multiple factors.
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1 Introduction

Factor structures or interactive effects are convenient devices to incorporate latent variables

in panel data models. They are commonly used to capture aggregate shocks that might have

heterogeneous impacts on the agents in macroeconomic models, and multidimensional individual

heterogeneity that might have time varying effects in microeconomic models. More generally,

the inclusion of these structures serves to account for dependences along the cross-section and

time series dimensions in a parsimonious fashion. While methods for linear factor models are

well-established, there are very few studies that develop methods for nonlinear factor models.

(We provide a literature review at the end of this section.) Nonlinear models are commonly used

when the outcome variable is discrete or has a limited support. In this paper we introduce factor

structures in single-index nonlinear specifications such as the logit, probit, ordered probit and

Poisson models.

The model that we consider is semiparametric. It includes an outcome, strictly exogenous

covariates, and a fixed number of factors and factor loadings. The parametric part is the

distribution of the outcome conditional on the covariates, factors and loadings, which is specified

up to a finite dimensional parameter. The nonparametric part is the distribution of the factors

and loadings conditional on the covariates. In other words, our model is of the “fixed effects” type

because we do not impose any restriction on the relationship between the observed covariates and

the unobserved factors and loadings. This flexibility allows us to capture features of economic

behavior more realistically, but poses important challenges to estimation and inference. The

objects of interest are the model parameter and average partial effects (APEs), which are averages

of functions of the data, parameter, factors and loadings. The APEs measure the effect of

covariates on moments of the outcome conditional on the covariates, factors and loadings. We

consider a fixed effects estimation approach that treats the factors and loadings as parameters to be

estimated. As it is well-known in the panel data literature, the resulting estimators generally suffer

from the incidental parameter problem coming from the high-dimensionality of the estimated

parameter (Neyman and Scott, 1948).

We derive asymptotic theory for our estimators of model parameters and APEs under sequences

where the two dimensions of the panel pass to infinity with the sample size. Even establishing

consistency is complicated in our setting because the dimension of the estimated parameters

increases with the sample size. We develop a new proof of consistency that relies on concavity

of the log-likelihood function on a single-index that captures the dependence on covariates,

parameter, factors and loadings. However, unlike Fernández-Val and Weidner (2016), we need

to deal with the complication that our log-likelihood function is not concave in all the estimated

parameters because the factors and loadings enter multiplicatively in the index. We also establish
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that our estimators are normally distributed in large samples, but might have biases of the same

order as their standard deviations. For example, we find that the estimator of the model parameter

is asymptotically unbiased in the Poisson model, but is biased in logit and probit models.

Following the recent panel data literature, we develop analytical and split-sample corrections

for the case where the estimator has asymptotic bias. One specific feature of our estimator is

that the bias depends on the number of factors. In particular, we show that the bias grows

proportionally with the number of factors in examples.

We discuss implementation details of our methods including the computation of the estimator

and selection of the number of factors. Thus, we propose an EM-type algorithm based on Chen

(2014) and a concrete proposal to estimate the number of factors based on the eigenvalue ratio

test of Ahn and Horenstein (2013). The estimator of the number of factors does not require

any arbitrary choice of penalty function or tuning parameter, it only requires to specify an upper

bound for the number of factors. We do not provide asymptotic theory for this estimator, but show

that it performs well in numerical simulations. Formally deriving the theory is rather challenging,

because it requires to study the asymptotic properties of the the initial fixed effects estimators of

the parameters and factor structure obtained from a specification with too many factors, which

is a difficult problem even in linear panel factor model (Moon and Weidner 2015). We leave this

analysis to future research.

We also introduce factor structures as practical tools to model network data. We show how

the inclusion of latent factors is useful to incorporate important features of the network such as

reciprocity, degree heterogeneity, homophily on latent variables, and clustering (Snijders, 2011;

Graham, 2015). We focus on directed networks with unweighted and weighted outcomes. These

cover binary response models for network formation where the outcome is an indicator for the

existence of a link between the sender and receiver, and count data models for network flow where

the outcome is a measure of the volume of flow between the sender and receiver. As we shall

discuss, our factor model provides a parsimonious reduced-form specification that captures the

important network features mentioned above. The statistical treatment of the network factor

model is identical to the panel factor model after noticing that a network is isomorphic to a panel

after labeling the senders as individuals and the receivers as time periods.

We illustrate the use of the factor structure in network data with an application to gravity

equations of trade between countries. We estimate a Poisson model where the outcome is the

volume of trade and the covariates include typical gravity variables such as the distance between

the countries or if the country pair belongs to a currency union or a free trade area. The

unobserved factors and loadings serve to account for scale and multilateral resistance effects,

unobserved partnerships, presence of multinational firms, and differences in natural resources or
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industrial composition. We find that accounting for these multiple unobserved factors changes

the effects of the gravity variables, making all of them to have the expected signs while keeping

most of them to be statistically significant.

Literature review: This paper contributes to the econometric panel data and network

data literatures. Regarding the panel data literature, our statistical analysis relies on the recent

developments in fixed effects methods. We refer to Fernández-Val and Weidner (2017) for a recent

review on fixed effects estimation of nonlinear panel models with additive individual and time

effects, and to Bai and Wang (2016) for a recent review on fixed effects estimation of linear factor

or interactive effects panel models. Since the first draft of this paper appeared in Chen et al.

(2014), Boneva and Linton (2017) and Ando and Bai (2016) have considered special cases of

nonlinear factor models. Boneva and Linton (2017) analyzed a probit model using the common

correlated random effects approach of Pesaran (2006), and Ando and Bai (2016) a logit model

using a Bayesian approach with data augmentation. Our analysis is different in the modeling

assumptions and estimation method.1 The most closely related work is Wang (2018). This

paper derives the asymptotic distribution of the estimators of the factors and loadings in non-

linear single index models without covariates. By contrast, we focus on covariate coefficients and

average partial effects and treat the factors and loadings as nuisance parameters. Accordingly,

we view our results as complementary to the results in Wang (2018).

In terms of the network literature, our paper is related to the recent work on the application

of panel fixed effects methods to network data including Fernández-Val and Weidner (2016), Yan

et al. (2016), Cruz-Gonzalez et al. (2017), Dzemski (2017), Graham (2017), and Yan (2018). These

papers account for degree heterogeneity by including additive unobserved sender and receiver

effects. Additive effects, however, do not capture other network features such as homophily

in latent factors and clustering. Graham (2016) considered a binary response model of network

formation with all these features plus state dependence, where the network is observed at multiple

time periods. Compared to Graham (2016), our method can capture all these features, except

for state dependence, applies to binary, ordered and count outcomes, and only requires observing

the network at one time period. A stream of the statistic literature has considered nonlinear

factor network models using a random effects approach including Hoff et al. (2002), Hoff (2005),

Krivitsky et al. (2009), and Handcock et al. (2007). Unlike the fixed effects approach that

we adopt, the random effects approach assumes independence between covariates and factors

and between covariates and loadings. This assumption is regarded as implausible for most

economic applications where the loadings reflect unobserved individual heterogeneity and some

1We refer to Boneva and Linton (2017) and Ando and Bai (2016) for more detailed comparisons with our analysis.
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of the covariates are individual choice variables. There is also a recent econometric literature on

structural models of strategic network formation where the main focus is on identification. We

refer to de Paula (2017) for an excellent up-to-date review on this topic. The focus of our paper

is on estimation and inference.

Finally, there is an extensive literature in international economics on the estimation of the

gravity equation including Harrigan (1994), Eaton and Kortum (2001), Anderson and van Wincoop

(2003), Santos Silva and Tenreyro (2006), Helpman et al. (2008), Charbonneau (2012) and

Jochmans (2017). We refer to Head and Mayer (2014) for a recent review on this literature. These

papers estimate models with additive unobserved sender and receiver country effects to account for

scale or multilateral resistence effects. Our innovation to this literature is the inclusion of multiple

unobserved factors to account for not only scale effects, but also unobserved partnerships, and

homophily induced by differences in natural resources, industrial composition or other country

characteristics.

To sum-up, our paper makes the following contributions. First, we derive asymptotic theory

for fixed effects estimators of model parameters and APEs in a class of nonlinear single-index

factor models that include logit, probit, ordered probit and Poisson models. Second, we provide

bias corrections for fixed effect estimators of model parameters and APEs. Third, we propose an

estimator of the number of factors in nonlinear single-index models with factor structure. Fourth,

we bring in the factor structure to model important features of network data such as reciprocity,

degree heterogeneity, homophily in latent factors and clustering in a reduced form fashion. Fifth,

we apply our methods to the estimation of a gravity equation of trade between countries and

confirm the importance of the gravity variables even after conditioning on multiple unobserved

latent factors.

Outline: In Section 2, we introduce the model and estimators. Section 3 discusses the

statistical issues in the estimation and inference of factor models with a simple example. Section

4 derives asymptotic theory for our estimators. Section 5 provides implementation details for

the estimators of the parameters and number of factors. Section 6 describes the results of the

empirical application to the gravity equation and a calibrated simulation. The proofs of the main

results and other technical details are given in the Appendix.
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2 Model and Estimators

2.1 Model

We observe the data {(Yij , Xij) : (i, j) ∈ D}, where Yij is a scalar outcome variable and Xij is

a dx-dimensional vector of covariates. The subscripts i and j index individuals and time periods

in traditional panels, but they might index different dimensions in other data structures such as

network data. In our empirical application, for example, we use country trade network data where

Yij is the volume of trade between country i and country j, and Xij includes gravity variables

such as the distance between country i and country j. Both i and j index countries as exporters

and importers respectively. The set D contains the indexes of the units that are observed. It

is a subset of the set of all possible pairs D0 := {(i, j) : i = 1, . . . , I; j = 1, . . . , J}, where I

and J are the dimensions of the data set. We introduce D to allow for missing data that are

common in panel and network applications. For example, in the trade application I = J and

D = D0 \ {(i, i) : i = 1, . . . , I} because we do not observe trade of a country with itself. We

denote the total number of observations by n, i.e. n = |D|.

We assume that the outcome is generated by

Yij | Xij , β, α, γ ∼ f(· | zij), zij := X ′ijβ + πij , πij := α′i γj ,

where f is a known density function with respect to some dominating measure, β is dx-dimensional

parameter vector, and αi and γj are R-vectors of unobserved effects. We collect these effects in

the I × R matrix α = (α1, . . . , αI)
′, and the J × R matrix γ = (γ1, . . . , γJ)′, which are further

stacked in the R(I + J)-vector φn = (vec(α)′, vec(γ)′)′. We make explicit in φn that the number

of unobserved effects changes with the sample size because it will have important effects on

estimation and inference. We assume that the dimension of the unobserved effects R is known,

and provide a practical method to estimate R in Section 5. The effects αi and γj are unobserved

factors and factor loadings. In panel data they represent individual and time effects that in

economic applications capture individual heterogeneity and aggregate shocks, respectively. In

network data αi and γj represent unobserved characteristics of senders and receivers that affect

the network flow. The model is semiparametric because we do not specify the distribution of

the unobserved effects nor their relationship with the covariates. This flexibility is important for

economic applications where some of the covariates are choice variables with values determined

in part by the unobserved effects. The conditional distribution f represents the parametric part

of the model.

The model has a single-index specification because the covariates and unobserved effects enter

f through the index zij = X ′ijβ + α′iγj . The parameter β is a quantity of interest because
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it measures the effects of the covariates on the distribution of the outcome controlling for the

unobserved effects. For example, in network data β can measure homophily in an observable

characteristic W if Xij includes (Wi −Wj)
2 as one of its components. The unobserved effects

have a factor or interactive structure because they enter the index zij multiplicatively through

πij = α′i γj . The standard additive structure α1i + γ1j can be seen as a special case of the factor

structure with R = 2, αi = (α1i, 1)′, and γj = (1, γ1j)
′. More generally, in panel data applications

the factor structure allows one to incorporate multiple aggregate shocks γt with heterogeneous

effects across agents αi, or multidimensional individual heterogeneity αi with time-varying returns

γt. For example, we can have productivity and monetary shocks with heterogeneous effects across

industries, or multiple dimensions of individual ability and skills with time-varying returns in the

labor market.

One of the contributions of the paper is to introduce factor structures to network data. In

this case the factor structure serves to capture important network features in an unspecified

or reduced-form fashion. For example, degree heterogeneity can be captured with the additive

structure α1i + γ1t mentioned above, and reciprocity by allowing Yij to be arbitrarily related to

Yji even after conditioning on the covariates and unobserved effects. Another important feature

is homophily in latent factors, in addition to the homophily on observed factors captured by Xij .

Assume that there is a latent factor ξi such that the flow between i and j increases or decreases

with the distance between ξi and ξj as measured by (ξi − ξj)2. This type of homophily can also

be captured by a factor structure with R = 3, αi = (ξ2
i , 1,−2ξi)

′ and γj = (1, ξ2
j , ξj). The factor

structure can also account for clustering or transitivity of links due to latent factors. Assume that

there is a cluster of individuals such that there are more flows within the cluster. This would be

captured by a factor structure with R = 1, αi = ξiIi and γj = χjIj , where ξi and χj are a positive

cluster effects on the sender and receiver, and Ii is an indicator for cluster membership. The

factor structure can also account for combinations of these network features. Indeed, one of its

advantages is that the researcher has the flexibility of specifying some features and leaving other

features unspecified. For example, in the trade application we use a specification that includes

additive effects to account explicitly for degree heterogeneity and multiple interactive effects to

account for the possibility of having homophily in latent factors and clustering without explicitly

modelling any of them.

We consider three running examples throughout the analysis:

Example 1 (Linear model). Let Yij be a continuous outcome. We can model the conditional

distribution of Yij using the Gaussian linear model

f(y | zij) = ϕ(zij/σ)/σ, y ∈ R,
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where ϕ is the density function of the standard normal and σ is a positive scale parameter.

Example 2 (Binary response model). Let Yij be a binary outcome and F be a cumulative

distribution function of the standard normal or logistic distribution. We can model the conditional

distribution of Yij using the probit or logit model

f(y | zij) = F (zij)
y[1− F (zij)]

1−y, y ∈ {0, 1}.

Example 3 (Count response model). Let Yij be a count or non-negative integer-valued outcome,

and ψ(·;λ) be the probability mass function of a Poisson random variable with parameter λ > 0.

We can model the conditional distribution of Yij using the Poisson model

f(y | zij) = ψ(y; exp[zij ]), y ∈ {0, 1, 2, ....}.

2.2 Average Partial Effects

In addition to the model parameter β, we might be interested in average partial effects (APEs).

These effects are averages of the data, parameters and unobserved effects. They measure the effect

of the covariates on moments of the distribution of the outcome conditional on the covariates and

unobserved effects. The leading case is the conditional expectation,

E[Yij | Xij , αi, γj , β] =

∫
yf(y | X ′ijβ + πij)dy,

where the partial effects are differences or derivatives of this expression with respect to the

components of Xij . We denote generically the partial effects by ∆(Yij , Xij , β, α
′
iγj) = ∆ij(β, α

′
iγj),

where the restriction that they depend on αi and γj through πij is natural given the model for

the conditional density of Yij . We allow the partial effect to depend on Yij to cover scale and

other parameters not included in the single-index. The APE is

δ = E

 1

n

∑
(i,j)∈D

∆ij(β, α
′
iγj)

 . (2.1)

Example 1 (Linear model). The variance σ2 in the linear model can be expressed as an APE

with

∆ij(β, α
′
iγj) = (Yij −X ′ijβ − α′iγj)2. (2.2)

Example 2 (Binary response model). If Xij,k, the kth element of Xij, is binary, its partial effect

on the conditional probability of Yij is

∆ij(β, α
′
iγj) = F (βk +X ′ij,−kβ−k + α′iγj)− F (X ′ij,−kβ−k + α′iγj), (2.3)
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where βk is the kth element of β, and Xij,−k and β−k include all elements of Xij and β except

for the kth element. If Xij,k is continuous and F is differentiable, the partial effect of Xij,k on

the conditional probability of Yij is

∆ij(β, α
′
iγj) = βk∂F (X ′ijβ + α′iγj), ∂F (u) := ∂F (u)/∂u. (2.4)

Example 3 (Count response model). If Xij,k, the kth element of Xij, is binary, its partial effect

on the conditional probability of Yij in the Poisson model is

∆ij(β, α
′
iγj) = exp(βk +X ′ij,−kβ−k + α′iγj)− exp(X ′ij,−kβ−k + α′iγj), (2.5)

where βk is the kth element of β, and Xij,−k and β−k include all elements of Xij and β except for

the kth element. If Xij,k is continuous, the partial effect of Xij,k on the conditional expectation

of Yij is

∆ij(β, α
′
iγj) = βk exp(X ′ijβ + α′iγj). (2.6)

2.3 Fixed effects estimator

We adopt a fixed effect approach and treat the unobserved effects φn as a vector of nuisance

parameters to be estimated. Let

L(θ, φn) :=
∑

(i,j)∈D

log f(Yij | X ′ijβ + πij),

be the conditional log-likelihood function of the data constructed from the parametric part of the

model. The fixed-effect estimator is

(β̂, φ̂n) ∈ argmax
(β,φn)∈Rdx+R(I+J)

L(β, φn). (2.7)

This problem has unique solution with probability one for β under the assumption that z 7→
log f(· | z) is concave. This assumption holds for all the cases that we consider including logit,

probit, ordered probit and Poisson models. The solution for φn is only unique up to the standard

normalizations for linear factor models.2 Obtaining the solution to (2.7) can be computationally

challenging because the objective function is not concave in the parameter φn and the high-

dimensionality of the parameter space. We provide an iterative method based on Chen (2014) to

obtain the estimates in Section 5. This method performs well in simulations.

2The solution for φn is not uniquely determined because the log-likelihood function is invariant to transformations

α 7→ αA′ and γ 7→ γA−1 for any non-singular R×R matrix A.
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Plugging the estimator of (β, φn) in (2.1) yields the estimator of the APE,

δ̂ =
1

n

∑
(i,j)∈D

∆ij(β̂, α̂
′
iγ̂j). (2.8)

This estimator is invariant to the normalization used to pin down the value of φ̂n in (2.7). In

Section 4, we show that β̂ and δ̂ are consistent and normally distributed in large samples, but

might have incidental parameter bias because the dimension of the nuisance parameter φn grows

with the sample size (Neyman and Scott, 1948).

3 A Simple Motivating Example

We illustrate the statistical issues that arise in the estimation of factor models with a simple

example. This example is analytically tractable and might be of practical interest as it provides

an estimator of the variance of a random variable with network and panel data allowing for flexible

patterns of dependence. The analysis in this section is mainly heuristic leaving technical details

such as the derivation of the orders of some remainder terms in the asymptotic expansions for

Section 4.

Consider a version of Example 1 without covariates where Yij | φn ∼ N (α′iγj , σ
2). Assume

that the observations Yij are independent over i and j, and that there is no missing data, i.e.

D = D0. The quantity of interest is the scale parameter σ2, which can be treated as a APE. This

is a linear factor model where φ̂n can be obtained using the principal component algorithm of Bai

(2009). Then, the plug-in estimator of σ2 is

σ̂2 =
1

IJ

I∑
i=1

J∑
j=1

(
Yij − α̂′iγ̂j

)2
. (3.1)

To analyze the properties of σ̂2, it is useful to consider an asymptotic expansion of α̂′iγ̂j around

α′iγj as I, J →∞. This yields

α̂′iγ̂j = α′iγj + (α̂i − αi)′γj + α′i(γ̂j − γj) + (α̂i − αi)′(γ̂j − γj)

≈ α′iγj + (α̂i − αi)′γj + α′i(γ̂j − γj),

where ≈ means equal up to terms of lower order. Plugging this expansion in (3.1) shows that σ̂2

behaves asymptotically as a sample variance with R(I + J) estimated fixed effects corresponding

to the α̂i’s and γ̂t’s. Then, standard degrees of freedom calculations give

E[σ̂2] ≈ (I −R)(J −R)

IJ
σ2 ≈ σ2 − R(I + J)

IJ
σ2, (3.2)
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Table 1: Asymptotic and Exact Bias of σ̂2

I = 10 I = 25 I = 50

Bias J = 10 J = 10 J = 25 J = 10 J = 25 J = 50

R = 1

Asymptotic -.19 -.14 -.08 -.12 -.06 -.04

Exact -.20 -.14 -.08 -.12 -.06 -.04

R = 2

Asymptotic -.36 -.26 -.15 -.23 -.12 -.08

Exact -.39 -.27 -.16 -.24 -.12 -.08

R = 3

Asymptotic -.51 -.38 -.23 -.34 -.17 -.12

Exact -.55 -.40 -.23 -.35 -.18 -.12

Notes: Results obtained by 50,000 simulations

Design: Yij | φn ∼ N (α′iγt, σ
2), αi ∼ N(0, IR), γj ∼ N(0, IR), σ2 = 1

which shows that σ̂2 has an incidental parameter bias that grows proportionally to the number of

factors R. The order of the bias corresponds to the number of estimated parameters, R(I + J),

divided by the number of observations, IJ , as predicted by the general formula in Fernández-

Val and Weidner (2017) for fixed-effects estimators. We show in numerical examples that this

expression produces a very accurate approximation to the bias even for small sample sizes.

We carry out 50,000 simulations with σ2 = 1, and αi and γj drawn independently from

multivariate normal distributions with mean zero and covariate function IR, the identity matrix

of order R. Table 1 compares the bias of σ̂2 with the asymptotic approximation (3.2) in datasets

with I, J ∈ {10, 25, 50}, and R ∈ {1, 2, 3}. We only report the results for J ≤ I since all the

expressions are symmetric in I and J . Comparing the two rows in each panel of the table, we

find that the asymptotic bias provides a very accurate approximation to the finite-sample bias of

the estimator for all the sample sizes and numbers of factors.

The bias of σ̂2 can be removed using analytical and split-sample methods. Thus, an analytical

bias corrected estimator can be formed as

σ̃2
ABC =

IJ

(I −R)(J −R)
σ̂2.

A split-sample bias corrected estimator can be formed as

σ̃2
SBC = 3σ̂2 − σ̄2

I,J/2 − σ̄
2
I/2,J ,
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Table 2: Bias, SD, RMSE and Coverage Probabilities

Bias SD RMSE Cover Bias SD RMSE Cover

I = 10, J = 10 I = 25, J = 10

σ̂2 -0.55 0.09 0.56 0.00 -0.40 0.07 0.41 0.00

σ̃2
ABC -0.08 0.19 0.20 0.75 -0.02 0.11 0.11 0.85

σ̃2
SBC -0.09 0.20 0.22 0.71 -0.03 0.12 0.13 0.81

I = 25, J = 25 I = 50, J = 10

σ̂2 -0.23 0.05 0.24 0.01 -0.35 0.05 0.35 0.00

σ̃2
ABC -0.01 0.06 0.06 0.91 -0.01 0.08 0.08 0.88

σ̃2
SBC -0.02 0.07 0.07 0.85 -0.01 0.08 0.08 0.85

I = 50, J = 25 I = 50, J = 50

σ̂2 -0.18 0.04 0.18 0.00 -0.12 0.03 0.12 0.01

σ̃2
ABC -0.00 0.04 0.04 0.92 -0.00 0.03 0.03 0.93

σ̃2
SBC -0.01 0.05 0.05 0.88 -0.00 0.03 0.03 0.92

Notes: 50,000 simulations. Nominal level is 0.95

Design: Yij | φn ∼ N (α′iγt, σ
2), σ2 = 1, αi ∼ N(0, IR), γj ∼ N(0, IR), R = 3

where σ̄2
I,J/2 is the average of the estimators in the haft-panels {(i, j) : i = 1, . . . , I; j = 1, . . . , dJ/2e}

and {(i, j) : i = 1, . . . , I; j = bJ/2 + 1c, . . . , J}, and σ̄2
I/2,J is the average of the estimators in the

haft-panels {(i, j) : i = 1, . . . , dI/2e; j = 1, . . . , J} and {(i, j) : i = bI/2 + 1c, . . . , I; j = 1, . . . , J},
where d·e and b·c are the ceil and floor functions. As in nonlinear panel data, we expect these

corrections to remove most of the bias of the estimator without increasing dispersion. Moreover,

constructing confidence intervals around the corrected estimators should help bring coverage

probabilities close to their nominal levels. We confirm these predictions in a numerical simulation.

Table 2 reports the bias, standard deviation and rmse of the uncorrected and bias corrected

estimators, together with coverage probabilities of 95% confidence interval constructed around

them. The results are based on 50,000 simulations of datasets generated as in Table 1 with I, J ∈
{10, 25, 50}, and R = 3. The confidence intervals around the estimator σ̃2 ∈ {σ̂2, σ̃2

ABC, σ̃
2
SBC}

are constructed as σ̃2(1 ± 1.96
√

2/(IJ)), where we use that the asymptotic variance of all the

estimators is 2σ4/(IJ). We find that the corrections offer huge improvements in terms of bias

reduction and coverage of the confidence intervals. The corrections increase the dispersion for

small sample sizes, but always reduce the rmse. In this case the analytical correction slightly

overperforms the split-sample correction.
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4 Asymptotic Theory

We derive the asymptotic distribution of the estimators of the model parameter and APEs under

sequences where I and J grow with the sample size at the same rate. We focus on these sequences

because they are the only ones that deliver a non-degenerate limit distribution. Moreover, they

are very natural choices for network data where I = J . Throughout this section, all the stochastic

statements are conditional on the realization of the unobserved effects φn and should therefore

be qualified with almost surely. We shall omit this qualifier to lighten the notation.

4.1 Model parameter

We consider single-index models with strictly exogenous covariates and unobserved effects that

enter the density of the outcome through zij = X ′ijβ+ πij , where πij = α′iγj . These models cover

the linear, probit and Poisson specifications of Examples 1–3. We focus on strictly exogenous

covariates because for some data structures of interest such as network data there is no natural

ordering of the observations. The results can be extended to predetermined covariates when one

of the dimensions is time, see the earlier version of the paper (Chen et al., 2014). Let

`ij(zij) := log f(Yij | Xij , β, αi, γj) (4.1)

be the conditional log-likelihood coming from the parametric part of the model. We denote the

derivatives of z 7→ `ij(z) by ∂zq`ij(z) := ∂q`ij(z)/∂z
q, q = 1, 2, . . .. Let β0, α0

i , γ
0
j , and π0

ij = α0′
i γ

0
j

denote the values of β, αi, γj , and πij that generated the data. We drop the argument zij when the

derivatives are evaluated at the true value of the index z0
ij := X ′ijβ

0 +π0
ij , i.e., ∂zq`ij := ∂zq`ij(z

0
ij).

Let X = {Xij : (i, j) ∈ D}, α0 = (α0
1, . . . , α

0
I)
′, and γ0 = (γ0

1 , . . . , γ
0
J)′ .

We make the following assumptions:

Assumption 1 (Nonlinear Factor Model). Let ε > 0 and let B0
ε be a bounded subset of R that

contains an ε-neighborhood of z0
ij for all i, j, I, J .

(i) Model: Yij is distributed as

Yij |X, β0, α0, γ0 ∼ exp[`ij(X
′
ijβ

0 + π0
ij)],

and conditional on (X, β0, α0, γ0), either (a) Yij is independent across (i, j) ∈ D or (b)

(Yij , Yji) is independent across observations (i, j) ∈ D with i ≤ j. The number of factors R

is known.

(ii) Asymptotics: we consider limits of sequences where In/Jn → κ2, 0 < κ <∞, as n = |D| →
∞. We shall drop the indexing by n from In and Jn.
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(iii) Smoothness and moments: z 7→ `ij(z) is four times continuously differentiable over B0
ε a.s.

and maxi,j E[|∂zq`ij(z0
ij)|8+ν ], q ≤ 4, are uniformly bounded over I, J for some ν > 0. In

addition, Xij is bounded uniformly over i, j, I, J .

(iv) Concavity: for all I, J, the function z 7→ `ij(z) is strictly concave over z ∈ R a.s. Furthermore,

there exist positive constants bmin and bmax such that for all z ∈ B0
ε , bmin ≤ −∂z2`ij(z) ≤ bmax

a.s. uniformly over i, j, I, J .

(v) Strong factors: I−1
∑I

i=1 α
0
iα

0 ′
i →P Σ1 > 0, and J−1

∑
j γ

0
j γ

0 ′
j →P Σ2 > 0.

(vi) Generalized non-collinearity: for any matrix A, define the coprojection matrix as MA :=

I − A(A′A)†A′, where I denotes the identity matrix of appropriate dimensions and the

superscript † denotes the Moore-Penrose generalized inverse. Let α0 := (α0
1, . . . , α

0
I)
′ and

Xk be a I × J matrix with elements Xij,k, i = 1, . . . , I, j = 1, . . . , J . The dx × dx matrix

D(γ) with elements

Dk1k2(γ) = (IJ)−1Tr(Mα0Xk1MγX′k2), k1, k2 ∈ {1, ..., dx},

satisfies D(γ) > c > 0 for all γ ∈ RJ×R, wpa1.

(vii) Missing data: there is a finite number of missing observations for every i and j, that is,

maxi(J − |{(i′, j′) ∈ D : i′ = i}|) ≤ C and maxj(I − |{(i′, j′) ∈ D : j′ = j}|) ≤ C for some

constant C <∞ that is independent of the sample size.

The two cases considered in Assumption 1(i) are designed for different data structures. Case

(b) is more suitable for network data because it allows for reciprocity between the observations

(i, j) and (j, i), whereas case (a) is more suitable for panel data where there is no special

relationship between these observations. Assumption 1(i) also imposes that the number of factors

is known. We provide a practical method to choose the number of factors in Section 5. We also

recommend checking the sensitivity to this number by reporting the maximum value of the average

log-likelihood and the parameter estimates for multiple values of R. We provide an example in

the empirical application of Section 6. Assumption 1(i)− (iii) are similar to Fernández-Val and

Weidner (2016), so we do not discuss them further here. The concavity condition in Assumption

1(iv) holds for the logit, probit, ordered probit and Poisson models. The strong factor and

generalized noncollinearity conditions in Assumption 1(v)− (vi) were previously imposed in Bai

(2009) and Moon and Weidner (2015, 2017) for linear models with interactive effects. Generalized

noncollinearity rules out covariates that do not display variation in the two dimensions of the

dataset. Boneva and Linton (2017) and Ando and Bai (2016) impose very similar conditions to

Assumption 1, so we refer to these papers for further discussion.

We introduce more notation that is convenient to simplify the expressions in the asymptotic

distribution. Let Ξij be a dx-dimensional vector defined by the following population weighted
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least squares projection for each component of E(∂z2`ijXij),

Ξit,k = α∗ ′i,kγ
0
j + α0 ′

i γ
∗
t,k, (α∗k, γ

∗
k) ∈ argmin

αi,k,γt,k

∑
i,j

E(−∂z2`ij)
(
E(∂z2`ijXij,k)

E(∂z2`ij)
− α′i,kγ0

j − α0 ′
i γt,k

)2

.

Also define the residual of the projection

X̃ij := Xij − Ξij .

Finally, let E := plimI,J→∞, Di := {j : (i, j) ∈ D} and Dj := {i : (i, j) ∈ D}.

The following theorem establishes the asymptotic distribution of β̂ defined in (2.7).

Theorem 1 (Asymptotic distribution of β̂). Suppose that Assumption 1 holds, that the following

limits exist

B∞ = −E

1

I

∑
(i,j)∈D

γ0 ′
j

∑
h∈Di

γ0
hγ

0′
h E (∂z2`ih)

−1

γ0
j E

(
∂z`ij∂z2`ijX̃ij +

1

2
∂z3`ijX̃ij

) ,

D∞ = −E

 1

J

∑
(i,j)∈D

α0 ′
i

∑
h∈Dj

α0
hα

0′
h E (∂z2`hj)

−1

α0
i E
(
∂z`ij∂z2`ijX̃ij +

1

2
∂z3`ijX̃ij

) ,

W∞ = −E

 1

n

∑
(i,j)∈D

E
(
∂z2`ijX̃ijX̃

′
ij

) ,
Σ∞ = E

 1

n

∑
(i,j)∈D

E
{(
∂z`ijX̃ij + ∂z`jiX̃ji

)
∂z`ijX̃

′
ij

} ,
and that W∞ > 0. Then,

√
n

(
β̂ − β0 − I

n
W
−1
∞ B∞ −

J

n
W
−1
∞ D∞

)
→d N (0, W

−1
∞ Σ∞W

−1
∞ ).

Remark 1 (Panel Data). In case (a) of Assumption 1(i), the asymptotic variance of β̂ simplifies

to

W
−1
∞ Σ∞W

−1
∞ = −W−1

∞ ,

by the fact that the scores ∂z`ijX̃ij and ∂z`jiX̃ji are uncorrelated and the information equality.

Theorem 1 shows that β̂ is consistent and normally distributed, but can have bias of the same

order as its standard deviation. The scaling factor in the expressions for B∞ and D∞ are such

that those expressions are of order one, for example, we can express B∞ equivalently as

−E

1

I

I∑
i=1

1

|Di|
∑
j∈Di

γ0 ′
j

 1

|Di|
∑
h∈Di

γ0
hγ

0′
h E (∂z2`ih)

−1

γ0
j E

(
∂z`ij∂z2`ijX̃ij +

1

2
∂z3`ijX̃ij

) ,
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where all sums explicitly appear as part of a sample average. We verify the presence of bias in

our running examples.

Example 1 (Linear model). In this case

`ij(z) = −1

2
log(2πσ2)− (Yij − zij)2

2σ2
,

so that ∂z`ij = (Yij − z0
ij)/σ

2, ∂z2`ij = −1/σ2, and ∂z3`ij = 0. Substituting these values in the

expressions of the bias of Theorem 1 yields B∞ = D∞ = 0, which agrees with the result in Bai

(2009) of no asymptotic bias in homoskedastic linear models with interactive effects and strictly

exogenous covariates.

Example 2 (Binary response model). In this case

`ij(z) = Yij logF (z) + (1− Yij) log[1− F (z)],

so that ∂z`ij = Hij(Yij − Fij), ∂z2`ij = −Hij∂Fij + ∂Hij(Yij − Fij), and ∂z3`ij = −Hij∂
2Fij −

2∂Hij∂Fij +∂2Hij(Yij−Fij), where Hij = ∂Fij/[Fij(1−Fij)], and ∂jGij := ∂jG(Z)|Z=z0ij
for any

function G and j = 0, 1, 2. Substituting these values in the expressions of the bias of Theorem 1

for the probit model yields

B∞ = E

 1

2 I

∑
(i,j)∈D

γ0 ′
j

∑
h∈Di

γ0
hγ

0′
h E (∂z2`ih)

−1

γ0
j E

(
∂z2`ijX̃ijX̃

′
ij

)β0,

D∞ = E

 1

2 J

∑
(i,j)∈D

α0 ′
i

∑
h∈Dj

α0
hα

0′
h E (∂z2`hj)

−1

α0
i E
(
∂z2`ijX̃ijX̃

′
ij

)β0.

The asymptotic bias is therefore a positive definite matrix weighted average of the true parameter

value as in the case of the probit model with additive individual and time effects in Fernández-Val

and Weidner (2016). The bias grows linearly with the number of factors because

∑
j∈Di

γ0 ′
j

∑
h∈Di

γ0
hγ

0′
h

−1

γ0
j =

∑
i∈Dj

α0 ′
i

∑
h∈Dj

α0
hα

0′
h

−1

α0
i = R, (4.2)

and E (∂z2`ij) and E
(
∂z2`ijX̃ijX̃

′
ij

)
are bounded uniformly in i, j.

Example 3 (Count response model). In this case

`ij(z) = zYij − exp(z)− log Yij !,

so that ∂z`ij = Yij − λij and ∂z2`ij = ∂z3`ij = −λij, where λij = exp(z0
ij). Substituting these

values in the expressions of the bias of Theorem 1 yields

B∞ = D∞ = 0,
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which generalizes the result in Fernández-Val and Weidner (2016) of no asymptotic bias in the

Poisson model with strictly exogenous covariates and additive individual and time effects to the

Poisson model with strictly exogenous covariates and factor structure.

4.2 Average Partial Effects

We use additional assumptions to derive the asymptotic distribution of the estimator of the APEs.

They involve smoothness conditions on the partial effect function (β, π) 7→ ∆ij(β, π) needed to

obtain the limit distribution of δ̂ from the limit distribution of (β̂, φ̂n) via delta method. For

a vector of nonnegative integer numbers v = (v1, . . . , vdx), let ∂βv := ∂|v|/∂βv11 · · · ∂β
vdx
dx

and

|v| = v1 + . . .+ vdx .

Assumption 2 (Partial effects). Let ε > 0, and let B0
ε be a subset of Rdx+1 that contains an

ε-neighborhood of (β0, π0
ij) for all i, j, I, J .

(i) Model: for all i, j, I, J, the partial effects depend on αi and γj through πij = α′iγj:

∆(Yij , Xij , β, αi, γj) = ∆ij(β, πij),

where (β, π) 7→ ∆ij(β, π) is a known real-valued function. The realizations of the partial

effects are denoted by ∆ij := ∆ij(β
0, π0

ij).

(ii) Smoothness and moments: The function (β, π) 7→ ∆ij(β, π) is four times continuously

differentiable over B0
ε a.s., and maxi,j E[|∂βvπq`ij(β0, z0

ij)|8+ν ], |v| + q ≤ 4, are uniformly

bounded over I, J for some ν > 0.

It is convenient again to introduce notation to simplify the expressions of the asymptotic

distribution. Let Ψij be weighted least squares population projection

Ψij = α∗ ′i γ
0
j + α0 ′

i γ
∗
t , (α∗, γ∗) = argmin

αi,γt

∑
i,j

E(−∂z2`ij)
(
E(∂π∆ij)

E(∂z2`ij)
− α′iγ0

j − α0 ′
i γt

)2

.

We denote the partial derivatives of (β, π) 7→ ∆ij(β, π) by ∂β∆ij(β, π) := ∂∆ij(β, π)/∂β, ∂ββ′∆ij(β, π) :=

∂2∆ij(β, π)/(∂β∂β′), ∂πq∆ij(β, π) := ∂q∆ij(β, π)/∂πq, q = 1, 2, 3, . . .. We drop the arguments

β and π when the derivatives are evaluated at the true values β0 and π0
ij , e.g. ∂πq∆ij :=

∂πq∆ij(β
0, π0

ij). We also define Dπ∆ij := ∂π∆ij − ∂z2`ijΨij and Dπ2∆ij := ∂π2∆ij − ∂z3`ijΨij .

We are now ready to present the asymptotic distribution of δ̂ defined in (2.8).
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Theorem 2 (Asymptotic distribution of δ̂). Suppose that the assumptions of Theorem 1 and

Assumption 2 hold, and that the following limits exist:

(Dβ∆)∞ = E

 1

n

∑
(i,j)∈D

E(∂β∆ij − Ξij∂π∆ij)

′ ,
B
δ
∞ = −E

1

I

∑
(i,j)∈D

γ0 ′
j

∑
h∈Di

γ0
hγ

0′
h E (∂z2`ih)

−1

γ0
j E

[
∂z`ij Dπ∆ij +

1

2
Dπ2∆ij

] ,

D
δ
∞ = −E

 1

J

∑
(i,j)∈D

α0 ′
i

∑
h∈Dj

α0
hα

0′
h E (∂z2`hj)

−1

α0
i E
[
∂z`ij Dπ∆ij +

1

2
Dπ2∆ij

] ,

V
δ
∞ = −E

 1

n

∑
(i,j)∈D

E
(
ΓijΓ

′
ij + ΓjiΓ

′
ij

) ,

where Γij = (Dβ∆)∞W
−1
∞ ∂z`ijX̃ij −Ψij∂z`ij. Then,

√
n

[
δ̂ − δ0 − I

n
(Dβ∆)∞W

−1
∞ B∞ −

J

n
(Dβ∆)∞W

−1
∞ D∞ −

I

n
B
δ
∞ −

J

n
D
δ
∞

]
→d N (0, V

δ
∞).

Remark 2 (Panel Data). In case (a) of Assumption 1(i), the term involving the cross products

ΓjiΓ
′
ij drops out from the asymptotic variance V

δ
∞.

Theorem 2 shows that δ̂ is consistent and normally distributed, but can have bias of the same

order as its standard deviation. The first two terms of the bias come from the bias of β̂. They

drop out when either β̂ does not have bias or the APE is estimated from a bias corrected estimator

of β. We verify the presence of bias in two of the running examples.

Example 1 (Linear model). In this case B∞ = D∞ = 0 and

∆ij(β, π) = (Yij −X ′ijβ − π)2,

so that ∂z∆ij = −2(Yij−X ′ijβ0−π0
ij) and ∂z2∆ij = 2. Substituting these values in the expressions

of the bias of Theorem 2 yields

B
δ
∞ = D

δ
∞ = −Rσ2,

where we use (4.2). This result formalizes the analysis in Section 3

Example 2 (Binary response model). Let ∆ij(β, π) be as defined in either (2.3) or (2.4). Using

the notation previously introduced for this example, the expressions of B
δ
∞ and D

δ
∞ in Theorem
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2 yield

B
δ
∞ = E

 1

2 I

∑
(i,j)∈D

γ0 ′
j

∑
h∈Di

γ0
hγ

0′
h E (∂z2`ih)

−1

γ0
j E

(
∂π2∆ij −ΨijHij∂

2Fij
) ,

D
δ
∞ = E

 1

2 J

∑
(i,j)∈D

α0 ′
i

∑
h∈Dj

α0
hα

0′
h E (∂z2`hj)

−1

α0
i E
(
∂π2∆ij −ΨijHij∂

2Fij
) .

As for the model parameter, these bias terms grow linearly with the number of factors R.

Example 3 (Count response model). Let ∆ij(β, π) be as defined in either (2.5) or (2.6). In this

case B∞ = D∞ = 0, and ∂z∆ij = ∂z2∆ij = ∆ij. Substituting these values in the expressions of

the bias of Theorem 2 yields

B
δ
∞ = D

δ
∞ = 0,

which generalizes the result in Fernández-Val and Weidner (2016) of no asymptotic bias for the

estimators of the APEs in the Poisson model with strictly exogenous covariates and additive

individual and time effects to the Poisson model with strictly exogenous covariates and factor

structure.

4.3 Bias correction and Inference

Theorems 1 and 2 establish that the estimators of the model parameter and APEs have a bias

of the same order as their standard deviations in some models. In this section, we describe how

to apply recent developments in nonlinear panel data to correct the bias from the estimators. To

simplify the notation we assume that there is no missing data.3 We consider a generic estimator

θ̂ of the parameter θ, which may correspond to the model parameter or an APE. In this notation,

Theorems 1 and 2 show that θ̂ can have a bias B∞ = E[B(β0, φ0
n)] with structure

B(β, φn) =
B(β, φn)

J
+
D(β, φn)

I
.

The intuition behind this structure is that there are J observations that are informative to estimate

each αi and I observations that are informative to estimate each γj .

An analytical correction based on Hahn and Newey (2004) and Fernández-Val and Weidner

(2016) can be formed as

θ̃ABC = θ̂ − B̂, B̂ = B(β̂, φ̂n).

3We refer to Fernández-Val and Weidner (2017) for a discussion on how to modify the corrections to deal with missing

data.
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A split-sample correction based on Dhaene and Jochmans (2015) and Fernández-Val and Weidner

(2016) can be formed as

θ̃SBC = 3θ̂ − θ̄I,J/2 − θ̄I/2,J ,

where θ̄I,J/2 is the average of the estimators in the haft-panels {(i, j) : i = 1, . . . , I; j = 1, . . . , dJ/2e}
and {(i, j) : i = 1, . . . , I; j = bJ/2 + 1c, . . . , J}, and θ̄I/2,J is the average of the estimators in the

haft-panels {(i, j) : i = 1, . . . , dI/2e; j = 1, . . . , J} and {(i, j) : i = bI/2 + 1c, . . . , I; j = 1, . . . , J},
where d·e and b·c are the ceil and floor functions. For network data where I = J and the two

dimensions of the data index the same entities, Cruz-Gonzalez et al. (2017) proposed the leave-

one-out correction

θ̃NBC = Iθ̂ − (I − 1)θ̄I−1, θ̄I−1 = I−1
I∑
i=1

θ̂−i,

where θ̂−i is the estimator in the subpanel {(k, j) : k = 1, . . . , I; j = 1, . . . , I, k 6= i, j 6= i}, that

is, the original panel leaving out the observations corresponding to the entity i as either sender

or receiver.

The discussion of bias correction here so far is applicable very generally to network and panel

models with two-way fixed effects. We now apply this to our non-linear models with interactive

fixed effects. For the analytic bias correction and for variance estimation we require consistent

estimators for the quantities B∞, D∞, W∞, and Σ∞ defined in Theorem 1. Let B̂, D̂, Ŵ and Σ̂

be the corresponding sample analogs, obtained by simply dropping expectations and plugging in

the fixed effect estimates for the true parameters. For example, we have

Ŵ = − 1

n

∑
(i,j)∈D

∂z2 ̂̀ij (Xij − Ξ̂ij

)(
Xij − Ξ̂ij

)′
,

where ∂z2 ̂̀ij = ∂z2`ij

(
X ′ij β̂ + α̂′i γ̂j

)
, and Ξ̂ij is the dx-vector with elements Ξ̂it,k = α# ′

i,k γ̂j+α̂
′
iγ

#
t,k,

with α# ′
i,k and γ#

t,k obtained as the solution to

(
α#
k , γ

#
k

)
∈ argmin

αi,k,γt,k

∑
i,j

(−∂z2 ̂̀ij)
(
∂z2 ̂̀ijXij,k

∂z2 ̂̀ij − α′i,kγ̂j − α̂′iγt,k

)2

.

Once those sample analogs are constructed, then the analytic bias correction of β̂ reads β̃ABC =

β̂ − I
n Ŵ

−1B̂ − J
n Ŵ

−1D̂. Analogously, we can construct sample analogs for B
δ
∞, D

δ
∞, (Dβ∆)∞,

defined in Theorem 2, in order to construct δ̃ABC. Also, let V̂ δ be the sample analog of V
δ
∞.

Theorem 3 (Asymptotic Distribution of β̃ABC and δ̃ABC). Under the conditions of Theorem 1,

√
n
(
β̃ABC − β0

)
→d N (0, W

−1
∞ Σ∞W

−1
∞ ),
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Ŵ →P W∞ and Σ̂ →P Σ∞. If, in addition, the conditions of Theorem 2 hold, then

√
n
(
δ̃ABC − δ0

)
→d N (0, V

δ
∞),

and V̂ δ →P V
δ
∞.

Theorem 3 shows that analytic bias correction can be used to obtain estimates for β0 and

δ0 that are asymptotically unbiased. It also shows that the simple plug-in estimates for the

asymptotic variances are consistent, thus allowing to perform asymptotically valid hypothesis

tests and to construct asymptotically valid confidence intervals for β0 and δ0.

Showing that the Jackknife corrections methods deliver the same unbiased asymptotic distribution

as obtained for β̃ABC and δ̃ABC in Theorem 3 requires an additional homogeneity assumption,

which guarantees that the unconditional distribution of the data is homogenous or stationary

across i and j. This homogeneity in the distribution is required, for example, to make sure that

the constants B and D in the bias expansion of θ̂ are the same as in the bias expansions of

the half-panel estimates θ̄I,J/2 and θ̄I/2,J , so that forming the Jackknife linear combination θ̃SBC

indeed cancels those bias terms. In other words, the data distribution should not systematically

differ across the subsamples used for the Jackknife corrections. See Hahn and Newey (2004)

and Dhaene and Jochmans (2015) for non-linear panel models with one-way fixed effects, and

Fernández-Val and Weidner (2016) for models with two-way fixed effects.

A full theoretical discussion of the leave-one-out correction θ̃NBC furthermore requires a higher-

order bias expansion (i.e. also deriving the bias terms of order 1/I2 in the fixed effects estimates),

because in θ̃NBC the original fixed effects estimates are multiplied by the factors I and (I − 1),

implying that regularity of the second-order bias terms in θ̂ and θ̄I−1 is required for the first-order

unbiasedness of θ̃NBC. We have not worked out those higher-order expansion here, but we refer

to Sun and Dhaene (2017) for an example of higher-order expansions in non-linear panel models.

5 Implementation Details

5.1 Computation of the Estimator

We apply the following EM-type algorithm based on Chen (2014) to find the solution to the

program (2.7):

Algorithm 1 (Likelihood Maximization). (i) Initialization: provide the initial values β(0), α(0)

and γ(0) for β, α and γ (e.g., set all these initial values equal to zero). (ii) Iteration k ≥ 1: given
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β(k−1), α(k−1) and γ(k−1), (a) compute the I × J matrix µ(k) with elements

µ
(k)
ij = z

(k)
ij −

∂z`ij(z
(k)
ij )

∂z2`ij(z
(k)
ij )

, z
(k)
ij = X ′ijβ

(k−1) + α
(k−1)′

i γ
(k−1)
j ;

(b) update α and γ: solve the principal components program

(α(k), γ(k)) ∈ argmin
vec(a)∈RI×R,vec(g)∈RJ×R

Tr(µ(k) − a′g)(µ(k) − a′g)′;

and (c) update β:

β(k) =
[
X̃(k)′X̃(k)

]−1
X̃(k)′vec(µ̃(k)),

where µ̃(k) =Mα(k)µ(k)Mγ(k), X̃
(k) is an IJ×dx matrix with typical column X̃

(k)
c = vec(Mα(k)XcMγ(k)),

Mα(k) := I − α(k)(α(k)′α(k))†α(k)′, Mγ(k) := I − γ(k)(γ(k)′γ(k))†γ(k)′ and Xc is an I × J matrix

with elements Xij,c. (iii) Convergence: repeat step (ii) until ‖β(k) − β(k−1)‖∞ ≤ ε, where ε is a

tolerance parameter (e.g., ε = 10−5).

Chen (2014) analyzed the convergence guarantees for this algorithm. She showed that the

algorithm converges to a local maximum of the log-likelihood. Since the log-likelihood can have

multiple local maxima, we recommend to run the algorithm for several initial values and choose

the solution that yields the highest value of the log-likelihood.

Remark 3 (Additive Effects). Separate additive effects in both dimensions can be treated as one

known factor of ones with unknown loading and one known loading of ones with unknown factor.

They can therefore be included by imposing the constraints that the second column of α(k) and

the first column of γ(k) are equal to vectors of ones in part (b) of step (ii). Other known factors

with unknown loadings or known loadings with unknown factors can be incorporated similarly by

imposing constraints in part (b) of step (ii).

5.2 Estimating the Number of Factors

The problem of estimating the number of factors R has been extensively discussed for linear factor

models without covariates, see for example, Bai and Ng (2002); Hallin and Liska (2007); Onatski

(2010); Alessi et al. (2010); Ahn and Horenstein (2013). These methods can be extended to linear

models with covariates, provided that an appropriate preliminary estimator β̃ of the regression

parameters β is available. In this case the existing methods are applied to the residuals Yij−X ′ij β̃.

If there exists an upper bound for the number of factors, Rmax ≥ R, then the preliminary estimator

β̃ is given by the least squares estimator with Rmax factors, see Moon and Weidner (2015). These

methods can also be extended to the nonlinear factor models that we consider. For example, the

various information criteria in Bai and Ng (2002) are all based on minimizing the sum of squared
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residuals plus a penalty function, and can be adapted to the likelihood problem in the spirit of

classic model selection criteria (AIC, BIC, etc), see Ando and Bai (2016) for an example of this

approach. It is less obvious, however, how to extend the eigenvalue ratio (ER) test of Ahn and

Horenstein (2013) to nonlinear models. This method is attractive because it does not depend on

somewhat arbitrary functional form assumptions or tuning parameters. It only requires to specify

Rmax, but there is no penalty function or any other tuning parameter. Assuming that there exists

an upper bound Rmax > R, we propose adapting this method to nonlinear factor single-index

models using the following algorithm:

Algorithm 2 (Estimation of R). (1) Obtain preliminary estimates β̃, α̃ and γ̃ using Algorithm

1 with R = Rmax. (2) Compute preliminary estimates of the factor structure as the I × J matrix

π̃ with elements π̃ij := α̃′iγ̃j. By construction, rank(π̃) ≤ Rmax. (3) Apply the eigenvalue ratio

criterion of Ahn and Horenstein (2013) to π̃ in order to estimate R, that is,

R̂ = max
r∈{1,...,Rmax−1}

EV(r), EV(r) =
λr (π̃π̃′)

λr+1 (π̃π̃′)
,

where λr (π̃π̃′) denotes the r’th largest eigenvalue of π̃π̃′.

Remark 4 (Additive Effects). When the specification includes factors with known loadings and/or

loadings with known factors, π̃ij is the estimator of the part of the factor structure that does not

contain known factors and known loadings and Rmax refers to the number of factors in this part.

This algorithm can be seen as a natural generalization of the Ahn and Horenstein (2013) to

single-index models. Indeed, if we applied it to the linear model Yij = X ′ijβ + α′i γj + εij , with

log f(Yij | X ′ijβ + α′iγj) replaced by −(Yij −X ′ijβ − α′i γj)2, then

λr
(
π̃π̃′
)

= λr

[(
Yij −X ′ij β̃

)(
Yij −X ′ij β̃

)′]
,

which corresponds to the eigenvalue ratio criterion of Ahn and Horenstein (2013) applied to the

residuals Yij − X ′ij β̃. Based on this coverage of the linear model, we conjecture that R̂ is a

consistent estimator of R under suitable conditions. To formalize this argument, a key step is

to establish the consistency of the preliminary estimator β̃, extending the results of Moon and

Weidner (2015) from linear to nonlinear models, and the properties of the estimator of the factor

structure π̃. The main technical challenge is to characterize π̃, which is not even available for the

linear model with covariates and R > R0. We leave this analysis to future research. In the rest

of the section we show that the method performs well in numerical simulations.

To show how R̂ performs in small samples, we generate samples from the Poisson model of

Example 3 with additive effects where zij = Xijβ + α1i + γ1j + α′2iγ2j , Xij ∼ N(1, 1/3), β = 0,

α1i ∼ U(0, 1), γ1i ∼ U(0, 1), α2i is an R2-dimensional standard normal vector with independent
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Table 3: Simulation Results for R̂2 in Poisson Model

I = J Rmax E[R̂2] Pr(R̂2 = R2) Rmax E[R̂2] Pr(R̂2 = R2) Rmax E[R̂2] Pr(R̂2 = R2)

R2 = 1 R2 = 2 R2 = 3

50 4 1.12 0.91 4 1.86 0.81 4 2.88 0.94

5 1.17 0.88 5 1.77 0.66 5 2.76 0.80

6 1.45 0.71 6 1.68 0.52 6 2.50 0.62

75 4 1.01 0.99 4 2.00 0.91 4 2.97 0.98

5 1.04 0.96 5 2.00 0.87 5 3.00 0.96

6 1.08 0.93 6 1.97 0.81 6 3.01 0.92

100 4 1.01 0.99 4 2.00 0.93 4 2.94 0.95

5 1.01 0.99 5 2.09 0.85 5 2.96 0.88

6 1.03 0.98 6 2.16 0.81 6 3.02 0.82

150 4 1.01 0.99 4 2.00 1 4 2.90 0.93

5 1.03 0.98 5 2.16 0.85 5 2.95 0.85

6 1.06 0.96 6 2.24 0.82 6 2.95 0.81

Notes: 500 simulations. The design include one covariate and additive effects.

components, γ2i is an R2-dimensional standard normal vector with independent components, and

Xij , α1i′ , γ1j′ , α2i′′ and γ2j′′ are mutually independent for all i, i′, i′′ = 1, . . . , I and j, j′, j′′ =

1, . . . , J . We generate 500 datasets with I = J ∈ {50, 75, 100, 150} and R2 ∈ {1, 2, 3}, and apply

Algorithm 2 with Rmax ∈ {4, 5, 6}. Table 3 reports the average of R̂2 across simulations and the

proportion of simulations where R̂2 = R2. Here, we find that R̂2 has little bias and often yields

the true R2, specially for the larger sample sizes with I ≥ 75. Interestingly, the performance of

R̂2 improves as Rmax gets closer to R2. Given this sensitivity, we recommend computing R̂2 for

several values of Rmax.

6 Application to Gravity Equation

6.1 Gravity Equation with Multiple Latent Factors

The gravity equation is a fundamental empirical relationship in international economics. We

estimate a gravity equation of trade between countries using data from Helpman et al. (2008)
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on bilateral trade flows and other trade-related variables for 157 countries in 1986.4 The data

set contains a network of trade data where both i and j index countries as senders (exporters)

and receivers (importers), such that I = J = 157. The outcome Yij is the volume of trade in

thousands of constant 2000 US dollars from country i to country j, and the covariates Xij include

determinants of bilateral trade flows such as the logarithm of the distance in kilometers between

country i’s capital and country j’s capital and indicators for common colonial ties, currency

union, regional free trade area (FTA), border, legal system, language, and religion. Table 4

reports descriptive statistics of the variables used in the analysis. There are 157× 156 = 24, 492

observations corresponding to different pairs of countries. The observations with i = j are missing

because we do not observe trade flows from a country to itself. The trade variable in the first row

is an indicator of positive volume of trade. There are no trade flows for 55% of the country pairs.

Table 4: Descriptive Statistics

Mean Std. Dev.

Trade 0.45 0.50

Trade Volume 84,542 1,082,219

Log Distance 4.18 0.78

Legal 0.37 0.48

Language 0.29 0.45

Religion 0.17 0.25

Border 0.02 0.13

Currency 0.01 0.09

FTA 0.01 0.08

Colony 0.01 0.10

Country Pairs 24,492

Source: Helpman et al. (2008)

We estimate a Poisson model with the following specification of the intensity

E[Yij | Xij , α1i, γ1j , α2i, γ2j ] = exp(X ′ijβ + α1i + γ1j + α′2iγ2j),

where α2i and γ2i are R2-dimensional vectors of factors and factor loadings. This model is a special

case of Example 3 with αi = (α1i, 1, α
′
2i)
′, γj = (1, γ1j , γ

′
2j)
′, and R = 2 + R2. We explicitly

4The original data set includes 158 countries. We exclude Congo because it did not export to any other country in

1986.
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include additive importer and exporter effects to account for scale and multilateral resistance

effects following Eaton and Kortum (2001) and Anderson and van Wincoop (2003). Moreover,

we also include interactive country effects to capture possible clustering and homophily induced

by latent factors such as country trade partnerships, presence of multinationals or immigrant

communities, or differences in natural resources or industrial composition.

Table 5 reports the estimates and standard errors of the parameter β.5 We consider specifications

with different number of interactive effects, R2, in addition to the additive effects . The last row

of the table reports the maximum value of the average log-likelihood, L(β̂, φ̂n)/n. We report

two sets of standard errors corresponding to the dependence structures of cases (a) and (b) of

Assumption 1(i). The standard errors in brackets account for possible reciprocity in the data. In

this case, the method of Section 5 selects R2 = 3 factors when Rmax = 4 and Rmax = 5. We take

R2 = 3 as our preferred specification, but we also note that, relative to the standard errors, the

estimates are not very sensitive to the R2 in the range of values that we consider. One possible

concern with the use of the Poisson model in the trade application is the excess zeros, i.e. the

high probability of zero trade.6 In this case, however, it does not seem to be a problem because

the estimated model with R2 = 3 predicts a probability of zero trade of 0.61, which is higher than

the observed probability of 0.55.

We find that the sign of most of the effects is robust to the inclusion of latent factors. The

only exceptions are the effects of common religion and language, which in the specification

with only additive effects have counterintuitive negative signs that turn positive after in our

preferred specification. Comparing across columns, we observe that the model without factors

seems to exaggerate the role of common border, whereas it downplays the effect of distance and

colonial links. For example, increasing by 10% the distance reduces by 6.9% the volume of trade

and sharing border increases it by 36% according to our preferred specification with R2 = 3,

whereas the same effects are 6% and 71% according to the specification with R2 = 0. Except

for language, all the coefficients are individually significant at the 5% level. Overall, increasing

the number of factors makes the estimates less precise due to the loss of degrees of freedom.

This observation showcases a trade-off in estimation between efficiency and robustness to richer

dependence structures in the unobservables. Finally, accounting for reciprocity slightly increases

the standard errors, but does not change the statistical significance of the estimates.

5We do not report estimates of APEs because in the specification of the Poisson model that we use the parameters

can be interpreted as elasticities.
6We thank an anonymous referee for raising this issue.
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Table 5: Parameters of Gravity Equation

R2 = 0 R2 = 1 R2 = 2 R2 = 3∗ R2 = 4 R2 = 5 R2 = 6

Log Distance -0.64 -0.63 -0.71 -0.69 -0.77 -0.90 -1.01

(0.05) (0.05) (0.05) (0.06) (0.07) (0.09) (0.21)

[0.07] [0.05] [0.06] [0.06] [0.08] [0.09] [0.22]

Border 0.71 0.41 0.32 0.36 0.38 0.36 0.27

(0.12) (0.06) (0.05) (0.05) (0.06) (0.12) (0.11)

[0.16] [0.07] [0.06] [0.06] [0.06] [0.12] [0.11]

Legal 0.30 0.14 0.26 0.22 0.13 0.16 0.27

(0.04) (0.04) (0.04) (0.04) (0.04) (0.06) (0.11)

[0.06] [0.04] [0.04] [0.04] [0.04] [0.06] [0.11]

Language -0.17 -0.19 -0.02 0.03 -0.09 -0.03 0.09

(0.07) (0.07) (0.06) (0.06) (0.07) (0.11) (0.22)

[0.10] [0.07] [0.06] [0.06] [0.08] [0.12] [0.21]

Colony 0.36 0.58 0.39 0.45 0.63 0.61 0.55

(0.08) (0.11) (0.09) (0.09) (0.12) (0.28) (0.46)

[0.12] [0.14] [0.12] [0.12] [0.14] [0.28] [0.46]

Currency 0.60 0.29 1.37 1.38 0.65 0.63 0.77

(0.27) (0.31) (0.39) (0.33) (1.08) (1.93) (2.05)

[0.30] [0.38] [0.41] [0.36] [1.16] [1.92] [2.13]

FTA 0.25 0.15 0.17 0.13 0.25 0.31 0.26

(0.07) (0.06) (0.06) (0.06) (0.09) (0.14) (0.25)

[0.09] [0.07] [0.07] [0.07] [0.09] [0.14] [0.26]

Religion -0.25 0.18 0.24 0.34 0.44 0.30 0.35

(0.12) (0.11) (0.14) (0.13) (0.13) (0.27) (0.34)

[0.13] [0.11] [0.13] [0.13] [0.13] [0.26] [0.34]

Log-likelihood -0.44 0.31 0.67 0.84 0.96 1.04 1.11

Notes: all the columns include importer and exporter additive effects.

Standard errors in parenthesis. Standard errors robust to reciprocity in brackets.

∗ Number of factors selected with Rmax = 5. Log-likelihood is multiplied by 100.
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Table 6: Results of Calibrated Simulations

I Bias SD RMSE SE/SD p;95 Bias SD RMSE SE/SD p;95

R2 = 1 R2 = R∗2

50 5.70 14.14 15.22 1.19 98 5.26 21.63 19.46 0.59 75

75 4.63 7.41 8.72 1.16 95 6.37 8.77 10.83 1.15 95

100 1.98 6.45 6.73 1.14 97 4.61 6.63 8.07 1.13 92

157 1.48 3.59 3.87 1.14 96 2.18 3.83 4.40 1.11 94

R2 = 2 R2 = 3

50 7.66 17.01 18.63 1.04 96 8.62 16.19 18.32 1.14 94

75 6.37 9.10 11.10 1.06 94 6.81 8.63 10.98 1.16 93

100 3.46 6.96 7.77 1.04 94 4.29 7.02 8.22 1.06 93

157 1.74 6.42 6.65 0.64 95 2.50 3.69 4.45 1.14 92

Notes: 500 simulations calibrated to trade data with additive effects and 1 factor.

R2 = R∗2 estimates the number of factors with Rmax = 5.

6.2 Calibrated Monte Carlo Simulation

We evaluate the finite-sample properties of our estimation and inference methods in a Monte Carlo

simulation that mimics the trade application. The design is calibrated to the Poisson model with

additive importer and exporter country effects and one factor. We analyze the performance of

the estimator of β in terms of bias, dispersion and inference accuracy. To speed up computation,

we include only one covariate: the log distance. More specifically, we generate Yij from a Poisson

distribution with intensity exp(Xij β̂+ α̂1i+ γ̂1j + α̂2iγ̂2j) independently across i and j, where Xij

takes the values of log distance in the trade data set, and β̂ and {α̂1i, α̂2i, γ̂1i, γ̂2i}157
j=1, are equal to

the estimates of the parameter, importer effects, exporter effects, factors and factor loadings. We

repeat this procedure in 500 simulations for four different sample sizes: I = 50, I = 75, I = 100

and I = 157 (full sample in the application). For each sample size and simulation, we draw

a random sample of I countries both as importers and exporters without replacement, so that

the number of observations is I × (I − 1). For each simulated sample, we reestimate the model

parameter and standard errors, and construct 95% confidence interval for the model parameter.

Table 6 reports the bias (Bias), standard deviation (SD), and root mean squared error (RMSE)

of the estimator of the parameter β, together with the ratio of average standard error to the

simulation standard deviation (SE/SD), and the empirical coverage in percentage of a confidence

interval with 95% nominal value (p;95). We estimate models with four different numbers of factors
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in addition to the additive effects, R2 ∈ {1, 2, 3, R∗2}, where R∗2 is the number of factors selected

by the method of Section 5, which can vary across simulations. The results for the bias, sd and

rmse are reported in percentage of the true parameter value. We find that the bias is smaller than

the standard deviation for every sample size. When we use the true number of factors R2 = 1,

the confidence intervals cover the parameter in more than 95% of the simulations. The excess

coverage is due to the overestimation of the dispersion of the estimators by the standard errors,

and decreases with the sample size. Selecting the number of factors does not introduce bias,

but increases the dispersion of the estimator of the parameter. The additional variability is not

captured by the standard errors yielding undercoverage of the confidence intervals for the smallest

sample size. On the other hand, adding unnecessary factors to the specification increases the

bias and dispersion of the estimator, but the confidence intervals continue having good coverage

properties. This robustness to the inclusion of too many factors is consistent with the theoretical

results of Moon and Weidner (2015) for linear factor models. Overall, the simulations show that

the asymptotic theory of Section 4 provides a good approximation to the finite-sample behavior

of the estimator.

References

Ahn, S. C. and Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors.

Econometrica, 81(3):1203–1227.

Alessi, L., Barigozzi, M., and Capasso, M. (2010). Improved penalization for determining the

number of factors in approximate factor models. Statistics & Probability Letters, 80(23-

24):1806–1813.

Anderson, J. E. and van Wincoop, E. (2003). Gravity with gravitas: A solution to the border

puzzle. American Economic Review, 93(1):170–192.

Ando, T. and Bai, J. (2016). Large scale panel choice model with unobserved heterogeneity.

Unpublished manuscript.

Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica, 77(4):1229–1279.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models.

Econometrica, 70(1):191–221.

Bai, J. and Wang, P. (2016). Econometric analysis of large factor models. Annual Review of

Economics, 8(1):53–80.

29



Boneva, L. and Linton, O. (2017). A discrete-choice model for large heterogeneous panels with

interactive fixed effects with an application to the determinants of corporate bond issuance. J.

Appl. Econometrics, 32(7):1226–1243.

Charbonneau, K. (2012). Multiple fixed effects in nonlinear panel data models. Unpublished

manuscript.

Chen, M. (2014). Estimation of nonlinear panel models with multiple unobserved effects. Warwick

Economics Research Paper Series No. 1120.

Chen, M., Fernandez-Val, I., and Weidner, M. (2014). Nonlinear Panel Models with Interactive

Effects. ArXiv e-prints.

Cruz-Gonzalez, M., Fernández-Val, I., and Weidner, M. (2017). Bias corrections for probit and

logit models with two-way fixed effects. Stata Journal, 17(3):517–545.

de Paula, A. (2017). Econometrics of network models. In Honore, B., Pakes, A., Piazzesi,

M., and Samuelson, L., editors, Advances in Economics and Econometrics: Theory and

Applications: Eleventh World Congress, Econometric Society Monographs, pages 268–323.

Cambridge University Press.

Dhaene, G. and Jochmans, K. (2015). Split-panel jackknife estimation of fixed-effect models. The

Review of Economic Studies, 82(3):991–1030.

Dzemski, A. (2017). An empirical model of dyadic link formation in a network with unobserved

heterogeneity. Unpublished manuscript.

Eaton, J. and Kortum, S. (2001). Trade in capital goods. European Economic Review, 45(7):1195–

1235.

Fernández-Val, I. and Weidner, M. (2016). Individual and time effects in nonlinear panel models

with large n, t. Journal of Econometrics, 192(1):291–312.

Fernández-Val, I. and Weidner, M. (2017). Fixed Effect Estimation of Large T Panel Data Models.

ArXiv e-prints.

Graham, B. S. (2015). Methods of identification in social networks. Annual Review of Economics,

7(1):465–485.

Graham, B. S. (2016). Homophily and transitivity in dynamic network formation. NBER Working

Paper.

30



Graham, B. S. (2017). An econometric model of network formation with degree heterogeneity.

Econometrica, 85(4):1033–1063.

Hahn, J. and Newey, W. (2004). Jackknife and analytical bias reduction for nonlinear panel

models. Econometrica, 72(4):1295–1319.

Hallin, M. and Liska, R. (2007). The generalized dynamic factor model: determining the number

of factors. Journal of the American Statistical Association, 102(478):603–617.

Handcock, M. S., Raftery, A. E., and Tantrum, J. M. (2007). Model-based clustering for social

networks. J. Roy. Statist. Soc. Ser. A, 170(2):301–354.

Harrigan, J. (1994). Scale economies and the volume of trade. The Review of Economics and

Statistics, pages 321–328.

Head, K. and Mayer, T. (2014). Chapter 3 - gravity equations: Workhorse,toolkit, and cookbook.

In Gopinath, G., Helpman, E., and Rogoff, K., editors, Handbook of International Economics,

volume 4 of Handbook of International Economics, pages 131 – 195. Elsevier.

Helpman, E., Melitz, M., and Rubinstein, Y. (2008). Estimating trade flows: Trading partners

and trading volumes. The Quarterly Journal of Economics, 123(2):441–487.

Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. J. Amer. Statist. Assoc.,

100(469):286–295.

Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network

analysis. J. Amer. Statist. Assoc., 97(460):1090–1098.

Jochmans, K. (2017). Two-way models for gravity. Review of Economics and Statistics, 99(3):478–

485.

Krivitsky, P. N., Handcock, M. S., Raftery, A. E., and Hoff, P. D. (2009). Representing degree

distributions, clustering, and homophily in social networks with latent cluster random effects

models. Social Networks, 31(3):204–213.

Moon, H. R. and Weidner, M. (2015). Linear regression for panel with unknown number of factors

as interactive fixed effects. Econometrica, 83(4):1543–1579.

Moon, H. R. and Weidner, M. (2017). Dynamic linear panel regression models with interactive

fixed effects. Econometric Theory, 33(1):158–195.

31



Neyman, J. and Scott, E. (1948). Consistent estimates based on partially consistent observations.

Econometrica, 16(1):1–32.

Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues.

The Review of Economics and Statistics, 92(4):1004–1016.

Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor

error structure. Econometrica, 74(4):967–1012.

Santos Silva, J. and Tenreyro, S. (2006). The log of gravity. The Review of Economics and

statistics, 88(4):641–658.

Snijders, T. A. (2011). Statistical models for social networks. Annual Review of Sociology,

37(1):131–153.

Sun, Y. and Dhaene, G. (2017). Second-order corrected likelihood for nonlinear models with fixed

effects. Unpublished manuscript.

Wang, F. (2018). Maximum likelihood estimation and inference for high dimensional nonlinear

factor models with application to factor-augmented regressions. Working Paper.

Yan, T. (2018). Undirected network models with degree heterogeneity and homophily. ArXiv

e-prints.

Yan, T., Jiang, B., Fienberg, S. E., and Leng, C. (2016). Statistical inference in a directed network

model with covariates. arXiv preprint arXiv:1609.04558.

32



A Proofs

A.1 Notation and Normalization

Remember the log-likelihood defined in the main text, and also define the rescaled version,

L(β, φ) :=
∑

(i,j)∈D

log f(Yij | X ′ijβ + πij), L∗(β, φ) := n1/2 L(β, φ).

For the true value of the fixed effect parameters φ0 = (vec(α)0′, vec(γ0)′)′ we impose the normalization∑I
i=1 α

0
i α

0′
i =

∑J
j=1 γ

0
j γ

0′
j , and define the restricted parameter set

Φ :=

φ ∈ Rdφ :
I∑
i=1

α0
i α
′
i =

J∑
j=1

γj γ
0′
j

 ,

where dv := dim v for any vector v. Notice that φ0 ∈ Φ. The maximum likelihood estimator that

imposes the normalization φ ∈ Φ reads

(β̂, φ̂) = argmax
(β,φ)∈Rdβ×Φ

L(β, φ). (A.1)

Imposing φ̂ ∈ Φ is an infeasible normalization, because the true value of the parameters appear

in the definition of Φ. However, all our final asymptotic results are on the estimators β̂ and δ̂,

which are invariant to the chosen normalization for φ̂, that is, those results on β̂ and δ̂ also hold

unchanged for any other normalization, and imposing φ̂ ∈ Φ is simply a matter of convenience

for the following proofs. There is always a need for a normalization choice when estimating the

factor loadings and factors in interactive fixed effect models, because the model only depends on

the product α′iγj , which is unchanged under the transformation αi 7→ A′αi and γj 7→ A−1γj , for

some invertible R × R matrix A. Notice that in the definition of Φ there are R2 normalization

constraints, which is exactly enough to uniquely determine the R2 continuous degrees of freedom

of the matrix A. In addition, there is a still a discrete sign change possible (αi 7→ −αi and

γj 7→ −γj), and we assume in the following that this discrete choice is specified somehow (e.g. by

imposing α11 > 0) to make the estimator φ̂ unique. The details of this final discrete choice do

not matter, as long as the same sign normalization is imposed on φ̂ and φ0.

Our normalization constraints in the definition of Φ are linear in φ. It is this linearity which

makes this particular normalization attractive for our purposes. In particular, instead of imposing

this normalization directly we can also impose it via a quadratic penalty function by defining the

penalized objective function

L(β, φ) = n−1/2

[
L(β, φ)− b

2
φ′ V V ′ φ

]
,
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where b > 0 is some constant, and V is a dφ × R2 matrix, which depends on α0 and γ0, and is

implicitly defined by

V ′ φ = vec

 I∑
i=1

α0
iα
′
i −

J∑
j=1

γjγ
0 ′
j

 .
Thus, the above penalty term can also be expressed as

φ′ V V ′ φ =

∥∥∥∥∥∥
I∑
i=1

α0
iα
′
i −

J∑
j=1

γjγ
0 ′
j

∥∥∥∥∥∥
2

F

,

where ‖.‖F denotes the Frobenius norm. The constrained estimator in (A.1) can then equivalently

be obtained by solving the unconstrained problem

(β̂, φ̂) = argmax
(β,φ)∈Rdβ+dφ

L(β, φ),

and we also define

φ̂(β) = argmax
φ∈Rdφ

L(β, φ), (vec(α̂(β))′, vec(γ̂(β))′) = φ̂′(β).

Finally, we introduce the index sets I := {1, . . . , I} and J := {1, . . . , J}.

A.2 Consistency

Lemma 1. Let Assumption 1 be satisfied. Then, ‖β̂ − β0‖ = OP (I−3/8) and

1√
n

∥∥α̂(β)γ̂(β)′ − α0γ0′∥∥
F

= OP (I−3/8 + ‖β − β0‖), 1√
I
‖φ̂(β)− φ0‖ = OP (I−3/8 + ‖β − β0‖),

uniformly over β in a ε-neighborhood around β0, for some ε > 0.

Proof of Lemma 1. For all z1, z2 ∈ B0
ε a second order Taylor expansion of `ij(z1) around z2

gives

`ij(z1)− `ij(z2) = [∂z`ij(z1)](z1 − z2)− 1
2 [∂z2`ij(z̃)] (z1 − z2)2

≥ [∂z`ij(z1)](z1 − z2) +
bmin

2
(z1 − z2)2

=
bmin

2

(
z1 − z2 +

1

bmin
[∂z`ij(z1)]

)2

− 1

2bmin
[∂z`ij(z1)]2, (A.2)
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where z̃ ∈ [min(z1, z2),max(z1, z2)]. Let eij := ∂z`ij/bmin. Using (A.2) we find that

0 ≥ 1√
IJ

[
L(β0, φ0)− L(β̂, φ̂)

]
=

1

IJ

∑
i,j∈D

[
`ij(z

0
ij)− `ij(ẑij)

]
≥ bmin

2 IJ

∑
i,j∈D

[
(z0
ij − ẑij + eij)

2 − e2
ij

]
=
bmin

2 IJ

I∑
i=1

J∑
j=1

[
(z0
ij − ẑij + eij)

2 − e2
ij

]
+OP

(
IJ − n
IJ

)

=
bmin

2 IJ

I∑
i=1

J∑
j=1

{[
X ′ij(β̂ − β0) + α̂ ′i γ̂j − α0 ′

i γ0
j − eij

]2
− e2

ij

}
+OP

(
1

IJ

)
.

Note that the penalty term of the objective function does not enter here, because it is zero when

evaluated both at the estimator and at the true values of the parameters. Let e be the I × J
matrix with entries eij . Let Xk be the I × J matrix with entries Xk,ij , k = 1, . . . , dβ. Let

β ·X =
∑

k βkXk. In matrix notation, the above inequality reads

Tr(e′e) ≥ Tr

[(
(β̂ − β0) ·X + α̂γ̂′ − α0γ0′ − e

)(
(β̂ − β0) ·X + α̂γ̂′ − α0γ0′ − e

)′]
+OP

(
1

IJ

)
.

Analogous to the consistency proof for linear regression models with interactive fixed effects in

Bai (2009) and Moon and Weidner (2017) we can conclude that

1

IJ
Tr(e′e) ≥ 1

IJ
Tr

[
Mα0

(
(β̂ − β0) ·X − e

)
Mγ̂

(
(β̂ − β0) ·X − e

)′]
+OP

(
1

IJ

)
=

1

IJ

[
Tr(e′e) + Tr

[
Mα0

(
(β̂ − β0) ·X

)
Mγ̂

(
(β̂ − β0) ·X

)′]
+ 2Tr

[(
(β̂ − β0) ·X

)′
e

]
+OP (‖e‖2) +OP (‖β̂ − β0‖‖e‖max

k
‖Xk‖)

]
+OP

(
1

IJ

)
, (A.3)

where we used that e.g.∣∣Tr
(
X ′kPα0e

)∣∣ ≤ rank
(
X ′kPα0e

) ∥∥X ′kPα0e
∥∥ ≤ ‖Xk‖‖e‖,∣∣Tr

(
e′Pα0e

)∣∣ ≤ rank
(
e′Pα0e

) ∥∥e′Pα0e
∥∥ ≤ ‖e‖2.

Lemma D.6 in Fernández-Val and Weidner (2016) shows that under Assumption 1, ‖∂z`‖ =

OP (I5/8), where ∂z` is the I × J matrix with entries ∂z`ij . We thus also have ‖e‖ = OP (I5/8).

We furthermore have ‖Xk‖2 ≤ ‖Xk‖2F =
∑

ij X
2
k,ij = OP (IJ), so that ‖Xk‖ = OP (

√
IJ). Hence,

‖Xk‖‖e‖ = OP (I13/8), ‖e‖2 = OP (I5/4), and

Tr
(
X ′ke

)
=

1

bmin

∑
ij

Xij∂z`ij = OP (
√
IJ).

Applying these results and the generalized collinearity assumption to (A.3) gives

0 ≥ c‖β̂ − β0‖+OP (I−3/8‖β̂ − β0‖) +OP (I−3/4).
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This implies that ‖β̂ − β0‖ = OP (I−3/8).

Define eij(β) = ∂z`ij(X
′
ijβ + α0

i γ
0 ′
j )/bmin. Analogous to the above argument we find from

L(β, φ̂(β)) ≥ L(β, φ0) that

0 ≥
√
IJ
[
L(β, φ0)− L(β, φ̂(β))

]
=
∑
i,j

[
`ij(X

′
ijβ + α0

i γ
0 ′
j )− `ij(X ′ijβ + α̂i(β)γ̂′j(β))

]
=
bmin

2

∑
i,j

{[
α̂i(β)γ̂′j(β)− α0

i γ
0 ′
j − eij(β)

]2 − [eij(β)]2
}
.

This implies that

Tr(e(β)′e(β)) ≥ Tr
[(
α̂(β)γ̂(β)′ − α0γ0′ − e(β)

) (
α̂(β)γ̂(β)′ − α0γ0′ − e(β)

)′]
= Tr(e(β)′e(β)) + Tr

[(
α̂(β)γ̂(β)′ − α0γ0′) (α̂(β)γ̂(β)′ − α0γ0′)′]︸ ︷︷ ︸

=‖α̂(β)γ̂(β)′−α0γ0′‖2F

+OP
(∥∥α̂(β)γ̂(β)′ − α0γ0′∥∥

F
‖e(β)‖

)
.

Since α̂(β)γ̂(β)′−α0γ0′ is at most of rank 2R, 1√
2R

∥∥α̂(β)γ̂(β)′ − α0γ0′∥∥
F
≤
∥∥α̂(β)γ̂(β)′ − α0γ0′∥∥ ≤∥∥α̂(β)γ̂(β)′ − α0γ0′∥∥

F
, i.e. the Frobenius and the spectral norm are equivalent. Since eij(β) =

eij + [X ′ij(β − β0)]∂z2`ij(X
′
ij β̃ + α0

i γ
0 ′
j )/bmin, where β̃ lies between β and β0, we have ‖e(β)‖ ≤

‖e‖+OP (
√
IJ‖β − β0‖). We thus find

0 ≥ 1

IJ

∥∥α̂(β)γ̂(β)′ − α0γ0′∥∥2

F
+OP

[
(I−3/8 + ‖β − β0‖)

∥∥α̂(β)γ̂(β)′ − α0γ0′∥∥
F
/
√
IJ
]
.

From this we conclude that

1√
IJ

∥∥α̂(β)γ̂(β)′ − α0γ0′∥∥
F

= OP (I−3/8 + ‖β − β0‖). (A.4)

Next, using our normalization φ0 ∈ Φ and φ̂ ∈ Φ,

α0′ [α̂(β)γ̂(β)′ − α0γ0′] γ0 =
[
α0′α̂(β)

]2 − [α0′α0
]2
,

and therefore∥∥∥∥∥
[

1

I
α0′α̂(β)

]2

−
[

1

I
α0′α0

]2
∥∥∥∥∥
F

=
1

I2

∥∥α0′ [α̂(β)γ̂(β)′ − α0γ0′] γ0
∥∥
F
≤ 1

I2

∥∥α0
∥∥
F

∥∥α̂(β)γ̂(β)′ − α0γ0′∥∥
F

∥∥γ0
∥∥

=
1

I2
O(I1/2)

√
IJ OP (I−3/8 + ‖β − β0‖)O(J1/2) = OP (I−3/8 + ‖β − β0‖).

Using the strong-factor assumption I−1α0′α0 →P Σ1 > 0 we thus have[
I−1α0′α̂(β)

]−1
=
[
I−1α0′α0

]−1
+OP (I−3/8 + ‖β − β0‖). (A.5)

Again by the normalization φ̂ ∈ Φ we also have[
α̂(β)γ̂(β)′ − α0γ0′] γ0 = α̂(β)α0′α̂(β)− α0α0′α0,
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and therefore

α̂(β) = α0
[
I−1α0′α0

] [
I−1α0′α̂(β)

]−1 − I−1
[
α̂(β)γ̂(β)′ − α0γ0′] γ0

[
I−1α0′α̂(β)

]−1
.

Applying (A.4) and (A.5) thus gives

I−1/2
∥∥α̂(β)− α0

∥∥
F
≤ I−1/2

∥∥α0
∥∥
F

∥∥∥IR − [I−1α0′α0
] [
I−1α0′α̂(β)

]−1
∥∥∥
F

+ I−3/2
∥∥α̂(β)γ̂(β)′ − α0γ0′∥∥

F

∥∥γ0
∥∥
F

∥∥∥[I−1α0′α̂(β)
]−1
∥∥∥
F

= I−1/2O(I1/2)OP (I−3/8 + ‖β − β0‖) + I−3/2
√
IJ OP (I−3/8 + ‖β − β0‖)O(J1/2)O(1)

= OP (I−3/8 + ‖β − β0‖).

Analogously we conclude that J−1/2‖γ̂(β)−γ0‖ = OP (I−3/8 +‖β−β0‖), and therefore 1√
I
‖φ̂(β)−

φ0‖ = OP (I−3/8 + ‖β − β0‖). �

A.3 Inverse Expected Incidental Parameter Hessian

We define the expected incidental parameter Hessian for the log-likelihood with and without the

penalty term as

H := E[−∂φφ′L] = H∗ +
b√
n
V V ′, H∗ := E[−∂φφ′L∗].

Let a = vec(α) and c = vec(γ), so that φ = (a′, c′)′. Correspondingly we can decompose the

Hessian matrix,

H∗ =

(
E[−∂aa′L∗] E[−∂ac′L∗]
E[−∂ca′L∗] E[−∂cc′L∗]

)
=:

(
H∗(αα) H∗(αγ)

[H∗(αγ)]
′ H∗(γγ)

)
.

Here, H∗(αα) is a block-diagonal IR × IR matrix with R × R diagonal blocks, and H∗(γγ) is a

block-diagonal JR× JR matrix with R×R diagonal blocks, that is

H∗(αα) = diag

 1√
n

∑
j∈Di

E(−∂z2`ij)γ0
j γ

0′
j


i∈I

 , H∗(γγ) = diag

 1√
n

∑
i∈Dj

E(−∂z2`ij)α0
jα

0′
j


j∈J

 .

For any matrix A with elements Akl, let ‖A‖max = maxk,l |Akl|. Notice that ‖.‖max is not sub-

multiplicative, so it is not a matrix norm.

Lemma 2. Under Assumptions 1,∥∥∥∥H−1 − diag
(
H∗(αα),H

∗
(γγ)

)−1
∥∥∥∥

max

= O
(
n−1/2

)
.
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Proof. We consider the case D = D0 in the following. We decompose

H∗ =

(
H∗(αα) 0

0 H∗(γγ)

)
︸ ︷︷ ︸

=:D

+

(
0 H∗(αγ)

[H∗(αγ)]
′

0

)
︸ ︷︷ ︸

=:A∗

,

and let A := A∗ + b√
n
V V ′. Then, H = D+A. The IR× JR matrix H∗(αγ) is composed of I × J

blocks of size R×R as follows

H∗(αγ) =

[
1√
n
E(−∂z2`ij)γ0

jα
0′
i

]
i∈I,j∈J

,

and similarly we have blocks for the (I + J)R× (I + J)R matrix V V ′

V V ′ =

 [
α0
iα

0′
i∗
]
i,i∗∈I

[
−γ0

jα
0′
i

]
i∈I,j∈J[

−α0
i γ

0′
j

]
j∈J,i∈I

[
γ0
j γ

0′
j∗

]
j,j∗∈J

 =:

(
[V V ′](αα) [V V ′](αγ)

[V V ′](γα) [V V ′](γγ)

)
.

Let b∗ := min{bmin, b}. For symmetric matrices A and B we write A ≥ B if A − B is positive

semi-definite. We have

A− b− b∗√
n

V V ′ − b∗√
n

(
[V V ′](αα) 0

0 [V V ′](γγ)

)
=

 0 H∗(αγ) − b∗√
n

[V V ′](αγ)[
H∗(αγ)

]′
− b∗√

n
[V V ′](γα) 0

 ,

and since V ′V ≥ 0 (implying also [V V ′](αα) ≥ 0 and [V V ′](γγ) ≥ 0) we thus have

A ≥

 0 H∗(αγ) − b∗√
n

[V V ′](αγ)[
H∗(αγ)

]′
− b∗√

n
[V V ′](γα) 0

 .

Using this and E[−∂φφ′`ij ] ≥ 0 we obtain

H = D +A

≥ D +

 0 H∗(αγ) − b∗√
n

[V V ′](αγ)[
H∗(αγ)

]′
− b∗√

n
[V V ′](γα) 0

− n−1
I∑
i=1

J∑
j=1

E[−∂φφ′`ij ]
E(−∂z2`ij)− b∗

E(−∂z2`ij)︸ ︷︷ ︸
≥0

= b∗

 diag

([
1√
n

∑I
i=1 γ

0
i γ

0′
i

]
j∈J

)
0

0
[

1√
n

∑J
j=1 α

0
jα

0′
j

]
j∈J


= b∗

(
n−1/2 II ⊗ γ0′γ0 0

0 n−1/2 IJ ⊗ α0′α0

)
≥ c I(I+J)R,

wpa1 (with probability approaching one), where existence of c > 0 is guaranteed by our strong

factor Assumptions 1(v). The result of the last display implies that

H−1 ≤ c−1 I(I+J)R. (A.6)
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We have thus obtained a spectral bound for H−1
. This turns out to be the key step in the proof.

The remainder of the proof is just a relatively straightforward expansion of H−1
. Namely, using

H = D +A we find that

H−1
= D−1 −D−1AD−1

+
[
D−1HD−1 − 2D−1

+H−1
]

= D−1 −D−1AD−1
+D−1 (H−D)H−1 (H−D) D−1

= D−1 −D−1AD−1
+D−1AH−1AD−1

≤ D−1 −D−1AD−1
+ c−1D−1A2D−1

,

and therefore ∥∥∥H−1 −D−1
∥∥∥

max
≤
∥∥∥D−1AD−1

∥∥∥
max

+ c−1
∥∥∥D−1A2D−1

∥∥∥
max

.

From the expressions for D and A above one finds that D is block-diagonal with entries of order

one, and
∥∥A∥∥

max
= O(n−1/2), which implies

∥∥∥A2
∥∥∥

max
= O((I + J)n−1) = O(n−1/2). The rhs of

the last display is therefore indeed of order n−1/2. �

A.4 Local Concavity of the Objective Function

The consistency results for β̂ and φ̂(β) in Lemma 1 provide initial convergence rates, implying

that we only need to consider a shrinking neighborhood around β0 and φ0 for the remaining

asymptotic analysis. The following lemma shows that the objective function L(β, φ) is strictly

concave in such a local neighborhood. Later in the proof this strict concavity will allow us to

apply the general expansion results in Fernández-Val and Weidner (2016).

Analogously to the expected incidental parameter Hessian H at the true parameters that

was discussed above, we now introduce the following notation for incidental parameter Hessian

(without expectations, and not necessarily at the true parameters),

H(β, φ) := −∂φφ′L(β, φ) =

(
H∗(αα)(β, φ) H∗(αγ)(β, φ)

[H∗(αγ)(β, φ)]′ H∗(γγ)(β, φ)

)
+

b√
n
V V ′.

Lemma 3. Let Assumption 1 be satisfied, and let rβ = rβ,n = oP (1) and rφ = rφ,n = oP (n1/4).

Then, H(β, φ) is positive definite for all β ∈ B(rβ, β
0) and φ ∈ B(rφ, φ

0), wpa1, where B(rβ, β
0)

is an rβ-ball around β0 and B(rφ, φ
0) is rφ-ball around φ0, both under the Euclidian norm. This

implies that L(β, φ) is strictly concave in φ ∈ B(rφ, φ
0) wpa1, for all β ∈ B(rβ, β

0).
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Proof. Let `ij(β, πij) := `ij(zij), where πij = α′iγj and zij = X ′ijβ + α′iγj . Then,

H∗(αα)(β, φ) = diag

 1√
n

∑
j∈Di

[−∂z2`ij(β, πij)]γ0
j γ

0′
j


i∈I

 ,

H∗(γγ)(β, φ) = diag

 1√
n

∑
i∈Dj

[−∂z2`ij(β, πij)]α0
jα

0′
j


j∈J

 ,

H∗(αγ)(β, φ) =

{
1√
n

[−∂z2`ij(β, πij)]γ0
jα

0′
i +

1√
n

[−∂z`ij(zij)] IR
}
i∈I,j∈J

,

We decompose the Hessian into the contribution from the first and from the second derivative of

the log-likelihood, namely H(β, φ) = H(β, φ) + F (β, φ), where

F (β, φ) =

(
0N×N F(αγ)(β, φ)

[F(αγ)(β, φ)]′ 0T×T

)
, F(αγ)(β, φ) =

{
1√
n

[−∂z`ij(zij)] IR
}
i∈I,j∈J

.

Notice that H(β, φ) has the same structure as H. Analogously to the bound (A.6) derived in the

proof of Lemma 2 we can thus show that there exists a constant c > 0 such that wpa1 we have,

for φ ∈ B(rφ, φ
0) and β ∈ B(rβ, β

0),

H(β, φ) ≥ c I(I+J)R.

The new terms that need to be accounted for here are the first derivative terms F (β, φ), which are

zero in expectation at the true parameter and therefore did not show up in our discussion of H
above. The goal in the following is to show that ‖F (β, φ)‖ = oP (1), or equivalently ‖F(αγ)(β, φ)‖ =

oP (1), within the shrinking neighborhood of the true parameters. Here, ‖.‖ refers to the spectral

norm.

For ease of notation we consider R = 1 in the remainder of this proof. Then, F(αγ)ij(β, φ) =

− 1√
n
∂π`ij(β, α

′
iγj). A Taylor expansion gives

∂π`ij(β, α
′
iγj) = ∂π`ij(β

0, α0
i γ

0 ′
j ) + (β − β0)′∂βπ`ij(β̃ij , π̃ij) + (α′iγj − α0

i γ
0 ′
j )∂π2`ij(β̃ij , π̃ij).

The spectral norm of the I × J matrix with entries ∂βkπ`ij(β̃ij , π̃ij) is bounded by the Frobenius

norm of this matrix, which is of order
√
n, since we assume uniformly bounded moments for

∂βkπ`ij(β̃ij , π̃ij). The spectral norm of the I×J matrix with entries (α′iγj−α0
i γ

0 ′
j )∂π2`ij(β̃ij , π̃ij) is

also bounded by the Frobenius norm of this matrix, which equals
√∑

ij(α
′
iγj − α0

i γ
0 ′
j )2[∂π2`ij(β̃ij , π̃ij)]2

and thus bounded by bmax

√∑
ij(α

′
iγj − α0

i γ
0 ′
j )2 = bmax‖αγ′ − α0γ0′‖F . We thus find∥∥F(αγ)ij(β, φ)

∥∥ ≤ 1√
n

(
‖∂π`ij‖+OP (

√
n)‖β − β0‖+ bmax‖αγ′ − α0γ0′‖F

)
= OP (

1√
n
I5/8) +OP (rβ) +OP (rφ/

√
I)

= oP (1),
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for φ ∈ B(rφ, φ
0) and β ∈ B(rβ, β

0), where we also used that ‖αγ′ − α0γ0′‖F = OP (
√
I)‖φ− φ0‖.

Combining the result in the last display with (A.6) we find that there exists a constant c > 0

such that wpa1 we have, for φ ∈ B(rφ, φ
0) and β ∈ B(rβ, β

0),

H(β, φ) ≥ c I(I+J)R.

We have thus shown that L(β, φ) is indeed strictly concave (or that −L(β, φ) is strictly convex)

within this shrinking neighborhood. �

A.5 Stochastic Expansion

Once we have the consistency result of Lemma 1 and the local strict concavity result of Lemma 3,

then the derivation of the stochastic expansion of the fixed effect estimators β̂ and δ̂ does not

rely on the specific single index and interactive fixed effect structure of our model. Some of the

conceptual issues indeed become more transparent when ignoring that structure. Therefore, in

this subsection, let `ij(β, αi, γj) := `ij(X
′
ijβ + α′iγj) and ∆ij(β, αi, γj) := ∆ij(β, πij). Remember

that our fixed effect estimators β̂ and γ̂ maximize the objective function

L(β, φ) = n−1/2

 ∑
(i,j)∈D

`ij(β, αi, γj) +
b

2
φ′V V ′φ

 ,
where φ = [(α′i)i∈I, (γ

′
j)j∈J]′. The APE is δ0 = ∆(β0, φ0) = 1

n

∑
(i,j)∈D∆ij(β

0, α0
i , γ

0
j ), and

the corresponding plug-in estimator reads δ̂ = ∆(β̂, φ̂). For partial derivatives of `ij(β, αi, γj)

and ∆(β̂, φ̂) we use superscripts in the following, expectations are always conditional on φ and

are indicated by a bar, and arguments are omitted when evaluated at the true parameters. For

example, `
αiαi
ij is the dα×dα expected Hessian matrix of `ij(β, αi, γj) with respect to αi evaluated

at the true parameters. This is the notation also used in Fernández-Val and Weidner (2017), but

here the αi and γj are vectors of length dα and dγ , respectively. For our interactive fixed effect

model we have dα = dγ = R, but this is not used in the rest of this subsection. The advantage of

this generality is that, for example, the following formulas are also applicable to models where in

addition to the interactive effects we include separate additive effects in the single index.

It is convenient to make the log-likelihood information-orthogonal between β and the incidental

parameters. This can be achieved by the transformation7

`∗ij(β, αi, γj) := `ij(β, αi + ξ
(α)
i β, γj + ξ

(γ)
j β),

∆∗ij(β, αi, γj) := ∆ij(β, αi + ξ
(α)
i β, γj + ξ

(γ)
j β),

7This transformation corresponds to the reparameterization α∗i = αi− ξ(α)i β and γ∗j = γj − ξ(γ)j β. The log-likelihood

with respect to these parameters is `ij(β, α
∗
i + ξ

(α)
i β, γ∗j + ξ

(γ)
j β) =: `∗ij(β, α

∗
i , γ
∗
j ), which gives our definition of `∗ij after

renaming (α∗i , γ
∗
j ) as (αi, γj) again.
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where the dα × dβ matrices ξ
(α)
i , and the dγ × dβ matrices ρj are a solution to the system of

equations ∑
j∈Di

[
`
αiβ
ij + `

αiαi
ij ξ

(α)
i + `

α′iγj
ij ξ

(γ)
j

]
= 0, i = 1, . . . , I,

∑
i∈Dj

[
`
γjβ
ij + `

γjαi
ij ξ

(α)
i + `

γjγj
ij ξ

(γ)
j

]
= 0, j = 1, . . . , J.

Analogously, let the dα-vectors ψ
(α)
i and the dγ-vectors ψ

(γ)
j be solutions to the system of equations∑

j∈Di

[
∆
αi
ij + `

αiαi
ij ψ

(α)
i + `

α′iγj
ij ψ

(γ)
j

]
= 0, i = 1, . . . , I,

∑
i∈Dj

[
∆
γj
ij + `

γjαi
ij ψ

(α)
i + `

γjγj
ij ψ

(γ)
j

]
= 0, j = 1, . . . , J.

Finally, let

W = − 1√
n

(
Lββ + Lβφ H−1 Lφβ

)
= − 1√

n
L ∗ββ =

1

n

∑
(i,j)∈D

`
∗ββ
ij .

The dβ × dβ matrix W∞ defined in Assumption (1) is simply the probability limit of W , that is,

W∞ = EW in main text notation.

Theorem 4 (Stochastic Expansion for β̂ and δ̂). Let Assumption 1 be satisfied. We then have

√
n
(
β̂ − β0

)
= W

−1
∞ U + oP (1),

where the dβ-vector U has elements

Uk :=
1√
n

∑
(i,j)∈D

` ∗βkij − E

(` ∗βkαiij

)′∑
h∈Di

`
αiαi
ih

−1

`αiij

− E

(` ∗βkγjij

)′∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij


+

1

2
E

(`αiij )′
∑
h∈Di

`
αiαi
ih

−1∑
h∈Di

`
∗βkαiαi
ih

∑
h∈Di

`
αiαi
ih

−1

`αiij


+

1

2
E

(`γjij )′
∑
h∈Dj

`
γjγj
hj

−1∑
h∈Dj

`
∗βkγjγj
hj

∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij

 .
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Furthermore, if also Assumption 2 holds, then

δ̂ − δ0 =
(

∆
∗β
)′

(β̂ − β0) +
1

n

∑
(i,j)∈D

ψ(α)′
i ` ∗αiij + ψ

(γ)′
j `

∗ γj
ij

− E

(∆αi
ij + `αiαiij ψ

(α)
i + `

α′iγj
ij ψ

(γ)
j

)′∑
h∈Di

`
αiαi
ih

−1

`αiij


− E

(∆
γj
ij + `

γjαi
ij ψ

(α)
i + `

γjγj
ij ψ

(γ)
j

)′∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij


+

1

2
E

(`αiij )′
∑
h∈Di

`
αiαi
ih

−1∑
h∈Di

∆
#αiαi
ih

∑
h∈Di

`
αiαi
ih

−1

`αiij


+

1

2
E

(`γjij )′
∑
h∈Dj

`
γjγj
hj

−1∑
h∈Dj

∆
# γjγj
hj

∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij

+ oP
(
1/
√
n
)
,

where the dα × dα matrices ∆
#αiαi
ij and the dγ × dγ matrices ∆

# γjγj
ij are given by

∆
#αiαi
ij = ∆

αiαi
ij +

dα∑
g=1

`
αiαiαig
ij ψ

(α)
ig +

dγ∑
g=1

`
αiαiγjg
ij ψ

(γ)
jg ,

∆
# γjγj
ij = ∆

γjγj
ij +

dα∑
g=1

`
γjγjαig
ij ψ

(α)
ig +

dγ∑
g=1

`
γjγjγjg
ij ψ

(γ)
jg .

Proof. # Expansion of β̂. Our assumptions together with results of Lemma 1, 2 and Lemma 3

guarantee that the conditions of Theorem B.1 and Corollary B.2 in Fernández-Val and Weidner

(2016) are satisfied, so that by applying that corollary we have

√
n(β̂ − β0) = W

−1
∞ U + oP (1),

where U = U (0) + U (1), with

U (0) = Lβ + LβφH−1Lφ = L∗β =
1

n1/2

∑
(i,j)∈D

`
∗β
ij ,

U (1) = L̃βφH−1Lφ − LβφH−1 H̃H−1 Lφ +
1

2

dφ∑
g=1

(
Lβφφg + LβφH−1Lφφφg

)
[H−1Lφ]gH

−1Lφ

= L̃∗βφ H−1Lφ +
1

2

dφ∑
g=1

L ∗βφφg [H−1Lφ]gH
−1Lφ.

Here, tilde symbols indicate deviations from expectation, for example, L̃βφ = Lβφ − Lβφ, with

Lβφ = ELβφ. Analogous to the proof of Theorem C.1 in Fernández-Val and Weidner (2016), and
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also using the above Lemma 2 again, one can then show that the terms in U (1) only contribute

asymptotic bias, namely

L̃∗βφ H−1Lφ = E
[
L̃∗βφ H−1Lφ

]
+ oP (1)

= E
[
L̃∗βα

(
H∗(αα)

)−1
Lα
]

+ E
[
L̃∗βγ

(
H∗(γγ)

)−1
Lγ
]

+ oP (1),

1

2

dφ∑
g=1

L ∗βφφg [H−1Lφ]gH
−1Lφ = E

1

2

dφ∑
g=1

L ∗βφφg [H−1Lφ]gH
−1Lφ

+ oP (1)

= E

1

2

Idα∑
g=1

L ∗βααg
[(
H∗(αα)

)−1
Lα
]
g

(
H∗(αα)

)−1
Lα


+ E

1

2

Jdγ∑
g=1

L ∗βγγg
[(
H∗(γγ)

)−1
Lγ
]
g

(
H∗(γγ)

)−1
Lγ
+ oP (1).

In component notation we can now rewrite the above terms as follows (remember that we define

the Hessian matrix H with a negative sign)

Lβ =
1√
n

∑
(i,j)∈D

` ∗βkij

E
[
L̃∗βα

(
H∗(αα)

)−1
Lα
]

= − 1√
n

∑
(i,j)∈D

E

(` ∗βkαiij

)′∑
h∈Di

`
αiαi
ih

−1

`αiij

 ,
E
[
L̃∗βγ

(
H∗(γγ)

)−1
Lγ
]

= − 1√
n

∑
(i,j)∈D

E

(` ∗βkγjij

)′∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij

 ,
and

E

1

2

Idα∑
g=1

L ∗βααg
[(
H∗(αα)

)−1
Lα
]
g

(
H∗(αα)

)−1
Lα


=
1

2

1√
n

∑
(i,j)∈D

E

(`αiij )′
∑
h∈Di

`
αiαi
ih

−1∑
h∈Di

`
∗βkαiαi
ih

∑
h∈Di

`
αiαi
ih

−1

`αiij


E

1

2

Jdγ∑
g=1

L ∗βγγg
[(
H∗(γγ)

)−1
Lγ
]
g

(
H∗(γγ)

)−1
Lγ


=
1

2

1√
n

∑
(i,j)∈D

E

(`γjij )′
∑
h∈Dj

`
γjγj
hj

−1∑
h∈Dj

`
∗βkγjγj
hj

∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij

 .
Combining the above gives the expansion for β̂ − β0 in the theorem.
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# Expansion of δ̂. Again, our assumptions and lemmas guarantee that the conditions of

Theorem B.4 in Fernández-Val and Weidner (2016) are satisfied, so that by applying that theorem

we have

δ̂ − δ =
(

∆
β

+ Lβφ H−1
∆
φ
)′

(β̂ − β0) + U
(0)
∆ + U

(1)
∆ + oP

(
1/
√
n
)

=
(

∆
∗β
)′

(β̂ − β0) + U
(0)
∆ + U

(1)
∆ + oP

(
1/
√
n
)
,

where

U
(0)
∆ = Lφ ′H−1

∆
φ
,

U
(1)
∆ = Lφ ′H−1

∆̃φ − Lφ ′H−1 H̃H−1
∆
φ

+ 1
2 L

φ ′H−1

∆
φφ

+

dφ∑
g=1

Lφφφg
(
H−1

∆
φ
)
g

H−1Lφ.

Again, following the logic in the proof of Theorem C.1 in Fernández-Val and Weidner (2016) one

finds that U
(1)
∆ only contributes asymptotic bias, namely

Lφ ′H−1
∆̃φ − Lφ ′H−1 H̃H−1

∆
φ

= E
[
Lφ ′H−1

(
∆̃φ − H̃H−1

∆
φ
)]

+ oP
(
1/
√
n
)

= E
{
Lα ′

(
H∗(αα)

)−1
[
∆̃α −

(
H̃H−1

∆
φ
)

(α)

]}
+ E

{
Lγ ′

(
H∗(γγ)

)−1
[
∆̃γ −

(
H̃H−1

∆
φ
)

(γ)

]}
+ oP

(
1/
√
n
)
,

and

1
2 L

φ ′H−1

∆
φφ

+

dφ∑
g=1

Lφφφg
(
H−1

∆
φ
)
g

H−1Lφ

= E

1
2 L

φ ′H−1

∆
φφ

+

dφ∑
g=1

Lφφφg
(
H−1

∆
φ
)
g

H−1Lφ
+ oP

(
1/
√
n
)

= E

1
2 L

α ′
(
H∗(αα)

)−1

∆
αα

+

dφ∑
g=1

Lααφg
(
H−1

∆
φ
)
g

(H∗(αα)

)−1
Lα


+ E

1
2 L

γ ′
(
H∗(γγ)

)−1

∆
γγ

+

dφ∑
g=1

Lγγφg
(
H−1

∆
φ
)
g

(H∗(γγ)

)−1
Lγ
+ oP

(
1/
√
n
)
.

In component notation we can now rewrite the above terms as follows (again, remember that we
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define the Hessian matrix H with a negative sign)

E
{
Lα ′

(
H∗(αα)

)−1
[
∆̃α −

(
H̃H−1

∆
φ
)

(α)

]}

= −E

(∆αi
ij + `αiαiij ψ

(α)
i + `

α′iγj
ij ψ

(γ)
j

)′∑
h∈Di

`
αiαi
ih

−1

`αiij

 ,
E
{
Lγ ′

(
H∗(γγ)

)−1
[
∆γ −

(
H̃H−1

∆
φ
)

(γ)

]}

= −E

(∆
γj
ij + `

γjαi
ij ψ

(α)
i + `

γjγj
ij ψ

(γ)
j

)′∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij

 ,

E

1
2 L

α ′
(
H∗(αα)

)−1

∆
αα

+

dφ∑
g=1

Lααφg
(
H−1

∆
φ
)
g

(H∗(αα)

)−1
Lα


=
1

2
E

(`αiij )′
∑
h∈Di

`
αiαi
ih

−1∑
h∈Di

∆
#αiαi
ih

∑
h∈Di

`
αiαi
ih

−1

`αiij

 ,
E

1
2 L

γ ′
(
H∗(γγ)

)−1

∆
γγ

+

dφ∑
g=1

Lγγφg
(
H−1

∆
φ
)
g

(H∗(γγ)

)−1
Lγ


=
1

2
E

(`γjij )′
∑
h∈Dj

`
γjγj
hj

−1∑
h∈Dj

∆
# γjγj
hj

∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij

 .
Combining the above gives the expansion for δ̂ − δ0 in the theorem. �

A.6 Proof of Main Text Theorems

Proof of Theorem 1. According to Theorem 4 we have
√
n
(
β̂ − β0

)
= W

−1
∞ U + oP (1). The

first term in U is 1√
n

∑
(i,j)∈D `

∗β
ij , where in main text notation we have ` ∗βij = ∂z`ijX̃ij . Assumption 1(i)

guarantees that ` ∗βij has mean zero (a linear combination of scores evaluated at the true parameters)

and is either independent across all (i, j), or only correlated within pairs (i, j) and (j, i). This

term therefore only contributes variance, no bias, to the limiting distribution of β̂. Applying the

Lindeberg-Levy CLT and the Cramer-Wold device we find

1√
n

∑
(i,j)∈D

` ∗βij →d N
(
0,Σ∞

)
,
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where for the fully independent case (a) in Assumption 1(i),8

Σ∞ = plim
I,J→∞

1

n

∑
(i,j)∈D

E
(
` ∗βij

)(
` ∗βij

)′
= plim

I,J→∞

1

n

∑
(i,j)∈D

E
(
−` ∗ββij

)
= W∞.

Thus, in case (a) the asymptotic variance of β̂ simplifies to W−1
∞ Σ∞W

−1
∞ = W

−1
∞ . For case (b) of

Assumption 1(i) we have

Σ∞ = plim
I,J→∞

1

n

∑
(i,j)∈D

[
E
(
` ∗βij

)(
` ∗βij

)′
+ E

(
` ∗βij

)(
` ∗βji

)′]
= plim

I,J→∞

1

n

∑
(i,j)∈D

E
{(
∂z`ijX̃ij + ∂z`jiX̃ji

)
∂z`ijX̃

′
ij

}
,

where we use that ` ∗βij = ∂z`ijX̃ij . This is the formula for Σ∞ given in Theorem 4, and this

formula covers both case (a) and case (b), because independence across pairs (i, j) ↔ (j, i) is of

course a special case of dependence across those pairs.

All the remaining terms in U contribute asymptotic bias but no variance. We consider case (a)

of Assumption 1(i) in the following, but one can easily verify that the additional bias terms

stemming from correlation across pairs (i, j) ↔ (j, i) are asymptotically negligible, so that the

same asymptotic bias expressions are obtained in case (b).

Using ` ∗βkαiij = γ0
j ∂z2`ijX̃ij,k and `

αiαi
ih = γ0

j γ
0′
j ∂z2`ij and `αiij = γ0

j ∂z`ij we obtain

E

(` ∗βkαiij

)′∑
h∈Di

`
αiαi
ih

−1

`αiij

 = γ0′
j

∑
h∈Di

γ0
hγ

0′
h ∂z2`ih

−1

γ0
j E
(
∂z`ij∂z2`ijX̃ij,k

)
,

and also using `
∗βkαiαi
ih = γ0

j γ
0′
j ∂z3`ijX̃ij,k and the Bartlett identity E`αiij

(
`αiij

)′
= −`αiαiij ,

∑
(i,j)∈D

E

(`αiij )′
∑
h∈Di

`
αiαi
ih

−1∑
h∈Di

`
∗βkαiαi
ih

∑
h∈Di

`
αiαi
ih

−1

`αiij


= −

I∑
i=1

Tr

∑
j∈Di

`
αiαi
ij

−1∑
j∈Di

`
∗βkαiαi
ij

 = −
∑

(i,j)∈D

Tr

∑
h∈Di

`
αiαi
ih

−1

`
∗βkαiαi
ij


= −

∑
(i,j)∈D

γ0′
j

∑
h∈Di

γ0
hγ

0′
h ∂z2`ih

−1

γ0
j E
(
∂z3`ijX̃ij

)
,

8Here, we also used the Bartlett identity E
(
` ∗ βij

)(
` ∗ βij

)′
= E

(
−` ∗ ββij

)
.
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and therefore

1√
n

∑
(i,j)∈D

−E
(` ∗βkαiij

)′∑
h∈Di

`
αiαi
ih

−1

`αiij


+

1

2
E

(`αiij )′
∑
h∈Di

`
αiαi
ih

−1∑
h∈Di

`
∗βkαiαi
ih

∑
h∈Di

`
αiαi
ih

−1

`αiij


= − 1√

n

∑
(i,j)∈D

γ0′
j

∑
h∈Di

γ0
hγ

0′
h ∂z2`ih

−1

γ0
j E
(
∂z`ij∂z2`ijX̃ij,k +

1

2
∂z3`ijX̃ij

)

=
√
n
I

n

−1

I

I∑
i=1

1

|Di|
∑
j∈Di

γ0′
j

 1

|Di|
∑
h∈Di

γ0
hγ

0′
h ∂z2`ih

−1

γ0
j E
(
∂z`ij∂z2`ijX̃ij,k +

1

2
∂z3`ijX̃ij

)
︸ ︷︷ ︸

→PB∞

.

Analogously we obtain

1√
n

∑
(i,j)∈D

−E
(` ∗βkγjij

)′∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij



+
1

2
E

(`γjij )′
∑
h∈Dj

`
γjγj
hj

−1∑
h∈Dj

`
∗βkγjγj
hj

∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij


=
√
n
J

n

− 1

J

J∑
j=1

1

|Dj |
∑
i∈Dj

α0′
i

 1

|Dj |
∑
h∈Dj

α0
hα

0′
h ∂z2`hj

−1

α0
i E
(
∂z`ij∂z2`ijX̃ij,k +

1

2
∂z3`ijX̃ij

)
︸ ︷︷ ︸

→PD∞

Combining the above gives the statement of the theorem. �

Proof of Theorem 2. Analogous to the proof of Theorem 1 we need to translate the stochastic

expansion of δ̂ in Theorem 4 into the notation used in the main text. We have
(

∆
∗β
)′
→P

(Dβ∆)∞ and Ψij = −ψ(α)′
i γ0

j − ψ
(γ)′
j α0

i , and therefore find for the variance terms that(
∆
∗β
)′
W
−1
∞ ` ∗βij︸ ︷︷ ︸

=(Dβ∆)∞W
−1
∞ ∂z`ijX̃ij

+ψ
(α)′
i ` ∗αiij + ψ

(γ)′
j `

∗ γj
ij︸ ︷︷ ︸

=−Ψij∂z`ij

= Γij .
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Analogous to the proof of Theorem 1 one can show for the bias terms that

1

I

∑
(i,j)∈D

−E
(∆αi

ij + `αiαiij ψ
(α)
i + `

α′iγj
ij ψ

(γ)
j

)′∑
h∈Di

`
αiαi
ih

−1

`αiij


+

1

2
E

(`αiij )′
∑
h∈Di

`
αiαi
ih

−1∑
h∈Di

∆
#αiαi
ih

∑
h∈Di

`
αiαi
ih

−1

`αiij

→P B
δ
∞,

and

1

J

∑
(i,j)∈D

−E
(∆

γj
ij + `

γjαi
ij ψ

(α)
i + `

γjγj
ij ψ

(γ)
j

)′∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij


+

1

2
E

(`γjij )′
∑
h∈Dj

`
γjγj
hj

−1∑
h∈Dj

∆
# γjγj
hj

∑
h∈Dj

`
γjγj
hj

−1

`
γj
ij

→P D
δ
∞.

Using the above and the expansion in Theorem 4 gives the statement of Theorem 2. �

Proof of Theorem 3. Under the conditions of Theorem 1, B̂ →P B∞, D̂ →P D∞, Ŵ →P

W∞, and Σ̂ →P Σ∞. If, in addition, the conditions of Theorem 2 hold, then also V̂ δ →P V
δ
∞,

and the sample analogs of B
δ
∞, D

δ
∞, (Dβ∆)∞ are also consistent. These results follow from an

identical argument to the proof of Lemma S.1 and Theorem 4.3 in the supplementary material of

Fernández-Val and Weidner (2016), which are based on a repeated application of the weak law of

large numbers and Slutsky’s theorem.

Once we have established the consistency of the estimators of the bias terms, the asymptotic

distributions of the analytical corrections β̃ABC and δ̃ABC follow as corollaries of Theorems 1 and

2, respectively. For example,

√
n
(
β̃ABC − β0

)
=
√
n

(
β̂ − I

n
Ŵ−1B̂ − J

n
Ŵ−1D̂ − β0

)
=
√
n

(
β̂ − β0 − I

n
W−1B − J

n
W−1D

)
− I√

n

(
Ŵ−1B̂ −W−1B

)
− J√

n

(
Ŵ−1D̂ −W−1D

)
→d N (0, W

−1
∞ Σ∞W

−1
∞ ),

by Slutsky’s theorem. �
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