
Kristensen, Dennis; Mogensen, Patrick K.; Moon, Jong Myun; Schjerning, Bertel

Working Paper

Solving dynamic discrete choice models using smoothing
and sieve methods

cemmap working paper, No. CWP15/19

Provided in Cooperation with:
The Institute for Fiscal Studies (IFS), London

Suggested Citation: Kristensen, Dennis; Mogensen, Patrick K.; Moon, Jong Myun; Schjerning, Bertel
(2019) : Solving dynamic discrete choice models using smoothing and sieve methods, cemmap
working paper, No. CWP15/19, Centre for Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2019.1519

This Version is available at:
https://hdl.handle.net/10419/211108

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2019.1519%0A
https://hdl.handle.net/10419/211108
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Solving dynamic discrete choice models
using smoothing and sieve methods

Dennis Kristensen
Patrick K. Mogensen
Jong Myun Moon
Bertel Schjerning

The Institute for Fiscal Studies
Department of Economics,
UCL

cemmap working paper CWP15/19

Solving Dynamic Discrete Choice Models Using
Smoothing and Sieve Methods∗

Dennis Kristensen† Patrick K. Mogensen‡ Jong Myun Moon§

Bertel Schjerning¶

March 29, 2019

Abstract

We propose to combine smoothing, simulations and sieve approximations to solve for either
the integrated or expected value function in a general class of dynamic discrete choice (DDC)
models. We use importance sampling to approximate the Bellman operators defining the two
functions. The random Bellman operators, and therefore also the corresponding solutions,
are generally non-smooth which is undesirable. To circumvent this issue, we introduce a
smoothed version of the random Bellman operator and solve for the corresponding smoothed
value function using sieve methods. We show that one can avoid using sieves by generalizing
and adapting the “self-approximating” method of Rust (1997b) to our setting. We provide an
asymptotic theory for the approximate solutions and show that they converge with

√
N -rate,

where N is number of Monte Carlo draws, towards Gaussian processes. We examine their
performance in practice through a set of numerical experiments and find that both methods
perform well with the sieve method being particularly attractive in terms of computational
speed and accuracy.

Keywords: Dynamic discrete choice; numerical solution; Monte Carlo; sieves.

∗We would like to thank John Rust, Victor Aguirregabiria, Lars Nesheim, Aureo de Paula and many other
people for helpful comments and suggestions. Kristensen gratefully acknowledges financial support from the ERC
(through starting grant No 312474 and advanced grant No GEM 740369). Schjerning gratefully acknowledges the
financial support from the Independent Research Fund Denmark (grant no. DFF – 4182-00052) and the URBAN
research project financed by the Innovation Fund Denmark (IFD).
†Department of Economics, University College London, Gower Street, London, United Kingdom. E-mail:

d.kristensen@ucl.ac.uk. Website: https://sites.google.com/site/econkristensen.
‡Department of Economics, University of Copenhagen, Øster Farimagsgade 5, Building 35, DK-1353 Copen-

hagen K, Denmark. E-mail: Patrick.Kofod.Mogensen@econ.ku.dk. Webpage: http://www.economics.ku.dk/
staff/phd_kopi/?pure=en/persons/374766.

§PIMCO
¶Department of Economics, University of Copenhagen, Øster Farimagsgade 5, Building 35, DK-1353 Copen-

hagen K, Denmark. E-mail: Bertel.Schjerning@econ.ku.dk. Webpage: http://bschjerning.com/.

d.kristensen@ucl.ac.uk
https://sites.google.com/site/econkristensen
Patrick.Kofod.Mogensen@econ.ku.dk
http://www.economics.ku.dk/staff/phd_kopi/?pure=en/persons/374766
http://www.economics.ku.dk/staff/phd_kopi/?pure=en/persons/374766
Bertel.Schjerning@econ.ku.dk
http://bschjerning.com/

1 Introduction

Discrete Decision Processes (DDPs) are widely used in economics to model forward-looking
discrete decisions. For their implementation, researchers are required to solve the model which
generally cannot be done in closed form. Instead, a number of methods have been proposed
for solving the model numerically; see, e.g., Rust (2008) for an overview. We propose two
novel methods for approximating the solutions to a general class of Markovian DDP models in
terms of either the so-called integrated or expected value function. Our framework allows for
both continuous and discrete state variables, non-separable utility functions and unrestricted
dynamics. As such, we cover most relevant models used in empirical work. The proposed
implementation of model and estimators are found to be computationally very efficient, and
at the same time providing precise results with small approximation errors due to the use of
simulations and sieve methods.

Our first proposal proceeds in three steps: First, we develop smoothed simulated versions of
the Bellman operators that returns the integrated and expected value functions as fixed points.
Next, we approximate the unknown value function by a sieve, that is, a parametric function class,
thereby turning the problem into a finite-dimensional one. Finally, we solve for the parameters
entering the chosen sieve using projection-based methods. When the chosen sieve is linear in
the parameters, the approximate solution can be computed using an iterative procedure where
each step is on closed form.

As an alternative to the above sieve-based method, we also adapt and generalize the so-
called “self-approximating” method proposed in Rust (1997b) to our setting: We design the
importance sampler used in the simulated Bellman operators so that the corresponding expected
and integrated value functions can be solved for directly without the use of sieves. In comparison
with the sieve approach, the self-approximating solution method has the advantage that it will
not suffer from any biases due to function approximations. But at the same time, the simulated
Bellman operator used in its implementation will generally have a larger variance compared to
the one that can be used for the sieve-method. This larger variance also translates into a larger
simulation bias of the self-approximating solution due to the non-linear nature of the problem.
Thus, neither method strictly dominates the other.

Our two procedures, the sieve-based and self-approximating one, differ from existing pro-
posals in three important aspects: First, we solve for either the integrated or expected value
function instead of the value function itself. This reduces the dimensionality of the problem
since we integrate out any i.i.d. shocks appearing in the model before solving it. Moreover,
while the value function is non-differentiable, the integrated and expected value functions are
generally smooth which make them easier to approximate using sieve methods. Second, we
allow for a general class of importance samplers in the simulation of the Bellman operator;
these can be designed to reduce variances and biases due to simulations. Third, we smooth the
simulated Bellman operator by replacing the max-function appearing in the Bellman operator
by a smoothed version where the degree of smoothing is controlled by a parameter akin to the
bandwidth in kernel smoothing methods. This is similar to the logit-smoothed accept-reject
simulator of probit models as proposed by McFadden (1989); see also Fermanian and Salanie
(2004), Kristensen and Shin (2012) and Iskhakov, Jørgensen, Rust and Schjerning (2017). The

1

smoothing turns the problem of solving for the integrated and expected value functions into
differentiable ones. In particular, the exact solutions to the smoothed simulated Bellman equa-
tions become smooth as functions of state variables and any underlying structural parameters.
This in turn means that standard sieves, such as polynomials, will approximate the exact solu-
tions well and that we can control the error rate due to function approximation. Moreover, if
used in estimation, standard numerical solvers can be employed in computing estimators of the
structural parameters. The smoothing entails an additional bias but this can be controlled for
by suitable choice of aforementioned smoothing parameter.

The smoothing device also facilitates the theoretical analysis of the approximate value func-
tions since it allows us to use a functional Taylor expansion of it. This expansion is then used
to analyze the leading numerical error terms of the approximate value functions due to sim-
ulations, smoothing and function approximations. In particular, under regularity conditions,
we show that the approximate value function will converge weakly towards a Gaussian process
which is the first result of its kind to our knowledge. These results allow researchers to, for
example, build confidence intervals around the approximate value function and should be useful
when analyzing the impact of value function approximation when used in estimation of struc-
tural parameters. The results may also be potentially helpful in designing selection rules for
number of basis functions and the smoothing parameter.

A numerical study investigates the performance of the solution methods in practice. We im-
plement the proposed methods for the engine replacement model of Rust (1987) and investigate
how smoothing, number of basis functions and number of simulations affect the approximation
errors. We also investigate how the procedures are affected by the dimensionality of the prob-
lem and how derivative-based solvers affect computation times. We find that the sieve method
generally performs best of the two methods: It is computationally faster and in most situations
provides a better approximation in terms of bias and variance. Moreover, the sieve method
is found to also work well in higher dimensions with its bias and variance being fairly stable
as we increase the the number of state variables of the model. In contrast, variances of the
self-approximating method increase dramatically as the number of state variables increases and
so appears to be less robust. Finally, the errors due to simulations and function approximation
behave according to theory and are found to vanish at the expected rates.

Our proposed methods share similarities with the ones developed in, amongst others, Arcidi-
acono, Bayer, Bugni and James (2013), Keane and Wolpin (1994), Munos and Szepesvari (2008),
Norets (2012) Rust (1997b) and Pal and Stachurski (2013) who also use simulations and/or sieve
methods to solve DDP’s. However, their methods solve for the value function while ours solve for
either the integrated or expected value function which are more well-behaved (smooth) objects
and therefore easier to approximate. Moreover, in contrast to the cited papers, we employ im-
portance sampling and smoothing in our implementation which comes with the aforementioned
computational advantages. From a theory perspective, we provide a more complete asymptotic
analysis of the approximate integrated and expected value functions. On the other hand, Munos
and Szepesvari (2008) and Rust (1997b) provide an analysis of the computational complexity of
solving for the value function and so the theories of this paper and these studies complement
each other.

2

The remains of the paper are organized as follows: Section 2 introduces a general class of
DDP’s and their “smoothed” versions. In Section 3, we develop our smoothed simulated versions
of the Bellman operators that the integrated and expected value functions are fixed points to.
We then show how to (approximately) solve these simulated Bellman equations in Section 4. An
asymptotic theory of the approximate value function is presented in Section 5, while the results
of the numerical experiments are found in Section 6. All proofs and lemmas have been relegated
to Appendix B and C, respectively.

2 Model

We consider the following DDP where a single agent at time t ≥ 1 solves

dt = arg max
d∈D
{u(St, d) + βE [ν(St+1)|St, dt = d]} , (2.1)

where D = {1, ..., D} is the set of alternatives, u(St, d) is the per-period utility, 0 < β < 1
is the discount factor, St is a set of state variables that follows a controlled Markov process
with transition kernel FS (St|St−1, dt−1) and the so-called value function ν solves the following
fixed-point problem,

ν(St) = max
d∈D
{u(St, dt) + βE [ν(St+1)|St, dt = d]} . (2.2)

In many of the empirical specifications, St contains an i.i.d. component, St = (Zt, εt) ∈ Z ×E ⊆
Rdz × Rdε where Zt and εt satisfy the following conditional independence condition,

FS (Zt, εt|Zt−1, εt−1, dt−1) = Fε (εt|Zt)FZ (Zt|Zt−1, dt−1) .

If no i.i.d. component is present, we can always choose εt = ∅ to be an empty variable so that
St = Zt. Throughout, we will assume that Z is a compact set. This is done to simplify the
theoretical analysis since it, for example, implies that all relevant functions will lie in the space
B (Z) of bounded functions on Z equipped with the sup-norm, ‖v‖∞ = supz∈Z |v (z)|. We allow
for both countable and continuously distributed state variables. However, many of the ideas
and results only have real bite in the continuous case.

In the current formulation, the model is characterized in terms of ν(s). However, it is possible
to rewrite the models in terms of either the so-called integrated value function or the expected
value function and solve for these instead. These are defined as

v(Zt) = E [ν(Zt, εt)|Zt] =
∫
E
ν (Zt, e) dFε (e|Zt) ,

and

V (Zt, dt) = E [ν(Zt+1, εt+1)|Zt, εt, dt] = E[v(Zt+1)|Zt, dt] =
∫
E
v(z′)dFZ

(
z′|Zt, dt

)
,

respectively, where we have used the conditional independence assumption. Eq. (2.1) can
now be written as dt = arg maxd∈D {u(Zt, εt, d) + βV (Zt, d)}. Similarly, conditional choice

3

probabilities, which are needed for counterfactuals and for estimation, take the form

P (dt = d|Zt = z) = Mu,d(βV (z′)|z), Mu,d(r|z) = ∂Mu(r|z)
∂r (d) ,

where Mu(r|z) is a generalized version of the so-called social surplus function defined as, for any
r = (r(1), ..., r(D)),

Mu(r|z) =
∫
E

max
d∈D
{u(z, e, d) + r(d)} dFε(de|z). (2.3)

The conditional choice probabilities again take as input the expected value function. Thus, for
any implementation of the above class of DDP’s, such as the computation of estimators and/or
counterfactual analysis, we need to be able to compute either V directly, or first v and then
V (Zt, dt) = E[v(Zt+1)|Zt, dt]. Except for a few special cases, analytical expressions of v and V
are not available and so numerical approximations have to be employed.

We will here develop numerical methods for solving for either v or V instead of ν for the
following reasons: First, ν is a function of s = (z, ε) while V and v are functions of z alone and
therefore their approximations are lower-dimensional problems. Second, ν is non-differentiable
due to the max-function in (2.2); in contrast, v(z) and V (z, d) are both smooth functions of
z if Fε(e|z) and FZ (z′|z, d) are. If there is no i.i.d. component in the model, εt = ∅, then
ν (s) = ν (z) = v(z), while V (z, d) remains smooth even in this case. The functions v and V

each solves their own fixed-point problem: Taking conditional expectations on both sides of eq.
(2.2), V can be expressed as the solution to

V (z, d) = Γ(V)(z, d), (2.4)

where, with Mu defined in eq. (2.3),

Γ(V)(z, d) = E

[
max
d′∈D

{
u(Zt+1, εt+1, d

′) + βV (Zt+1, d
′)
}
|Zt = z, dt = d

]
=
∫
Z

∫
E

max
d′∈D

{
u(z′, e, d′) + βV (z′, d′)

}
dFε(de|z′)dFZ(dz′|z, d)

=
∫
Z
Mu(βV (z′)|z′)dFZ(dz′|z, d).

Here and in the following, we let V (z) = (V (z, 1),, V (z,D))′ denote the D × 1-vector of
expected value function and similar for other objects. With this notation, we can represent the
fixed-point problem on vector form, V (z) = Γ(V)(z), where

Γ(V)(z) =
∫
Z
Mu(βV (z′)|z′)dFZ(dz′|z). (2.5)

Next, to derive the fixed-point problem that v solves, again take conditional expectations on
both sides of eq. (2.2) but now only condition on Zt to obtain

v(z) = Mu(βV (z)|z). (2.6)

4

Combining this with eq. (2.4),

v (z) = Mu

(
β

∫
Z
Mu(βV (z′)|z′)dFZ(dz′|z)

∣∣∣∣ z) = Γ̄(v)(z). (2.7)

where
Γ̄(v)(z) = Mu

(
β

∫
Z
v
(
z′
)
dFZ(dz′|z)

∣∣∣∣ z) .
Under great generality, Γ and Γ̄ are contraction mappings and so V ∈ B (Z)D and v ∈ B (Z) are
well-defined and unique but closed-form expressions of are only available in a few special cases.

Example 1. Consider the special case where u(Zt+1, εt+1, d) = ū(Zt+1, d) + λεt+1 (d) for some
scale parameter λ > 0 and Fε(e|z) = Fε(e) in which case

Mu(r|z) =
∫
E

max
d∈D
{ū(z, d) + λe+ r(d)} dFε(e) = Gλ (ū(z) + r) ,

where Gλ (r) =
∫
E maxd∈D {λe+ r(d)} dFε(e). Thus,

Γ̄(v)(z) = Gλ

(
ū(z) + β

∫
Z
v
(
z′
)
dFZ(z′|z)

)
.

Finally, if εt (1) , ..., εt (D) are mutually independent and each elements follows a suitably nor-
malized extreme value distribution, we obtain

∫
RD

max
d∈D
{r(d) + λe(d)}dFε(de) = λ log

∑
d∈D

exp
(
r (d)
λ

) =: Gλ(r), (2.8)

where r = (r (1) , ..., r (D)), c.f. Rust, Traub and Wozniakowski (2002).

3 Simulated Bellman operators

As a first step towards a computationally feasible method for solving for either v or V , we in-
troduce simulated versions of their two Bellman operators, Γ and Γ̄. We first develop simulated
versions of the operators and then introduce their smoothed counterparts. To allow for added
flexibility and precision in the implementation and to cover as special case a modified version
of Rust’s self-approximating solution method, we employ importance sampling: Let ΦZ (z′|z, d)
and Φε (e|z) be conditional importance sampling distribution functions as chosen by the re-
searcher. These have to be chosen such that FZ(·|z, d) and Fε (·|z) are absolutely continuous
w.r.t. ΦZ (·|z, d) and Φε (·|z), respectively, with Radon-Nikodym derivatives wz (·|z, d) ≥ 0 and
wε (·|z) ≥ 0 so that

dFZ(z′|z, d)
dΦZ (z′|z, d) = wZ

(
z′|z, d

)
,
dFε(e|z)
dΦε (e|z) = wε (e|z) , (3.1)

We will throughout assume that eq. (3.1) is satisfied. In the leading case dFZ = fZdµZ and
dΦZ = φZdµZ for some measure µZ in which case wZ = fZ/φZ and similar for the sampling of
εt. The above covers the case where Zt+1|Zt, dt has a continuous distribution (in which case µZ

5

is the Lesbesque measure), a discrete distribution (in which case µZ is the counting measure) and
the mixed case. With discrete finite support, we could in principle compute the exact Bellman
equation and its corresponding solution and so would not need to resort to numerical methods.
But if the discrete support is large this may still be computationally very demanding and so
even in this case the numerical methods developed below may be computationally attractive,
c.f. Arcidiacono, Bayer, Bugni and James (2013).

Given the chosen importance sampler, we can rewrite Γ(V)(z, d) as

Γ(V)(z, d) =
∫
Z

∫
E

max
d′∈D

{
u(s′, d′) + βV (z′, d′)

}
w
(
s′|z, d

)
dΦ(ds′|z, d)

where s′ = (z′, e′) and

w
(
s′|z, d

)
= wε

(
e′|z′

)
wZ

(
z′|z, d

)
, Φ

(
s′|z, d

)
= Φε(e′|z′)ΦZ

(
z′|z, d

)
.

For a given choice of V , we can then approximate this integral by Monte Carlo methods: First
generate N ≥ 1 i.i.d. draws, Zi (z, d) ∼ ΦZ (·|z, d) and εi (z, d) ∼ Φε(·|Zi (z, d)), i = 1, ..., N ,
and then compute

ΓN (V)(z, d) =
N∑
i=1

max
d′∈D

{
u
(
Si (z, d) , d′

)
+ βV

(
Zi (z, d) , d′

)}
wN,i (z, d) , (3.2)

where Si (z, d) = (Zi (z, d) , εi (z, d)) and

wN,i (z, d) = w (Si (z, d) |z, d)∑N
i=1w (Si (z, d) |z, d)

. (3.3)

Note here that we normalize the importance weights so that
∑N
i=1wN,i (z, d) = 1. This is done

to ensure that ΓN is a contraction mapping on B (Z)D. Similarly, we approximate Γ̄ (v) by

Γ̄N (v)(z) =
N∑
j=1

max
d′∈D

{
u(z, εj

(
z, d′

)
, d′) + β

N∑
i=1

v
(
Zi
(
z, d′

))
wZ,N,i

(
z, d′

)}
wε,N,j

(
z, d′

)
, (3.4)

where again we normalize the weights to ensure Γ̄N is a contraction on B (Z),

wZ,N,i (z, d) = wZ (Zi (z, d) |z, d)∑N
i=1wZ (Zi (z, d) |z, d)

, wε,N,i (z, d) = wε (εi (z, d) |z)∑N
i=1wε (εi (z) |z)

.

When εt = ∅, the simulated Bellman operator Γ̄N includes as special cases the ones considered in
Rust (1997b) (who chooses ΦZ as the uniform distribution uniform on Z) and Pal and Stachurski
(2013) (who chooses ΦZ = FZ).

Example 1 (continued). In the additive model, we can compute the integral w.r.t. εt

analytically, c.f. eq. (2.8) and so the the simulated Bellman operator simplifies to

Γ̄N (v)(z) = Gλ

(
ū(z) + β

N∑
i=1

v (Zi (z))wZ,N,i (z)
)
. (3.5)

6

Importantly, the max-function has been replaced by its smoothed version Gλ (·).
If Fε(e|z) and FZ(z′|z, d) are smooth functions w.r.t. z then Γ(V)(z) and Γ̄(v)(z) will be

smooth functions of z as well. In contrast, the general versions of ΓN (V)(z, d) and Γ̄N (v)(z)
are non-smooth due to the presence of the max-function in their definitions which does not get
smoothed for finite N . This in turn implies that their corresponding fixed points, VN (z) =
ΓN (VN) (z) and vN (z) = Γ̄N (vN) (z), will be non-differentiable w.r.t. the state variables, z, and
w.r.t. any underlying structural parameters in the model. This is an unattractive feature for
several reasons: First, estimation and counterfactuals will be non-smooth problems. Second,
the theoretical analysis of VN and vN becomes more complicated.

To resolve this issue, we take inspiration from the additive model in Example 1 and propose
to smooth the simulated Bellman operators by replacing the “hard” max-function appearing in
eqs. (3.2) and (3.4) by the smoothed version Gλ(r) defined in eq. (2.8). We now interpret λ > 0
as a smoothing parameter that plays a role similar to that of the bandwidth in kernel regression
estimation. Elementary calculations show

0 ≤ Gλ (r)−max
d∈D

r (d) ≤ λ logD, (3.6)

so that Gλ (r)→ maxd∈D r (d), as λ→ 0, uniformly in r ∈ RD. Substituting in Gλ(r) yields the
following smoothed simulated operators,

ΓN,λ(V)(z, d) =
N∑
i=1

Gλ (u (Si (z, d)) + βV (Zi (z, d)))wN,i (z, d) , (3.7)

Γ̄N,λ(v)(z) =
N∑
j=1

Gλ

(
u(z, εj (z)) + β

N∑
i=1

v (Zi (z))wZ,N,i (z)
)
wε,N,j (z) , (3.8)

where u(z, εj (z)) = (u(z, εj (z, 1) , 1), ..., u(z, εj (z,D) , D)) and wZ,N,i (z) defined similarly. These
will be employed below to obtain smooth approximations to v and V , respectively. The use of
Gλ(r) in place of maxd∈D r (d) generates an additional bias in the approximate solutions of order
Op (λ) as we shall see in the theory section, but this can be controlled for by suitable choice of
λ.

In Example 1, we saw that Gλ(r) appears in the Bellman operators as a direct implication of
the model specification in which case no smoothing bias will be present. This can be generalized
to the following class of models: Suppose that εt =

(
ε

(1)
t , ε

(−1)
t

)
ε

(1)
t =

(
ε

(1)
t (1) , ..., ε(1)

t (D)
)

enters the per-period utility additively so that the model of interest takes the form

dt = arg max
d∈D

{
u(Zt, ε(−1)

t , d) + λε
(1)
t (d) + βV (Zt)

}
, (3.9)

where as in Example 1 λ > 0 is scale parameter that determines the impact of ε(1)
t (d) on the

utility. By the same arguments as in Example 1, we find that the expected value function in
this case solves Γλ (V) = V where

Γλ(V)(z) =
∫
Z

∫
E
Gλ

(
u(z′, e′)) + βV (z′)

)
dFε(−1)(e′|z)dFZ(z′|z, d),

7

and ΓN,λ in eq. (3.7) is clearly an unbiased simulated version of Γλ. Similarly, Γ̄N,λ is an
unbiased estimator of Γ̄λ. To summarize, if the original model of interest contains an additive
extreme value term, which is the case in many empirical papers, Gλ appears as part of the model
and so no smoothing bias will be present in our proposed simulated Bellman operators.

The above shows that the smoothing device corresponds to adding structural shocks to
the DDP of interest. In earlier work on solving DDPs, researchers have in some case done the
opposite and removed structural errors in order to facilitate the numerical solution of the model;
see Lumsdaine, Stock and Wise (1992) for one example of this. This was, however, done in the
context of discrete state variables with a small number of support points in which case removing
continuous structural errors meant that the Bellman operators could be evaluated analytically.
In our case, the state variables are either continuous or have a very large discrete support in
which case simulations are required in the first place to evaluate the Bellman operator. Once
simulations are introduced, there is little computational gains from removing shocks from the
model and instead introduction of smoothing facilitates solving and analyzing the corresponding
solution.

4 Approximate value functions

The simulated Bellman operators ΓN,λ(V) and Γ̄N,λ(v) in eqs. (3.7)-(3.8) are contraction map-
pings on B (Z)D and B (Z), respectively, and so they have unique fixed points defined as

VN,λ = ΓN,λ(VN,λ), vN,λ = Γ̄N,λ(vN,λ). (4.1)

However, solving these two simulated Bellman equations are not generally feasible since these
are infinite-dimensional problems. We here present two ways to reduce the problems to a finite-
dimensional ones. The first method is a generalized version of the so-called self-approximating
method proposed in Rust (1997b) while the second one uses projection-based methods as advo-
cated by Pal and Stachurski, 2013.

4.1 Self-approximating method

Rust (1997b) proposed to turn the infinite-dimensional problems in eq. (4.1) into a finite-
dimensional ones by choosing the importance sampling to be based on marginal, instead of
conditional distributions. In our generalized version this corresponds to restricting ΦZ (z′|z, d) =
ΦZ (z′) for some marginal distribution ΦZ (·) so that the draws Zi ∼ Φz (·) and εi ∼ Φε(·|Zi),
i = 1, ..., N no longer depend on (z, d). In this case, the fixed-point problems in eq. (4.1) reduce
to the following two sets of N nonlinear equations,

VN,λ,k =
N∑
i=1

Gλ (u (Si) + βVN,λ,i)wN,i (Zk) , (4.2)

vN,λ,k =
N∑
j=1

Gλ

(
u(Zk, εj) + β

N∑
i=1

vN,λ,iwz,N,i (Zk)
)
wε,N,j (Zk) , (4.3)

8

for k = 1, ..., N , w.r.t. {VN,λ,k : k = 1, ..., N} and {vN,λ,k : k = 1, ..., N}, respectively. Here,
VN,λ,k = VN,λ (Zk) and vN,λ,k = vN,λ (Zk), k = 1, ..., N . Each of the two sets of equations have a
unique solution due to the contracting property of ΓN,λ and Γ̄N,λ. Once, for example, eq. (4.2)
has been solved, the approximate expected value functions can be evaluated at any other value
z by

VN,λ (z) =
N∑
i=1

Gλ (u (Si) + βVN,λ,i)wN,i (z) .

Note that VN,λ (z) is a smooth function even if λ = 0 as long as wN,i (z) is smooth and so
smoothing is not needed for this property to hold when marginal samplers are employed. How-
ever, without smoothing, the set of equations (4.2) become non-smooth w.r.t. the variables
{VN,λ,k : k = 1, ..., N} and so cannot be solved using derivative-based methods. Thus, the nu-
merical implementation of the self-approximating method still benefits from smoothing.

In addition to smoothing, the above self-approximating method differs from Rust’s original
proposal in two other ways: First, while Rust (1997b) solved for the value function ν (z, ε), we
here solve for either V (z) or v (z). As explained earlier, the latter are the more relevant ones in
most applications. Moreover, our formulation allows for the following generalized version of the
simulated Bellman equations for vN,λ,

vN,λ,k =
Ñ∑
j=1

Gλ

(
u(Zk, εj) + β

N∑
i=1

vN,λ,iwz,N,i (Zk)
)
wε,N,j (Zk) , (4.4)

where we allow for different number of draws from Φε (Ñ) and ΦZ (N). In particular, we can
choose Ñ as large as we wish (thereby decreasing the variance of the problem) without increasing
the number of variables that need to be solved for (N). A similar generalization of the simulated
Bellman equations for VN,λ is possible. Second, we here only require that the state dynamics
together with the chosen importance sampler satisfy (3.1); in contrast, Rust (1997b) assumed
that St was continuously distributed with compact support and chose as importance sampler the
uniform distribution with same support. Thus, our version allows for a broader class of models
and samplers.

The self-approximating method may not always work well: First, finding a marginal dis-
tribution ΦZ (·) so that (3.1) holds can be difficult in some models. For example, in many
specifications with continuous dynamics, the transition density fZ (z′|z, d) of Zt will have sin-
gularities, e.g., limz′→z fZ (z′|z, d) = +∞, in which case there does not exist a marginal density
φZ (z′) so that wZ (z′|z, d) = fZ (z′|z, d) /φZ (z′) is well-defined. And if wZ (z′|z, d) is not well-
defined, the corresponding importance sampler is inconsistent. And even if (3.1) does hold,
the use of marginal samplers instead of conditional ones will generally lead to a larger variance
of the solutions since the “marginal” draws Z1, ..., ZN do not adapt to the changing shape of
FZ (·|z, d) as a function of z. In particular, many of the draws may fall outside of the support
of FZ (·|z, d) and so are “wasted” in which case a large N is required to achieve a reasonable
approximation; see Section 6 for an example of this. This issue tends to become more severe in
higher-dimensions (when dz is large) since the volume of the support shrinks, and so the self-
approximating method will generally suffer from a built-in curse-of-dimensionality; see Section
6 for an example of this. This curse-of-dimensionality does not appear in the subclass of models

9

that Rust (1997b) focused on where it was assumed that St|St−1, dt−1 has support [0, 1]dim(St)

for all values of St−1, dt−1.
Finally, given that VN,λ and vN,λ are solutions to non-linear equations, a large variance in the

simulated Bellman operator translates into a large bias as is well-known from non-linear GMM
estimators. This can be controlled for by choosing N large. But large N means that numerically
solving either (4.2) or (4.3) becomes computationally very costly. These issues motivate us to
pursue a sieve-based solution strategy.

4.2 Sieve-based method

We now return to the general versions of the simulated Bellman operators and so again al-
low for conditional importance samplers. Let V̄ ⊆ B (Z) be a suitable function space that
vN,λ defined in (4.1) is known to lie in; see below for more details on this. We then choose
a finite-dimensional function space (commonly called a sieve in the econometrics literature)
V̄K = {vK (·;α) : Z 7→ R|α ∈ AK} ⊆ V̄, where AK ⊆ RK is a parameter set with K < ∞,
that provides a good approximation to functions in V̄. Similarly, we let V ⊆ B (Z)D be
a space of D-dimensional vector functions that the solution VN,λ to (4.1) lie in and VK ={
VK (·;α) : Z 7→ RD|α ∈ AK

}
⊆ V be our sieve for this space. Let

Π̄K (v) = arg min
v′∈V̄K

∥∥v − v′∥∥V̄ , ΠK (V) = arg min
V ′∈VK

∥∥V − V ′∥∥V , (4.5)

be the corresponding projections for given (pseudo-) norms ‖·‖V̄ and ‖·‖V as chosen by us as
well. We then approximate VN,λ and vN,λ by the solutions to the projected Bellman equations,

v̂N,λ = arg min
v∈V̄K

∥∥∥v − Π̄K Γ̄N,λ(v)
∥∥∥
V̄
, V̂N,λ = arg min

V ∈VK
‖V −ΠKΓN,λ(V)‖V . (4.6)

These are finite-dimensional problems of size K. When K is small relative to N , which will gen-
erally be the case, the above problems are computationally much more tractable compared to the
corresponding self-approximating ones. Note here that these projection-based approximations
are different from the least-squares approximations that would solve minV ∈VK ‖V − ΓN,λ(V)‖V
and minv∈V̄K

∥∥∥v − Γ̄N,λ(v)
∥∥∥
V̄
, respectively. In particular, by suitable choice of the projection op-

erators, ΠKΓN,λ and Π̄K Γ̄N,λ will be contraction mappings w.r.t. ‖·‖∞ guaranteeing that V̂N,λ
and v̂N,λ exist and are unique. The following discussion focuses on the integrated value function
approximation since it carries over with only minor modifications to the one of the expected
value function. We discuss their numerical implementation in further detail in the subsection
below.

The projection operator Π̄K can be thought of as a function approximator with the approx-
imation error being v − Π̄K (v) for a given function v. Roughly speaking, the projection-based
method approximates vN,λ by v̂N,λ = Π̄K (vN,λ) which incurs an additional sieve approximation
error, vN,λ − Π̄K (vN,λ). The smoothness of vN,λ here proves helpful since many well-known
sieves are able to provide good approximations of smooth functions using a low-dimensional
space (K is small). Due to these features, our proposed projection-based solutions will generally
suffer from quite small additional biases relative to the exact simulated solution. This is in
contrast to existing projection-based solution methods, such as the one in Pal and Stachurski

10

(2013), that aim at approximating the value function ν (s) which is non-differentiable.
The smoothness of vN,λ here help guiding us in choosing the sieve: It allows us to re-

strict V̄ to a suitable smoothness class and then import existing approximation methods for
smooth functions as developed in the literature on numerical methods and nonparametric econo-
metrics. A leading example is the class of linear function approximations where the finite-
dimensional function space takes the form of V̄K =

{
α′BK (z) : α ∈ RK

}
for a set of basis

functions BK (z) = {bk (z) : k = 1, ...,K}. The basis functions can be chosen as, for exam-
ple, Chebyshev interpolation and B-splines that are able to approximate smooth functions well.
However, other non-linear function space are possible such as wavelets, artificial neural networks
and shrinkage-type function approximators such as LASSO, where the additional constraints are
imposed on α; we refer to Chen, 2007 for a general overview of different function approximators
and constrained sieve estimators. We also allow for flexibility in terms of the chosen norms ‖·‖V̄
with a leading example being ‖v‖V̄ =

∑M
i=1 v

2 (zi) for a set of design points z1, ..., zM ∈ Z. Very
often the M ≥ 1 design points will be chosen in conjunction with the sieve.

The above procedure does not suffer from any of the above mentioned issues of the self-
approximating method: We can use conditional importance samplers freely which can be de-
signed to control the variance of the simulated Bellman operators; and the dimension of the
problem remains K irrespectively of the number of draws N . The main drawback is that unique
solutions to eqs. (4.6) do not necessarily exist for a given choice of N and K. A sufficient condi-
tion for this to hold is that Π̄K is a non-expansive operator w.r.t ‖·‖∞,

∥∥∥Π̄K (v1)− Π̄K (v2)
∥∥∥
∞
≤

‖v1 − v2‖∞ since this translates into Π̄KΓN,λ being a contraction mapping. However, while, by
definition, Π̄K is non-expansive w.r.t. ‖·‖V , it is not necessarily non-expansiveness w.r.t ‖·‖∞.
Pal and Stachurski (2013) provide some examples of projections that are non-expansive w.r.t.
‖·‖∞, but these are unfortunately computationally expensive to use in general. But Π̄K will
generally be close to non-expansive w.r.t ‖·‖∞ asymptotically as K → ∞ for a wide range of
sieves and pseudo-norms since∥∥∥Π̄K

∥∥∥
op,∞

:= sup
v∈V̄,‖v‖=1

∥∥∥Π̄K (v)
∥∥∥
∞
≤ sup

v∈V̄,‖v‖=1

∥∥∥Π̄K (v)− v
∥∥∥
∞

+ 1,

where the first term in the last expression will go to zero in great generality as K →∞ for many
popular sieves (see next subsection for details). Given that Γ̄N,λ is a contraction with Lipschitz
coefficient β < 1, this in turn implies that Π̄K Γ̄N,λ will be a contraction mapping for all K large
enough. This will be used in our asymptotic analysis of the algorithm. The above argument is
not completely satisfactory in practice since it does not say how large K should be chosen to
ensure non-expansiveness of Π̄K Γ̄N,λ. But in our numerical experiments we generally did not
experience any such issues.

4.3 Numerical implementation of the two methods

We here discuss in more detail the numerical implementation of the self-approximating and
projection-based methods. As before, we here focus on solving for the integrated value function
since most results and arguments for this case carries over with very minor modifications to the
expected value function. First, the researcher has to choose the importance sampling distribu-

11

tions, the smoothing parameter λ and, in the case of the projection-based method, the function
approximation method. Second, given these choices, either eq. (4.3) or (4.6) has to be solved
for.

4.3.1 Importance sampler

The choices of ΦZ and Φε determine the variance of the Γ̄N,λ and should ideally be tailored
to minimize it. In the case of projection-based methods, where we can choose ΦZ and Φε as
conditional distributions, we can rely on the already existing theory for efficient importance
sampling for how to do so; see Chapter 3 in Robert and Casella, 2013 for an introduction. In
our numerical experiments, we did not experiment with different choices and throughout set
ΦZ = FZ and Φε = Fε.

In the case of the self-approximating method, the choice of ΦZ is restricted to the class of
marginal distributions. Generally, this entails a large variance of the corresponding simulated
Bellman operators. It will hold in great generality that (Zt, dt) has a stationary distribution, say,
F ∗Z (z, d). In this case, a suitable choice would be the marginal of this, ΦZ (z) =

∑
d∈D F

∗
Z (z, d).

However, the stationary distribution depends on the value function and so is rarely available on
closed form; so this strategy requires an initial solution and exploration of the model. Alterna-
tively, one can try to construct a good approximation of the stationary approximation through
a mixture Markov model on the form ΦZ (z′) =

∑
d∈D

∫
ωd (z)FZ (z′|z, d) dµZ (z) for a set of

pre-specified mixture weights ωd (z) ≥ 0. In the numerical experiments, we follow Rust (1997b)
and choose ΦZ (z) as the uniform distribution on Z which we conjecture is far from optimal in
many cases, and so more research in this direction is needed.

4.3.2 Smoothing

The use of Gλ (r) in place of maxd∈D r (d) generally generates an additional bias in the cor-
responding integrated value function of order O (λ). At the same time, the variance of vN,λ
is an increasing function of λ. Thus, ideally we would like to choose λ to balance these two
effects. A natural criterion would be to minimize the so-called integrated mean-square-error,
λ∗ = arg minλ≥0E

[∫
Z ‖vN,λ (z)− v (z)‖2 dFZ (z)

]
, where FZ (z) is a suitably chosen distribution

such as the stationary one of Zt. Since v (z) is unknown and we cannot evaluate the expecta-
tions, λ∗ cannot be solved for but cross-validation methods can be used instead. This could
in principle be done along the same lines as bandwidth selection for smoothed empirical cdfs,
see Bowman, Hall and Prvan (1998). However, this is computationally somewhat burdensome.
Moreover, in our numerical experiments we found that the quality of the approximate value
function was quite insensitive to the choice of λ and so in practice we recommend using very
little smoothing such as λ = 0.01.

4.3.3 Function approximation

As mentioned earlier, many approximation architectures are available in the literature. In our
numerical experiments we focus on the class of linear function approximators where V̄K ={
α′BK (z) : α ∈ RK

}
for a set of pre-specified basis functions BK (z) ∈ RK . For a given set of

12

M ≥ 1 design points in Z, z1, ..., zM , eq. (4.5) then becomes

Π̄K (v) (z) = BK (z)′
[
M∑
i=1

BK (zi)BK (zi)′
]−1 M∑

i=1
BK (zi) v (zi) . (4.7)

The design points may either be random or deterministic and can be chosen relative to the
basis functions to ensure that Π̄K is easy to compute and provides a good approximation for a
broad class of functions. The performance of most function approximations will depend on the
smoothness of the function of interest. Due to smoothing, vN,λ will be s ≥ 1 times differentiable
if u and FZ are s times differentiable (see Theorem 1). Let Cs (Z) denote the space of s ≥ 0
times continuously differentiable functions on the domain Z; we may then choose V̄ as

V̄s,r = {v ∈ Cs (Z) : ‖v‖s,∞ < r}, (4.8)

for some r <∞ where, with α = (α1, ..., αdz) ∈ Ndz0 ,

‖v‖s,∞ = sup
|α|≤s

‖Dαv‖∞, Dαv (z) = ∂α1+···+αdz v (z)
∂α1 · · · ∂αdz

. (4.9)

We can now employ existing results for approximating functions in V̄s,r to control the error due
to projection:

Example 2. Polynomial interpolation using tensor products. Suppose we use Jth order Cheby-
shev interpolation with M ≥ J nodes in each of the dz dimensions, or a Jth order B-spline
interpolation with M ≥ J number of nodes in each of the dz dimensions (see Appendix D for
their precise expressions). Let p1, ..., pJ denote the J polynomials; we then have

BK (z) =
{
pj1 (z1) · · · pjdz (zdz) : j1, ..., jdz = 1, ..., J

}
,

which is of dimension K = Jdz . Choosing J ≥ s, where s ≥ 1 denotes the number of derivatives
of v (z) both interpolation schemes satisfy, for any radius r <∞,

sup
v∈V̄s,r

∥∥∥Π̄K (v)− v
∥∥∥
∞

= O

(log (J)
Js+1

)
= O

(log (K)
K(s+1)/d

)
;

see p.14 in Rivlin (1990) for Chebyshev interpolation and Schumaker (2007) for B-splines.

As can be seen from the above example, standard polynomial tensor product approximations
suffer from the well-known computational curse of dimensionality: To reach a given level of error
tolerance, the total number of basis functions K has to grow exponentially as dz increases. This
issue can be partially resolved by using more advanced function approximation methods:

Example 3. Interpolation with sparse grids. Instead of using tensor-product basis functions
to approximate a given function, where the total number of basis function and interpolation
points will have to grow exponentially with dz to control the approximation error, one can
instead use so-called Smolyak sparse grids; see, e.g., Judd, Maliar, Maliar and Valero (2014) and
Brumm and Scheidegger (2017). Using these, the number of grid points needed to obtain a given

13

error tolerance are reduced from O
(
MdZ

)
to O

(
M (logM)dz

)
with only slightly deteriorated

accuracy.

Example 4. Variable selection, shape constraints, shrinkage estimators, and machine learn-
ing. An alternative way of breaking the curse of dimensionality is to select the basis functions
judiciously. This could, for example, be done using standard variable selection methods; one
example of this approach can be found in Chen (1999). Alternatively, one can in some cases
show that the value functions satisfy certain shape constraints that can then be imposed on , for
example, Cai and Judd (2013). Other automated selection methods include shrinkage methods
where a penalization term is added to the least-squares criterion. Again this leads to a more
sparse representation which is able to break the curse-of-dimensionality. Finally, machine learn-
ing algorithms, such as neural networks, can be employed to obtain good approximations of the
value function that suffer from only a moderate curse-of-dimensionality; see, for example, Chen
and White (1999).

As noted earlier, there is no guarantee that a given function approximator is non-expansive.
But this can, in principle, be checked for a given choice. For the least-squares projection, this
amounts to solving, for a given choice of basis functions and grid points,

∥∥∥Π̄K

∥∥∥
op,∞

= sup
v∈RM ,‖v‖=1

sup
z∈Z

∣∣∣∣∣∣BK (z)′
[
M∑
i=1

BK (zi)BK (zi)′
]−1 M∑

i=1
BK (zi) vi

∣∣∣∣∣∣ . (4.10)

When M and/or dimZ is large this may be computationally demanding and instead one can
obtain a lower bound by restricting z to only take values on the chosen set of grid points: With
BK,M ∈ RK×Mcontaining the basis functions evaluated at the grid points, we can represent Π̄K

when only evaluated at chosen grid points z1,, zM in terms of

PK,M = B′K,M
[
BK,MB′K,M

]−1
BK,M ∈ RM×M .

In particular, it is easily checked that with the supremum in (4.10) being only taken over
z ∈ {z1, ..., zM},

∥∥∥Π̄K

∥∥∥
op,∞

= ‖PK,M‖op,∞. Furthermore, ‖PK,M‖op,∞ ≤ 1 if and only if

max
i=1,...,M

M∑
j=1
|pij | ≤ 1,

where pij is the (i, j)th element of P, c.f. Lizotte (2011).

4.3.4 Solving for the approximate value functions

Computing the simulated self-approximating solution or the projection-based one can be done
using three different numerical algorithms: Successive approximation (SA), Newton-Kantorovich
(NK), or a combination of the two. The latter corresponds to the hybrid solution method
proposed in Rust (1988). We here discuss the implementation of these algorithms with focus
on the sieve-based approximation of v; the implementations of the sieve approximation of V
and the self-approximating solutions of either of the two follow along the same lines. The main

14

difference between solving for V or v is that the latter involves smaller computational burden
since it is a scalar function while the former is a D-dimensional vector function.

SA utilizes that (for K chosen large enough), Π̄K Γ̄N,λ, is a contraction mapping which
guarantees that the following algorithm will converge towards the solution to (4.2),

v̂
(k)
N,λ = Π̄K Γ̄N,λ(v̂(k−1)

N,λ), (4.11)

for k = 1, 2, ..., given some initial guess v̂(0)
N,λ. In the leading case of (4.7), this can be expressed

as a sequence of least-squares problems that are easily computed: v̂(k)
N,λ (z) = α̂′kBK (z) where

α̂k =
[
M∑
i=1

BK (zi)BK (zi)′
]−1 M∑

i=1
BK (zi) Γ̄N,λ(α̂′k−1BK) (zi)′ ∈ RK ,

for k = 1, 2, ..., given some initial guess α̂0. In the case where εt = ∅ or when the model is on
the form eq. (3.9) with ε(1

t being extreme-valued distributed and ε(−1)
t = ∅,

Γ̄N,λ(α′BK)(zi) = Gλ

u (z) + βα′
N∑
j=1

BK (Zj (zi))wZ,N,j (zi)

 ,
and so

∑N
j=1BK (Zj (zi))wz,N,j (zi), i = 1, ...,M, only need to be computed once and then

recycled in each iteration; in contrast, the simulated averages appearing in ΓN (α̂′k−1BK) (zi),
i = 1, ...,M , have to be recomputed in each step of the SA algorithm. Thus, in this special
case, it is faster to (approximately) solve for vN,λ instead of VN,λ. While SA is guaranteed to
converge globally when Π̄K Γ̄N,λ is a contraction, the rate of convergence will be slow with the
error vanishing at rate βk,

∥∥∥v̂(k)
N,λ − vN,λ

∥∥∥
∞
≤ βk (1 + β)

1− β

∥∥∥v̂(0)
N,λ − vN,λ

∥∥∥
∞
. (4.12)

To speed up convergence, we therefore follow Rust (1988) and combine SA with NK iterations
since NK converges with a quadratic rate once a given guess of the value function is close enough
to the fixed point. Moreover, in situations where Π̄K Γ̄N,λ is expansive, NK is still guaranteed
to converge locally. Since both the self-approximating and sieve-based methods solve finite-
dimensional problems, the NK algorithm for these are equivalent to Newton’s method. First
consider the sieve-based method where we focus on the least-squares projection as given in (4.7).
We are then seeking α̂ solving the following K equations,

S̄N,K (α) = 0,

with

S̄N,K (α) = α−
[
M∑
i=1

BK (zi)BK (zi)′
]−1 M∑

i=1
BK (zi) Γ̄N,λ

(
α′BK

)
(zi) .

The corresponding derivatives of the left-hand side as a function w.r.t. α can be expressed in

15

terms of the Hadamard differential of Γ̄N,λ w.r.t. v,

∇Γ̄N,λ(v) [m] (z) = β
∑
d∈D

N∑
j=1

Ġd,λ

(
u (z, εj (z)) + β

N∑
i=1

v (Zi (z))wZ,N,i (z)
)

×
(

N∑
k=1

dm (Zk (z, d))wZ,N,k (z, d)
)
wε,N,j (z) ,

where m : Z 7→ R is the direction and

Ġd,λ(r) = ∂Gλ(r)
∂r (d) =

exp
(
r(d)
λ

)
∑
d′∈D exp

(
r(d′)
λ

) .
The partial derivatives of S̄N,K (α) then becomes

H̄N,K (α) = IK −
[
M∑
i=1

BK (zi)BK (zi)′
]−1 M∑

i=1
BK (zi)∇Γ̄N,λ

(
α′BK

)
[BK] (zi)′ ∈ RK×K .

With these definitions, the NK algorithm takes the form

α̂k = α̂k−1 − H̄−1
N,K (α̂k−1) S̄N,K (α̂k−1) .

The NK algorithm for the self-approximating method is on the same form, except that we
now solve directly for the value function at the N draws. With slight abuse of notation, let
vN = {vN,λ (Zk) : k = 1, ..., N} be the vector of integrated values across the set of draws solving
S̄N (vN) = 0 where

S̄N,k (vN) = vN,k −
N∑
j=1

Gλ

(
u(Zk, εj) + β

N∑
i=1

vN,iwz,N,i (Zk)
)
wε,N,j (Zk) , (4.13)

for k = 1, ..., N . The corresponding derivatives is H̄N (α) =
(
H̄N,1 (α) , ..., H̄N,N (α)

)′
∈ RN×N

where, with 1N = (1, ..., 1)′ ∈ RN ,

H̄N,k (α) = IN −∇Γ̄N,λ (vN) [1N] (zk) ∈ RN .

Finally, we note that the NK algorithm for the expected value function takes a similar form with
the functional differential of ΓN,λ given by

∇ΓN,λ(V) [M] (z) = β
∑
d∈D

N∑
i=1

Ġd,λ (u (Si (z, d)) + βV (Zi (z, d)))M (Zi (z, d))wN,i (z, d) .

(4.14)
Comparing the NK algorithm for the self-approximating and the sieve-based method, we note

that the former involves inverting a N ×N -matrix while the latter a K×K-matrix. As pointed
out earlier, the self-approximating method generally needs N to be chosen quite large to achieve
a precise simulated version of the Bellman operator, in particular in higher dimensions, and so
the NK algorithm for this method may become numerically infeasible in some cases. While the

16

projection-based method also suffers from a curse of dimensionality, since the number of basis
functions, K, has to be quite large in higher dimensions to achieve a reasonable approximation,
it is less severe and is implementable for higher-dimensional models. If more advanced function
approximation methods are employed, even better performance can be achieved.

5 Theory

We here develop an asymptotic theory for the self-approximating and sieve-based methods.
We first establish some important properties of the simulated Bellman operators and their
exact solutions, vN,λ and VN,λ. These are then used in the asymptotic analysis of the self-
approximating solution method and the sieve-based one. This analysis will rely on two general
results for estimated solutions to fixed point problems as stated in Theorems A.1 and A.2 in the
appendix. The asymptotic analysis will mostly focus on VN,λ and V̂N,λ since our results for these
easily translate into similar results for the approximate integrated value function. For example,
vN,λ(z) = MN,λ,u(βVN,λ (z) |z), where

MN,λ,u (r|z) =
N∑
j=1

Gλ (u(z, εj (z)) + r)wε,N,j (z) ,

and so the asymptotic results for VN,λ in conjunction with the functional Delta method can be
used to obtain similar results for vN,λ.

Here, and in the following, we let Vλ be the solution to Vλ =Γλ (Vλ), where

Γλ(V)(z) =
∫
Z

∫
E
Gλ

(
u(z′, e′) + βV (z′)

)
dFε(de|z)dFz(dz′|z, d)

is the smoothed Bellman operator. In particular, V0 denotes the solution to the non-smoothed
version (λ = 0), V0 = Γ (V0). Similarly, vλ denotes the exact solution to the smoothed version,
Γ̄λ, of Γ̄. Without loss of generality, we assume that the draws can be written as

Zi (z) = ψz (z, Ui) ∈ Z, εi (z) = ψε (z, Ui) ∈ E , (5.1)

where Ui ∼ FU , i = 1, ..., N , for some distribution FU and some functions ψz and ψε. We then
impose the following regularity conditions on the model and chosen importance sampler:

Assumption 1. (i) The supports Z and E are bounded, convex sets; sup(z,e)∈Z×E |u(z, e)| <∞
and, for any bounded function b (z, e),

sup
(z,e)∈Z×E

∫
Z

∫
E
|b (z, e)| dFε(de|z)dFz(dz′|z, d) <∞.

(ii) u (z, e), ψz (z, u), ψε (z, u), wz (z, u), wε (z, u) are Lipschitz uniformly in (z, e) ∈ Z × E.

Assumption 2. The functions u (z, e), wz (z′|z), wε (e|z), ψz (z, u) and ψε (z, u) are s times
continuously differentiable w.r.t. (z′, z) for some s ≥ 0.

Assumption 1(i) entails that both the exact and simulated Bellman operators map bounded
functions into bounded functions and so ensure that the corresponding fixed points are bounded

17

functions. Many of the results generalize to the case of unbounded state space but then condi-
tions and arguments would have to be re-written. For example, to allow for unbounded Z, the
existence of unique fixed points require additional moment conditions and would be based on
a weighted sup-norm, see, e.g., Norets, 2010. Similarly, we will employ results from empirical
process theory; without the compactness assumption we would need to use bracketing condi-
tions with weighted norms and impose suitable moment conditions, see Section 2.10.4 in van der
Vaart and Wellner, 1996. Assumption 1(ii) is used to show uniform convergence of the simulated
Bellman operator; it is automatically satisfied when Z × E is finite.

Assumption 2 impose weak smoothness conditions on the model and the chosen samplers.
While the focus is on models with continuous state variables our theory also covers models with
discrete state space. If the model of interest has discrete state space, all smoothness conditions,
incl. Assumption 1, can be ignored. The only point where the discrete and continuous case differ
is in terms of the approximation quality of the projection operator: As soon as M is greater
than the cardinality of Z,the approximation error will be zero. We first establish existence and
uniqueness of the (generally) infeasible simulated solutions and show that they are smooth; the
latter property will allow us to control the approximation error due to the use of projections
when the state space is continuous.

Theorem 1. Under Assumption 1, for all λ ≥ 0 and all N ≥ 1, the operators (Γλ,ΓN,λ)
and

(
Γ̄λ, Γ̄N,λ

)
are almost surely contraction mappings on B (Z)D and B (Z), respectively. In

particular, the solutions VN,λ and vN,λ to the simulated Bellman equations (4.1) exist and are
unique. If in addition Assumption 2 holds, then Vλ (z), , VN,λ (z), vλ (z) and vN,λ (z) are s ≥ 0
times continuously differentiable w.r.t. z for any λ > 0.

Next, we show that the bias due to smoothing vanishes with rate λ:

Theorem 2. Under Assumption 1, the following hold: ‖Vλ − V0‖∞ = O (λ) and ‖VN,λ − VN‖∞ =
OP (λ) for any given N ≥ 1.

These two results show that the smoothing can be controlled for by suitable choice of λ
both asymptotically (N = +∞) and for any finite number of simulations (N < ∞). Also note
that these result hold independently of the smoothness properties of the unsmoothed exact
and simulated solutions. In the following, we analyze the error due to simulations, VN,λ − Vλ,
uniformly in λ. This error analysis will then be combined with Theorem 2 to obtain the full
error that also accounts for the smoothing bias.

5.1 Self-approximating method

In this section, we provide an analysis of VN,λ allowing for general importance samplers. As a
special case, we obtain an asymptotic theory for the self-approximating solution method (where
Φz (z′|z, d) is restricted to be marginal distribution). The general results will then in turn be
used in the analysis of the corresponding sieve-based methods in the next section. First, we
obtain the convergence rates of the simulated version of the expected value function:

Theorem 3. Suppose that Assumption 1 holds. Then VN,λ solving ΓN,λ(VN,λ) = VN,λ satisfies
supλ∈[0,λ̄] ‖VN,λ − Vλ‖∞ = Op(1/

√
N) for any λ̄ > 0. If furthermore Assumption 2 holds with

s ≥ 1, then supλ∈(0,λ̄) ‖∂VN,λ/ (∂z)− ∂Vλ/ (∂z) ‖∞ = OP
(
1/
√
N)
)
.

18

The first part of this theorem covers models with both continuous, discrete and deterministic
components and is analogous to results in Rust (1997b) and Pal and Stachurski (2013) who also
show

√
N -convergence of their value function approximation. The second part is new and utilizes

the smoothness of our problem; this requires Assumption 2 and so rules out discrete components.
Importantly, the two convergence results hold uniformly over the smoothing parameter λ and
so there is no first-order effect from smoothing. In particular, if λ satisfies

√
Nλ → 0, then

Theorems 2 and 3 yield ‖VN,λ− V ‖∞ = Op(1/
√
N). This is similar to convergence of smoothed

empirical cdf where the indicator function is replaced by a smoothed version; this also does not
affect the convergence rate as long as the smoothing bias controlled for. However, we conjecture
that the higher-order derivatives of VN,λ (z) will not converge with OP

(
1/
√
N)
)
because these

correspond to ill-posed problems.
The above result is then in turn used to derive the asymptotic distribution of VN,λ (z) uni-

formly in (z, λ) ∈ Z ×
(
0, λ̄

)
. Here, the smoothing proves important since it allows us to

generalise the standard arguments used in the analysis of finite-dimensional extremum estima-
tors to our setting. We can expand the “first-order condition”, VN,λ − ΓN,λ(VN,λ) = 0, around
Vλ = Γλ(Vλ) to obtain, with ∇ΓN,λ was defined in (4.14).

0 = Γλ(Vλ)− ΓN,λ(Vλ) + {I −∇ΓN,λ(Vλ)} [VN,λ − Vλ] + oP
(
1/
√
N
)
,

Employing empirical process theory, we show that
√
N {Γλ(Vλ)− ΓN,λ(Vλ)} G in B

(
Z ×

(
0, λ̄

))D
for a Gaussian process G (z, λ), while the limit of dV 7→ {I −∇ΓN,λ(Vλ)} [dV] has a continuous
inverse. We conclude:

Theorem 4. Suppose that Assumption 1 hold together with either Z being finite or Assump-
tion2 with s ≥ 1. Then,

√
N{VN,λ − Vλ} GV on B

(
Z ×

(
0, λ̄

))D
where GV (z, λ) =

{I −∇ΓN,λ(Vλ)}−1 [G] (z) is a D-dimensional Gaussian process. Here, G has covariance kernel

Ω (z1, λ1, z2, λ2) = EU
[
gi (z1, λ1) gi (z2, λ2)′

]
,

gi (z, λ, d) = {Gλ (u (Si (z, d)) + βVλ (Zi (z, d)))wi (z, d)− Γλ(Vλ)}wi (z, d) ,

The above result implies, for example, that for any given z, VN,λ (z) ∼ N (Vλ (z) ,Ω (z, λ, z, λ) /N)
asymptotically as N → ∞. Thus, it allows us to construct (pointwise or uniform) confidence
bands for the expected value function. We expect that the result will also be useful in analyzing
the impact of value function approximation when used in estimation. This could be done by
combining the above weak convergence result with, e.g., the results for approximate estimators
found in Kristensen and Salanie (2017).

We conjecture that a similar convergence result will hold for the non-smoothed value function
approximation. However, the proof of such a result would require different tools and stronger
assumptions. In particular, the current proof only requires the following empirical process
(z, λ) 7→ ΓN,λ(Vλ) (z) to converge weakly. To allow for non-smooth value function approximation
(λ = 0), our proof would have to be modified and we expect we would now require that the
empirical process (V, z) 7→ ΓN (V) (z) converges weakly. For this to hold, we would need to
be able to find a suitable function set that the estimated non-smooth solution, VN , would be

19

situated in and then verify that the entropy of this function set is well-behaved. Standard choices
of function sets are smooth classes, but VN is non-smooth and so the proof would be much more
delicate.

Finally, for a complete analysis that takes into account the smoothing bias, state the following
corollary to Theorem 4: For any λ = λN → 0 such that λ

√
N → 0,

√
N{VN,λ − V0} GV .

5.2 Sieve-based approximation of value functions

We here analyze the asymptotic properties of the sieve-based approximate value function, V̂N,λ.
To this end, we use the following decomposition of the over-all error,

V̂N,λ − Vλ =
{
V̂N,λ − VN,λ

}
+ {VN,λ − Vλ} ,

where the second term converges weakly towards a Gaussian process, c.f. Theorem 4. What
remains is to control the first term which is due to the sieve approximation; this is done by
imposing the following high-level assumption on the projection operator when applied to the
function set Vs,r = V̄Ds,r where V̄s,r was defined in (4.8):

Assumption 3. The projection operator ΠK satisfies supV ∈Vs,r ‖ΠK (V)− V ‖∞ = OP (ρK),
for some sequence ρK → 0, where s ≥ 0 was given in Assumption 2 and r ≥ ‖Vλ‖s,∞ .

This is a high-level condition that requires the chosen function approximation method to
have a uniform error rate over the function class Vs,r. It allows for most known function approx-
imations. As a particular example, we showed in Section 4.3 that ρK = log (K) /K(s+1)/d for any
value of r < ∞ when polynomials are employed. Compared to results on sieve approximations
of value functions found elsewhere in the literature, ours is weaker since we are here allowed
to restrict attention to the smooth function class Vs,r. In contrast, sieve-based approximations
developed in other papers, such as Munos and Szepesvari (2008) and Pal and Stachurski (2013),
will tend suffer from bigger biases since the underlying value function being approximated is
at most Lipschitz. In the case of Z being discrete, we have supV ∈Vs,r ‖ΠK (V)− V ‖∞ = 0 for
K > |Z| under great generality and so there will be no asymptotic bias component due to sieve
approximations in this case.

Theorem A.1 together with the fact that ΓN,λ(Vλ) − Γλ(Vλ) = OP
(
1/
√
N
)
, c.f. Proof of

Theorem 3, now yield the following result:

Theorem 5. Suppose that Assumptions 1 and 3 hold. Then V̂N,λ, defined as the solution to
ΠKΓN,λ(V̂N,λ) = V̂N,λ, satisfies supλ∈(0,λ̄) ‖V̂N,λ − Vλ‖∞ = Op(1/

√
N) + OP (ρK). Suppose in

addition that either Z is finite or Assumption 2 holds with s ≥ 1. Then, if
√
NρK → 0,

√
N{V̂N,λ − Vλ} =

√
N{VN,λ − Vλ}+ oP (1) GV .

The discussions following Theorems 3 and 4 carry over to the above result. In particular,
the rate result still goes through when no smoothing is employed (λ = 0) but the current
proof of the asymptotic distribution result requires smoothing (λ > 0). Compared to the rate

20

results for VN,λ, the projection-based method suffers from an additional error due to the sieve
approximation, OP (ρK). This can be interpreted as a bias term, while Op(1/

√
N) is its variance

component which is shared with VN,λ. The requirement that
√
NρK → 0 is used to kill the sieve

bias term so that V̂N,λ is centered around Vλ.
The above result provides a refinement over existing results where a precise rate for the bias

is not available; see, e.g., Lemma 5.2 in Pal and Stachurski (2013). This result also shows that
there is an inherent computational curse-of-dimensionality built into our projection-based value
function approximation when polynomial interpolation is employed: In high-dimensional models,
a large number of basis functions are needed which in turn increases the computational effort. In
the case of polynomial approximations, the rate condition becomes

√
N log (K) /K(s+1)/d → 0

and so, as d increases, we need K to increase faster with N to kill the sieve bias component.
However, also note that K as no first-order effect on the variance and so there is no bias-
variance trade-off present. In particular, we can let K increase with N as fast as we wish and
so our procedure should in principle also work for models with high-dimensional state space.
That is, our method does not suffer from any statistical curse-of-dimensionality. However, this
requires choosing both N and K large in order to control variance and bias which will increase
computation time.

6 Numerical results

In this section we examine the numerical performance of the proposed solution algorithms with
focus on how the theoretical results derived in the previous sections translate into practice and
how different features of model and implementation affect their performances.

We focus exclusively on approximating v0 (z), and measure the performance of a given ap-
proximate solution, say, ṽ (z) in terms of its pointwise bias, variance and mean-square error
(MSE) defined as Bias (z) := E[ṽ (z)] − v0 (z), V ar (z) := V ar (ṽ (z)) = E

[
(ṽ (z)− E[ṽ (z)])2]

and MSE (z) = Bias (z) + V ar (z), respectively. As overall measures we use uniform bias,
variance and MSE, ‖Bias‖∞ = supz |Bias (z)|, ‖V ar‖∞ = supz |V ar (z)| and ‖MSE‖∞ =
supz |MSE (z)|. Given that the exact solution v0 (z) is unknown, we replace this by a very
finely approximated solution computed as the average over 100 sieve approximations, where
each approximate solution used K = 500 Chebyshev polynomials and N = 2000 pseudo-random
draws. Each approximate solution was computed by successive approximation until a contrac-
tion tolerance of machine precision was reached. The uniform standard deviation across the 100
approximations were less than 0.017 which is tiny compared of the overall range of the inte-
grated value function. We then approximate the point-wise bias and variance of a given method
through S ≥ 1 independent replications it: Let ṽ1 (z) ,, ṽS (z) be the solutions obtained across
the S replications. We then approximate the mean by Ê[ṽ (z)] = 1

S

∑S
s=1 ṽs (z) which in turn

is used to obtain the following bias and variance estimates, ˆBias (z) = Ê[ṽ (z)] − v0 (z), and
ˆV ar (z) = 1

S

∑S
s=1(ṽs (z)− Ê[ṽ (z)])2.

To implement the sieve-based method, we need to choose the sieve space used in constructing

21

ΠK . We here focus on Chebyshev basis functions or B-Splines as discussed in Section 4.31.

6.1 A model of optimal replacement

To provide a test bed for comparison of the sieve-based approximation method, we use the well-
known engine replacement model by Rust (1987). Rust’s model has become the basic framework
for modeling dynamic discrete-choice problems and has been extensively used in other studies to
evaluate the performance of alternative solution algorithms and estimators. While the model and
its solution is well described in many papers, for completeness we briefly describe our variation
of it below.

We consider the optimal replacement of a durable asset (such as a bus engine) whose con-
trolled state Zt ∈ R+ is summarized by the accumulated utilization or mileage since last replace-
ment. In each period, the decision maker faces the binary decision dt ∈ D = {0, 1} whether to
keep (dt = 0) or replace (dt = 1) the durable asset with a fixed replacement cost. If the asset is
replaced, accumulated usage regenerates to zero. We assume that the per period change in usage
(in absence of the replacement decision) is a mixture of a discrete distribution with a probability
mass π > 0 at zero and a linearly transformed Beta distribution with shape parameters a and b
and scale parameter σε > 0. Thus,

FZ
(
z′|z, d

)
= πI

{
z′ = z

}
+ (1− π)F+

(
z′|z, d

)
, (6.1)

where F+ (z′|z, d) has density f+ (z′|z, d) = 1
σε
fβ ((z′ − z)/σε; a, b), π > 0 is the probability of

no usage and fβ(x; a, b) is the probability density function of the Beta distribution with shape
parameters a, b.

We have chosen the scaled Beta distribution because of its flexibility and because it has
bounded support (0, σε), i.e. f+ (z′|z, d) = 0 for z′ < z or z′ − z > σε. This is in line with the
discretized model in the original formulation in Rust (1987) where monthly mileage were only
allowed to take a few discrete values and monthly mileage is naturally bounded above and below
(busses never drives backwards and there are limits how far a bus can drive within a month).
We introduce probability mass π at z′ = z to allow for the possibility that the asset is not used
in a given period and thereby can end in the same state with positive probability when π > 0.
As explained below, this feature turns out to be quite important for the applicability of the
self-approximating method of Rust (1997).

Let the expected per period operating costs be linear in usage, c(z) = θc · 0.001 · z, and let
RC > 0 denote the replacement cost if installing a new asset. The state and decision dependent
per period utility is then given by u(Zt, dt) + σεεt(dt) where u(z, d) = (RC + c(0)) I {d = 0} +
c (z) I {d = 1} and the utility shocks εt = (εt(0), εt(1)) are i.i.d. extreme value and fully inde-
pendent of Zt. This specification is a special case of Example 1 with λ = 1 and the simulated
Bellman operator takes the form (3.5) where Gλ=1 (·) appears as part of the model. Thus, there
is no smoothing bias present in the baseline model. In Section 6.5, we then investigate the effect
of smoothing; this will be done by pretending that we are not able to integrate out εt analytically

1 For more details on the implementation, see appendix D .

22

Figure 1: Fine Approximation as “Exact” Solution

0 200 400 600 800 1000

Mileage

-14

-12

-10

-8

-6

-4

-2
Integrated value function, v(z)

0 200 400 600 800 1000

Mileage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Replacement Probability, P(d=replace|z)

Notes: Discount factor is β = 0.95, utility function parameters are θc = 2, RC = 1, λ = 1 and transition
parameters are σε = 15, a = 2, b = 5 and π = 0.000000001.

in the baseline model and instead we simulate both Zt and εt and then include our smoothing
device in the computation of the simulated Bellman operator.

In the numerical illustrations below we use the following set of benchmark parameter values
unless otherwise specified: We set replacement cost to RC = 10 and the cost function parameter
to θc = 2 so that RC is 5 times as large as c(1000). This implies a large variation in the
probability of replacement over Zt compared to Rust (1987) and a more curved value function.
The parameters indexing the transition density f+ (z′|z, d) are set to σ = 15, a = 2, b = 5
and π = 10−10. This implies a quite sparse transition density, which is similar to the fitted
model in Rust (1987). Note that the support of Zt is unbounded (the positive half line) and
therefore the theory does not apply directly, since we throughout assumed bounded support.
However, we expect that the theory extends to the unbounded case after suitable modifications,
c.f. discussion following Assumptions 1-2. We set β = 0.95 which is quite small relative to Rust
(1987) where β = 0.9999. The main reason for choosing a smaller discount factor is to avoid
overly long computation times for the implementation of successive approximation algorithm
whose convergence rate crucially depends on β. c.f. eq. (4.12).

In Figure 1 we plot the corresponding “exact” solution as described earlier. Importantly,
since the transition density is an analytic function the value function is also analytic and so
well-approximated by polynomial interpolation methods.

6.2 Numerical implementation of simulated Bellman operators

The simulated Bellman operators in (3.7) and (3.8) require the user to choose an impor-
tance sampling distribution. For the self-approximating solution method we need to choose a
marginal sampler, dΦZ (z′|z, d) = φZ (z′) dz′. We follow Rust (1997b) and choose φZ (z′) =
I {0 < z′ < zmax} as a uniform density with support support [0, zmax] for some truncation
point 0 < zmax < ∞ chosen by us. First note that this entails that the simulated Bell-
man operator used for the self-approximating value function is biased since we do not sam-
ple from the full support Z = R+; however, this bias can be controlled by choosing zmax

large enough. We will explain below why we do not choose φZ (z′) as a density with support
R+. Using a uniform sampler, the corresponding Radon-Nikodym derivative takes the form

23

Figure 2: Random Grids

0 20 40 60 80 100
Future state, zt+1

0

10

20

30

40

50

60

70

80

90

100

C
ur

re
nt

 s
ta

te
, z

t

Uniform random samplimg

0 20 40 60 80 100
Future state, zt+1

0

10

20

30

40

50

60

70

80

90

100

C
ur

re
nt

 s
ta

te
, z

t

Sampling from f(z|z, d)

Notes: In the left panel we present the grids used for the self-approximate random Bellman operator. We have
uniformly sampled a random grid, {Z1, ..., ZN} on the interval [0; 1000] with N =400. Dots (.) mark sampled grid
points in R2: ZN × ZN , plus (+) mark grid points where f(zj |zi, d = 0) > 0 and circles (o) mark points where
f(zj |zi, d = 1) > 0. In the right panel, we plot the grid the projected random Bellman operator, where we have
sampled directly from the conditional transition density in each of theM = 400 uniformly spaced evaluation points.
To have equally many grid-points with non-zero transition density we only need N = 400 ∗ σε/max(ZN) = 9
random grids for each of the M = 400 evaluation points. Both figures show only a subset of the state space,
(z, z′) ∈ [0; 100]2. Parameters are σε = 15, a = 2, b = 5 and π = 0.0000000001.

wZ (z′|z, d) = πδ (z′ − z) + (1 − π)f+ (z′|z, d) where δ (·) denotes Dirac’s delta function. We
approximate this by ŵZ (z′|z, d) = πI {z′ = z}+ (1− π)f+ (z′|z, d) which entails another small
approximation error. For the sieve-based version, we simply choose ΦZ (z′|z, d) = FZ (z′|z, d)
and so wZ (z′|z, d) = 1.

As explained in Section 4.3, using a marginal importance sampler creates issues since it fails
to adapt to the particular shape of the support of FZ (z′|z, d). In particular, for a given choice
of z, many of the draws from φ (z′) will tend to fall outside the support of fZ (z′|z, d) and so
will not contribute. In contrast, when φZ (z′|z, d) = fZ (z′|z, d), the draws from φZ will by
construction fall within the support of fZ (z′|z, d). This can be seen in Figure 2 where we have
plotted the random draws obtained from the two different importance samplers used for the
sieve-based and self-approximating solutions together with the actual support of fZ (z′|z, d). In
the left-hand side panel we have plotted pairs of the uniform draws, (Zi, Zj) for i, j = 1, ..., N ,
used for Rust’s self-approximating method with N = 400 and zmax = 1, 000, while in the right-
hand side we have plotted (zi, Zj (zi, d)) where zi are uniform draws and Zj (z, d) ∼ fZ (·|z, d).
In both cases, we have marked the pairs for which the corresponding density, fZ (Zj |Zi, d) and
fZ (Zj (zi, d) |zi, d), respectively, is positive. Clearly, the use of a marginal importance sampling
density leads to very poor coverage of the actual support of fZ (z′|z, d) as z varies while by
construction ΦZ (z′|z, d) = FZ (z′|z, d) does an excellent job. This translates into the former
simulated Bellman operator exhibiting much larger variance compared to the latter.

This issue is further amplified when we introduce the normalization given in eq. (3.3):
Suppose that we had not included a discrete component πI {z′ = z} in the model. Then, with
Zi ∼ U [0, zmax], wN,Z,i(Zj , d) = f+ (Zi|Zj , d) /

∑N
k=1f+ (Zk|Zj , d) . Since f+(z′|z, d) has bounded

support, it often happens that
∑N
k=1f+ (Zk|Zj , d) = 0 for even large values of N and so the

24

Figure 3: Truncation bias due to zmax being too low.

50 125 200 275 350 425 500 575 650 725

0

-5

-10

Mileage, z

v
(z

)

limit solution
x high: 200.0
x high: 325.5
x high: 450.0

simulated Bellman operator is not even well-defined. This issue will vanish as N → ∞, but
this on the other hand increases the computational burden since the self–approximating method
require us to solve for the value function at the N draws. Introducing the discrete component
in the model resolves this issue since now wZ,N,i(Zj , d) = ŵZ (Zi|Zj , d) /

∑N
k=1ŵZ (Zk|Zj , d) ,

where
∑N
k=1ŵZ (Zk|Zj , d) > 0 for all j = 1, ..., N by construction. Thus, π > 0 functions as a

regularization device.
This brings us to the reason why we do not choose φZ (z′) as a density with unbounded

support to avoid the issue of truncation. In our initial experimentation, we did try out sampling
from distributions with unbounded support, but the above numerical issues were even more
severe since the draws become even more spread out in this case. So we instead choose φZ (z′)
to have bounded support. Figure 3 show how the solution depends on zmax. The effect of the
truncation zmax will be model specific and in practice experimentation is required. If we, for
example, simply set zmax = 1, 000, 000, the variance of the simulated Bellman operator becomes
very large for a given N due to the issue with undefined sample weights wN,i (z, d) mentioned
above. At the same time, choosing zmax too small leads to a large bias. To balance the bias
and variance, we ended up using zmax = 1000 which all subsequent numerical results for the
self-approximating method is based on. Finally, we would like to stress that none of these issues
appear for the sieve-based method.

6.3 Convergence properties and computation times

We first investigate the convergence properties of our solution methods: Do the they converge
and if so how fast?

Global convergence properties of sieve method

As demonstrated in Theorem 1, the simulated Bellman operators are always contraction map-
pings and so the self-approximating method is guaranteed to converge using successive approx-
imations. In contrast, ΠK Γ̄N,λ is not necessarily a contraction and so global convergence of the
sieve method may fail, c.f. discussion in Section 5.2. A sufficient condition for global conver-
gence is ||ΠK ||op,∞ < 1/β and we saw that ||PK ||op,∞ > 1 implies ||ΠK ||op,∞ > 1. However,
even if ||PK ||op,∞ > 1, successive approximation may still converge: Across various parameter

25

Figure 4: Convergence and discount factor

0 1000 2000 3000 4000 5000

Iteration count

-40

-35

-30

-25

-20

-15

-10

-5

0

5

lo
g(

er
ro

r
bo

un
d)

Successive Approximations)

beta=0.95
beta=0.99
beta=0.999
beta=0.9999

1 1.5 2 2.5 3 3.5 4

Iteration count

-35

-30

-25

-20

-15

-10

-5

0

lo
g(

er
ro

r
bo

un
d)

Newton Kantorovich Iterations

beta=0.95
beta=0.99
beta=0.999
beta=0.9999

Notes: Discount factor is β ∈ {0.95, 0.99, 0.999, 0.9999}, utility function parameters are θc = 2, RC = 1, λ = 1
and transition parameters are σε = 15, a = 2, b = 5 and π = 0.000000001.

values of model, choices of sieve spaces and number of simulations, we did not encounter any
failure of the sieve method to converge and the resulting approximate solution was well-behaved.
This finding held across various initializations of the solution algorithms (initial choice of sieve
coefficients). For example, we implemented the sieve method using M = 64 evaluation points
and using either K = 1 or K = 4 Chebyshev basis functions. We found that ||P1||op,∞ = 1
while ||P4||op,∞ > 1.78 and so the sieve method was guaranteed to converge for K = 1 but not
for K = 4. Nevertheless, the method of successive approximations did in fact converge to a
tolerance of 10−12 for both K = 1 and K = 4.

Successive approximation versus Newton-Kantorovich

In Section 4.3 we advocate using a hybrid of successive approximation (SA) and Newton-
Kantorovich (NK) where we start with SA to ensure global convergence, and switch to NK
iterations once the domain of attraction has been reached since NK generally converges faster.
We illustrate this attractive feature of the NK algorighm in Figure 4 where we have plotted the
log residual error of the current value function approximation (relative to the “exact” solution)
against the iteration count for the SA and NK algorithms, respectively, for four different values
of β. As expected, the convergence of the SA algorithm requires a very large number of itera-
tions (> 1000) with computation time increasing in β, where as NK converges after less than 10
iterations and with the value of β having little effect on its performance.

Figure 4 is silent about the over-all computation time of SA relative to NK. Compared to
SA, each NK iteration is more expensive since the former only requires computing the simulated
Bellman operator evaluated at the value function obtained in the previous step while the latter,
in addition, requires computing its functional derivative and inverting a K × K dimensional
matrix for the integrated value function and a KD ×KD dimensional matrix for the expected
value function, c.f. Section 4.3. With K large, one could therefore fear that NK would become
computationally too expensive.

In Figure 5 we report best of 10 run-times for various levels of K and β and tolerance levels
of SA and NK where we also include set-up time (time spent on initial computations before

26

Figure 5: Run-times (incl setup times) for SA (dotted lines) and NK (drawn lines) algorithms.

0.00000.00020.00040.00060.0008

10−2
10−4
10−6
10−8

10−10
10−12

seconds

st
op

pi
ng

cr
ite

ria

β = 0.9, K = 5

0.0000 0.0005 0.0010 0.0015

10−2
10−4
10−6
10−8

10−10
10−12

seconds

β = 0.95, K = 5

0.000 0.002 0.004 0.006

10−2
10−4
10−6
10−8

10−10
10−12

seconds

β = 0.99, K = 5

0.00 0.01 0.02 0.03

10−2
10−4
10−6
10−8

10−10
10−12

seconds

st
op

pi
ng

cr
ite

ria

β = 0.9, K = 100

0.00 0.01 0.02 0.03

10−2
10−4
10−6
10−8

10−10
10−12

seconds

β = 0.95, K = 100

0.00 0.02 0.04 0.06

10−2
10−4
10−6
10−8

10−10
10−12

seconds

st
op

pi
ng

cr
ite

ria

β = 0.99, K = 100

0.0 0.1 0.2 0.3 0.4 0.5

10−2
10−4
10−6
10−8

10−10
10−12

seconds

st
op

pi
ng

cr
ite

ria

β = 0.9, K = 500

0.0 0.1 0.2 0.3

10−2
10−4
10−6
10−8

10−10
10−12

seconds

β = 0.95, K = 500

NM
SA

setup

0.0 0.1 0.2 0.3 0.4 0.5 0.6

10−2
10−4
10−6
10−8

10−10
10−12

seconds

β = 0.99, K = 500

starting the actual algorithm). As expected, we find that NK is the faster of the two algorithms
when β is relatively large and K is relatively small. With K = 5 NK is faster across all levels
of β while for K = 100 and K = 500, SA is faster for moderate values of β. However, as we
shall subsequently see, with K = 5 the sieve method carries almost no bias and so choosing K
larger (such as 100 or 500) is actually unnecessary here and is only included here to illustrate
potential issues with NK for models where a large number of sieve terms are needed to obtain a
good approximation of the value function. Moreover, in most empirical applications, β is chosen
to be larger than 0.99 in which case NK still dominates SA even with K = 500.

6.4 Approximation quality

We will now look at how the approximate value function is affected by the number of draws
and the chosen projection basis. The goal is to demonstrate the rate results of the theoretical
sections, and to compare the two types of basis functions spaces that we described above. We
will take a partial approach and first fix N to study the role of K, and then afterwards fix K to
study the role of N .

27

Effect of varying K for projection-based value function approximation

The theory for the projection-based value function approximation informs us that the choice of
the basis functions will have a first-order effect on the bias while only a second-order effect on
the variance. In particular, we expect Bias (z), as defined in the beginning of this section, to
satisfy Bias (z) ∼= ΠK (v0) (z)−v0 (z), c.f. discussion following Theorem 5, while V ar (z) should
be much less affected by K. The actual size of the bias obviously depends on the curvature
and smoothness of v0 and the particular choice of basis functions. But we know that v0 is
an analytic function and with only moderate curvature, c.f. Figure 1 and so expect it to be
well-approximated by a small number of polynomial basis functions. This is confirmed by the
pointwise bias and standard deviation,

√
V ar (z), reported in Figure 6:

First, as can be seen in the left-hand side panel of Figure 6, first-order B-splines lead to signif-
icantly more point-wise bias than the other two sieve bases, namely second-order B-splines and
Chebyshev polynomials. This is accordance with theory since we know that a smooth function
is better approximated by higher-order polynomials, c.f. the error rates reported in Example 1
as a function of s. At the same time, second-order B-splines and Chebyshev polynomials exhibit
very similar biases for a given K.

The right-hand side panel of Figure 6 shows the point-wise standard deviation across different
choices ofK for the three different sieve bases. Consistent with the theory, the standard deviation
of the value function approximation is not very sensitive to the particular choice of the sieve
basis and the number of basis functions uses. That is, the sieve basis mostly affect the bias with
only minor impact on the variance.

Finally, we examine how the bias behaves as we further increase K. Figure 7 plots ‖Bias‖∞
as a function of K. Similar to Figure 6 we see much more rapid convergence when smooth basis
functions are used, and with little improvement forK greater than 9. This is not surprising given
the reported shape of v0. The second-order B-splines and Chebyshev basis functions produce
very similar fits, even if they are evaluated on different grids and the B-splines have very different
properties compared to Chebyshev polynomials. Indeed, the curves are practically overlapping.
This is in accordance with the asymptotic theory that predicts that higher-order B-splines and
Chebyshev polynomials should lead to similar biases. Moreover, the theory informs us that if
v0 is analytic, and this is the case in this particular implementation, we should expect the bias
to vanish with rate O(K−K) when using polynomial interpolation. The bias indeed does go to
zero very quickly and so the numerical results support the theory.

Simulation errors, rates of convergence and asymptotic normality

We now compare the errors due to simulations and the rates with which these vanish for the
two solution methods. For both methods, theory tells us that N should have a first-order effect
on the variance of the approximate value function which is supposed to vanish at rate 1/N ,
c.f. Theorems 5 and 3. Our asymptotic theory is, on the other hand, silent about the size of
simulation bias and the rate with which it should vanish with. However, we can think of both the
sieve-based and self-approximating method as a nonlinear GMM-estimator where the simulated
Bellman operator defines the sample moments. Importing results for GMM estimators, see, e.g.,
Newey and Smith (2004), we should expect the simulation bias to be of order 1/N .

28

Figure 6: Point-wise bias and standard deviation of solutions for various choices of K using
different interpolation schemes, N = 200, S = 200, σε = 15.

0 200 400 600 800 1000
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

mileage

E
(v

(z
))
−
v
(z

)

Chebyshev

K= 3
K= 6
K= 9

0 200 400 600 800 1000
0.000

0.025

0.050

0.075

0.100

0.125

mileage

St
d.

de
v(
v
(z

))

Chebyshev

K= 3
K= 6
K= 9

0 200 400 600 800 1000
0

1.0

2.0

3.0

4.0

5.0

mileage

E
(v

(z
))
−
v
(z

)

1st order B-splines

K= 3
K= 6
K= 9

0 200 400 600 800 1000
0.000

0.025

0.050

0.075

0.100

0.125

mileage

St
d.

de
v(
v
(z

))

1st order B-splines

K= 3
K= 6
K= 9

0 200 400 600 800 1000
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

mileage

E
(v

(z
))
−
v
(z

)

2nd order B-splines

K= 6
K= 9

0 200 400 600 800 1000
0.000

0.025

0.050

0.075

0.100

0.125

mileage

St
d.

de
v(
v
(z

))

2nd order B-splines

K= 6
K= 9

29

Figure 7: Sup-norm of bias of solutions for various choices of K using various interpolation
schemes, N = 200, S = 200.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

K

||v
N
−
v
|| ∞

Chebyshev
1st order B-spline
2nd order B-spline

In Figure 8 we investigate this prediction by plotting ‖Bias‖∞ and
∥∥∥√V ar∥∥∥∞ for the sieve-

based method (left panels) and for the self-approximating method (right panels) for two different
choices of σε and for across different values of N . To examine the rate with which the simu-
lation bias and variance vanish we estimate the following an exponential regressions by NLS
||
√
V ar||∞ = exp(αSD + ρSD ln(N)) and ||Bias||∞ = exp(αBias + ρBias ln(N)) where NρSDand

NρBias measures the rate for ||
√
V ar||∞ and ||Bias||∞ respectively. The resulting regression fit

estimates are reported in both Figure 8 as well as in Table 1. In Table 1 we present bias and
standard deviation for N = 500 as well as their rates of convergence both methods; with various
values of K for the sieve approximation method.

According to the theory, the variance should vanish with rate 1/N for both methods and we
therefore expect ρSD = −0.5 so that ||

√
V ar||∞ vanish with 1/

√
N . For the projection based

method, we see that the rate with which the standard deviation shrinks to zero is indeed close
to −0.5 for all values of K > 1 and irrespectively of the value of σε. For the self-approximating
method we estimate the rate to 1/N0.541 when σε = 100, which is in line with the theory.
However, ||

√
V ar||∞ is found to vanish with rate 1/N3.6 for σε = 15. This seems to indicate

that the asymptotic theory developed in Theorems 3 and 4 do not provide a very accurate
approximation of the performance of the self-approximating method for small and moderate
choices of N when the support of Zt|Zt−1 = z,dt = 1 is small (σε = 15). We conjecture that
the discrepancy between theoretical predictions and numerical results for the self-approximating
method is due to the aforementioned issues with the marginal importance sampler discussed
in Section 6.2: Many of the draws are not used in the computation of the simulated Bellman
operator because they fall outside the support of Zt|Zt−1 = z for a given choice of z. Thus, the
effective number of draws is smaller than N and changes as z varies.

For the projection based method, the main source of bias is due to the sieve projection. From
Figure 6, we see that, with N = 200 and K = 9, the sieve-based methods using second-order
B-splines or Chebyshev polynomials have virtually no bias, and both Figure 8 as well as in Table
1 also confirms that we practically eliminate by approximate the value function using Chebychev
polynomials with K = 20. However, there still remains a small simulation bias for that decays
with N. For small K, we see that the bias is roughly independent of N . As K increases so

30

Figure 8: Convergence results

0 200 400 600 800 1000
Number of random grid points, N

0

0.05

0.1

0.15

0.2

0.25
Sieve method, z= 15

||E(v
N

)-v||

Regression fit: exp(-4.711 -0.212*ln(N))
||Std. dev(v

N
)||

Regression fit: exp(0.407 -0.501*ln(N))

500 600 700 800 900 1000
Number of random grid points, N

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Self-approximating, z= 15

||E(v
N

)-v||

Regression fit: exp(6.521 -1.290*ln(N))
||Std. dev(v

N
)||

Regression fit: exp(21.699 -3.618*ln(N))

0 200 400 600 800 1000
Number of random grid points, N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sieve method, z= 100

||E(v
N

)-v||

Regression fit: exp(-2.960 -0.299*ln(N))
||Std. dev(V

v
)||

Regression fit: exp(1.587 -0.501*ln(N))

0 200 400 600 800 1000
Number of random grid points, N

0

0.05

0.1

0.15

0.2

0.25

0.3
Self-approximating method, z= 100

||E(v
N

)-v||

Regression fit: exp(5.755 -1.331*ln(N))
||Std. dev(v

N
)||

Regression fit: exp(1.000 -0.543*ln(N))

Notes: Discount factor is β = 0.95, utility function parameters are θc = 2, RC = 10, σε = 1 and transition
parameters are a = 2, b = 5 and π = 0.000000001. Uniform bias and variance were estimated using 500
evaluation points and S = 2000 implementations.

Table 1: Bias, variance, and rates of convergence for various values of K
Sieve Method Self-approx.

of basis functions, K 1 2 5 10 15 method
σz=15

||Bias||∞ for N = 500 12.743 7.029 0.348 0.016 0.003 0.203
||
√
V ar||∞ for N = 500 0.000 0.020 0.063 0.066 0.066 0.450

Convergence rate for ||Bias||∞ 0.000 0.000 0.002 -0.012 -0.163 -1.290
Convergence rate for ||

√
V ar||∞ 0.169 -0.500 -0.501 -0.501 -0.501 -3.618

σz=100
||Bias||∞ for N = 500 22.446 10.937 0.112 0.009 0.009 0.084
||
√
V ar||∞ for N = 500 0.000 0.128 0.218 0.215 0.215 0.094

Convergence rate for ||Bias||∞ 0.000 0.000 -0.027 -0.299 -0.300 -1.331
Convergence rate for ||

√
V ar||∞ 0.169 -0.500 -0.501 -0.501 -0.501 -0.543

31

does the dependence on N . However, even for K = 20 where we estimate ρBias to be 0.21 and
0.30 for σε = 15 and σε = 100 respectively, the rate of convergence is far from 1/N . This is
probably due to the presence of higher-order bias components that our asymptotic theory does
not account for or because there is still some remaining sieve approximation bias left even with
K = 20.

For the self-approximating method, there is no sieve projection bias but a larger simulation
induced bias that decreases with N . We obtain rate estimates of 1/N1.7 and 1/N1.4 for the bias
when σε = 15 and σε = 100 respectively; these are slightly faster than expected but not too
far from the theoretical predictions of 1/N . For the self-approximating method, bias constitute
more than half of RMSE when N < 600 for σε = 15 (or N < 400 for σε = 100), but since
||Bias||∞ decays faster than ||

√
V ar||∞ , the simulation bias eventually becomes second order

for large N .
Comparing ||MSE||∞ for N = 500 we find that the sieve-based method clearly dominates

the self-approximating method when σε = 15, whereas the self-approximating method performs
best when σε = 100. This is not entirely surprising since a large value of σε implies a large
conditional support of Zt in which case the draws of the marginal sampler are more likely to
fall within the support, c.f. the discussion in Subsection 6.2. Thus, the over-all error of the
self-approximating method will tend to be smaller when σε is large. The opposite is the case for
the sieve based method which becomes more precise for smaller value of σε since the variance
of the simulated Bellman operator used for this method gets smaller as σε gets smaller. This
shows that there is considerably scope for improving the performance of the sieve-based method
by more careful design of the sampling method.

Theorems 4 and 5 state that when N is large, the approximate value functions should be
normally distributed. We here investigate whether this asymptotic approximation is useful in
practice by looking at the pointwise distribution of the approximate solutions obtained through
both methods. In Figure 9, we plot the distribution of (ṽ (z)− E [ṽ (z)]) /

√
V ar (ṽ (z)) for

z = 500, where ṽ denotes a given approximation method, together with the standard normal
distribution. It is here important to note we do not center the estimate around v (z) but instead
around E[ṽ(z)] ; this is due to the sizable bias of the self-approximating method. For the sieve-
based method, we see that its normalized distribution is quite close to the standard normal
irrespectively of the value of σε. In contrast, the normal distribution is a poor approximation
for the self-approximating method when σε = 15 when N = 500; we expect this is due to the
fact that the effective number of draws is quite small and so the asymptotic approximation is
poor in this case. As expected the approximation gets better as N and/or σε increases.

6.5 Effect of smoothing

The results reported above did not involve any smoothing bias. We now numerically study the
effect of smoothing. This is done by, instead of integrating out the i.i.d. extreme value taste
shocks εt analytically as we have done so far, using Monte Carlo simulations to evaluate this part
of the integral and then introducing the smoothing device to ensure that the simulated Bellman
operator remains smooth. While this may appear somewhat artificial, the merit of doing this
exercise is that we can use the same “exact” solution as benchmark as used above.

32

Figure 9: Asymptotic Normality

-4 -3 -2 -1 0 1 2 3 4
(vN - v)/sqrt(var(vN))

0

0.1

0.2

0.3

0.4

0.5

0.6
Sieve method, z= 15

Standard normal density
N=200
N=1000

-4 -3 -2 -1 0 1 2 3 4
(vN - v)/sqrt(var(vN))

0

0.2

0.4

0.6

0.8

1

1.2
Self-approximating method, z= 15

Standard normal density
N=500
N=1000

-4 -3 -2 -1 0 1 2 3 4
(vN - v)/sqrt(var(vN))

0

0.1

0.2

0.3

0.4

0.5

0.6
Sieve method, z= 100

Standard normal density
N=200
N=1000

-4 -3 -2 -1 0 1 2 3 4
(vN - v)/sqrt(var(vN))

0

0.1

0.2

0.3

0.4

0.5

0.6
Self-approximating method, z= 100

Standard normal density
N=200
N=1000

Notes: Each panel shows kernel density estimates of (v̂N (z) − E[v̂N (z)])/
√
var(v̂N (z)) for z = 500 based on

S = 2000 solutions for each sample size N . Discount factor is β = 0.95, utility function parameters are θc = 2,
RC = 10, λ = 1 and transition parameters are σε = 100, a = 2, b = 5 and π = 0.000000001.

In Figure 10 we plot the sup-norm of the mean squared error, ||MSE||∞ as a function of
λ (the smoothing scale parameter) for the sieve-based method using K = 4 or 8 Chebyshev
polynomials (similar results were obtained for the self-approximating method and so are left
out). For K = 4, the MSE increases monotonically as a function of λ while for K = 15 the bias
due to smoothing is non-monotonic in λ. In both cases, at λ = 0, any remaining biases are due to
either sieve-approximation or simulations. Importantly, the bias due to smoothing is negiglible
(relative to the other biases) for small and moderate values of λ while the variance is largely
unaffected. We have no theory or heuristics for choosing an optimal λ to optimally balance bias
and variance due to smoothing but the current numerical results indicate that choosing a quite
small λ value works well.

6.6 Performance in the bivariate case

We now examine how the solution methods perform in the bivariate case (dz = 2) in order to see
if there is any curse of dimensionality built into the two methods. We do this for two different
models as described below.

An Additive DDP

We here follow the approach of Arcidiacono, Bayer, Bugni and James (2013) and Rust (1997a)
and build a dz-dimensional model by adding up dz independent versions of the univariate
model considered so far. That is, we choose the utilities and state dynamics as ū(z, d) =

33

Figure 10: Sup-norm MSE of solutions to Bellman operators with simulated taste shocks and
state transitions for varying levels of smoothing, for N = 100.

0.00 0.25 0.50 0.75 1.00
4.80

4.85

4.90

4.95

5.00

5.05

Smoothing, λ

||M
S
E
|| ∞

K=4

0.00 0.25 0.50 0.75 1.00
2.65

2.70

2.75

2.80

2.85

Smoothing, λ

||M
S
E
|| ∞

K=15

∑dz
i=1 u(zi, di) and F̄Z(z′|z, d) =

∏dz
i=1 FZ(z′i|zi, di), where z = (z1, ..., zdz) and d = (d1, ..., ddz),

with FZ(z′i|zi, di) and u(zi, di) denoting the state transition and per-period utility in the uni-
variate case as described in Section 6.1. Note here that Zt,i and Zt,j are fully independent
of each other, i 6= j and the number of alternatives are 2dz . Thus, the model considers the
joint replacement decision of dz assets whose stochastic usages (Zt,1, ..., Zt,dz) are mutually
independent. Conveniently, the integrated value function of this multidimensional problem,
v̄(z1, ..., zdz), is simply the sum of the solutions to each of the underlying univariate models,
v̄(z1, ..., zdz) =

∑dz
i=1 v(zi).where v(zi) is the solution to the univariate model in Section 6.1.

This is a rather simplistic multivariate model but it comes with the major advantage that we
can obtain a very accurate approximation of the exact solution by simply adding up the “exact”
solution found for the univariate case. With a more complicated multidimensional structure, the
computational cost of finding the “exact” solution is much higher. However, when implementing
our solution methods we forgo forgo the knowledge of the additive structure of the solution and
so treat the above model as a “proper” multivariate problem.

Simulation error

Given the issues with the self-approximating method for small values of σε = 15, we here focus
exclusively on the case σε = 100. To get a sense of the pointwise performance of the self-
approximating method, we plot the pointwise bias and standard deviation for this method in
Figure 11 together with the pointwise errors of the corresponding replacement (choice) proba-
bilities. The overall shape and level of the value function is quite well captured, and the same
is true for the policy. However, the approximation errors tend to get larger out in the tails of
the distribution and some of this comes from the fact that the issues with the marginal sampler
used for the self-approximating method are amplified here. The problems are especially present
in the off-grid evaluations, where we often have very few draws in a given region where we want
to evaluate the value function or policies.

Next, we examine ||Bias||∞ and ||
√
V ar||∞ for both methods as we increase N . These are

plotted in Figure 12 where it should be noted that the reported range of N reported on the
x-axis of the two figures differ substantially. This is due to the fact that the self–approximating
method became numerically unstable for N smaller than 1,400 while no such issues were present

34

Figure 11: Approximation Error, bivariate DDP

0
1000

0.2

1000

Expected discounted cost, (-V)

Z2

500

Z1

0.4

500
0 0

-0.05
1000

0

1000

Replacement probability (only asset 2)

Z2

500

Z1

0.05

500
0 0

-0.05
1000

0

1000

Replacement probability (only asset 1)

Z2

500

Z1

0.05

500
0 0

-0.02
1000

0

1000

Replacement probability (both assets)

Z2

500

Z1

0.02

500
0 0

Notes: Discount factor is β = 0.95, utility function parameters are θc = 2, RC = 10, λ = 1 and transition
parameters are σε = 100, a = 2, b = 5 and π = 0.000000001. The “exact” solution was computed by averaging
over S = 100 solutions, each found using the smoothed random Bellman operator with N = 3000 pseudo random
draws. Each fixed point was found using a contraction tolerance of machine precision.

35

Figure 12: Simulation errors for bivariate additive DDP

0 50 100 150 200 250 300 350 400
Number of random grid points, N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sieve method, z= 100

||E(v
N

)-v||

Regression fit: exp(-3.040 -0.044*ln(N))
||Std. dev(v

N
)||

Regression fit: exp(2.115 -0.545*ln(N))

1400 1600 1800 2000 2200 2400 2600 2800 3000
Number of random grid points, N

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Self-approximating method, z= 100

||E(v
N

)-v||

Regression fit: exp(8.789 -1.215*ln(N))
||Std. dev(v

N
)||

Regression fit: exp(2.204 -0.395*ln(N))

Notes: Discount factor is β = 0.95, utility function parameters are θc = 2, RC = 10, λ = 1 and and parameters
for transition density f(z′|z, d) are σε = 100, a = 2, b = 5 and π = 0.000000001. Point-wise bias and variance was
estimated in 500 evaluation points with S = 200 solutions, each found using the Bellman operator with N pseudo
random draws. We report the sup norm of the bias and the standard deviation for each N for both methods
and NLS regression fits of ||

√
V ar}||∞ = exp(αSD + ρSD ln(N) and ||Bias||∞ = exp(αBias + ρBias ln(N) where

ρSDand ρBiasmeasures the rate for ||
√
V ar}||∞ and ||Bias||∞ respectively. For the self-approximating method

we used N = {1400, 1500, .., 3000} pseudo random draws. For the sieve methods we used much fewer draws.

for the sieve-based method. As in the univariate case, both bias and variance of the two methods
vanish as N increases. However, comparing Figures 12 and 8, while the errors of the sieve-based
method in the bivariate case is of a similar magnitude as in the univariate case, the errors of
the self-approximating method are much larger in the bivariate case. This seems to indicate a
certain type of curse-of-dimensionality in this particular application of the self-approximating
method. This is caused by the issues with the marginal importance sampler employed for this
method.

Sieve approximation error

In the implementation of the sieve-based method we use as sieve basis the tensor product of
univariate Chebyshev polynomials or B-splines. That is, given, say, J univariate basis functions,
say, p1, ..., pJ , we construct our bivariate basis functions as Bi,j (z1, z2) = pi (z1) pj (z2) for
i, j = 1, ..., J yielding a total of K = J2 bivariate basis functions. In particularly, we do not
exploit the additive structure of the problem since we are interested in the practical contents of
Theorems 5 where no particular sparsity/special structure of the model is assumed to be known.

However, in practive, Chebyshev polynomials very easily pick up the additive structure and
effectively sets the coefficients of the cross-product terms to zero. This is illustrated in Table
2 in Appendix D, where we report the coefficients for one particular projection-based bivariate
value function estimate using a tensor product of J = 5 Chebyshev polynomials. However, this
is due to the particular properties of the Chebyshev polynomials and is not enforced by us in
the implementation. For example, if we instead use B-splines, the “estimated” coefficients of the
cross-product terms were significantly different from zero, c.f. Table 3 in Appendix D.

In the left-hand side panel (a) of Figure 13, we report the uniform bias of the projection-
based method with N chosen very large for the additive bivariate model. We find that the bias

36

Figure 13: Bias of value function in bivariate DDP for varying K .

50 100 150 200
10−4

10−3

10−2

10−1

100

101

K = Jdz

||E
(V

)−
V

0|
|

(a) Basic Model

50 100 150 200
10−4

10−3

10−2

10−1

100

101

K = Jdz

||E
(V

)−
V

0|
|

(b) Model with interactions

vanishes as K increases as in the one-dimensional model. However, convergence is now slower
in K relative to the univariate case and we require K = 50 to obtain a sieve approximation bias
of 10−2 while K = 7 sufficed in the univariate case. This is consistent with theoretical error
rates for polynomial interpolation where the rate slows down as the dimension of the problem
increases, c.f. Section 4.3.

A non-additive DDP

Solving the additively separable model using sieve methods could be done using relatively few
basis functions due to its simple structure. To investigate how it does in more comples, non-
additive model, we now consider a slightly more complicated bivariate model where we include
a multiplicative interaction term so that maintenance and replacement costs of the two busses
interact, ū(z, d) =

∑2
i=1 u(zi, di) − u(z1, d1)u(z2, d2)/20. Such a structure could, for example,

reflect that capacity constraints make it more costly to simultaneously the engines of both busses
at once.

The sieve approximation bias of our solution method for this model is reported in the right-
hand side panel (b) in Figure 13. Compared to panel (a) – the additive case – we see that
more sieve terms are required in order to reach a specific absolute error level in the model
with interactions. In Table 4 in Appendix D the coefficients on the first ten basis functions in
each dimension and their interactions are reported. Compared to the Chebyshev-based solution
earlier we see quite significant coefficients on the coefficients for the cross-terms. However, the
coefficients on the basis functions tend to zero quite quickly as K increase. The sup-norm of
the difference in the value function at 40.000 evaluation grids is on the order of 10−5 when
comparing the solutions with K = 502 = 2500 and K = 302 = 900 basis functions, and
individual coefficients fall below 10−6 for univariate basis functions and cross products beyond
the 22nd univariate basis functions, and below 10−8 around the 30th basis functions.However,
it is important to stress that a large K here only comes with a computational cost while a
large K has little effect on the variance of the sieve method. All together, we find that the
sieve-based solution method works well also in higher dimensions, in particular when the model

37

has a particular structure that can be utilized in the solution method.

7 Conclusion

We have proposed two novel solution methods for dynamic discrete choice models. An asymp-
totic theory provided the leading bias and variance terms of the two methods and their large-
sample distributions. A number of numerical experiments showed that the self-approximating
method can be somewhat unstable while the sieve-based version is robust. The next step is to
develop methods for choosing N , K and λ in a given setting so that the resulting approximate
solution is of a good quality. Another area of research is to investigate how the proposed solution
methods can be used to estimate dynamic discrete choice models.

38

References

Arcidiacono, P., P. Bayer, F. A. Bugni and J. James (2013): “Approximating High-
dimensional Dynamic Models: Sieve Value Function Iteration,” Advances in Econometrics,
31, 45–95.

Bowman, A., P. Hall and T. Prvan (1998): “Bandwidth Selection for the Smoothing of
Distribution Functions,” Biometrika, 85, 799–808.

Brumm, J. and S. Scheidegger (2017): “Using Adaptive Sparse Grids to Solve High-
Dimensional Dynamic Models,” Econometrica, 85, 1575–1612.

Cai, Y. and K. L. Judd (2013): “Shape-preserving dynamic programming,” Mathematical
Methods of Operations Research, 77(3), 407–421.

Chen, V. C. (1999): “Application of orthogonal arrays and MARS to inventory forecasting
stochastic dynamic programs,” Computational Statistics & Data Analysis, 30, 317–341.

Chen, X. (2007): Handbook of Econometrics, Volume 6, Part Bchap. Large Sample Sieve
Estimation of Semi-Nonparametric Models, pp. 5549–5632. Elsevier B.V.

Chen, X. and H. White (1999): “Improved rates and asymptotic normality for nonparametric
neural network estimators,” IEEE Transactions on Information Theory, 45(2), 682–691.

Fermanian, J.-D. and B. Salanie (2004): “A Nonparametric Simulated Maximum Likelihood
Estimation Method,” Econometric Theory, 20, 701–734.

Iskhakov, F., T. H. Jørgensen, J. Rust and B. Schjerning (2017): “The endogenous
grid method for discrete-continuous dynamic choice models with (or without) taste shocks,”
Quantitative Economics, 8(2), 317–365.

Judd, K. L., L. Maliar, S. Maliar and R. Valero (2014): “Smolyak method for solving
dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain,”
Journal of Economic Dynamics and Control, 44, 92–123.

Keane, M. and K. I. Wolpin (1994): “The Solution and Estimation of Discrete Choice
Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence,”
The Review of Economics and Statistics, 76, 648–672.

Kristensen, D. and B. Salanie (2017): “Higher Order Properties of Approximate Estima-
tors,” Journal of Econometrics, 198, 189–208.

Kristensen, D. and Y. Shin (2012): “Estimation of Dynamic Models with Nonparametric
Simulated Maximum Likelihood,” Journal of Econometrics, 167, 76–94.

Lizotte, D. J. (2011): “Convergent fitted value iteration with linear function approximation,”
in NIPS’11 Proceedings of the 24th International Conference on Neural Information Processing
Systems, pp. 2537–2545.

39

Lumsdaine, R., J. Stock and D. Wise (1992): “Three Models of Retirement: Computational
Complexity versus Predictive Validity,” in Topics in the Economics of Aging, ed. by D. Wise,
pp. 21–60. NBER: University of Chicago Press.

McFadden, D. (1989): “A Method of Simulated Moments for Estimation of Discrete Response
Models Without Numerical Integration,” Econometrica, 57, 995–1026.

Munos, R. and C. Szepesvari (2008): “Finite-Time Bounds for Fitted Value Iteration,”
Journal of Machine Learning Research, 1, 815–857.

Newey, W. K. and R. J. Smith (2004): “Higher order properties of GMM and generalized
empirical likelihood estimators,” Econometrica, 72, 219–255.

Norets, A. (2010): “Continuity and differentiability of expected value functions in dynamic
discrete choice models,” Quantitative economics, 1(2), 305–322.

Norets, A. (2012): “Estimation of dynamic discrete choice models using artificial neural net-
work approximations,” Econometric Reviews, 31, 84–106.

Pal, J. and J. Stachurski (2013): “Fitted value function iteration with probability one
contractions,” Journal of Economic Dynamics & Control, 37, 251–264.

Rivlin, T. J. (1990): Chebyshev Polynomials: From Approximation Theory to Algebra and
Number Theory. Wiley-Interscience, New York.

Robert, C. and G. Casella (2013): Monte Carlo statistical methods. Springer Science &
Business Media.

Rust, J. (1987): “Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold
Zurcher,” Econometrica, 55, 999–1033.

(1988): “Maximum likelihood estimation of discrete control processes,” SIAM Journal
on Control and Optimization, 26(5), 1006–1024.

(1997a): “A comparison of policy iteration methods for solving continuous-state,
infinite-horizon Markovian decision problems using random, quasi-random, and deterministic
discretizations,” .

(1997b): “Using randomization to break the curse of dimensionality,” Econometrica,
pp. 487–516.

(2008): “Dynamic programming,” The New Palgrave Dictionary of Economics: Volume
1–8, pp. 1471–1489.

Rust, J., J. Traub and H. Wozniakowski (2002): “Is There a Curse of Dimensionality for
Contraction Fixed Points in the Worst Case?,” Econometrica, 70, 285–329.

Schumaker, L. L. (2007): Spline Functions: Basic Theory, Third Edition. Cambridge Univer-
sity Press.

40

Tjahjowidodo, T. et al. (2017): “A direct method to solve optimal knots of B-spline curves:
An application for non-uniform B-spline curves fitting,” PloS one, 12(3), e0173857.

van der Vaart, A. W. and J. A. Wellner (1996): Weak Convergence and Empirical Pro-
cesses. Springer.

41

A Auxiliary Results

We derive a general result for projection-based approximate solutions to functional fixed-points.
Let (X , ‖·‖) be a normed vector space and Ψ : X → X be some contraction mapping w.r.t. ‖·‖
so that there exists a unique solution x0 ∈ X to x = Ψ (x). Let ΨN be an approximation to Ψ
and let ΠK be a projection operator, K,N ≥ 1; the following theorem characterizes the (set of)
solution(s) to x = (ΠKΨN) (x) as K,N →∞:

Theorem A.1. Suppose that (i) ‖ΨN (x0)−Ψ (x0)‖ = Op(ρΨ,N) for some ρΨ,N → 0; (ii) for
some β < 1, ‖ΨN (x)−ΨN (y)‖ ≤ β‖x − y‖ for all N large enough and all x, y; (iii) ΠK

satisfies sup‖x−x0‖<δ ‖ΠK (x) − x‖ = Op(ρΠ,K) for some ρΠ,K → 0. Then there exists a unique
solution x̂ ∈ X to x = (ΠKΨN) (x) with probability approaching one (w.p.a.1) satisfying, with
xN = ΨN (xN),

‖x̂− x0‖ ≤ ‖x̂− xN‖+ ‖xN − x0‖ = Op(ρΠ,K) +Op(ρΨ,N).

as N →∞.

Proof. We first observe that due to (ii), there exists a unique solution xN = ΨN (xN) which
satisfies

‖xN − x0‖ = ‖ΨN (xN)−Ψ(x0)‖ ≤ ‖ΨN (xN)−ΨN (x0)‖+ ‖ΨN (x0)−Ψ(x0)‖

≤ β‖xN − x0‖+ ‖ΨN (x0)−Ψ(x0)‖,

and so ‖xN − x0‖ ≤ ‖ΨN (x0)−Ψ(x0)‖/ (1− β) = OP (ρΨ,N) . Next, combining (ii) and (iii), we
see that ΠKΨN is a contraction mapping w.p.a.1. with Lipschitz coeffient β, and so x̂ defined
in the theorem exists and is unique w.p.a.1. Moreover, by the same arguments employed in the
analysis of xN together with the fact that ‖xN − x0‖ < δ w.p.a.1,

‖x̂− xN‖ ≤ ‖ΠKΨN (xN)−ΨN (xN)‖/ (1− β) ≤ sup
‖x−x0‖<δ

‖ΠK (x)− x‖ = Op(ρΠ,K).

Theorem A.2. Suppose that in addition to the conditions stated in Theorem A.1, the follow-
ing ones are satisfied: (i) ρΨ,N {ΨN (x0)−Ψ(x0)} G in (X , ‖·‖) and (ii) ΨN (x0) is almost
surely Frechet differentiable at x0 with Frechet differential ∇ΨN (x0) [dm] : X 7→ X such that
‖ΨN (x)−ΨN (x0)−∇ΨN (x0) [x− x0]‖ = oP (‖x− x0‖) for all x in a neighbourhood of x0; (iii)
it satisfies ‖∇ΨN (x0)−∇Ψ(x0)‖op = op (1), where ‖∇Ψ(x0)‖op = sup‖dm‖=1 ‖∇Ψ(x0) [dm]‖.
Then {I −∇Ψ(x0)} [ρΨ,N {xN − x0}] G. If furthermore dm 7→ {I −∇Ψ(x0)} [dm] has a con-
tinuous inverse, then ρΨ,N {xN − x0} {I −∇Ψ(x0)}−1 [G].

Proof. Combining assumption (ii) with Lemma A.1,

0 = xN −ΨN (xN) = x0 −ΨN (x0) + {I −∇ΨN (x0)} [xN − x0] + oP (‖xN − x0‖)

= Ψ(x0)−ΨN (x0) + {I −∇ΨN (x0)} [xN − x0] + oP (ρΨ,N) ,

42

where, using (iii),

‖{I −∇ΨN (x0)} [xN − x0]− {I −∇Ψ(x0)} [xN − x0]‖ ≤ ‖∇ΨN (x0)−∇Ψ(x0)‖op ‖xN − x0‖

= oP (1)OP (ρΨ,N) = oP (ρΨ,N) .

The first part now follows from (i), while the second part follows by the continuous mapping
theorem.

B Proofs

Proof of Theorem 1. By the quasi-linearity of the social surplus function, for any V1, V2 ∈
B (Z)D,

ΓN (V1)(z, d) =
N∑
i=1

Gλ (u (Si (z)) + βV2 (Zi (z)) + β [V1 (Zi (z))− V2 (Zi (z))])wN,i (z, d)

≤
N∑
i=1

Gλ (u (Si (z)) + βV2 (Zi (z)) + β ‖V1 − V2‖∞1D)wN,i (z, d)

=
N∑
i=1

Gλ (u (Si (z)) + βV2 (Zi (z)))wN,i (z, d) + β ‖V1 − V2‖∞
N∑
i=1

wN,i (z, d)

= ΓN (V2)(z, d) + β ‖V1 − V2‖∞,

where 1d = (1,, 1) ∈ RD and we have used that
∑N
i=1wN,i (z, d) = 1 by construction. Simi-

larly, for any v1, v2 ∈ B (Z),

Γ̄N (v1)(z) ≤
N∑
j=1

Gλ

(
u(z, εj (z)) + β

N∑
i=1

v2 (Z1,i (z)) ◦ wz,N,i (z) + β ‖v1 − v2‖∞1D

)
wε,N,j (z)

=
N∑
j=1

Gλ

(
u(z, εj (z)) + β

N∑
i=1

v2 (Z1,i (z)) ◦ wz,N,i (z)
)
wε,N,j (z) + β ‖v1 − v2‖∞

= Γ̄N (v2)(z) + β ‖v1 − v2‖∞.

Next, we prove that VN,λ (z) is s ≥ 1 times continuously differentiable: We know that ΓN
is a contraction mapping on B (Z). But the set of s ≥ 0 continuously differentiable functions
Cs (Z) is a closed subset of B (Z) and so the result will follow if ΓN

(
Cs (Z)D

)
⊆ Cs (Z)D. But

for any V ∈ Cs (Z)D, it follows straightforwardly by the chain rule in conjuction with the stated
assumptions that ΓN (V)(z) =

∑N
i=1Gλ (u (Si (z)) + βV (Zi (z)))wN,i (z) is s ≥ 0 continuously

differentiable w.r.t. z.
For later use, we derive an expression of the first-order derivative ∂VN,λ (z) / (∂zj). To this

end, first note that 0 = {I − ΓN,λ} (VN,λ)(z). The implicit function theorem then implies that,
assuming that M 7→ [I −∇ΓN,λ]−1 (V) [M] is well-defined and continuous,

∂VN,λ (z)
∂zj

= {I −∇ΓN (VN,λ)}−1
[
Γ̇N,j(VN,λ)

]
(z) , (B.1)

43

where, with Ġd,λ(r) = ∂Gλ(r)
∂r(d) = exp

(
r(d)
λ

)
/
∑
d′∈D exp

(
r(d′)
λ

)
,

Γ̇N,j(V) (z) =
N∑
i=1

∑
d∈D

Ġλ,d (u (Si (z)) + βV (Zi (z))) ∂u (Si (z) , d)
∂zj

wN,i (z)

+
N∑
i=1

Gλ (u (Si (z)) + βV (Zi (z))) ∂wN,i (z)
∂zj

.

But it is easily checked that M 7→ ∇ΓN,λ (V) [M] is a continuous linear operator with norm
‖∇ΓN,λ‖op ≤ β. By the Banach inverse theorem, the inverse of I − ∇ΓN,λ is therefore well-
defined and continuous. For later use, also observe that∥∥∥∥∥∂V̂R (z)

∂zj

∥∥∥∥∥ ≤
∥∥∥∥{I −∇ΓN (V̂R)

}−1
∥∥∥∥ ∥∥∥Γ̇N,j(V̂R)

∥∥∥ ≤ (1− β)−1
∥∥∥Γ̇N,j(V̂R)

∥∥∥ ,
where

∥∥∥Γ̇N,j(V)
∥∥∥ ≤ N∑

i=1

∑
d∈D

Ġλ,d (u (Si (z)) + βV (Zi (z)))wN,i (z)×
∥∥∥∥∥∂u (·)
∂zj

∥∥∥∥∥
∞

+
N∑
i=1
|Gλ (u (Si (z)) + βV (Zi (z)))|

∥∥∥∥∥∂wN,i (z)
∂zj

∥∥∥∥∥
≤

∥∥∥∥∥∂u (·)
∂zj

∥∥∥∥∥
∞

+
N∑
i=1

∥∥∥∥∥∂wN,i (z)
∂zj

∥∥∥∥∥× {‖u (·)‖∞ + β ‖V (·)‖∞}

Proof of Theorem 2. We only show the result for Vλ; the proof for VN,λ is analogous. Applying
(3.6), the following holds for any V ,

|Γλ(V)(z, d)− Γ(V)(z, d)| ≤
∫
Z×E

∣∣∣∣max
d∈D

{
u(s′, d) + βV (z′, d′)

}
−Gλ

(
u(s′) + βV (z′)

)∣∣∣∣ dFs(ds′|z, d)

≤ sup
r∈RD

∣∣∣∣Gλ (r)−max
d∈D

r (d)
∣∣∣∣ ∫
Z×E

dFs(ds′|z, d)

=λ logD.

The result now follows from Theorem A.1 with ΠK (V) = V and ΨN = ΓλN .

Proof of Theorem 3. We apply Theorem A.1 with ΠK (V) = V and ΨN = ΓN . We define

ū (U ; z) := u (ψz (z, U) , ψε (z, U)) , w̄ (U ; z) = w (ψ (z, U) |z) , V̄ (U ; z, λ) = Vλ (ψz (z, U)) ,

so that we can write Γλ(Vλ)(z) = EU
[
Gλ

(
ū (U ; z) + βV̄ (U ; z, λ)

)
w̄ (U ; z)

]
and

ΓN,λ(V)(z) = Γ̃N,λ(V)(z)
WN (z) . (B.2)

44

where

Γ̃N,λ(Vλ)(z) = 1
N

N∑
i=1

Gλ
(
ū (Ui; z) + βV̄ (Ui; z, λ)

)
w̄ (Ui; z) , (B.3)

WN (z) = 1
N

N∑
j=1

w̄ (Ui; z) , (B.4)

Due to Assumption 1(ii), it follows from Theorem 2.7.11 of van der Vaart and Wellner (1996)
that the bracketing number of

W := {u 7→ w̄ (u; z) |z ∈ Z} (B.5)

satisfies N[](2εC,W, ‖ · ‖∞) - N(ε,Z, ‖·‖) - ε−dz . Thus, W is a PU -Donsker class since∫∞
0

√
logN[](ε,W, ‖ · ‖∞)dε -

∫∞
0
√

logN(ε,Z, ‖·‖)dε <∞, and so

sup
z∈Z
|WN (z)− 1| = OP

(
1/
√
N
)
, (B.6)

Next, observe that the function class G defined in Lemma 1 also is a Donsker class. Given that
both G andW are bounded classes, G·W is also Donsker and so supλ∈(0,λ̄)

∥∥∥Γ̃N,λ(Vλ)− Γλ(Vλ)
∥∥∥
∞

=

OP
(
1/
√
N
)
which combined with (B.6) yield supλ∈(0,λ̄) ‖ΓN,λ(Vλ)− Γλ(Vλ)‖∞ = OP

(
1/
√
N
)
.

We conclude from Theorem A.1 that supλ∈(0,λ̄) ‖VN,λ − Vλ‖∞ = Op(1/
√
N).

To show convergence of the first-order derivatives of the approximate value function, recall
that ∂VN,λ/ (∂zj) satisfies (B.1) while ∂Vλ/ (∂zj) solves

∂Vλ (z)
∂zj

= {I −∇Γλ(Vλ)}−1
[
Γ̇λ,j(Vλ)

]
(z) ,

,

where

∇Γλ(Vλ) [M] (z) = β
∑
d∈D

EU
[
Ġd,λ

(
ū (U ; z) + βV̄ (U ; z, λ)

)
M (U ; z, d) w̄ (U ; z)

]

and

Γ̇λ,j(V) (z) =
∑
d∈D

EU

[
Ġλ,d

(
ū (U ; z) + βV̄ (U ; z, λ)

) ∂ū (U ; z)
∂zj

w̄ (U ; z)
]

+ EU

[
Gλ

(
ū (U ; z) + βV̄ (U ; z, λ)

) ∂w̄ (U ; z)
∂zj

]
.

Here note that M 7→ {I −∇Γλ(Vλ)} [M] and M 7→ {I −∇ΓN,λ(VN,λ)} [M] are both bounded
linear operators with operator norm 1− β. In particular, they are both contraction mappings.
Thus, we can again apply A.1 with ΨN (M) = (I −∇ΓN,λ(VN,λ)) [M]. To show convergence of
ΨN (∂Vλ/ (∂zj)), first note that Ġλ,d (r) is Lipschitz in r uniformly in λ, c.f. the proof of Lemma

45

1. This combined with W being a Donsker class implies

‖∇ΓN,λ(VN,λ) [∂Vλ/ (∂zj)]−∇ΓN,λ(Vλ) [∂Vλ/ (∂zj)]‖∞ = OP
(
‖VN,λ − Vλ‖∞

)
= OP

(
1/
√
N
)
,

while, using arguments similar to the ones used in the first part of the proof in conjunction with
Lemma 1,

‖∇ΓN,λ(Vλ) [∂Vλ/ (∂zj)]−∇Γλ(Vλ) [∂Vλ/ (∂zj)]‖∞ = OP
(
1/
√
N
)
.

This completes the proof.

Proof of Theorem 4. We apply Theorem A.2. First recall thatM 7→ {I −∇Γλ}−1 (Vλ) [M] is
well-defined and continuous and that

√
N
(
Γ̃N,λ(Vλ)− Γλ(Vλ),WN − 1

)
 (G1,G2), c.f. proof

of Theorem 3. The latter result implies that

√
N {ΓN,λ(Vλ)− Γλ(Vλ)} =

√
N
{

Γ̃N,λ(Vλ)− Γλ(Vλ)
}
− Γλ(Vλ)

√
N {WN − 1}+ oP (1)

 G := G1 − Γλ(Vλ)G2.

It is easily seen that the influence function of ΓN,λ(Vλ) takes the form

g (U ; z, λ) =
{
Gλ

(
ū (U ; z) + βV̄ (U ; z, λ)

)
− Γλ(Vλ)

}
w̄ (U ; z) ,

and so G (z, λ) has covariance kernel

Ω (z1, λ1, z2, λ2) = EU
[
g (U ; z1, λ1) g (U ; z2, λ2)′

]
What remains to be shown is the uniform convergence of M 7→ ∇ΓN,λ(Vλ) [M] over some
suitable function set M chosen such that VN,λ − Vλ ∈ M w.p.a.1. In the case where Z is
finite, M is also finite-dimensional and so has finite bracketing number. In the case where Z
is not finite, we instead invoke Assumption 2 which implies that VN,λ and Vλ are both smooth,
c.f. Theorem 2. Moreover, from Theorem 3, supλ∈(0,λ̄) ‖VN,λ − ∂Vλ‖∞ = OP

(
1/
√
N)
)
and

supλ∈(0,λ̄) ‖∂VN,λ/ (∂z) − ∂Vλ/ (∂z) ‖∞ = OP
(
1/
√
N)
)
. Thus, we can choose M = {M ∈

C1 (Z)D : ‖M‖1,∞ < r} for some r < ∞, where ‖M‖s,∞ was defined in (4.9). By Theorem
2.7.1 in van der Vaart and Wellner (1996), N[] (ε,M, L1 (PU)) < ∞ for any given ε > 0 which
combined with the fact that the bracketing numbers of Ġd and W are also finite imply that
F = Ġd ·W ·M has finite bracketing number (where we have used that each of the three functions
classes are uniformly bounded in U). It now follows from the Glivenko-Cantelli Theorem that
supM∈M

∥∥∥∇Γ̃N,λ(Vλ) [M]−∇Γλ(Vλ) [M]
∥∥∥
∞

= op (1) which together with (B.6) yield the desired
result.

Proof of Theorem 5. The rate result is an immediate consequence of Theorem A.1 together
with Assumption 3. For the weak convergence result, we use the decomposition (??) where, by
Theorem A.1,

∥∥∥V̂N,λ − VN,λ∥∥∥∞ = Op(ρK) = oP
(
1/
√
N
)
while the second term converges weakly

according to Theorem 4.

46

C Lemmas

Lemma 1. Suppose that Assumption 2 hold. Then, for any λ̄ <∞,

G ≡
{
Gλ (u (ψ (z, ·)) + βVλ (ψz (z, ·))) | (z, λ) ∈ Z × (0, λ̄)

}
(C.1)

Ġd ≡
{
Ġλ,d (u (ψ (z, ·)) + βVλ (ψz (z, ·))) | (z, λ) ∈ Z × (0, λ̄)

}
, (C.2)

satisfy N (ε,G, ‖·‖2) - ε−v and N
(
ε, Ġd, ‖·‖2

)
- ε−v, d ∈ D, for some v ≥ 1.

Proof. We first analyze the properties of Vλ(z): It is easily seen that Γλ(V)(z) is Lipschitz w.r.t z
uniformly over λ ∈

(
0, λ̄

)
for any function V (z) which is Lipschitz. Thus,by the same arguments

as used in the proof of Theorem 1, Vλ (z) is Lipshitz in z uniformly over λ ∈
(
0, λ̄

)
. Moreover,

λ 7→ Γλ(V)(z) = EU [Gλ (ū (U ; z) + βV (ψz (z, U))) w̄ (U ; z)] is continuously differentiable by the
dominated convergence theorem which, by the implicit function theorem, in turn implies that
λ 7→ Vλ (z) is continuously differentiable with its derivative being on the form

∂Vλ (z)
∂λ

= {I −∇Γλ(Vλ)}−1 [∂λΓλ(Vλ)] (z) , (C.3)

where

∂λΓλ(V) (z) = E

∂Gλ
(
ū (U ; z) + βV̄ (U ; z, λ)

)
∂λ

w̄ (U ; z)

 ,
and

∂Gλ (r)
∂λ

= log

∑
d∈D

exp
(
r (d)
λ

)− ∑d∈D exp
(
r(d)
λ

)
r (d)

λ
∑
d∈D exp

(
r(d)
λ

) .

Write

Gλ (r) = λ log

∑
d∈D

exp
(
r (d)
λ

) = max
d∈D

r (d) + λ log

∑
d∈D

exp
(
r̄ (d)
λ

) ,
where r̄ (d) = r (d)−maxd∈D r(d) ≤ 0, d ∈ D, to obtain

∂Gλ (r)
∂λ

= log

∑
d∈D

exp
(
r̄ (d)
λ

)− ∑d∈D exp
(
r̄(d)
λ

)
r̄ (d) /λ∑

d∈D exp
(
r̄(d)
λ

) .

Since 1 ≤
∑
d∈D exp

(
r̄(d)
λ

)
≤ D and −De−1 ≤

∑
d∈D exp

(
r̄(d)
λ

)
r̄ (d) /λ ≤ 0 for all λ > 0 and

all r ∈ RD, we conclude that |∂Gλ (r) / (∂λ)| ≤ log (D) + De−1 and so is Lispchitz uniformly
in λ ∈ (0, λ̄). This in turn implies that supz,λ

∥∥∥∂Vλ(z)
∂λ

∥∥∥ < ∞. This combined with Assumption
1 implies that Gλ(u(ψ (z, ·)) + βVλ(ψz (z, ·)))|z) is Lipschitz w.r.t. (z, λ). It now follows from
Theorem 2.7.11 of van der Vaart and Wellner (1996) that the ε-covering number of G is of order
ε−v for some v ≥ 1.

The proof of the bound of N
(
ε, Ġd, ‖·‖2

)
is analogous except that we now use that Ġλ,d (r) ∈

47

(0, 1) so that {{
(u, t) |Ġλ,d(u (ψ (z, u)) + βVλ (ψz (z, u))) < t

}
| (z, λ) ∈ Z × (0, λ̄)

}
=

{{
(u, t) |Ġ−1

λ,d(t)− u (ψ (z, u)) + βVλ (ψz (z, u)) > 0
}
| (z, λ) ∈ Z × (0, λ̄)

}
and it now follows from Lemmas 2.6.15 and 2.6.18(iii) of van der Vaart and Wellner (1996) that
the ε-covering number of Ġd is of order ε−v for some v ≥ 1.

D Additional numerical details for sieve method

Chebyshev basis functions

Interpolation and approximation by Chebyshev polynomials of the first kind have well-known
good properties when approximating functions on bounded intervals. Recall that Chebyshev
polynomials are defined on [−1, 1]. We then choose 0 ≤ zmin < zmax < ∞ and define the kth
basis function as follows for any z ∈ R,

Bc,k(z) =

cos ((k − 1) arccos(T (z))) |T (z)| ≤ 1

(sign(T (z)))k |T (z)| > 1
.

where

T (z) = 2 z − zmin

zmax − zmin
− 1

linearly transforms our z’s to the interval [−1, 1]. In particular, the basis functions are “trun-
cated” and are set to one outside the interval

[
zmin, zmax

]
. This is done to avoid any erratic

extrapolation. For interpolation it is natural to use the Chebyshev nodes to minimize the pres-
ence of Runge’s phenomenon. For approximation, that is M > K, it is less clear what to do,
though one possibility is to augment the Chebyshev nodes associated with the order K − 1
Chebyshev polynomial with random numbers distributed uniformly across the interval we’re
considering.

B-Splines

We use cardinal B(asis)-splines to form our B-spline spaces, so they are represented by a knot
vector with equidistant entries (0, 1

M+1 ,
2

M+1 , . . . ,
M
M+1 , 1), and the Cox-de Boor recursion

B̄i,0(z) =

1 if ti ≤ z < ti+1

0 otherwise

B̄i,k(z) = z − ti
ti+k − ti

B̄i,k−1(z) + ti+k+1 − z
ti+k+1 − ti+1

B̄i+1,k−1(z).

For interpolation purposes we use the so-called Universal (Parameters) Method by Tjahjowidodo
et al. (2017). This amounts to choosing the M -grid to consist of the unique maximizers of all

48

Table 2: Coefficients on tensor product Chebyshev basis functions in the 2D model of engine
replacement for K = J2 = 25, N = 200.

J1\J2 1 2 3 4 5

1 -38.4713 -4.4754 1.6176 -0.256420 -0.064960
2 -4.4754 1.9662e-14 -6.2341e-15 -1.1318e-15 2.5392e-15
3 1.6176 7.2256e-15 5.6179e-14 -2.0548e-14 -3.3049e-15
4 -0.2564 -1.0110e-14 -8.8673e-15 7.5672e-15 -2.9838e-15
5 -0.0649 4.0869e-15 -1.5251e-14 3.4571e-15 1.4218e-15

Table 3: Coefficients on tensor product 2nd order B-Spline basis functions in the 2D model of
engine replacement for K = J2 = 25, N = 200.

J1\J2 1 2 3 4 5

1 -21.9800 -27.1194 -30.0583 -31.1025 -31.506
2 -27.1194 -32.2589 -35.1977 -36.2419 -36.6455
3 -30.0583 -35.1977 -38.1366 -39.1808 -39.5844
4 -31.1025 -36.2419 -39.1808 -40.2250 -40.6285
5 -31.5060 -36.6455 -39.5844 -40.6285 -41.0321

B-splines of degree k ≥ 1, or any point if k = 0 in which case we set it to the first K elements of
the knot vector. Since the points given by the Universal Method makes the interpolation quite
well-behaved, we also use these points for approximation, and augment them the same way as
we described for the Chebyshev Sieve spaces.

The above are defined on the unit interval [0, 1] and so the final basis functions are chosen
as

Bc,k(z) =

B̄k(T (z)) 0 ≤ T (z) ≤ 1

(sign(T (z))) otherwise
.

where now

T (z) = z − zmin

zmax − zmin
.

49

Table 4: Coefficients on the ten basis functions, and their products, upon convergence with
K = 502.

J1\J2 1 2 3 4 5 6 7 8 9 10

1 -52.200 -5.070 2.700 -1.170 0.478 -0.145 -0.006 0.038 -0.024 0.007
2 -5.070 -1.560 0.135 0.225 -0.057 -0.023 0.013 -0.006 0.004 0.001
3 2.700 0.135 -0.176 0.032 0.046 -0.021 -0.004 0.005 -0.002 0.001
4 -1.170 0.225 0.032 -0.087 0.019 0.019 -0.012 0.002 0.001 -0.001
5 0.478 -0.057 0.046 0.019 -0.038 0.010 0.009 -0.008 0.002 0.000
6 -0.145 -0.023 -0.021 0.019 0.010 -0.018 0.005 0.005 -0.004 0.002
7 -0.006 0.013 -0.004 -0.012 0.009 0.005 -0.009 0.003 0.002 -0.003
8 0.038 -0.006 0.005 0.002 -0.008 0.005 0.003 -0.005 0.002 0.001
9 -0.024 0.004 -0.002 0.001 0.002 -0.004 0.002 0.002 -0.003 0.001
10 0.007 0.001 0.001 -0.001 0.0002 0.002 -0.003 0.001 0.001 -0.002

50

	cover1
	CWP151919
	Introduction
	Model
	Simulated Bellman operators
	Approximate value functions
	Self-approximating method
	Sieve-based method
	Numerical implementation of the two methods
	Importance sampler
	Smoothing
	Function approximation
	Solving for the approximate value functions

	Theory
	Self-approximating method
	Sieve-based approximation of value functions

	Numerical results
	A model of optimal replacement
	Numerical implementation of simulated Bellman operators
	Convergence properties and computation times
	Approximation quality
	Effect of smoothing
	Performance in the bivariate case

	Conclusion
	Auxiliary Results
	Proofs
	Lemmas
	Additional numerical details for sieve method

