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DECENTRALIZATION ESTIMATORS FOR INSTRUMENTAL VARIABLE
QUANTILE REGRESSION MODELS

HIROAKI KAIDO* AND KASPAR WUTHRICH'

ABSTRACT. The instrumental variable quantile regression (IVQR) model of Chernozhukov and
Hansen (2005, 2006) is a flexible and powerful tool for evaluating the impact of endogenous covari-
ates on the whole distribution of the outcome of interest. Estimation, however, is computationally
burdensome because the GMM objective function is non-smooth and non-convex. This paper shows
that the IVQR estimation problem can be decomposed into a set of conventional quantile regres-
sion sub-problems, which are convex and can be solved efficiently. This allows for reformulating
the original estimation problem as the problem of finding the fixed point of a low dimensional
map. This reformulation leads to new identification results and, most importantly, to practical,
easy to implement, and computationally tractable estimators. We explore estimation algorithms
based on the contraction mapping theorem and algorithms based on root-finding methods. We
prove consistency and asymptotic normality of our estimators and establish the validity of a boot-
strap procedure for estimating the limiting laws. Monte Carlo simulations support the estimator’s

enhanced computational tractability and demonstrate desirable finite sample properties.

Keywords: instrumental variables, quantile regression, contraction mapping, fixed point estima-

tor, bootstrap.
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1. INTRODUCTION

Quantile regression (QR), introduced by Koenker and Bassett (1978), is a very popular method
for estimating the effect of regressors on the whole outcome distribution. QR is flexible, easy
to interpret, and can be computed very efficiently as the solution to a convex problem. How-
ever, in many applications, the variables of interest are endogenous, rendering QR inconsistent for
estimating causal quantile effects. The instrumental variable quantile regression (IVQR) model
of Chernozhukov and Hansen (2004, 2005, 2006) generalizes QR to accommodate endogenous re-
gressors. Unfortunately, in sharp contrast to QR, estimation of IVQR models is computationally
burdensome because the resulting estimation problem, formulated as a generalized method of mo-
ments (GMM) problem, is non-smooth and non-convex, even for linear models. From an applied
perspective, this issue is particularly troublesome since resampling methods are often used to avoid

the choice of tuning parameters when estimating the asymptotic variance of the estimators.

In this paper, we propose a new class of estimators for linear IVQR models. The suggested
estimators are computationally tractable, very easy to implement, and particularly suitable for
settings with many exogenous, a moderate number of endogenous regressors and a large number of
observations, which are ubiquitous in applied research. The key insight underlying our estimators
is that the IVQR estimation problem can be decomposed into a series of (weighted) conventional
QR problems, which are convex and can be solved very quickly using robust algorithms. The
IVQR estimator is then characterized as a fixed point of such sub-problems. Computationally, this
reformulation allows us to recast the original non-smooth and non-convex optimization problem
as the problem of finding the fixed point of a low dimensional map, which leads to substantial
reductions in computation times. Implementation of our preferred procedures is straightforward
and only requires the availability of a routine for estimating quantile regressions and in some cases a
univariate root-finder. The resulting estimation algorithms attain significant computational gains.
For example, we show that in problems with two endogenous variables, a version of our estimator
that uses a contraction algorithm is 110-215 times faster than the popular inverse quantile regression
(IQR) estimator of Chernozhukov and Hansen (2006) with a grid search over 100x100 points.
Another version that uses a nested root-finding algorithm, which is guaranteed to converge under a
milder condition, is 70-125 times faster than the IQR estimator. Importantly, these computational
gains do not come at a cost in terms of the finite sample performance of our procedures, which is

very similar to inverse quantile regression.
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The fixed point reformulation also provides a new insight into global identification in the IVQR
model. In particular, it allows us to study identification and stability of the algorithms (at the
population level) in the same framework. Exploiting the equivalence of global identification and
uniqueness of the fixed point, we give a new identification result and population algorithms based
on the contraction mapping theorem. We then compare our identification conditions to those of
Chernozhukov and Hansen (2006). Further, our reformulation is shown to be useful beyond setups
where the contraction mapping theorem applies as long as the parameter of interest is globally
identified. For such settings, algorithms based on root-finding methods are proposed. Finally, we
show that, by recursively nesting fixed point problems, it is always possible to recast the IVQR

estimation problem as a univariate root-finding problem, which is particularly easy to solve.

We establish consistency and asymptotic normality of the proposed estimators. In addition, we
prove validity of a bootstrap procedure for consistently estimating the limiting laws. We emphasize
that the bootstrap is particularly attractive in conjunction with our efficient estimation algorithms,
as it allows us to avoid the choice of tuning parameters inherent to estimating the asymptotic
variance based on analytic formulas. The key technical ingredient for deriving our theoretical
results is the Hadamard differentiability of the fixed point map. This result may be of independent

interest.

To illustrate the usefulness of our estimation algorithms, we revisit the analysis of the impact
of 401(k) plans on savings in Chernozhukov and Hansen (2004). Based on this application, we
perform extensive Monte Carlo simulations, which demonstrate that our estimation and inference

procedures have excellent small sample properties.

1.1. Literature. We contribute to the literature on estimation and inference based on linear IVQR
models. Chernozhukov and Hong (2003) have proposed a quasi-Bayesian approach. This approach
can accommodate multiple endogenous variables but requires careful tuning in applications, as
noted by Chernozhukov and Hansen (2013). Chernozhukov and Hansen (2006) have proposed an
inverse QR algorithm that combines grid search with convex QR problems. Because the dimension-
ality of the grid search equals the number of endogenous variables, this approach is computation-
ally feasible essentially only if the number of endogenous variables is very low. Chernozhukov and
Hansen (2008) and Jun (2008) have studied weak instrument robust inference procedures based
on the inversion of Anderson-Rubin-type tests. Chernozhukov, Hansen, and Jansson (2009) have
proposed a finite sample inference approach. Andrews and Mikusheva (2016) have developed a gen-

eral conditional inference approach and derived sufficient conditions for the IVQR model. Kaplan
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and Sun (2017) and de Castro, Galvao, Kaplan, and Liu (2018) have suggested to use smoothed
estimating equations to overcome the non-smoothness of the IVQR estimation problem, although
the non-convexity remains. More recently, Chen and Lee (2018) have proposed to reformulate
the IVQR problem as a mixed-integer quadratic programming problem which can be solved using
well-established algorithms. However, efficiently solving such a problem is still challenging even for
low-dimensional settings. By replacing the ¢2 norm by the ¢, norm, Zhu (2018) has shown that
the problem admits a reformulation as a mixed-integer linear programming problem, which can
be computed much more efficiently. In addition, Zhu (2018) has proposed a k-step approach that

allows for estimating models with multiple endogenous regressors based on large datasets.

Compared to existing literature, the main advantages of the proposed estimation algorithms are
the following. By relying on convex QR problems, our estimators are easy to implement, robust,
and computationally efficient in settings with many exogenous variables, a moderate number of
endogenous variables, and a large number of observations. In addition, by exploiting the specific
structure of the IVQR estimation problem, our estimators are tuning-free and do not require the

availability of high-level optimization routines.

Semi- and nonparametric estimation of IVQR models has been studied by Chernozhukov, Im-
bens, and Newey (2007), Horowitz and Lee (2007), Chen and Pouzo (2009), Chen and Pouzo
(2012), Gagliardini and Scaillet (2012) and Wiithrich (2017). Chernozhukov and Hansen (2013)
and Chernozhukov, Hansen, and Wiithrich (2017) have provided surveys of the IVQR model in-

cluding references to empirical applications.

Abadie, Angrist, and Imbens (2002) have proposed an alternative approach to the identification
and estimation of quantile effects with binary endogenous regressors, which builds on the local
average treatment effects framework of Imbens and Angrist (1994). Their approach has been
extended and further developed by Frandsen, Frolich, and Melly (2012), Frolich and Melly (2013),
and Belloni, Chernozhukov, Fernandez-Val, and Hansen (2017) among others. We refer to Melly
and Wiithrich (2017) for a recent review of this approach and to Wiithrich (2018) for a comparison
between this approach and the IVQR model. Identification and estimation in nonseparable models
with continuous endogenous regressors have been studied by Chesher (2003), Ma and Koenker
(2006), Lee (2007), Jun (2009), Imbens and Newey (2009), D’Haultfoeuille and Février (2015), and
Torgovitsky (2015) among others.

On a broader level, our paper contributes to the literature which proposes estimation proce-
dures that rely on decomposing computationally burdensome estimation problem into several more

tractable subproblems. This type of procedure, which we call decentralization, has been applied in
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many different contexts. Examples include the estimation of single index models with unknown link
function (Weisberg and Welsh, 1994), general maximum likelihood problems (Smyth, 1996), linear
models with high-dimensional fixed effects (e.g., Guimaraes and Portugal, 2010, and the references
therein), sample selection models (Marra and Radice, 2013), peer effects models (Arcidiacono, Fos-
ter, Goodpaster, and Kinsler, 2012), interactive fixed effects models (e.g., Chen, Fernandez-Val,
and Weidner, 2014; Moon and Weidner, 2015), and random coefficient logit demand models (Lee
and Seo, 2015). Most of these papers decompose a single estimation problem into two subproblems.
This paper explicitly considers cases in which the number of subproblems may exceed two. Our
analysis on identification, estimation, and inference can be extended beyond the IVQR model and

is undertaken in ongoing work.

1.2. Organization of the Paper. The remainder of the paper is structured as follows. Section
2 introduces the setup and the IVQR model. Section 3 shows that the IVQR estimation problem
can be decentralized into a series of (weighted) conventional QR problems. In Section 4 we intro-
duce population algorithms based on the contraction mapping theorem and root-finders. Section 5
discusses the corresponding sample algorithms. In Section 6 we establish the asymptotic normality
of our estimators and prove the validity of the bootstrap. Section 7 presents an empirical applica-
tion. In Section 8 we provide extensive simulation evidence on the finite sample properties of our

methods. Section 9 concludes. All proofs and some additional results are collected in the appendix.

2. SETUP AND MODEL

Consider a setup with a continuous outcome variable Y, a dx x 1 vector of exogenous covariates
X, adp x 1 vector of endogenous treatment variables D, and a dz x 1 vector of instruments Z. The
IVQR model is developed within the standard potential outcomes framework (e.g., Rubin, 1974).
Let {Y;} denote the (latent) potential outcomes. The object of primary interest is the conditional
quantile function of the potential outcomes, which we denote by ¢(d, x, 7). Having conditioned on
covariates X = x, by the Skorokhod representation of random variables, potential outcomes can be

represented as
Yd = q(d,:c, Ud) with Ud ~ U(O, 1).

This representation lies at the heart of the IVQR model. With this notation at hand, we state the
main conditions of the IVQR model (Chernozhukov and Hansen, 2005, Assumptions A1-A5).

Assumption 1. Given a common probability space (2, F, P), the following conditions hold jointly
with probability one:
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(1) Potential outcomes: Conditional on X = x, for each d, Yq = q(d,z,Uy), where q(d, x,T) is
strictly increasing in 7 and Ug ~ U(0, 1).

(2) Independence: Conditional on X = x, {Ug} are independent of Z.

(3) Selection: D :=6(Z, X, V) for some unknown function §(-) and random vector V.

(4) Rank invariance or Rank similarity: Conditional on X =z, Z = z,
(a) {Uq} are equal to each other; or, more generally,
(b) {Ug} are identically distributed, conditional on V.

(5) Observed variables: Observed variables consist of Y := q(D, X,Up), D, X, and Z.

We briefly discuss the most important aspects of Assumption 1 and refer the interested reader
to Chernozhukov and Hansen (2005, 2006, 2013) for more comprehensive treatments. Assumption
1.1 states the Skorohod representation of Yy and requires strict monotonicity of the potential out-
come quantile function, which rules out discrete outcomes. Assumption 1.2 imposes independence
between the potential outcomes and the instrument. Assumption 1.3 defines a general selection
mechanism. The key restriction of the IVQR model is Assumption 1.4. Rank invariance (a) re-
quires individual ranks Uy to be the same across treatment states. Rank similarity (b) weakens this
condition, allowing for random slippages of Uy away from a common level U. Finally, Assumption

1.5 summarizes the observables.

The main implication of Assumption 1 is the following conditional moment restriction (Cher-

nozhukov and Hansen, 2005, Theorem 1):

In this paper, we focus on the commonly used linear-in-parameter model for ¢(+) (e.g., Chernozhukov

and Hansen, 2006):
q(d,x,7) = 2'01(7) + d102(T) + - - + dap, 0.5(7), (2.2)

where J = dp+1, and 0(7) := (61(7)’,02(7),...,0,(7))" is the finite dimensional parameter vector of
interest. The conditional moment restriction (2.1) suggests GMM estimators based on the following

unconditional population moment conditions:

X
Up(0(1) :== Ep |(1{Y < X'01(7) 4+ D162(7) + -+ - + Dap,0,(1)} — 7) ik (2.3)
Our primary goal is to obtain an estimator of 8" in a computationally efficient and reliable

manner. We therefore focus on just-identified moment restrictions where dzy = dp, for which

the construction of an estimator is straightforward. A potential caveat of this approach is that
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estimators based on these restrictions do not achieve the pointwise (in 7) semiparametric efficiency
bound implied by the conditional moment restrictions (2.1). Appendix A provides a discussion of
overidentified GMM problems and presents a two-step approach, in which one obtains an initial
estimator of the true parameter value 0*(7) based on the just-identified moment restrictions. This

initial estimator can then be used to construct a vector of optimal instruments.

For later use, we define

Up (0(r)) = (Up1 (0(7)) ..., Up s (0(7)))

where
Upy (0()) = Ep[(1{Y < X'1(7) + Di6a(7) + -+ Dap (1)} —7) X],
Vp; (0(r)) = Ep [(1 {Y < X/91(7-) + Diby(7) + -+ DdDeJ(T)} _ 7_) Zj—l] =2

In what follows, we will often suppress the dependence on 7 to lighten-up the exposition. We then

define the true parameter value 8* as the solution to the moment conditions, i.e.,
Up(0*)=0.

The resulting GMM objective function reads

11 & / 1 Y
Qn(0)=—5 (szz (9)> Wy (0) <\/N > m (9)> : (2.4)
= =1

where m; (0) := (1{Y; < X/01 + D1;02+ --- + Dg,i0;} — 1) (Z], X!)" and Wi (0) is a positive def-
inite weighting matrix. Estimation based on (2.4) is complicated by the non-smoothness and,
most importantly, the non-convexity of @y (6). The goal of this paper is to propose a new set of

algorithms to address these challenges.

3. DECENTRALIZATION

Here, we describe the basic idea behind our decentralization estimators. To simplify the expo-
sition, we first illustrate our approach with the population problem of finding the true parameter
value 6* in the IVQR model. Our estimator then adopts the analogy principle, which will be pre-
sented in Section 5. The key insight is that the complicated nonlinear IVQR. estimation problem
can be “decentralized”, i.e., decomposed into a set of more tractable sub-problems, each of which
is solved by a “player” who best responds to other players’ actions. Specifically, we first split the
parameter vector # into .JJ subvectors #1,...,0;. We then decompose the grand estimation problem

into J subproblems. Each of the subproblems is allocated to a distinct player. For each j, player j’s
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choice variable is the j-th subvector §;. Her problem is to find the value of 6; such that a subset of
the moment restrictions is satisfied given the other players’ actions ¢_;. This reformulation allows
us to view the estimation problem as a game of complete information and to characterize 6* as the

game’s pure strategy Nash equilibrium.

We start with defining weighted population QR objective functions. For each 6 € R, let

Qp1(0) = Ep[p-(Y —X'0y— D16y —---— Dq,,0,)], (3.1)

Qp’j (9) = Ep [pT(Y — X/91 — D192 — e — DdDQJ)(Zj,l/Dj,l)] 5 ] = 2, ey J, (32)

where pr(u) = u(7 — 1{u < 0}) is the “check-function”. We assume that the model is parametrized
such that Z;/ Dy is positive for all ¢ = 1, ...,dp. Under our assumptions, we can always reparametrize

the model such that this condition is met; see Appendix B for more details.

Consider the following functions!

Li(0-1) = arg min Qp; (§1,9—1), (3.3)
91€RdX

Lj (ij) = arg [nin Qp’j (éj, 9,]') y ] = 2, ey J. (34)
QjER

Borrowing the terminology from game theory, we refer to these functions best response (BR) func-
tions. Observe that each player’s problem is a weighted QR problem, which is convex in its choice
variable. For the sample analogues of these problems, fast solution algorithms exist (Portnoy and

Koenker, 1997). Under the conditions we specify below, the BR functions satisfy

0 = Ep [(1 {YSX,Ll (0_1)—|-D,9_1}—7’) X] , (35)

0 = Bp|(1{Y < (X, D)0+ DiaLi (0-5) ) =) Zia| . G =200 (36)

where D_;_1) stacks as a vector all endogenous variables except D;_1. Note that these are the

unconditional IVQR moment conditions imposed on the true parameter value 8*. Hence, 8* satisfies

0: = Ly(07,), j=1,...,, (3.7)

which implies that 6* is a fixed point of the BR-maps (i.e. a Nash equilibrium of the game).

Hemma 1 below ensures that these functions are well-defined on suitable domains.
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We say that the IVQR estimation problem admits decentralization if the BR functions L;, j =
1,...,J, are well-defined over domains for which the moment conditions can be evaluated.” To

ensure decentralization, we make the following assumption.

Assumption 2. The following conditions hold.

(1) © is a closed rectangle in RY. 0% is in the interior of ©.

(2) E[|Z))*) < 00 fort =1,...,dp. E[|Xg|?] < oo forallk=1,...,dx. Foreach{=1,...,dp,
Dy has a compact support;

(3) The conditional cdf y — Fy|p, x,z(y) is continuously differentiable for all y € R a.s. The
conditional density fy|p, z x is uniformly bounded a.s.;

(4) For any 0 € ©, the matrices
Ep|fy|p,x,z (D'0-1 4+ X'01) X X']
and
Ep|fy\p,x,z (D'0_1+ X'01) Dy Z;], €=1,....dp,

are positive definite.

For each j, let ©_; C R?-i denote the parameter space for 6_;. Assumption 2.1 ensures that
© is compact. This assumption also ensures that each ©_; is also a closed rectangle, which we
use to show that L; is well-defined on a suitable domain. Assumption 2.2 and Assumption 2.3
impose standard regularity conditions on the conditional density and moments of the variables in
the model. We assume D, has a compact support, which allows us to always reparameterize the
model so that the objective function in (3.2) is well-defined and convex (cf. Appendix B). The first
part of Assumption 2.4 is a standard full rank condition which is a natural extension of the local
full rank condition required for local identification and decentralization (cf. Assumption 4 in the
appendix). For the second part of Assumption 2.4, it suffices that the model is parametrized such

that, for each ¢ € {1,...,dp}, D¢Z; (and Zy/Dy) is positive with probability 1.

For each j, define
R_j:={0_;€0_;:¥p;(0) =0, for some 6 = (6;,0_;) € O}. (3.8)

2In Appendix C.2, we also provide weaker conditions under which the decentralization holds on a neighborhood
of 0. We call such a result local decentralization, which is sufficient for analyzing the (local) asymptotic behavior of

the estimator.
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This is the set of subvectors §_; for which one can find 6; € ©; such that § = (0;,0_;)" solve the

Jj-th moment restriction. We take this set as the domain of player j’s best response map Lj;.

The following lemma establishes that the IVQR model admits decentralization.

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then, there exist maps L; : R_; — R%,j =
1,...,J such that, for j=1,...,J,

\I’p’j (Lj(G_j),G_j) =0, forall 9_j S R_j. (39)

Further, L; is continuously differentiable on the interior of R_; for all j =1,...,J.

We now introduce maps that represent all players’ (joint) best responses. We consider two basic
choices of such maps; one represents simultaneous responses, and the other represents sequential
responses. In what follows, for any subset a C {1,...,J}, let 6_, denote the subvector of 6 that
stacks the components of 6;’s for all j ¢ a. If a is a singleton (i.e. a = {;j} for some j), we simply
write 6_;. For each j and a C {1,...,J} \ {j}, let m—q : O = Tlpeqr, 1\ ((j1ua) Ok be the
coordinate projection of 6_; to a further subvector that stacks all components of 6_; except for

those of 0, with k € a.

Let Dg :={0e€O©:m_j0c R, j=1,...,J}. Let K : Dg — R% be a map defined by

K1(0) Li1(0-1)
K(9) = : = : . (3.10)
K;(0) Ly(0-y)
This can be interpreted as the players’ simultaneous best responses to the initial strategy (61, ...,60).

With one endogenous variable, this map simplifies to
K(0) = : (3.11)

Here, K maps 6 = (61,62) to a new parameter value through the simultaneous best responses of

players 1 and 2.
Similarly, let Dy € R and let M : Dy — R be a map such that

M;(6_4) Ly (L1(6-1), 9—{1,2})

M) = M2(:9—1) _ L3(L1(9—1)7Lz(Ll(Q:—ﬂae—{Lz})a9—{1,2,3}) | (3.12)

May, (6-1) Ly (L1(0-1), La(L1(0-1),0_11,93), - -)
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which can be interpreted as the players’ sequential responses (first by Player 1, then Player 2, etc.)
to an initial strategy 0_; = (o, ...,07).> Note that the argument of M is not the entire parameter
vector. Rather, it is a subvector of 6 consisting of the coefficients on the endogenous variables. In
order to find a fixed point, this feature is particularly attractive when the number of endogenous

variables is small. With one endogenous variable (i.e. #3 € R is a scalar), the map simplifies to
M(02) = L2 (L1 (62)) ,

which is a univariate function whose fixed point is often straightforward to compute.

Define
Rl = {971 € O0_4 Z\I’p,1(91,9,1) =0,
\I’p’g(91,92,7'r_{172}9,1) =0, 3(61,602) € ©1 x @2}. (3.13)

This is the set on which the map #_1 — Lo (L1 (0-1) ,7r_{1’2}¢9,1), the first component of M,
is well-defined. We then recursively define Rj for j = 2,...,dp in a similar manner. A precise

definition of these sets is given in Appendix C. Now define

dp
Dy =) Rj = Ray, (3.14)
j=1

where the second equality follows because RdD turns out to be a subset of Rj for all j < dp. The

following corollary ensures that K and M are well-defined on Dk and Dj; respectively.

Corollary 1. The maps K : Dg — R®* and M : Dy — R exist and are continuously differen-

tiable on the interior of their domains.

The key insight that we exploit is that, by construction of the BR maps, the problem of finding
a solution to Up(#) = 0 is equivalent to the problem of finding a fixed-point of K (or M). The

following proposition states the formal result.

Proposition 1. Suppose Assumptions 1 and 2 hold. Then,

(i) Yp(0*) =0 if and only if K (6*) = 6*
(it) Wp(6*) =0 if and only if M (0*,) = 6*, and 6] = L1(6* ).

In view of Proposition 1, the original IVQR estimation problem can be reformulated as the

problem of finding the fixed point of K (or M). This reformulation naturally leads to discrete

30ne may define M by changing the order of responses as well. For theoretical analysis, it suffices to consider

only one of them. Once the fixed point 6% ; of M is found, one may also obtain 07 using 07 = L1(0 ).
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dynamical systems associated with these maps, which in turn provides straightforward iterative

algorithms for computing 6*.

(1) SIMULTANEOUS DYNAMICAL SYSTEM:*

oo+ = K (99) 5 =0.1.2,.... 00 given, -
(2) SEQUENTIAL DYNAMICAL SYSTEM:’

oY = (6%)), s=0,1,2,..., 6] given. (3.16)

where 0" = L, (64).

These discrete dynamical systems will be the starting point for our estimation algorithms.°

4. POPULATION ALGORITHMS

In this section, we explore the implications of the fixed point reformulation for constructing

population-level algorithms for computing fixed points.

4.1. Contraction-based Algorithms. We first consider conditions under which K and M are
contraction mappings. They ensure that the discrete dynamical systems induced by K and M
are convergent to unique fixed points. Moreover, in view of Proposition 1, (point) identification is
equivalent to the uniqueness of the fixed point of K (or M). Therefore, the conditions we provide
below are also sufficient for the point identification of 8*. We will discuss the relationship between

our conditions and existing ones in the next section.

For any vector-valued map E, let Jg(x) denote its Jacobian matrix evaluated at its argument x.
We provide conditions in terms of the Jacobian matrices of K and M, which are well-defined by

Corollary 1.

Assumption 3. There exist open strictly conver sets [?K C Dg and DM C Dys such that

(1) Tk (0) || < X for some A < 1 for all § € D;
(2) |Jar (0-1) || < X for some A < 1 for all 6_; € Dyy.

4This algorithm is akin to the Jacobi computational procedure.

5Smy‘ch (1996) considers this type of algorithm for J = 2 and calls it “zigzag” algorithm. It is akin to a Gauss-Seidel

procedure.

6These discrete dynamical systems can also be viewed as learning dynamics in a game (Li and Basar, 1987,

Fudenberg and Levine, 2007).
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Under this additional assumption, the iterative algorithms are guaranteed to converge to the

fixed point. We summarize this result below.

Proposition 2. Suppose Assumptions 1, 2, and 3 hold. Then,

(i) K is a contraction on the closure of Dx. The fized point 8* € cl(Dx) of K is unique. For
any ) € Dy, the sequence {8()}2 defined in (3.15) satisfies 005) — % as s — oo.
(i) M is a contraction on the closure of Dyr. The fized point 6%, € cl(Dys) of M is unique.

For any 0@ € Dy, the sequence {0&?};";0 defined in (3.16) satisfies 99{ — 0%, as s — 0.

In the case of a single endogenous variable, the Jacobian matrices of K and M are given by

0 Jr,(602)
JK(G) = ! y and JM(GQ) = JL2 (L1(92)) JLl (92) s
Jr,(01) 0
where
—1
Jr_; (05) = — (8\11137]-(/9]',9_]') ) 3\I’p,,j(9/j,¢9_j) , for j=1,2.
89*]’ 0=(0;,L—;(6;)) 89]' 0=(0;,L—;(0;))

One may therefore check the high-level condition through the Jacobians of the original moment
restrictions. In Appendix C.2.1, we illustrate a simple primitive condition for the local version of

Assumption 3.

4.2. Connections to Identification Conditions. In view of Proposition 1, identification of 6*
is equivalent to uniqueness of the fixed points of K and M, which is ensured by Proposition 2.

Here, we discuss how the conditions required by Proposition 2 relate to the ones in the literature.

We first start with local identification. The parameter vector 6 is said to be locally identified
if there is a neighborhood N of #* such that Wp(6) # 0 for all § # 6* in the neighborhood. Local
identification in the IVQR model follows from standard results (e.g., Rothenberg, 1971; Chen, Cher-
nozhukov, Lee, and Newey, 2014). For example, if ¥p(0) is differentiable, Chen, Chernozhukov,
Lee, and Newey (2014, Section 2.1) show that full rank of Jy,(6) at 6* is sufficient for local

identification.

It is interesting to compare this full rank condition to Assumption 5.1 in the appendix, which is
a local version of Assumption 3.1. Assumption 5.1 requires that p (Jx (6*) < 1, where p(A) denotes
the spectral radius of a square matrix A. We highlight the connection in the case with a single

endogenous variable. Full rank of Jy,(0*) is equivalent to det (Jy,(0*)) # 0. Observe that, for
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any 6,

o o0 0w 00!
det (Jy,(0)) = det P1(61,62)/06, OV pa(61,62)/96;
OUpa(61,0) /06 DV py(61,9:)/06)
e U p1(01,05)/00, 0 14, —J1,(62)
0 OV ps(61,02)/00 —J,(01) 14,
O p 1 (01,05)/00 0 I T, (0
C et p1(01,62)/00] det dy L, (02)
0 DU p5(01,0) /90, —Jp,(01) Iy

If OV p;(6)/00}|9=¢~ is invertible for j = 1,2 (which is true under Assumption 2.4), Jy,(0%) is full

rank if and only if

Lo, —J1,(03)

= det([d — JK(H*)) (4.1)
—JL,(07) Mo,

That is, it requires that none of the eigenvalues has modulus one. Therefore, Assumption 5.1 is
sufficient but not necessary for condition (4.1) to hold. Specifically, Assumption 5.1 requires all
eigenvalues of Jx (6*) to lie strictly within the unit circle, while local identification only requires
all eigenvalues not to be on the unit circle. In terms of the dynamical systems induced by K, the
former ensures that the dynamical system has a unique asymptotically stable fized point, while the
latter ensures that the system has a unique hyperbolic fized point, which is a more general class of
fixed points (e.g. Galor, 2007).” Under the former condition, iteratively applying the contraction
map induces convergence, while the latter generally requires a root finding method to obtain the

fixed point.

Now we turn to global identification and compare Proposition 2 to the global identification result

in Chernozhukov and Hansen (2006).

Lemma 2 (Theorem 2 in Chernozhukov and Hansen (2006)). Suppose that Assumption 1 holds.
Moreover, suppose that (i) © is compact and convex and 0 is in the interior of ©; (ii) fy|p z x is
uniformly bounded a.s.; (iii) Jy(0) is continuous and has full rank uniformly over ©; and (iv) the
image of © under the mapping 0 — V() is simply connected. Then, 6% uniquely solves W (0) = 0

over ©.

"The argument above also applies to settings with multiple endogenous variables. A similar result can also be

shown for M.
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Under Conditions (i)—(iv), which are substantially stronger than the local identification condi-
tions discussed above, the result in Lemma 2 follows from an application of Hadamard’s global

univalence theorem (e.g. Theorem 1.8 in Ambrosetti and Prodi (1995)).

Comparing Lemma 2 to Proposition 2, we can see that the result in Lemma 2 establishes iden-
tification over the whole parameter space ©, while Proposition 2 establishes identification over
the sets D and Dy, which will generally be subsets of ©. Regarding the underlying assump-
tions, Conditions (i) and (ii) in Lemma 2 correspond to our Assumptions 2.1 and 2.3. Moreover,
our Assumption 2.3 constitutes an easy-to-interpret sufficient condition for continuity of Jy, as
required in Condition (iii). To apply Hadamard’s global univalence theorem, Chernozhukov and
Hansen (2006) assume the simple connectedness of the image of ¥ (Condition (iv)). By contrast,
we use a different univalence theorem by Gale and Nikaido (1965) (applied to the map = defined in
(D.3) that arises from each subsystem), which does not require further conditions. However, when
establishing global identification based on the contraction mapping theorem, we need to impose
an additional condition on the Jacobian (Assumption 3). In sum, our conditions are somewhat
stronger in terms of restrictions on the Jacobian, but they are relatively easy to check and allow
us to dispense with an abstract condition (simple connectedness of the image of a certain map) to

apply a global univalence theorem.

4.3. Root-Finding Algorithms and Nesting. Note that Assumption 3 is a sufficient condition
for the uniqueness of the fixed point and the convergence of the contraction-based algorithm. Even
in cases this assumption fails to hold, one may still identify 6* and design an algorithm that is able
to find it under weaker conditions on the Jacobian. This is the case under the assumptions in the

general (global) identification result of Chernozhukov and Hansen (2006); see Lemma 2.

Note that, for the simultaneous dynamical system, 6* solves
(I K)(9") =0, (4.2)
where I; is the identity map. Similarly, in the sequential dynamical system, 6* ; solves
(Lap, — M)(0%1) = 0. (4.3)

Therefore, standard root-finding algorithms can be used to compute the fixed point.

For implementing root-finding algorithms, we find that reducing the dimension of the fixed point
problem is often helpful. Toward this end, we briefly discuss another class of dynamical systems
and associated population algorithms which can be used for the purpose of dimension reduction.

Namely, with more than two players, one can construct nested dynamical systems, which induce



16 KAIDO AND WUTHRICH

nested fixed point algorithms. Nesting is useful as it allows transforming any setup with more than

two players into a two-player system.

To fix ideas, consider the case of three players (J = 3). Fix player 3’s action 03 € O3 C R
and consider the associated “sub-game” between players 1 and 2. To describe the subgame, define

M1,2|3(' | 03) : ©3 — B4 pointwise by
M, 23(02 | 03) := Lo (L1 (02,03),03) . (4.4)

This map gives the the sequential best responses of players 1 and 2 while taking player 3’s strategy
given. Define the fixed point Lis : O3 — ©1 x O of the subgame by

0u(6s)\ _ [ L1(82(65),65) (4.5)

L12(93) = _
02(03) M 93(02(03) | 03).

This map then defines a new “best response” map. Here, given 63, the players in the subgame (i.e.
players 1 and 2) collectively respond by choosing the Nash equilibrium of the subgame. The overall

dynamical system induced by the nested decentralization is then given by
Mj3(03) = L3 (L12(03)) - (4.6)

Hence, we can interpret the nested algorithm as a two-player dynamical system where one player
solves an internal fixed point problem. This nesting procedure is generic and can be extended
to more than three players by sequentially adding additional layers of nesting.® It follows that
any decentralized estimation problem with more than two players can be reformulated as a nested
dynamical system with two players: player J and all others —J. The resulting dynamical system
Mj(0y) = Lj(L-;(0y)) is particularly useful when M is not necessarily a contraction map but 67
is a scalar (which is the case in our IVQR model). As we see below, its fixed point can efficiently

be computed using univariate root-finding algorithms.

5. SAMPLE ESTIMATION ALGORITHMS

Let {(Y;, D}, X/, Zz’)}fil be a sample generated from the IVQR model. Our estimators are con-

structed using the analogy principle. For this, define the sample payoff functions for the players

8In the current example, consider adding player 4 and letting players 1-3 best respond by returning the fixed point
of the subgame through Ms given 64. One can repeat this for additional players. This procedure can also be applied

to the simultaneous dynamical system induced by K.
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as
| X

Qna(0) = N Z,Or(yi — X0y — Dy 0 — -+ — Dg,, :07), (5.1)
i—1
| X

Qn,j 0) := NZpT(Y; —X{Hl — Dy 09 —--- _DdD,ieJ)(Zj—l,i/Dj—l,i)a ji=2,....,J. (5.2)
=1

The sample BR functions are defined as

Li(0-1) = arg min Qn1(61,0-1), (5.3)
916Rd1
Li(0_;) = argminQn;(0;,0_;), j=2,...,J. (5.4)
HjER
Assuming that the model is parametrized in such a way that Zy;/D;;, { = 1,...,dp, is positive,

these are convex (weighted) QR problems for which fast solution algorithms exist. In our empirical
applications and simulations, we use the R-package quantreg to estimate the QRs (Koenker, 2018).
For example, Lo (f_2) can be computed by running a QR with weights Z1;/D1; in which one regresses

Y; — X6 — D303 —--- — Dy, ;07 on Dy; without a constant.

Remark 5.1. The proposed estimators rely on decentralizing the original non-smooth and non-
convex IVQR GMM problem into a series of convex QR problems. The quality and the computa-
tional performance of our procedures therefore crucially depends on the choice of the underlying QR
estimation approach, which deserves some further discussion. The interested reader is referred to
Koenker (2017) for an excellent overview over the computational aspects of quantile regression. In
this paper, we use the Barrodale and Roberts algorithm which is implemented as the default in the
quantreg package and described in detail in Koenker and D’Orey (1987, 1994). This algorithm is
computationally tractable for problems up several thousand observations. For larger problems, we
recommend using interior point methods, potentially after preprocessing; see Portnoy and Koenker
(1997) for a detailed description. These methods are conveniently implemented in the quantreg
package. For very large problems, one can resort to first-order gradient descent methods, which are
amenable to modern parallelized computation; see Section 5.5 in Koenker (2017) for an excellent

introduction and simulation evidence on the performance of such methods.

We construct estimation algorithms by mimicking the population algorithms. Let K and M

denote sample analogs of K and M:

K (0) = : (5.5)
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and
M;(6-1) Ly (il(e_l),a,m})
. Mo (6_ Ly (L1(0-1), Lo(L1(6_1),6_ .0
Wy | MO0 | 3(ﬂ1>x1pn aabga) | o
Mgy, (0-1) Ly (il(il)’ Lo(Ly(0-1),0_(1.2}), )

where 6, = L; (f-1). These maps induce sample analogs of the dynamical systems in Section 3.

(1) SAMPLE SIMULTANEOUS DYNAMICAL SYSTEM:
P+l — | <0<5)) L 5=0,1,2,..., 09 given. (5.7)

(2) SAMPLE SEQUENTIAL DYNAMICAL SYSTEM:

091“) =M (9(_8}) ,s=0,1,2,..., 0(0% given, (5.8)

where 9%‘9“) =1, (0&?)

5.1. Contraction-based Algorithms. The first set of algorithms exploits that, under Assump-
tion 3, K and M are contraction mappings with probability approaching one. In this case, we
iterate the dynamical systems (5.7) or (5.8) until [|§() — K () || (or Hﬁg) — M(Q(_‘?)H) is within
a numerical tolerance ey.” This iterative algorithm is known to converge at least linearly. The

approximate sample fixed point 0O that meets the convergence criterion then serves as an estimator

for 0.

5.2. Algorithms based on Root-Finders and Optimizers. As discussed in Section 4.3, for
root-finding algorithms, the sequential dynamical system (induced by M) is particularly useful
because it leads to a substantial dimension reduction. The original (dx + dp)-dimensional GMM
estimation problem can be reduced to a dp-dimensional root-finding problem. An estimator On of

0* can be constructed as an approximate fixed point to the sample problem:
101 = N1 (O 1) || < e, (5.9)

where HAN,l = ﬁl (éN,—1> and ey is a numerical tolerance. This problem can be solved efficiently
using well-established root-finding algorithms since M is easy to evaluate as the composition of
standard QRs. When dp = 1, one may use Brent’s method (Brent, 1971) whose convergence is
superlinear. When dp > 1, one could apply the Newton-Raphson method, which achieves quadratic

9n the next section, we require ey = o(N71/2)7 which ensures that the numerical error does not affect the

asymptotic distribution.
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convergence but requires an estimate or a finite difference approximation of the derivative. The
corresponding approximation error may affect the performance. Alternatively, on can compute the
fixed point by minimizing || M () — 0||2. The potential issue with this approach is that translating
the root-finding problem into a minimization problem can lead to local minima in the objective

function. Therefore, it is important to use global optimization strategies.

As described in Section 4.3, nesting can be used to reduce the dimensionality even further. In
particular, the problem can be reformulated as a one-dimensional fixed point problem, which can
be solved efficiently using existing methods. We found that Brent’s method works very well in our

context.

6. ASYMPTOTIC THEORY

6.1. Estimators. We define an estimator 0y of 6* as an approximate fixed point of K in the

following sense:
10n = K ()| < Jnf [|6" K (8] +op(N~2). (6.1)

In what follows, we call 6 the fized point estimator or 6*. Alternatively, using M, one may define
an estimator éM_l of 0_41 as
10,1 = M(On,-1)] < , mf 67, — M(0-,) + 0p(N72). (6.2)
1 —1

An estimator of ] can be constructed by setting
On1 = L1(On_1). (6.3)

Under the conditions we introduce below, the definitions in (6.1) and (6.2)—(6.3) are asymptotically
equivalent; see Lemma 5 in the appendix for a proof. Therefore, we mostly focus on the definition
based on K below. K (or M ) is defined similarly for the nested dynamical system in which one

player solves a fixed-point problem in a subgame.

Consistency and parametric convergence rates of fn can be established using existing results.
When K (or M ) is asymptotically a contraction map, one may construct an estimator Oy satisfying
(6.1) using the contraction algorithm in Section 5.1 with tolerance ey = o(N~/2). One may
then apply the result of Dominitz and Sherman (2005) to obtain the root-N consistency of the

estimator.'” For completeness, this result is summarized in Appendix G.

1OSatisfying eN = 0(N71/2) requires the number of iterations to increase as the sample size tends to infinity, which

in turn satisfies requirement (ii) in Theorem 2 (Dominitz and Sherman, 2005).
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More generally, if K is not guaranteed to be a contraction, one may use root-finding algorithms
that solve @ — K(6) = 0 or 0_; — M(A_;) = 0 up to approximation errors of o(N~1/2). The
root-IN consistency of Oy then follows from the standard argument for extremum estimators, in
which we take Ly (0) = [|§ — K(0)]| as a criterion function.'! Since these results are standard, we
omit details and focus below on the asymptotic distribution and bootstrap validity of the fixed
point estimators. Our contributions are two-fold. First, we establish the asymptotic distribution of
the fixed point estimator without assuming that K or M is an asymptotic contraction map, which
therefore allows the practitioner to conduct inference using the estimator based on the general root-
finding algorithm and complements the result of Dominitz and Sherman (2005). Second, to our
knowledge, the bootstrap validity of the fixed point estimators is new. These results are established
by showing that, under regularity conditions, the population fixed point is Hadamard-differentiable
and hence admits the use of the functional j-method, which may be of independent theoretical

interest.

Remark 6.1. To establish the asymptotic properties, one could try to reformulate our estimator
as an estimator that approximately solves a GMM problem. Here, instead of relying on another
reformulation, which would require establishing a sample analog version of Proposition 1, we develop
and directly apply an asymptotic theory for fixed point estimators. The theory itself contains
generic results (Theorem 1 and Lemmas 6-7) surrounding the Hadamard-differentiability of fixed

points, which can potentially be used to analyze decentralized estimators outside the IVQR class.

6.2. Asymptotic Theory and Bootstrap Validity. The following theorem gives the limiting
distribution of our estimator. For each w = (y,d’,2’,2') and 6 € O, let f(w;0) € R0 be a

vector whose sub-vectors are given by

fiw;0) = (H{y <d'0_1+2'01} — )z,

fi(w;0) = (1{y < d0_1+2'01} — T)Zj—1, J=2,...,4,

and let g(w;0) = (g1(w;8),...,gs(w;0)) be a vector such that

0?2 _ .
gj(w; 0) = Wvaj(Lj(g—j)79—j) Yfi(wi Li(0-5),0-5), j=1,...,J. (6.4)
J

UThe key conditions for these results, uniform convergence (in probability) of K and its stochastic equicontinuity,

are established in Lemma 10.
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Theorem 1. Suppose that Assumptions 1 and 2 hold. Let {Wz}f\il be an i.i.d. sample generated
from the IVQR model, where W; = (Y;, D}, X, Z!). Then,

VN(by —6%) 5 N(0,V) (6.5)
with
V= (14— Jx(67) E[W(O" )W () (1a — Jx(6%) 7", (6.6)

where W is a tight Gaussian process in £°(0)% with the covariance kernel

Cov(W(0),W(0)) = Ep[(g(W;0) — Eplg(W;0)])(g(w; 0) — Ep[g(w;0)])]. (6.7)

To conduct inference on 6*, one may employ a natural bootstrap procedure. For this, use in
(5.5) and (6.1) the bootstrap sample instead of the original sample to define the bootstrap analogs

K* and é}*\, of K and fy. In practice, the bootstrap can be implemented using the following steps.

(1) Compute the fixed point estimator 6y using the original sample.

(2) Draw a bootstrap sample {W;}¥ | randomly with replacement from Py. Use the simulta-
neous (or sequential) dynamical system based on K* (or M*) combined with a contraction
or root-finding algorithm to compute é}‘v

(3) Repeat Step 2 across bootstrap replications b =1,..., B. Let

B
Fa(z) = Zl{\/ﬁ(éjv’b—éN) §33}, z R (6.8)

>
Il
-

Use Fp as an approximation to the sampling distribution of the root v N (é N —0%).

We would like to emphasize that the bootstrap is particularly attractive in conjunction with our
new and computationally efficient estimation algorithms. By contrast, directly bootstrapping for
instance the IQR estimator of Chernozhukov and Hansen (2006) is computationally very costly.
Alternative methods (either an asymptotic approximation or a score-based bootstrap) require esti-
mation of the influence function, which involves nonparametric estimation of a certain conditional
density. Directly bootstrapping our fixed point estimators avoids the use of any smoothing param-

eter.'?

12The use of the bootstrap here is for consistently estimating the law of the estimator. Whether one may obtain
higher-order refinements through a version of the bootstrap, e.g., the m out of n bootstrap with extrapolation (Sakov

and Bickel, 2000), is an interesting question which we leave for future research.
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The following theorem establishes the consistency of the bootstrap procedure. For this, let =
denote the weak convergence of the bootstrap law in outer probability, conditional on the sample

path {W;}2,.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Let {VVZ}Z]\;1 be an i.1.d. sample generated
from the IVQR model. Then,

VN(@% — bx) % N0, V),

where V' is as in (6.6).

7. EMPIRICAL EXAMPLE

In this section, we illustrate the proposed estimators by reanalyzing the effect of 401(k) plans on
savings behavior as in Chernozhukov and Hansen (2004). This empirical example constitutes the ba-
sis for our Monte Carlo simulations in Section 8. As explained by Chernozhukov and Hansen (2004),
401(k) plans are tax-deferred savings options that allow deducting contributions from taxable in-
come and accruing tax-free interest. These plans are provided by employers and were introduced in
the United States in the early 1980s to increase individual savings. To estimate the effect of 401 (k)
plans (D) on accumulated assets (Y) on has to deal with the potential endogeneity of the actual
participation status. Chernozhukov and Hansen (2004) propose an instrumental variables approach
to overcome this problem. They use 401(k) eligibility as an instrument (Z) for the participation in
401(k) plans. The argument behind this strategy, which is due to Poterba, Venti, and Wise (1994,
1995, 1998) and Benjamin (2003), is that eligibility is exogenous after conditioning on income and
other observable factors. We use the same identification strategy here but note that there are also
papers which argue that 401(k) eligibility is not conditionally exogenous (e.g., Engen, Gale, and
Scholz, 1996).

We use the same dataset as in Chernozhukov and Hansen (2004). The dataset contains infor-
mation about 9913 observations from a sample of households from the 1991 Survey of Income and
Program Participation.'® We refer to Chernozhukov and Hansen (2004) for more information about
the data and to their Tables 1 and 2 for descriptive statistics. Here we focus on net financial assets

as our outcome of interest.'*

13The dataset analyzed by Chernozhukov and Hansen (2004) has 9,915 observations. Here we delete the two
observations with negative income.

14Chernozhukov and Hansen (2004) also consider total wealth and net non-financial assets.
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We consider the following linear model for the conditional potential outcome quantiles
q(D,X,7) = D(1)+ X'0:(7). (7.1)

The vector of covariates X includes seven dummies for income categories, five dummies for age
categories, family size, four dummies for education categories, indicators for marital status indica-
tor, two-earner status, defined benefit pension status, individual retirement account participation
status and homeownership, and a constant. Because P(D = 0) > 0, we re-parametrize the model

by replacing D by D* = D + 1 to ensure that Z/D* is well-defined and positive.

We found that, in this empirical setting (and simulations based on it), contraction algorithms
based on K can be rather sensitive to the choice of starting values. We therefore focus on algorithms
based on M. Figure 1 graphically illustrates our fixed point algorithms. It displays M at three
different quantile levels 7 € {0.25,0.50,0.75}. Our theoretical results show that, under appropriate
conditions, the intersection between M and the 45-degree line provides an estimate of 0. Figure
1 further provides a straightforward graphical way to check the validity of the sample analog of
Assumption 3. We can see that the sample analog of Jy; (i.e. the slope of M) is smaller than one.
This suggests that the contraction-based sequential algorithm converges at all three quantile levels,

which is indeed what we find.
[Figure 1 about here.]

We consider two different algorithms based on M: a contraction algorithm and a root-finding
algorithm based on Brent’s method implemented by the R-package uniroot. We compare our
estimators to the IQR estimator of Chernozhukov and Hansen (2006) with 500 grid points which

provides a slow but very robust benchmark.

Figure 2 displays the estimates of 02(7) for 7 € {0.15,0.20,...,0.85}. We can see that all
estimation algorithms yield very similar results. We also note that the contraction-based algorithm

converges for all quantile levels considered.
[Figure 2 about here.]

Figures 3 depicts pointwise 95% confidence intervals for the proposed estimators obtained using
on the empirical bootstrap described in Section 6.2 with 500 replications. We can see that the
resulting confidence intervals are very similar for both algorithms and do not include zero at all

quantile levels considered.

[Figure 3 about here.]
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8. SIMULATION STUDY

In this section, we assess and compare the finite sample performance of our estimation algorithms.

We first discuss the competing algorithms and then introduce the DGPs.

8.1. Estimation Algorithms. In this section we assess and compare the performance of several
different algorithms all of which are based on the dynamical system M. We do not explore con-
traction algorithms based on K because we found them to be less robust than the corresponding
algorithms based on M and somewhat sensitive to the choice of starting values. For the root-finding
algorithms, using K will typically be less attractive than using M because the dimensionality of

the root-finding problem is much larger when using K (dp + dx) than when using M (dp).

For the models with one endogenous variable, we consider a contraction algorithm and a root-
finding algorithm based on Brent’s method. For models with two endogenous variables, we analyze
a contraction algorithm, a root-finding algorithm implemented as a minimization problem based
on simulated annealing (SA), and a nested root-finding algorithm based on Brent’s method.'® For
all estimators, we use two-stage least squares estimates as starting values. We compare the results
of our algorithms to those obtained from IQR, which serves as a slow but very robust benchmark.
We use 500 (one endogenous variable) and 1600 (two endogenous variables) grid points for IQR.'0

Table 1 presents more details about the algorithms.

[Table 1 about here.]

8.2. An Application-Based DGP. Here we consider DGPs which are based on the empirical
application of Section 7.7 We focus on a simplified setting with only two covariates: income
and age. The covariates are drawn from their joint empirical distribution. The instrument Z; is
generated as Bernoulli (Z), where Z is the mean of the instrument in the empirical application.
We then generate the endogenous variable as D; = Z; - 1{0.6 - V; < U;} , where U; ~ Uniform(0, 1)
and V; ~ Uniform(0, 1) are independent disturbances. The DGP for D; is chosen to roughly match

15We have also explored algorithms based on Newton-Raphson-type root-finders. These algorithms are, in theory,
up to an order of magnitude faster than the contraction algorithm and the nested algorithm, but, unlike the other
algorithms considered here, require an approximation to the Jacobian and are not very robust to the choice of starting

values. We therefore do not report the results here.
16We note that one could of course always improve the performance of IQR by increasing the number of grid
points. However, as we document below, IQR becomes computationally prohibitive in this case.

17The construction of our DGPs is inspired by the construction of the application-based DGPs in Kaplan and Sun
(2017).
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the joint empirical distribution of (D;, Z;). The outcome variable Y; is generated as
Y; = X!61(U;) + Dibo(Uy) + G~H(U,). (8.1)

The coefficient 0 (U;) is constant and equal to the IQR median estimate in the empirical application.
02(U;) = 5000 + U; - 10000 is chosen to match the increasing shape of the estimated conditional
quantile treatment effects in Figure 2. G~!() is the quantile function of a re-centered Gamma
distribution, estimated to match the distribution of the IQR residuals at the median. To investi-
gate the performance of our procedure with more than one endogenous variable, we add a second

endogenous regressor:
Y; = X[0,(U;) + D;0o(U;) + Doi03(U;) + G~ HUy), (8.2)
where we set 05(U;) = 10000. The second endogenous variable is generated as
Dai = 0.8+ Z; +0.2- 71 (U;)

and the second instrument is generated as Zy; ~ N(0,1). We set N = 9913 as in the empirical

application.

First, we investigate the finite sample bias and root mean squared error (RMSE) of the different
methods. Tables 2 and 3 present the results. With one endogenous regressor, all three methods
perform well and exhibit very a similar bias and RMSE. Turning to the results with two endogenous
regressors, we can see that the nested algorithm exhibits the best overall performance, while the
performance of our other algorithms is only slightly worse. The finite sample properties of the

proposed algorithms are comparable to IQR.
[Table 2 about here.]
[Table 3 about here.]

Next, we analyze the finite sample properties of our bootstrap inference procedure. Table 4
shows the empirical coverage probabilities for the contraction-based algorithm and the root-finding
algorithm based on Brent’s method. Both methods exhibit coverage rates which are very close to

the respective nominal level.
[Table 4 about here.]

Finally, we investigate the computational performance of the different procedures. Tables 5 and
6 show the average computation time (in seconds) for estimating the model with one and two
endogenous variables for different sample sizes. We compare our procedures to the IQR algorithm

with a grid search over 500 points (one endogenous regressor) and 100x 100 points (two endogenous
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regressors). Note that we choose a higher (and arguably more practically relevant) number of grid
points for the model with two endogenous regressors than in the simulations.'® All computations
were carried out on a standard desktop computer with a 3.2 GHz Intel Core 15 processor and 8GB

RAM.

With one endogenous regressor, both of our algorithms are computationally much more efficient
than IQR. Specifically, the root-finding algorithm based on Brent’s method is about 10 to 30 times
as fast as IQR, and the contraction algorithm is 1.5 to 12 times as fast. Among our algorithms, the
root-finding method is almost twice as fast as the contraction-based iterative algorithm. However,
it is important to note that the computational speed of the contraction algorithm depends on |j Ml
which is rather close to one in this application (cf. Figure 1). This implies that the contraction

algorithm will be rather slow here and can be expected to be faster in other applications.

The computational gain of our algorithms becomes more pronounced with two endogenous vari-
ables. Looking at the results in Table 6, IQR’s average computation times are around two orders
of magnitude slower than those of our procedures. Specifically, the nested root-finding algorithm
is 70 to 125 times as fast as the IQR, while the contraction algorithm is 110 to 215 times as fast.
This is as expected since, due to the use of grids, IQR’s computational cost increases exponentially
as the number of endogenous variables increases.'” Among our algorithms, the contraction algo-
rithm is almost twice as fast as the nested algorithm. However, we would like to emphasize that
both of these procedures are computationally very efficient even for large samples. By contrast,
the minimization-based algorithm based on SA is about an order of magnitude slower that the

contraction algorithm and the nested algorithm.
[Table 5 about here.]

[Table 6 about here.]

18We found that using the same number of grid points for IQR in the simulations reported in Tables 2-4 was

computationally prohibitive.

Y90ur implementation of IQR with two endogenous variables is inherently slower than the implementation with
one endogenous variable, even when the number of grid points is the same. First, there is an additional covariate in
the underlying QRs (the second instrument). Second, with one endogenous variable, we choose the grid value that
minimizes the absolute value of the coefficient on the instrument. By contrast, with two endogenous regressors, we
choose the grid point which minimizes a quadratic form based on the inverse of the estimated QR variance covariance
matrix as suggested in Chernozhukov, Hansen, and Withrich (2017), which requires an additional computational

step.
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8.3. Additional Simulations. This section presents some additional simulation evidence based

on the following location-scale shift model:
Yi =71 + 72X +v3D1; +v4D2i + (75 + v6D1i + 7 D2i) Us (8.3)

Here Di; and Ds; are the endogenous variables of interest and X; is an exogenous covariate. In
addition, we have access to two instruments Z1; and Zs;. For v = v4 = 7 = 0, this model reduces
to the model considered in Section 6.1 of Andrews and Mikusheva (2016). We set y; = -+ = y7 = 1.
To evaluate the performance of our algorithms with one endogenous variable, we set y4 = v7 = 0
and use Z1; as the instrument. Following Andrews and Mikusheva (2016), we consider a symmetric

as well as an asymmetric DGP for (U;, D14, Do, Z14, Z2i, X;):

(Ui, D1i, Do, Z1i, Z2i, Xi) = (®(§ua), P(EDy,i)s P(€Dyi), (€21,0), P(€2,0), P(€xa)) (symmetric)

(Ui, D1i, Doj, Zviy Zoiy Xi) = (E0i,€xP(28D14),EDsis §21i> 20,6, EXi) (asymmetric)

where (§u4,€D,irEDyir 21,65 €201, €x i) 1s a Gaussian vector with mean zero, all variances are set
equal to one, Cov(&y,&p,) = Cov(&y,€p,) = 0.5, Cov(ép,,&z,) = 0.8, Cov({p,,Ez,) = 0.4, which
allows us to investigate the impact of instrument strength, all other covariances are equal to zero,

and @ is the cumulative distribution function of the standard normal distribution.

We first investigate the bias and RMSE of the different methods. Tables 7-10 present the results.
With one endogenous variable, the performances of the root-finding algorithm using Brent’s method
and IQR are very similar both in terms of bias and RMSE. The contraction algorithm performs well
but exhibits some bias at the tail quantiles. Turning to the results with two endogenous variables,
we can see that the nested algorithm exhibits the best overall performance, both in terms of bias and
RMSE. The performances of the SA-based optimization algorithm and IQR are similar and only
slightly worse than that of the nested algorithm. The contraction algorithm tends to exhibit some
bias at the tail quantiles. However, this bias decreases substantially as the sample size gets larger.
Finally, comparing the results for the coefficients on D; and D3, we can see that the instrument
strength matters for the performance of all the estimator (including IQR), suggesting that weak

identification can have implications for the estimation of IVQR models.
[Table 7 about here.]
[Table 8 about here.]
[Table 9 about here.]

[Table 10 about here.]
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Table 11 displays the empirical coverage probabilities of the bootstrap confidence intervals. The
results show that the our bootstrap procedure exhibits very good size properties. The confidence
intervals based on the contraction algorithm tend to be somewhat closer to the nominal level than
those based on Brent’s method, which exhibits some over-coverage, especially for N = 500 and

a=0.1.

[Table 11 about here.]

9. CONCLUSION

The main contribution of this paper is to develop computationally convenient and easy-to-
implement estimation algorithms for IVQR models. Our key insight is that the non-smooth and
non-convex IVQR estimation problem can be decomposed into a sequence of much more tractable
convex QR problems, which can be solved very quickly using well-established methods. The pro-
posed algorithms are particularly well-suited if the number of exogenous variables is large and the

number of endogenous variables is moderate as in many empirical applications.

An avenue for further research is to investigate weak identification robust inference within the
decentralized model. One may, for example, write the (re-scaled) sample fixed point restriction as
VNI — K)(0) = sy(0) + W() + rn (), where sy (0) = VNI — K)(0), W is a Gaussian process,
and 7y is an error that tends 0 uniformly. This paper assumes that sy(6*) = 0 uniquely, and
outside N~/2-neighborhoods of 8%, sy (6) diverges and dominates W. For a one-dimensional FP
problem, this requires the BR map to be bounded away from the 45-degree line outside any N—1/2-
neighborhood of the fixed point. However if sy fails to dominate W over a substantial part of the

parameter space, one would end up with weak identification.?’ How to conduct robust inference in

such settings is an interesting question, which we leave for future research.

Finally, we note that while we study the performance of the proposed algorithms separately, our
reformulation and the resulting algorithms are potentially very useful when combined with other
existing procedures. For instance, one could choose starting values using an initial grid search over

a coarse grid and then apply the contraction algorithm.

* Economics Department, Boston University, hkaido@bu.edu

T Economics Department, UC San Diego, kwuthrich@ucsd.edu

20 Andrews and Mikusheva (2016) study weak identification robust inference methods in models characterized by

moment restrictions.
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APPENDIX A. OVERIDENTIFICATION
In the main text, we focus on just-identified moment restrictions with dz = dp, for which the construction

of an estimator is straightforward. If the model is overidentified (i.e. if dz > dp), we can transform the

original moment conditions

X

Ep |(1{Y < (X',D"Yo(1)} — 1) =0
Z
into a set of just-identified moment conditions
, X
Ep (1 {Y§X91(7)+D102(T)++DdD0J(T)}7T) ~ :0, (Al)
Z

where Z is a dp x 1 vector of transformations of (X, Z). A practical choice is to construct 4 using a least

squares projection of D on Z and X.

To achieve pointwise (in 7) efficiency, we can employ the following two-step procedure (e.g., Chernozhukov

and Hansen, 2006, Remark 5):

Step 1: We first obtain an initial consistent estimate of 6* using one of our estimators based on a set
of just-identified moment conditions such as (A.1). We then use nonparametric estimators to estimate the
conditional densities V(1) = f.(7)x,z(0) and v(7) = fo(r)p,x,2(0), where e(1) = Y; — X[07(7) — D105(7) —
-+ — Dq,0%(7), and the conditional expectation function Ep [Dv(7) | X, Z].

Step 2: We apply our procedure to obtain a solution to following moment conditions:

V(r)X
Ep |(1{Y < X'01(7) + D162(7) + - -+ + Da,05(1)} — 7) =0.
Ep[Du(r) | X, Z]

This can be achieved by defining the BR maps as follows:

L) = g wmin Qp. (81,0-1)
L; (6-5(r)) = argminQp, (05:0-5) 5 =2,
where
Qra(0(r)) == Eplpr(Y = X'03(r) = Dib(r) - = Day,(r)V (7],
Qr, (0(r) = Ep|p (Y = X'00(r) = D105(7) = --- — Dap8s(r)(Ep [Do(7) | X, Z),_, /Ds-1)] G =2,...

where Ep [Dv(7) | X, Z];_, is the j-th element of Ep[Dv(r)|X,Z]. These are convex population QR
problems provided that the model is parametrized such that Ep [Dv(r) | X, Z];, , /Dj_1, j = 2,...,J, is
positive. Estimation can then proceed by replacing the population QR problems by their sample analogues
and applying one of the estimation algorithms discussed in the main text. The resulting estimator uses the

optimal instrumental variables and thus achieves pointwise (in 7) efficiency (Chamberlain, 1987).
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APPENDIX B. REPARAMETRIZATION

In the main text, we assume that the model is reparametrized such that Z,/D, is positive for all
¢ =1,...,dp. This ensures that the weights are well-defined and that the weighted QR problems are
convex. However, in empirical applications, the weights may not be well-defined (e.g., if Dy is an indicator
variable with P(D, = 0) > 0) or negative in some instances. Assuming that Z, is positive, a simple way
to reparametrize the model is to add a large enough constant ¢ to D,.?! This transformation is theoreti-
cally justified by the compactness of the support of D, (Assumption 2.2). To fix ideas, suppose that one is

interested in estimating the following linear-in-parameters model with a single endogenous variable:
q(D, X,7) = 011 + X'012 + Db,

RN
where 6; = (011,0],)" and X = (1,X’) . Suppose further that the support of D is a compact interval,
[dmins dmax] C R, with dpnin < 0. In this case, we can apply the transformation D* = D+ ¢, where ¢ > |dmin|.

The transformed model reads
q(l)7 X, T) = 9{1 + X/012 + D*eg,
where 67, = 611 — cfy. Importantly, one can always back out the original parameters, § = (011, 6},,602)’, from

the parameters in the reparametrized model, 8* = (63, 0}5,62)’.

APPENDIX C. DECENTRALIZATION

C.1. The domains of Mj;-maps. Recall that we defined the set

Rl = {9_1 €0O0_, S\pr71(91,0_1) =0,

Upa(b1,02,m_(1210-1) =0, 3(61,02) € O1 x Oz}
Similarly for k = 2,...,dp — 1, define

Rk = {9,1 €0O0_4 Z\I/P71(91,9,1) =0,

Upo(f1,00,m_112y0-1) =0,

k
Upr(Or,. . 0k, 71, 30-1) =0, 3(01,...,0k) € H 0,}.
=1

21Gince the unconditional moment conditions ¥ p are derived from a conditional moment restriction, we can use

a positive transformation of Z, instead of Z, itself in case Z, is not positive.
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For k =dp, let

RdD = {9,1 €0_, :\I/p,1(9179,1) =0,

Upo(01,00,m_f1210-1) =0,

J
\IJP7J(91,...,9J) =0, 3(91,...,0J) € H@J}
j=1
Note that RdD - Rj for all j < dp.

C.2. Local Decentralization and Local Contractions. We say that an estimation problem admits local
decentralization if the BR functions Lj, j = 1,...,J, and the maps K and M are well-defined over a local
neighborhood of #*. The following weak conditions are sufficient for local decentralization of the IVQR

estimation problem.

Assumption 4. The following conditions hold.

(1) The conditional cdf y — Fy|p x z(y) is continuously differentiable at y* = d'0* | + 2'0% for almost
all (d,,z). The conditional density fy|p z x is bounded on a neighborhood of y* a.s.;

(2) The matrices

Ep[fyip,x,z (D'0%, + X'07) XX']

and

Eplfyip,x,z (D'0"y +X'07) DeZ)), (=1,...,dp,

are positive definite.

Assumption 4 is weaker than Assumption 2.3-2.4. Under this condition, we can study the local properties
of our population algorithms. For this, the following lemma ensures that the BR maps are well-defined

locally.

Lemma 3. Suppose that Assumptions 1, 2.1-2.2, and 4 hold. Then, there exist open neighborhoods /\/’Lﬂ. ] =
1...J, Ng, Nasr of Qij, 0%, and 0* | such that

(i) There exist maps L; : N_j — R%, j=1,...,J such that, for j =1,...,J,
\I/P)]‘ (Lj((gfj),efj) =0, forall 9,]‘ S ij

Further, L; is continuously differentiable for all j =1,...,J.
(ii) The maps K : Nx — R% and M : Ny — R9P are continuously differentiable.
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Proof. (i) The proof is similar to that of Lemma 1. Therefore, we sketch the argument below for j = 1. By
Assumptions 2.2 and 4.1, Up; is continuously differentiable on a neighborhood V' of *. By Assumption
4.2 and the continuity of det(0Wp;(0)/007), one may choose V so that det(0¥p1(0)/00;7) # 0 for all
6 = (01,0_1) € V. By the implicit function theorem, there is a continuously differentiable function L; and

an open set N_; containing 6_; such that
\Ilp,l(Ll(Q,l),G,l) =0, forall 0_; € ./\/71.

The arguments for L;, j # 1 are similar.

(i) Let Ny = {0 € © : m_;0 € N_j, j =1,...,J} and let Ny be defined by mimicking (3.13), while
replacing ©; with A in the definition of ]?j for j =1,...,J. The continuous differentiability of K and M
follows from that of L;, j =1,...,J. |

C.2.1. Local Contractions. The following assumption ensures that K and M are local contractions.

Assumption 5.

(1) p(Jk (07)) < 1;
(2) p(Jum (03)) <1

Here, we illustrate a primitive condition for Assumption 5. Consider a simple setup without covariates
(i.e. X =1), a binary D, and a binary Z. We only analyze Assumption 5.1. A similar result can be derived
for Assumption 5.2. In this setting, the Jacobian of K evaluated at 8* is given by

0 _ Er[fvip,z(D03+67)D]
T (6%) = Ep[fvip,z(D03+07)]

_ EP[fY\D,Z(DQE-F@f)Z] 0
Er[fy|p,z(D03+0)ZD]

The characteristic polynomial is then given by

> Ep [fyip,z (DO +67) D] Ep [fy|p,z (D85 +07) Z]
Ep [fy|p,z (D05 +07)] Ep |fy|p,z (D03 +0;7) ZD]

pK(A) = /\

Hence, Assumption 3.1 holds if all eigenvalues (i.e. the roots Ax of px(A) = 0) have modulus less than one,

which holds when
Ep [fy|p,z (D85 +07) D] Ep [fy|p.z (D03 +07) Z]

1.
Ep [fyp,z (D85 +67)] Ep [fy|p,z (D03 +6;) ZD]
This condition can be simplified to
Sy10,1(07)p(011) fyj1,0(05 + 07)p(1]0) < fy1,1(605 4 607)p(1|1) fy10,0(67)p(0]0), (C.1)

where fya.(y) = fy|p=d,z=-(y) and p(d|z) := P(D = d | Z = z). It is instructive to interpret condition
(C.1) under the local average treatment effects framework of Imbens and Angrist (1994). Specifically, condi-

tion (C.1) holds (i) if their monotonicity assumption is such that there are compliers but no defiers and (ii)
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the complier potential outcome density functions are strictly positive. Conversely, the condition is violated

if there are defiers but no compliers.

Proposition 3. Suppose that Assumptions 1, 2.1, 2.2, /, and 5 hold. Then:

(i) There exists a closed neighborhood N of 0* such that K(Nx) C Nk and K is a contraction on
N with respect to an adapted norm.
(ii) There exists a closed neighborhood Ny of 05 such that M(Nk) C Ny and M is a contraction on

N with respect to an adapted norm.

Proof. We only prove the result for K, the proof for M is similar. By Lemma 3, L; is continuously differ-
entiable at 8*. Note that Jx is given by

0 Bl . . Ol (01
2 J
Blalfa) g 2all) | Bla(0o)
JK(0) = N . N : A (C.2)
oL, 0-0) UV O B
67 26, _,

which is continuous at 8*. The desired result now follows, for instance, from Proposition 2.2.19 in (Hasselblatt

and Katok, 2003). O

APPENDIX D. PROOFS OF THEORETICAL RESULTS IN SECTION 3

Proof of Lemma 1. (i) We first show that L; is well-defined. For a given 6_; € RI=9x let 0 €
argming cpay @ pyl(él, 6_1). Under Assumption 2, the objective function is convex and differentiable with

respect to ;. Therefore, by the necessary and sufficient condition of minimization, 07 solves
Ep[({Y < D'6_1 + X'67})X] = 0.

In what follows, we show that the map Ly : 6_1 — 67 is well-defined on R_; using a global inverse function

theorem. Recall that
Upi(0)=Ep[(1{Y < D'0_; + X'6,})X]. (D.1)
This function is continuously differentiable with respect to . The Jacobian is given by

0
J\pPYI(G) = WEP[F)HD,X,Z(D/G—I + X/Hl)X] = EP[fY|D,X,Z(D/6—1 + X’Hl)X(X’, l)/)}7 (DQ)

where the second equality follows from Assumption 2 and the dominated convergence theorem. Define a

transform Z: © — R? by

[1]

(9) = (\Ilp,l(G)’,G,l’)’. (D3)
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We follow Krantz and Parks (2012) (Section 3.3) to obtain an implicit function L; on a suitable domain
such that 6; = L1(6) if and only if ¥p;(#) = 0. The key is to apply a global inverse function theorem to Z.

Toward this end, we analyze the Jacobian of =, which is given as

[0 p 1 (0,,0.1)/00 0 p1(0,.0,)/00"
PP LSOO O

Od_1><d1 Id—l

Eplfyip.x,z(D'0-1+ X'01)XX'] Eplfy|p,x,z(D'0_1+ X'01)XD']

Od71Xd1 Id71

where I; denotes the d x d identity matrix. Let I C {1,...d}.

For any matrix A, let [A];; denote a principal minor of A, which collects the rows and columns of A
whose indices belong to the index set I. By (D.4),if I C {1,...,d1},

[J=()]r,r = Eplfyip,x,z(D'0-1 + X'01)XX') (D.5)

for a subvector X of X, which is positive definite by Assumption 2 and Lemma 4. If I C {d; + 1,...,d},
[J=(8)]1,1 = I for some 1 < ¢ < d — d; and is hence positive definite. Otherwise, any principal minor is of

the following form:

Eplfyip,x,z(D'0_1 + X’Gl)f(f(’] B

[J=(0)]1,r = (D.6)

O¢xm I,

for some subvector X of X and a m x £ matrix B. Note that
det([J=(0)]1,1) = det(Ep[fy|p,x,z(D'0_1 + X'01)XX'] — BI; " x Opx) det (L)
= det(Ep[fy|D7X72(DI0,1 + Xlel)XX/]) > 0, (D7)

where the last inequality follows again from Assumption 2 and Lemma 4. Hence, J=(0) is a P-matrix. Note
that © is a closed rectangle. By Theorem 4 in Gale and Nikaido (1965), = is univalent, and hence the inverse

map Z7! is well defined.

Let
Ri={0_1€R¥":(0,0_,)€Z(O)}={0_1 R :Up;(0,0_1) =0, for some (0;,0_1) € O},
which coincides with the definition in (3.8) with j = 1. Let Fy = [I4,,04,xd_,]. For each §_; € R_;, define
Li(0_1) := F,=Z71(0,0_,).

Then, for any § € ©, ¥p1(f) = 0 if and only if #_; € R_; and Z(f) = (0,6_1). By the univalence of E,
this is true if and only if § = Z71(0,60_1), and the first d; components extracted by applying F} is ;. This

ensures Ly is well-defined on R_1.
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Below, for any set A, let A° denote the interior of A. Let R°; = {6_; € R%-1: (0,0_1) € Z(6°)}. Note
that Up; is C' on ©° and, for each § = (01,60_1) € © with 6_; € Ry, det(d¥p,1(0)/d0]) # 0. Therefore,
by the implicit function theorem, there is a C!-function L; and an open set V' containing 6_; such that

\Ilp,l(Ll(O_l),G_l) =0, forall0_, € V.

However, such a local implicit function must coincide with the unique global map L; on V. Hence, L1 |y = Ly,
and therefore L is continuously differentiable at #_;. Since the choice of 6_; is arbitrary, L; is continuously

differentiable for all 6_; € RS.

Showing that the conclusion holds for any other L; for j = 2,...,J is similar, and hence we omit the

proof. |

Lemma 4. Suppose Ep|fy|p,x,z (D'0_1 + X'01) XX'] is positive definite. Then, for any subvector X of X
with dimension dx < dx, Eplfyp,x,z (D'0_1+ X'01) XX’] 1s positive definite.

Proof. In what follows, let W = fy|p x,7z (D'0_1 + X'6;) and let
A= EP[fY|D,X,Z (D/0,1 + Xlal) XX,] = E[WXX/} (Dg)

Let X be a subvector of X with dy components. Then, there exists a dx X dx permutation matrix P, such

that the first dy components of P, X is X.

Let B := E[W P, X X'P.] and note that
B = P,EWXX'|P. = P,AP., (D.9)
by the linearity of the expectation operator and W being a scalar. Let A be an eigenvalue of B such that
Bz = Az, (D.10)
for the corresponding eigenvector z € R4, By (D.9)-(D.10),
P AP.z =Xz & AP.z=\P; 'z (D.11)
Note that P! = P! due to P, being a permutation matrix. Letting y := Pz then yields
Ay = My, (D.12)

which in turn shows that A is an eigenvalue of A. For any eigenvalue of A, the argument above can be
reversed to show that it is also an eigenvalue of B. Since the choice of the eigenvalue is arbitrary, A and B

share the same eigenvalues.

Now let C':= E[WXX'] and note that it is a leading principal submatrix of B. Then, by the eigenvalue
inclusion principle (Horn and Johnson, 1990, Theorem 4.3.28),

Amin(c) > )\min(B) = )\min(A) >0, (Dl?))



DECENTRALIZATION ESTIMATORS FOR IVQR 41

where the last inequality follows from the positive definiteness of A. This completes the claim of the

lemma. |

Proof of Corollary 1. The existence of K and its continuous differentiability follows immediately from

Lemma 1. For M, by the definition of Rl, for any 0_, € Rj, there exists (01,62) € ©1 X ©9 such that

\pr71(91,9_1) :O’ (D.14)

Upo(01,02, m_g1,210-1) =0, (D.15)

By (i), one may then write 61 = L1(0_1) and 6 = La(L1(0_1), 7_{1,210_1). Hence, the map M; : Ry — 6,

defined below is well-
M1(9,1) = LQ(L1(9,1),7T_{172}9,1). (D].G)

Recursively, arguing in the same way, the maps

My (0-1) = L (L1(0-1), My (0-1), 7_f1,2,310-1) (D.17)

Mj(@,l) = Lj+1 (Ll (9,1), M1(9,1), ey Mj,l((g,l), ﬂ-f{l,...,j+1}971) (DlS)

My, (0-1) =1Ly, (Ll(ﬁ,l), Mi(0-1),..., MdD,l(G,l)) (D.19)

are well-defined on Ry, - -+ , Ry » respectively. The continuous differentiability of M follows from that of L;s
and the chain rule. (]

Proof of Proposition 1. =: For every solution, ¥p(0*) = 0, 0 = L, (Qij) by construction under As-
sumptions 1 and 2. It follows that K (§*) = 6* and M (6*,) = 6* .

<«<: For the simultaneous response note that K (9_) = 0 implies that éj =1L (0__]-) for all j € {1,---,J}.
Thus,  solves Up(f) = 0 by Lemma 1. Consider next the sequential response. Let 6,0 € © be such that
0; = L;j(§_;) for j=1,...,J. By Lemma 1, they satisfy

Upy (01,02, ,00) = 0
W (B1.00-0,) = 0
xI/p,J(él,éz,-..,éJ) -0

Thus, a fixed point 6 = 0 satisfies Up (0_) =0. |
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APPENDIX E. PROOFS OF THEORETICAL RESULTS IN SECTION 4

Proof of Proposition 2. We prove the result for K. By Assumption 3, there exists a strictly convex set
Dy on which the spectral norm of the Jacobian of K is uniformly bounded by 1. This ensures that K is a
contraction map on cl(D k), and the claim of the proposition now follows from Theorem 2.2.16 in Hasselblatt

and Katok (2003). O

APPENDIX F. PROOFS OF THEORETICAL RESULTS IN SECTION 6

Proof of Theorem 1. Let H := I; — K. A fixed point 8* of K then satisfies
H(6*)=0.
Similarly, let H := I, — K. The estimator 0 satisfies
H(O)| < inf |H(O F.1
IH @) < jnf IHE)] + 7, (F.1)

where 7y = 0,(N~Y/2). Let ¢ : £°(0)% x R — R? be a map such that, for each (H,r) € (*(0)? x R,

6= ©(H,r) is an r-approximate solution, which satisfies
H()|| < inf ||H(O : F.2
IH @) < jnf IHE)] +7 (F.2)
One may then write
VN(@On —0%) = VN(o(H,7) = (H,0)). (F.3)

By Corollary 2, VN(K — K) ~» W in £*(0)%, where W is a Gaussian process defined in Corollary 2. By
Lemmas 6-7, Condition Z in CFM holds, which in turn ensures that one may apply Lemmas E.2 and E.3 in
CFM. This ensures

VN(G(H,7) — 9(H, 0)) ~ @y oW, 0) = —Hy W (0"). (F.4)
Hence, we obtain (6.5) with
V = Hy'E[W(0*)W(6*)'| H,.". (F.5)
Finally, note that Hp =1,— Jx (6*) by Lemma 7. This establishes the theorem. O
Proof of Theorem 2. Recall that H = I;— K. The estimator éN satisfies
V@I < jut [ @] + 7y (F.6)

where ry = 0,(N~/2). Similarly, let H* = I, — K*. Let P* denote the law of H* conditional on {WW;}32,.

The bootstrap estimator é}“v satisfies
L0311 < inf (0] + 7, (F.7)

where 7% = op~(N~'/2) conditional on {W;}2,.
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Using the r-approximation, one may therefore write

VN(Oy = 0n) = VN(o(H",ry) = p(H,rx)). (F.8)

Let Ep- denote the conditional expectation with respect to P*. Let BL; denote the space of bounded

Lipschitz functions on R? with Lipschitz constant 1. Then, for any e > 0,

sup | Boh(VN (1", 7iy) — (8, 18)]) = B (gl o (VN (75 — (7))

heBL;y

<e+2P (H\/ﬁ [o(H*,r3) — @(H,rN)] — o (VN [(H",ry) — (H,rn)])|| > e). (F.9)

By Corollary 2, VN(H* — H) = —/N(K* - K) Eowiw. Noting that ho ¢y o € BL1(£>(©) x R) and
ry = 0o,(N71/2) it follows that

sup
he€BL,

Ep-h(¢yo(VN[(H*,vx) — (H,rn)]) — Ep<h o @y o(W,0)| — 0, (F.10)

with probability approaching 1 due to ry = op(IN -1/ 2). Hence, for the conclusion of the theorem, it suffices

to show that the right hand side of (F.9) tends to 0 in probability.

For this, as shown in the proof of Theorem 1, ¢ is Hadamard differentiable at (H,0). Hence, by Theorem
3.9.4 in Van der Vaart and Wellner (1996),

\/N[@(H*ar}k\f) - @(Hv O)] = (p}i’o(\/ﬁ[(ﬁ*’r}k\,) - (H7 0)]) + OP*(l)
\/N[SO(];ALTN) - QD(H’ O)] = SD/H,O(\/N[(]EI’TN) - (H7 0)]) + OP(l)a

Take the difference of the left and right hand sides respectively and note that ‘P/H,o is linear. This implies
the right hand side of (F.9) tends to 0 in probability. This ensures

VN(p(H,ri) = o(H,rn)) % @y o(W,0) = —H, " W(67). (F.11)
O

Lemma 5. Suppose Assumptions 1-2 hold. (i) Let Oy be an estimator of 0* that satisfies (6.1). Then, it
also satisfies (6.2)-(6.3); (ii) Let On be an estimator of 0* that satisfies (6.2)-(6.3). Then, it also satisfies
(6.1).

Proof. (1) Consider the case j = 2. Note that, by (6.1),

éN,2 - £2(£1(9N,—1), 9N,3, vy éN,J) = éN,2 - fJQ(éN,l + TN,1,éN,3, cey éN,J) (F.12)

= i/2(éN,17éN,37 e ,éN,J) — f/2(éN,1 + TN,lyéN,37 . '7éN,J)7 (F.13)
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where ry 1 = 0,(N~1/2), and the second equality follows from the definition of Oy 5. (F.13) can be written

as
i2(éN,17éN,37 . aéN,J) — ﬁz(éz\m +rn1, éN,?,, cees éN,J)
= ([ﬁ2(éN,17éN,3, . -aéN,J) - L2(éN,1,éN,3, .- -aéN,J)]
— [Lo(n1 + 71,083, On) — La(Ong + 71,083, - - éN,J)])
+ [La(Ong +7n1,0N3, -, 0n.7) — La(On1,0n 3, .., O, 7))
= 0p(N7V2) + Op(rn,1), (F.14)
where the last equality follows from the stochastic equicontinuity of £y shown in the proof of Lemma 10
and Ly being Lipschitz since Lo is continuously differentiable with a derivative that is uniformly bounded
on the compact set ©. By (F.12)-(F.14), it holds that Ox ; = M;(fx,_1) + 0,(N~1/2) for j = 2. Repeat the
same argument sequentially for j = 3,...,J. The first conclusion of the lemma then follows.
(ii) Suppose now that ry; := GANJ — ﬁl(éNy,l) #* OP(N*I/Q). Then, there is a subsequence ky along
which, for any n > 0, \/ENrkN’l > n for all ky with positive probability. Then, the Op(rk, 1)-term in (F.14)

is not 017(14;](,1/2)7 which therefore implies 0 ; # M;(Oy._1) + 0,(N~1/2) for j = 2. The second conclusion of

the lemma then follows. O

Lemma 6. Let A C R? be a compact set, and let K : A — RP be a map that has a unique fixed point \g € A.
let H: A — R? be defined by H(\) :== A — K(\). Then H '(x) = {\ € A: H(\) = z} is continuous at x =0

in Hausdorff distance.

Proof. For any x, write
H ' z)={ : A=K\ ==z}

Let z,, — 0. Since )\ is the unique fixed point of K, H~1(0) = {\o}. Therefore,

-1 -1 o .
dir(H~1(0), H (m)max{ke,;nlfm)

A — )\0||,A sup ||\ — )\o||}

€H1(zy)

= sup |[A= ol
AeH Y (zy)

Hence, it suffices to show that supycg-1(,,) [|IA — Ao/l = o(1). We show this by contradiction. Suppose that

there is a sequence {\,} C A and § > 0 such that A, € H~!(z,,) for all n and {)\,} has a subsequence {\, }

such that |[Ax, — Aol| > ¢ for all n. A\p, € A is a sequence in a compact space, and hence there is a further

subsequence Ap, such that A, — A* for some A\* € A with A* # Ag. By the continuity of K, one then has
A, — K(Ap,) = A" = K(\").

By An, — K(An,) = 2y, and x,, — 0, it must hold that

A= K(A\*) =0.
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However this contradicts the fact that Ay is the unique fixed point, and hence the conclusion follows. O

Lemma 7. Suppose H=1— K and K : RP — RP is continuously differentiable at \g. Suppose further that
det(I — Ji (X)) #0. Let Hy, := 1 — Jg(Xo). Then,

lim sup |t7[H (Ao + th) — H(Xo)] — Hx, || = 0,
HO bl =1

and

inf ||H\ Al > 0.
h:||1fIzl|\:1|| xohll >

Proof. Let {h,} C SP be a sequence on the unit sphere. Then,

t7YHNo + thy) — HXo)] — Hxyhn =t Ao + thy + K(Xo + thy) — Mo — K(Xo)] — hn — Jic(Ao)hn
=t KXo+ thn) — K(Xo)] — Jx(Xo)hn,

= (Jx (M) — Jx(Ao))hn,
where ), is a mean value between \g + th,, and \g. Therefore, by the Cauchy-Schwarz inequality,
1Tk (An) = T o))l < 1T (An) = T (No) | ]| = 0,

where we used |h,| = 1, A, — Ao, and the continuity of the Jacobian.

For the second claim, note that
[Hxohll = (I = Tk (Xo))hll,

and h — ||(I — Jx(Xo))h| is continuous. Since the domain of h is compact, there is h* € SP such that
inf =1 | Hxohll = [|(I=Jx(Xo))h*||. Let ¢ = (I—Jx(Xo))h* and note that I —.Jg (o) is linearly independent
(due to det(] — Jx(Xo)) # 0), and hence ¢ # 0. Hence inf|—; |Hx, bl = |lg|l > 0. Hence, the second

conclusion follows. O

The following result is a slight extension of Lemma E.1 in CFM.

Lemma 8. Suppose that A C RP and U is a compact and convex set in RY. Let T be an open set containing
U. Suppose that U : A x T — RP is continuous and A — V(A u) is the gradient of a convex function in A for
each w € U; (b) for each u € U, ¥(Ao(u),u) = 0; (c) W\P()\,u) exists at (Ao(u),u) and is continuous
at (Mo(u),u) for each u € U and \i/,\o(u))u = %\I/()\,u)b\o(u) obeys inf,cqq inf)p) =1 ||¢’)\0(u),uh|| > ¢g > 0.
Then, Condition Z in CFM holds and u — Ao(u) is continuously differentiable with derivative Jy,(u) =

_qj;ol(u)u%qj(AO(u)7 U’)

Proof. The proof is the same as that of Lemma E.1 in CFM, in which i/ is a compact interval in R. A slight

modification is needed when one computes the derivative of Ag(u) with respect to u. Since u is allowed to
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be multidimensional, the implicit function theorem gives

1 0

Ino (1) = *‘i’xo(u)u@

which is uniformly bounded and continuous in u by condition (c¢), which ensures continuous differentiability
of u — Ag(u). Note that for any § > 0 and A € Bs(Ao(u)), there is > 0 and v’ such that ||u' — ul| <7 so
that

1A= X0 (@) < A = Ao(u) | + | Ao(w) = Ao ()] < 20. (F.16)

Since U is compact (and hence totally bounded), there is a finite set {u;}/_, C U such that U C U, By (uy).
The argument above then shows that N = |, ¢, Bs(Ao(u)) C U, B2s(Xo(u;)), which ensures that N is
totally bounded. Since N is a subset of a Euclidean space (equipped with a complete metric), it follows that
N is compact. This ensures condition Z (i) in CFM. The rest of the proof is essentially the same as the

case, in which U being a compact interval. O

Lemma 9. Suppose Assumption 2 holds. Let w = (y,d',2’,2") and let 7 € (0,1). Define

M= {f D f(wi8) = (({y < d'0_1 4 2'01} — 1),
(y < doy+2'0} =)z, (o S A0y + 301} —7)24,),0 €O}, (F17)

Then, M is a Donsker-class.

Proof. The proof is standard, and hence we give a brief sketch for the first component of f, f1(w;8) = (1{y <
d'0_1+x'01} —7)x. Note that w — 1{y < d’0_1 + 2’01} — 7 belongs to Type Il-class in Andrews (1994), and
the map w — x does not depend on the parameter. By Theorems 2 and 3 in Andrews (1994), this function
then satisfies the uniform entropy condition with the envelope function M (w) = z, which is square integrable
by assumption. Similar arguments apply to the other components of f. By Theorem 1 in Andrews (1994),
the empirical process: G, f is stochastically equicontinuous, and G,, f(-,0) obeys the classical central limit

theorem for each # € ©. Hence, we conclude that M is Donsker. O

Below, let g(w; 8) = (g1(w; 0)',...,97(w;0))" be a vector such that
62

gj(w; 0) = WQPJ(LJ(H—j)?e—j)_lfj(w;Lj(e—j)’a—j)v Jg=1...,J (F.18)
09

Let p(6,0) := \|diag(Ep [(g(W;6) — Ep[g(W;0)])(g(w; 0) — Ep[g(w; é)])'])H be the variance semimetric. Let
W, =(Y;, D, X[, Z!),i=1,...,N be an i.i.d. sample generated from the IVQR model. Define

Ln;(0_;):=VN(L;j(0_;) = Lj(0_;) ,j=1,...,J. (F.19)

Similarly, let W* = (Y;*, D, X, Z'),i=1,..., N be an bootstrap sample from the empirical distribution
Py of {W;}. Define

Ly (0-5) = VN(L;(0-5) = Lj(0-3) .j=1,...., (F.20)
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where ﬁ;‘ is the sample best response map of player j, which is defined as in (5.3)-(5.4) while replacing W;

with the bootstrap sample W} in (5.1)-(5.2).

Lemma 10. Suppose that Assumptions 1 and 2 hold. Then, (i) Ln = (Lna,-..,LnN,J) satisfies
Ln()~W, (F.21)

where W is a tight Gaussian process in £>°(©)? with the covariance kernel

Cov(W(0), W(6)) = Ep[(g(W;0) — Eplg(W;0)])(g(W:6) — Eplg(W;0)])']; (F.22)
Ly is stochastically equicontinuous with respect to the variance semimetric p; (ii) Ly = (LY 15+, LN )
satisfies
* L*
N() > W (F.23)

(iti) p satisfies lims o supyg_g <5 P(6,6) — 0.

Proof. (i) We first work with Ly ;. For this, we establish that L; is Hadamard differentiable. Note that
01 = L1(0_1) solves

Ep|[({Y <D'6_1+X'6;} —7)X] =0. (F.24)
TakeUd = O_1, = =0y, (N u) = Ep[(1{Y < Du+X'A\} —7)X]. Define ¢ : £°(Z xU)* x £>°U) — £>°(U),
which maps (¢, r) to a solution ¢(v,r) = A() such that

[ (A(w), )| < Jnf [N w)][? + 7 (u)?. (F.25)

Then, one may write Li(-) = ¢(¢,0). We then show that i satisfies the conditions of Lemma 8. Note
first that & and = are compact. 1 is continuous and A — (A, u) is the gradient of the convex function
A= Eplp;(Y — Du— X'\)]. The function L;(u) = Ao(u) is defined as the exact solution of (A, u) = 0.
Note also that, by Assumption 2,

0? 0
v _ Y <D / _
89189,1@1)’1(917970 aallEp[(l{Y_Defl +X91} T)X]
0
= EP[@(Fy|D7X7z(D/9_1 + X/91) — T)X]
1
= Ep[fy|D’X’Z(D'9_1 +X'6,) X X'], (F.26)

where the second equality follows from the dominated convergence theorem, and the last display is well-

defined by the square integrability of X. Similarly,

82
20,007 2P (01,0-1) = Ep(fy|p.x,z(D'0_1 + X'0:)XD']. (F.27)
-1
Hence, the derivative
0 o? o2
2 V) = (557 Qra(01,0-1), 22— Qpa (61,6
a(>\/7u/) ( 7'Uz) (80180/1 QPJ( 1, 1)7 aolael_lQP,l( 1 1))
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exists and is continuous by Assumption 2. By Assumption 2.4, \PAO(H),U = #(;WQPJ(Ll(Q_l), 6_1) obeys
1

inf inf Il\i/)\o(u),uhH 0

U =1 nf inf ||EP[fY|D,X,Z(D/0—1 + X’Hl)XX/]hH > 0. (FQS)

,1ie@,1 ||| =1
Then, by Lemma 8 and Lemma E.2 in Chernozhukov, Fernandez-Val, and Melly (2013), ¢ is Hadamard
differentiable tangentially to C(N x U)X x {0} with the Hadamard derivative (of L)
92
by 0(2,0) = _WQPJ(IH(')’ )7 2(La(), ), (F.29)
where (2,0) = ¢ ((2,0) is continuous over z € >(0)X.

For j # 1, the argument is similar. For example, for £ = 2, one may take Y = ©_5, E = O3 and
YA\ u) = Ep[(1{Y < D3y + (D1, X)'u} —7)Z5] and write La(-) = ¢(1),0). The rest of the argument is the
same.

By Lemma 9 and arguing as in (F.24)-(F.29) and applying the 6-method (as in Lemma E.3 in CFM), we

obtain
Ly()~ W, (F.30)

where W = (W1,..., W’ is a tight Gaussian process in £>°(0)?, where for each j, W; € £>°(©_;)% is given
pointwise by
82

Wj(e—j) = *W
J

Qrj(Li(0-5),0-;) 'Gfj(w; L;j(0_;),0_;), j=1,---,J; (F.31)

Hence, its covariance kernel is as given in (F.22). By Lemma 1.3.8. in Van der Vaart and Wellner (1996),
{LnN} is asymptotically tight, which in turn means that {£xy} is stochastically equicontinuous with respect

to p by Theorem 1.5.7 in Van der Vaart and Wellner (1996).

(ii) For each j, let L} ; € £>(0_;)% be defined pointwise by
Ly (0-5) = VN(L;(0-5) — L;j(0_;)). (F.32)
Below, again we work with the case j = 1. Using ¢ (the solution to (F.25)), we may write

Na(0-1) = VN($(WR,mx) — d(dn, 7)) (F.33)

where ¢y (A, u) = N1 Ef\il(l{Yi < Diu 4 XA} — 7)X;, and 9% is defined similarly for the bootstrap
sample. Let Ep- denote the conditional expectation with respect to P*, the law of {W;}}¥, conditional on

the sample path. Let BL; denote the space of bounded Lipschitz functions on R% with Lipschitz constant
1. Then, for any € > 0,

sup
heBLy

EP*h(\/N[‘b(i);(\/vr}kV) - QS(?[’N,TN)]) - EP*h(QS(I/,o(\/N[(%/;fw TN) — (JJN,TN)]))‘

<e+2P (||\/N[¢(¢3,*V,rjv) — ()] = S0 (VN [, i) — Wnsra)]) || > e). (F.34)
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By Lemma 9 and Theorem 3.6.2 in Van der Vaart and Wellner (1996), v/N (% — ¢n) L G f1. Noting that
ho @y o € BL1(1>(0_1)" x R) and ry = 0,(N~/2), it follows that

sup |Ep-h(dlyo(VN[(x,rx) = (n,7N)])) = Ep<ho ¢ o(Gf1,0)| — 0, (F.35)

heBLy

with probability approaching 1 due to ry = op(INV -1/ 2). Hence, for the conclusion of the theorem, it suffices

to show that the second term on the right hand side of (F.34) tends to 0.

As shown in the proof of (i), ¢ is Hadamard differentiable at (¢,0). Hence, by Theorem 3.9.4 in Van der
Vaart and Wellner (1996),

VN [k, m8) — 6(1,0)] = ¢y o(VN[(Wk, 7x) — (1,0)]) + 0p- (1)
VN [6(hn,Tn) = ¢(1,0)] = ¢y o(VN[(dn, i) = (1,0)]) + 0p(1),

Take the difference of the left and right hand sides respectively and note that ¢(I,’O is linear. This implies
the right hand side of (F.34) tends to O in probability. This, together with (F.34)-(F.35), ensures

Ly, %Wy, (F.36)

where Wy (0_1) = 789‘?%@1:71@1(0_1),9_1)*lej(';L1(9_1),0_1). The analysis for any j # 1 is similar,
and one may apply the arguments above jointly across j = 1,...,J, which yields the second claim of the

lemma.

(i) Consider the first submatrix of Ep[(g(W;0) — Ep[g(W;0)])(g(w; ) — Ep[g(w;0)])']. Tt is given by

2
Var( 89?89/ QPJ(Ll(e—l)y 9—1)_1fl(w§ L1(9_1), 9_1))
2 ~ ~ ~ ~
— Var( — m@P,l(Ll(971>7971)_1f1(w§L1(9—1)7971))
O pa(La(61),0-1)" 'V L (0-1).0-1)) = Qpa(La(01),0-1)""
— 89169’1QP’1( 1(0-1),0-1)""Var(fy (w; L1(6-1), 71))89169’1QP’1( 1(0-1),0-1)
2 N _ B B 2 _ ~
ae(?aeiQP,l(Ll(e—l)ﬂ—l)lVar(fl(w;L1(9—1),9_1))89?89,1621:,1(L1(9_1),0_1)1. (F.37)

Note that © is compact and 0_1 — #29,6231 (L1(0_1),0_1)~ " is continuous by Lemma 1, which implies that
1
this map is uniformly continuous. Therefore, it remains to show the uniform continuity of 6 — Var(f; (w;6)).

Note that

Var(fl(w; L1(9_1), 9_1)) = Ep[(l{y < D'G_l + X/Ll((g_l)} — T)XX/]
—Ep[({Y <D0 1+ X'L1(0_1)} —7)X|Ep[(1{Y < D'0_1 + X'L1(6_1)} —7)X]". (F.38)
The right hand side of the display above is continuous on the compact domain O, and hence it is uni-

formly continuous. One can argue the same way for the other subcomponents of diag(Ep[(g(W;6) —

Ep[g(W;0)])(g(w; 0) — Eplg(w;0)])']). This completes the proof. O
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Corollary 2. Suppose that Assumptions 1 and 2 hold. (i) Let W; = (Y;, D}, X/, Z!)',i = 1,...,N be an
i.i.d. sample generated from the IVQR model. Then,

VN(K — K) ~ W. (F.39)

(ii) Let W = (Y,*, DY, X}, Z),i=1,...,N be an bootstrap sample from the empirical distribution Py of
ifi—1- en
{W }ﬁl Th i

VN(K* - K) 5w
Proof. (i) By Lemma 10, it follows that
VN (L1 () = La(), - Ly () = Ly ()~ W.
Note that, by the definition of L and L, one has
VN(K;(8) = K;(0)) = VN(Lj(0-;) = Lj(6-3)). =1,-+ , J.

The conclusion of the lemma then follows. The proof of (ii) is similar, and is therefore omitted. O

APPENDIX G. CONSISTENCY OF THE CONTRACTION ESTIMATOR

Below, we adopt the framework of Dominitz and Sherman (2005) Let (X, d) be a metric space. For a

contraction map F : X — X, let c¢g be the modulus of contraction such that
d(F(z),F(z")) < cpd(z, ),
for any z,z’ € X.

Lemma 11. Suppose Assumptions 1, 2, and 3 hold. Let Oy be an estimator constructed by iterating the

dynamical system in (5.7) or (in (5.8)) sy times, where sy > —3InN/Incg. Then,
On — 6" = 0,(N~1/?).

Proof. We show the result by applying Theorem 1 in Dominitz and Sherman (2005) to the estimator obtained

from the simultaneous dynamical system. The argument for the sequential system is similar.

By Assumption 3, K is a contraction map on Dg. Let #¢) be obtained from iterating s-times the
population dynamical system in (3.15). The iteration on the dynamical system is covergent at least linearly
(Bertsekas and Tsitsiklis, 1989, Proposition 1.1). Under the condition on sy, arguing as in (Dominitz and
Sherman, 2005, p.842), it follows that N*/2[|§(s~) —g*|| < ||6(©) — §*||. Finally, by Corollary 2 and tightness
of W, N'2supyep, [|K(0) — K(0)|| = Op(1). These imply the conditions of Theorem 1 in Dominitz and
Sherman (2005) with 6 = 1/2. The claim of the lemma then follows. O
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TABLES

TABLE 1. Algorithms
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One endogenous variable

Algorithm

R-Package

Comments

Contraction algorithm
Root-finding algorithm

IQR

uniroot (R Core Team, 2018)

500 gridpoints

Two endogenous variables

Algorithm

R-Package

Comments

Contraction algorithm
Root-finding algorithm
Nested root-finding algorithm

IQR

optim_sa (Husmann, Lange, and Spiegel, 2017)

uniroot (R Core Team, 2018)

implemented as optimizer

40x40 gridpoints, implementation: p.132 in
Chernozhukov, Hansen, and Wiithrich (2017)
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TABLE 2. Bias and RMSE, 401(k) DGP with one endogenous regressor

Bias/102 RMSE/103

T Contr. Brent IQR Contr. Brent IQR

0.15 -6.66 -6.52 -8.65 8.08 7.43 7.88
0.25 -1.77 -3.17 -3.14  3.89 3.97 3.97
0.50 0.88 0.54 0.74 1.99 1.99 2.00
0.75 -1.41 -1.10  -0.91 1.96 1.96 1.96
0.85 0.05 0.65 0.74 2.10 2.11 2.11

Notes: Monte Carlo simulation with 500 repetitions as
described in the main text. Contr: contraction algorithm;
Brent: root-finding algorithm based on Brent’s method;

IQR: inverse quantile regression.
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TABLE 3. Bias and RMSE, 401(k) DGP with two endogenous regressors

Bias/102 RMSE/103

T Contr. SA  Nested IQR Contr. SA Nested IQR

Coefficient on binary endogenous variable

0.15 -9.12 -1.73 -7.42 -9.36 8.03 6.92 7.63 8.19
025 -5.74 -5.84 -6.11 -6.52 4.46 4.40 4.45 4.54
0.50 -0.25 -0.36 -0.43 -0.42 1.94 1.96 1.95 2.00
0.75 0.24 0.26 0.21 0.36 1.81 1.82 1.82 1.87
0.85 -0.31 0.07 0.07 0.06 2.20 2.21 2.21 2.26

Coefficient on continuous endogenous variable

0.15 2.14 4.66 0.54 0.48 1.07 2.12 1.04 1.13
0.25 2.26 0.90 0.33 -0.03 0.97 1.25 0.97 1.04
0.50 1.12 0.16 0.03 0.01 0.89 0.96 0.95 1.07
0.75 -1.40 0.01 -0.26 0.00 0.98 1.06 1.07 1.16
0.85 -3.28 -1.08 -1.23 -1.12 1.11 1.25 1.26 1.33

Notes: Monte Carlo simulation with 500 repetitions as described in
the main text. Contr: contraction algorithm; SA: simulated annealing
based optimization algorithm; Nested: nested algorithm based Brent’s
method; IQR: inverse quantile regression.
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TABLE 4. Size, 401(k) DGP with one endogenous regressor

1-a=0.95 1-a=09

T Contr. Brent Contr. Brent

0.15 0.95 0.95 0.91 0.88
0.25 0.96 0.96 0.93 0.93
0.50  0.96 0.96 0.91 0.91
0.75  0.94 0.94 0.89 0.89
0.85 0.94 0.95 0.90 0.90

Notes: Monte Carlo simulation with
1000 repetitions as described in the
main text. Contr: contraction algo-
rithm; Brent: root-finding algorithm
based on Brent’s method.
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TABLE 5. Computation time, 401(k) DGP with one endogenous regressor

N Contr. Brent IQR

1000 0.28 0.04 0.42
5000 0.49 0.18 4.00
10000  1.10 0.54 13.40
20000  1.95 0.77 2324

Notes: The table reports av-
erage computation time in sec-
onds at 7 = 0.5 over 50 simu-
lation repetitions based on the
DGP described in the main
text. Contr: contraction algo-
rithm; Brent: root-finding algo-
rithm based on Brent’s method;
IQR: inverse quantile regression
with grid search over 500 grid
points.
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Tables

TABLE 6. Computation time, 401(k) DGP with two endogenous regressor

N Contr. SA Nested IQR

1000 0.29 3.70 0.51 62.21

5000 1.54 20.10 2.95 322.78
10000  4.45 59.44 9.24 730.20
20000 20.09 193.63 31.62 2152.55

Notes: The table reports average compu-
tation time in seconds at 7 = 0.5 over 50
simulation repetitions based on the DGP
described in the main text. Contr: con-
traction algorithm; SA: simulated anneal-
ing based optimization algorithm; Nested:
nested algorithm based Brent’s method;
IQR: inverse quantile regression with grid
search over 100x100 grid points.
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TABLE 7. Bias and RMSE, symmetric design with one endogenous regressor

N = 500

Bias RMSE

T Contr. Brent IQR Contr. Brent IQR

0.15 0.03 -0.00 -0.00 0.10 0.10 0.10
0.25 0.03 0.00  0.00 0.12 0.12 0.12
0.50 -0.00 -0.00 -0.00 0.12 0.14 0.14
0.75 -0.04 -0.01 -0.01 0.13 0.12 0.12
0.85 -0.04 -0.00 -0.00 0.11 0.11 0.11

N = 1000

Bias RMSE

T Contr. Brent IQR Contr. Brent IQR

0.15 0.02 0.00  0.00 0.07 0.07 0.07
0.25 0.01 -0.00 -0.00 0.08 0.08 0.08
0.50 -0.01 -0.01  -0.01 0.09 0.10 0.10
0.75 -0.02 -0.00 -0.00 0.09 0.08 0.08
0.85 -0.02 -0.00 -0.00 0.08 0.08 0.08

Notes: Monte Carlo simulation with 500 repetitions as
described in the main text. Contr: contraction algorithm;
Brent: root-finding algorithm based on Brent’s method;

IQR: inverse quantile regression.
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TABLE 8. Bias and RMSE, asymmetric design with one endogenous regressor

N = 500

Bias RMSE

T Contr. Brent IQR Contr. Brent IQR

0.15 0.12 0.01  -0.00 0.22 0.20 0.20
0.25 0.07 0.00 -0.00 0.17 0.16 0.16
0.50 0.04 -0.00 -0.00 0.13 0.12 0.12
0.75 0.03 0.00  0.00 0.11 0.11 0.11
0.85 -0.03 -0.01 -0.00 0.12 0.11 0.11

N = 1000

Bias RMSE

T Contr. Brent IQR Contr. Brent IQR

0.15 0.05 -0.01  -0.01 0.16 0.15 0.15
0.25 0.04 0.00  0.00 0.11 0.11 0.11
0.50  0.03 0.00  0.00 0.08 0.08 0.08
0.75 0.01 -0.01  -0.01 0.08 0.08 0.08
0.85 -0.03 -0.01 -0.01 0.09 0.09 0.09

Notes: Monte Carlo simulation with 500 repetitions as
described in the main text. Contr: contraction algorithm;
Brent: root-finding algorithm based on Brent’s method;
IQR: inverse quantile regression.
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TABLE 9. Bias and RMSE, symmetric design with two endogenous regressors

N = 500

Bias RMSE

T Contr. SA  Nested IQR Contr. SA Nested IQR

Coefficient on D1

0.15  0.00 0.00 -0.00 -0.01 0.11 0.14 0.12 0.13
0.25  0.01 -0.01  -0.00 -0.01 0.15 0.17 0.16 0.16
0.50 -0.02 -0.02 -0.02 -0.02 0.17  0.19 0.19 0.20
0.75 -0.04 -0.03 -0.03 -0.03 0.21 0.21 0.20 0.20
0.85 -0.05 -0.03 -0.03 -0.03 0.18 0.18 0.17 0.17

Coefficient on Dy

0.15 0.10 -0.01 -0.01 -0.02 0.27  0.29 0.27 0.31
0.25 0.10 -0.02 -0.00 -0.02 0.29  0.30 0.29 0.30
0.50 -0.01 -0.02 -0.02 -0.02 0.33  0.39 0.38 0.39
0.75 -0.15 -0.06 -0.04 -0.05 0.40 0.41 0.40 0.41
0.8 -0.19 -0.06 -0.05 -0.07 039 0.40 0.36 0.43

N = 1000

Bias RMSE

T Contr. SA  Nested IQR Contr. SA Nested IQR

Coefficient on Dy

0.15 -0.00 -0.01 -0.00 -0.00 0.08 0.10 0.09 0.10
0.25 -0.00 -0.01 -0.00 -0.01 0.10 0.12 0.11 0.13
0.50 -0.01 -0.01 -0.01 -0.01 0.12 0.13 0.13 0.16
0.75 -0.01 -0.01 -0.01 -0.00 0.13 0.14 0.13 0.14
0.8 -0.02 -0.02 -0.01 -0.02 0.12 0.13 0.12 0.13

Coefficient on Do

0.15 0.05 -0.01 -0.01 -0.02 0.19 0.21 0.19 0.20
0.25 0.05 -0.01 -0.00 -0.01 0.22 0.23 0.21 0.23
0.50 -0.02 -0.02 -0.02 -0.03 0.25 0.27 0.27 0.29
0.75 -0.09 -0.02 -0.02 -0.03 0.27  0.28 0.25 0.26
0.8 -0.09 -0.03 -0.01 -0.03 0.26 0.25 0.23 0.24

Notes: Monte Carlo simulation with 500 repetitions as described in
the main text. Contr: contraction algorithm; SA: simulated annealing
based optimization algorithm; Nested: nested algorithm based Brent’s

method; IQR: inverse quantile regression.
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Tables

TaBLE 10. Bias and RMSE, asymmetric design with two endogenous regressors

N = 500

Bias RMSE

T Contr. SA  Nested IQR Contr. SA Nested IQR

Coefficient on D1

0.15 -0.02 0.00 0.02 0.01 0.25 0.28 0.26 0.26
0.25  -0.05 0.00 0.01 -0.00 0.20 0.21 0.20 0.21
0.50 -0.04  0.00 -0.00 0.00 0.16  0.21 0.17 0.19
0.75 -0.02 -0.01 -0.02 -0.02 0.17 0.18 0.17 0.19
0.85 -0.01 -0.02 -0.01 -0.02 0.20 0.19 0.19 0.19

Coefficient on Dy

0.15 0.26 -0.11 -0.06 -0.13 0.57  0.58 0.52 0.59
0.25 023 -0.02 -0.01 -0.01 0.45 0.43 0.41 0.44
0.50 0.12 -0.04 -0.03 -0.07 0.34 048 0.32 0.73
0.75 0.04 -0.06 -0.05 -0.05 0.32 0.34 0.31 0.34
0.85 -0.13 -0.01 -0.03 0.01 0.40 0.38 0.34 0.36

N = 1000

Bias RMSE

T Contr. SA  Nested IQR Contr. SA Nested IQR

Coefficient on Dy

0.15 -0.03 -0.00 0.01 -0.01 0.18 0.19 0.19 0.19
0.25 -0.04 -0.01 -0.00 -0.01 0.15 0.16 0.15 0.16
0.50 -0.03 -0.01 -0.01 -0.01 0.13 0.14 0.13 0.14
0.75 -0.03 -0.01 -0.01 -0.01 0.12 0.13 0.12 0.14
0.85 0.01 0.00 0.00 -0.00 0.14 0.15 0.13 0.15

Coefficient on Do

0.15 0.15 -0.03 -0.03 -0.04 0.37 0.38 0.37 0.39
0.25 0.10 -0.01 -0.01 -0.02 0.28 0.30 0.28 0.28
0.50 0.05 -0.03 -0.02 -0.03 0.22 0.23 0.22 0.24
0.75 0.06 -0.02  -0.01 -0.01 0.24 0.24 0.22 0.24
0.85 -0.08 -0.04 -0.03 -0.03 0.27 0.26 0.24 0.24

Notes: Monte Carlo simulation with 500 repetitions as described in
the main text. Contr: contraction algorithm; SA: simulated annealing
based optimization algorithm; Nested: nested algorithm based Brent’s

method; IQR: inverse quantile regression.



Tables

TABLE 11. Size, location-scale DGP with one endogenous regressor

N = 500
Symmetric Design Asymmetric Design
1—a=0.95 1—-a=09 1—a=0.95 1—-a=09
T Contr. Brent Contr. Brent Contr. Brent Contr. Brent
0.15 0.95 0.97 0.91 0.93 0.92 0.97 0.87 0.94
0.25 0.95 0.97 0.91 0.92 0.93 0.96 0.89 0.93
0.50 0.96 0.97 0.90 0.91 0.94 0.96 0.90 0.92
0.75 0.95 0.96 0.90 0.92 0.96 0.96 0.93 0.92
0.85 0.96 0.97 0.91 0.93 0.95 0.95 0.93 0.92
N = 1000
Symmetric Design Asymmetric Design
1-—a=0.95 1-—a=09 1—a=0.95 1—a=09
T Contr. Brent Contr. Brent Contr. Brent Contr. Brent
0.15 0.96 0.96 0.90 0.91 0.93 0.96 0.87 0.93
0.25 0.94 0.94 0.90 0.89 0.93 0.95 0.88 0.91
0.50 0.96 0.96 0.90 0.91 0.93 0.94 0.89 0.89
0.75 0.95 0.95 0.91 0.92 0.95 0.94 0.90 0.90
0.85 0.96 0.95 0.91 0.92 0.96 0.95 0.92 0.90

Notes: Monte Carlo simulation with 1000 repetitions as described in the main
text. Contr: contraction algorithm; Brent: root-finding algorithm based on
Brent’s method.
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