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1 Introduction

The goal of most empirical studies is to estimate parameters of a population statistical

model using a random sample of data. The difference between estimates and population

parameters is uncertain because sample data do not have all the information about the

population. Statistical inference provides methods for quantifying this uncertainty. Typical

approaches include hypothesis testing and confidence sets. In a hypothesis test, the re-

searcher divides all possible population models into two sets of models. The null set includes

the models which the researcher suspects to be false. The alternative set includes all other

likely models. It is desirable to control the size of the test, that is, the error probability

of rejecting the null set when the null set contains the true model. A powerful test has a

small error probability of failing to reject the null set when the true model is outside the null

set. Another approach is to use the data to build a confidence set for the unknown value of

parameters of the true model. The researcher needs to control the error probability that the

confidence set excludes the true value. Error probabilities must be controlled uniformly over

the entire set of likely models. This paper studies necessary and sufficient conditions for the

impossibility of controlling error probabilities of hypothesis tests and confidence sets.

Previous work demonstrates the impossibility of controlling error probabilities of tests

and confidence sets in specific settings. There are essentially two types of impossibility

found in the literature. The first type of impossibility says that any hypothesis test has

power limited by size. That is, it is impossible to find a powerful test that controls size. We

call this impossibility type A. The second type of impossibility states that any confidence

set that is almost surely (a.s.) bounded has error probability arbitrarily equal to one (i.e.

zero confidence level). In other words, it is impossible for finite bounds to contain the true

value of parameters with high probability. We call this impossibility type B. Despite being

related, both types of impossibility often appear disconnected in the existing literature.

The first contribution of this paper is to connect the literature on impossible inference

and study the relationships between type A and type B impossibility. Figure 1 at the end

of this introduction summarizes the literature along with novel relationships derived in this

paper. To the best of our knowledge, impossibility type A dates back to the 1950s. In a

classic paper, Bahadur and Savage (1956) show both types of impossibility in the population

mean case. Any test for distinguishing zero mean from non-zero mean distributions has

power limited by size; and any a.s. bounded confidence interval for the population mean

has error probability equal to one.1 Bahadur and Savage (1956) employ the Total Variation

1The impossibility typically arises due to the richness of models in the class of all likely models. Impossi-
bility does not arise if we restrict the class to have only one model, which is the same as pointwise inference.
Uniform inference over a larger class of models is important because the researcher typically does not know
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(TV) metric to measure the distance between any two distributions. We refer to this notion

of distance as strong distance. They show that the null set of distributions with a certain

mean is dense with respect to (wrt) the TV metric in the set of distributions with all possible

means.

In fact, impossibility type A is very much related to the density of the convex hull of the

null set in the set of all likely models wrt the TV metric. Kraft (1955) targets the problem of

testing any two sets of distributions and arrives at an important generalization of the theory

of Bahadur and Savage (1956). Kraft’s Theorem 5 gives a necessary and sufficient condition

for the existence of a test whose minimum power is strictly greater than its size. Such tests

exist if, and only if, the minimal TV distance between the convex hulls of the null and

alternative sets is bounded away from zero. Kraft attributes the theorem to Le Cam, and

an analogous version of his theorem appears in Theorem 2.1 of Ingster and Suslina (2003).

Romano (2004) demonstrates that the null set being dense in the set of all likely models wrt

the TV metric is a sufficient condition for impossibility A. We derive a corollary of Kraft’s

Theorem 5 that says that the convex hull of the null set being dense in the set of all likely

models wrt the TV metric is a necessary and sufficient condition for impossibility type A.

The null set being dense implies that the convex hull of the null set is dense. Our corollary

connects the literature on impossibility type A wrt the TV metric.

A different branch of the econometrics literature focuses on impossibility type B of confi-

dence sets for a given parameter of interest, e.g. mean or regression slope. In the population

mean case, Bahadur and Savage (1956) arrive at impossibility type B by demonstrating the

following fact. For any mean value m, the set of distributions with mean equal to m is

dense in the set of all likely models wrt the TV metric. This is stronger than the sufficient

condition for impossibility type B used by Gleser and Hwang (1987). Gleser and Hwang

(1987) consider classes of models indexed by parameters in a Euclidean space. They obtain

impossibility type B whenever there exists one distribution P ∗ such that, for every value

of the parameter of interest, P ∗ is approximately equal to distributions with that value of

the parameter of interest wrt the TV metric.2 As with impossibility type A, impossibility

type B also holds if the condition of Gleser and Hwang (1987) holds over the convexified

space of distributions, which is a weaker sufficient condition. Donoho (1988) also provides

all aspects of the model at hand. For example, instruments could be weak, and if we incorrectly assume they
are always strong, pointwise inference conclusions are quite misleading.

2Gleser and Hwang (1987) restrict their analysis to distributions that have parametric density functions
wrt the same sigma-finite measure. Two distributions are indistinguishable if their density functions are
approximately the same pointwise in the data. In their setting, pointwise approximation in density functions
is the same as approximation in the TV metric. However, pointwise approximation in density functions
is still stronger than convergence in distribution. See Proposition 2.29 and Corollary 2.30, Van der Vaart
(2000).
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type B impossibility for parameters of interest that are functionals of distributions satis-

fying a dense graph condition in the TV metric. One example of such a functional is the

derivative of a probability density function (PDF). Althought it is impossible to obtain a.s.

bounded confidence sets, Donoho (1988) shows that it is possible to build valid one-sided

lower-bounded confidence intervals in some cases. Similarly, Low (1997) demonstrates the

impossibility of adaptation gains for the length of confidence intervals on linear functionals of

non-parametric functions. Low’s lower bound on the expected length of confidence intervals

grows to infinity as the class of possible models increases.

Dufour (1997) generalizes Gleser and Hwang (1987) to classes of models indexed by pa-

rameters in general metric spaces. Dufour (1997) also notes that impossibility type B implies

that tests constructed from a.s. bounded confidence sets fail to control size. Unlike all au-

thors mentioned thus far, Dufour (1997) relies on a notion of distance much weaker than

the TV metric, which is the notion of distance behind weak convergence or convergence in

distribution. He obtains impossibility type B whenever there exists one distribution P ∗ such

that, for every value of the parameter of interest, there exists a sequence of distributions

with that value of the parameter of interest that converges in distribution to P ∗. The weaker

notion of distance restricts the analysis to confidence sets whose boundary has zero proba-

bility under P ∗. The Lévy-Prokhorov (LP) metric is known to metrize weak convergence.

We refer to this notion of distance as weak distance. We demonstrate the impossibility type

B of Dufour also holds after convexifying the space of distributions.

We revisit impossibility type A when distributions are indistinguishable in the LP metric

as opposed to the TV metric. We find that impossibility type A applies to all tests that are

a.s. continuous under alternative distributions. A sufficient condition is that the convex hull

of the null set is dense in the set of all likely models wrt the LP metric. On the one hand, the

LP metric does not yield impossibility type A for every test function. On the other hand,

the class of a.s. continuous tests includes the vast majority of tests used in empirical studies.

Convergence in the TV metric always implies convergence in the LP metric. The converse

is not true, except in more restricted settings. For example, if convergence in distribution

implies uniform convergence of probability density functions (PDF), then Scheffé’s Theorem

implies convergence in the TV metric (Corollary 2.30 of Van der Vaart (2000)).

The second contribution of this paper is to note that a weaker notion of distance, such

as the LP metric, brings further insights into the problem of impossible inference. First, it

is often easier to prove convergence of models in terms of the weak distance than it is in the

strong distance. Application of arguments similar to Portmanteau’s theorem immediately

yields the LP version of impossible inference in an important class of models in economics that

rely on discontinuities. Second, the use of the LP metric helps researchers look for tests with
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non-trivial power. If models are indistinguishable wrt the LP metric, but distinguishable

wrt the TV metric, we show that a useful test must necessarily be a.s. discontinuous.

Third, the LP metric can be a sensible choice of distance to study hypothesis tests that

are robust to small model departures. For example, consider the null set of continuous

distributions versus the alternative set of discrete distributions with finite support in the

rational numbers. It is possible to approximate any such discrete distribution by a sequence

of continuous distributions in the LP metric. Hence, it is impossible to powerfully test

these sets with a.s. continuous tests. On the other hand, a positive TV distance between

null and alternative leads to a perfect test that rejects the null if observations take rational

values. Robustness leads us to ask whether observing rational numbers is indeed evidence

against the null hypothesis, or simply a matter of rounding or measurement error. The same

problem may arise in reduced-form or structural econometric models, even when the degree

of misspecification is small. Depending on the problem at hand, we may want to look for

tests that separate the closure of each hypothesis wrt the LP metric.

The third contribution of this paper is to point out impossible inference in microeconomet-

ric models based on discontinuities and macroeconometric models of time series. Numerous

microeconometric analyses identify parameters of interest by relying on natural discontinu-

ities in the distribution of variables. This is the case of Regression Discontinuity Designs

(RDD), an extremely popular identification strategy in economics. In RDD, the assignment

of individuals into a program changes discontinuously at a cutoff point in a variable such as

age or test score, as for Hahn, Todd, and Van der Klaauw (2001) and Imbens and Lemieux

(2008). For example, Schmieder, von Wachter, and Bender (2012) study individuals whose

duration of unemployment insurance jumps wrt age. Jacob and Lefgren (2004) analyze the

effect of students’ participation in summer school, which changes discontinuously wrt test

scores. Assuming all other characteristics vary smoothly at the cutoff, the effect of the

summer school on future performance is captured by a discontinuous change in average per-

formance at the cutoff. A fundamental assumption for identification is that performance

varies smoothly with test scores, after controlling for summer school. Models with continu-

ous effects are well-approximated by models with discontinuous effects. Kamat (2018) uses

the TV metric to show that the current practice of tests in RDD suffers from impossibility

type A. We revisit his result using the LP metric, and we show that impossibility type B

also holds in RDD.

A Monte Carlo experiment shows that the usual implementation of Wald tests in RDD, as

suggested by Calonico, Cattaneo, and Titiunik (2014), may have size above the desired sig-

nificance level, even under sensible model restrictions. We rely on data-generating processes

that are consistent with the empirical example of Lee (2008). Moreover, the simulations
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show that the Wald test has very little power, even after artificially controlling size. Slope

restrictions on the conditional mean functions do not correct the finite sample failure of the

typical Wald test.

In other applications, researchers assume a discontinuous change in unobserved charac-

teristics of individuals at given points. This is the idea of bunching, widely exploited in

economics. Bunching may occur because of a discontinuous change in incentives or a natural

restriction on variables. For example, the distribution of reported income may display a

non-zero probability at points where the income tax rates change, as in Saez (2010); or, the

distribution of average smoking per day has a non-zero mass at zero smoking. We show

that the problem of testing for existence of bunching in a scalar variable suffers from type

A impossibility for a.s. continuous tests but not for discontinuous tests.

Caetano (2015) uses the conditional distribution of variables with bunching and proposes

an exogeneity test without instrumental variables. The key insight is that bunching in the

distribution of an outcome variable given a treatment variable constitutes evidence of endo-

geneity. For example, consider the problem of determining the effect of smoking on birth

weight. A crucial assumption is that birth weight varies smoothly with smoking while con-

trolling for all other factors. Under this assumption, bunching is equivalent to the observed

average birth weight being discontinuous at zero smoking. The exogeneity test looks for such

discontinuity as evidence of endogeneity. Our point is that models in which birth weight is

highly sloped or even discontinuous based on smoking are indistinguishable from smooth

models. Therefore, we find the exogeneity test has power limited by size. The current im-

plementation of tests for the size of discontinuity leads to bounded confidence sets, so it also

fails to control size.

In addition to these applications with discontinuities, we verify the existence of impossible

inference in a macroeconometrics example where data are continuously distributed. We first

show that the choice of the weak versus the strong distance connects to the work of Peter

J. Huber on robust statistics and leads us to look at the closure of the set of covariance-

stationary time-series processes wrt the LP metric. This closure contains error-duration

models and Compound Poisson models. Our theory implies that it is impossible to robustly

distinguish these models from covariance-stationary models, even with discontinuous tests.

It is important to emphasize that our goal with these applications is not to say that valid

inference is never possible. Rather, we point practitioners to the need of either restricting

the class of models under consideration or the null hypothesis being tested. In the RDD

case, impossibility vanish if we restrict the variation of conditional mean functions on either

side of the cutoff. Kamat (2018) demonstrates the asymptotic validity of Wald tests under

uniform bounds on the derivatives of the conditional mean functions. Armstrong and Kolesár

6



(2018) derive minimax optimal-length confidence intervals in the case of a convex class of

conditional mean functions, which covers most smoothness or shape assumptions used in

econometrics. Alternatively, instead of limiting the whole class of models, researchers may

consider null hypotheses that restrict other aspects of the model, beyond simply the effect

at the threshold. For example, the null of smooth models with zero effect, or the null of no

treatment spillover, do not suffer from type A impossibility. We expand this discussion in

Section 4.1 with empirical examples in RDD.

The rest of this paper is divided as follows. Section 2 sets up a statistical framework

for testing and building confidence sets. It presents necessary and sufficient conditions for

impossible inference in general non-parametric settings. Section 3 connects the LP metric

to robust hypothesis testing. Section 4 gives multiple economic applications where both

types of impossibility arise. Section 5 presents a Monte Carlo simulation for an empirical

application of RDD. Section 6 concludes. An appendix contains all formal proofs. Figure 1

(on the next page) summarizes the literature on impossible inference, along with implications

of this paper.

2 Impossible Inference

The researcher has a sample of n observations Z = (Z1, . . . , Zn) that take values in Z,

a subset of the Euclidean space Rn×l. The data Z follow a distribution P , and the set of

all possible distributions considered by the researcher is P. Every probability distribution

P ∈ P is defined on the same sample space Z with Borel sigma-algebra B. It is assumed

that all distributions in P are absolutely continuous wrt the same sigma-finite measure.3 We

are interested in testing the null hypothesis H0 : P ∈ P0 versus the alternative hypothesis

H1 : P ∈ P1 for a partition P0,P1 of P. We characterize a hypothesis test by a function

of the data φ : Z → [0, 1]. If φ takes on only the values 0 and 1, the test is said to be

non-randomized, but said to be randomized otherwise. Given a sample Z, we reject the null

H0 if the function φ(Z) equals one, but we fail to reject H0 if φ(Z) = 0. If the function

φ(Z) is between 0 and 1, we reject the null with probability φ(Z) conditional on Z. The

unconditional probability of rejecting the null hypothesis under distribution P ∈ P is denoted

EP [φ].

The size of the test φ is supP∈P0
EP [φ]. The power of the test under distribution Q ∈

P1 is given by EQ[φ]. We say a test φ has power limited by size when supQ∈P1
EQ[φ] ≤

3Examples include Lebesgue measure for continuous distributions; counting measure for discrete distri-
butions; and sum of Lebesgue and counting measures for mixed continuous-discrete distributions.

7



F
ig

u
re

1:
Im

p
os

si
b
il
it

y
L

it
er

at
u
re

D
ia

gr
am

N
ot

es
:

th
e

d
ia

gr
am

il
lu

st
ra

te
s

th
e

re
la

ti
on

sh
ip

s
b

et
w

ee
n

th
e

d
iff

er
en

t
ve

rs
io

n
s

o
f

im
p

o
ss

ib
il

it
y

fo
u

n
d

in
th

e
li

te
ra

tu
re

.
A

rr
ow

s
w

it
h

o
u

t
la

b
el

s
o
r

a
rr

ow
s

w
it

h
re

fe
re

n
ce

s
in

sq
u

ar
e

b
ra

ck
et

s
ar

e
re

la
ti

on
sh

ip
s

m
a
d

e
ex

p
li

ci
t

b
y

th
is

p
a
p

er
.

Im
p

o
ss

ib
il

it
y

ty
p

e
A

sa
y
s

th
a
t

ev
er

y
te

st
fu

n
ct

io
n
φ

h
a
s

m
a
x
im

u
m

p
ow

er
le

ss
th

an
or

eq
u

al
to

si
ze

.
T

h
e

se
t

of
al

l
li

ke
ly

m
o
d

el
s

is
P,

w
h
ic

h
is

th
e

u
n

io
n

o
f

m
o
d

el
s

u
n

d
er

th
e

n
u

ll
P 0

a
n

d
a
lt

er
n

a
ti

ve
h
y
p

o
th

es
is
P 1

.
A

te
st

φ
is

sa
id

to
b

e
P 1

-a
.s

.
co

n
ti

n
u

ou
s

if
th

e
se

t
of

d
is

co
n
ti

n
u

it
y

p
o
in

ts
o
f
φ

h
a
s

ze
ro

p
ro

b
a
b

il
it

y
u

n
d

er
ev

er
y
Q
∈
P 1

.
T

h
e

se
t
co

(P
0
)

d
en

o
te

s
th

e
co

n
ve

x
h
u

ll
of

P 0
.

T
h

e
T

V
m

et
ri

c
is

th
e

T
ot

al
V

ar
ia

ti
on

m
et

ri
c

(E
q
u

a
ti

o
n

(2
.2

)
in

S
ec

ti
o
n

2
).

T
h

e
L

P
m

et
ri

c
is

th
e

L
év

y
-P

ro
k
h

o
ro

v
m

et
ri

c
(E

q
u

a
ti

o
n

(2
.3

)
in

S
ec

ti
on

2)
.

T
h

e
se

t
P 0

is
d

en
se

in
P

w
rt

a
m

et
ri

c
d
(·,
·)

if
,

fo
r

ev
er

y
Q
∈
P 1

,
th

er
e

ex
is

ts
a

se
q
u

en
ce
{P

k
} k
⊆

P 0
su

ch
th

a
t
d
(P
k
,Q

)
→

0
.

Im
p

o
ss

ib
il

it
y

ty
p

e
B

sa
y
s

th
at

ev
er

y
co

n
fi

d
en

ce
se

t
(C

.S
.)

is
u

n
b

o
u

n
d

ed
w

it
h

p
o
si

ti
ve

p
ro

b
a
b

il
it

y
fo

r
so

m
e

d
is

tr
ib

u
ti

o
n

s
in

P.
T

h
e

su
b

se
t
P(
m

)
d

en
o
te

s
a
ll

m
o
d

el
s

P
su

ch
th

at
a

p
ar

am
et

er
of

in
te

re
st
µ

(P
)

=
m

.
A

co
n

fi
d
en

ce
se

t
is

a
fu

n
ct

io
n
C

(·)
o
f

th
e

d
a
ta
Z

.
T

h
e

C
.S

.
is

sa
id

to
b

e
P
∗ -

a
.s

.
co

n
ti

n
u

o
u

s
if

th
e

b
ou

n
d

ar
y

of
th

e
se

t
{m
∈
C

(Z
)}

h
as

ze
ro

p
ro

b
a
b

il
it

y
u

n
d

er
P
∗

fo
r

ev
er

y
va

lu
e

o
f
m

in
th

e
ra

n
g
e

o
f
µ

(·)
.

T
h

e
m

o
d

el
P
∗

is
a

li
m

it
p

o
in

t
o
f
P(
m

)
w

rt
a

m
et

ri
c
d
(·,
·)

if
th

er
e

ex
is

ts
a

se
q
u

en
ce
{P

k
} k
⊆

P(
m

)
su

ch
th

a
t
d
(P
k
,P
∗ )
→

0
.

If
P 0

is
d

en
se

in
P,

th
en

co
(P

0
)

is
d

en
se

in
P

b
ec

a
u

se
P 0
⊆
co

(P
0
).

S
im

il
ar

ly
,

if
P
?

is
li

m
it

p
oi

n
t

of
P(
m

),
th

en
P
?

is
a
ls

o
li

m
it

p
o
in

t
o
f
co

(P
(m

))
.

C
o
n
v
er

g
en

ce
in

T
V

im
p

li
es

co
n
v
er

g
en

ce
in

L
P

.
T

h
e

co
n
ve

rs
e

is
n

o
t

ge
n

er
al

ly
tr

u
e.

S
ee

p
ag

e
10

fo
r

su
ffi

ci
en

t
co

n
d

it
io

n
s

fo
r

th
e

co
n
ve

rs
e

to
h

o
ld

.

8



supP∈P0
EP [φ]. Define co(P′) to be the convex hull of an arbitrary subset P′ ⊆ P. That is,

co(P′) =

{
P ∗ : P ∗ =

N∑
i=1

αiPi, for some N ∈ N, Pi ∈ P′ ∀i,

αi ∈ [0, 1] ∀i,
N∑
i=1

αi = 1

}
. (2.1)

A small distance between models in P0 and P1 determines testing impossibility. There

exist various notions of distance to measure the difference between two distributions P and

Q. A common choice in the literature on testing impossibility is the Total Variation (TV)

metric dTV (P,Q):

dTV (P,Q) = sup
B∈B
|P (B)−Q(B)| . (2.2)

Theorem 5 of Kraft (1955) says that there exists a test φ with minimum power strictly

greater than size if, and only if, there exists ε > 0 such that dTV (P,Q) ≥ ε for every

P ∈ co(P0) and Q ∈ co(P1). We restate his theorem below for convenience.

Theorem 1. (Kraft (1955)) Fix ε > 0. The following statements are equivalent:

(a) ∃φ : inf
Q∈P1

EQφ ≥ ε+ sup
P∈P0

EPφ, and

(b) ∀P ∈ co(P0), ∀Q ∈ co(P1), dTV (P,Q) ≥ ε.

An important implication of Theorem 1 for impossible inference is that it gives a necessary

and sufficient condition in terms of the convex hull of the null set being dense in the set of all

likely models wrt the TV metric. In other words, the convex hull co(P0) is indistinguishable

from (or dense in) the set of all likely models wrt the TV metric if, for any Q ∈ P1, there

exists a sequence {Pk}∞k=1 in co(P0) such that dTV (Pk, Q)→ 0. We demonstrate this fact in

the corollary below.

Corollary 1. The following statements are equivalent:

(a) for every Q ∈ P1, there exists a sequence {Pk}k ⊆ co(P0) such that dTV (Pk, Q) → 0,

and

(b) for every φ and Q ∈ P1, EQφ ≤ supP∈co(P0) EPφ.

The proof of this corollary, as well as all other proofs for the paper, is included in

the appendix. The striking result of Kraft (1955) stated in Theorem 1 makes the type

A impossibility found by Bahadur and Savage (1956) and Romano (2004) special cases of
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Corollary 1. In particular, Theorem 1 of Romano (2004) says that Corollary 1-(a) without

convexification is a sufficient condition for Corollary 1-(b). Notably, Romano (2004) finds

a positive result for testing population means. He demonstrates that the t-test uniformly

controls size in large samples with a very weak uniform integrability type of condition, and

that the t-test is also asymptotic minimax optimal.

Dufour (1997) uses the notion of distance associated with weak convergence to derive

impossibility type B. We say a sequence {Pk}∞k=1 converges in distribution to Q, if, for every

B ∈ B such that Q(∂B) = 0, Pk(B) → Q(B). Here, ∂B is the boundary of a Borel set B,

that is, the closure of B minus the interior of B. We denote convergence in distribution by

Pk
d→ Q. Convergence in distribution is equivalent to convergence in the Lévy-Prokhorov

(LP) metric (Dudley (1976), Theorem 8.3) :

dLP (P,Q) = inf{ε > 0 : P (A) ≤ Q(Aε) + ε for A ∈ B} (2.3)

where Aε = {x : ‖x− a‖ < ε for a ∈ A},

and ‖ · ‖ is the Euclidean norm on Rn×l.

Convergence of Pk to Q in the TV metric implies convergence in distribution. The

converse does not hold, in general.4 It is necessary to restrict the class of distributions in

order for convergence in the TV metric to imply convergence in distribution. For example,

suppose that Pk
d→ Q, that these distributions have common support [a, b] and PDFs fPk

,

fQ. Assume further that fPk
converges uniformly over [a, b]. Then, fPk

converges uniformly

to fQ (Theorem 7.17 of Rudin (1976)). Convergence of PDFs implies convergence in the

TV metric (Scheffé’s Theorem, see Corollary 2.30 of Van der Vaart (2000)). For a counter-

example where these conditions do not hold, consider the bunching example of Section 4.2.

The null is the set of distributions with a continuously differentiable CDF. The alternative

is the set of distributions with a mass point at x0 but continuously differentiable CDF

otherwise. For any CDF FQ in the alternative, there exists a sequence of CDFs FPk
in the

null that converges pointwise to FQ, so that convergence in distribution holds. Convergence

in TV does not hold because x0 has positive probability under Q but zero probability under

Pk for every k. It must be the case that the PDFs fPk
do not converge uniformly. In fact,

FQ has a jump discontinuity at x0, and the derivative of FPk
at x0 grows without limit as

k →∞.

4For example, a standardized binomial variable converges in distribution to a standard normal as the
number of trials goes to infinity and the probability of success is fixed. It does not converge in the TV metric
because the distance between these two distributions is always equal to one. In fact, consider the event equal
to the entire real line minus the support of the binomial distribution. This event has unit probability under
the normal distribution, but zero probability under the binomial distribution.
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On the one hand, it is true that the zero TV distance provides a necessary and sufficient

condition for testing impossibility. On the other hand, there are examples of models with

non-zero TV distance where it seems sensible that no powerful test should exist. Section

3 below formalizes this idea, but we start with a simple example for now. Consider the

null set of continuous distributions versus the alternative set of discrete distributions with

finite support in the rational numbers. It is possible to approximate any such discrete

distribution by a sequence of continuous distributions in the LP metric. We are led to think

the data generated by a null model is observationally equivalent to data generated by an

alternative model. This motivates us to revisit impossibility type A when distributions are

indistinguishable in the LP metric.

Assumption 1. For every Q ∈ P1, there exists a sequence {Pk}∞k=1 in co(P0) such that

Pk
d→ Q. In other words, the convex hull co(P0) is indistinguishable from (or dense in) the

set of all likely models wrt the LP metric.

Assumption 1 is a sufficient condition for impossibility type A, as described in Theorem

2.

Theorem 2. If Assumption 1 holds, then any hypothesis test φ(Z) that is a.s. continuous

under any Q ∈ P1 has power limited by size.

Remark 1. As noted by Canay, Santos, and Shaikh (2013), the topology induced by the

LP metric is not fine enough to guarantee convergence of integrals of any test function φ.

Nevertheless, the class of tests that are a.s. continuous under any Q ∈ P1 can be very large.

For example, take a test that rejects the null when a test statistic is larger than a critical

value: φ(Z) = I (ψ (Z) > c). This test is a.s. continuous if the function ψ is continuous

and Q ∈ P1 is absolutely continuous wrt the Lebesgue measure. Theorem 2 only requires a.s.

continuity under the alternative P1, and the null P0 may still contain discrete distributions.

Remark 2. We do not need to restrict Theorem 2 to the class of a.s. continuous tests

for every case of P. For example, consider P to be a subset of the parametric exponential

family of distributions with parameter θ of finite dimension. Then, for any test φ, the power

function of φ is continuous in θ, and Theorem 2 applies under Assumption 1 (Theorem 2.7.1,

Lehmann and Romano (2005)).

Remark 3. In many instances, Assumption 1 holds in both directions. That is, P1 is indis-

tinguishable from P0, and P0 is indistinguishable from P1 in the weak distance. For example,

Bahadur and Savage (1956) find that any distribution with mean m is well-approximated by

distributions with mean m′ 6= m, and vice-versa. Section 4 finds the same bidirectionality
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for models with discontinuities. If Assumption 1 holds in both directions, switching the roles

of P0 and P1 in Theorem 2 shows that power is equal to size.

It is useful to connect our LP version of testing impossibility with the impossibility of

controlling error probability of confidence sets found by Gleser and Hwang (1987) and Dufour

(1997). Define a real-valued function µ : P → R, for example, mean, variance, median, and

so on. The set of distributions P is implicitly chosen such that µ is well-defined. We

consider real-valued functions for simplicity, and results for µ with more general ranges are

straightforward to obtain. The range of µ is µ(P). Suppose we are interested in a confidence

set for µ(P ) when the true model is P ∈ P. A confidence set takes the form of a function

C(Z). For a model P ∈ P, the coverage probability of C(Z) is given by P [µ(P ) ∈ C(Z)].

The confidence region C(Z) has confidence level 1 − α (i.e. error probability α) if C(Z)

contains µ(P ) with probability at least 1− α:

inf
P∈P

P [µ(P ) ∈ C(Z)] = 1− α. (2.4)

For any value m ∈ µ(P), we define the subset P(m) by

P(m) = {P ∈ P : µ(P ) = m}. (2.5)

Impossibility type B says that confidence sets that are a.s. bounded under some distri-

butions in P have zero confidence level. The next assumption gives a sufficient condition for

impossibility type B in terms of the LP metric.

Assumption 2. There exists a distribution P ∗ (not necessarily in P) such that for every

m ∈ µ(P) there exists a sequence {Pk}k in co(P(m)) such that Pk
d→ P ∗.

If Assumption 1 holds with P0 = P(m) for every m ∈ µ(P), then Assumption 2 holds.

In fact, if P(m) is dense in P for every m, then Assumption 2 is satisfied for P ∗ = Q for

any Q ∈ P1. Some models satisfy Assumption 1 with P0 = P(m) for every m ∈ µ(P)

and suffer from both types of impossibility. Examples of this case include the problem of

testing the mean (Bahadur and Savage (1956)), or the problem of testing the size of the

discontinuity in RDD (Section 4.1). Nevertheless, some other models satisfy Assumption 2

but not Assumption 1 for every m. These models suffer from impossibility type B. Examples

include the problem of ratio of regression parameters (Gleser and Hwang (1987)), and the

problem of weak instruments (Dufour (1997)).

The next theorem encapsulates the impossibility of controlling coverage probabilities

found by Gleser and Hwang (1987) and Dufour (1997). It differs from Gleser and Hwang
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(1987) because Assumption 2 uses the LP distance. It differs slightly from Dufour (1997)

because Assumption 2 is stated in terms of the convex hull of P(m) rather than simply P(m).

Theorem 3. Suppose Assumption 2 holds with P ∗. Assume the confidence set C(Z) of

Equation (2.9) has confidence level 1 − α, and P ∗(∂{m ∈ C(Z)}) = 0 for every m ∈ µ(P).

Then,

∀m ∈ µ(P) : P ∗ [m ∈ C(Z)] ≥ 1− α. (2.6)

For a set A ⊂ R, define U [A] = sup{c : c ∈ A}, L[A] = inf{c : c ∈ A}, and D[A] =

U [A]−L[A]. Assume {U [C(Z)] ≥ x}, {L[C(Z)] ≤ −x}, and {D[C(Z)] ≥ x} are measurable

events for every x ∈ [0,∞]. If D[µ(P)] =∞, then

P ∗ [D[C(Z)] =∞] ≥ 1− α. (2.7)

In addition, if P ∗ [∂{D[C(Z)] =∞}] = 0, then

∀ε > 0 : sup
P∈Bε(P ∗)∩P

P [D[C(Z)] =∞] ≥ 1− α (2.8)

where Bε(P
∗) = {P : dLP (P, P ∗) < ε}.

Remark 4. Part (2.8) above implies the following. If 1 − α > 0, then the confidence set

C(Z) is unbounded with strictly positive probability for some P ∈ P. Alternatively, the

contrapositive of part (2.8) says the following. Any confidence set that is a.s. bounded under

distributions in P in a neighborhood of P ∗ has 1− α = 0 confidence level.

Remark 5. It is possible to obtain a slightly more general version of Theorem 3 using As-

sumption 2 stated in terms of the TV metric as opposed to the LP metric. In that case, Theo-

rem 3 would be true for confidence sets that do not necessarily satisfy P ∗(∂{m ∈ C(Z)}) = 0

and P ∗ [∂{D[C(Z)] =∞}] = 0.

A common way of obtaining confidence sets is to invert hypothesis tests. The function

C(Z) is constructed by inverting a test in the following manner. For a given m ∈ µ(P),

define P0,m = P(m) and P1,m = P \ P(m), where A \B denotes the remainder of set A after

we remove the intersection of set B with set A. If φm(Z) is a test for P0,m vs P1,m, then

C(Z) = {m ∈ µ(P) : φm(Z) = 0}. (2.9)

For every m ∈ µ(P), the test φm(Z) has size α(m) = supP∈P0,m
EP [φm(Z)]. The confi-

dence level of C(Z) is equal to one minus the supremum of α(m) over m ∈ µ(P). The proof
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of this claim is found in Lemma 1 in the appendix.

Theorem 3 along with Lemma 1 imply that tests that invert into a.s. bounded confidence

sets fail to control size.

Corollary 2. Suppose Assumption 2 holds, and µ(P) is unbounded. Let the confidence set

C(Z) be constructed from tests φm(Z), as in Equation (2.9). Assume C(Z) has confidence

level 1 − α and satisfies the assumptions of Theorem 3. If C(Z) is a.s. bounded under

distributions in P in a neighborhood of P ∗, then α = 1. Consequently, for every ε > 0, there

exists mε ∈ µ(P) such that sup
P∈P0,mε

EPφmε > 1− ε.

Remark 6. Moreira (2003) provides numerical evidence that Wald tests can have large null

rejection probabilities for the null of no causal effect (m = 0) in the simultaneous equations

model. To show that Wald tests have null rejection probabilities arbitrarily close to one, the

hypothesized value m for the null would need to change as well. He also suggests replacing

the critical value by a critical value function of the data. This critical value function depends

on the hypothesized value m. Our theory shows that this critical value function is unbounded

if we change m freely.

3 Weak Convergence and Robustness

This section presents further motivation for using the LP metric to study impossible

inference. It relates the weak topology induced by the LP metric to the theory developed by

Peter J. Huber, who is the most prominent researcher in the area of robust statistics. We

refer the reader to Huber and Ronchetti (2009) for more details. We start this section with

a discussion of robust statistical procedures. An example of impossible robust hypothesis

testing in time-series models appears in Section 4.4.

Several statistical procedures are susceptible to small model departures. This perception

has led researchers to propose alternative procedures that are less sensitive to the break-down

of usual assumptions. Huber studies different ways of defining a set of model departures

Pε. One possibility is to assume that the actual distribution of the data is a mixture of a

distribution in P with a distribution from a more general set of models M. In other words,

P may be contaminated with probability ε:

Pε = {H ∈M; ∃F ∈ P and ∃G ∈M; H = (1− ε)F + ε G} , (3.1)

where M is larger than the original P. Estimators or tests are said to be robust if they have

minimax properties over the set of model departures Pε. To highlight the importance of
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robust procedures, we briefly discuss two examples.

The first example of a robust procedure involves point-estimation. The researcher has a

sample of n iid observations Zi ∈ Rl, i = 1, . . . , n. The set of joint probability distributions P
is indexed by a parameter θ and admits marginal densities p (Zi; θ) wrt the same dominating

measure (e.g. Lebesgue). The maximum likelihood estimator (MLE) then minimizes∑n

i=1
− ln p (Zi; θ) .

This estimator θ̂ solves ∑n

i=1
−
∂p
(
Zi; θ̂

)
∂θ

.
1

p
(
Zi; θ̂

) = 0.

Under the usual regularity conditions, θ̂ is consistent, asymptotically normal, and efficient

within the class of regular estimators.

A common choice for M is the set of distributions with symmetric, thick-tailed densities.

It is well-known that optimal procedures derived under Gaussian distributions (sample drawn

from P) break down if there is a probability ε of observing outliers (sample drawn from M).

Huber (1964) suggests M-estimators. To give a specific example of a robust M-estimator,

consider the regression model

Yi = X ′iθ + Ui,

where we observe Zi = (Yi, Xi) but do not observe the zero-mean normal errors Ui. The

MLE θ̂ minimizes ∑n

i=1
(Yi −X ′iθ)

2
,

and satisfies ∑n

i=1
Xi

(
Yi −X ′i θ̂

)
= 0.

More generally, a M-estimator θ̂ minimizes∑n

i=1
ρ (Yi −X ′iθ) ,

and satisfies ∑n

i=1
Xi ψ

(
Yi −X ′i θ̂

)
= 0

for choices of functions ρ and ψ. In the MLE case above, ρ(u) = u2 and ψ(u) = u.

An M-estimator θ̂ is said to be asymptotically minimax optimal among a class of es-

timators if it minimizes the maximal asymptotic variance over distributions in Pε. The
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M-estimator associated with the functions

ρk (u) =

{
u2/2 if |u| ≤ k

k |u| − u2/2 if |u| > k
and ψk (u) = max {−k,min (k, u)} (3.2)

are known to be asymptotically minimax optimal for model contamination. The constant k

depends on the deviations ε in (3.1). As ε → 0, the truncation parameter k → ∞. As the

model departure is small, the M-estimator approaches the MLE estimator. If ε → 1, the

parameter k → 0. As the contamination is arbitrarily large, the M-estimator approaches the

least absolute deviation (LAD) estimator.

The second example of a robust procedure is in hypothesis testing. Consider the problem

of testing a simple null P0 against a simple alternative P1. Assume both P0 and P1 have

densities p0 and p1 wrt the Lebesgue measure. For a sample X = (X1, ..., Xn), the likelihood

ratio (LR) test rejects the null if and only if

∏n

i=1

p1 (Xi)

p0 (Xi)
> cα,

where cα is the 1 − α quantile of the distribution of the left-hand side under the null. The

Neyman-Pearson Lemma asserts that the LR test is optimal, as it maximizes power within

the class of tests with correct size α.

Similar to model departures in the point-estimation example above, we consider the

possibility that the null and alternative hypotheses are misspecified. The ε-contaminated

null and alternatives are

Pi,ε = {H ∈M;∃F ∈ Pi and ∃G ∈M;H = (1− ε)F + ε G} , (3.3)

for i = 0, 1. The new sets P0,ε and P1,ε allow for local departures for arbitrary distributions

in M. A minimax optimal hypothesis test maximizes the minimal power over P1,ε within the

class of tests with correct size over P0,ε.

Huber (1965) shows that the minimax test to these model departures rejects the null if

and only if ∏n

i=1
πk

(
p1 (x)

p0 (x)

)
> cα,

where

πk (w) = max {k1,min (k2, w)} ,

for constants k = (k1, k2) that depend on the size of the departure ε. As ε→ 0, the constant

k1 approaches zero, and k2 diverges to infinity. Hence, as the departure decreases, the robust
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test approaches the usual LR test.

In the two examples of robust procedures given above, arbitrarily small model departures

(ε → 0) do not affect the solution to the minimax problem. That is, as ε approaches zero,

the robust estimator converges to the MLE, and the robust test converges to the LR test.

These limiting solutions remain the same, even if we ignore model departures (ε = 0). These

inference procedures target a parameter which is a functional of the underlying distribution

P ∈ Pε. These functionals vary smoothly wrt ε as ε → 0. Robustness is associated with

smoothness of the functional, but such smoothness may not always occur in other settings.

Our work on impossible inference and the different metrics connects to Huber’s work on

robustness when we look at the following definition of model departure. For a metric space

(M, d), the set of model departures is defined as an ε-neighborhood of P:

Pε = {H ∈M;∃F ∈ P s.t. d (F,H) ≤ ε} .

The set Pε is closed.5 The set
⋂
ε>0 Pε is also closed and coincides with P, the closure of

P. Hence, the set P is the minimal set of the Huber-type model departures Pε containing P.

The minimal set of model departures crucially depends on a choice for the metric d.

Aside from the Lévy-Prokhorov (LP) and the Total Variation (TV) metrics, there are many

choices of metrics for spaces of probability measures: Kolmogorov, Hellinger, and Wasser-

stein, among others. Gibbs and Su (2002) provide a review. Which metric shall we choose?

The choice of the metric on the space of models M induces a topology V on that space.

Parameters of interest are functionals µ : (M,V) → (R,U) where U is the topology on the

R space. Robustness is about the continuity of the functional µ, which crucially depends on

the choices of topologies V and U . For the real line, it seems reasonable to work with the

smallest topology involving all open sets of the form (a, b). However, there are many choices

of topologies for the set of measures M.

As the set of continuous functionals µ grows, the topology becomes finer on the domain

of µ. Let us consider a simple example to illustrate this point. Take two topological spaces,

(R,V) and (R,U), and a function ψ (x) = x. Continuity of this simple function requires

ψ−1(U) ∈ V for every open set U ∈ U . Take U = (0, 1), then ψ−1 (U) = (0, 1). If we choose

the coarsest topology V= {∅,R}, then even this simple function is not continuous. It seems

reasonable to require all linear functions to be continuous. If the topology V is generated

by all open sets of the form (a, b), then all linear functions are continuous. Of course, other

non-linear functions may be continuous as well; e.g., ψ (x) = x2. This example makes the

5In fact, take an arbitrary convergent sequence Hn → H, such that Hn ∈ Pε ∀n. To show H ∈ Pε, pick an
arbitrary F ∈ P. It is true that d(Hn, F ) ≤ ε ∀n. Therefore, d (F,H) ≤ d (F,Hn)+d (Hn, H) ≤ ε+d (Hn, H).
Taking the limit as n→∞ gives d (F,H) ≤ ε.
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point that continuity depends heavily on the topology V associated to the domain of the

function. If a function is continuous for a topology V , then it is also continuous for a finer

topology. This goes back to the discussion of robustness as continuity of a functional µ.

If we choose a fine topology, then many statistical procedures will be deemed robust,

because many functionals will be continuous. If we choose a coarse topology, then fewer

statistical procedures will be robust. However, if a statistical procedure is robust in the

coarse topology, it is also robust in the fine topology. Among the commonly-used notions of

distance in measure spaces, the notion of distance behind weak convergence or convergence

in distribution induces the coarsest topology. The LP metric is a notion of distance that

metrizes weak convergence (Dudley (1976), Theorem 8.3). To be conservative, if we were

to choose one metric, we would choose one that metrizes weak convergence. After all, if a

functional is continuous wrt the topology induced by the LP metric, it is also continuous

wrt the stronger topologies induced by the Kolmogorov or TV metrics.

Another question is whether we should be stricter with robustness and look for an even

weaker topology than the weak topology induced by the LP metric. In perfect analogy to

the real line example, the weak topology is the coarsest topology that guarantees continuity

for all functionals of the form

µ (P ) =

∫
g dP, (3.4)

for g bounded and continuous. It seems reasonable, after all, to require µ to be continuous

when g is a bounded and continuous function. If we choose a weaker topology, then not even

µ of this form will be continuous.

In hypothesis testing, robustness over a minimal set of model departures motivates test-

ing P0 against P1 instead of testing P0 against P1. Allowing for robustified hypotheses P0

and P1 potentially protects us against numerical approximation errors, misspecified mod-

els, measurement errors, and optimization frictions, among other deviations from the set of

models we are testing. Robustness of inference procedures for µ that are as simple as (3.4)

requires a topology no weaker than the topology induced by the LP metric. Therefore, we

use the LP metric to define the closure of a set for robust hypothesis testing. We give two

simple examples to strengthen the argument of why the LP metric may be a sensible choice.

The first example of robust hypothesis testing using the LP metric compares extremely

simple discrete distributions under both null and alternative hypotheses. Take X to be a

Bernoulli random variable andXn = X+1/ (1 + n) for n ∈ N. Let PX denote the distribution

of X. The minimal TV distance between P0 =
{
PXn for n ∈ N

}
and P1=

{
PX
}

is equal to

one. According to Theorem 5 of Kraft (1955), there exists a test for P0 vs P1 with non-trivial

power. For example, define a test which rejects the null if we observe the values 0 or 1, but
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fails to reject the null otherwise. This test has size equal to zero and power equal to one.

Should we take the values 0 and 1 as evidence against the null? Or should we think instead

that the null could have led to those same values, for all practical purposes? In this example,

we note that P1⊂P0, where the closure is defined wrt the LP metric.6 Hence, the minimal

TV distance between P0 and P1 is equal to zero. After we robustify the null set to P0, it

becomes impossible to find any test with power greater than size (Corollary 1). However, if

we define the closure of P0 wrt the TV metric, say PTV0 , the minimal TV distance between

PTV0 and P1 is non-zero, which means it is still possible to powerfully distinguish these sets.

The second example of robust hypothesis testing using the LP metric uses the multino-

mial approximation to continuous distributions. Take P0 as the collection of multinomial

distributions, with each support being a finite subset of rational numbers. Let P1 be the set

of continuous distributions. The minimal TV distance between P0 and P1 is one, and it is

possible to powerfully distinguish these sets. Robustness leads us to ask whether observing

rational numbers is indeed evidence of the null hypothesis, or simply a matter of rounding

or measurement error. The closure P0 wrt the LP metric contains continuous distributions,

and the minimal TV distance between P1 and P0 is zero. After we robustify the null set to

P0, it becomes impossible to powerfully test these hypotheses.

Both in the Bernoulli and multinomial examples, it becomes clear that the LP closure

of the null set robustifies the testing procedure. The next step is to check the TV distance

between the robustified null and alternative sets as a way to search for robust tests with

non-trivial power. The use of the TV metric in the second step is justified by a corollary

of Theorem 5 of Kraft (1955). Corollary 1 demonstrates that a necessary and sufficient

condition for the existence of tests with non-trivial power is that the null set is not dense in

the set of all distributions wrt the TV metric.

4 Applications

In this section, we apply our theory to multiple economic examples. The first three exam-

ples are of models with discontinuities: RDD, bunching in a scalar variable, and exogeneity

tests based on bunching. In these settings, the proof of the LP version of impossible infer-

ence follows arguments similar to Portmanteau’s Theorem. That is, the indicator functions

are approximately the same as the steep continuous functions using the weak distance. The

problem of testing for the existence of bunching in a scalar variable differs from the other

applications with discontinuities because there exists a discontinuous powerful test. A fourth

6In fact, Fn (x) = P (Xn ≤ x) = P (X ≤ x− 1/n), Fn (x)→ P (X < x) = F (x−), F (x−) 6= F (x) ⇔ x ∈
{0, 1} where {0, 1} are the only discontinuity points of F , so PX is a limit point of P0.
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example is in time series; it connects the LP version of impossible inference to Huber’s work

on robust statistics. This connection leads to the conclusion that it is impossible to pow-

erfully discriminate error-duration or Compound Poisson models from covariance-stationary

models.

4.1 Regression Discontinuity and Kink Designs

The first example is the Regression Discontinuity Design (RDD), first formalized by Hahn,

Todd, and Van der Klaauw (2001) (HTV01). RDD has had an enormous impact in applied

research in various fields of economics. Applications of RDD started gaining popularity in

economics in the 1990s. Influential papers include those of Black (1999), who studies the

effect of quality of school districts on house prices, where quality changes discontinuously

across district boundaries; Angrist and Lavy (1999), who measure the effect of class sizes on

academic performance, where size varies discontinuously with enrollment; and Lee (2008),

who analyzes US House of Representatives elections and incumbency, where election victory

is discontinuous on the share of votes.

Recent theoretical contributions include the study of rate optimality of RDD estimators

by Porter (2003) and the data-driven optimal bandwidth rules by Imbens and Kalyanaraman

(2012) and Calonico, Cattaneo, and Titiunik (2014). RDD identifies causal effects local

to a cutoff value; several authors develop conditions for extrapolating local effects farther

away from the cutoff. These include estimation of derivatives of the treatment effect at the

cutoff by Dong (2016) and Dong and Lewbel (2015); tests for homogeneity of treatment

effects in fuzzy RDD by Bertanha and Imbens (2018); and estimation of average treatment

effects in RDD with variation in cutoff values by Bertanha (2017). All these theoretical

contributions rely on point identification and inference, and they are subject to both types

of impossibility. The current practice of testing and building confidence intervals relies on

Wald test statistics (t(Z)−m)/s(Z), where t(Z) and s(Z) are a.s. continuous and bounded

in the data. For a choice of critical value z, hypothesis tests φ(Z) = I{|(t(Z)−m)/s(Z)| > z}
are a.s. continuous when the data is continuously distributed. Confidence intervals C(Z) =

{t(Z)− s(Z)z ≤ m ≤ t(Z) + s(Z)z} have a.s. bounded length 2s(Z)z.

The setup of RDD follows the potential outcome framework. For each individual i =

1, . . . , n, define four primitive random variables Di, Xi, Yi(0), Yi(1). These variables are in-

dependent and identically distributed. The variable Di takes values in {0, 1} and indicates

treatment status. The real-valued variables Yi(0) and Yi(1) denote the potential outcomes,

respectively, if untreated and treated. Finally, the forcing variable Xi represents a real-

valued characteristic of the individual that is not affected by the treatment. The forcing
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variable has a continuous PDF f(x) with interval support equal to X. The econometri-

cian observes Xi, Di, and only one of the two potential outcomes for each individual:

Yi = DiYi(1) + (1 − Di)Yi(0). For simplicity, we consider the sharp RDD case, but it is

straightforward to generalize our results to the fuzzy case. In the sharp case, agents receive

the treatment if, and only if, the forcing variable is greater than or equal to a fixed policy

cutoff c in the interior of support X. Hence, Di = I{Xi ≥ c}, where I{·} denotes the indicator

function.

We focus on average treatment effects. In RDD settings, identification of average effects

is typically obtained only at the cutoff value after assuming continuity of average potential

outcomes, conditional on the forcing variable. In other words, we assume that E[Yi(0)|Xi = x]

and E[Yi(1)|Xi = x] are bounded continuous functions of x. HTV01 show that this leads to

identification of the parameter of interest:

m = E [Yi(1)− Yi(0)|Xi = c] = lim
x↓c

E [Yi|Xi = x]− lim
x↑c

E [Yi|Xi = x] . (4.1)

Let G denote the space of all functions g : X → R that are bounded, and that are

infinitely many times continuously differentiable in every x ∈ X \ {c}. The notation X \ {c}
represents the set with every point of X except for c. Continuity of functions in G suffices to

show impossible inference in this section. Nevertheless, non-parametric estimators of the size

of the discontinuity m typically assume that functions in g are continuously differentiable of

first or second order. We impose that functions in G are continuously differentiable of infinite

order, to demonstrate that both types of impossibility hold even in this more restricted class

of functions. The size of the discontinuity m at the cutoff may take any value in R.

Each individual pair of variables Zi = (Xi, Yi) is iid as P . The family of all possible

models for P is denoted as

P = {P : (Xi, Yi) ∼ P, ∃g ∈ G s.t. EP [Yi|Xi = x] = g(x)}. (4.2)

The local average causal effect is the function of the distribution of the data P ∈ P given

by (4.1), provided the identification assumptions of HTV01 hold. The parameterm of the size

of the discontinuity is weakly identified in the set of possible true models P. Intuitively, any

conditional mean function E[Yi|Xi = x] that is continuous except for a jump discontinuity

at x = c is well-approximated by a sequence of continuous conditional mean functions.

The reasoning behind this approximation is similar to the proof of part of Portmanteau’s

theorem (Theorem 25.8, Billingsley (2008)). It is known that, if E[f(Xn)] → E[f(X)] for

every bounded function f that is a.s. continuous under the distribution of X, then Xn
d→ X.

The proof of Corollary 3 uses an infinitely continuously differentiable function f that is
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approximately equal to an indicator function.

Corollary 3. Assumption 1 is satisfied for P0,m ∀m ∈ R, and Theorems 2 and 3 apply to

the RDD case. Namely, (i) a.s. continuous tests φm(Z) for the value of the discontinuity m

have power limited by size; and (ii) confidence sets for the value of the discontinuity m and

with finite expected length have zero confidence level.

Remark 7. Corollary 3 also applies to quantile treatment effects by simply changing the def-

inition of the functional µ(P) to be the difference in side limits of a conditional τ -th quantile

Qτ (Yi|Xi = x) at x = c. This contrasts with the problem of testing unconditional quan-

tiles, which does not suffer from impossible inference. See Lehmann and D’Abrera (2006),

Tibshirani and Wasserman (1988), and Coudin and Dufour (2009).

Remark 8. In the fuzzy RDD case, the treatment effect is equal to the discontinuity in

E[Yi|Xi] at Xi = c divided by the discontinuity in E[Di|Xi] at Xi = c. Corollary 3 applies

to both of these conditional mean functions, and it leads to impossible inference in the fuzzy

RDD case as well. Feir, Lemieux, and Marmer (2016) study weak identification in fuzzy

RDD and propose a robust testing procedure. In contrast to Kamat (2018) and to this paper,

their source of weak identification comes from an arbitrarily small discontinuity in E[Di|Xi]

at Xi = c.

The most common inference procedures currently in use in applied research with RDD

rely on Wald tests that are a.s. continuous in the data and produce confidence intervals of

finite expected length. See Imbens and Kalyanaraman (2012) and Calonico, Cattaneo, and

Titiunik (2014) for the most commonly-used inference procedures. Corollary 3 implies that

it is impossible to control size of these tests and coverage of these confidence intervals.

Ours is not the first paper to show impossible inference in the RDD case. Kamat (2018)

demonstrates the important fact that models with a discontinuity are similar to models

without a discontinuity in the TV metric. He applies the testing impossibility of Romano

(2004) and finds that tests have power limited by size. Using the graphical intuition of

Figure 3, we provide a simpler proof of the same facts, using the weak distance instead of

the TV metric. Moreover, we add that confidence intervals produced from Wald tests have

zero confidence level. It is worth highlighting the statistics literature on the impossibility of

adaptation gains for confidence intervals on linear functionals of non-parametric functions

(Low (1997), Cai and Low (2004)). They take confidence intervals with correct coverage

over a class of models P and derive a lower bound for the expected length of any confidence

interval under a given model P ∈ P. As the sample size increases, the rate at which these

bounds shrink to zero does not depend on P . In other words, any confidence interval whose
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expected length at P ∈ P shrinks to zero faster than the lower bound must have incorrect

coverage over P. Armstrong and Kolesár (2018) derive a lower bound for the expected length

of any confidence set that has correct coverage over P. The lower bound increases to infinity

as P becomes more general which is our impossibility of type B.

On a positive note, the two types of impossibility vanish if we restrict the class of models

P. The approximation used to prove Corollary 3 fails if we assume that functions in G have

absolute slopes bounded by a finite constant C on either side of the cutoff. Kamat (2018)

shows that Wald tests have correct size asymptotically if the first three derivatives of g(x), as

well as conditional moments, are uniformly bounded across P. Armstrong and Kolesár (2018)

derive minimax optimal-length confidence intervals for a convex function class G covering

most smoothness or shape assumptions used in econometrics. In the RDD case, they consider

functions g(x) such that the pth-order Taylor approximation residual is bounded by Cxp on

either side of the cutoff. In summary, applied researchers should bear in mind that the

validity of tests and confidence sets for the value of the discontinuity at the threshold relies

heavily on restricting the variation of average outcomes wrt the forcing variable X. For

example, consider the analysis of summer-school programs in Chicago by Jacob and Lefgren

(2004). The forcing variable X is a standardized reading score determining eligibility for the

program, and Y is a standardized test score in math or reading after the program. Looking

at their Figures 6 and 7, it seems reasonable to assume that the slope of the conditional

mean of Y given X is smaller than one. In other words, an increase in today’s reading score

by 1 point increases tomorrow’s average scores by less than one point.

Restricting the class of models P is not the only way to construct valid tests in RDD.

Another way to approach the problem is to consider null sets P0 different than those in

Corollary 3, where the focus is on the jump discontinuity at the threshold. One example is the

null hypothesis that an individual’s outcome is solely affected by the treatment he receives

and not by the effect of the treatment on neighboring individuals. In the summer-school

application, the number of students attending classes in the summer is much smaller than

during the school year. It is likely that students in the summer program interact much more

with each other, which leads to spillover effects of the treatment. A researcher who desires

to test for no spillovers specifies the null hypothesis of independence of Yi and Yj, conditional

on Xi = Xj = x for any i 6= j and x near the threshold. The alternative hypothesis that

outcomes exhibit dependence across treated individuals cannot be approximated by models

in the null.

Another example of null hypothesis that is immune to testing impossibility is when

absence of treatment effects is equivalent to a smooth conditional mean function. We may

define the null hypothesis that g is Lipschitz continuous with some constant C, and the
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alternative hypothesis that g is any other function as in Equation (4.2). Settings like this

arise when the treatment variable D is a function of the forcing variable X, and this function

changes at a known cutoff. This is the case of unemployment benefits in Austria, studied by

Card, Lee, Pei, and Weber (2015) (CLPW15). For unemployed individuals that used to earn

X less than a threshold c, the unemployment benefit grows with their earnings; otherwise, if

they used to earn more than c, they simply receive a fixed benefit regardless of their earnings.

CLPW15 find that the unemployment duration does not depend on past earnings for those

whose benefit is fixed to the right of the cutoff (see their Figure 3). Moral hazard leads to

unemployment duration that increases as benefits increase with income to the left of the

cutoff. Therefore, the researcher may specify the null hypothesis of a smooth conditional

mean to test for the lack of moral hazard. Rejections may occur because of a sudden change

in slope or a jump discontinuity at the threshold, both of which are evidence of a change

in behavior regarding job search. Note, however, that the null hypothesis of Lipschitz g is

different than the null hypothesis in the so-called Regression Kink Design (RKD) studied by

CLPW15. The RKD null states that the first derivative of g is continuous at the threshold,

and such null suffers from testing impossibility.

RKD has recently gained popularity in economics. In addition to CLPW15, see Dong

(2016), Nielsen, Sørensen, and Taber (2010), and Simonsen, Skipper, and Skipper (2016).

The setup is the same as in the RDD case, except that the causal effect of interest is the

change in the slope of the conditional mean of outcomes at the threshold. Continuity of the

first derivatives ∇xE[Yi(1)|Xi = x] and ∇xE[Yi(0)|Xi = x] at the threshold x = c guarantees

identification of the average effect. The parameter of interest m = µ(P ) is a function of the

distribution of Zi = (Xi, Yi):

µ(P ) = ∇xE[Yi(1)− Yi(0)|Xi = x] = lim
x↓c
∇xE[Yi|Xi = x]− lim

x↑c
∇xE[Yi|Xi = x]. (4.3)

The family of all possible distributions of Zi is defined in a slightly different way than in

Equation (4.2):

P = {P : (Xi, Yi) ∼ P, ∃g ∈ G s.t. ∇xE[Yi|Xi = x] = g(x)}. (4.4)

Weak identification of µ arises from the fact that any conditional mean function E[Yi|Xi =

x] with a discontinuous first derivative at x = c is well-approximated by a sequence of

continuously differentiable conditional mean functions. Assumption 1 is easily verified using

this insight.

Corollary 4. Assumption 1 is satisfied for P0,m ∀m ∈ R, and Theorems 2 and 3 apply to
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RKD. Namely, (i) a.s. continuous tests φm(Z) for the value of the kink discontinuity m have

power limited by size; and (ii) confidence sets for the value of the kink discontinuity m and

with finite expected length have zero confidence level.

The proof of Corollary 4 follows that of Corollary 3. Simply use the new definitions of P
and µ(P ), and construct the sequence Pk with ∇xEPk

[Yi|Xi = x] = gk(x).

4.2 Testing for the Existence of Bunching

The second example applies Theorem 2 to the problem of testing for the existence of

bunching in a scalar random variable. Bunching occurs when the distribution of X exhibits

a non-zero probability at known point x0, but it is continuous in a neighborhood of x0.

Bunching in the distribution of a single variable is the object of interest in many empirical

studies. For example, Saez (2010) and Kleven and Waseem (2013) rely on the existence of

bunching on “reported income” at the boundary of tax brackets to identify the elasticity

of reported income wrt tax rates; Goncalves and Mello (2018) use bunching on “charged

speed in traffic tickets” to separate lenient from non-lenient police officers and identify racial

discrimination; and a standard practice in RDD analyses is to check if the distribution of

the forcing variable has bunching at the cutoff, which would count as evidence against the

design.

Suppose X is a scalar random variable. In the absence of bunching, assume the CDF

of X is continuously differentiable. Testing for bunching amounts to testing whether X has

positive probability mass at x0. Let P0 be the set of distributions of X with a continuously

differentiable CDF. The set P1 is all mixed continuous-discrete distributions, with one mass

point at x0, but continuously differentiable CDF otherwise.7 Any distribution Q under the

alternative is well-approximated in the LP metric by a sequence of distributions Pk under

the null. Therefore, any a.s. continuous test has power limited by size.

Corollary 5. Assumption 1 is satisfied in the problem of testing for the existence of bunching.

Hence, any test φ(Z) that is a.s. continuous under P1 has power limited by size.

There is one interesting feature about this example that is not shared by the RDD and

RKD examples of the previous section. In this example, it is not possible to find a sequence

Pk under the null that approximates a Q ∈ P1 using the TV metric. The event X = x0 always

has zero probability under the null, but strictly positive probability under the alternative.

7The assumption that the CDF is continuously differentiable is not necessary in this section. We impose
this assumption because typical non-parametric density estimators assume a continuous density. The testing
impossibility of this section occurs regardless of whether the CDF is assumed continuously differentiable, or
simply continuous.
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Therefore, dTV (P,Q) > 0 for every P ∈ P0, Q ∈ P1. Theorem 1 suggests that there exists a

test whose maximum power is bigger than size, but our Theorem 2 says this test cannot be

a.s. continuous under P1.

The use of the LP metric, as opposed to the TV metric, leads us to search for tests that are

discontinuous under P1. For a sample with n iid observations Xi, the test φ(X1, . . . , Xn) =

I
{

1
n

∑n
i=1 I{Xi = x0} > 0

}
is discontinuous under P1. This test has size equal to zero, and

power equal to 1− (1− δ)n, where δ = P[Xi = x0].

4.3 Exogeneity Tests Based on Bunching

The third example comes from Caetano (2015), who uses the idea of bunching in a

conditional distribution of Y given X to construct an exogeneity test that does not require

instrumental variables. It applies to regression models where the distribution of unobserved

factors are assumed to be discontinuous wrt an explanatory variable. Of interest is the impact

of a scalar explanatory variable X on an outcome variable Y , after controlling for covariates

W . For example, suppose we are interested in the effect of average number of cigarettes

smoked per day X on birth weight Y , after controlling for mothers’ observed characteristics

W . Conditional on (X,W ), the distribution of mothers’ unobserved characteristics U is said

to bunch at zero smoking if it changes drastically when we compare non-smoking mothers

to mothers that smoke very little. If bunching occurs, then the variable X is endogenous

because we cannot separate the effect of smoking on birth weight from the effect of unobserved

characteristics on birth weight.

The population model that determines Y is written as Y = h(X,W ) + U , where U

summarizes unobserved confounding factors affecting Y . We are unable to infer bunching

on U unless h is assumed continuous on (X,W ). Bunching of U wrt X is evidence of local

endogeneity of X at X = 0. Bunching at 0 implies discontinuity of E[U |X = 0,W ] −
E[U |X = x,W ] as x ↓ 0. Continuity of h makes bunching equivalent to a discontinuity of

E[Y |X = 0,W = w] − E[Y |X = x,W = w] as x ↓ 0 for every w. Caetano (2015) proposes

testing

∀w lim
x↓0

E[Y |X = 0,W = w]− E[Y |X = x,W = w] = 0 (4.5)

as a means of testing for local exogeneity of X at X = 0. We argue that h may have a high

slope on X, or even be discontinuous on X, which makes exogeneity untestable.

The observed data Z = (Z1, . . . , Zn), Zi = (Xi,Wi, Yi) is iid with probability P . The

support of (Xi,Wi) is denoted X × W. The distribution of Y conditional on (X,W ) is

assumed to be continuous. The distribution of X has non-zero probability at X = 0, but it

is continuous otherwise. Assume ∃δ > 0 such that [0, δ) ⊂ X.
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Let G denote the space of all functions g : X ×W → R that are bounded and infinitely

many times continuously differentiable wrt x over {X\{0}}×W. The size of the discontinuity

at X = 0 may take any value in R. The family of all possible distributions is denoted as

P = {P : Zi ∼ P, ∃g ∈ G s.t. EP [Yi|Xi = x,Wi = w] = g(x,w)}. (4.6)

Under local exogeneity ofX, the function τP (w) = EP [Yi|Xi = 0,Wi = w]−lim
x↓0

EP [Yi|Xi =

x,Wi = w] must be equal to 0 ∀w ∈ W. In practice, it is convenient to conduct inference

on an aggregate of τP (w) over w ∈W instead of on the entire function τP (w). Examples of

aggregation include the average of |τP (W )|, the square root of the average of τP (W )2, or the

supremum of |τP (w)| over w ∈W. For the sake of brevity, we choose the second option. For

a distribution P ∈ P, define µ(P ) = [EP (τP (W )2)]
1/2

. Local exogeneity corresponds to the

test of µ(P ) = 0 versus µ(P ) 6= 0.

The parameter µ(P ) is weakly identified in the class of models P. Just as in the RDD case,

any conditional mean function E[Yi|Xi = x,Wi = w] with a discontinuity at x = 0 is well-

approximated by a sequence of continuous conditional mean functions E[Yi|Xi = x,Wi = w].

Assumption 1 is verified using the same argument as in the RDD case.

Corollary 6. Assumption 1 is satisfied for P0,m ∀m ∈ R, and Theorems 2 and 3 apply to

the case of the local exogeneity test. Namely, (i) a.s. continuous tests φm(Z) for the value

of the aggregate discontinuity m have power limited by size; and (ii) confidence sets for the

value of the aggregate discontinuity m and with finite expected length have zero confidence

level.

The inference procedures suggested by Caetano (2015) rely on non-parametric local poly-

nomial estimation methods. As in the RDD case, these procedures yield tests that are a.s.

continuous in the data and confidence intervals of finite expected length. Corollary 6 implies

lack of size control and zero confidence level.

4.4 Time-Series Models

The fourth example illustrates robust hypothesis testing wrt the LP metric, and it is

of practical relevance to macroeconomists. Macroeconometrics often uses linear time-series

processes. This is motivated by the Wold Representation Theorem, which asserts that every

covariance-stationary process xt can be written as an MA process plus some deterministic

term:

xt = B (L) εt,
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where L is the lag operator, B (l) =
∑q

i=0 bi l
i, and εt is an uncorrelated error sequence. A

caveat is that the order q needs to be too large to be useful for many applications. The

features of MA processes with infinite lag order are well captured by ARMA models

A (L)xt = B (L) εt,

with small orders for A (L) and B (L), where A (l) =
∑p

i=0 ai l
i. The closure of the set

of stationary ARMA(p,q) models with finite order (p, q) does not necessarily contain only

stationary models. The simplest example happens when A (l) = 1 − al and B (l) = 1. The

process is stationary when |a| < 1, but it is non-stationary when a = 1. This observation

led to ARIMA models, which better capture the persistence in time series.

Starting in the 1990s, applied researchers began to realize that ARIMA models them-

selves have limitations. This led to the development of other stochastic processes, including

error duration models, Markov switching models, threshold models, structural breaks, and

fractionally integrated processes, among others. This is a vast literature and includes papers

by Hamilton (1989), Parke (1999), and Bai and Perron (1998), just to name a few.

A number of authors point out that these different model extensions may not be too

far from each other. For example, Perron (1989) shows that integrated processes with drift

and stationary models with a broken trend can be easily confused; Parke (1999) points

out that the error-duration model encapsulates fractionally integrated series; Granger and

Hyung (1999) and Diebold and Inoue (2001) find that linear processes with breaks can

be misinterpreted as long-memory models. In these papers, and in most of the related

econometrics literature, the focus is on the autocovariance of the stochastic process.

Our discussion of robust hypothesis testing in Section 3 suggests looking at the closure of

ARMA processes to distinguish these models from each other. For example, take the problem

of testing the null that a process is covariance-stationary, against the alternative that it is an

error-duration model or a Compound Poisson model. The existence of a test with non-trivial

power requires us to look for the TV distance between these sets of processes. However, the

ability to approximate theses processes in the TV distance is often based on quite stringent

assumptions. For example, see Barbour and Utev (1999) for the TV approximation of

Compound Poisson processes.

The problem of searching for tests for covariance-stationary vs error-duration or Com-

pound Poisson becomes much easier if we focus on the LP metric. To solve this problem, we

rely on Bickel and Bühlmann (1996), whose work has been largely ignored in the economet-

rics literature. They characterize the closure of AR and MA processes wrt the TV and the

Mallows metric (also known as the Wasserstein metric). The TV metric is stronger than the
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Mallows metric, which in turn is stronger than the LP metric. Indeed, convergence under

the Mallows metric implies weak convergence and convergence in second moments; see Bickel

and Freedman (1981) and Bickel and Bühlmann (1996). As a result, the closure of stochastic

processes wrt the LP metric is larger than the closure wrt the Mallows metric. It turns out

that error-duration and Compound Poisson models are in the closure wrt the LP metric. In

other words, the robustified null set wrt the LP metric contains the alternative set, and the

minimal TV distance between these sets is zero. Hence, all tests for the robustified null have

power no larger than size.

Given that the closure of ARMA processes of infinite order is quite rich, we may wonder

which hypotheses are testable. Bahadur and Savage (1956) and Romano (2004) point out it is

hopeless to test population means, even in the iid case without further moment constraints.

Could we try to test quantiles? Peskir (2000) and Shorack and Wellner (2009) provide

sufficient conditions for uniform convergence of empirical processes under time dependence.

A natural choice for quantile testing is the value at risk (VaR), which is commonly used in

the finance literature. It would be interesting to establish the class of empirical processes

for which hypotheses for the VaR are testable. We leave this example for future work.

5 Simulations

In this section, we provide Monte Carlo simulations to illustrate the impossibility of

testing within the context of RDD. We find that the Wald test fails to control size uniformly

under the null hypothesis. We use a data-generating process (DGP) based on an empirical

example. Lack of size control occurs even for DGPs that are consistent with the data.

Moreover, the simulations also show that the Wald test has very little power after artificially

controlling size. For the sake of brevity, we focus on the RDD case, and we expect similar

findings for the RKD and Exogeneity Test cases.

Our DGP is based on the incumbency data of Lee (2008). Lee studies incumbency

advantage in the US House of Representatives. Districts where a party’s candidate barely

wins an election are, on average, comparable to districts where that party’s candidate barely

loses the election. The forcing variable X is the margin of victory of the Democratic party in

percentage of votes. The target parameter is the effect of the Democrats winning the election

at time t (incumbency) on the probability of the Democrats winning the election at time

t+ 1. Lee’s data have been used for simulation studies by several other econometricians, for

example, by Imbens and Kalyanaraman (2012), Calonico, Cattaneo, and Titiunik (2014), and

Armstrong and Kolesár (2018). We use the Monte Carlo DGP of Imbens and Kalyanaraman
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(2012) and Calonico, Cattaneo, and Titiunik (2014), described in Equation (5.1).8

Y =



0.48 + 1.27X + 7.18X2 + 20.21X3

+21.54X4 + 7.33X5 + U if X ∈ (−0.99, 0)

0.52 + 0.84X − 3X2 + 7.99X3

−9.01X4 + 3.56X5 + U if X ∈ [0, 0.99]

(5.1)

where X is distributed as Beta(2, 4), U is zero-mean Gaussian with standard deviation

0.1295, and X is independent of U . Figure 2 depicts the conditional mean function of

Equation (5.1).

Figure 2: Conditional Mean Function Based on Lee’s (2008) Data

Notes: conditional mean function of Equation (5.1). The forcing variable X is the margin of victory of the
Democratic party in percentage of votes in time t. The outcome variable Y is equal to one if Democrats win
in time t+ 1, but equal to zero otherwise.

Our simulation study uses variations of Equation (5.1) that are governed by two param-

eters: τ ∈ R and M ∈ R+.

Y =



0.48 + τΛ (4MX/τ) + 1.27X + 7.18X2 + 20.21X3

+21.54X4 + 7.33X5 + U if X ∈ (−0.99, 0)

0.48 + τΛ (4MX/τ) + 0.84X − 3X2 + 7.99X3

−9.01X4 + 3.56X5 + U if X ∈ [0, 0.99)

(5.2)

where Λ (·) is the logistic CDF function.

The conditional mean function of both Equations (5.1) and (5.2) are differentiable on

8The DGP in Equation (5.1) belongs to the class of functions that Armstrong and Kolesár (2018) study
in their application to RDD. The set of functions FRDP,p(C) on their page 658 contains Equation (5.1) with
p = 2 and constant C = 7.2.
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either side of the cutoff. The first is discontinuous at X = 0 with discontinuity of size

0.04, while the second is continuous at X = 0. For τ = 0.04, Equation (5.2) approximates

Equation (5.1) as M → ∞. The parameter M is the derivative of τΛ (4MX/τ) wrt X at

X = 0. As the slope M grows large, the continuous conditional mean function of Equation

(5.2) approximates a discontinuous function with discontinuity of size τ . Figure 3 illustrates

this approximation, as well as the proof of Corollary 3 in Section 4.1. For example, a model

similar to Equation (5.2) with high values of M arises when districts manipulate the share of

votes in order to win the election. Manipulation of the forcing variable has been extensively

studied in the RDD literature. See, for example, McCrary (2008) and Gerard, Rokkanen,

and Rothe (2016). Suppose the average causal effect of winning the election conditional on

X is small for districts with small margin of victory, but large otherwise. In the absence

of manipulation, E[Y |X] is continuous and very smooth to the right of the cutoff. The

party in districts with low X has incentives to manipulate the election, and the researcher

observes the manipulated margin of victory X̃, instead of X. Assume the probability that

manipulation occurs conditional on X̃ increases continuously but sharply to the right of the

cutoff. In this case, the researcher observes a conditional mean function that is continuous

at the cutoff but that increases sharply to the right of the cutoff. In practice, one may falsely

reject the null of zero effect simply because of manipulation, and not because of an actual

causal effect. We provide a concrete example for this DGP in Section A.6 in the appendix.

The parameter of interest is m, the size of the jump discontinuity at X = 0. The null

hypothesis is m = 0, which is the set of models in Equation (5.2) with τ ∈ R and M ∈ R+.

The alternative hypothesis is m 6= 0, which is the set of models with τ 6= 0 and M = ∞.

Section 4.1 shows that any model in the alternative is well-approximated in the LP metric

by models under the null. The power of a.s. continuous tests is less than or equal to size.

The Monte Carlo experiment simulates 10,000 draws of an iid sample with 500 obser-

vations. The range of (τ,M) values for Model 5.2 in the experiment is consistent with the

magnitudes of Lee’s DGP. The maximum slope magnitude of the conditional mean graph in

Figure 2 is 1.97, and we set M ∈ {0, 2, . . . , 10}. The value of m for Lee’s DGP is 0.04, and we

vary τ in {0, 0.01, 0.04, 0.08}. We conduct a size and a power analysis. In the size analysis,

we simulate rejection probabilities of the Wald test under each (τ,M)-model. The estimates

of m and standard errors are obtained by the robust bias-corrected method of Calonico,

Cattaneo, and Titiunik (2014) and implemented using the STATA package rdrobust. For

each model (τ,M), the critical value of the test comes from the simulated distribution of

the statistic under model (τ, 0). This ensures exact size of the test in the smoothest model

under the null (M = 0).

The nominal size of the Wald tests in Table 1 is 5%, and the simulated rejection proba-
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Figure 3: Approximating a Discontinuous Conditional Mean Function (τ = 0.04)

(a) M = 0 (b) M = 0.5

(c) M = 2 (c) M = 8

Notes: the discontinuous conditional mean function E[Y |X] (solid line) is approximated by a sequence of
continuous conditional mean functions (dotted lines). The solid line is the E[Y |X] of Model 5.1, and the
dotted line is the E[Y |X] of Model 5.2 for τ = 0.04 and M ∈ {0, 0.5, 2, 8}. The figure illustrates that model
5.2 approximates the DGP based on Lee (2008) as the slope at X = 0 grows large.

Table 1: Rejection Probability Under the Null - Size 5%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.0500 0.0540 0.0557 0.0592 0.0585 0.0580
.02 0.0500 0.0665 0.0678 0.0649 0.0694 0.0685
.03 0.0500 0.0910 0.0942 0.0938 0.0941 0.1016
.04 0.0500 0.1005 0.1067 0.1071 0.1121 0.1139
.05 0.0500 0.1114 0.1264 0.1334 0.1464 0.1434
.06 0.0500 0.1292 0.1632 0.1680 0.1819 0.1819
.07 0.0500 0.1258 0.1617 0.1832 0.1906 0.2026
.08 0.0500 0.1320 0.1888 0.2142 0.2266 0.2427

Notes: the table displays the simulated rejection probability of the Wald test under various choices of (τ,M)
for Model 5.2. Critical values of the test vary by row, but are constant across columns. For each (τ,M)-
model, the critical value of the test comes from the simulated distribution of the statistic under model (τ, 0).
The estimates of m and standard errors for the Wald test are obtained by the robust bias-corrected method
of Calonico, Cattaneo, and Titiunik (2014) and implemented using the STATA package ‘rdrobust’.
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bility increases with τ and M . For the maximum slope of M = 2 observed from the model in

Equation (5.1), the size of the test varies between 5.4% and 13.2%, depending on the choice

of the model under the null. The true value of M is unknown, and a more conservative

upper bound on the slope M = 10 distorts the size of the test up to 24%.

In the power analysis, we study rejection probabilities for models with M = ∞ and

τ ∈ {0, 0.01, . . . , 0.08}. These models fall under the alternative because m = τ whenM =∞.

For each (τ,∞)-model, we would like the test to have correct size under the least favorable

null model. Table 1 suggests that the least favorable model under the null is the one with

the highest slope M . Figure 3 shows that null models can approximate any alternative

(τ,∞)-model arbitrarily well. If we restrict the slope at X = 0 to be at most M , the worst-

case model under the null for the alternative (τ,∞)-model is the (τ,M)-model. To evaluate

the rejection probability under a (τ,∞)-model, the critical value of the test comes from the

simulated distribution of the statistic under a (τ,M)-model for various choices of (τ,M).

That way, the test has correct size when m = 0 under all possibilities of least favorable

(τ,M)-models.

Table 2: Rejection Probability Under the Alternative - Size 5%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.0610 0.0508 0.0504 0.0501 0.0504 0.0500
.02 0.0763 0.0527 0.0524 0.0505 0.0513 0.0501
.03 0.1020 0.0574 0.0532 0.0525 0.0526 0.0527
.04 0.1204 0.0646 0.0571 0.0556 0.0536 0.0524
.05 0.1583 0.0770 0.0618 0.0597 0.0573 0.0544
.06 0.2013 0.0899 0.0682 0.0638 0.0605 0.0569
.07 0.2192 0.1023 0.0732 0.0677 0.0642 0.0590
.08 0.2781 0.1179 0.0839 0.0707 0.0654 0.0631

Notes: the entries of the table display the simulated rejection probability of the Wald test under Model 5.2
with various τ and M = ∞, so that the size of the discontinuity is m = τ . Critical values of the test vary
by row and column. For each (τ,M)-entry, the critical value comes from the simulated distribution of the
statistic under a null (τ,M)-model. The estimates of m and standard errors for the Wald test are obtained
by the robust bias-corrected method of Calonico, Cattaneo, and Titiunik (2014) and implemented using the
STATA package ‘rdrobust’.

The power of the tests in Table 2 increases with the size of discontinuity τ , but it decreases

with the slope M of the least favorable model under the null. Intuitively, the higher M is, the

harder it becomes to distinguish a (τ,M)-model from a (τ,∞)-model. For the empirically

relevant values of τ = 0.04 and M = 2, we see that the power of the test is 6.5%, barely

above its size. More conservative upper bounds on the slope of the model under the null

essentially make power equal size. Section A.9 in the appendix contains versions of these

tables for nominal levels 1% and 10%, as well as the simulated critical values used.
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6 Conclusion

When drawing inference on a parameter in econometric models, some authors provide

conditions under which tests have trivial power (impossibility type A). Others examine when

confidence regions have error probability equal to one (impossibility type B). The motivation

behind these negative results is that the parameter of interest may be nearly unidentified

across models. Impossible inference relies on models being indistinguishable wrt some notion

of distance. Some authors distinguish models using the Total Variation (TV) metric and

others rely on the Lévy-Prokhorov (LP) metric, which is a weaker notion of distance. The

ability to distinguish models in the TV metric is a necessary and sufficient condition for the

existence of tests with non-trivial power. Impossible inference in terms of a weaker notion

of distance is often easier to prove, it is applicable to the widely-used class of almost surely

continuous tests, and it is useful for robust hypothesis testing.

Impossibility type A is stronger than type B. Dufour (1997) focuses on models in which

tests based on bounded confidence regions fail to control size, but they could still have

non-trivial power. Take the simultaneous equations model when instrumental variables may

be arbitrarily weak. Moreira (2002, 2003) and Kleibergen (2005) propose tests that have

correct size in models with type B impossibility. Furthermore, these tests have good power

when identification is strong, being efficient under the usual asymptotics. Their power is not

trivial, exactly because not every model under the alternative is approximated by models

under the null.

The choice of the LP versus the TV metric connects our work to the work of Peter J.

Huber on robust statistics. It leads us to look at the closure of model departures under the

LP metric. In particular, robust hypothesis testing requires a non-zero TV distance between

the closure of the null and alternative sets under the LP metric. For example, it is impossible

to find a robust test that powerfully distinguishes covariance-stationary models from error-

duration and Compound Poisson models, because the closure of the former contains the

latter. This closure is quite rich, and we wonder what sort of hypotheses are testable. It is

impossible to test the population mean, so one possibility may be quantiles such as value at

risk (VaR). Peskir (2000) and Shorack and Wellner (2009) provide sufficient conditions for

convergence of empirical processes under dependence. It would be interesting future work

to build on these conditions to establish the class of processes in which quantile testing is

possible.

34



References

Angrist, J., and V. Lavy (1999): “Using Maimonides’ Rule to Estimate the Effect of
Class Size on Scholastic Achievement,” Quarterly Journal of Economics, 114(2), 533–575.

Armstrong, T. B., and M. Kolesár (2018): “Optimal Inference in a Class of Regression
Models,” Econometrica, 86(2), 655–683.

Bahadur, R. R., and L. J. Savage (1956): “The Nonexistence of Certain Statistical
Procedures in Nonparametric Problems,” Annals of Mathematical Statistics, 27(4), 1115–
1122.

Bai, J., and P. Perron (1998): “Estimating and Testing Linear Models with Multiple
Structural Changes,” Econometrica, 66(1), 47–78.

Barbour, A., and S. Utev (1999): “Compound Poisson Approximation in Total Varia-
tion,” Stochastic Processes and Their Applications, 82(1), 89–125.

Bertanha, M. (2017): “Regression Discontinuity Design with Many Thresholds,” working
paper, Department of Economics, University of Notre Dame.

Bertanha, M., and G. Imbens (2018): “External Validity in Fuzzy Regression Disconti-
nuity Designs,” Journal of Business and Economic Statistics, forthcoming.
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A Appendix

A.1 Proof of Corollary 1

We introduce some notation before embarking on the proof.
The density of P ∈ P wrt a σ-finite measure µ is p. The set of densities of all distributions

in P is denoted p. Similarly, the null and alternative sets of densities are p0 and p1, and
their union equals p. Define co(p′) to be the convex hull of an arbitrary subset p′ ⊆ p in a
similar fashion as in Equation (2.1).

The Total Variation (TV) metric between two distributions P,Q ∈ P with densities
p, q ∈ p is defined as

dTV (p, q) =
1

2

∫
|p− q| dµ. (A.1)

The proof of the equivalence of (a) and (b) is shown in three parts.
Part 1: (a)⇔ (a′) where

(a) : ∀q ∈ p1 ∃{pk}k ⊆ co(p0) such that dTV (pk, q)→ 0

(a′) : ∀q ∈ p1 ∃{pk}k ⊆ co(p0) and {εk}k ↓ 0 such that dTV (pk, q) < εk ∀k

Part 1, proof, (a)⇒ (a′) :
Fix q. For εk = dTV (pk, q)→ 0, there exists a monotone sub-sequence εkj = dTV (pkj , q) ↓

0. Create new sequences p̃j = pkj and ε̃j = εkj/2 so that dTV (p̃j, q) < ε̃j.
Part 1, proof, (a)⇐ (a′) : straightforward.

Part 2: (a′)⇔ (b′) where

(a′) : ∀q ∈ p1 ∃{pk}k ⊆ co(p0) and {εk}k ↓ 0 such that dTV (pk, q) < εk ∀k

(b′) : ∀q ∈ p1 ∃{εk}k ↓ 0 such that ∀φ
∫
φq dµ < εk + sup

p∈p0

∫
φp dµ ∀k

Part 2, proof, (a′)⇒ (b′):
Fix q, (a’) implies there exists sequences {pk}k ⊆ co(p0) and {εk}k ↓ 0 such that

dTV (pk, q) < εk ∀k. Fix k. Use Theorem 1 with {p1} = {q}. (a′) implies
∀φ

∫
φq dµ < εk + supp∈p0

∫
φp dµ.

This is true for every k of a sequence εk that converges to zero, given an arbitrary q.
Part 2, proof, (a′)⇐ (b′):
Fix q, get εk. Fix k. Use Theorem 1 with {p1} = {q}. (b′) implies there exists pk ∈ co(p0)

such that dTV (pk, q) < εk. Repeat this for every k to get a sequence {pk}k ⊆ co(p0) such
that dTV (pk, q) < εk ∀k.

Part 3: (b′)⇔ (b) where

(b′) : ∀q ∈ p1 ∃{εk}k ↓ 0 such that ∀φ
∫
φq dµ < εk + sup

p∈p0

∫
φp dµ ∀k
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(b) : ∀φ and q ∈ p1,

∫
φq dµ ≤ sup

p∈p0

∫
φp dµ

Part 3, proof (b′)⇒ (b):
Fix q, get εk. Fix φ. It is true that∫
φq dµ < εk + supp∈p0

∫
φp dµ.

Take limits on both sides,∫
φq dµ ≤ supp∈p0

∫
φp dµ.

This is true for every q and every φ.
Part 3, proof (b′)⇐ (b):
Straightforward because for arbitrary φ, q, and {εk}k ↓ 0∫
φq dµ ≤ supp∈p0

∫
φp dµ

implies that∫
φq dµ < εk + supp∈p0

∫
φp dµ.

�

A.2 Proof of Theorem 2

The proof of Theorem 2 follows the same lines as the proof of Theorem 1 by Romano
(2004) except for the fact that our Assumption 1 is stated in terms of the LP metric and in
terms of the convex hull of P0.

Pick an arbitrary Q ∈ P1. There exists a sequence of distributions {Pk}∞k=1 ⊆ co(P0)

such that Pk
d→ Q. Convergence in distribution is equivalent to EPk

[g] → EQ[g] for every
bounded real-valued function g whose set of discontinuity points has probability zero under
Q (Theorem 25.8, Billingsley (2008)). In particular, this is true for g = φ for an arbitrary φ
that is a.s. continuous under Q.

Take an arbitrary sequence εn → 0, and pick a sub-sequence {Pkn}n from the sequence
{Pk}k such that

−εn ≤ EQφ− EPkn
φ ≤ εn. (A.2)

Therefore,
EQφ ≤ EPkn

φ+ εn ≤ sup
P∈co(P0)

EPφ+ εn. (A.3)

Given εn → 0, it follows that, for ∀Q ∈ P,

EQφ ≤ sup
P∈co(P0)

EPφ. (A.4)

Consequently,
sup
Q∈P1

EQφ ≤ sup
P∈co(P0)

EPφ. (A.5)

It is clear that supP∈co(P0) EPφ ≥ supP∈P0
EPφ. It remains to show that these are

equal. Assume supP∈co(P0) EPφ > supP∈P0
EPφ. Select ε > 0 small enough such that

supP∈co(P0) EPφ− ε > supP∈P0
EPφ. There exists Pε ∈ co(P0) such that

sup
P∈co(P0)

EPφ ≥ EPεφ > sup
P∈co(P0)

EPφ− ε > sup
P∈P0

EPφ. (A.6)
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By definition, Pε =
∑N

i=1 αiPi for N ∈ N, Pi ∈ P0 ∀i, αi ∈ [0, 1] ∀i, and
∑N

i=1 αi = 1.

Then, EPεφ =
∑N

i=1 αiEPi
φ ≤ supP∈P0

EPφ, a contradiction. Therefore, supP∈co(P0) EPφ
= supP∈P0

EPφ, and
sup
Q∈P1

EQφ ≤ sup
P∈P0

EPφ. (A.7)

�

A.3 Proof of Theorem 3

The proof is a combination of proofs by Dufour (1997) and Gleser and Hwang (1987).
Part (2.6):
Fix m ∈ µ(P). Define φm = I{m 6∈ C(Z)}, and note that sup

P∈P(m)

EPφm = sup
P∈co(P(m))

EPφm

(see proof of Theorem 2). It follows that 1−α ≤ inf
P∈P(m)

P [m ∈ C(Z)] = inf
P∈co(P(m))

P [m ∈ C(Z)].

Therefore, ∀P ∈ co(P(m)), P [µ(P ) ∈ C(Z)] ≥ 1− α.

By Assumption 2, there exists {Pk} in co(P(m)) such that Pk
d→ P ∗. Then,

1− α ≤ Pk [µ(Pk) ∈ C(Z)] = Pk [m ∈ C(Z)]→ P ∗ [m ∈ C(Z)] (A.8)

where the convergence follows by Portmanteau’s theorem because P ∗(∂{m ∈ C(Z)}) = 0
(Theorem 29.1 of Billingsley (2008)). This proves (2.6).

Part (2.7):
Pick a sequence mn ∈ µ(P) such that mn is unbounded. Without loss of generality,

assume mn ↑ ∞. We have that

1− α ≤ P ∗ [mn ∈ C(Z)] ≤ P ∗ [mn ≤ U [C(Z)]] . (A.9)

Taking the limit as n→∞,

1− α ≤ P ∗ [U [C(Z)] =∞] (A.10)

≤ P ∗ [U [C(Z)]− L[C(Z)] =∞] = P ∗ [D[C(Z)] =∞] . (A.11)

Part (2.8):
Assumption 2 gives a sequence {Pk}k in co(P) that converges in distribution to P ∗. By as-

sumption, P ∗ [∂{D[C(Z)] =∞]}] = 0, so Portmanteau’s theorem gives Pk [D[C(Z)] =∞]]→
P ∗ [D[C(Z)] =∞]] ≥ 1− α. There exists a sequence δk ↓ 0 such that Pk [D[C(Z)] =∞]] ≥
1− α− δk.

Fix ε > 0. The set Bε(P
∗)∩ co(P) contains infinitely many Pks from the sequence above.

For these Pks,

1− α− δk ≤ Pk [D[C(Z)] =∞]] (A.12)

≤ sup
P∈Bε(P ∗)∩co(P)

P [D[C(Z)] =∞]] (A.13)
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= sup
P∈Bε(P ∗)∩P

P [D[C(Z)] =∞]] (A.14)

where the last equality follows by the same argument seen in the proof of (2.6) above. Taking
the limit as k →∞ gives (2.8).

�

A.4 Proof of Lemma 1

Lemma 1. Let C(Z) be constructed as in Equation (2.9). Then,

inf
P∈P

P [µ(P ) ∈ C(Z)] = 1− sup
m∈µ(P)

α(m). (A.15)

Proof of Lemma 1. Suppose

sup
m∈µ(P)

sup
P∈P0,m

P (φm(Z) = 1) = α. (A.16)

Now, pick ε > 0. Then, there exists mε such that

α− ε/2 ≤ sup
P∈P0,mε

P (φmε(Z) = 1) ≤ α. (A.17)

There also exists Pε ∈ P0,mε such that

α− ε ≤ Pε(φmε(Z) = 1) ≤ α. (A.18)

Rearranging the expression above, we obtain

1− α + ε ≥ Pε(µ(Pε) ∈ C(Z)) ≥ 1− α. (A.19)

Therefore, we find that
inf
P∈P

P [µ(P ) ∈ C(Z)] = 1− α, (A.20)

as we wanted to prove.
�

A.5 Proof of Corollary 3

Fix m ∈ R. Pick an arbitrary Q ∈ P1,m, and let m′ = µ(Q) 6= m. Define g(x) =
EQ[Yi|Xi = x]. Construct a sequence of functions gk : R→ R, k = 1, 2, . . . as follows:

gk(x) = g(x) + (m′ −m)
[
Λ
(
k2(x− c)

)
− I{x ≥ c}

]
(A.21)

where Λ (·) is the cumulative distribution function (CDF) of the logistic distribution.
The function gk is infinitely continuously differentiable on X \ {c}, so gk ∈ G ∀k, and

lim
x↓c

gk(x) − lim
x↑c

gk(x) = m. Moreover, as k → ∞, gk(x) → g(x) for every x 6= c. Define
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Pk to be the distribution of (Xi , Yi − g(Xi) + gk(Xi)) when (Xi, Yi) ∼ Q. It follows that
µ(Pk) = m and Pk ∈ P0,m ∀k.

It remains to show that Pk
d→ Q, or equivalently, to show that

(Xi , Yi − g(Xi) + gk(Xi))
d→ (Xi, Yi) (A.22)

as k →∞ where (Xi, Yi) ∼ Q. Note that (Xi , Yi− g(Xi) + gk(Xi)) = (Xi, Yi) + (0, gk(Xi)−
g(Xi)), so it suffices to show that gk(Xi)− g(Xi)

p→ 0 as k →∞.
Define Ak = {c− k−1 < Xi < c+ k−1}, and let Ack be the complement of Ak. Fix ε > 0.

Q [|gk(Xi)− g(Xi)| > ε] (A.23)

= Q [ |gk(Xi)− g(Xi)| > ε | Ak] Q [Ak] (A.24)

+Q [ |gk(Xi)− g(Xi)| > ε | Ack] Q [Ack] . (A.25)

Part (A.24) vanishes as k →∞ by the continuity property of probability measures, because
Ak ↓ {c} and Q [{c}] = 0 by assumption.

For part (A.25), note that |gk(x)− g(x)| ≤ |m′ − m|Λ (−k) for any x ∈ Ack because
Λ (k2(x− c)) is strictly increasing in x and symmetric around x = c, so |gk(x)− g(x)| attains
its maximum at x = c− k−1 and x = c+ k−1. Therefore,

(A.25) ≤ I {|m′ −m|Λ (−k) > ε} Q [Ack]→ 0 (A.26)

because Λ (−k)→ 0 as k →∞.
Therefore, Assumption 1 is satisfied for every m ∈ R. Theorem 2 applies, and Corollary

2 applies with µ(P) = R.
�

A.6 Example of RDD Model with Manipulation

In this section, we provide an example of DGP with manipulation that gives rise to a
model similar to Equation (5.2) in our Monte Carlo experiment. The potential outcome of
losing an election is normalized to zero (Yi(0) = 0), and the potential outcome of winning
an election is Yi(1). Suppose the expected potential gain of winning an election is small
for tight elections but large otherwise; that is, let E[Yi(1) − Yi(0)|Xi = x] = E[Yi(1)|Xi =
x] = x2, where Xi is the margin of victory of a given political party in district i. Assume
the distribution of Xi is Uniform[−1, 1]. Each district is an iid draw (Yi(1), Xi, εi) from a
given distribution, where εi denotes district i’s potential to influence the election outcome
in a world where manipulation is possible. In a world without manipulation, the researcher
observes (Yi, Di, Xi), where Di = I{Xi ≥ 0} is the victory indicator, and Yi = DiYi(1) +
(1 −Di)Yi(0) = DiYi(1) is the outcome. It follows that E[Yi|Xi = x] = x2I{x ≥ 0}. There
is no discontinuity at the cutoff, the causal effect is zero, and the DGP is under the null
hypothesis of zero effect at the cutoff (Figure 4(a)).
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Figure 4: Example of RDD with Manipulation

(a) Conditional Mean without Manipulation (b) Conditional Mean with Manipulation

Notes: In figure (a) there is no manipulation, and the researcher observes a sample of (Yi, Xi). The solid line
denotes the conditional mean of the observed outcome given the margin of victory E[Yi|Xi]. The conditional
mean of the potential outcome in case of victory E[Yi(1)|Xi] is the the dotted line, and the potential outcome
in case of loss is normalized to zero Yi(0) = 0. In figure (b) there is manipulation, and the researcher observes
a sample of (Ỹi, X̃i). The solid line is E[Ỹi|X̃i] while the dotted line depicts E[Yi|Xi]. Manipulation increases
the slope of the conditional mean function at the cutoff.

In a world with manipulation, the given party in district i decides to influence the election
if the expected potential gain of doing so is positive. In other words, if the margin of victory
without manipulation Xi leads to the loss of the election, and the expected potential gain
of winning the election E[Yi(1) − Yi(0)|Xi] is strictly positive, then the party decides to
manipulate. Thus, manipulation occurs if Xi < 0, and the margin of victory changes from
Xi to εi > 0. Although the party manipulates as little as possible to win the election, it
does not have perfect control over its vote share. Assume εi = 5χ2

(3), that is, five times a
Chi-square distribution with three degrees of freedom. The pdf fε evaluated at zero equals
zero, but it is highly sloped to the right of zero. Let X̃i be the manipulated margin of victory
defined as X̃i = I{Xi < 0}εi + I{Xi ≥ 0}Xi. The researcher observes (Ỹi, D̃i, X̃i), where
Ỹi = D̃iYi(1) + (1 − D̃i)Yi(0) = D̃iYi(1), and D̃i = I{X̃i ≥ 0} is the victory indicator. The
conditional mean function under manipulation is given by

E[Ỹi|X̃i = x] = I{x ≥ 0}E[Yi(1)|X̃i = x]

= I{x ≥ 0}E
[
Yi(1)

∣∣∣ {εi = x,Xi < 0} or {Xi = x,Xi ≥ 0}
]

= I{x ≥ 0}
{
θ(x)E [Yi(1) | εi = x,Xi < 0] + (1− θ(x))E [Yi(1) | Xi = x,Xi ≥ 0]

}
= I{x ≥ 0}

{
θ(x)E [Yi(1) | Xi < 0] + (1− θ(x))E [Yi(1) | Xi = x]

}
= I{x ≥ 0}

{
θ(x)(1/3) + (1− θ(x))x2

}
,

where the weight

θ(x) =
fε(x)P(Xi < 0)

fε(x)P(Xi < 0) + fX(x)I{x ≥ 0}
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=
fε(x)0.5

fε(x)0.5 + 0.5I{x ≥ 0}

is such that θ(x) ∈ [0, 1], θ(0) = 0, θ(x) is continuous in x, and it is positively and highly
sloped near x = 0. The conditional mean function E[Ỹi|X̃i = x] increases sharply at the
cutoff (Figure 4(b)) because districts with low Xi and high causal effects manipulate their
Xi to X̃i = εi to the right of the cutoff. There is no discontinuity at the cutoff, and the DGP
is still under the null hypothesis of zero effect. However, manipulation makes it harder to
distinguish a zero effect from a positive effect at the cutoff.

A.7 Proof of Corollary 5

Fix Q ∈ P1 with CDF FQ(x). The CDF FQ(x) has a jump discontinuity of size δ > 0 at
x = x0. Call fQ the derivative of FQ at x 6= x0, which is a continuous function of x for every
x 6= x0. The integral of fQ over R equals 1 − δ. The side limits of fQ at x0, fQ(x+0 ) and
fQ(x−0 ), may be different from each other. Pick a sequence εk ↓ 0. Construct a continuous
“hat-shaped” function gk(x) : [x0− εk;x0 + εk]→ R such that: (i) gk(x0− εk) = fQ(x0− εk);
(ii) gk(x0 + εk) = fQ(x0 + εk); (iii) gk(x) has constant and positive slope for x ≤ x0, and
constant and negative slope for x ≥ x0; (iv) gk(x) ≥ fQ(x); and (v)

∫
(gk(x)−fQ(x)) dx = δ.

It is always possible to construct such a function for a small enough εk. Define fPk
(x) =

fQ(x) + I{x0 − εk ≤ x ≤ x0 + εk} (gk(x)− fQ(x)). This is a continuous PDF function, and
let it define the distribution Pk. Then the CDF FPk

converges to FQ as k → ∞ at every

continuity point of FQ, so that Pk
d→ Q.

�

A.8 Proof of Corollary 6

Fix m ∈ R. Choose an arbitrary Q ∈ P1,m, and let m′ = µ(Q) 6= m. Define g(x,w) =
EQ[Yi|Xi = x,Wi = w], and τQ(w) = g(x,w)− limx↓0 g(x,w).

Construct a sequence of functions gk : X×W→ R, k = 1, 2, . . . as follows:

gk(x,w) = g(x,w) + (τQ(w)−m)
[
I{x > 0} − Λ

(
k2x
)]

(A.27)

where Λ (·) is the CDF of the logistic distribution.
The function gk is infinitely many times continuously differentiable wrt x on {X\{c}}×W,

so gk ∈ G ∀k. Also, gk(0, w) − lim
x↓0

gk(x,w) = m. Moreover, as k → ∞, gk(x,w) → g(x,w)

pointwise. Define Pk to be the distribution of (Xi , Wi , Yi − g(Xi,Wi) + gk(Xi,Wi)) when
(Xi,Wi, Yi) ∼ Q. It follows that µ(Pk) = m and Pk ∈ P0,m ∀k.

It remains to show that Pk
d→ Q, or equivalently, to show that

(Xi , Wi , Yi − g(Xi,Wi) + gk(Xi,Wi))
d→ (Xi,Wi, Yi) (A.28)

as k → ∞ where (Xi, Yi) ∼ Q. Note that (Xi , Wi , Yi − g(Xi,Wi) + gk(Xi,Wi)) =

(Xi,Wi, Yi)+(0, gk(Xi,Wi)−g(Xi,Wi)), so it suffices to show that gk(Xi,Wi)−g(Xi,Wi)
p→ 0

as k →∞.
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Define Ak = {0 < Xi < k−1}, and let Ack be the complement of Ak. Fix ε > 0.

Q [|gk(Xi,Wi)− g(Xi,Wi)| > ε] (A.29)

= Q [ |gk(Xi,Wi)− g(Xi,Wi)| > ε | Ak] Q [Ak] (A.30)

+Q [ |gk(Xi,Wi)− g(Xi,Wi)| > ε | Ack] Q [Ack] . (A.31)

Part (A.30) vanishes as k →∞ by the continuity property of probability measures because
Ak ↓ {∅} where ∅ denotes the empty set and has zero probability.

For part (A.31), |gk(x,w)− g(x,w)| ≤ |τQ(w)−m||1−Λ (k) | for any w and any x ∈ Ack
because 1 − Λ (k2x) is strictly decreasing in x. For fixed w, |gk(x,w)− g(x,w)| attains its
maximum at x = k−1. Therefore,

(A.31) ≤ P {|τQ(Wi)−m||1− Λ (k) | > ε} Q [Ack]→ 0 (A.32)

because Λ (k)→ 1 as k →∞ and |τQ(Wi)−m| is bounded.
�

A.9 Simulations - RDD

This section contains additional results of the RDD simulation in the main text. The size
and power analyses in the main text use the 5% nominal level. This section has the same
analyses using 1% and 10% nominal levels. It also has the simulated critical values under
the various choices of null (τ,M)-models.
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Table 3: Simulated Rejection Rates and Critical Values

Panel 1: Rejection Rate under the Null Model (τ,M) Using Critical Values Simulated under Model (τ, 0)
(a) Nominal Size 1%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.0100 0.0097 0.0108 0.0142 0.0108 0.0123
.02 0.0100 0.0130 0.0147 0.0120 0.0139 0.0132
.03 0.0100 0.0195 0.0192 0.0212 0.0210 0.0224
.04 0.0100 0.0231 0.0257 0.0232 0.0243 0.0276
.05 0.0100 0.0274 0.0323 0.0335 0.0373 0.0345
.06 0.0100 0.0339 0.0467 0.0523 0.0591 0.0577
.07 0.0100 0.0402 0.0546 0.0612 0.0702 0.0737
.08 0.0100 0.0451 0.0674 0.0827 0.0917 0.0968

(b) Nominal Size 10%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.1000 0.1096 0.1111 0.1170 0.1159 0.1127
.02 0.1000 0.1253 0.1309 0.1270 0.1337 0.1254
.03 0.1000 0.1587 0.1618 0.1651 0.1629 0.1707
.04 0.1000 0.1733 0.1803 0.1818 0.1827 0.1901
.05 0.1000 0.1801 0.2049 0.2097 0.2244 0.2177
.06 0.1000 0.2126 0.2561 0.2635 0.2810 0.2805
.07 0.1000 0.2172 0.2596 0.2867 0.3022 0.3072
.08 0.1000 0.2244 0.2957 0.3238 0.3427 0.3594

Panel 2: Rejection Rate under the Alternative Model (τ,∞) Using Critical Values Simulated under Model (τ,M)
(a) Nominal Size 1%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.0113 0.0104 0.0099 0.0100 0.0100 0.0101
.02 0.0159 0.0111 0.0105 0.0102 0.0101 0.0103
.03 0.0223 0.0111 0.0112 0.0109 0.0111 0.0105
.04 0.0286 0.0133 0.0114 0.0109 0.0114 0.0108
.05 0.0390 0.0188 0.0137 0.0125 0.0114 0.0111
.06 0.0668 0.0211 0.0149 0.0132 0.0124 0.0114
.07 0.0869 0.0237 0.0150 0.0139 0.0128 0.0132
.08 0.1165 0.0295 0.0184 0.0164 0.0132 0.0130

(b) Nominal Size 10%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 0.1150 0.1013 0.1004 0.1003 0.1001 0.1001
.02 0.1411 0.1058 0.1026 0.1025 0.1013 0.1013
.03 0.1695 0.1130 0.1060 0.1045 0.1031 0.1030
.04 0.2003 0.1239 0.1129 0.1078 0.1064 0.1038
.05 0.2389 0.1361 0.1182 0.1128 0.1116 0.1079
.06 0.3093 0.1543 0.1319 0.1203 0.1154 0.1109
.07 0.3335 0.1792 0.1438 0.1286 0.1192 0.1161
.08 0.4073 0.2085 0.1567 0.1342 0.1269 0.1200

Panel 3: Critical Values Simulated under Null Model (τ,M)
(a) Nominal Size 1%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 3.0222 3.0074 3.0631 3.1741 3.0641 3.0927
.02 3.0669 3.1787 3.2466 3.1459 3.1743 3.2177
.03 3.0506 3.3975 3.4213 3.4238 3.3659 3.4641
.04 3.0810 3.5389 3.5381 3.4846 3.4706 3.5916
.05 3.0786 3.5443 3.6329 3.6819 3.7531 3.7461
.06 2.9715 3.5573 3.7476 3.8374 3.9043 3.8987
.07 2.9829 3.7526 3.9103 3.9917 3.9896 4.0030
.08 2.9536 3.7593 4.0283 4.1033 4.2614 4.2798

(b) Nominal Size 10%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 1.8700 1.9312 1.9323 1.9577 1.9602 1.9437
.02 1.8801 2.0155 2.0295 2.0221 2.0558 2.0240
.03 1.8466 2.1393 2.1621 2.1594 2.1638 2.2066
.04 1.8822 2.2410 2.2767 2.2879 2.2917 2.3270
.05 1.9056 2.3180 2.4002 2.4403 2.4903 2.4722
.06 1.8316 2.3812 2.5359 2.5594 2.6196 2.6234
.07 1.8772 2.4403 2.5859 2.7054 2.7526 2.7885
.08 1.8651 2.4662 2.7184 2.8357 2.8925 2.9366

(c) Nominal Size 5%

τ M = 0 M = 2 M = 4 M = 6 M = 8 M = 10
.01 2.2543 2.2888 2.3158 2.3511 2.3279 2.3525
.02 2.2491 2.4041 2.4038 2.3951 2.4190 2.4311
.03 2.1983 2.5607 2.5687 2.5776 2.5385 2.6150
.04 2.2350 2.6669 2.6713 2.6819 2.7055 2.7515
.05 2.2390 2.7010 2.8138 2.8575 2.9340 2.8821
.06 2.2030 2.7688 2.9399 2.9920 3.0553 3.0453
.07 2.2713 2.8591 3.0370 3.0936 3.1734 3.2180
.08 2.2556 2.9023 3.1370 3.2685 3.3442 3.3817

Notes: Model (τ,M) refers to Equation (5.2) in the main text. The estimates for the Wald test are obtained by the robust bias-corrected method of
Calonico, Cattaneo, and Titiunik (2014) and implemented using the STATA package ‘rdrobust’.
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