
Kaido, Hiroaki; Wüthrich, Kaspar

Working Paper

Decentralization estimators for instrumental variable
quantile regression models

cemmap working paper, No. CWP72/18

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Kaido, Hiroaki; Wüthrich, Kaspar (2018) : Decentralization estimators for
instrumental variable quantile regression models, cemmap working paper, No. CWP72/18, Centre
for Microdata Methods and Practice (cemmap), London,
https://doi.org/10.1920/wp.cem.2018.7218

This Version is available at:
https://hdl.handle.net/10419/211092

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2018.7218%0A
https://hdl.handle.net/10419/211092
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Decentralization estimators for instrumental 
variable quantile regression models

Hiroaki Kaido
Kaspar Wüthrich

The Institute for Fiscal Studies 
Department of Economics, UCL 

cemmap working paper CWP72/18



DECENTRALIZATION ESTIMATORS FOR INSTRUMENTAL VARIABLE

QUANTILE REGRESSION MODELS

HIROAKI KAIDO∗ AND KASPAR WÜTHRICH†

Abstract. The instrumental variable quantile regression (IVQR) model of Chernozhukov and

Hansen (2005, 2006) is a flexible and powerful tool for evaluating the impact of endogenous covari-

ates on the whole distribution of the outcome of interest. Estimation, however, is computationally

burdensome because the GMM objective function is non-smooth and non-convex. This paper shows

that the IVQR estimation problem can be decomposed into a set of conventional quantile regres-

sion sub-problems, which are convex and can be solved efficiently. This allows for reformulating

the original estimation problem as the problem of finding the fixed point of a low dimensional

map. This reformulation leads to new identification results and, most importantly, to practical,

easy to implement, and computationally tractable estimators. We explore estimation algorithms

based on the contraction mapping theorem and algorithms based on root-finding methods. We

prove consistency and asymptotic normality of our estimators and establish the validity of a boot-

strap procedure for estimating the limiting laws. Monte Carlo simulations support the estimator’s

enhanced computational tractability and demonstrate desirable finite sample properties.

Keywords: instrumental variables, quantile regression, contraction mapping, fixed point estima-

tor, bootstrap.
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1. Introduction

Quantile regression (QR), introduced by Koenker and Bassett (1978), is a very popular method

for estimating the effect of regressors on the whole outcome distribution. QR is flexible, easy

to interpret, and can be computed very efficiently as the solution to a convex problem. How-

ever, in many applications, the variables of interest are endogenous, rendering QR inconsistent for

estimating causal quantile effects. The instrumental variable quantile regression (IVQR) model

of Chernozhukov and Hansen (2004, 2005, 2006) generalizes QR to accommodate endogenous re-

gressors. Unfortunately, in sharp contrast to QR, estimation of IVQR models is computationally

burdensome because the resulting estimation problem, formulated as a generalized method of mo-

ments (GMM) problem, is non-smooth and non-convex, even for linear models. From an applied

perspective, this issue is particularly troublesome since resampling methods are often used to avoid

the choice of tuning parameters when estimating the asymptotic variance of the estimators.

In this paper, we propose a new class of estimators for linear IVQR models. The suggested

estimators are computationally tractable, very easy to implement, and particularly suitable for

settings with many exogenous, a moderate number of endogenous regressors and a large number of

observations, which are ubiquitous in applied research. The key insight underlying our estimators

is that the IVQR estimation problem can be decomposed into a series of (weighted) conventional

QR problems, which are convex and can be solved very quickly using robust algorithms. The

IVQR estimator is then characterized as a fixed point of such sub-problems. Computationally, this

reformulation allows us to recast the original non-smooth and non-convex optimization problem

as the problem of finding the fixed point of a low dimensional map, which leads to substantial

reductions in computation times. Implementation of our preferred procedures is straightforward

and only requires the availability of a routine for estimating quantile regressions and in some cases a

univariate root-finder. The resulting estimation algorithms attain significant computational gains.

For example, we show that in problems with two endogenous variables, a version of our estimator

that uses a contraction algorithm is 110–215 times faster than the popular inverse quantile regression

(IQR) estimator of Chernozhukov and Hansen (2006) with a grid search over 100×100 points.

Another version that uses a nested root-finding algorithm, which is guaranteed to converge under a

milder condition, is 70–125 times faster than the IQR estimator. Importantly, these computational

gains do not come at a cost in terms of the finite sample performance of our procedures, which is

very similar to inverse quantile regression.
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The fixed point reformulation also provides a new insight into global identification in the IVQR

model. In particular, it allows us to study identification and stability of the algorithms (at the

population level) in the same framework. Exploiting the equivalence of global identification and

uniqueness of the fixed point, we give a new identification result and population algorithms based

on the contraction mapping theorem. We then compare our identification conditions to those of

Chernozhukov and Hansen (2006). Further, our reformulation is shown to be useful beyond setups

where the contraction mapping theorem applies as long as the parameter of interest is globally

identified. For such settings, algorithms based on root-finding methods are proposed. Finally, we

show that, by recursively nesting fixed point problems, it is always possible to recast the IVQR

estimation problem as a univariate root-finding problem, which is particularly easy to solve.

We establish consistency and asymptotic normality of the proposed estimators. In addition, we

prove validity of a bootstrap procedure for consistently estimating the limiting laws. We emphasize

that the bootstrap is particularly attractive in conjunction with our efficient estimation algorithms,

as it allows us to avoid the choice of tuning parameters inherent to estimating the asymptotic

variance based on analytic formulas. The key technical ingredient for deriving our theoretical

results is the Hadamard differentiability of the fixed point map. This result may be of independent

interest.

To illustrate the usefulness of our estimation algorithms, we revisit the analysis of the impact

of 401(k) plans on savings in Chernozhukov and Hansen (2004). Based on this application, we

perform extensive Monte Carlo simulations, which demonstrate that our estimation and inference

procedures have excellent small sample properties.

1.1. Literature. We contribute to the literature on estimation and inference based on linear IVQR

models. Chernozhukov and Hong (2003) have proposed a quasi-Bayesian approach. This approach

can accommodate multiple endogenous variables but requires careful tuning in applications, as

noted by Chernozhukov and Hansen (2013). Chernozhukov and Hansen (2006) have proposed an

inverse QR algorithm that combines grid search with convex QR problems. Because the dimension-

ality of the grid search equals the number of endogenous variables, this approach is computation-

ally feasible essentially only if the number of endogenous variables is very low. Chernozhukov and

Hansen (2008) and Jun (2008) have studied weak instrument robust inference procedures based

on the inversion of Anderson-Rubin-type tests. Chernozhukov, Hansen, and Jansson (2009) have

proposed a finite sample inference approach. Andrews and Mikusheva (2016) have developed a gen-

eral conditional inference approach and derived sufficient conditions for the IVQR model. Kaplan
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and Sun (2017) and de Castro, Galvao, Kaplan, and Liu (2018) have suggested to use smoothed

estimating equations to overcome the non-smoothness of the IVQR estimation problem, although

the non-convexity remains. More recently, Chen and Lee (2018) have proposed to reformulate

the IVQR problem as a mixed-integer quadratic programming problem which can be solved using

well-established algorithms. However, efficiently solving such a problem is still challenging even for

low-dimensional settings. By replacing the `2 norm by the `∞ norm, Zhu (2018) has shown that

the problem admits a reformulation as a mixed-integer linear programming problem, which can

be computed much more efficiently. In addition, Zhu (2018) has proposed a k-step approach that

allows for estimating models with multiple endogenous regressors based on large datasets.

Compared to existing literature, the main advantages of the proposed estimation algorithms are

the following. By relying on convex QR problems, our estimators are easy to implement, robust,

and computationally efficient in settings with many exogenous variables, a moderate number of

endogenous variables, and a large number of observations. In addition, by exploiting the specific

structure of the IVQR estimation problem, our estimators are tuning-free and do not require the

availability of high-level optimization routines.

Semi- and nonparametric estimation of IVQR models has been studied by Chernozhukov, Im-

bens, and Newey (2007), Horowitz and Lee (2007), Chen and Pouzo (2009), Chen and Pouzo

(2012), Gagliardini and Scaillet (2012) and Wüthrich (2017). Chernozhukov and Hansen (2013)

and Chernozhukov, Hansen, and Wüthrich (2017) have provided surveys of the IVQR model in-

cluding references to empirical applications.

Abadie, Angrist, and Imbens (2002) have proposed an alternative approach to the identification

and estimation of quantile effects with binary endogenous regressors, which builds on the local

average treatment effects framework of Imbens and Angrist (1994). Their approach has been

extended and further developed by Frandsen, Frölich, and Melly (2012), Frölich and Melly (2013),

and Belloni, Chernozhukov, Fernandez-Val, and Hansen (2017) among others. We refer to Melly

and Wüthrich (2017) for a recent review of this approach and to Wüthrich (2018) for a comparison

between this approach and the IVQR model. Identification and estimation in nonseparable models

with continuous endogenous regressors have been studied by Chesher (2003), Ma and Koenker

(2006), Lee (2007), Jun (2009), Imbens and Newey (2009), D’Haultfoeuille and Février (2015), and

Torgovitsky (2015) among others.

On a broader level, our paper contributes to the literature which proposes estimation proce-

dures that rely on decomposing computationally burdensome estimation problem into several more

tractable subproblems. This type of procedure, which we call decentralization, has been applied in
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many different contexts. Examples include the estimation of single index models with unknown link

function (Weisberg and Welsh, 1994), general maximum likelihood problems (Smyth, 1996), linear

models with high-dimensional fixed effects (e.g., Guimaraes and Portugal, 2010, and the references

therein), sample selection models (Marra and Radice, 2013), peer effects models (Arcidiacono, Fos-

ter, Goodpaster, and Kinsler, 2012), interactive fixed effects models (e.g., Chen, Fernandez-Val,

and Weidner, 2014; Moon and Weidner, 2015), and random coefficient logit demand models (Lee

and Seo, 2015). Most of these papers decompose a single estimation problem into two subproblems.

This paper explicitly considers cases in which the number of subproblems may exceed two. Our

analysis on identification, estimation, and inference can be extended beyond the IVQR model and

is undertaken in ongoing work.

1.2. Organization of the Paper. The remainder of the paper is structured as follows. Section

2 introduces the setup and the IVQR model. Section 3 shows that the IVQR estimation problem

can be decentralized into a series of (weighted) conventional QR problems. In Section 4 we intro-

duce population algorithms based on the contraction mapping theorem and root-finders. Section 5

discusses the corresponding sample algorithms. In Section 6 we establish the asymptotic normality

of our estimators and prove the validity of the bootstrap. Section 7 presents an empirical applica-

tion. In Section 8 we provide extensive simulation evidence on the finite sample properties of our

methods. Section 9 concludes. All proofs and some additional results are collected in the appendix.

2. Setup and Model

Consider a setup with a continuous outcome variable Y , a dX × 1 vector of exogenous covariates

X, a dD×1 vector of endogenous treatment variables D, and a dZ×1 vector of instruments Z. The

IVQR model is developed within the standard potential outcomes framework (e.g., Rubin, 1974).

Let {Yd} denote the (latent) potential outcomes. The object of primary interest is the conditional

quantile function of the potential outcomes, which we denote by q(d, x, τ). Having conditioned on

covariates X = x, by the Skorokhod representation of random variables, potential outcomes can be

represented as

Yd = q(d, x, Ud) with Ud ∼ U(0, 1).

This representation lies at the heart of the IVQR model. With this notation at hand, we state the

main conditions of the IVQR model (Chernozhukov and Hansen, 2005, Assumptions A1-A5).

Assumption 1. Given a common probability space (Ω, F, P ), the following conditions hold jointly

with probability one:
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(1) Potential outcomes: Conditional on X = x, for each d, Yd = q(d, x, Ud), where q(d, x, τ) is

strictly increasing in τ and Ud ∼ U(0, 1).

(2) Independence: Conditional on X = x, {Ud} are independent of Z.

(3) Selection: D := δ(Z,X, V ) for some unknown function δ(·) and random vector V .

(4) Rank invariance or Rank similarity: Conditional on X = x, Z = z,

(a) {Ud} are equal to each other; or, more generally,

(b) {Ud} are identically distributed, conditional on V .

(5) Observed variables: Observed variables consist of Y := q(D,X,UD), D, X, and Z.

We briefly discuss the most important aspects of Assumption 1 and refer the interested reader

to Chernozhukov and Hansen (2005, 2006, 2013) for more comprehensive treatments. Assumption

1.1 states the Skorohod representation of Yd and requires strict monotonicity of the potential out-

come quantile function, which rules out discrete outcomes. Assumption 1.2 imposes independence

between the potential outcomes and the instrument. Assumption 1.3 defines a general selection

mechanism. The key restriction of the IVQR model is Assumption 1.4. Rank invariance (a) re-

quires individual ranks Ud to be the same across treatment states. Rank similarity (b) weakens this

condition, allowing for random slippages of Ud away from a common level U . Finally, Assumption

1.5 summarizes the observables.

The main implication of Assumption 1 is the following conditional moment restriction (Cher-

nozhukov and Hansen, 2005, Theorem 1):

P (Y ≤ q(D,X, τ) | X,Z) = τ, τ ∈ (0, 1). (2.1)

In this paper, we focus on the commonly used linear-in-parameter model for q(·) (e.g., Chernozhukov

and Hansen, 2006):

q(d, x, τ) = x′θ1(τ) + d1θ2(τ) + · · ·+ ddDθJ(τ), (2.2)

where J = dD+1, and θ(τ) := (θ1(τ)′, θ2(τ), . . . , θJ(τ))′ is the finite dimensional parameter vector of

interest. The conditional moment restriction (2.1) suggests GMM estimators based on the following

unconditional population moment conditions:

ΨP (θ(τ)) := EP

(1{Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)
}
− τ
)X

Z

 . (2.3)

Our primary goal is to obtain an estimator of θ∗ in a computationally efficient and reliable

manner. We therefore focus on just-identified moment restrictions where dZ = dD, for which

the construction of an estimator is straightforward. A potential caveat of this approach is that
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estimators based on these restrictions do not achieve the pointwise (in τ) semiparametric efficiency

bound implied by the conditional moment restrictions (2.1). Appendix A provides a discussion of

overidentified GMM problems and presents a two-step approach, in which one obtains an initial

estimator of the true parameter value θ∗(τ) based on the just-identified moment restrictions. This

initial estimator can then be used to construct a vector of optimal instruments.

For later use, we define

ΨP (θ(τ)) =
(
ΨP,1 (θ(τ))′ , . . . ,ΨP,J (θ(τ))

)′
,

where

ΨP,1 (θ(τ)) := EP
[(

1
{
Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)

}
− τ
)
X
]
,

ΨP,j (θ(τ)) := EP
[(

1
{
Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)

}
− τ
)
Zj−1

]
, j = 2, . . . , J.

In what follows, we will often suppress the dependence on τ to lighten-up the exposition. We then

define the true parameter value θ∗ as the solution to the moment conditions, i.e.,

ΨP (θ∗) = 0.

The resulting GMM objective function reads

QN (θ) = −1

2

(
1√
N

N∑
i=1

mi (θ)

)′
WN (θ)

(
1√
N

N∑
i=1

mi (θ)

)
, (2.4)

where mi (θ) := (1 {Yi ≤ X ′iθ1 +D1iθ2 + · · ·+DdDiθJ} − τ) (Z ′i, X
′
i)
′ and WN (θ) is a positive def-

inite weighting matrix. Estimation based on (2.4) is complicated by the non-smoothness and,

most importantly, the non-convexity of QN (θ). The goal of this paper is to propose a new set of

algorithms to address these challenges.

3. Decentralization

Here, we describe the basic idea behind our decentralization estimators. To simplify the expo-

sition, we first illustrate our approach with the population problem of finding the true parameter

value θ∗ in the IVQR model. Our estimator then adopts the analogy principle, which will be pre-

sented in Section 5. The key insight is that the complicated nonlinear IVQR estimation problem

can be “decentralized”, i.e., decomposed into a set of more tractable sub-problems, each of which

is solved by a “player” who best responds to other players’ actions. Specifically, we first split the

parameter vector θ into J subvectors θ1, . . . , θJ . We then decompose the grand estimation problem

into J subproblems. Each of the subproblems is allocated to a distinct player. For each j, player j’s
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choice variable is the j-th subvector θj . Her problem is to find the value of θj such that a subset of

the moment restrictions is satisfied given the other players’ actions θ−j . This reformulation allows

us to view the estimation problem as a game of complete information and to characterize θ∗ as the

game’s pure strategy Nash equilibrium.

We start with defining weighted population QR objective functions. For each θ ∈ Rd, let

QP,1 (θ) := EP
[
ρτ (Y −X ′θ1 −D1θ2 − · · · −DdDθJ)

]
, (3.1)

QP,j (θ) := EP
[
ρτ (Y −X ′θ1 −D1θ2 − · · · −DdDθJ)(Zj−1/Dj−1)

]
, j = 2, . . . , J, (3.2)

where ρτ (u) = u(τ −1{u < 0}) is the “check-function”. We assume that the model is parametrized

such that Z`/D` is positive for all ` = 1, . . . , dD. Under our assumptions, we can always reparametrize

the model such that this condition is met; see Appendix B for more details.

Consider the following functions1

L1 (θ−1) = arg min
θ̃1∈RdX

QP,1

(
θ̃1, θ−1

)
, (3.3)

Lj (θ−j) = arg min
θ̃j∈R

QP,j

(
θ̃j , θ−j

)
, j = 2, . . . , J. (3.4)

Borrowing the terminology from game theory, we refer to these functions best response (BR) func-

tions. Observe that each player’s problem is a weighted QR problem, which is convex in its choice

variable. For the sample analogues of these problems, fast solution algorithms exist (Portnoy and

Koenker, 1997). Under the conditions we specify below, the BR functions satisfy

0 = EP
[(

1
{
Y ≤ X ′L1 (θ−1) +D′θ−1

}
− τ
)
X
]
, (3.5)

0 = EP

[(
1
{
Y ≤ (X ′, D′−(j−1))

′θ−j +Dj−1Lj (θ−j)
}
− τ
)
Zj−1

]
, j = 2, . . . , J, (3.6)

where D−(j−1) stacks as a vector all endogenous variables except Dj−1. Note that these are the

unconditional IVQR moment conditions imposed on the true parameter value θ∗. Hence, θ∗ satisfies

θ∗j = Lj(θ
∗
−j), j = 1, . . . , J, (3.7)

which implies that θ∗ is a fixed point of the BR-maps (i.e. a Nash equilibrium of the game).

1Lemma 1 below ensures that these functions are well-defined on suitable domains.
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We say that the IVQR estimation problem admits decentralization if the BR functions Lj , j =

1, . . . , J , are well-defined over domains for which the moment conditions can be evaluated.2 To

ensure decentralization, we make the following assumption.

Assumption 2. The following conditions hold.

(1) Θ is a closed rectangle in Rd. θ∗ is in the interior of Θ.

(2) E[|Z`|2] <∞ for ` = 1, . . . , dD. E[|Xk|2] <∞ for all k = 1, . . . , dX . For each ` = 1, . . . , dD,

D` has a compact support;

(3) The conditional cdf y → FY |D,X,Z(y) is continuously differentiable for all y ∈ R a.s. The

conditional density fY |D,Z,X is uniformly bounded a.s.;

(4) For any θ ∈ Θ, the matrices

EP [fY |D,X,Z
(
D′θ−1 +X ′θ1

)
XX ′]

and

EP [fY |D,X,Z
(
D′θ−1 +X ′θ1

)
D`Z`], ` = 1, . . . , dD,

are positive definite.

For each j, let Θ−j ⊂ Rd−j denote the parameter space for θ−j . Assumption 2.1 ensures that

Θ is compact. This assumption also ensures that each Θ−j is also a closed rectangle, which we

use to show that Lj is well-defined on a suitable domain. Assumption 2.2 and Assumption 2.3

impose standard regularity conditions on the conditional density and moments of the variables in

the model. We assume D` has a compact support, which allows us to always reparameterize the

model so that the objective function in (3.2) is well-defined and convex (cf. Appendix B). The first

part of Assumption 2.4 is a standard full rank condition which is a natural extension of the local

full rank condition required for local identification and decentralization (cf. Assumption 4 in the

appendix). For the second part of Assumption 2.4, it suffices that the model is parametrized such

that, for each ` ∈ {1, . . . , dD}, D`Z` (and Z`/D`) is positive with probability 1.

For each j, define

R−j := {θ−j ∈ Θ−j : ΨP,j(θ) = 0, for some θ = (θj , θ−j) ∈ Θ}. (3.8)

2In Appendix C.2, we also provide weaker conditions under which the decentralization holds on a neighborhood

of θ∗. We call such a result local decentralization, which is sufficient for analyzing the (local) asymptotic behavior of

the estimator.
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This is the set of subvectors θ−j for which one can find θj ∈ Θj such that θ = (θj , θ−j)
′ solve the

j-th moment restriction. We take this set as the domain of player j’s best response map Lj .

The following lemma establishes that the IVQR model admits decentralization.

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then, there exist maps Lj : R−j → Rdj , j =

1, . . . , J such that, for j = 1, . . . , J ,

ΨP,j (Lj(θ−j), θ−j) = 0, for all θ−j ∈ R−j . (3.9)

Further, Lj is continuously differentiable on the interior of R−j for all j = 1, . . . , J .

We now introduce maps that represent all players’ (joint) best responses. We consider two basic

choices of such maps; one represents simultaneous responses, and the other represents sequential

responses. In what follows, for any subset a ⊂ {1, . . . , J}, let θ−a denote the subvector of θ that

stacks the components of θj ’s for all j /∈ a. If a is a singleton (i.e. a = {j} for some j), we simply

write θ−j . For each j and a ⊆ {1, . . . , J} \ {j}, let π−a : Θ−j →
∏
k∈{1,...,J}\({j}∪a) Θk be the

coordinate projection of θ−j to a further subvector that stacks all components of θ−j except for

those of θk with k ∈ a.

Let DK := {θ ∈ Θ : π−jθ ∈ R−j , j = 1, . . . , J}. Let K : DK → Rd be a map defined by

K(θ) =


K1(θ)

...

KJ(θ)

 =


L1(θ−1)

...

LJ(θ−J)

 . (3.10)

This can be interpreted as the players’ simultaneous best responses to the initial strategy (θ1, . . . , θJ).

With one endogenous variable, this map simplifies to

K(θ) =

L1(θ2)

L2(θ1)

 . (3.11)

Here, K maps θ = (θ1, θ2) to a new parameter value through the simultaneous best responses of

players 1 and 2.

Similarly, let DM ⊂ RdD and let M : DM → RdD be a map such that

M (θ−1) =


M1(θ−1)

M2(θ−1)
...

MdD(θ−1)

 =


L2

(
L1(θ−1), θ−{1,2}

)
L3

(
L1(θ−1), L2(L1(θ−1), θ−{1,2}), θ−{1,2,3}

)
...

LJ
(
L1(θ−1), L2(L1(θ−1), θ−{1,2}), · · ·

)

 , (3.12)
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which can be interpreted as the players’ sequential responses (first by Player 1, then Player 2, etc.)

to an initial strategy θ−1 = (θ2, . . . , θJ).3 Note that the argument of M is not the entire parameter

vector. Rather, it is a subvector of θ consisting of the coefficients on the endogenous variables. In

order to find a fixed point, this feature is particularly attractive when the number of endogenous

variables is small. With one endogenous variable (i.e. θ2 ∈ R is a scalar), the map simplifies to

M(θ2) = L2 (L1 (θ2)) ,

which is a univariate function whose fixed point is often straightforward to compute.

Define

R̃1 :=
{
θ−1 ∈ Θ−1 :ΨP,1(θ1, θ−1) = 0,

ΨP,2(θ1, θ2, π−{1,2}θ−1) = 0, ∃(θ1, θ2) ∈ Θ1 ×Θ2

}
. (3.13)

This is the set on which the map θ−1 → L2

(
L1 (θ−1) , π−{1,2}θ−1

)
, the first component of M ,

is well-defined. We then recursively define R̃j for j = 2, . . . , dD in a similar manner. A precise

definition of these sets is given in Appendix C. Now define

DM :=

dD⋂
j=1

R̃j = R̃dD , (3.14)

where the second equality follows because R̃dD turns out to be a subset of R̃j for all j ≤ dD. The

following corollary ensures that K and M are well-defined on DK and DM respectively.

Corollary 1. The maps K : DK → Rd and M : DM → RdD exist and are continuously differen-

tiable on the interior of their domains.

The key insight that we exploit is that, by construction of the BR maps, the problem of finding

a solution to ΨP (θ) = 0 is equivalent to the problem of finding a fixed-point of K (or M). The

following proposition states the formal result.

Proposition 1. Suppose Assumptions 1 and 2 hold. Then,

(i) ΨP (θ∗) = 0 if and only if K (θ∗) = θ∗

(ii) ΨP (θ∗) = 0 if and only if M
(
θ∗−1

)
= θ∗−1 and θ∗1 = L1(θ∗−1).

In view of Proposition 1, the original IVQR estimation problem can be reformulated as the

problem of finding the fixed point of K (or M). This reformulation naturally leads to discrete

3One may define M by changing the order of responses as well. For theoretical analysis, it suffices to consider

only one of them. Once the fixed point θ∗−1 of M is found, one may also obtain θ∗1 using θ∗1 = L1(θ∗−1).
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dynamical systems associated with these maps, which in turn provides straightforward iterative

algorithms for computing θ∗.

(1) Simultaneous dynamical system:4

θ(s+1) = K
(
θ(s)
)
, s = 0, 1, 2, . . . , θ(0) given. (3.15)

(2) Sequential dynamical system:5

θ
(s+1)
−1 = M

(
θ

(s)
−1

)
, s = 0, 1, 2, . . . , θ

(0)
−1 given. (3.16)

where θ
(s+1)
1 = L1

(
θ

(s)
−1

)
.

These discrete dynamical systems will be the starting point for our estimation algorithms.6

4. Population Algorithms

In this section, we explore the implications of the fixed point reformulation for constructing

population-level algorithms for computing fixed points.

4.1. Contraction-based Algorithms. We first consider conditions under which K and M are

contraction mappings. They ensure that the discrete dynamical systems induced by K and M

are convergent to unique fixed points. Moreover, in view of Proposition 1, (point) identification is

equivalent to the uniqueness of the fixed point of K (or M). Therefore, the conditions we provide

below are also sufficient for the point identification of θ∗. We will discuss the relationship between

our conditions and existing ones in the next section.

For any vector-valued map E, let JE(x) denote its Jacobian matrix evaluated at its argument x.

We provide conditions in terms of the Jacobian matrices of K and M , which are well-defined by

Corollary 1.

Assumption 3. There exist open strictly convex sets D̃K ⊆ DK and D̃M ⊆ DM such that

(1) ‖JK (θ) ‖ ≤ λ for some λ < 1 for all θ ∈ D̃K ;

(2) ‖JM (θ−1) ‖ ≤ λ for some λ < 1 for all θ−1 ∈ D̃M .

4This algorithm is akin to the Jacobi computational procedure.
5Smyth (1996) considers this type of algorithm for J = 2 and calls it “zigzag” algorithm. It is akin to a Gauss-Seidel

procedure.
6These discrete dynamical systems can also be viewed as learning dynamics in a game (Li and Basar, 1987;

Fudenberg and Levine, 2007).
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Under this additional assumption, the iterative algorithms are guaranteed to converge to the

fixed point. We summarize this result below.

Proposition 2. Suppose Assumptions 1, 2, and 3 hold. Then,

(i) K is a contraction on the closure of D̃K . The fixed point θ∗ ∈ cl(D̃K) of K is unique. For

any θ(0) ∈ D̃K , the sequence {θ(s)}∞s=0 defined in (3.15) satisfies θ(s) → θ∗ as s→∞.

(ii) M is a contraction on the closure of D̃M . The fixed point θ∗−1 ∈ cl(D̃M ) of M is unique.

For any θ
(0)
−1 ∈ D̃M , the sequence {θ(s)

−1}∞s=0 defined in (3.16) satisfies θ
(s)
−1 → θ∗−1 as s→∞.

In the case of a single endogenous variable, the Jacobian matrices of K and M are given by

JK(θ) =

 0 JL1(θ2)

JL2(θ1) 0

 , and JM (θ2) = JL2 (L1(θ2)) JL1 (θ2) ,

where

JL−j (θj) = −

(
∂ΨP,−j(θj , θ−j)

∂θ′−j

∣∣∣∣
θ=(θj ,L−j(θj))

)−1
∂ΨP,−j(θj , θ−j)

∂θ′j

∣∣∣∣
θ=(θj ,L−j(θj))

, for j = 1, 2.

One may therefore check the high-level condition through the Jacobians of the original moment

restrictions. In Appendix C.2.1, we illustrate a simple primitive condition for the local version of

Assumption 3.

4.2. Connections to Identification Conditions. In view of Proposition 1, identification of θ∗

is equivalent to uniqueness of the fixed points of K and M , which is ensured by Proposition 2.

Here, we discuss how the conditions required by Proposition 2 relate to the ones in the literature.

We first start with local identification. The parameter vector θ∗ is said to be locally identified

if there is a neighborhood N of θ∗ such that ΨP (θ) 6= 0 for all θ 6= θ∗ in the neighborhood. Local

identification in the IVQR model follows from standard results (e.g., Rothenberg, 1971; Chen, Cher-

nozhukov, Lee, and Newey, 2014). For example, if ΨP (θ) is differentiable, Chen, Chernozhukov,

Lee, and Newey (2014, Section 2.1) show that full rank of JΨP
(θ) at θ∗ is sufficient for local

identification.

It is interesting to compare this full rank condition to Assumption 5.1 in the appendix, which is

a local version of Assumption 3.1. Assumption 5.1 requires that ρ (JK(θ∗) < 1, where ρ(A) denotes

the spectral radius of a square matrix A. We highlight the connection in the case with a single

endogenous variable. Full rank of JΨP
(θ∗) is equivalent to det (JΨP

(θ∗)) 6= 0. Observe that, for
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any θ,

det (JΨP
(θ)) = det

∂ΨP,1(θ1, θ2)/∂θ′1 ∂ΨP,1(θ1, θ2)/∂θ′2

∂ΨP,2(θ1, θ2)/∂θ′1 ∂ΨP,2(θ1, θ2)/∂θ′2


= det

∂ΨP,1(θ1, θ2)/∂θ′1 0

0 ∂ΨP,2(θ1, θ2)/∂θ′2

 Id1 −JL1(θ2)

−JL2(θ1) Id2


= det

∂ΨP,1(θ1, θ2)/∂θ′1 0

0 ∂ΨP,2(θ1, θ2)/∂θ′2

 det

 Id1 −JL1(θ2)

−JL2(θ1) Id2

 .

If ∂ΨP,j(θ)/∂θ
′
j |θ=θ∗ is invertible for j = 1, 2 (which is true under Assumption 2.4), JΨP

(θ∗) is full

rank if and only if

0 6= det

 Id1 −JL1(θ∗2)

−JL2(θ∗1) Id2

 = det(Id − JK(θ∗)). (4.1)

That is, it requires that none of the eigenvalues has modulus one. Therefore, Assumption 5.1 is

sufficient but not necessary for condition (4.1) to hold. Specifically, Assumption 5.1 requires all

eigenvalues of JK(θ∗) to lie strictly within the unit circle, while local identification only requires

all eigenvalues not to be on the unit circle. In terms of the dynamical systems induced by K, the

former ensures that the dynamical system has a unique asymptotically stable fixed point, while the

latter ensures that the system has a unique hyperbolic fixed point, which is a more general class of

fixed points (e.g. Galor, 2007).7 Under the former condition, iteratively applying the contraction

map induces convergence, while the latter generally requires a root finding method to obtain the

fixed point.

Now we turn to global identification and compare Proposition 2 to the global identification result

in Chernozhukov and Hansen (2006).

Lemma 2 (Theorem 2 in Chernozhukov and Hansen (2006)). Suppose that Assumption 1 holds.

Moreover, suppose that (i) Θ is compact and convex and θ∗ is in the interior of Θ; (ii) fY |D,Z,X is

uniformly bounded a.s.; (iii) JΨ(θ) is continuous and has full rank uniformly over Θ; and (iv) the

image of Θ under the mapping θ → Ψ(θ) is simply connected. Then, θ∗ uniquely solves Ψ(θ) = 0

over Θ.

7The argument above also applies to settings with multiple endogenous variables. A similar result can also be

shown for M .



DECENTRALIZATION ESTIMATORS FOR IVQR 15

Under Conditions (i)–(iv), which are substantially stronger than the local identification condi-

tions discussed above, the result in Lemma 2 follows from an application of Hadamard’s global

univalence theorem (e.g. Theorem 1.8 in Ambrosetti and Prodi (1995)).

Comparing Lemma 2 to Proposition 2, we can see that the result in Lemma 2 establishes iden-

tification over the whole parameter space Θ, while Proposition 2 establishes identification over

the sets D̃K and D̃M , which will generally be subsets of Θ. Regarding the underlying assump-

tions, Conditions (i) and (ii) in Lemma 2 correspond to our Assumptions 2.1 and 2.3. Moreover,

our Assumption 2.3 constitutes an easy-to-interpret sufficient condition for continuity of JΨP
as

required in Condition (iii). To apply Hadamard’s global univalence theorem, Chernozhukov and

Hansen (2006) assume the simple connectedness of the image of Ψ (Condition (iv)). By contrast,

we use a different univalence theorem by Gale and Nikaido (1965) (applied to the map Ξ defined in

(D.3) that arises from each subsystem), which does not require further conditions. However, when

establishing global identification based on the contraction mapping theorem, we need to impose

an additional condition on the Jacobian (Assumption 3). In sum, our conditions are somewhat

stronger in terms of restrictions on the Jacobian, but they are relatively easy to check and allow

us to dispense with an abstract condition (simple connectedness of the image of a certain map) to

apply a global univalence theorem.

4.3. Root-Finding Algorithms and Nesting. Note that Assumption 3 is a sufficient condition

for the uniqueness of the fixed point and the convergence of the contraction-based algorithm. Even

in cases this assumption fails to hold, one may still identify θ∗ and design an algorithm that is able

to find it under weaker conditions on the Jacobian. This is the case under the assumptions in the

general (global) identification result of Chernozhukov and Hansen (2006); see Lemma 2.

Note that, for the simultaneous dynamical system, θ∗ solves

(Id −K)(θ∗) = 0, (4.2)

where Id is the identity map. Similarly, in the sequential dynamical system, θ∗−1 solves

(IdD −M)(θ∗−1) = 0. (4.3)

Therefore, standard root-finding algorithms can be used to compute the fixed point.

For implementing root-finding algorithms, we find that reducing the dimension of the fixed point

problem is often helpful. Toward this end, we briefly discuss another class of dynamical systems

and associated population algorithms which can be used for the purpose of dimension reduction.

Namely, with more than two players, one can construct nested dynamical systems, which induce
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nested fixed point algorithms. Nesting is useful as it allows transforming any setup with more than

two players into a two-player system.

To fix ideas, consider the case of three players (J = 3). Fix player 3’s action θ3 ∈ Θ3 ⊂ R

and consider the associated “sub-game” between players 1 and 2. To describe the subgame, define

M1,2|3(· | θ3) : Θ2 → Θ2 pointwise by

M1,2|3(θ2 | θ3) := L2 (L1 (θ2, θ3) , θ3) . (4.4)

This map gives the the sequential best responses of players 1 and 2 while taking player 3’s strategy

given. Define the fixed point L12 : Θ3 → Θ1 ×Θ2 of the subgame by

L12(θ3) :=

θ̄1(θ3)

θ̄2(θ3)

 =

 L1(θ̄2(θ3), θ3)

M1,2|3(θ̄2(θ3) | θ3).

 (4.5)

This map then defines a new “best response” map. Here, given θ3, the players in the subgame (i.e.

players 1 and 2) collectively respond by choosing the Nash equilibrium of the subgame. The overall

dynamical system induced by the nested decentralization is then given by

M3(θ3) = L3 (L12(θ3)) . (4.6)

Hence, we can interpret the nested algorithm as a two-player dynamical system where one player

solves an internal fixed point problem. This nesting procedure is generic and can be extended

to more than three players by sequentially adding additional layers of nesting.8 It follows that

any decentralized estimation problem with more than two players can be reformulated as a nested

dynamical system with two players: player J and all others −J . The resulting dynamical system

MJ(θJ) = LJ (L−J(θJ)) is particularly useful when MJ is not necessarily a contraction map but θJ

is a scalar (which is the case in our IVQR model). As we see below, its fixed point can efficiently

be computed using univariate root-finding algorithms.

5. Sample Estimation Algorithms

Let {(Yi, D′i, X ′i, Z ′i)}
N
i=1 be a sample generated from the IVQR model. Our estimators are con-

structed using the analogy principle. For this, define the sample payoff functions for the players

8In the current example, consider adding player 4 and letting players 1-3 best respond by returning the fixed point

of the subgame through M3 given θ4. One can repeat this for additional players. This procedure can also be applied

to the simultaneous dynamical system induced by K.



DECENTRALIZATION ESTIMATORS FOR IVQR 17

as

QN,1 (θ) :=
1

N

N∑
i=1

ρτ (Yi −X ′iθ1 −D1,iθ2 − · · · −DdD,iθJ), (5.1)

QN,j (θ) :=
1

N

N∑
i=1

ρτ (Yi −X ′iθ1 −D1,iθ2 − · · · −DdD,iθJ)(Zj−1,i/Dj−1,i), j = 2, . . . , J. (5.2)

The sample BR functions are defined as

L̂1 (θ−1) := arg min
θ̃1∈Rd1

QN,1(θ̃1, θ−1), (5.3)

L̂j (θ−j) := arg min
θ̃j∈R

QN,j(θ̃j , θ−j), j = 2, . . . , J. (5.4)

Assuming that the model is parametrized in such a way that Z`,i/D`,i, ` = 1, . . . , dD, is positive,

these are convex (weighted) QR problems for which fast solution algorithms exist. In our empirical

applications and simulations, we use the R-package quantreg to estimate the QRs (Koenker, 2018).

For example, L̂2(θ−2) can be computed by running a QR with weights Z1i/D1i in which one regresses

Yi −X ′iθ1 −D2,iθ3 − · · · −DdD,iθJ on D1i without a constant.

Remark 5.1. The proposed estimators rely on decentralizing the original non-smooth and non-

convex IVQR GMM problem into a series of convex QR problems. The quality and the computa-

tional performance of our procedures therefore crucially depends on the choice of the underlying QR

estimation approach, which deserves some further discussion. The interested reader is referred to

Koenker (2017) for an excellent overview over the computational aspects of quantile regression. In

this paper, we use the Barrodale and Roberts algorithm which is implemented as the default in the

quantreg package and described in detail in Koenker and D’Orey (1987, 1994). This algorithm is

computationally tractable for problems up several thousand observations. For larger problems, we

recommend using interior point methods, potentially after preprocessing; see Portnoy and Koenker

(1997) for a detailed description. These methods are conveniently implemented in the quantreg

package. For very large problems, one can resort to first-order gradient descent methods, which are

amenable to modern parallelized computation; see Section 5.5 in Koenker (2017) for an excellent

introduction and simulation evidence on the performance of such methods.

We construct estimation algorithms by mimicking the population algorithms. Let K̂ and M̂

denote sample analogs of K and M :

K̂ (θ) :=


L̂1 (θ−1)

...

L̂J (θJ−1)

 (5.5)
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and

M̂ (θ−1) :=


M̂1(θ−1)

M̂2(θ−1)
...

M̂dD(θ−1)

 =


L̂2

(
L̂1(θ−1), θ−{1,2}

)
L̂3

(
L̂1(θ−1), L̂2(L̂1(θ−1), θ−{1,2}), θ−{1,2,3}

)
...

L̂J

(
L̂1(θ−1), L̂2(L̂1(θ−1), θ−{1,2}), · · ·

)

 , (5.6)

where θ1 = L̂1 (θ−1). These maps induce sample analogs of the dynamical systems in Section 3.

(1) Sample simultaneous dynamical system:

θ(s+1) = K̂
(
θ(s)
)
, s = 0, 1, 2, . . . , θ(0) given. (5.7)

(2) Sample sequential dynamical system:

θ
(s+1)
−1 = M̂

(
θ

(s)
−1

)
, s = 0, 1, 2, . . . , θ

(0)
−1 given, (5.8)

where θ
(s+1)
1 = L̂1

(
θ

(s)
−1

)
.

5.1. Contraction-based Algorithms. The first set of algorithms exploits that, under Assump-

tion 3, K̂ and M̂ are contraction mappings with probability approaching one. In this case, we

iterate the dynamical systems (5.7) or (5.8) until ‖θ(s) − K̂
(
θ(s)
)
‖ (or ‖θ(s)

−1 − M̂(θ
(s)
−1)‖) is within

a numerical tolerance eN .9 This iterative algorithm is known to converge at least linearly. The

approximate sample fixed point θ̂N that meets the convergence criterion then serves as an estimator

for θ.

5.2. Algorithms based on Root-Finders and Optimizers. As discussed in Section 4.3, for

root-finding algorithms, the sequential dynamical system (induced by M) is particularly useful

because it leads to a substantial dimension reduction. The original (dX + dD)-dimensional GMM

estimation problem can be reduced to a dD-dimensional root-finding problem. An estimator θ̂N of

θ∗ can be constructed as an approximate fixed point to the sample problem:

‖θ̂N,−1 − M̂
(
θ̂N,−1

)
‖ ≤ eN , (5.9)

where θ̂N,1 = L̂1

(
θ̂N,−1

)
and eN is a numerical tolerance. This problem can be solved efficiently

using well-established root-finding algorithms since M̂ is easy to evaluate as the composition of

standard QRs. When dD = 1, one may use Brent’s method (Brent, 1971) whose convergence is

superlinear. When dD > 1, one could apply the Newton-Raphson method, which achieves quadratic

9In the next section, we require eN = o(N−1/2), which ensures that the numerical error does not affect the

asymptotic distribution.
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convergence but requires an estimate or a finite difference approximation of the derivative. The

corresponding approximation error may affect the performance. Alternatively, on can compute the

fixed point by minimizing ‖M̂(θ)− θ‖2. The potential issue with this approach is that translating

the root-finding problem into a minimization problem can lead to local minima in the objective

function. Therefore, it is important to use global optimization strategies.

As described in Section 4.3, nesting can be used to reduce the dimensionality even further. In

particular, the problem can be reformulated as a one-dimensional fixed point problem, which can

be solved efficiently using existing methods. We found that Brent’s method works very well in our

context.

6. Asymptotic Theory

6.1. Estimators. We define an estimator θ̂N of θ∗ as an approximate fixed point of K̂ in the

following sense:

‖θ̂N − K̂(θ̂N )‖ ≤ inf
θ′∈Θ
‖θ′ − K̂(θ′)‖+ op(N

−1/2). (6.1)

In what follows, we call θ̂N the fixed point estimator or θ∗. Alternatively, using M̂ , one may define

an estimator θ̂N,−1 of θ−1 as

‖θ̂N,−1 − M̂(θ̂N,−1)‖ ≤ inf
θ′−1∈Θ−1

‖θ′−1 − M̂(θ′−1)‖+ op(N
−1/2). (6.2)

An estimator of θ∗1 can be constructed by setting

θ̂N,1 := L̂1(θ̂N,−1). (6.3)

Under the conditions we introduce below, the definitions in (6.1) and (6.2)–(6.3) are asymptotically

equivalent; see Lemma 5 in the appendix for a proof. Therefore, we mostly focus on the definition

based on K̂ below. K̂ (or M̂) is defined similarly for the nested dynamical system in which one

player solves a fixed-point problem in a subgame.

Consistency and parametric convergence rates of θ̂N can be established using existing results.

When K̂ (or M̂) is asymptotically a contraction map, one may construct an estimator θ̂N satisfying

(6.1) using the contraction algorithm in Section 5.1 with tolerance eN = o(N−1/2). One may

then apply the result of Dominitz and Sherman (2005) to obtain the root-N consistency of the

estimator.10 For completeness, this result is summarized in Appendix G.

10Satisfying eN = o(N−1/2) requires the number of iterations to increase as the sample size tends to infinity, which

in turn satisfies requirement (ii) in Theorem 2 (Dominitz and Sherman, 2005).
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More generally, if K̂ is not guaranteed to be a contraction, one may use root-finding algorithms

that solve θ − K̂(θ) = 0 or θ−1 − M̂(θ−1) = 0 up to approximation errors of o(N−1/2). The

root-N consistency of θ̂N then follows from the standard argument for extremum estimators, in

which we take LN (θ) = ‖θ − K̂(θ)‖ as a criterion function.11 Since these results are standard, we

omit details and focus below on the asymptotic distribution and bootstrap validity of the fixed

point estimators. Our contributions are two-fold. First, we establish the asymptotic distribution of

the fixed point estimator without assuming that K̂ or M̂ is an asymptotic contraction map, which

therefore allows the practitioner to conduct inference using the estimator based on the general root-

finding algorithm and complements the result of Dominitz and Sherman (2005). Second, to our

knowledge, the bootstrap validity of the fixed point estimators is new. These results are established

by showing that, under regularity conditions, the population fixed point is Hadamard-differentiable

and hence admits the use of the functional δ-method, which may be of independent theoretical

interest.

Remark 6.1. To establish the asymptotic properties, one could try to reformulate our estimator

as an estimator that approximately solves a GMM problem. Here, instead of relying on another

reformulation, which would require establishing a sample analog version of Proposition 1, we develop

and directly apply an asymptotic theory for fixed point estimators. The theory itself contains

generic results (Theorem 1 and Lemmas 6–7) surrounding the Hadamard-differentiability of fixed

points, which can potentially be used to analyze decentralized estimators outside the IVQR class.

6.2. Asymptotic Theory and Bootstrap Validity. The following theorem gives the limiting

distribution of our estimator. For each w = (y, d′, x′, z′)′ and θ ∈ Θ, let f(w; θ) ∈ RdX+dD be a

vector whose sub-vectors are given by

f1(w; θ) = (1{y ≤ d′θ−1 + x′θ1} − τ)x,

fj(w; θ) = (1{y ≤ d′θ−1 + x′θ1} − τ)zj−1, j = 2, . . . , J,

and let g(w; θ) = (g1(w; θ)′, . . . , gJ(w; θ))′ be a vector such that

gj(w; θ) =
∂2

∂θj∂θ′j
QP,j(Lj(θ−j), θ−j)

−1fj(w;Lj(θ−j), θ−j), j = 1, . . . , J. (6.4)

11The key conditions for these results, uniform convergence (in probability) of K̂ and its stochastic equicontinuity,

are established in Lemma 10.
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Theorem 1. Suppose that Assumptions 1 and 2 hold. Let {Wi}Ni=1 be an i.i.d. sample generated

from the IVQR model, where Wi = (Yi, D
′
i, X

′
i, Z
′
i). Then,

√
N(θ̂N − θ∗)

L→ N(0, V ) , (6.5)

with

V = (Id − JK(θ∗))−1E[W(θ∗)W(θ∗)′](Id − JK(θ∗))−1, (6.6)

where W is a tight Gaussian process in `∞(Θ)d with the covariance kernel

Cov(W(θ),W(θ̃)) = EP
[
(g(W ; θ)− EP [g(W ; θ)])(g(w; θ̃)− EP [g(w; θ̃)])′

]
. (6.7)

To conduct inference on θ∗, one may employ a natural bootstrap procedure. For this, use in

(5.5) and (6.1) the bootstrap sample instead of the original sample to define the bootstrap analogs

K̂∗ and θ̂∗N of K̂ and θ̂N . In practice, the bootstrap can be implemented using the following steps.

(1) Compute the fixed point estimator θ̂N using the original sample.

(2) Draw a bootstrap sample {W ∗i }Ni=1 randomly with replacement from PN . Use the simulta-

neous (or sequential) dynamical system based on K̂∗ (or M̂∗) combined with a contraction

or root-finding algorithm to compute θ̂∗N .

(3) Repeat Step 2 across bootstrap replications b = 1, . . . , B. Let

FB(x) :=
1

B

B∑
b=1

1
{√

N(θ̂∗,bN − θ̂N ) ≤ x
}
, x ∈ R. (6.8)

Use FB as an approximation to the sampling distribution of the root
√
N(θ̂N − θ∗).

We would like to emphasize that the bootstrap is particularly attractive in conjunction with our

new and computationally efficient estimation algorithms. By contrast, directly bootstrapping for

instance the IQR estimator of Chernozhukov and Hansen (2006) is computationally very costly.

Alternative methods (either an asymptotic approximation or a score-based bootstrap) require esti-

mation of the influence function, which involves nonparametric estimation of a certain conditional

density. Directly bootstrapping our fixed point estimators avoids the use of any smoothing param-

eter.12

12The use of the bootstrap here is for consistently estimating the law of the estimator. Whether one may obtain

higher-order refinements through a version of the bootstrap, e.g., the m out of n bootstrap with extrapolation (Sakov

and Bickel, 2000), is an interesting question which we leave for future research.
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The following theorem establishes the consistency of the bootstrap procedure. For this, let
L∗
 

denote the weak convergence of the bootstrap law in outer probability, conditional on the sample

path {Wi}∞i=1.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let {Wi}Ni=1 be an i.i.d. sample generated

from the IVQR model. Then,

√
N(θ̂∗N − θ̂N )

L∗
 N(0, V ),

where V is as in (6.6).

7. Empirical Example

In this section, we illustrate the proposed estimators by reanalyzing the effect of 401(k) plans on

savings behavior as in Chernozhukov and Hansen (2004). This empirical example constitutes the ba-

sis for our Monte Carlo simulations in Section 8. As explained by Chernozhukov and Hansen (2004),

401(k) plans are tax-deferred savings options that allow deducting contributions from taxable in-

come and accruing tax-free interest. These plans are provided by employers and were introduced in

the United States in the early 1980s to increase individual savings. To estimate the effect of 401(k)

plans (D) on accumulated assets (Y ) on has to deal with the potential endogeneity of the actual

participation status. Chernozhukov and Hansen (2004) propose an instrumental variables approach

to overcome this problem. They use 401(k) eligibility as an instrument (Z) for the participation in

401(k) plans. The argument behind this strategy, which is due to Poterba, Venti, and Wise (1994,

1995, 1998) and Benjamin (2003), is that eligibility is exogenous after conditioning on income and

other observable factors. We use the same identification strategy here but note that there are also

papers which argue that 401(k) eligibility is not conditionally exogenous (e.g., Engen, Gale, and

Scholz, 1996).

We use the same dataset as in Chernozhukov and Hansen (2004). The dataset contains infor-

mation about 9913 observations from a sample of households from the 1991 Survey of Income and

Program Participation.13 We refer to Chernozhukov and Hansen (2004) for more information about

the data and to their Tables 1 and 2 for descriptive statistics. Here we focus on net financial assets

as our outcome of interest.14

13The dataset analyzed by Chernozhukov and Hansen (2004) has 9,915 observations. Here we delete the two

observations with negative income.

14Chernozhukov and Hansen (2004) also consider total wealth and net non-financial assets.
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We consider the following linear model for the conditional potential outcome quantiles

q(D,X, τ) = Dθ2(τ) +X ′θ1(τ). (7.1)

The vector of covariates X includes seven dummies for income categories, five dummies for age

categories, family size, four dummies for education categories, indicators for marital status indica-

tor, two-earner status, defined benefit pension status, individual retirement account participation

status and homeownership, and a constant. Because P (D = 0) > 0, we re-parametrize the model

by replacing D by D? = D + 1 to ensure that Z/D? is well-defined and positive.

We found that, in this empirical setting (and simulations based on it), contraction algorithms

based on K̂ can be rather sensitive to the choice of starting values. We therefore focus on algorithms

based on M̂ . Figure 1 graphically illustrates our fixed point algorithms. It displays M̂ at three

different quantile levels τ ∈ {0.25, 0.50, 0.75}. Our theoretical results show that, under appropriate

conditions, the intersection between M̂ and the 45-degree line provides an estimate of θ2. Figure

1 further provides a straightforward graphical way to check the validity of the sample analog of

Assumption 3. We can see that the sample analog of JM (i.e. the slope of M) is smaller than one.

This suggests that the contraction-based sequential algorithm converges at all three quantile levels,

which is indeed what we find.

[Figure 1 about here.]

We consider two different algorithms based on M̂ : a contraction algorithm and a root-finding

algorithm based on Brent’s method implemented by the R-package uniroot. We compare our

estimators to the IQR estimator of Chernozhukov and Hansen (2006) with 500 grid points which

provides a slow but very robust benchmark.

Figure 2 displays the estimates of θ2(τ) for τ ∈ {0.15, 0.20, . . . , 0.85}. We can see that all

estimation algorithms yield very similar results. We also note that the contraction-based algorithm

converges for all quantile levels considered.

[Figure 2 about here.]

Figures 3 depicts pointwise 95% confidence intervals for the proposed estimators obtained using

on the empirical bootstrap described in Section 6.2 with 500 replications. We can see that the

resulting confidence intervals are very similar for both algorithms and do not include zero at all

quantile levels considered.

[Figure 3 about here.]
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8. Simulation Study

In this section, we assess and compare the finite sample performance of our estimation algorithms.

We first discuss the competing algorithms and then introduce the DGPs.

8.1. Estimation Algorithms. In this section we assess and compare the performance of several

different algorithms all of which are based on the dynamical system M̂ . We do not explore con-

traction algorithms based on K̂ because we found them to be less robust than the corresponding

algorithms based on M̂ and somewhat sensitive to the choice of starting values. For the root-finding

algorithms, using K̂ will typically be less attractive than using M̂ because the dimensionality of

the root-finding problem is much larger when using K̂ (dD + dX) than when using M̂ (dD).

For the models with one endogenous variable, we consider a contraction algorithm and a root-

finding algorithm based on Brent’s method. For models with two endogenous variables, we analyze

a contraction algorithm, a root-finding algorithm implemented as a minimization problem based

on simulated annealing (SA), and a nested root-finding algorithm based on Brent’s method.15 For

all estimators, we use two-stage least squares estimates as starting values. We compare the results

of our algorithms to those obtained from IQR, which serves as a slow but very robust benchmark.

We use 500 (one endogenous variable) and 1600 (two endogenous variables) grid points for IQR.16

Table 1 presents more details about the algorithms.

[Table 1 about here.]

8.2. An Application-Based DGP. Here we consider DGPs which are based on the empirical

application of Section 7.17 We focus on a simplified setting with only two covariates: income

and age. The covariates are drawn from their joint empirical distribution. The instrument Zi is

generated as Bernoulli
(
Z̄
)
, where Z̄ is the mean of the instrument in the empirical application.

We then generate the endogenous variable as Di = Zi · 1 {0.6 · Vi < Ui} , where Ui ∼ Uniform(0, 1)

and Vi ∼ Uniform(0, 1) are independent disturbances. The DGP for Di is chosen to roughly match

15We have also explored algorithms based on Newton-Raphson-type root-finders. These algorithms are, in theory,

up to an order of magnitude faster than the contraction algorithm and the nested algorithm, but, unlike the other

algorithms considered here, require an approximation to the Jacobian and are not very robust to the choice of starting

values. We therefore do not report the results here.
16We note that one could of course always improve the performance of IQR by increasing the number of grid

points. However, as we document below, IQR becomes computationally prohibitive in this case.
17The construction of our DGPs is inspired by the construction of the application-based DGPs in Kaplan and Sun

(2017).
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the joint empirical distribution of (Di, Zi). The outcome variable Yi is generated as

Yi = X ′iθ1(Ui) +Diθ2(Ui) +G−1(Ui). (8.1)

The coefficient θ1(Ui) is constant and equal to the IQR median estimate in the empirical application.

θ2(Ui) = 5000 + Ui · 10000 is chosen to match the increasing shape of the estimated conditional

quantile treatment effects in Figure 2. G−1(·) is the quantile function of a re-centered Gamma

distribution, estimated to match the distribution of the IQR residuals at the median. To investi-

gate the performance of our procedure with more than one endogenous variable, we add a second

endogenous regressor:

Yi = X ′iθ1(Ui) +Diθ2(Ui) +D2iθ3(Ui) +G−1(Ui), (8.2)

where we set θ3(Ui) = 10000. The second endogenous variable is generated as

D2i = 0.8 · Z2i + 0.2 · Φ−1(Ui)

and the second instrument is generated as Z2i ∼ N(0, 1). We set N = 9913 as in the empirical

application.

First, we investigate the finite sample bias and root mean squared error (RMSE) of the different

methods. Tables 2 and 3 present the results. With one endogenous regressor, all three methods

perform well and exhibit very a similar bias and RMSE. Turning to the results with two endogenous

regressors, we can see that the nested algorithm exhibits the best overall performance, while the

performance of our other algorithms is only slightly worse. The finite sample properties of the

proposed algorithms are comparable to IQR.

[Table 2 about here.]

[Table 3 about here.]

Next, we analyze the finite sample properties of our bootstrap inference procedure. Table 4

shows the empirical coverage probabilities for the contraction-based algorithm and the root-finding

algorithm based on Brent’s method. Both methods exhibit coverage rates which are very close to

the respective nominal level.

[Table 4 about here.]

Finally, we investigate the computational performance of the different procedures. Tables 5 and

6 show the average computation time (in seconds) for estimating the model with one and two

endogenous variables for different sample sizes. We compare our procedures to the IQR algorithm

with a grid search over 500 points (one endogenous regressor) and 100×100 points (two endogenous
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regressors). Note that we choose a higher (and arguably more practically relevant) number of grid

points for the model with two endogenous regressors than in the simulations.18 All computations

were carried out on a standard desktop computer with a 3.2 GHz Intel Core i5 processor and 8GB

RAM.

With one endogenous regressor, both of our algorithms are computationally much more efficient

than IQR. Specifically, the root-finding algorithm based on Brent’s method is about 10 to 30 times

as fast as IQR, and the contraction algorithm is 1.5 to 12 times as fast. Among our algorithms, the

root-finding method is almost twice as fast as the contraction-based iterative algorithm. However,

it is important to note that the computational speed of the contraction algorithm depends on |ĴM |,

which is rather close to one in this application (cf. Figure 1). This implies that the contraction

algorithm will be rather slow here and can be expected to be faster in other applications.

The computational gain of our algorithms becomes more pronounced with two endogenous vari-

ables. Looking at the results in Table 6, IQR’s average computation times are around two orders

of magnitude slower than those of our procedures. Specifically, the nested root-finding algorithm

is 70 to 125 times as fast as the IQR, while the contraction algorithm is 110 to 215 times as fast.

This is as expected since, due to the use of grids, IQR’s computational cost increases exponentially

as the number of endogenous variables increases.19 Among our algorithms, the contraction algo-

rithm is almost twice as fast as the nested algorithm. However, we would like to emphasize that

both of these procedures are computationally very efficient even for large samples. By contrast,

the minimization-based algorithm based on SA is about an order of magnitude slower that the

contraction algorithm and the nested algorithm.

[Table 5 about here.]

[Table 6 about here.]

18We found that using the same number of grid points for IQR in the simulations reported in Tables 2-4 was

computationally prohibitive.
19Our implementation of IQR with two endogenous variables is inherently slower than the implementation with

one endogenous variable, even when the number of grid points is the same. First, there is an additional covariate in

the underlying QRs (the second instrument). Second, with one endogenous variable, we choose the grid value that

minimizes the absolute value of the coefficient on the instrument. By contrast, with two endogenous regressors, we

choose the grid point which minimizes a quadratic form based on the inverse of the estimated QR variance covariance

matrix as suggested in Chernozhukov, Hansen, and Wüthrich (2017), which requires an additional computational

step.
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8.3. Additional Simulations. This section presents some additional simulation evidence based

on the following location-scale shift model:

Yi = γ1 + γ2Xi + γ3D1i + γ4D2i + (γ5 + γ6D1i + γ7D2i)Ui (8.3)

Here D1i and D2i are the endogenous variables of interest and Xi is an exogenous covariate. In

addition, we have access to two instruments Z1i and Z2i. For γ2 = γ4 = γ7 = 0, this model reduces

to the model considered in Section 6.1 of Andrews and Mikusheva (2016). We set γ1 = · · · = γ7 = 1.

To evaluate the performance of our algorithms with one endogenous variable, we set γ4 = γ7 = 0

and use Z1i as the instrument. Following Andrews and Mikusheva (2016), we consider a symmetric

as well as an asymmetric DGP for (Ui, D1i, D2i, Z1i, Z2i, Xi):

(Ui, D1i, D2i, Z1i, Z2i, Xi) = (Φ(ξU,i),Φ(ξD1,i),Φ(ξD2,i),Φ(ξZ1,i),Φ(ξZ2,i),Φ(ξX,i)) , (symmetric)

(Ui, D1i, D2i, Z1i, Z2i, Xi) = (ξU,i, exp(2ξD1,i), ξD2,i, ξZ1,i, ξZ2,i, ξX,i) , (asymmetric)

where (ξU,i, ξD1,i, ξD2,i, ξZ1,i, ξZ2,i, ξX,i) is a Gaussian vector with mean zero, all variances are set

equal to one, Cov(ξU , ξD1) = Cov(ξU , ξD2) = 0.5, Cov(ξD1 , ξZ1) = 0.8, Cov(ξD2 , ξZ2) = 0.4, which

allows us to investigate the impact of instrument strength, all other covariances are equal to zero,

and Φ is the cumulative distribution function of the standard normal distribution.

We first investigate the bias and RMSE of the different methods. Tables 7–10 present the results.

With one endogenous variable, the performances of the root-finding algorithm using Brent’s method

and IQR are very similar both in terms of bias and RMSE. The contraction algorithm performs well

but exhibits some bias at the tail quantiles. Turning to the results with two endogenous variables,

we can see that the nested algorithm exhibits the best overall performance, both in terms of bias and

RMSE. The performances of the SA-based optimization algorithm and IQR are similar and only

slightly worse than that of the nested algorithm. The contraction algorithm tends to exhibit some

bias at the tail quantiles. However, this bias decreases substantially as the sample size gets larger.

Finally, comparing the results for the coefficients on D1 and D2, we can see that the instrument

strength matters for the performance of all the estimator (including IQR), suggesting that weak

identification can have implications for the estimation of IVQR models.

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

[Table 10 about here.]
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Table 11 displays the empirical coverage probabilities of the bootstrap confidence intervals. The

results show that the our bootstrap procedure exhibits very good size properties. The confidence

intervals based on the contraction algorithm tend to be somewhat closer to the nominal level than

those based on Brent’s method, which exhibits some over-coverage, especially for N = 500 and

α = 0.1.

[Table 11 about here.]

9. Conclusion

The main contribution of this paper is to develop computationally convenient and easy-to-

implement estimation algorithms for IVQR models. Our key insight is that the non-smooth and

non-convex IVQR estimation problem can be decomposed into a sequence of much more tractable

convex QR problems, which can be solved very quickly using well-established methods. The pro-

posed algorithms are particularly well-suited if the number of exogenous variables is large and the

number of endogenous variables is moderate as in many empirical applications.

An avenue for further research is to investigate weak identification robust inference within the

decentralized model. One may, for example, write the (re-scaled) sample fixed point restriction as
√
N(I − K̂)(θ) = sN (θ) + W(θ) + rN (θ), where sN (θ) =

√
N(I −K)(θ), W is a Gaussian process,

and rN is an error that tends 0 uniformly. This paper assumes that sN (θ∗) = 0 uniquely, and

outside N−1/2-neighborhoods of θ∗, sN (θ) diverges and dominates W. For a one-dimensional FP

problem, this requires the BR map to be bounded away from the 45-degree line outside any N−1/2-

neighborhood of the fixed point. However if sN fails to dominate W over a substantial part of the

parameter space, one would end up with weak identification.20 How to conduct robust inference in

such settings is an interesting question, which we leave for future research.

Finally, we note that while we study the performance of the proposed algorithms separately, our

reformulation and the resulting algorithms are potentially very useful when combined with other

existing procedures. For instance, one could choose starting values using an initial grid search over

a coarse grid and then apply the contraction algorithm.

∗ Economics Department, Boston University, hkaido@bu.edu

† Economics Department, UC San Diego, kwuthrich@ucsd.edu

20Andrews and Mikusheva (2016) study weak identification robust inference methods in models characterized by

moment restrictions.



DECENTRALIZATION ESTIMATORS FOR IVQR 29

References

Abadie, A., J. Angrist, and G. Imbens (2002): “Instrumental variable estimates of the effect

of subsidized training on the quantile of trainee earnings,” Econometrica, 70(1), pp. 91–117.

Ambrosetti, A., and G. Prodi (1995): A primer of nonlinear analysis. Cambridge Studies in

Advanced Mathematics, vol. 34. Cambridge University Press, Cambridge.

Andrews, D. W. (1994): “Empirical process methods in econometrics,” Handbook of economet-

rics, 4, 2247–2294.

Andrews, I., and A. Mikusheva (2016): “Conditional Inference With a Functional Nuisance

Parameter,” Econometrica, 84(4), 1571–1612.

Arcidiacono, P., G. Foster, N. Goodpaster, and J. Kinsler (2012): “Estimating spillovers

using panel data, with an application to the classroom,” Quantitative Economics, 3(3), 421–470.

Belloni, A., V. Chernozhukov, I. Fernandez-Val, and C. Hansen (2017): “Program Eval-

uation and Causal Inference With High-Dimensional Data,” Econometrica, 85(1), 233–298.

Benjamin, D. (2003): “Does 401(k) eligibility increase saving?: Evidence from propensity score

subclassification,” Journal of Public Economics, 87, pp. 1259–1290.

Bertsekas, D. P., and J. N. Tsitsiklis (1989): Parallel and distributed computation: numerical

methods, vol. 23. Prentice hall Englewood Cliffs, NJ.

Brent, R. P. (1971): “An algorithm with guaranteed convergence for finding a zero of a function,”

The Computer Journal, 14(4), 422–425.

Chamberlain, G. (1987): “Asymptotic efficiency in estimation with conditional moment restric-

tions,” Journal of Econometrics, 34(3), 305 – 334.

Chen, L.-Y., and S. Lee (2018): “Exact computation of GMM estimators for instrumental

variable quantile regression models,” Journal of Applied Econometrics, 33(4), 553–567.

Chen, M., I. Fernandez-Val, and M. Weidner (2014): “Nonlinear Panel Models with Inter-

active Effects,” arXiv:1412.5647.

Chen, X., V. Chernozhukov, S. Lee, and W. K. Newey (2014): “Local Identification of

Nonparametric and Semiparametric Models,” Econometrica, 82(2), 785–809.

Chen, X., and D. Pouzo (2009): “Efficient estimation of semiparametric conditional moment

models with possibly nonsmooth residuals,” Journal of Econometrics, 152(1), pp. 46–60.

(2012): “Estimation of Nonparametric Conditional Moment Models With Possibly Non-

smooth Generalized Residuals,” Econometrica, 80(1), pp. 277–321.

Chernozhukov, V., I. Fernandez-Val, and B. Melly (2013): “Inference on Counterfactual

Distributions,” Econometrica, 81(6), pp. 2205–2268.



30 KAIDO AND WÜTHRICH
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Appendix A. Overidentification

In the main text, we focus on just-identified moment restrictions with dZ = dD, for which the construction

of an estimator is straightforward. If the model is overidentified (i.e. if dZ > dD), we can transform the

original moment conditions

EP

(1 {Y ≤ (X ′, D′)θ(τ)} − τ)

X
Z

 = 0

into a set of just-identified moment conditions

EP

(1 {Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)} − τ)

X
Z̃

 = 0, (A.1)

where Z̃ is a dD × 1 vector of transformations of (X,Z). A practical choice is to construct Z̃ using a least

squares projection of D on Z and X.

To achieve pointwise (in τ) efficiency, we can employ the following two-step procedure (e.g., Chernozhukov

and Hansen, 2006, Remark 5):

Step 1: We first obtain an initial consistent estimate of θ∗ using one of our estimators based on a set

of just-identified moment conditions such as (A.1). We then use nonparametric estimators to estimate the

conditional densities V (τ) = fε(τ)|X,Z(0) and v(τ) = fε(τ)|D,X,Z(0), where ε(τ) = Yi −X ′iθ∗1(τ)−D1θ
∗
2(τ)−

· · · −DdDθ
∗
J(τ), and the conditional expectation function EP [Dv(τ) | X,Z].

Step 2: We apply our procedure to obtain a solution to following moment conditions:

EP

(1 {Y ≤ X ′θ1(τ) +D1θ2(τ) + · · ·+DdDθJ(τ)} − τ)

 V (τ)X

EP [Dv(τ) | X,Z]

 = 0.

This can be achieved by defining the BR maps as follows:

L1 (θ−1(τ)) := arg min
θ̃1∈RdX

QP,1

(
θ̃1, θ−1

)
Lj (θ−j(τ)) := arg min

θ̃j∈R
QP,j

(
θ̃j , θ−j

)
, j = 2, . . . , J,

where

QP,1 (θ(τ)) := EP [ρτ (Y −X ′θ1(τ)−D1θ2(τ)− · · · −DdDθJ(τ))V (τ)] ,

QP,j (θ(τ)) := EP

[
ρτ (Y −X ′θ1(τ)−D1θ2(τ)− · · · −DdDθJ(τ))(EP [Dv(τ) | X,Z]j−1 /Dj−1)

]
, j = 2, . . . , J,

where EP [Dv(τ) | X,Z]j−1 is the j-th element of EP [Dv(τ) | X,Z]. These are convex population QR

problems provided that the model is parametrized such that EP [Dv(τ) | X,Z]j−1 /Dj−1, j = 2, . . . , J , is

positive. Estimation can then proceed by replacing the population QR problems by their sample analogues

and applying one of the estimation algorithms discussed in the main text. The resulting estimator uses the

optimal instrumental variables and thus achieves pointwise (in τ) efficiency (Chamberlain, 1987).
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Appendix B. Reparametrization

In the main text, we assume that the model is reparametrized such that Z`/D` is positive for all

` = 1, . . . , dD. This ensures that the weights are well-defined and that the weighted QR problems are

convex. However, in empirical applications, the weights may not be well-defined (e.g., if D` is an indicator

variable with P (D` = 0) > 0) or negative in some instances. Assuming that Z` is positive, a simple way

to reparametrize the model is to add a large enough constant c to D`.
21 This transformation is theoreti-

cally justified by the compactness of the support of D` (Assumption 2.2). To fix ideas, suppose that one is

interested in estimating the following linear-in-parameters model with a single endogenous variable:

q(D,X, τ) = θ11 + X̃ ′θ12 +Dθ2,

where θ1 = (θ11, θ
′
12)′ and X =

(
1, X̃ ′

)′
. Suppose further that the support of D is a compact interval,

[dmin, dmax] ⊂ R, with dmin < 0. In this case, we can apply the transformation D? = D+ c, where c > |dmin|.

The transformed model reads

q(D,X, τ) = θ?11 + X̃ ′θ12 +D?θ2,

where θ?11 = θ11−cθ2. Importantly, one can always back out the original parameters, θ = (θ11, θ
′
12, θ2)′, from

the parameters in the reparametrized model, θ? = (θ?11, θ
′
12, θ2)′.

Appendix C. Decentralization

C.1. The domains of Mj-maps. Recall that we defined the set

R̃1 :=
{
θ−1 ∈ Θ−1 :ΨP,1(θ1, θ−1) = 0,

ΨP,2(θ1, θ2, π−{1,2}θ−1) = 0, ∃(θ1, θ2) ∈ Θ1 ×Θ2

}
.

Similarly for k = 2, . . . , dD − 1, define

R̃k :=
{
θ−1 ∈ Θ−1 :ΨP,1(θ1, θ−1) = 0,

ΨP,2(θ1, θ2, π−{1,2}θ−1) = 0,

...

ΨP,k(θ1, . . . , θk, π−{1,...,k}θ−1) = 0, ∃(θ1, . . . , θk) ∈
k∏
j=1

Θj

}
.

21Since the unconditional moment conditions ΨP are derived from a conditional moment restriction, we can use

a positive transformation of Z` instead of Z` itself in case Z` is not positive.
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For k = dD, let

R̃dD :=
{
θ−1 ∈ Θ−1 :ΨP,1(θ1, θ−1) = 0,

ΨP,2(θ1, θ2, π−{1,2}θ−1) = 0,

...

ΨP,J(θ1, . . . , θJ) = 0, ∃(θ1, . . . , θJ) ∈
J∏
j=1

Θj

}
.

Note that R̃dD ⊂ R̃j for all j ≤ dD.

C.2. Local Decentralization and Local Contractions. We say that an estimation problem admits local

decentralization if the BR functions Lj , j = 1, . . . , J , and the maps K and M are well-defined over a local

neighborhood of θ∗. The following weak conditions are sufficient for local decentralization of the IVQR

estimation problem.

Assumption 4. The following conditions hold.

(1) The conditional cdf y 7→ FY |D,X,Z(y) is continuously differentiable at y∗ = d′θ∗−1 + x′θ∗1 for almost

all (d, x, z). The conditional density fY |D,Z,X is bounded on a neighborhood of y∗ a.s.;

(2) The matrices

EP [fY |D,X,Z
(
D′θ∗−1 +X ′θ∗1

)
XX ′]

and

EP [fY |D,X,Z
(
D′θ∗−1 +X ′θ∗1

)
D`Z`], ` = 1, . . . , dD,

are positive definite.

Assumption 4 is weaker than Assumption 2.3–2.4. Under this condition, we can study the local properties

of our population algorithms. For this, the following lemma ensures that the BR maps are well-defined

locally.

Lemma 3. Suppose that Assumptions 1, 2.1–2.2, and 4 hold. Then, there exist open neighborhoods NL−j
, j =

1 . . . J , NK , NM of θ∗−j, θ
∗, and θ∗−1 such that

(i) There exist maps Lj : N−j → Rdj , j = 1, . . . , J such that, for j = 1, . . . , J ,

ΨP,j (Lj(θ−j), θ−j) = 0, for all θ−j ∈ N−j

Further, Lj is continuously differentiable for all j = 1, . . . , J .

(ii) The maps K : NK → Rd and M : NM → RdD are continuously differentiable.
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Proof. (i) The proof is similar to that of Lemma 1. Therefore, we sketch the argument below for j = 1. By

Assumptions 2.2 and 4.1, ΨP,1 is continuously differentiable on a neighborhood V of θ∗. By Assumption

4.2 and the continuity of det(∂ΨP,1(θ)/∂θ′1), one may choose V so that det(∂ΨP,1(θ)/∂θ′1) 6= 0 for all

θ = (θ1, θ−1) ∈ V . By the implicit function theorem, there is a continuously differentiable function L1 and

an open set N−1 containing θ−1 such that

ΨP,1(L1(θ−1), θ−1) = 0, for all θ−1 ∈ N−1.

The arguments for Lj , j 6= 1 are similar.

(ii) Let NK = {θ ∈ Θ : π−jθ ∈ N−j , j = 1, . . . , J} and let NM be defined by mimicking (3.13), while

replacing Θj with Nj in the definition of R̃j for j = 1, . . . , J . The continuous differentiability of K and M

follows from that of Lj , j = 1, . . . , J . �

C.2.1. Local Contractions. The following assumption ensures that K and M are local contractions.

Assumption 5.

(1) ρ (JK (θ∗)) < 1;

(2) ρ (JM (θ∗2)) < 1

Here, we illustrate a primitive condition for Assumption 5. Consider a simple setup without covariates

(i.e. X = 1), a binary D, and a binary Z. We only analyze Assumption 5.1. A similar result can be derived

for Assumption 5.2. In this setting, the Jacobian of K evaluated at θ∗ is given by

JK(θ∗) =

 0 −EP [fY |D,Z(Dθ∗2+θ∗1 )D]
EP [fY |D,Z(Dθ∗2+θ∗1)]

− EP [fY |D,Z(Dθ∗2+θ∗1 )Z]
EP [fY |D,Z(Dθ∗2+θ∗1)ZD]

0

 .

The characteristic polynomial is then given by

pK(λ) = λ2 −
EP
[
fY |D,Z (Dθ∗2 + θ∗1)D

]
EP
[
fY |D,Z (Dθ∗2 + θ∗1)

] EP
[
fY |D,Z (Dθ∗2 + θ∗1)Z

]
EP
[
fY |D,Z (Dθ∗2 + θ∗1)ZD

] .
Hence, Assumption 3.1 holds if all eigenvalues (i.e. the roots λK of pK(λ) = 0) have modulus less than one,

which holds when ∣∣∣∣EP
[
fY |D,Z (Dθ∗2 + θ∗1)D

]
EP
[
fY |D,Z (Dθ∗2 + θ∗1)

] EP
[
fY |D,Z (Dθ∗2 + θ∗1)Z

]
EP
[
fY |D,Z (Dθ∗2 + θ∗1)ZD

] ∣∣∣∣ < 1.

This condition can be simplified to

fY |0,1(θ∗1)p(0|1)fY |1,0(θ∗2 + θ∗1)p(1|0) < fY |1,1(θ∗2 + θ∗1)p(1|1)fY |0,0(θ∗1)p(0|0), (C.1)

where fY |d,z(y) := fY |D=d,Z=z(y) and p(d|z) := P (D = d | Z = z). It is instructive to interpret condition

(C.1) under the local average treatment effects framework of Imbens and Angrist (1994). Specifically, condi-

tion (C.1) holds (i) if their monotonicity assumption is such that there are compliers but no defiers and (ii)



38 KAIDO AND WÜTHRICH

the complier potential outcome density functions are strictly positive. Conversely, the condition is violated

if there are defiers but no compliers.

Proposition 3. Suppose that Assumptions 1, 2.1, 2.2, 4, and 5 hold. Then:

(i) There exists a closed neighborhood N̄K of θ∗ such that K(N̄K) ⊂ N̄K and K is a contraction on

N̄K with respect to an adapted norm.

(ii) There exists a closed neighborhood N̄M of θ∗2 such that M(N̄K) ⊂ N̄M and M is a contraction on

N̄M with respect to an adapted norm.

Proof. We only prove the result for K, the proof for M is similar. By Lemma 3, Lj is continuously differ-

entiable at θ∗. Note that JK is given by

JK(θ) =


0 ∂L1(θ−1)

∂θ′2
. . . . . . ∂L1(θ−1)

∂θ′J
∂L2(θ−2)
∂θ′1

0 ∂L2(θ−2)
∂θ′3

. . . ∂L2(θ−2)
∂θ′J

...
...

...
...

...

∂LJ (θ−J )
∂θ′1

· · · · · · ∂LJ (θ−J )
∂θ′J−1

0

 , (C.2)

which is continuous at θ∗. The desired result now follows, for instance, from Proposition 2.2.19 in (Hasselblatt

and Katok, 2003). �

Appendix D. Proofs of Theoretical Results in Section 3

Proof of Lemma 1. (i) We first show that L1 is well-defined. For a given θ−1 ∈ Rd−dX , let θ∗1 ∈

arg minθ̃1∈RdX QP,1(θ̃1, θ−1). Under Assumption 2, the objective function is convex and differentiable with

respect to θ̃1. Therefore, by the necessary and sufficient condition of minimization, θ∗1 solves

EP [(1{Y ≤ D′θ−1 +X ′θ∗1})X] = 0.

In what follows, we show that the map L1 : θ−1 7→ θ∗1 is well-defined on R−1 using a global inverse function

theorem. Recall that

ΨP,1(θ) = EP [(1{Y ≤ D′θ−1 +X ′θ1})X]. (D.1)

This function is continuously differentiable with respect to θ. The Jacobian is given by

JΨP,1
(θ) =

∂

∂θ′
EP [FY |D,X,Z(D′θ−1 +X ′θ1)X] = EP [fY |D,X,Z(D′θ−1 +X ′θ1)X(X ′, D′)], (D.2)

where the second equality follows from Assumption 2 and the dominated convergence theorem. Define a

transform Ξ : Θ→ Rd by

Ξ(θ) := (ΨP,1(θ)′, θ−1
′)′. (D.3)
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We follow Krantz and Parks (2012) (Section 3.3) to obtain an implicit function L1 on a suitable domain

such that θ1 = L1(θ2) if and only if ΨP,1(θ) = 0. The key is to apply a global inverse function theorem to Ξ.

Toward this end, we analyze the Jacobian of Ξ, which is given as

JΞ(θ) =

∂ΨP,1(θ1, θ−1)/∂θ′1 ∂ΨP,1(θ1, θ−1)/∂θ′−1

0d−1×d1 Id−1


=

EP [fY |D,X,Z(D′θ−1 +X ′θ1)XX ′] EP [fY |D,X,Z(D′θ−1 +X ′θ1)XD′]

0d−1×d1 Id−1

 , (D.4)

where Id denotes the d× d identity matrix. Let I ⊂ {1, . . . d}.

For any matrix A, let [A]I,I denote a principal minor of A, which collects the rows and columns of A

whose indices belong to the index set I. By (D.4), if I ⊂ {1, . . . , d1},

[JΞ(θ)]I,I = EP [fY |D,X,Z(D′θ−1 +X ′θ1)X̃X̃ ′] (D.5)

for a subvector X̃ of X, which is positive definite by Assumption 2 and Lemma 4. If I ⊂ {d1 + 1, . . . , d},

[JΞ(θ)]I,I = I` for some 1 ≤ ` ≤ d − d1 and is hence positive definite. Otherwise, any principal minor is of

the following form:

[JΞ(θ)]I,I =

EP [fY |D,X,Z(D′θ−1 +X ′θ1)X̃X̃ ′] B

0`×m I`

 (D.6)

for some subvector X̃ of X and a m× ` matrix B. Note that

det([JΞ(θ)]I,I) = det(EP [fY |D,X,Z(D′θ−1 +X ′θ1)X̃X̃ ′]−BI−1
` × 0`×m) det(I`)

= det(EP [fY |D,X,Z(D′θ−1 +X ′θ1)X̃X̃ ′]) > 0, (D.7)

where the last inequality follows again from Assumption 2 and Lemma 4. Hence, JΞ(θ) is a P -matrix. Note

that Θ is a closed rectangle. By Theorem 4 in Gale and Nikaido (1965), Ξ is univalent, and hence the inverse

map Ξ−1 is well defined.

Let

R−1 = {θ−1 ∈ Rd−1 : (0, θ−1) ∈ Ξ(Θ)} = {θ−1 ∈ Rd−1 : ΨP,1(θ1, θ−1) = 0, for some (θ1, θ−1) ∈ Θ},

which coincides with the definition in (3.8) with j = 1. Let F1 = [Id1 , 0d1×d−1 ]. For each θ−1 ∈ R−1, define

L1(θ−1) := F1Ξ−1(0, θ−1).

Then, for any θ ∈ Θ, ΨP,1(θ) = 0 if and only if θ−1 ∈ R−1 and Ξ(θ) = (0, θ−1). By the univalence of Ξ,

this is true if and only if θ = Ξ−1(0, θ−1), and the first d1 components extracted by applying F1 is θ1. This

ensures L1 is well-defined on R−1.
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Below, for any set A, let Ao denote the interior of A. Let Ro−1 = {θ−1 ∈ Rd−1 : (0, θ−1) ∈ Ξ(Θo)}. Note

that ΨP,1 is C1 on Θo and, for each θ = (θ1, θ−1) ∈ Θ with θ−1 ∈ Rod−1
, det(∂ΨP,1(θ)/∂θ′1) 6= 0. Therefore,

by the implicit function theorem, there is a C1-function L̃1 and an open set V containing θ−1 such that

ΨP,1(L̃1(θ−1), θ−1) = 0, for all θ−1 ∈ V.

However, such a local implicit function must coincide with the unique global map L1 on V . Hence, L1|V = L̃1,

and therefore L1 is continuously differentiable at θ−1. Since the choice of θ−1 is arbitrary, L1 is continuously

differentiable for all θ−1 ∈ Ro2.

Showing that the conclusion holds for any other Lj for j = 2, . . . , J is similar, and hence we omit the

proof. �

Lemma 4. Suppose EP [fY |D,X,Z (D′θ−1 +X ′θ1)XX ′] is positive definite. Then, for any subvector X̃ of X

with dimension d̃X ≤ dX , EP [fY |D,X,Z (D′θ−1 +X ′θ1) X̃X̃ ′] is positive definite.

Proof. In what follows, let W = fY |D,X,Z (D′θ−1 +X ′θ1) and let

A := EP [fY |D,X,Z (D′θ−1 +X ′θ1)XX ′] = E[WXX ′]. (D.8)

Let X̃ be a subvector of X with d̃X components. Then, there exists a dX × dX permutation matrix Pπ such

that the first d̃X components of PπX is X̃.

Let B := E[WPπXX
′P ′π] and note that

B = PπE[WXX ′]P ′π = PπAP
′
π, (D.9)

by the linearity of the expectation operator and W being a scalar. Let λ be an eigenvalue of B such that

Bz = λz, (D.10)

for the corresponding eigenvector z ∈ RdX . By (D.9)-(D.10),

PπAP
′
πz = λz ⇔ AP ′πz = λP−1

π z. (D.11)

Note that P−1
π = P ′π due to Pπ being a permutation matrix. Letting y := P ′πz then yields

Ay = λy, (D.12)

which in turn shows that λ is an eigenvalue of A. For any eigenvalue of A, the argument above can be

reversed to show that it is also an eigenvalue of B. Since the choice of the eigenvalue is arbitrary, A and B

share the same eigenvalues.

Now let C := E[WX̃X̃ ′] and note that it is a leading principal submatrix of B. Then, by the eigenvalue

inclusion principle (Horn and Johnson, 1990, Theorem 4.3.28),

λmin(C) ≥ λmin(B) = λmin(A) > 0, (D.13)
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where the last inequality follows from the positive definiteness of A. This completes the claim of the

lemma. �

Proof of Corollary 1. The existence of K and its continuous differentiability follows immediately from

Lemma 1. For M , by the definition of R̃1, for any θ−1 ∈ R̃j , there exists (θ1, θ2) ∈ Θ1 ×Θ2 such that

ΨP,1(θ1, θ−1) = 0, (D.14)

ΨP,2(θ1, θ2, π−{1,2}θ−1) = 0, (D.15)

By (i), one may then write θ1 = L1(θ−1) and θ2 = L2(L1(θ−1), π−{1,2}θ−1). Hence, the map M1 : R̃1 → Θ2

defined below is well-

M1(θ−1) = L2

(
L1(θ−1), π−{1,2}θ−1

)
. (D.16)

Recursively, arguing in the same way, the maps

M2(θ−1) = L3

(
L1(θ−1),M1(θ−1), π−{1,2,3}θ−1

)
(D.17)

...

Mj(θ−1) = Lj+1

(
L1(θ−1),M1(θ−1), . . . ,Mj−1(θ−1), π−{1,...,j+1}θ−1

)
(D.18)

...

MdD (θ−1) = LJ
(
L1(θ−1),M1(θ−1), . . . ,MdD−1(θ−1)

)
(D.19)

are well-defined on R̃2, · · · , R̃dD respectively. The continuous differentiability of M follows from that of Ljs

and the chain rule. �

Proof of Proposition 1. ⇒: For every solution, ΨP (θ∗) = 0, θ∗j = Lj
(
θ∗−j
)

by construction under As-

sumptions 1 and 2. It follows that K (θ∗) = θ∗ and M
(
θ∗−1

)
= θ∗−1.

⇐: For the simultaneous response note that K
(
θ̄
)

= θ̄ implies that θ̄j = Lj
(
θ̄−j
)

for all j ∈ {1, · · · , J}.

Thus, θ̄ solves ΨP (θ̄) = 0 by Lemma 1. Consider next the sequential response. Let θ̃, θ̄ ∈ Θ be such that

θ̃j = Lj(θ̄−j) for j = 1, . . . , J . By Lemma 1, they satisfy

ΨP,1

(
θ̃1, θ̄2, · · · , θ̄J

)
= 0

ΨP,2

(
θ̃1, θ̃2, · · · , θ̃J

)
= 0

...

ΨP,J

(
θ̃1, θ̃2, · · · , θ̃J

)
= 0

Thus, a fixed point θ̃ = θ̄ satisfies ΨP

(
θ̄
)

= 0. �
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Appendix E. Proofs of Theoretical Results in Section 4

Proof of Proposition 2. We prove the result for K. By Assumption 3, there exists a strictly convex set

D̃K on which the spectral norm of the Jacobian of K is uniformly bounded by 1. This ensures that K is a

contraction map on cl(D̃K), and the claim of the proposition now follows from Theorem 2.2.16 in Hasselblatt

and Katok (2003). �

Appendix F. Proofs of Theoretical Results in Section 6

Proof of Theorem 1. Let H := Id −K. A fixed point θ∗ of K then satisfies

H(θ∗) = 0.

Similarly, let Ĥ := Id − K̂. The estimator θ̂ satisfies

‖Ĥ(θ̂)‖ ≤ inf
θ′∈Θ
‖Ĥ(θ)‖+ rN , (F.1)

where rN = op(N
−1/2). Let ϕ : `∞(Θ)d × R → Rd be a map such that, for each (H, r) ∈ `∞(Θ)d × R,

θ̃ = ϕ(H, r) is an r-approximate solution, which satisfies

‖H(θ̃)‖ ≤ inf
θ′∈Θ
‖H(θ′)‖+ r. (F.2)

One may then write

√
N(θ̂N − θ∗) =

√
N(ϕ(Ĥ, r̂)− ϕ(H, 0)). (F.3)

By Corollary 2,
√
N(K̂ −K)  W in `∞(Θ)d, where W is a Gaussian process defined in Corollary 2. By

Lemmas 6-7, Condition Z in CFM holds, which in turn ensures that one may apply Lemmas E.2 and E.3 in

CFM. This ensures

√
N(ϕ(Ĥ, r̂)− ϕ(H, 0)) ϕ′H,0(W, 0) = −Ḣ−1

θ∗ W(θ∗). (F.4)

Hence, we obtain (6.5) with

V = Ḣ−1
θ∗ E[W(θ∗)W(θ∗)′]Ḣ−1

θ∗ . (F.5)

Finally, note that Ḣθ∗ = Id − JK(θ∗) by Lemma 7. This establishes the theorem. �

Proof of Theorem 2. Recall that Ĥ = Id − K̂. The estimator θ̂N satisfies

‖Ĥ(θ̂N )‖2 ≤ inf
θ′∈Θ
‖Ĥ(θ′)‖2 + rN , (F.6)

where rN = op(N
−1/2). Similarly, let Ĥ∗ = Id − K̂∗. Let P ∗ denote the law of Ĥ∗ conditional on {Wi}∞i=1.

The bootstrap estimator θ̂∗N satisfies

‖Ĥ∗(θ̂∗N )‖2 ≤ inf
θ′∈Θ
‖Ĥ∗(θ′)‖2 + r∗N , (F.7)

where r∗N = oP∗(N
−1/2) conditional on {Wi}∞i=1.
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Using the r-approximation, one may therefore write

√
N(θ̂∗N − θ̂N ) =

√
N(ϕ(Ĥ∗, r∗N )− ϕ(Ĥ, rN )). (F.8)

Let EP∗ denote the conditional expectation with respect to P ∗. Let BL1 denote the space of bounded

Lipschitz functions on Rd with Lipschitz constant 1. Then, for any ε > 0,

sup
h∈BL1

∣∣∣EP∗h(√N[ϕ(Ĥ∗, r∗N )− ϕ(Ĥ, rN )
])
− EP∗h

(
ϕ′H,0

(√
N
[
(Ĥ∗, r∗N )′ − (Ĥ, rN )′

]))∣∣∣
≤ ε+ 2P ∗

(∥∥√N[ϕ(Ĥ∗, r∗N )− ϕ(Ĥ, rN )
]
− ϕ′H,0

(√
N
[
(Ĥ∗, r∗N )− (Ĥ, rN )

])∥∥ > ε
)
. (F.9)

By Corollary 2,
√
N(Ĥ∗ − Ĥ) = −

√
N(K̂∗ − K̂)

L∗

 −W d
= W. Noting that h ◦ϕ′H,0 ∈ BL1(`∞(Θ)×R) and

rN = op(N
−1/2), it follows that

sup
h∈BL1

∣∣∣EP∗h(ϕ′H,0(√N[(Ĥ∗, r∗N )− (Ĥ, rN )
])
− EP∗h ◦ ϕ′H,0(W, 0)

∣∣∣→ 0, (F.10)

with probability approaching 1 due to rN = oP (N−1/2). Hence, for the conclusion of the theorem, it suffices

to show that the right hand side of (F.9) tends to 0 in probability.

For this, as shown in the proof of Theorem 1, ϕ is Hadamard differentiable at (H, 0). Hence, by Theorem

3.9.4 in Van der Vaart and Wellner (1996),

√
N
[
ϕ(Ĥ∗, r∗N )− ϕ(H, 0)

]
= ϕ′H,0(

√
N [(Ĥ∗, r∗N )− (H, 0)]) + oP∗(1)

√
N
[
ϕ(Ĥ, rN )− ϕ(H, 0)] = ϕ′H,0(

√
N [(Ĥ, rN )− (H, 0)]) + oP (1),

Take the difference of the left and right hand sides respectively and note that ϕ′H,0 is linear. This implies

the right hand side of (F.9) tends to 0 in probability. This ensures

√
N(ϕ(Ĥ, r∗N )− ϕ(Ĥ, rN ))

L∗

 ϕ′H,0(W, 0) = −Ḣ−1
θ∗ W(θ∗). (F.11)

�

Lemma 5. Suppose Assumptions 1-2 hold. (i) Let θ̂N be an estimator of θ∗ that satisfies (6.1). Then, it

also satisfies (6.2)-(6.3); (ii) Let θ̂N be an estimator of θ∗ that satisfies (6.2)-(6.3). Then, it also satisfies

(6.1).

Proof. (i) Consider the case j = 2. Note that, by (6.1),

θ̂N,2 − L̂2(L̂1(θ̂N,−1), θ̂N,3, . . . , θ̂N,J) = θ̂N,2 − L̂2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J) (F.12)

= L̂2(θ̂N,1, θ̂N,3, . . . , θ̂N,J)− L̂2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J), (F.13)
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where rN,1 = op(N
−1/2), and the second equality follows from the definition of θ̂N,2. (F.13) can be written

as

L̂2(θ̂N,1, θ̂N,3, . . . , θ̂N,J)− L̂2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J)

=
(

[L̂2(θ̂N,1, θ̂N,3, . . . , θ̂N,J)− L2(θ̂N,1, θ̂N,3, . . . , θ̂N,J)]

− [L̂2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J)− L2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J)]
)

+ [L2(θ̂N,1 + rN,1, θ̂N,3, . . . , θ̂N,J)− L2(θ̂N,1, θ̂N,3, . . . , θ̂N,J)]

= op(N
−1/2) +OP (rN,1), (F.14)

where the last equality follows from the stochastic equicontinuity of LN shown in the proof of Lemma 10

and L2 being Lipschitz since L2 is continuously differentiable with a derivative that is uniformly bounded

on the compact set Θ. By (F.12)-(F.14), it holds that θ̂N,j = Mj(θ̂N,−1) + op(N
−1/2) for j = 2. Repeat the

same argument sequentially for j = 3, . . . , J . The first conclusion of the lemma then follows.

(ii) Suppose now that rN,1 := θ̂N,1 − L̂1(θ̂N,−1) 6= oP (N−1/2). Then, there is a subsequence kN along

which, for any η > 0,
√
kNrkN ,1 > η for all kN with positive probability. Then, the OP (rkN ,1)-term in (F.14)

is not op(k
−1/2
N ), which therefore implies θ̂N,j 6= Mj(θ̂N,−1) + op(N

−1/2) for j = 2. The second conclusion of

the lemma then follows. �

Lemma 6. Let Λ ⊂ Rp be a compact set, and let K : Λ→ Rp be a map that has a unique fixed point λ0 ∈ Λ.

let H : Λ→ Rp be defined by H(λ) := λ−K(λ). Then H−1(x) = {λ ∈ Λ : H(λ) = x} is continuous at x = 0

in Hausdorff distance.

Proof. For any x, write

H−1(x) = {λ : λ−K(λ) = x}.

Let xn → 0. Since λ0 is the unique fixed point of K, H−1(0) = {λ0}. Therefore,

dH(H−1(0), H−1(xn)) = max

{
inf

λ∈H−1(xn)
‖λ− λ0‖, sup

λ∈H−1(xn)

‖λ− λ0‖

}
= sup
λ∈H−1(xn)

‖λ− λ0‖.

Hence, it suffices to show that supλ∈H−1(xn) ‖λ− λ0‖ = o(1). We show this by contradiction. Suppose that

there is a sequence {λn} ⊂ Λ and δ > 0 such that λn ∈ H−1(xn) for all n and {λn} has a subsequence {λkn}

such that ‖λkn − λ0‖ > δ for all n. λkn ∈ Λ is a sequence in a compact space, and hence there is a further

subsequence λhn
such that λhn

→ λ∗ for some λ∗ ∈ Λ with λ∗ 6= λ0. By the continuity of K, one then has

λhn −K(λhn)→ λ∗ −K(λ∗).

By λhn −K(λhn) = xn and xn → 0, it must hold that

λ∗ −K(λ∗) = 0.



DECENTRALIZATION ESTIMATORS FOR IVQR 45

However this contradicts the fact that λ0 is the unique fixed point, and hence the conclusion follows. �

Lemma 7. Suppose H = I −K and K : Rp → Rp is continuously differentiable at λ0. Suppose further that

det(I − JK(λ0)) 6= 0. Let Ḣλ0
:= I − JK(λ0). Then,

lim
t↓0

sup
h:‖h‖=1

‖t−1[H(λ0 + th)−H(λ0)]− Ḣλ0h‖ = 0,

and

inf
h:‖h‖=1

‖Ḣλ0
h‖ > 0.

Proof. Let {hn} ⊂ Sp be a sequence on the unit sphere. Then,

t−1[H(λ0 + thn)−H(λ0)]− Ḣλ0
hn = t−1[λ0 + thn +K(λ0 + thn)− λ0 −K(λ0)]− hn − JK(λ0)hn

= t−1[K(λ0 + thn)−K(λ0)]− JK(λ0)hn

= (JK(λ̄n)− JK(λ0))hn,

where λ̄n is a mean value between λ0 + thn and λ0. Therefore, by the Cauchy-Schwarz inequality,

‖(JK(λ̄n)− JK(λ0))hn‖ ≤ ‖JK(λ̄n)− JK(λ0)‖‖hn‖ → 0,

where we used ‖hn‖ = 1, λ̄n → λ0, and the continuity of the Jacobian.

For the second claim, note that

‖Ḣλ0
h‖ = ‖(I − JK(λ0))h‖,

and h 7→ ‖(I − JK(λ0))h‖ is continuous. Since the domain of h is compact, there is h∗ ∈ Sp such that

inf‖h‖=1 ‖Ḣλ0
h‖ = ‖(I−JK(λ0))h∗‖. Let q = (I−JK(λ0))h∗ and note that I−JK(λ0) is linearly independent

(due to det(I − JK(λ0)) 6= 0), and hence q 6= 0. Hence inf‖h‖=1 ‖Ḣλ0h‖ = ‖q‖ > 0. Hence, the second

conclusion follows. �

The following result is a slight extension of Lemma E.1 in CFM.

Lemma 8. Suppose that Λ ⊂ Rp and U is a compact and convex set in Rq. Let I be an open set containing

U . Suppose that Ψ : Λ×I → Rp is continuous and λ 7→ Ψ(λ, u) is the gradient of a convex function in λ for

each u ∈ U ; (b) for each u ∈ U , Ψ(λ0(u), u) = 0; (c) ∂
∂(λ′,u′)Ψ(λ, u) exists at (λ0(u), u) and is continuous

at (λ0(u), u) for each u ∈ U and Ψ̇λ0(u),u := ∂
∂λ′Ψ(λ, u)|λ0(u) obeys infu∈U inf‖h‖=1 ‖Ψ̇λ0(u),uh‖ > c0 > 0.

Then, Condition Z in CFM holds and u 7→ λ0(u) is continuously differentiable with derivative Jλ0
(u) =

−Ψ̇−1
λ0(u)u

∂
∂u′Ψ(λ0(u), u).

Proof. The proof is the same as that of Lemma E.1 in CFM, in which U is a compact interval in R. A slight

modification is needed when one computes the derivative of λ0(u) with respect to u. Since u is allowed to
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be multidimensional, the implicit function theorem gives

Jλ0
(u) = −Ψ̇−1

λ0(u)u

∂

∂u′
Ψ(λ0(u), u), (F.15)

which is uniformly bounded and continuous in u by condition (c), which ensures continuous differentiability

of u 7→ λ0(u). Note that for any δ > 0 and λ ∈ Bδ(λ0(u)), there is η > 0 and u′ such that ‖u′ − u‖ ≤ η so

that

‖λ− λ0(u′)‖ ≤ ‖λ− λ0(u)‖+ ‖λ0(u)− λ0(u′)‖ ≤ 2δ. (F.16)

Since U is compact (and hence totally bounded), there is a finite set {uj}Jj=1 ⊂ U such that U ⊂
⋃
j Bη(uj).

The argument above then shows that N =
⋃
u∈U Bδ(λ0(u)) ⊂

⋃
j B2δ(λ0(uj)), which ensures that N is

totally bounded. Since N is a subset of a Euclidean space (equipped with a complete metric), it follows that

N is compact. This ensures condition Z (i) in CFM. The rest of the proof is essentially the same as the

case, in which U being a compact interval. �

Lemma 9. Suppose Assumption 2 holds. Let w = (y, d′, x′, z′) and let τ ∈ (0, 1). Define

M :=
{
f : f(w; θ) =

(
(1{y ≤ d′θ−1 + x′θ1} − τ)x,

(1{y ≤ d′θ−1 + x′θ1} − τ)z1, . . . , (1{u ≤ d′θ−1 + x′θ1} − τ)zdD
)
, θ ∈ Θ

}
. (F.17)

Then, M is a Donsker-class.

Proof. The proof is standard, and hence we give a brief sketch for the first component of f , f1(w; θ) = (1{y ≤

d′θ−1 +x′θ1}− τ)x. Note that w 7→ 1{y ≤ d′θ−1 +x′θ1}− τ belongs to Type II-class in Andrews (1994), and

the map w 7→ x does not depend on the parameter. By Theorems 2 and 3 in Andrews (1994), this function

then satisfies the uniform entropy condition with the envelope function M̄(w) = x, which is square integrable

by assumption. Similar arguments apply to the other components of f . By Theorem 1 in Andrews (1994),

the empirical process: Gnf is stochastically equicontinuous, and Gnf(·, θ) obeys the classical central limit

theorem for each θ ∈ Θ. Hence, we conclude that M is Donsker. �

Below, let g(w; θ) = (g1(w; θ)′, . . . , gJ(w; θ))′ be a vector such that

gj(w; θ) =
∂2

∂θj∂θ′j
QP,j(Lj(θ−j), θ−j)

−1fj(w;Lj(θ−j), θ−j), j = 1, . . . , J. (F.18)

Let ρ(θ, θ̃) :=
∥∥diag

(
EP
[
(g(W ; θ)−EP [g(W ; θ)])(g(w; θ̃)−EP [g(w; θ̃)])′

])∥∥ be the variance semimetric. Let

Wi = (Yi, D
′
i, X

′
i, Z
′
i), i = 1, . . . , N be an i.i.d. sample generated from the IVQR model. Define

LN,j(θ−j) :=
√
N(L̂j(θ−j)− Lj(θ−j)) , j = 1, . . . , J. (F.19)

Similarly, let W ∗i = (Y ∗i , D
∗′
i , X

∗′
i , Z

∗′
i )′, i = 1, . . . , N be an bootstrap sample from the empirical distribution

P̂N of {Wi}. Define

L∗N,j(θ−j) :=
√
N(L̂∗j (θ−j)− L̂j(θ−j)) , j = 1, . . . , J, (F.20)
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where L̂∗j is the sample best response map of player j, which is defined as in (5.3)-(5.4) while replacing Wi

with the bootstrap sample W ∗i in (5.1)-(5.2).

Lemma 10. Suppose that Assumptions 1 and 2 hold. Then, (i) LN := (LN,1, . . . ,LN,J) satisfies

LN (·) W, (F.21)

where W is a tight Gaussian process in `∞(Θ)d with the covariance kernel

Cov(W(θ),W(θ̃)) = EP
[
(g(W ; θ)− EP [g(W ; θ)])(g(W ; θ̃)− EP [g(W ; θ̃)])′

]
; (F.22)

LN is stochastically equicontinuous with respect to the variance semimetric ρ; (ii) L∗N := (L∗N,1, . . . ,L∗N,J)

satisfies

L∗N (·) L
∗

 W; (F.23)

(iii) ρ satisfies limδ↓0 sup‖θ−θ̃‖<δ ρ(θ, θ̃)→ 0.

Proof. (i) We first work with LN,1. For this, we establish that L1 is Hadamard differentiable. Note that

θ1 = L1(θ−1) solves

EP [(1{Y ≤ D′θ−1 +X ′θ1} − τ)X] = 0. (F.24)

Take U = Θ−1, Ξ = Θ1, ψ(λ, u) = EP [(1{Y ≤ Du+X ′λ}−τ)X]. Define φ : `∞(Ξ×U)kb×`∞(U)→ `∞(U),

which maps (ψ, r) to a solution φ(ψ, r) = λ(·) such that

‖ψ(λ(u), u)‖2 ≤ inf
λ′∈Θ

‖ψ(λ′, u)‖2 + r(u)2. (F.25)

Then, one may write L1(·) = φ(ψ, 0). We then show that ψ satisfies the conditions of Lemma 8. Note

first that U and Ξ are compact. ψ is continuous and λ 7→ ψ(λ, u) is the gradient of the convex function

λ 7→ EP [ρτ (Y −Du−X ′λ)] . The function L1(u) = λ0(u) is defined as the exact solution of ψ(λ, u) = 0.

Note also that, by Assumption 2,

∂2

∂θ1∂θ′1
QP,1(θ1, θ−1) =

∂

∂θ′1
EP [(1{Y ≤ D′θ−1 +X ′θ1} − τ)X]

= EP [
∂

∂θ′1
(FY |D,X,Z(D′θ−1 +X ′θ1)− τ)X]

= EP [fY |D,X,Z(D′θ−1 +X ′θ1)XX ′], (F.26)

where the second equality follows from the dominated convergence theorem, and the last display is well-

defined by the square integrability of X. Similarly,

∂2

∂θ1∂θ′−1

QP,1(θ1, θ−1) = EP [fY |D,X,Z(D′θ−1 +X ′θ1)XD′]. (F.27)

Hence, the derivative

∂

∂(λ′, u′)
Ψ(λ, u) = (

∂2

∂θ1∂θ′1
QP,1(θ1, θ−1),

∂2

∂θ1∂θ′−1

QP,1(θ1, θ−1))



48 KAIDO AND WÜTHRICH

exists and is continuous by Assumption 2. By Assumption 2.4, Ψ̇λ0(u),u = ∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1) obeys

inf
u∈U

inf
‖h‖=1

‖Ψ̇λ0(u),uh‖ = inf
θ−1∈Θ−1

inf
‖h‖=1

‖EP [fY |D,X,Z(D′θ−1 +X ′θ1)XX ′]h‖ > 0. (F.28)

Then, by Lemma 8 and Lemma E.2 in Chernozhukov, Fernandez-Val, and Melly (2013), φ is Hadamard

differentiable tangentially to C(N × U)K × {0} with the Hadamard derivative (of L1)

φ′Ψ,0(z, 0) = − ∂2

∂θ1∂θ′1
QP,1(L1(·), ·)−1z(L1(·), ·), (F.29)

where (z, 0) 7→ φ′Ψ,0(z, 0) is continuous over z ∈ `∞(Θ)K .

For j 6= 1, the argument is similar. For example, for ` = 2, one may take U = Θ−2, Ξ = Θ2 and

ψ(λ, u) = EP [(1{Y ≤ D2θ2 + (D1, X)′u} − τ)Z2] and write L2(·) = φ(ψ, 0). The rest of the argument is the

same.

By Lemma 9 and arguing as in (F.24)-(F.29) and applying the δ-method (as in Lemma E.3 in CFM), we

obtain

LN (·) W, (F.30)

where W = (W′1, . . . ,W′J)′ is a tight Gaussian process in `∞(Θ)d, where for each j, Wj ∈ `∞(Θ−j)
dj is given

pointwise by

Wj(θ−j) = − ∂2

∂θj∂θ′j
QP,j(Lj(θ−j), θ−j)

−1Gfj(w;Lj(θ−j), θ−j), j = 1, · · · , J ; (F.31)

Hence, its covariance kernel is as given in (F.22). By Lemma 1.3.8. in Van der Vaart and Wellner (1996),

{LN} is asymptotically tight, which in turn means that {LN} is stochastically equicontinuous with respect

to ρ by Theorem 1.5.7 in Van der Vaart and Wellner (1996).

(ii) For each j, let L∗N,j ∈ `∞(Θ−j)
dj be defined pointwise by

L∗N,j(θ−j) =
√
N(L̂∗j (θ−j))− L̂j(θ−j)). (F.32)

Below, again we work with the case j = 1. Using φ (the solution to (F.25)), we may write

L∗N,1(θ−1) =
√
N(φ(ψ̂∗N , r

∗
N )− φ(ψ̂N , rN )), (F.33)

where ψ̂N (λ, u) = N−1
∑N
i=1(1{Yi ≤ Diu + X ′iλ} − τ)Xi, and ψ̂∗N is defined similarly for the bootstrap

sample. Let EP∗ denote the conditional expectation with respect to P ∗, the law of {W ∗i }Ni=1 conditional on

the sample path. Let BL1 denote the space of bounded Lipschitz functions on Rd1 with Lipschitz constant

1. Then, for any ε > 0,

sup
h∈BL1

∣∣∣EP∗h(√N[φ(ψ̂∗N , r
∗
N )− φ(ψ̂N , rN )

])
− EP∗h

(
φ′Ψ,0

(√
N
[
(ψ̂∗N , r

∗
N )− (ψ̂N , rN )

]))∣∣∣
≤ ε+ 2P ∗

(∥∥√N[φ(ψ̂∗N , r
∗
N )− φ(ψ̂N , rN )

]
− φ′Ψ,0

(√
N
[
(ψ̂∗N , r

∗
N )− (ψ̂N , rN )

])∥∥ > ε
)
. (F.34)
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By Lemma 9 and Theorem 3.6.2 in Van der Vaart and Wellner (1996),
√
N(ψ̂∗N − ψ̂N )

L∗

 Gf1. Noting that

h ◦ φ′Ψ,0 ∈ BL1(`∞(Θ−1)d1 × R) and rN = op(N
−1/2), it follows that

sup
h∈BL1

∣∣∣EP∗h(φ′Ψ,0(√N[(ψ̂∗N , r∗N )− (ψ̂N , rN )
]))
− EP∗h ◦ φ′Ψ,0(Gf1, 0)

∣∣∣→ 0, (F.35)

with probability approaching 1 due to rN = oP (N−1/2). Hence, for the conclusion of the theorem, it suffices

to show that the second term on the right hand side of (F.34) tends to 0.

As shown in the proof of (i), φ is Hadamard differentiable at (ψ, 0). Hence, by Theorem 3.9.4 in Van der

Vaart and Wellner (1996),

√
N
[
φ(ψ̂∗N , r

∗
N )− φ(ψ, 0)

]
= φ′Ψ,0(

√
N [(ψ̂∗N , r

∗
N )− (ψ, 0)]) + oP∗(1)

√
N
[
φ(ψ̂N , rN )− φ(ψ, 0)] = φ′Ψ,0(

√
N [(ψ̂N , rN )− (ψ, 0)]) + oP (1),

Take the difference of the left and right hand sides respectively and note that φ′Ψ,0 is linear. This implies

the right hand side of (F.34) tends to 0 in probability. This, together with (F.34)-(F.35), ensures

L∗N,1
L∗

 W1, (F.36)

where W1(θ−1) = − ∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)−1Gfj(·;L1(θ−1), θ−1). The analysis for any j 6= 1 is similar,

and one may apply the arguments above jointly across j = 1, . . . , J , which yields the second claim of the

lemma.

(iii) Consider the first submatrix of EP [(g(W ; θ)− EP [g(W ; θ)])(g(w; θ̃)− EP [g(w; θ̃)])′]. It is given by

Var
(
− ∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)−1f1(w;L1(θ−1), θ−1)

)
−Var

(
− ∂2

∂θ1∂θ′1
QP,1(L1(θ̃−1), θ̃−1)−1f1(w;L1(θ̃−1), θ̃−1)

)
=

∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)−1Var(f1(w;L1(θ−1), θ−1))

∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)−1

− ∂2

∂θ1∂θ′1
QP,1(L1(θ̃−1), θ̃−1)−1Var(f1(w;L1(θ̃−1), θ̃−1))

∂2

∂θ1∂θ′1
QP,1(L1(θ̃−1), θ̃−1)−1. (F.37)

Note that Θ is compact and θ−1 7→ ∂2

∂θ1∂θ′1
QP,1(L1(θ−1), θ−1)−1 is continuous by Lemma 1, which implies that

this map is uniformly continuous. Therefore, it remains to show the uniform continuity of θ 7→ Var(f1(w; θ)).

Note that

Var(f1(w;L1(θ−1), θ−1)) = EP [(1{Y ≤ D′θ−1 +X ′L1(θ−1)} − τ)XX ′]

− EP [(1{Y ≤ D′θ−1 +X ′L1(θ−1)} − τ)X]EP [(1{Y ≤ D′θ−1 +X ′L1(θ−1)} − τ)X]′. (F.38)

The right hand side of the display above is continuous on the compact domain Θ, and hence it is uni-

formly continuous. One can argue the same way for the other subcomponents of diag
(
EP [(g(W ; θ) −

EP [g(W ; θ)])(g(w; θ̃)− EP [g(w; θ̃)])′]
)
. This completes the proof. �
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Corollary 2. Suppose that Assumptions 1 and 2 hold. (i) Let Wi = (Yi, D
′
i, X

′
i, Z
′
i)
′, i = 1, . . . , N be an

i.i.d. sample generated from the IVQR model. Then,

√
N
(
K̂ −K

)
 W. (F.39)

(ii) Let W ∗i = (Y ∗i , D
∗′
i , X

∗′
i , Z

∗′
i )′, i = 1, . . . , N be an bootstrap sample from the empirical distribution P̂N of

{Wi}Ni=1. Then,

√
N
(
K̂∗ − K̂

) L∗
 W.

Proof. (i) By Lemma 10, it follows that

√
N
(
L̂1(·)− L1(·), . . . , L̂J(·)− LJ(·)

)′
 W.

Note that, by the definition of L̂ and L, one has

√
N(K̂j(θ)−Kj(θ)) =

√
N(L̂j(θ−j)− Lj(θ−j)), j = 1, · · · , J.

The conclusion of the lemma then follows. The proof of (ii) is similar, and is therefore omitted. �

Appendix G. Consistency of the Contraction Estimator

Below, we adopt the framework of Dominitz and Sherman (2005) Let (X , d) be a metric space. For a

contraction map F : X → X , let cF be the modulus of contraction such that

d(F (x), F (x′)) ≤ cF d(x, x′),

for any x, x′ ∈ X .

Lemma 11. Suppose Assumptions 1, 2, and 3 hold. Let θ̂N be an estimator constructed by iterating the

dynamical system in (5.7) or (in (5.8)) sN times, where sN ≥ − 1
2 lnN/ ln cK . Then,

θ̂N − θ∗ = Op(N
−1/2).

Proof. We show the result by applying Theorem 1 in Dominitz and Sherman (2005) to the estimator obtained

from the simultaneous dynamical system. The argument for the sequential system is similar.

By Assumption 3, K is a contraction map on DK . Let θ(s) be obtained from iterating s-times the

population dynamical system in (3.15). The iteration on the dynamical system is covergent at least linearly

(Bertsekas and Tsitsiklis, 1989, Proposition 1.1). Under the condition on sN , arguing as in (Dominitz and

Sherman, 2005, p.842), it follows that N1/2‖θ(sN ) − θ∗‖ ≤ ‖θ(0) − θ∗‖. Finally, by Corollary 2 and tightness

of W, N1/2 supθ∈DK
‖K̂(θ) − K(θ)‖ = Op(1). These imply the conditions of Theorem 1 in Dominitz and

Sherman (2005) with δ = 1/2. The claim of the lemma then follows. �
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Tables

Table 1. Algorithms

One endogenous variable

Algorithm R-Package Comments

Contraction algorithm

Root-finding algorithm uniroot (R Core Team, 2018)

IQR 500 gridpoints

Two endogenous variables

Algorithm R-Package Comments

Contraction algorithm

Root-finding algorithm optim sa (Husmann, Lange, and Spiegel, 2017) implemented as optimizer

Nested root-finding algorithm uniroot (R Core Team, 2018)

IQR 40×40 gridpoints, implementation: p.132 in
Chernozhukov, Hansen, and Wüthrich (2017)
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Table 2. Bias and RMSE, 401(k) DGP with one endogenous regressor

Bias/102 RMSE/103

τ Contr. Brent IQR Contr. Brent IQR

0.15 -6.66 -6.52 -8.65 8.08 7.43 7.88

0.25 -1.77 -3.17 -3.14 3.89 3.97 3.97

0.50 0.88 0.54 0.74 1.99 1.99 2.00

0.75 -1.41 -1.10 -0.91 1.96 1.96 1.96

0.85 0.05 0.65 0.74 2.10 2.11 2.11

Notes: Monte Carlo simulation with 500 repetitions as

described in the main text. Contr: contraction algorithm;

Brent: root-finding algorithm based on Brent’s method;

IQR: inverse quantile regression.
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Table 3. Bias and RMSE, 401(k) DGP with two endogenous regressors

Bias/102 RMSE/103

τ Contr. SA Nested IQR Contr. SA Nested IQR

Coefficient on binary endogenous variable

0.15 -9.12 -1.73 -7.42 -9.36 8.03 6.92 7.63 8.19

0.25 -5.74 -5.84 -6.11 -6.52 4.46 4.40 4.45 4.54

0.50 -0.25 -0.36 -0.43 -0.42 1.94 1.96 1.95 2.00

0.75 0.24 0.26 0.21 0.36 1.81 1.82 1.82 1.87

0.85 -0.31 0.07 0.07 0.06 2.20 2.21 2.21 2.26

Coefficient on continuous endogenous variable

0.15 2.14 4.66 0.54 0.48 1.07 2.12 1.04 1.13

0.25 2.26 0.90 0.33 -0.03 0.97 1.25 0.97 1.04

0.50 1.12 0.16 0.03 0.01 0.89 0.96 0.95 1.07

0.75 -1.40 0.01 -0.26 0.00 0.98 1.06 1.07 1.16

0.85 -3.28 -1.08 -1.23 -1.12 1.11 1.25 1.26 1.33

Notes: Monte Carlo simulation with 500 repetitions as described in

the main text. Contr: contraction algorithm; SA: simulated annealing

based optimization algorithm; Nested: nested algorithm based Brent’s

method; IQR: inverse quantile regression.
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Table 4. Size, 401(k) DGP with one endogenous regressor

1− α = 0.95 1− α = 0.9

τ Contr. Brent Contr. Brent

0.15 0.95 0.95 0.91 0.88

0.25 0.96 0.96 0.93 0.93

0.50 0.96 0.96 0.91 0.91

0.75 0.94 0.94 0.89 0.89

0.85 0.94 0.95 0.90 0.90

Notes: Monte Carlo simulation with

1000 repetitions as described in the

main text. Contr: contraction algo-

rithm; Brent: root-finding algorithm

based on Brent’s method.
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Table 5. Computation time, 401(k) DGP with one endogenous regressor

N Contr. Brent IQR

1000 0.28 0.04 0.42

5000 0.49 0.18 4.00

10000 1.10 0.54 13.40

20000 1.95 0.77 23.24

Notes: The table reports av-

erage computation time in sec-

onds at τ = 0.5 over 50 simu-

lation repetitions based on the

DGP described in the main

text. Contr: contraction algo-

rithm; Brent: root-finding algo-

rithm based on Brent’s method;

IQR: inverse quantile regression

with grid search over 500 grid

points.
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Table 6. Computation time, 401(k) DGP with two endogenous regressor

N Contr. SA Nested IQR

1000 0.29 3.70 0.51 62.21

5000 1.54 20.10 2.95 322.78

10000 4.45 59.44 9.24 730.20

20000 20.09 193.63 31.62 2152.55

Notes: The table reports average compu-

tation time in seconds at τ = 0.5 over 50

simulation repetitions based on the DGP

described in the main text. Contr: con-

traction algorithm; SA: simulated anneal-

ing based optimization algorithm; Nested:

nested algorithm based Brent’s method;

IQR: inverse quantile regression with grid

search over 100×100 grid points.



Tables 57

Table 7. Bias and RMSE, symmetric design with one endogenous regressor

N = 500

Bias RMSE

τ Contr. Brent IQR Contr. Brent IQR

0.15 0.03 -0.00 -0.00 0.10 0.10 0.10

0.25 0.03 0.00 0.00 0.12 0.12 0.12

0.50 -0.00 -0.00 -0.00 0.12 0.14 0.14

0.75 -0.04 -0.01 -0.01 0.13 0.12 0.12

0.85 -0.04 -0.00 -0.00 0.11 0.11 0.11

N = 1000

Bias RMSE

τ Contr. Brent IQR Contr. Brent IQR

0.15 0.02 0.00 0.00 0.07 0.07 0.07

0.25 0.01 -0.00 -0.00 0.08 0.08 0.08

0.50 -0.01 -0.01 -0.01 0.09 0.10 0.10

0.75 -0.02 -0.00 -0.00 0.09 0.08 0.08

0.85 -0.02 -0.00 -0.00 0.08 0.08 0.08

Notes: Monte Carlo simulation with 500 repetitions as

described in the main text. Contr: contraction algorithm;

Brent: root-finding algorithm based on Brent’s method;

IQR: inverse quantile regression.
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Table 8. Bias and RMSE, asymmetric design with one endogenous regressor

N = 500

Bias RMSE

τ Contr. Brent IQR Contr. Brent IQR

0.15 0.12 0.01 -0.00 0.22 0.20 0.20

0.25 0.07 0.00 -0.00 0.17 0.16 0.16

0.50 0.04 -0.00 -0.00 0.13 0.12 0.12

0.75 0.03 0.00 0.00 0.11 0.11 0.11

0.85 -0.03 -0.01 -0.00 0.12 0.11 0.11

N = 1000

Bias RMSE

τ Contr. Brent IQR Contr. Brent IQR

0.15 0.05 -0.01 -0.01 0.16 0.15 0.15

0.25 0.04 0.00 0.00 0.11 0.11 0.11

0.50 0.03 0.00 0.00 0.08 0.08 0.08

0.75 0.01 -0.01 -0.01 0.08 0.08 0.08

0.85 -0.03 -0.01 -0.01 0.09 0.09 0.09

Notes: Monte Carlo simulation with 500 repetitions as

described in the main text. Contr: contraction algorithm;

Brent: root-finding algorithm based on Brent’s method;

IQR: inverse quantile regression.



Tables 59

Table 9. Bias and RMSE, symmetric design with two endogenous regressors

N = 500

Bias RMSE

τ Contr. SA Nested IQR Contr. SA Nested IQR

Coefficient on D1

0.15 0.00 0.00 -0.00 -0.01 0.11 0.14 0.12 0.13

0.25 0.01 -0.01 -0.00 -0.01 0.15 0.17 0.16 0.16

0.50 -0.02 -0.02 -0.02 -0.02 0.17 0.19 0.19 0.20

0.75 -0.04 -0.03 -0.03 -0.03 0.21 0.21 0.20 0.20

0.85 -0.05 -0.03 -0.03 -0.03 0.18 0.18 0.17 0.17

Coefficient on D2

0.15 0.10 -0.01 -0.01 -0.02 0.27 0.29 0.27 0.31

0.25 0.10 -0.02 -0.00 -0.02 0.29 0.30 0.29 0.30

0.50 -0.01 -0.02 -0.02 -0.02 0.33 0.39 0.38 0.39

0.75 -0.15 -0.06 -0.04 -0.05 0.40 0.41 0.40 0.41

0.85 -0.19 -0.06 -0.05 -0.07 0.39 0.40 0.36 0.43

N = 1000

Bias RMSE

τ Contr. SA Nested IQR Contr. SA Nested IQR

Coefficient on D1

0.15 -0.00 -0.01 -0.00 -0.00 0.08 0.10 0.09 0.10

0.25 -0.00 -0.01 -0.00 -0.01 0.10 0.12 0.11 0.13

0.50 -0.01 -0.01 -0.01 -0.01 0.12 0.13 0.13 0.16

0.75 -0.01 -0.01 -0.01 -0.00 0.13 0.14 0.13 0.14

0.85 -0.02 -0.02 -0.01 -0.02 0.12 0.13 0.12 0.13

Coefficient on D2

0.15 0.05 -0.01 -0.01 -0.02 0.19 0.21 0.19 0.20

0.25 0.05 -0.01 -0.00 -0.01 0.22 0.23 0.21 0.23

0.50 -0.02 -0.02 -0.02 -0.03 0.25 0.27 0.27 0.29

0.75 -0.09 -0.02 -0.02 -0.03 0.27 0.28 0.25 0.26

0.85 -0.09 -0.03 -0.01 -0.03 0.26 0.25 0.23 0.24

Notes: Monte Carlo simulation with 500 repetitions as described in

the main text. Contr: contraction algorithm; SA: simulated annealing

based optimization algorithm; Nested: nested algorithm based Brent’s

method; IQR: inverse quantile regression.
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Table 10. Bias and RMSE, asymmetric design with two endogenous regressors

N = 500

Bias RMSE

τ Contr. SA Nested IQR Contr. SA Nested IQR

Coefficient on D1

0.15 -0.02 0.00 0.02 0.01 0.25 0.28 0.26 0.26

0.25 -0.05 0.00 0.01 -0.00 0.20 0.21 0.20 0.21

0.50 -0.04 0.00 -0.00 0.00 0.16 0.21 0.17 0.19

0.75 -0.02 -0.01 -0.02 -0.02 0.17 0.18 0.17 0.19

0.85 -0.01 -0.02 -0.01 -0.02 0.20 0.19 0.19 0.19

Coefficient on D2

0.15 0.26 -0.11 -0.06 -0.13 0.57 0.58 0.52 0.59

0.25 0.23 -0.02 -0.01 -0.01 0.45 0.43 0.41 0.44

0.50 0.12 -0.04 -0.03 -0.07 0.34 0.48 0.32 0.73

0.75 0.04 -0.06 -0.05 -0.05 0.32 0.34 0.31 0.34

0.85 -0.13 -0.01 -0.03 0.01 0.40 0.38 0.34 0.36

N = 1000

Bias RMSE

τ Contr. SA Nested IQR Contr. SA Nested IQR

Coefficient on D1

0.15 -0.03 -0.00 0.01 -0.01 0.18 0.19 0.19 0.19

0.25 -0.04 -0.01 -0.00 -0.01 0.15 0.16 0.15 0.16

0.50 -0.03 -0.01 -0.01 -0.01 0.13 0.14 0.13 0.14

0.75 -0.03 -0.01 -0.01 -0.01 0.12 0.13 0.12 0.14

0.85 0.01 0.00 0.00 -0.00 0.14 0.15 0.13 0.15

Coefficient on D2

0.15 0.15 -0.03 -0.03 -0.04 0.37 0.38 0.37 0.39

0.25 0.10 -0.01 -0.01 -0.02 0.28 0.30 0.28 0.28

0.50 0.05 -0.03 -0.02 -0.03 0.22 0.23 0.22 0.24

0.75 0.06 -0.02 -0.01 -0.01 0.24 0.24 0.22 0.24

0.85 -0.08 -0.04 -0.03 -0.03 0.27 0.26 0.24 0.24

Notes: Monte Carlo simulation with 500 repetitions as described in

the main text. Contr: contraction algorithm; SA: simulated annealing

based optimization algorithm; Nested: nested algorithm based Brent’s

method; IQR: inverse quantile regression.
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Table 11. Size, location-scale DGP with one endogenous regressor

N = 500

Symmetric Design Asymmetric Design

1− α = 0.95 1− α = 0.9 1− α = 0.95 1− α = 0.9

τ Contr. Brent Contr. Brent Contr. Brent Contr. Brent

0.15 0.95 0.97 0.91 0.93 0.92 0.97 0.87 0.94

0.25 0.95 0.97 0.91 0.92 0.93 0.96 0.89 0.93

0.50 0.96 0.97 0.90 0.91 0.94 0.96 0.90 0.92

0.75 0.95 0.96 0.90 0.92 0.96 0.96 0.93 0.92

0.85 0.96 0.97 0.91 0.93 0.95 0.95 0.93 0.92

N = 1000

Symmetric Design Asymmetric Design

1− α = 0.95 1− α = 0.9 1− α = 0.95 1− α = 0.9

τ Contr. Brent Contr. Brent Contr. Brent Contr. Brent

0.15 0.96 0.96 0.90 0.91 0.93 0.96 0.87 0.93

0.25 0.94 0.94 0.90 0.89 0.93 0.95 0.88 0.91

0.50 0.96 0.96 0.90 0.91 0.93 0.94 0.89 0.89

0.75 0.95 0.95 0.91 0.92 0.95 0.94 0.90 0.90

0.85 0.96 0.95 0.91 0.92 0.96 0.95 0.92 0.90

Notes: Monte Carlo simulation with 1000 repetitions as described in the main

text. Contr: contraction algorithm; Brent: root-finding algorithm based on

Brent’s method.
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Figures

Figure 1. Illustration Fixed Point
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Figure 2. Comparison Point Estimates
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Figure 3. Pointwise 95% Bootstrap Confidence Intervals
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