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Abstract

The LATE monotonicity assumption of Imbens and Angrist (1994) precludes “defiers,”

individuals whose treatment always runs counter to the instrument, in the terminology

of Balke and Pearl (1993) and Angrist et al. (1996). I allow for defiers in a model with

a binary instrument and a binary treatment. The model is explicit about the random-

ization process that gives rise to the instrument. I use the model to develop estimators

of the counts of defiers, always takers, compliers, and never takers. I propose separate

versions of the estimators for contexts in which the parameter of the randomization

process is unspecified, which I intend for use with natural experiments with virtual

random assignment. I present an empirical application that revisits Angrist and Evans

(1998), which examines the impact of virtual random assignment of the sex of the

first two children on subsequent fertility. I find that subsequent fertility is much more

responsive to the sex mix of the first two children when defiers are allowed.

∗I thank Neil Christy, Tory Do, Bailey Flanigan, Anastasiya Karpova, Pauline Mourot, and Matthew
Tauzer for excellent research assistance. I thank Charles Antonelli, Bennett Fauber, and Advanced Research
Computing at the University of Michigan for computational support. I also thank my parents and my sister
for their support. I have never thought of us a family of defiers, but we could be.
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1 Introduction

Consider a model with a binary treatment and a binary instrument. In the terminology of

Balke and Pearl (1993) and Angrist et al. (1996), “defiers” are individuals whose treatment

always runs counter to the instrument. The LATE monotonicity assumption of Imbens and

Angrist (1994) precludes defiers. However, it seems plausible that defiers could be possible

in some contexts.

For example, consider the context of Angrist and Evans (1998), in which the instrument

is an indicator for whether an individual’s first two children are of the same sex. The

treatment is an indicator for whether the individual has a third child. Having a third child

is a “treatment” in the sense that the authors are interested in the “treatment effect” of

having a third child on labor supply.

In the Angrist and Evans (1998) context, defiers are individuals that would have a third

child if and only if their first two children are of different sex. It seems plausible that such

individuals could exist. For example, suppose that some individuals want a big family, but

they want to avoid having three sons. Such individuals are defiers: they would have a third

child if their first two children were a son and a daughter, but they would not have a third

child if their first two children were sons.

Even though it seems plausible that defiers could exist, it is difficult to identify any

individual as a defier. This difficulty has been formalized with the concept of “potential

outcomes” (Rubin, 1974, 1977; Holland, 1986). In a model with a binary treatment and a

binary instrument, each individual has two potential outcomes for the treatment, one for

each value of the instrument, so there are four possible types of individuals. Defiers are one

type, whose treatment always runs counter to the instrument. The terminology of Angrist

et al. (1996) also includes “compliers,” whose treatment always aligns with the instrument,

“always takers” who are treated regardless of the value of the instrument, and “never takers”

who are untreated regardless of the value of the instrument. For each individual, only one

value of the instrument is realized, so only one potential outcome is observed, which makes

it difficult to identify any individual as a member of any one of the four groups. Returning

to the Angrist and Evans (1998) context, an individual with two sons and no third child

could be a defier or a never taker, depending on whether the individual would have had a

third child if the first two children had been of the same sex.

I propose estimators of the counts of defiers, always takers, compliers, and never takers in

a model with a binary instrument and a binary treatment. The model eliminates the LATE

montonicity assumption but maintains the LATE independence assumption of Imbens and

Angrist (1994). Random assignment of the instrument satisfies the the LATE independence

assumption. Accordingly, I use the model to be explicit about the randomization process that

gives rise to the instrument. To do so, I employ the language of a randomized experiment
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in which the instrument is a binary variable that indicates assignment to the intervention

group as opposed to the control group.

A key feature of the model is that the randomization process results in randomization

error. The randomization process is a Bernoulli process with a parameter that represents the

intended fraction of individuals in the intervention group. The randomization error is the

difference between the actual and intended numbers of individuals in the intervention group.

Using the distribution of the randomization error for defiers, compliers, always takers, and

never takers, I derive the probability of the observed data.

The observed data consist of four numbers. These numbers include the number of treated

individuals assigned to the intervention group, the number of untreated individuals assigned

to the intervention group, the number of treated individuals assigned to the control group,

and the number of untreated individuals assigned to the control group. I use the model to

derive the probability of the observed data as a function of the counts of defiers, compliers,

always takers, and never takers, given the intended fraction of individuals in the intervention

group. I use the probability of the observed data to specify the likelihood of the vector of

counts of defiers, compliers, always takers, and never takers, given the intended fraction of

individuals in the intervention group.

The first estimator is a maximum likelihood estimator that maximizes the probability

of the observed data, given the intended fraction of individuals in the intervention group.

This estimator is not yet computationally tractable via a variety of approaches. Therefore,

I also propose a second estimator. The second estimator is a least squares estimator that

minimizes a weighted sum of the randomization error within each type, given the observed

data and the intended fraction of individuals in the intervention group.

This paper is most closely related to my work in Kowalski (2019). In that paper, I present

a reduced form model with a binary instrument and a binary outcome. Here, I focus on a

first stage model with a binary instrument and a binary treatment. The LATE framework

of Imbens and Angrist (1994) imposes monotonicity in the first stage but not in the reduced

form. The main contribution of this paper is that I adapt the model and estimators from

Kowalski (2019) to the first stage. In doing so, I illustrate that there is a fundamental

isomorphism between the reduced form and the first stage that allows me to eliminate the

LATE monotonicity assumption in the first stage.

A second contribution of this paper is that I present separate versions of the estimators

for contexts in which the intended fraction of individuals in the intervention group is un-

specified. It might be desirable to specify this parameter in some contexts but not in others.

For example, if the protocol of a randomized experiment specifies an intended fraction of

individuals in the intervention group, it might be desirable to specify it in estimation. How-

ever, in a context of a natural experiment with virtual random assignment such as Angrist
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and Evans (1998), it is unclear what the intended fraction of individuals in the intervention

group should be, so it might be desirable to leave it unspecified in estimation. Accordingly,

I propose a separate version of each estimator that incorporates the intended fraction of

individuals in the intervention group as an additional parameter to be estimated. In do-

ing so, I adapt the maximum likelihood and least squares estimators for use with natural

experiments.

A third contribution of this paper is that I present an empirical application to Angrist and

Evans (1998), a natural experiment in which defiers seem plausible. The first stage estimate

shows that individuals whose first two children are of the same sex are approximately 6

percentage points more likely to have a third child than individuals whose first two children

are of opposite sex. Under the LATE monotonicity assumption, the first stage estimate

gives the share of compliers, so it implies that compliers make up approximately 6% of the

sample. Without the LATE monotonicity assumption, the first stage estimate gives the

share of compliers minus the share of defiers (Angrist et al., 1996). Using the least squares

estimator, I find that compliers make up approximately 25% of the sample and defiers make

up approximately 19% of the sample. Subsequent fertility responds to the sex mix of the first

two children for compliers and defiers. Given the large share of defiers, subsequent fertility

responds much more to the sex mix of the first two children when defiers are allowed.

I present the model in the next section, and I discuss estimation in Section 3. I present

the empirical application to Angrist and Evans (1998) in Section 4. I discuss implications

and conclude in Sections 5 and 6.

2 Model

Let Z represent a binary instrument. Using the language of a randomized experiment, Z

represents assignment to the intervention group, such that participants with Z = 1 are in the

intervention group, and participants with Z = 0 are in the control group. Let D represent a

binary treatment such that participants with D = 1 are treated and participants with D = 0

are untreated.

Each participant has a potential outcome type i. There are four possible potential out-

come types, as shown in the rows of the matrix in Figure 1. Never takers, type i = 1, are

untreated regardless of assignment to the intervention or control group: D = 0 if Z = 1

and D = 0 if Z = 0. Defiers, type i = 2, are untreated when assigned to the intervention

group and treated when assigned to the control group: D = 0 if Z = 1 and D = 1 if Z = 0.

Compliers, type i = 3, are treated when assigned to the intervention group and untreated

when assigned to the control group: D = 1 if Z = 1 and D = 0 if Z = 0. Finally, always

takers, type i = 4, are treated regardless of assignment to the intervention or control group:

D = 1 if Z = 1 and D = 1 if Z = 0.
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Figure 1: Matrix that Relates Potential Outcome Types and Observed Outcome Groups
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G(1) G(2) G(3) G(4)

N(2,1) N(2,2) N(2,3) N(2,4)t(2)

N(3,4)N(3,1) N(3,2) N(3,3)t(3)

Never Takers N(1,1) N(1,2)

Potential Outcome Type i

N(1,3) N(1,4)t(1)

Observed Outcome Group j

Always Takers

Defiers

Compliers

N(4,1) N(4,2) N(4,3) N(4,4)t(4)

𝐷𝐷 = �0 if 𝑍𝑍 = 1
0 if 𝑍𝑍 = 0

𝐷𝐷 = �0 if 𝑍𝑍 = 1
1 if 𝑍𝑍 = 0

𝐷𝐷 = �1 if 𝑍𝑍 = 1
0 if 𝑍𝑍 = 0

𝐷𝐷 = �1 if 𝑍𝑍 = 1
1 if 𝑍𝑍 = 0

𝑍𝑍 = 1
𝐷𝐷 = 1

𝑍𝑍 = 1
𝐷𝐷 = 0

𝑍𝑍 = 0
𝐷𝐷 = 1

𝑍𝑍 = 0
𝐷𝐷 = 0

Note. D is the treatment, and Z is the instrument, which represents assignment to the intervention group. N(i, j), the number
of participants of potential outcome type i in observed outcome group j, must be equal to zero in all shaded cells. The intended
fraction of participants in the intervention group is p.

After random assignment, each participant also belongs to an observed outcome group

j. There are four possible observed outcome groups, as shown in the columns of the matrix

in Figure 1. Group j = 1 includes treated individuals in the intervention group (Z = 1 and

D = 1). Group j = 2 includes untreated individuals in the intervention group (Z = 1 and

D = 0). Group j = 3 includes treated individuals in the control group (Z = 0 and D = 1).

Finally, group j = 4, includes untreated individuals in the control group (Z = 0 and D = 0).

Random assignment determines the observed outcome group j for each participant of

potential outcome type i. For example, consider a participant that is a never taker, type i =

1. Never takers are untreated regardless of assignment to the intervention group. Therefore,

a never taker assigned to the intervention group will belong to group j = 2, which includes

the untreated participants in the intervention group. Alternatively, a never taker assigned
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to the control group will belong to group j = 4, which includes the untreated participants

in the control group. A never taker will never belong to group j = 1 or group j = 3 because

participants in both of those groups are treated. As if solving a logic puzzle, I shade the

cells of the matrix in Figure 1 that represent combinations of potential outcome types and

observed outcome groups that cannot occur.

Random assignment follows a Bernoulli process with parameter p. In some contexts, the

experimental protocol specifies p as the intended fraction of participants in the intervention

group. In other contexts, such as natural experiments, nature determines p. Regardless, p

is the same for all participants. Therefore, the indicator for assignment to the intervention

group is an independent an identically distributed Bernoulli random variable with parameter

p.

In each row of the matrix in Figure 1, let t(i) denote the number of participants of type

i. The number of participants of type i who are assigned to the intervention group is a

binomial random variable with parameters t(i) and p. This follows because the sum of inde-

pendent and identically distributed Bernoulli random variables has a binomial distribution

with parameters that represent the number of terms in the sum and the parameter of the

Bernoulli distribution.

In each cell of the matrix in Figure 1, let N(i, j) denote the number of participants of

type i in group j, where I use a capital letter to emphasize that it is a random variable.

Per the matrix in Figure 1, the number of participants of type i who are assigned to the

intervention group is equal to N(i, 1)+N(1, 2). Therefore, number of participants of type i

who are assigned to the intervention group, N(i, 1)+N(i, 2) is a binomial random variable

with parameters t(i) and p.

Using deductive reasoning based on the shaded cells of the matrix in Figure 1, one term

of N(i, 1)+N(i, 2), the number of participants of type i who are assigned to the intervention

group, is equal to zero for each type i. Therefore, N(1, 2) is a binomial random variable

with parameters t(1) and p, N(2, 2) is a binomial random variable with parameters t(2)

and p, N(3, 1) is a binomial random variable with parameters t(3) and p, and N(4, 1) is a

binomial random variable with parameters t(4) and p. Therefore, N(1, 2), N(2, 2), N(3, 1),

and N(4, 1), the numbers of participants of each type assigned to the intervention group, are

independent random variables with known binomial distributions.

Furthermore, the numbers of participants of each type assigned to the control group,

N(1, 4), N(2, 3), N(3, 4), and N(4, 3) are known functions of the numbers of each type

assigned to the intervention group. The number of participants of type i in the control

group, N(i, 3) +N(i, 4) is equal to t(i) minus the number of participants in the intervention

group, N(i, 1) + N(i, 2). For example, the number of type i = 1 participants in the control

group, N(1, 4) is equal to the constant t(1) minus N(1, 2), a binomial random variable with
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parameters t(1) and p. Therefore, it is possible to express all of the nonzero participant counts

N(i, j) in terms of four independent random variables with known binomial distributions,

N(1, 2), N(2, 2), N(3, 1), and N(4, 1), and five constant terms: t(1), t(2), t(3), and t(4), and

p. For simplicity, I refer to the vector of the four constant terms t(1), t(2), t(3), and t(4) as

the type vector t.

In each column of the matrix in Figure 1, let G(j) denote the number of participants in

group j, and denote a realization of G(j) with g(j). The data consist of G(1), G(2), G(3),

and G(4). For simplicity, I refer to the vector of G(1), G(2), G(3), and G(4) with G, and

I denote a realization with g. With the notation, I emphasize that the data are grouped

data. Per the matrix, each group j includes participants of two different types, and each

G(j) is the sum of two nonzero participant counts N(i, j). Because I can express all of the

nonzero participant counts N(i, j) in terms of the type vector t and the intended fraction

of participants in the intervention group p, I can also express the probability of the data

vector G as a function of the product of four independent binomial random variables and

the constants t and p:

P (G = g | t, p) =

t(1)∑
`=0

binom
(
`, t(1), p

)
× binom

(
g(2)− `, t(2), p

)
× binom

(
t(1) + t(3)− g(4)− `, t(3), p

)
× binom

(
g(1) + g(4) + `− t(1)− t(3), t(4), p

)
× 1

{
4∑

j=1

g(j) =
4∑

i=1

t(i)

}
(1)

where 1{·} is the indicator function and binom(·) is the binomial probability mass function,

binom(k, r, p) = P (K = k | r, p) =

(
r

k

)
pk(1− p)r−k.

For completeness, I include the steps of the derivation in Appendix A.

3 Estimation

3.1 Maximum Likelihood Estimator

Equation 1 also yields the likelihood of the type vector t, given the realized data vector g

and the intended fraction of participants in the intervention group p. It also yields the the

likelihood of the type vector t and the intended fraction of participants in the intervention
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group p, given the realized data vector g:

P (G = g | t, p) = L(t | g, p) = L(t, p | g).

Therefore, the following is a maximum likelihood estimator for the type vector t:

max
t∈N4

0

L(t | g, p)

where t ∈ N4
0 indicates that the four elements of the type vector must belong to the set that

includes the natural numbers and zero, which follows because they represent the counts of

never takers, defiers, compliers, and always takers.

I propose the following alternative maximum likelihood estimator that does not require

the intended fraction of participants in the intervention group p to be specified:

max
t∈N4

0,p∈(0,1)
L(t, p | g),

where p ∈ (0, 1) indicates that the intended fraction of participants in the intervention group

p must be a fraction between 0 and 1. Both maximum likelihood estimators are nonlinear

programming problems that are difficult to solve, but a least squares estimator that also

follows from the model is more computationally tractable.

3.2 Least Squares Estimator

Let I ⊆ {1, 2, 3, 4} represent any subset of the elements of the type vector t. Using this

notation, the randomization error in any subset of the type vector t is as follows:

ε(I) =
∑
i∈I

[N(i, 1) + N(i, 2)]− p
∑
i∈I

t(i).

The randomization error represents the difference between the actual and intended number

of participants in the intervention group. The sum of the squared randomization error in all

possible subsets of the type vector t, weighted by the variance of the randomization error in

each subset, yields the following objective function S:

S(N | p) =
∑
I

1

p(1− p)
∑

i∈I t(i)
ε(I)2,

where N denotes the matrix of all N(i, j). Denote each element of the solution to the

following nonlinear programming problem with N̂(i, j):

min
N∈N4×4

0

S(N | p)
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s.t.
4∑

i=1

N(i, j) = g(j) for j = 1, 2, 3, 4,

N(1, 1) = N(1, 3) = N(2, 1) = N(2, 4) = N(3, 2) = N(3, 3) = N(4, 2) = N(4, 4) = 0

where N ∈ N4×4
0 indicates that each element N(i, j) of the 4 by 4 matrix N must belong

to the set that includes the natural numbers and zero. The least squares estimate of each

element of the type vector t, which I denote with t̂(i), is as follows:

t̂(i) =
4∑

j=1

N̂(i, j) ∀i = 1, 2, 3, 4.

I also propose a separate version of the least squares estimator that does not require the

intended fraction of participants in the intervention group p to be specified. That version

of the estimator includes p as a parameter to be estimated in the nonlinear programming

problem, instead of taking p as given.

4 Empirical Application

4.1 Data

I do not need access to microdata to apply the model to Angrist and Evans (1998) if I can

obtain the grouped data that I need from a table that reports the cross-tabulation of the

instrument and the treatment. In the Angrist and Evans (1998) context of interest, the

instrument is an indicator for whether a woman’s first two children are of the same sex, and

the treatment is an indicator for whether the woman has a third child. Table 3 of Angrist

and Evans (1998) reports a related cross-tabulation, but the results are in terms of fractions

instead of counts. To avoid rounding error in the implied counts, I derive the grouped data

from publicly available microdata.1 The microdata include women in the 1980 US Census

5 percent Public Use Microdata Sample aged 21–35, who were at least 15 years old at the

birth of their first child, who have two or more children, of which the oldest child is less than

18 and the second child is older than one year.

I report the required grouped data in the columns of Figure 2. There are g(1) = 86, 108

women who whose first two children are of the same sex who have a third child, and there

are g(2) = 113, 440 women whose first two children are of the same sex who do not have

1I obtain the data used by Angrist and Fernandez-Val (2013) in their replication of Angrist and Evans
(1998) from http://sites.bu.edu/ivanf/files/2014/03/m_d_806.dta_.zip. The note in Table 1 of
Angrist and Fernandez-Val (2013) states that the sample includes women aged 21–35 with at least two
children. The Stata code obtained from the same website as the data, which replicates the reported results,
indicates additional restrictions to mothers who were at least 15 years old at the birth of their first child,
whose oldest child is less than 18, and whose second child is older than one year. The sample includes 394,840
observations. Angrist and Evans (1998) report that their comparable sample includes 394,835 observations.
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a third child. There are g(3) = 72, 643 women whose first two children are of different sex

who have a third child, and there are g(4) = 112, 649 women whose first two children are of

different sex who do not have a third child.

Figure 2: Estimates from Replication of Angrist and Evans (1998)
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g(1) g(2) g(3) g(4)

86,108 113,440 72,643 122,649

22% 29% 18% 31%
151,060 0 76,344 0 74,716
(46,434) (0) (23,461) (0) (22,974)

38% 19% 19%
73,401 0 37,096 36,305 0
(46,430) (0) (23,470) (22,960) (0)

19% 9% 9%
96,911 48,978 0 0 47,933
(46,417) (23,464) (0) (0) (22,953)

25% 12% 12%
73,468 37,130 0 36,338 0
(46,413) (23,454) (0) (22,959) (0)

19% 9% 9%

Observed Outcome Group j

Potential Outcome Type i

Would not  have third 
child regardless

Never Takers t(1)

Would have third child 
iff first two different sex

Defiers

Would have third 
child regardless

Always Takers t(4)

t(2)

Would have third child 
iff first two same sex

Compliers t(3)

𝐷𝐷 = �0 if 𝑍𝑍 = 1
0 if 𝑍𝑍 = 0

𝐷𝐷 = �0 if 𝑍𝑍 = 1
1 if 𝑍𝑍 = 0

𝐷𝐷 = �1 if 𝑍𝑍 = 1
0 if 𝑍𝑍 = 0

𝐷𝐷 = �1 if 𝑍𝑍 = 1
1 if 𝑍𝑍 = 0

𝑍𝑍 = 1
𝐷𝐷 = 1

𝑍𝑍 = 1
𝐷𝐷 = 0

𝑍𝑍 = 0
𝐷𝐷 = 1

𝑍𝑍 = 0
𝐷𝐷 = 0

Note. D is an indicator for whether the women has a third child, and Z is an indicator for whether the woman’s first two
children are of the same sex. N(i, j), the number of women of potential outcome type i in observed outcome group j, must
be equal to zero in all shaded cells. The observed outcome group vector g is calculated from a sample that includes women
in the 1980 US Census 5 percent Public Use Microdata Sample aged 21–35, who were at least 15 years old at the birth of
their first child, who have two or more children, of which the oldest child is less than 18 and the second child is older than
one year. I estimate the intended fraction of participants in the intervention group p as the empirical fraction of participants
in the intervention group: p ≈ 0.51. I obtain estimates of the values of the matrix N and the potential outcome type vector t
via the least squares estimator using the BARON (Sahinidis, 2018) optimization package within MATLAB (The Mathworks,
Inc., 2016). Parentheses contain standard errors obtained as the standard deviation of estimates from 1000 bootstrap samples.
Percentages represent percentages of the full sample. They do not necessarily sum to 100% due to rounding.

4.2 Replication

Using the grouped data, I replicate the first stage estimate of Angrist and Evans (1998). The

first stage estimate is equal to the fraction of the intervention group that is treated minus the

fraction of the control group that is treated. The first stage estimate indicates that mothers

whose first two children are of the same sex are approximately 6 percentage points more likely
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to have a third child ((86, 108/(86, 108 + 113, 440)− 72, 643/(72, 643 + 122, 649) ≈ 0.06).

Under LATE monotonicity, the first stage estimate of the impact of the instrument on

the treatment gives the share of compliers (Angrist et al., 1996). Therefore, compliers make

up approximately 6 percent of the sample under LATE monotonicity. In the Angrist and

Evans (1998) context, compliers are mothers who would have a third child if and only if

their first two children were of the same sex. In addition to compliers, LATE monotonicity

also allows for never takers and always takers but not defiers. I include descriptions of all

four types of women in the Angrist and Evans (1998) context in the rows of the matrix in

Figure 2.

Never takers are women who would not have a third child regardless of the sex mix of

their first two children. Under LATE monotonicity, there are no defiers, so we can deduce

that women with two children of the same sex and no third child must be never takers.

We cannot identify all of the never takers in the sample because women with two children

of different sex and no third children could be never takers or compliers. However, under

LATE independence, the expected share of always takers with two children of the same

sex should be the same as the expected share of always takers in the sample. Therefore,

as shown by Imbens and Rubin (1997), we can use the grouped data to estimate that

always takers make up approximately 37 percent of the sample under LATE monotonicity

(72, 643/(72, 643 + 122, 649) ≈ 0.37).

Always takers are women who would have a third child regardless of the sex mix of

their first two children. Under LATE monotonicity, there are no defiers, so we can deduce

that women with two children of different sex and a third child must be always takers. We

cannot identify all of the always takers in the sample because women with two children of

the same sex and a third child could be always takers or compliers. However, under LATE

independence, as shown by Imbens and Rubin (1997), we can estimate that the share of

always takers in the full sample is equal to the share of always takers with two children of

different sex. Therefore, we can use the grouped data to estimate that never takers make

up approximately percent of the sample under LATE monotonicity (113, 440/(113, 440 +

86, 108) ≈ 0.57).

4.3 Results

The maximum likelihood estimator is not empirically tractable in this application via a

variety of approaches, but I report the estimates that I obtain via the least squares estimator

in Figure 2. Because the application is a natural experiment, I use the version of the least

squares estimator that estimates the intended fraction of participants in the intervention

group p. In practice, when I estimate p along with the other parameters, I obtain an

estimate of p that is equal to the empirical fraction of participants in the intervention group

within reported precision, which is approximately 51%. Therefore, in the reported results, to
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increase computational efficiency, I first estimate p as the empirical fraction of participants

in the intervention group, and then I estimate the other parameters.

I find that the sample includes 73,401 defiers, which represent approximately 19% of the

sample. I also find that the sample includes 96,911 compliers, which represent approximately

25% of the sample. In general, the first stage estimate is equal to the share of compliers

minus the share of defiers (Angrist et al., 1996). Indeed, the first stage estimate of 6% is

equal to 25% minus 19%. Under LATE monotonicity, the first stage estimate is an estimate

of the share of compliers because the share of defiers is zero. In this context, because the

share of defiers is so large, the first stage estimate of 6% is a dramatic underestimate of the

25% share of compliers.

Defiers and compliers both respond to the sex mix of the first two children in their

subsequent fertility. Together, defiers and compliers represent approximately 44% of the

sample, but they only make up 6% of the sample under LATE monotonicity. Therefore,

subsequent fertility is much more responsive to the sex mix of the first two children when

defiers are allowed.

Among the types that do not respond to the sex mix of the first two children, the never

takers and the always takers, I find that the estimated shares under LATE monotonicity

overestimate the size of both groups by approximately the same amount. I find that the

sample includes 151,060 never takers, which represent approximately 38% of the sample,

as opposed to 57% under LATE monotonicity. I also find that the sample includes 73,468

always, which represent approximately 19% of the sample, as compared to 37% under LATE

monotonicity.

5 Discussion

The presence of defiers complicates the interpretation of the instrumental variable estimate.

Under LATE monotonicity, the instrumental variable estimate is the average treatment effect

on compliers. In the absence of LATE monotonicity, the instrumental variable estimate is

equal to a weighted average of the treatment effect on compliers and the treatment effect

on defiers (Angrist et al., 1996). Even the reduced form estimate is difficult to interpret in

the presence of defiers. The textbook Mostly Harmless Econometrics notes that “We might

therefore have a scenario where treatment effects are positive for everyone yet the reduced

form is zero because effects on compliers are canceled out by effects on defiers” (Angrist and

Pischke (2009) page 156).

If the treatment effects on compliers and defiers are the same, then the instrumental

variable estimate still gives the treatment effect on compliers (Angrist et al., 1996). In the

model that eliminates LATE monotonicity, I could therefore impose an ancillary assumption

that treatment effects on compliers and defiers are the same to restore the interpretability
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of the LATE. However, one important advantage of the LATE framework is that it allows

for treatment effect heterogeneity, so the assumption that treatment effects are the same for

compliers and defiers is not necessarily desirable in general. For now, estimates of counts of

defiers can inform the plausibility of various ancillary assumptions on a case-by-case basis.

Estimates of the counts of defiers can also inform the plausibility of the LATE indepen-

dence assumption. In the context of Angrist and Evans (1998), the presence of a large share

of defiers is plausible. In other contexts, the presence of a large share of defiers might not be

plausible. In those contexts, an estimate of a large share of defiers could indicate a violation

of the LATE independence assumption. In the context of a randomized experiment that is

implemented carefully, the LATE independence assumption should be plausible.

6 Conclusion

The LATE framework of Imbens and Angrist (1994) imposes an asymmetry between the

first stage and the reduced form via an assumption of monotonicity in the first stage. In this

paper, I eliminate the monotonicity assumption in the first stage, which allows for defiers. I

estimate the count of defiers in an empirical application to Angrist and Evans (1998), and I

show that defiers represent a meaningful share of the sample. My estimates call into question

the validity of the LATE monotonicity assumption in that context.

A Appendix: Derivation of Equation 1

Below, I transition from (A1) to (A2) by expressing each element of the data vector as the

sum of two numbers of participants using deductive reasoning per the matrix in Figure 1.

Next, I transition to (A3) by expressing all terms as functions of the numbers of participants

of each type assigned to the intervention group, N(1, 2), N(2, 2), N(3, 1), and N(4, 1), which

are independently distributed binomial random variables. Because each term of the joint

probability in (A3) represents the sum of two independently distributed binomial random

variables, I apply the approach to deconvolution for discrete random variables to transition to

(A4). I rearrange terms in (A5) so that each term of the joint probability represents a single

binomial random variable. Finally, because all terms in the resulting joint probability are

independent, I express the joint probability as the product of four independent probabilities.

P (G = g | t, p) = P

(
G(1) = g(1), G(2) = g(2), G(3) = g(3), G(4) = g(4) | t, p

)
(A1)

= P

(
N(3, 1) + N(4, 1) = g(1),

N(1, 2) + N(2, 2) = g(2),

N(2, 3) + N(4, 3) = g(3),
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N(1, 4) + N(3, 4) = g(4) | t, p
)

(A2)

= P

(
N(3, 1) + N(4, 1) = g(1),

N(1, 2) + N(2, 2) = g(2),

N(2, 2) + N(4, 1) = t(2) + t(4)− g(3),

N(1, 2) + N(3, 1) = t(1) + t(3)− g(4) | t, p
)

(A3)

=

t(1)∑
`=0

P

(
N(1, 2) = `,

N(3, 1) + N(4, 1) = g(1),

` + N(2, 2) = g(2),

N(2, 2) + N(4, 1) = t(2) + t(4)− g(3),

` + N(3, 4) = t(1) + t(3)− g(4) | t, p
)

(A4)

=

t(1)∑
`=0

P

(
N(1, 2) = `,

N(2, 2) = g(2)− `,

N(3, 1) = t(1) + t(3)− g(4)− `,

N(4, 1) = g(1) + g(4) + `− t(1)− t(3),

4∑
j=1

g(j) =
4∑

i=1

t(i) | t, p
)

(A5)

=

t(1)∑
`=0

P
(
N(1, 2) = ` | t, p

)
× P

(
N(2, 2) = g(2)− ` | t, p

)
× P

(
N(3, 1) = t(1) + t(3)− g(4)− ` | t, p

)
× P

(
N(4, 1) = g(1) + g(4) + `− t(1)− t(3) | t, p

)
× 1

{
4∑

j=1

g(j) =
4∑

i=1

t(i)

}
(A6)

=

t(1)∑
`=0

binom
(
`, t(1), p

)
× binom

(
g(2)− `, t(2), p

)
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× binom
(
t(1) + t(3)− g(4)− `, t(3), p

)
× binom

(
g(1) + g(4) + `− t(1)− t(3), t(4), p

)
× 1

{
4∑

j=1

g(j) =
4∑

i=1

t(i)

}

where 1{·} is the indicator function and binom(·) is the binomial probability mass function,

binom(k, r, p) = P (K = k | r, p) =

(
r

k

)
pk(1− p)r−k.
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