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Abstract

The goal of many randomized experiments and quasi-experimental studies in eco-

nomics is to inform policies that aim to raise incomes and reduce economic inequality.

A policy maximizing the sum of individual incomes may not be desirable if it magnifies

economic inequality and post-treatment redistribution of income is infeasible. This pa-

per develops a method to estimate the optimal treatment assignment policy based on

observable individual covariates when the policy objective is to maximize an equality-

minded rank-dependent social welfare function, which puts higher weight on individuals

with lower-ranked outcomes. We estimate the optimal policy by maximizing a sample

analog of the rank-dependent welfare over a properly constrained set of policies. We

show that the average social welfare attained by our estimated policy converges to the

maximal attainable welfare at n−1/2 rate uniformly over a large class of data distri-

butions when the propensity score is known. We also show that this rate is minimax

optimal. We provide an application of our method using the data from the National

JTPA Study.

Keywords: Program evaluation, Treatment choice, Social welfare, Inequality index, Gini

coefficient
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1 Introduction

In causal inference studies analyzing experimental or quasi-experimental data, treatment re-

sponse generally varies with individual observable characteristics. Learning about such het-

erogeneity from the data is essential for designing individualized treatment rules that assign

treatments on the basis of individual observable characteristics. The optimal individualized

treatment rule maximizes a social welfare criterion representing the policy maker’s prefer-

ences over population distributions of post-treatment outcomes. The literature on statistical

treatment choice initiated by Manski (2004) emphasizes this perspective of welfare-based em-

pirical policy design and pursues statistically sound ways to estimate the optimal treatment

assignment rule.

Research on statistical treatment rules typically focuses on the additive social welfare

criterion (sometimes called “utilitarian”) defined as the mean of the outcomes in the pop-

ulation, even though welfare economics offers a variety of alternative criteria. The additive

social welfare criterion offers analytical and computational convenience because the optimal

treatment rule then depends only on the conditional average treatment effect. Empirical

researchers studying causal impacts of social programs have stressed the importance of eval-

uating distributional impacts, which are overlooked when only mean outcomes are considered

(e.g., Bitler et al. (2006)). The distributional impact of a policy is especially important when

the policy maker is concerned about economic inequality in the population.

We study the problem of treatment assignment that aims to maximize a rank-dependent

social welfare function (SWF), which has the form

W ≡
∫
Yi · ω(Rank(Yi))di, (1.1)

where Yi is individual i’s outcome, Rank(Yi) is the outcome rank of i from the bottom of the

outcome distribution, and ω(·) is a non-negative weight assigned to each rank. The additive

SWF is a special case of (1.1) with constant ω(·). The class of generalized Gini SWFs

proposed by Mehran (1976) and Weymark (1981) consists of SWFs of the form (1.1) with

non-increasing ω(·). It closely relates to income inequality indices, including the widely-used

Gini index. Blackorby and Donaldson (1978) show that, given a specification of ω(·), the

rank-dependent SWF can be written as a product of the average outcome and one minus the
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generalized relative index of inequality, e.g., Gini. This implies that these SWFs generate a

ranking of outcome distributions that is increasing in the average outcome and decreasing

in the chosen index of inequality. While inequality measures are predominantly applied to

net income, our analysis allows Yi to denote other outcome variables of interest, including

functions of income, consumption, wealth, or human capital. We will therefore refer to Yi

simply as “the outcome” in this paper.

The goal is to choose a treatment rule δ that assigns individuals to one of two treatments

d ∈ {0, 1} depending on their observable pre-treatment covariates X ∈ X . This choice

is made after experimental data has been collected and analyzed. We do not consider the

problem of optimal experimental design in this paper, taking the design as given. We assume

that an individual’s treatment outcome does not depend on treatments received by others.

The policy-maker in our setup can only impact the distribution of outcomes through the

choice of a treatment assignment rule and cannot combine it with other redistributive policies.

Finding a policy that maximizes a rank-dependent SWF is a non-trivial problem without

a closed-form solution even if the conditional distributions of potential outcomes (P (Y0|X)

and P (Y1|X)) are known.1 Under an additive SWF
(∫

u(Yi)di
)

(averaging either outcomes

Yi or, more generally, their non-linear transformations u(Yi)), it is optimal to assign for

each subgroup the treatment with the highest conditional mean E(u(Yd)|X). In contrast,

a rank-dependent SWF is non-decomposable across subgroups, as the ranking of treatment

assignment rules for a given covariate value may change depending on the treatment assign-

ment of other subgroups (see Section B in the online supplement).

We show in Theorem 2.1 that an equality-minded rank-dependent SWF is always maxi-

mized by a non-randomized treatment rule (assigning the same treatment to all individuals

with identical covariates). This result greatly simplifies the space of treatment rules that

need to be considered. It also allows us to index treatment rules by their decision sets

G ⊂ X , denoting all values of the covariates {X ∈ G} for which treatment 1 is assigned.

1In a slight abuse of notation typical in the treatment effects literature, a single subscript on Y will be

used to denote either potential outcomes of different treatments (Y0, Y1, or Yd) or to sample realizations

Yi of the random variable Y ≡ (1 − D)Y0 + DY1, which denotes the outcome of treatment Di assigned to

individual i.
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Our aim is to estimate from the sample data a treatment assignment rule Ĝ belonging

to a constrained (but generally large) set of feasible policies G, which is a collection of non-

randomized treatment rules indexed by their decision sets. Policy makers often face legal,

ethical, or political constraints that restrict how individual characteristics can be used to

determine treatment assignment. One of the advantages of our framework is that it easily

incorporates such exogenous restrictions. Our analytical results also require G to satisfy a

certain complexity restriction (a finite VC-dimension) to prevent overfitting. Kitagawa and

Tetenov (2018a) argue that this is not restrictive for many public policy applications and

provide rich examples of treatment rule classes that satisfy this complexity restriction.

We propose estimating the treatment rule Ĝ by maximizing a sample analog of W (G), the

SWF evaluated at the population distribution of Y that would realize if treatment assignment

rule G is implemented. The general idea of estimating a policy by maximizing an empirical

welfare criterion is in line with the method developed by Kitagawa and Tetenov (2018a) for

the additive welfare case, but construction of the sample analog of W (G) and derivation of

its properties are substantially different and more challenging. Following the terminology

suggested there, we refer to the method proposed in the current paper for rank-dependent

SWFs as equality-minded Empirical Welfare Maximization (EWM).

We evaluate the statistical performance of Ĝ in terms of regret EPn

[
sup
G∈G

W (G)−W (Ĝ)

]
,

which is the average welfare loss relative to the maximum welfare achievable in G with

respect to the sampling distribution P n of a size n sample. We derive a non-asymptotic

and distribution-free upper bound on regret in terms of the sample size n and a measure of

complexity of G, and show that it converges to zero at n−1/2 rate. We also show that this rate

is minimax optimal over a minimally constrained class of population distributions, ensuring

that no other data-driven treatment rule can lead to a faster welfare loss convergence rate

uniformly over the class of distributions.

The remainder of this paper is organized as follows. Section 1.1 provides an overview

of related literature. Section 2 discusses the properties of equality-minded rank-dependent

social welfare functions and their application to the analysis of treatment choice. In Section

3, we introduce the general analytical framework and show the convergence rate properties

of the EWM rule for rank-dependent welfare. Section 4 provides extensions of the model
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that incorporate cost or capacity constraints and that allow the sampled population to be

only a subset of the full population on which social welfare is defined. In Section 5, we

apply our method to the experimental data from the National JTPA study. Main proofs are

collected in the appendix. An online supplement contains additional proofs, examples, and

extensions.

1.1 Related Literature

The analysis of statistical treatment rules was pioneered by Manski (2004), and is a growing

area of research in econometrics. Important recent developments can be found in Dehejia

(2005), Hirano and Porter (2009), Stoye (2009, 2012), Chamberlain (2011), Bhattacharya and

Dupas (2012), Tetenov (2012), Kasy (2016, 2018), Kitagawa and Tetenov (2018a), Mbakop

and Tabord-Meehan (2018), and Athey and Wager (2018), among others. All the existing

works on treatment choice except for Kasy (2016) posit an additive welfare criterion as

the objective function of the policy maker. Motivated by policy concerns about economic

inequality, the current paper instead analyzes the treatment choice problem for a class of

rank-dependent social welfare functions that embody inequality aversion.

The main feature distinguishing the current analysis from the EWM approach for the

additive welfare case considered in Kitagawa and Tetenov (2018a) is that the rank-dependent

welfare criterion is non-decomposable. Computing the empirical welfare criterion then re-

quires that the whole distribution of outcomes that would be generated by each policy is

estimated first, before a nonlinear transformation is applied to this distribution estimate.

This problem has not been previously considered in econometrics nor in the machine learn-

ing and statistics literatures on empirical risk minimization problems (Vapnik (1998)), where

the empirical risk criterion always takes the form of a sample average (with the exception of

Wang et al. (2018), who maximize one specific quantile of the outcome distribution). Another

novel technical contribution of this paper is that we allow outcomes to be unbounded (which

is important for analysis of economic outcomes like earnings) with only a weak restriction

on the tail of the potential outcome distribution.

Kasy (2016) analyzes treatment choice for a class of social welfare functions including

rank-dependent social welfare. Our approach differs from his in several aspects. First, Kasy
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(2016) considers a linear approximation of the rank-dependent welfare function around a

status-quo policy in order to discuss (partial) identification of a welfare-improving local policy

change. We instead focus on a globally optimal policy without invoking approximations.

Second, we assume that the welfare criterion is point-identified by the sampling process,

while Kasy (2016) focuses on partial identification of the welfare criterion and construction of

the social planner’s incomplete preference ordering over policies. Third, we study estimation

of an optimal policy and examine optimality of the estimator in terms of welfare regret

convergence rate, while Kasy (2016) studies asymptotically valid inference on the welfare

rankings.

Aaberge et al. (2017) estimate a rank-dependent social welfare function of two policy

alternatives: with and without uniform implementation of the treatment. Firpo and Pinto

(2016) estimate the impact of uniform implementation of the treatment on measures of

inequality, including the Gini coefficient. In contrast, the focus of the current paper is on

estimating the optimal treatment rule from a large class of individualized assignment rules.

We consider social welfare functions that satisfy the axiom of anonymity, i.e., social wel-

fare functions that are functionals of the distribution of outcomes after treatment assignment

and that are indifferent to reshuffling of the outcomes between individuals. Thus, our objec-

tive does not depend on the distribution of individual treatment effects P (Y1 − Y0), which

has also received attention recently in the program evaluation literature (Heckman et al.

(1997b), Firpo and Ridder (2008), Fan and Park (2010)).

Building social welfare functions satisfying the Pigou-Dalton principle of transfers (that

a transfer of income from a higher ranked individual to a lower ranked individual that does

not change their ranks is always desirable) is one of the central themes in the literature of

inequality measurement and welfare economics (see Cowell (1995, 2000), Lambert (2001)).

Currently, there are two widely-used classes of social welfare functions that meet the Pigou-

Dalton principle. The first is the class of Atkinson-type SWFs (Atkinson (1970)), W (F ) =∫∞
0
U(y)dF (y), where F (y) is the cumulative distribution function (cdf) of the outcome and

U(·) is a concave non-decreasing function. Since the Atkinson-type social welfare function

is linear in F , the EWM approach of Kitagawa and Tetenov (2018a) can be readily applied

by defining the outcome observations as U(Y ). The second class, which is this paper’s main
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focus, is the class of rank-dependent social welfare functions introduced by Mehran (1976),

Blackorby and Donaldson (1978) and Weymark (1981) and axiomatized by Yaari (1988). The

key axiom of Yaari (1988) that distinguishes rank-dependent social welfare from Atkinson-

type social welfare is Invariance under a Rank-Preserving Lump-Sum Change of Incomes at

the Upper Tail, which means that the preference ordering between two income distributions

F and F ′ is invariant to any fixed lump-sum increase (decrease) in income of all those

above (below) the τ -th quantile of F and F ′ for any τ ∈ (0, 1). On the other hand, the

key axiom that characterizes the Atkinson-type social welfare is the independence axiom:

the preference ordering between F and F ′ is invariant to any mixing with another common

income distribution.2 These rich and insightful works in welfare economics have not yet been

well linked to econometrics and empirical analysis for policy design. One of the main aims

of the current paper is to establish a link between these two important literatures.

2 Treatment Choice with Equality-Minded Social Wel-

fare Functions

We call a SWF equality-minded if it satisfies the Pigou-Dalton Principle of Transfers : a

transfer of income from a higher ranked individual to a lower ranked individual is always

desirable when it does not change their ranks in the income distribution. The equality-

minded SWFs analyzed in this paper are the rank-dependent SWFs with decreasing welfare

weights (also called generalized Gini SWFs), introduced by Mehran (1976) and Weymark

(1981) and axiomatized by Yaari (1988). An equality-minded rank-dependent SWF admits

the following representation:

WΛ(F ) ≡
∫ ∞

0

Λ(F (y))dy, (2.1)

where Λ(·) : [0, 1] → [0, 1] is a non-increasing, non-negative function with Λ(0) = 1 and

Λ(1) = 0. A rank-dependent SWF satisfies the Pigou-Dalton Principle of Transfers if and

2As noted in Machina (1982), the rank-dependent social welfare function generalizes the Atkinson-type

social welfare exactly as rank-dependent expected utility theory generalizes the classical von Neumann-

Morgenstern expected utility theory (Machina (1982) and Quiggin (1982)) by relaxing the controversial

independence axiom.
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only if Λ(·) is convex.

The term rank-dependent is due to an equivalent representation of (2.1) as a weighted

sum of outcomes. Given that a convex Λ(·) is almost everywhere differentiable, we can apply

integration by parts to equivalently express WΛ(F ) as

WΛ(F ) =

∫ 1

0

F−1(τ)ω(τ)dτ , (2.2)

where F−1(τ) ≡ inf{y : F (y) ≥ τ} is the τ -th quantile of the outcome distribution and

ω(τ) ≡ d[1−Λ(τ)]
dτ

. Thus WΛ(F ) is a weighted average of outcomes Y , where ω(τ) specifies

the rank-specific welfare weight assigned to individuals with outcomes at the τ -th quantile.

If the SWF is equality-minded then Λ(·) is convex, hence ω(·) is non-increasing and assigns

larger welfare weights to individuals with lower outcomes.

Throughout the paper, we consider equality-minded SWFs satisfying the following as-

sumption:

Assumption 2.1 (SWF).

The policy-maker’s SWF has representation (2.1), where Λ(·) : [0, 1] → [0, 1] is a non-

increasing, convex function with Λ(0) = 1, Λ(1) = 0, and its right derivative at the origin

is finite: |Λ′(0)| <∞.

An important family of social welfare functions satisfying Assumption 2.1 is the extended

Gini family considered in Donaldson and Weymark (1980, 1983) and Aaberge et al. (2017):

Wk(F ) ≡
∫ ∞

0

(1− F (y))k−1dy =

∫ ∞
0

Λk(F (y))dy =

∫ 1

0

F−1(τ)ωk(τ)dτ , (2.3)

where Λk(τ) ≡ (1 − τ)k−1 and the welfare weight function is ωk(τ) ≡ (k − 1)(1 − τ)k−2.

Extended Gini social welfare functions are equality-minded for k > 2. Setting k = 2 yields

the additive welfare function W2(F ) =
∫∞

0
(1 − F (y))dy = E(Y ), which is not equality-

minded.

The standard Gini social welfare function (Blackorby and Donaldson, 1978, Weymark,

1981) corresponds to k = 3 in the extended Gini family, with Λ3(τ) = (1 − τ)2 and welfare

weights ω3(τ) = 2(1− τ). It could also be written as

WGini(F ) = E(Y )(1− IGini(F )), (2.4)
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where IGini(F ) = 1−
∫ 1
0 F

−1(τ)·2(1−τ)dτ

E(Y )
is the widely-used Gini inequality index.

Assumption 2.1 implies that the rank-specific weight function ω(·) defined in (2.2) does

not asymptote at the origin, i.e., the welfare weight assigned to the lowest rank is bounded.

This restriction rules out SWFs that closely approximate the Rawlsian social welfare.

We consider the problem of choosing a policy that assigns individuals to one of two

treatments d ∈ {0, 1} in order to maximize the chosen SWF. A treatment assignment rule

δ : X → [0, 1] specifies the proportion of individuals with observable pre-treatment covariates

X ∈ X ⊂ Rdx who will be assigned to treatment 1 by the policy-maker. The policy randomly

assigns individuals with covariates X to the two treatments with probabilities 1− δ(X) and

δ(X)). The population distribution of outcomes induced by treatment rule δ has cdf

Fδ(y) ≡
∫
X

[
(1− δ(x))FY0|X=x(y) + δ(x)FY1|X=x(y)

]
dPX(x), (2.5)

where Y0 and Y1 denote the potential outcomes of the two treatments with conditional

distributions FY0|X and FY1|X given X and PX is the marginal distribution of X.

If the population distribution of (Y0, Y1, X) were known, the optimal policy maximizing

the social welfare function (2.1) would be

δ∗ ∈ arg max
δ
WΛ(Fδ). (2.6)

For the additive welfare function (the mean of Y ), the welfare maximization problem sim-

plifies to

δ∗util ∈ arg max
δ

∫
X

[(1− δ(x))E(Y0|X = x) + δ(x)E(Y1|X = x)] dPX(x). (2.7)

This social welfare is additive across covariates and depends on the outcome distributions

only through their conditional means E(Yd|X). Then the optimal policy is

δ∗util = 1 {x ∈ X : E(Y1|X = x) > E(Y0|X = x)} .

In contrast, the optimal rule for a rank-dependent welfare function (2.1) depends on the

whole conditional distributions of potential outcomes FY0|X and FY1|X , not only on their

means. The optimal rule can differ from the one maximizing an additive welfare if there is

no first-order stochastic dominance relationship between FY0|X and FY1|X for some covariate

values.
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Even with the knowledge of the distribution of (Y0, Y1, X), a simple characterization of

the optimal rule does not seem available for rank-dependent SWFs. The following theorem

mitigates this complication by substantially reducing the set of candidate treatment rules

that need to be considered.

Theorem 2.1. If WΛ(·) satisfies Assumption 2.1, then for every measurable treatment rule

δ : X → [0, 1], there exists a non-randomized treatment rule δG(x) ≡ 1{x ∈ G} for some

Borel set G ⊂ X , such that WΛ (FδG) ≥ WΛ(Fδ).

If all upper level sets of δ belong to a collection G of Borel subsets of X :

{x : δ(x) ≥ t} ∈ G, ∀t ∈ R,

then there exists δG(x), G ∈ G, such that WΛ (FδG) ≥ WΛ(Fδ).

Proof. See Appendix A.

This theorem shows that a treatment assignment rule maximizing an equality-minded

rank-dependent welfare is non-randomized (assigns all individuals with the same covariates

to the same treatment). We can therefore restrict our search for an optimal policy to the set

of non-randomized rules that can be succinctly characterized by their decision sets G ⊂ X .

Decision set G determines the group of individuals {X ∈ G} to whom treatment 1 is assigned.

With abuse of notation, we denote the welfare of a non-randomized treatment rule with

decision set G by WΛ(G), suppressing the cumulative distribution function in its argument,

WΛ(G) ≡WΛ(FG),

FG(y) ≡
∫
X

[
FY0|X=x(y)1{x /∈ G}+ FY1|X=x(y)1{x ∈ G}

]
dPX(x). (2.8)

Our goal is to estimate from the sample data a treatment assignment rule that attains the

maximum level of social welfare sup
G∈G

WΛ(G) over the set of feasible policies G ≡ {G ⊂ X},

which is a collection of non-randomized treatment rules (subsets of the covariate space X ).

An important feature of our empirical welfare maximization approach is that the complexity

of G is constrained by a finite Vapnik-Cervonenkis (VC) dimension (defined in the Ap-

pendix).

10



Assumption 2.2 (VC).

The class of decision sets G has a finite VC-dimension v <∞.

The VC-dimension is a restriction on the complexity of the set of feasible policies. With-

out it, maximizing a sample analog of WΛ(G) over G can lead to arbitrarily complicated

policies (overfitting) and prevent us from learning the optimal policy on the basis of a finite

number of observations. It does not require G to be finite and allows for very large classes

of treatment rules. For example, a class of treatment rules defined by a linear equation in

functions of x, G ≡
{
G = {x :

∑m
i=1 βjfj(x) ≥ 0}, β ∈ Rm

}
has a finite VC-dimension. See

Kitagawa and Tetenov (2018a) for other examples of classes G that satisfy Assumption 2.2.

An example of G that does not satisfy Assumption 2.2 is the class of all monotone treatment

rules G ≡ {G = {(x1, x2) ∈ R2 : x2 ≥ f(x1)}, f : R→ R increasing} considered by Mbakop

and Tabord-Meehan (2018) in the additive welfare case.

3 EWM for Equality-Minded Welfare

We proceed to propose our method of estimating the treatment rule in finite samples and

analyze its properties.

The population from which the sample is drawn is characterized by P , a joint distribution

of (Y0i, Y1i, Di, Xi), where Xi ∈ X ⊂ Rdx refers to observable pre-treatment covariates of

individual i, Y0i, Y1i ∈ R+ are the potential outcomes of treatments 0 and 1, and Di ∈ {0, 1}

is a binary indicator of the individual’s experimental treatment. The observed experimental

outcome is Yi = (1−Di)Y0i +DiY1i.

The data is a size n random sample from P of observations Zi = (Yi, Di, Xi). Based on

this data, the policy-maker has to choose a conditional treatment rule G ∈ G that determines

whether individuals with covariates X in the target population will be assigned to treatment

0 or to treatment 1. The following are our maintained assumptions about the class P of

population distributions of (Y0, Y1, D,X):

Assumption 3.1.

(UCF) Unconfoundedness: (Y0, Y1) ⊥ D|X.
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(TC) Tail Condition: There exists Υ <∞ such that for all P ∈ P∫ ∞
0

√
P (Yd > y)dy ≤ Υ. (3.1)

(SO) Strict Overlap: There exist κ ∈ (0, 1/2] such that the propensity score satisfies e(x) ∈

[κ, 1− κ] for all x ∈ X .

These assumptions generally hold if the data come from an experiment with randomized

treatment assignment. In observational studies, on the other hand, Unconfoundedness rules

out situations in which the observed treatment assignments depend on subjects’ unobserved

characteristics that can be associated with their potential outcomes. Strict Overlap can also

be violated in an observational study if only one of the treatments is assigned in the sampling

process for some covariate values. We do not constrain any feature of the joint distribution

of (Y0, Y1, X) except that the distributions of Y0 and Y1 satisfy the tail condition (TC). A

sufficient condition for (TC) is that

sup
P∈P, d∈{0,1}

E[Y 2+∆
d ] <∞ (3.2)

for some ∆ > 0. The outcome variable and the covariates can be discrete, continuous, or

their combination, and the support of X does not have to be bounded.

Throughout the main text we maintain the assumption that the propensity score e(X) ≡

P (D = 1|X) is known, as is usually the case in experimental data. Section C in the Online

Supplement extends the analysis to observational data for which the propensity score is

unknown and needs to be estimated.

We estimate the treatment rule by maximizing a sample analog of the population SWF.

The equality-minded EWM treatment rule Ĝmaximizes a sample analog ŴΛ(G) of the welfare

criterion over the set of feasible rules G ∈ G. The unknown outcome distribution FG induced

by treatment rule G in (2.8) could be estimated by

F̂G(y) ≡ 1− 1

n

n∑
i=1

[
Di

e(Xi)
· 1{Xi ∈ G}+

1−Di

1− e(Xi)
· 1{Xi /∈ G}

]
· 1{Yi > y}. (3.3)

Under Assumption 3.1 (UCF), F̂G(y) is an unbiased estimator of FG(y).
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The sample analog of welfare (equation (2.1)) is defined as3

ŴΛ(G) ≡
∫ ∞

0

Λ(F̂G(y) ∨ 0)dy. (3.4)

The equality-minded EWM treatment rule is then

Ĝ ∈ arg max
G∈G

ŴΛ(G). (3.5)

We also consider properties of the normalized equality-minded EWM rule

ĜR ∈ arg max
G∈G

ŴR
Λ (G), where ŴR

Λ (G) ≡
∫ ∞

0

Λ(F̂R
G (y))dy, (3.6)

using a normalized CDF sample analog

F̂R
G (y) ≡


1{y ≥ min

1≤i≤n
Yi} if F̂G(−∞) = 1,

1− 1−F̂G(y)

1−F̂G(−∞)
if F̂G(−∞) < 1,

(3.7)

which always yields a proper CDF.4 The ranking of treatment rules by the normalized

criterion ŴR
Λ (G) is invariant to positive affine transformations of outcomes Y , whereas the

ranking by ŴΛ(G) is not.

3.1 Rate Optimality of EWM

The next theorem derives a uniform upper bound of the average welfare loss of the EWM

rule.

Theorem 3.1. Under Assumptions 2.1 and 2.2, the average welfare loss of treatment rules

Ĝ and ĜR satisfies

sup
P∈P

EPn

[
sup
G∈G

WΛ(G)−WΛ(Ĝ)

]
≤ C|Λ′(0)|Υ

κ

√
v

n
(3.8)

3The maximum (∨) of F̂G(y) and 0 is taken because F̂G(y) may take values smaller than 0, for which Λ(·) is

not defined. The summands in (3.3) are non-negative, so F̂G(y) ≤ 1 for all y. F̂G(y) = 1 for all y ≥ max
1≤i≤n

Yi.

F̂G may not be a proper CDF because lim
y→−∞

F̂G(y) = 1− 1
n

∑n
i=1

[
Di

e(Xi)
· 1{Xi ∈ G}+ 1−Di

1−e(Xi)
· 1{Xi /∈ G}

]
may be either below or above zero in finite samples.

4Note that 1− F̂R
G (y) = 1

n

n∑
i=1

[
Di

e(Xi)
·1{Xi∈G}+

1−Di
1−e(Xi)

·1{Xi /∈G}
1
n

∑n
i=1

(
Di

e(Xi)
·1{Xi∈G}+

1−Di
1−e(Xi)

·1{Xi /∈G}
)] · 1{Yi > y}. This is similar to the

idea of normalizing propensity score weights recommended for the estimation of the average treatment effect

(Imbens, 2004).
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for all n > 1, and

sup
P∈P

EPn

[
sup
G∈G

WΛ(G)−WΛ(ĜR)

]
≤ |Λ′(0)|Υ

κ

(
CR

1

√
v

n
+ 4ne−C

R
2 κ

2n

)
(3.9)

for all n > CR
3

(
1−κ
κ

)2
v, where P is the class of all distributions satisfying Assumption 3.1

and C,CR
1 , C

R
2 , C

R
3 > 0 are universal constants.

Proof. The proof of (3.8) is in Appendix A. The proof of (3.9) is in the Online Supplement.

This theorem shows that for a large class of data generating processes characterized by

Assumption 3.1, the welfare of the equality-minded EWM rule is guaranteed to converge

to the maximal attainable welfare no slower than at n−1/2 rate (the second term in bound

(3.9) is of a lower order). The uniform convergence rate of n−1/2 coincides with that of the

EWM rule for the additive welfare shown in Theorem 2.1 of Kitagawa and Tetenov (2018a).

This is a nontrivial result, given that the rank-dependent welfare function depends on the

whole conditional distributions of the potential outcomes given covariates, rather than only

on their conditional means, as is the case for the additive welfare criterion.

The next theorem provides a universal lower bound for the worst-case average welfare

loss of any treatment rule.

Theorem 3.2. Suppose that Assumptions 2.1 and 2.2 hold with v ≥ 2, then for any non-

randomized treatment choice rule Ĝ that is a function of the sample, and for any τ ∗ ∈ (0, 1]

at which Λ(·) is differentiable, it holds

sup
P∈P

EPn

[
sup
G∈G

WΛ(G)−WΛ(Ĝ)

]
≥ e−4

2
Υ |Λ′(τ ∗)|

√
τ ∗

√
v − 1

n
for all n ≥ 4

v − 1

τ ∗
, (3.10)

where P is the class of all distributions satisfying Assumption 3.1.

Proof. See the Online Supplement.

Since Λ(·) is convex and |Λ′(0)| > 0, there also exists some τ ∗ > 0 for which |Λ′(τ ∗)| > 0.

Hence the bound (3.10) is always positive for some τ ∗ > 0. A comparison of the lower bound

of this theorem with the welfare loss upper bound of the EWM rule obtained in Theorem 3.1

shows that the EWM rule is minimax rate optimal over the class of data generating processes

satisfying Assumption 3.1. We can therefore claim that in the absence of any additional
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restrictions other than Assumption 3.1, no other data-driven procedure for obtaining a non-

randomized rule can outperform the EWM rule in terms of the uniform convergence rate

over P . This optimality claim is analogous to that of the EWM rule for the additive welfare

case (Theorems 2.1 and 2.2 in Kitagawa and Tetenov (2018a)), and the minimax optimal

rate attained by the equality-minded EWM rule is the same as the optimal rate in the

additive welfare case. It is remarkable to see that even in the absence of any analytical

characterization of the true optimal assignment rule in terms of the population distribution

of (Y0, Y1, X), maximizing the empirical welfare leads to a policy that, if implemented, is

guaranteed to reach the maximum attainable social welfare at the minimax optimal rate.

It is also worth noting that the VC-dimension of G appears in the same order both in

the upper and lower bound expressions of Theorems 3.1 and 3.2. Since these bounds are

non-asymptotic, we can let v increase with the sample size, and we can still conclude the

minimax rate optimality of the equality-minded EWM rule. This insight is similar to the

EWM rule for the additive welfare case (Remark 2.6 in Kitagawa and Tetenov (2018a)).

4 Extensions

4.1 Social Welfare is Defined on a Population Larger than the

Sampled Population

One of the distinguishing features of rank-dependent social welfare is that it is not additive

over subpopulations (see Section B in the Online Supplement for an illustration). If the

subpopulation for which the policy intervention takes place (e.g., unemployed workers) is

only a subset of the whole population on which the rank-dependent SWF is defined (e.g.,

the population of a country), it is important to explicitly take into account the outcome

distribution for the rest of the population in estimating the optimal assignment rule.

Suppose that the social welfare function is defined on a population with distribution J

that is a mixture of two subpopulations with distributions F and H:

J = ηF + (1− η)H, η ∈ (0, 1). (4.1)

Let F be the outcome distribution on the targeted subpopulation from which the experimen-
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tal data are sampled and on which the estimated treatment policy is to be implemented. Let

H be the outcome distribution for the rest of the population (excluded from the sampling

process and unaffected by the chosen treatment assignment rule). The mixture weight η rep-

resents the size of subpopulation F . For simplicity, we assume that η and H are known to

the social planner. We also assume that the outcome distribution H is invariant to the treat-

ment assignment policy applied to subpopulation F , e.g., there are no spillover or general

equilibrium effect across F and H.

Implementing treatment assignment rule {X ∈ G} on subpopulation F leads to full

population welfare equal to

WΛ(JG) ≡
∫ ∞

0

Λ(ηFG(y) + (1− η)H(y))dy,

where FG(·) is the cdf defined in (2.8). The empirical welfare maximization method in this

case consists of maximizing a sample analog of WΛ(JG),

Ĝ ∈ arg max
G∈G

WΛ(ηF̂G + (1− η)H),

where F̂G is defined in (3.3).

The uniform convergence proof of Theorem 3.1 can be easily extended to this case, the

only change being the proportionality of the bound to η.

Corollary 4.1. Under Assumptions 2.1, 2.2 and 3.1,

sup
P∈P

EPn

[
sup
G∈G

WΛ(JG)−WΛ(JĜ)

]
≤ ηC|Λ′(0)|Υ

κ

√
v

n
, (4.2)

where C > 0 is a universal constant defined in Theorem 3.1.

4.2 Cost of Treatment

In the preceding sections we did not take into account the cost of treatment even though

cost differences among treatments are often an important consideration in practice. In this

section we discuss how to take the cost of treatment into account in the estimation of welfare

maximizing treatment assignment policies.

Let 0 ≤ c(x) <∞, x ∈ X , be the cost of treatment 1 for a subject whose observable char-

acteristics are x. We assume that treatment 0 is cost-free and c(·) is known. For the additive
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social welfare function, we can easily incorporate treatment costs into the EWM criterion

by subtracting the per-capita cost of treatment C(G) ≡
∫
G
c(x)dPX(x) from Ŵ (G). The

additive social welfare criterion depends only on the average treatment cost, it is invariant

to assumptions about who pays the cost. For rank-dependent social welfare this invariance

does not hold, hence we have to be explicit about who bears the cost in the construction of

the social welfare criterion. We illustrate this using two cost allocation scenarios.

In the first scenario, assume that the outcome variable is income and the cost of treatment

is self-financed by each recipient of the treatment. Specifically, the income of individuals

assigned to treatment 1 (individuals with X ∈ G) will be reduced by the full cost of their own

treatment c(X). The transformed potential outcomes in this scenario are Ỹ1i ≡ Y1i+c̄−c(Xi)

and Ỹ0i ≡ Y0i + c̄. We add the constant c̄ ≡ supx∈X c(x) <∞ to all outcomes to keep them

non-negative in line with Assumption 3.1 (TC). The welfare ranking of policies is unchanged

when a constant is added uniformly to all outcomes.

The rank-dependent SWF of policy G with self-financed treatment cost is

W sf
Λ (G) ≡

∫ ∞
0

Λ(F sf
G (y))dy,

F sf
G (y) ≡

∫
X

[
FỸ0|X=x(y)1{x /∈ G}+ FỸ1|X=x(y)1{x ∈ G}

]
dPX(x), (4.3)

where FỸ0|X=x(·) and FỸ1|X=x(·) are the cdfs of the transformed potential outcomes. An

empirical analog for W sf (G) can be obtained by replacing F̂G(y) in (3.4) by

F̂G(y) ≡ 1− 1

n

n∑
i=1

[
Di

e(Xi)
· 1{Xi ∈ G}+

1−Di

1− e(Xi)
· 1{Xi /∈ G}

]
· 1{Ỹi > y}, (4.4)

where Ỹi ≡ Yi + c̄ − Di · c(Xi). Since this modification does not affect the validity of

Assumption 3.1, the EWM rule with self-financed treatment cost attains the uniform welfare

loss upper bounds of Theorem 3.1 with Υ + c̄ in place of Υ.

In the second scenario, suppose that the treatment cost is financed by all of the popula-

tion members equally via a lump-sum transfer. The average per-capita treatment cost C(G)

is subtracted from every individual’s income regardless of their covariates and assigned treat-

ment. Using representation (2.2), the rank-dependent SWF with equal lump-sum treatment

costs can be expressed as

W ls
Λ (G) ≡

∫ 1

0

[F−1
G (τ) + c̄− C(G)]ω(τ)dτ = W (G) + c̄− C(G), (4.5)
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using the fact that
∫ 1

0
ω(τ)dτ = Λ(0) − Λ(1) = 1 and adding c̄ to ensure non-negative

outcomes. Per-capita treatment cost of policy G could be estimated using its sample analog

Ĉ(G) ≡ 1
n

∑n
i=1 c(Xi) · 1{Xi ∈ G} and the EWM rule is obtained by maximizing Ŵ ls

Λ (G) ≡

ŴΛ(G) + c̄− Ĉ(G) over G ∈ G.

In this paper we do not consider the joint optimization of the treatment assignment and

cost allocation. However, the comparison of W sf
Λ (G) and W ls

Λ (G) shows that the allocation

of treatment costs across the population can be used as an additional vehicle of policy

intervention to increase a rank-dependent SWF.

4.3 Capacity-Constrained Treatment

Another practical concern ruled out in the preceding sections is a capacity constraint lim-

iting the proportion of population that can be assigned to treatment. Suppose that the

proportion of the target population that could receive treatment 1 cannot exceed K ∈ (0, 1).

If PX is unknown, then policies that seem to satisfy the capacity constraint based on the

sample estimates of PX(G) may not actually satisfy it in the population. The analysis of the

welfare loss needs to take into account what happens if the proposed policy is infeasible. For

tractability, we continue to restrict attention only to non-randomized treatment rules (the

result in Theorem 2.1 need not hold with a capacity constraint).

For the additive welfare case, Kitagawa and Tetenov (2018a) proposed a capacity-constrained

EWM procedure assuming that if a proposed treatment rule G violates the capacity con-

straint (PX(G) > K) then the scarce treatment is randomly rationed to a fraction K
PX(G)

of

individuals with X ∈ G independently of (Y0, Y1, X). This random rationing approach can

be straightforwardly extended to the EWM for the rank-dependent social welfare.

With the capacity constraint and random rationing, the cdf of outcomes generated by

policy G can be written as

FK
G (y) =

∫
X

 FY0|X=x(y) +

min
{

1, K
PX(G)

}(
FY1|X=x(y)− FY0|X=x(y)

)
· 1{x ∈ G}

 dPX(x). (4.6)

Hence the social welfare under the capacity constraint and random rationing is WK
Λ (G) ≡
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∫∞
0

Λ(FK
G (y))dy. Its sample analog can be constructed by replacing F̂G(y) in (3.4) with

F̂K
G (y) ≡ 1− 1

n

n∑
i=1

 1−Di

1−e(Xi)
+

min
{

1, K
PX,n(G)

}(
Di

e(Xi)
− 1−Di

1−e(Xi)

)
1{Xi ∈ G}

 · 1{Yi > y}, (4.7)

where PX,n(G) ≡ 1
n

n∑
i=1

1{Xi ∈ G} is a sample analog of PX(G).

Proposition 4.1 establishes a finite sample bound for the capacity-constrained equality-

minded EWM rule similar to the bound in Proposition 3.1.

Proposition 4.1. Under Assumptions 2.1, 2.2 and 3.1,

sup
P∈P

EPn

[
sup
G∈G

WK
Λ (G)−WK

Λ (ĜK)

]
≤
(
CK1

K
+ CK2

)
|Λ′(0)|Υ

κ

√
v

n
, (4.8)

where CK1, CK2 > 0 are universal constants.

Proof. See the Online Supplement.

5 Empirical Illustration

To illustrate equality-minded empirical treatment choice, we apply our method to the ex-

perimental data from the National Job Training Partnership Act (JTPA) Study. A detailed

description of the study and an assessment of average program effects for five large subgroups

of the target population is found in Bloom et al. (1997). The study randomized whether

applicants were eligible to receive a mix of training, job-search assistance, and other services

for a period of 18 months. It collected background information about the applicants prior

to random assignment, as well as administrative and survey data on applicants’ earnings in

the 30-month period following assignment. Our sample consists of 9,223 observations with

available data on years of education and pre-program earnings from the sample of adults (22

years and older) used in the original evaluation of the program and in subsequent studies

(Bloom et al., 1997, Heckman et al., 1997a, Abadie et al., 2002). The probability of being

assigned to the treatment was two thirds in this sample.

For this illustration, total individual earnings in the 30-month period following program

assignment serve as the measure of income. We use three social welfare functions from the
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Figure 1: Treatment rules from the quadrant class that maximize welfare functions from the

extended Gini family (including the additive welfare)

Figure 2: Treatment rules from the linear class that maximize welfare functions from the

extended Gini family (including the additive welfare)
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Table 1: Estimated representative income under alternative treatment rules that condition

on education and pre-program earnings.

Representative income Proportion

Treatment rule: Average (k=2) Gini (k=3) Gini (k=6) to be treated

Treat no one $15,311 $6,769 $1,561 0

Treat everyone $16,487 $7,423 $1,786 1

Quadrant class conditioning on years of education and pre-program earnings

Maximize average income $16,646 $7,490 $1,807 95%

Maximize standard Gini SWF (k=3) $16,462 $7,522 $1,828 80%

Maximize extended Gini SWF (k=6) $16,153 $7,388 $1,835 52%

Linear class conditioning on years of education and pre-program earnings

Maximize average income $16,670 $7,528 $1,820 96%

Maximize standard Gini SWF (k=3) $16,489 $7,537 $1,839 78%

Maximize extended Gini SWF (k=6) $16,154 $7,405 $1,852 51%

extended Gini family (2.3) with parameters k ∈ {2, 3, 6}. k = 2 corresponds to the additive

social welfare, which is not equality-minded. k = 3 corresponds to the standard Gini SWF

with welfare weights ω3(τ) = 2(1− τ) and k = 6 corresponds to an extended Gini SWF with

welfare weights ω6(τ) = 5(1−τ)4, which places even greater weight on low-ranked outcomes.

For simplicity, we consider only the distribution of earnings in the population sampled

for the experiment in the social welfare function. This embodies concerns about inequality

within the study population (JTPA-eligible economically disadvantaged adults). In practice,

policy makers are more likely to be concerned with inequality in the overall population, which

also includes individuals outside of the experiment’s sampling frame. Then the social welfare

function should be evaluated on the income distribution of the whole population of interest.

Pre-treatment variables on which we consider conditioning treatment assignment are

the individual’s years of education and earnings in the year prior to assignment. We do

not use race, sex, or age to condition treatment assignment. Though treatment effects
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Figure 3: Quantile treatment effects of the Gini welfare maximizing rule compared to the

additive welfare maximizing rule. Treatment rules from the quadrant class.

may vary with these characteristics, using them to condition treatment assignment is often

socially unacceptable and illegal. Education and earnings are verifiable characteristics, which

is also important for conditioning treatment assignment. The performance of treatment

rules that condition on unverifiable characteristics is hard to evaluate if individuals change

their self-reported characteristics to obtain their desired treatment assignment (either in the

experiment or when the policy is implemented).

Table 1 compares empirical estimates of social welfare measures (representative income)

for a few alternative treatment rules. First, we consider simple treatment rules that either

assign no one or everyone to treatment. Second, we consider empirically optimal rules from

the class of quadrant treatment rules:

GQ ≡
{
{x : s1(education− t1) > 0 & s2(prior earnings− t2) > 0} ,

s1, s2 ∈ {−1, 0, 1}, t1, t2 ∈ R

}
. (5.1)

This class of treatment eligibility rules is easily implementable and is often used in practice.

To be assigned to treatment according to such rules, an individual’s education and pre-

program earnings both have to be above (or below) some specific thresholds. Third, we
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consider empirically optimal rules from the class of linear treatment rules:

GLES ≡ {{x : β0 + β1 · education + β2 · prior earnings > 0} , β0, β1, β2 ∈ R} . (5.2)

The first column in Table 1 displays the estimated average income under each treatment

rule. The second column shows the standard Gini social welfare, expressed in terms of the

representative income of the policy (the income distribution generated by the policy is valued

as much as an equal income distribution with the representative income). The third column

shows the representative income under an extended Gini SWF with k = 6. The fourth

column lists the proportion of the target population assigned to treatment by each policy.

Figure 1 compares the quadrant treatment rules maximizing the average income, the

standard Gini SWF, and an extended Gini SWF (k = 6). Figure 2 compares the linear

treatment rules maximizing the same three criteria. The size of black dots shows the num-

ber of individuals with different covariate values. Many individuals would be assigned to

treatment by treatment rules maximizing any of the considered welfare functions, but there

are also notable differences. Treatment rules maximizing the standard Gini SWF target a

smaller proportion of the population, focusing on individuals with lowest pre-program earn-

ings. Treatment rules maximizing the more equality-minded extended Gini SWF assign even

fewer individuals to treatment. The estimated treatment rules change discontinuously with

the Gini parameter k. For example, the linear treatment rule maximizing the additive SWF

(k = 2) is also optimal for a range of other Gini parameters (k = 2.25, 2.5, 2.75), whereas the

linear rule maximizing the extended Gini SWF (k = 6) is also optimal for larger parameters

(k = 7, 8, 9).

Figure 3 explores the trade-off between treatment rules maximizing different social welfare

functions. We compute the income distributions generated by ĜAdd, the quadrant treatment

rule maximizing average income, and by ĜGini, the quadrant rule maximizing the Gini SWF.

The left panel displays the difference between the income distributions generated by these

treatment rules at each quantile: F̂−1

ĜGini
(τ) − F̂−1

ĜAdd
(τ). The average-maximizing treatment

rule ĜAdd generates an income distribution in which top quantiles (0.8 and higher) are

substantially higher than in the income distribution generated by the Gini treatment rule.

However, the distribution produced by the Gini treatment rule is better at midrange quantiles
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(0.4-0.8). The additive welfare criterion equally weights changes of all quantiles, hence it

favors ĜAdd.

The standard Gini welfare criterion, in contrast, uses decreasing welfare weights ω3(τ) =

2(1 − τ). The right panel of Figure 3 displays the same quantile differences between the

two income distributions weighted by ω3(τ). With these equality-minded welfare weights,

the gains offered by treatment rule ĜAdd at top quantiles get a lower welfare weight than

the gains offered by ĜGini in the middle of the income distribution, hence ĜGini is preferred

under the Gini SWF.

6 Conclusion

This paper develops the first method for individualized treatment choice when the policy

maker’s objective is to maximize an equality-minded rank-dependent SWF. We showed that

the average social welfare obtained by the estimated policy converges at the minimax-optimal

n−1/2 rate. The key restriction underlying these rate results is the complexity restriction (As-

sumption 2.2 (VC)) imposed on the set of feasible policies. This complexity restriction still

allows for rich classes of individualized treatment rules and offers a flexible and convenient

way to incorporate exogenous constraints that policy makers face in realistic settings of pol-

icy design. Our analytical results cover a general class of equality-minded rank-dependent

SWFs. Computing the equality-minded EWM rule is more challenging than in the additive

welfare case and so efficient computation remains an open question.

A Appendix: Lemmas and Proofs

Proof of Theorem 2.1. Denote an upper level set of δ(x) at level u ∈ [0, 1] by G(u) ≡ {x ∈

X : δ(x) ≥ u}. By noting that

δ(x) =

∫ 1

0

1{x ∈ G(u)}du,

we can rewrite Fδ(y) defined in (2.5) as

Fδ(y) =

∫
X

[∫ 1

0

1{x /∈ G(u)}du · FY0|X=x(y) +

∫ 1

0

1{x ∈ G(u)}du · FY1|X=x(y)

]
dPX(x)
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=

∫ 1

0

[∫
X

(
1{x /∈ G(u)} · FY0|X=x(y) + 1{x ∈ G(u)} · FY1|X=x(y)

)
dPX(x)

]
du

=

∫ 1

0

FG(u)(y)du,

where FG(u)(y) is the distribution of outcomes induced by treatment rule δG(u) ≡ 1{x ∈

G(u)}. By convexity of Λ(·), we obtain

Λ(Fδ(y)) ≤
∫ 1

0

Λ(FG(u)(y))du,

and this leads to

WΛ(Fδ) ≤
∫ 1

0

WΛ(FG(u))du ≡ W̄Λ. (A.1)

Suppose that W̄Λ −WΛ(FG(u)) > 0 for all u ∈ [0, 1]. Then the integral of this function

over the set u ∈ [0, 1] of positive measure must also be strictly positive,

0 <

∫ 1

0

(
W̄Λ −WΛ(FG(u))

)
du = W̄Λ − W̄Λ,

which is a contradiction. Therefore, there exists u∗ ∈ [0, 1] for whichWΛ(FG(u∗)) ≥ W̄Λ, hence

WΛ(FG(u∗)) ≥ WΛ(Fδ). If all upper level sets G(u) of δ belong to G, then also G(u∗) ∈ G.

The following five lemmas will be used in the proof of Theorem 3.1. The first lemma

establishes a quadratic upper bound for the function t−1/2 for t ≥ 1.

Lemma A.1. Let t0 > 1, define

g(t) ≡

 0 for t = 0,

t−1/2 for t ≥ 1,
(A.2)

h(t) ≡ t
−1/2
0 − 1

2
t
−3/2
0 (t− t0) + t−2

0 (t− t0)2. (A.3)

Then g(t) ≤ h(t) for t = 0 and for all t ≥ 1.

Proof of Lemma A.1. For t = 0,

h(0) = t
−1/2
0 +

1

2
t
−3/2
0 t0 + t−2

0 t20 =
3

2
t
−1/2
0 + 1 > 0 = g(0).
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Now consider the function (h− g)(t) and its derivatives for t ≥ 1:

(h− g)(t) = t
−1/2
0 − 1

2
t
−3/2
0 (t− t0) + t−2

0 (t− t0)2 − t−1/2,

(h− g)′(t) = −1

2
t
−3/2
0 + 2t−2

0 (t− t0) +
1

2
t−3/2,

(h− g)′′(t) = 2t−2
0 −

3

4
t−5/2, and

(h− g)′′′(t) =
15

8
t−7/2.

First, we will show that (h− g)(t) ≥ 0 for t ∈ [1, t0]. The function is positive at t = 1:

(h− g)(1) = t
−1/2
0 − 1

2
t
−3/2
0 (1− t0) + t−2

0 (1− t0)2 − 1

= t
−1/2
0 − 1

2
t
−3/2
0 +

1

2
t
−1/2
0 + t−2

0 − 2t−1
0 + 1− 1

=
1

2
t
−1/2
0

(
3− 4t

−1/2
0 − t−1

0 + 2t
−3/2
0

)
=

1

2
t
−1/2
0

(
1− t−1/2

0

)2 (
3 + 2t

−1/2
0

)
> 0

because t
−1/2
0 > 0. At t = t0, (h− g)(t0) = 0. We will next show that (h− g)(t) ≥ 0 between

t = 1 and t = t0.

The second derivative of (h− g) is positive at t = t0,

(h− g)′′(t0) = 2t−2
0 −

3

4
t
−5/2
0 = t−2

0

(
2− 3

4
t
−1/2
0

)
> 0 (A.4)

because t0 > 1 by assumption, hence t
−1/2
0 < 1. Since the third derivative is positive on

[1, t0], it follows that the second derivative is either positive everywhere on [1, t0], or it is

first negative on some interval [1, t2) and then positive on (t2, t0].

The first derivative of (h− g) equals zero at t = t0:

(h− g)′(t0) = −1

2
t
−3/2
0 + 2t−2

0 (t0 − t0) +
1

2
t
−3/2
0 = 0.

If the second derivative is positive everywhere on [1, t0], then the first derivative must be

negative everywhere on [1, t0). If the second derivative changes sign from negative to positive,

then the first derivative must either be negative on [1, t0) or it could switch sign from positive

on some interval [1, t1) to negative on (t1, t0).

Since (h−g)(1) > 0, (h−g)(t0) = 0, and (h−g) is either decreasing on [1, t0) or increasing

on [1, t1) and then decreasing on (t1, t0), it follows that (h− g)(t) ≥ 0 for all t ∈ [1, t0].
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Second, consider t > t0. At t = t0, (h − g)(t0) = 0, (h − g)′(t0) = 0, and the second

derivative is positive for all t > t0 because it is positive at t = t0 (A.4) and the third

derivative is positive for all t ≥ t0. It follows that (h− g)(t) > 0 for all t > t0.

The second lemma applies the bound in Lemma A.1 to the expectation of the function

g(·) of a binomial variable.

Lemma A.2. Suppose that random variable B ∼ Binomial(n, p) with np > 1 and g(·) is the

function defined in (A.2). Then

E[g(B)] < 2(np)−1/2.

Proof of Lemma A.2. Let h(·) be the function defined in (A.3) with t0 = np = E[B]. Lemma

A.1 shows that g(t) ≤ h(t) for all values in the support of B (t ∈ {0, 1, 2, . . . }), therefore

E[g(B)] ≤ E[h(B)] = E

[
(np)−1/2 − 1

2
(np)−3/2(B − E[B]) + (np)−2(B − E[B])2

]
= (np)−1/2 − 1

2
(np)−3/2 · 0 + (np)−2Var[B]

= (np)−1/2 + (np)−2(np)(1− p)

< (np)−1/2 + (np)−1 < 2(np)−1/2

because np > 1 implies p > 0 and (np)−1 < (np)−1/2.

Let xl ≡ {x1, . . . , xl} be a finite set with l ≥ 1 points in X . Given a class of subsets G in

X , define N(xl) = |{xl ∩G : G ∈ G}| be the number of different subsets of xl picked out by

G ∈ G. The VC-dimension v ≥ 1 of G is defined by the largest l such that supxl N(xl) = 2l

holds (Vapnik (1998)). See Vapnik (1998), Dudley (1999, Chapter 4), and van der Vaart

and Wellner (1996) for extensive discussions. Note that the VC-dimension is smaller by one

compared to the VC-index used to measure the complexity of a class of sets in empirical

process theory, e.g., van der Vaart and Wellner (1996).

Let Zi = (Yi, Di, Xi) ∈ Z, where Z ≡ R+ × {0, 1} × X . The subgraph of a real-valued

function f : Z 7→ R is the set

SG(f) ≡ {(z, t) ∈ Z × R : 0 ≤ t ≤ f(z) or f(z) ≤ t ≤ 0}.
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The third lemma is reproduced from Kitagawa and Tetenov (2018b) (Lemma A.1). It

establishes a link between the VC-dimension of a class of subsets in the covariate space X

and the VC-dimension of a class of subgraphs of functions on Z.

Lemma A.3. Let G be a VC-class of subsets of X with VC-dimension v <∞. Let g and h

be two given functions from Z to R. Then the set of functions from Z to R

F = {fG(z) = g(z) · 1 {x ∈ G}+ h(z) · 1 {x /∈ G} : G ∈ G}

is a VC-subgraph class of functions with VC-dimension less than or equal to v.

The fourth lemma, reproduced from Kitagawa and Tetenov (2018b) (Lemma A.4), is a

maximal inequalitiy that bounds the mean of a supremum of a centered empirical process

indexed by a VC-subgraph class of functions.

Lemma A.4. Let F be a class of uniformly bounded functions, i.e., there exists F̄ <∞ such

that ‖f‖∞ ≤ F̄ for all f ∈ F . Assume that F is a VC-subgraph class with VC-dimension

v <∞. Then, there is a universal constant C1 such that

EPn

[
sup
f∈F
|En(f)− EP (f)|

]
≤ C1F̄

√
v

n

holds for all n ≥ 1.

The last novel lemma allows us to prove Theorem 3.1 for unbounded outcomes.

Lemma A.5. Let F be a class of uniformly bounded functions, i.e., there exists F̄ <∞ such

that ‖f‖∞ ≤ F̄ for all f ∈ F . Assume that F is a VC-subgraph class with VC-dimension

v < ∞. Let (Y, Z) ∼ P , where Y ≥ 0 is a scalar (Y and Z may be dependent). Let

{(Yi, Zi)}ni=1 ∼ P n be an i.i.d. sample from P . Assume that∫ ∞
0

√
P (Y > y)dy ≤M. (A.5)

Then, there is a universal constant CT such that∫ ∞
0

EPn

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)1{Yi > y} − EP [f(Z)1{Y > y}]

∣∣∣∣∣
]
dy ≤ CT F̄M

√
v

n
(A.6)

holds for all n ≥ 1.
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Proof of Lemma A.5. We start by deriving upper bounds for each value of y, y > 0, on

EPn [ξn(y)] , ξn(y) ≡ sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)1{Yi > y} − EP [f(Z)1{Y > y}]

∣∣∣∣∣ .
First, consider values of y for which nP (Y > y) ≤ 1. Due to the envelope condition,∣∣∣∣ 1

n

n∑
i=1

f(Zi)1{Yi > y}
∣∣∣∣ ≤ F̄ · 1

n

n∑
i=1

1{Yi > y} for any f ∈ F , hence

EPn

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)1{Yi > y}

∣∣∣∣∣
]
≤ F̄ · EPn

[
1

n

n∑
i=1

1{Yi > y}

]
= F̄P (Y > y).

Also, EP [f(Z)1{Y > y}] = P (Y > y)EP [f(Z)|Y > y] ≤ F̄P (Y > y). It follows that

EPn [ξn(y)] ≤ EPn

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)1{Yi > y}

∣∣∣∣∣
]

+ sup
f∈F

EP [f(Z)1{Y > y}]

≤ 2F̄P (Y > y) ≤ 2F̄

√
P (Y > y)√

n
, (A.7)

where the last inequality holds because
√
nP (Y > y) ≤ 1.

Second, we consider values of y for which nP (Y > y) > 1. Define random variables

Ny ≡
n∑
i=1

1{Yi > y} for the number of observations in the data with Yi > y, then

1

n

n∑
i=1

f(Zi)1{Yi > y} =


0 if Ny = 0,

Ny

n
· 1
Ny

n∑
i=1

f(Zi)1{Yi > y} if Ny ≥ 1.

If Ny ≥ 1 then

ξn(y) = sup
f∈F

∣∣∣∣∣Ny

n
· 1

Ny

n∑
i=1

f(Zi)1{Yi > y} − P (Y > y)EP [f(Z)|Y > y]

∣∣∣∣∣ (A.8)

= sup
f∈F

∣∣∣∣∣∣∣
Ny

n
· 1
Ny

n∑
i=1

f(Zi)1{Yi > y} − P (Y > y) 1
Ny

n∑
i=1

f(Zi)1{Yi > y}

+P (Y > y) 1
Ny

n∑
i=1

f(Zi)1{Yi > y} − P (Y > y)EP [f(Z)|Y > y]

∣∣∣∣∣∣∣
≤
∣∣∣∣Ny

n
− P (Y > y)

∣∣∣∣ sup
f∈F

∣∣∣∣∣ 1

Ny

n∑
i=1

f(Zi)1{Yi > y}

∣∣∣∣∣
+ P (Y > y) sup

f∈F

∣∣∣∣∣ 1

Ny

n∑
i=1

f(Zi)1{Yi > y} − EP [f(Z)|Y > y]

∣∣∣∣∣
≤ F̄

∣∣∣∣Ny

n
− P (Y > y)

∣∣∣∣ (the sum has Ny non-zero terms, each bounded by F̄ )
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+ P (Y > y) sup
f∈F

∣∣∣∣∣ 1

Ny

n∑
i=1

f(Zi)1{Yi > y} − EP [f(Z)|Y > y]

∣∣∣∣∣ .
Note that {Zi}i:Yi>y is an i.i.d. sample of size Ny from the conditional distribution

P (Z|Y > y). We next apply the bound in Lemma A.4 for each value of Ny ≥ 1:

EPn

[
sup
f∈F

∣∣∣∣∣ 1

Ny

n∑
i=1

f(Zi)1{Yi > y} − EP [f(Z)|Y > y]

∣∣∣∣∣
∣∣∣∣∣Ny

]
≤ C1F̄

√
v

Ny

. (A.9)

Combining inequality (A.8) with bound (A.9), and using the definition g(t) = t−1/2 for t ≥ 1

from (A.2), we obtain a bound on the conditional expectation of ξn(y) for Ny ≥ 1:

EPn [ξn(y)|Ny] ≤ F̄

∣∣∣∣Ny

n
− P (Y > y)

∣∣∣∣+ P (Y > y)C1F̄
√
vg(Ny). (A.10)

If Ny = 0 then 1{Yi > y} = 0 for all i, hence

ξn(y) = sup
f∈F

EP [f(Z)1{Y > y}] = P (Y > y) sup
f∈F

EP [f(Z)|Y > y]

≤ F̄P (Y > y) = F̄

∣∣∣∣Ny

n
− P (Y > y)

∣∣∣∣+ P (Y > y)C1F̄
√
vg(Ny),

where the last equality uses the definition g(0) = 0 from (A.2). Therefore, the conditional

expectation bound (A.10) also holds for Ny = 0.

The unconditional expectation of ξn(y) is then bounded by

EPn [ξn(y)] ≤ F̄EPn

∣∣∣∣Ny

n
− P (Y > y)

∣∣∣∣+ P (Y > y)C1F̄
√
vEPn [g(Ny)] . (A.11)

The random variable Ny has a Binomial(n, P (Y > y)) distribution, hence

EPn

∣∣∣∣Ny

n
− P (Y > y)

∣∣∣∣ ≤
√

Var

(
Ny

n

)
=

√
P (Y > y)(1− P (Y > y))

n
≤
√
P (Y > y)

n
.

Since nP (Y > y) > 1, applying Lemma A.2 yields EPn [g(Ny)] ≤ 2
√
n
√
P (Y >y)

. Combining

this inequality with (A.11) and v ≥ 1 we obtain

EPn [ξn(y)] ≤ F̄

√
P (Y > y)

n
+ P (Y > y)C1F̄

√
v

2
√
n
√
P (Y > y)

≤ 2(1 + C1)F̄

√
v

n

√
P (Y > y) = CT F̄

√
v

n

√
P (Y > y), (A.12)
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where CT ≡ 2(1 + C1). This bound is higher than the bound (A.7) derived for y such that

nP (Y > y) ≤ 1, hence bound (A.12) holds for all y ≥ 0.

The last step is to integrate the bound (A.12) over y and apply (A.5):∫ ∞
0

EPn [ξn(y)] dy ≤
∫ ∞

0

CT F̄

√
v

n

√
P (Y > y)dy ≤ CT F̄M

√
v

n
.

Proof of Theorem 3.1. Take an arbitrary set G∗ ∈ G, then

WΛ(G∗)−WΛ(Ĝ) = WΛ(G∗)− ŴΛ(Ĝ) + ŴΛ(Ĝ)−WΛ(Ĝ)

≤ WΛ(G∗)− ŴΛ(G∗) + ŴΛ(Ĝ)−WΛ(Ĝ)

≤ 2 sup
G∈G

∣∣∣ŴΛ(G)−WΛ(G)
∣∣∣ ,

where the second line follows since ŴΛ(Ĝ) maximizes ŴΛ(G) over G ∈ G. It follows that

sup
G∈G

WΛ(G)−WΛ(Ĝ) ≤ 2 sup
G∈G

∣∣∣ŴΛ(G)−WΛ(G)
∣∣∣ . (A.13)

Since Λ(·) is convex and non-increasing,

sup
G∈G

∣∣∣ŴΛ(G)−WΛ(G)
∣∣∣ = sup

G∈G

∣∣∣∣∫ ∞
0

Λ(F̂G(y) ∨ 0)dy −
∫ ∞

0

Λ(FG(y))dy

∣∣∣∣
≤ sup

G∈G

∫ ∞
0

∣∣∣Λ(F̂G(y) ∨ 0)− Λ(FG(y))
∣∣∣ dy

≤
∫ ∞

0

sup
G∈G

∣∣∣Λ(F̂G(y) ∨ 0)− Λ(FG(y))
∣∣∣ dy

≤ |Λ′(0)|
∫ ∞

0

sup
G∈G

∣∣∣F̂G(y)− FG(y)
∣∣∣ dy. (A.14)

Combining (A.13) and (A.14), the average welfare loss of Ĝ can be bounded by

EPn

[
sup
G∈G

WΛ(G)−WΛ(Ĝ)

]
≤ 2|Λ′(0)|

∫ ∞
0

EPn

[
sup
G∈G

∣∣∣F̂G(y)− FG(y)
∣∣∣] dy. (A.15)

By Lemma A.3, the class of functions W = {wG(·) : G ∈ G}, where

wG(Zi) ≡
[
Di

e(Xi)
· 1{Xi ∈ G}+

1−Di

1− e(Xi)
· 1{Xi /∈ G}

]
(A.16)

is a VC-subgraph class with VC-dimension of at most v. Assumption 3.1 (SO) implies that

wG(Zi) ∈
[
0, 1

κ

]
, hence functions in W are uniformly bounded by 1

κ
.
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Since FG(y) = 1− EP [wG(Z) · 1{Y > y}] and F̂G(y) = 1− 1
n

n∑
i=1

wG(Zi) · 1{Yi > y},

∣∣∣F̂G(y)− FG(y)
∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

wG(Zi) · 1{Yi > y} − EP [wG(Z) · 1{Y > y}]

∣∣∣∣∣ .
It follows from Assumption 3.1 (TC) and

√
a+ b ≤

√
a+
√
b that∫ ∞

0

√
P (Y > y)dy =

∫ ∞
0

√
P (Y1 > y,D = 1) + P (Y0 > y,D = 0)dy

≤
∫ ∞

0

[√
P (Y1 > y) +

√
P (Y0 > y)

]
dy ≤ 2Υ. (A.17)

Applying Lemma A.5 to (A.15) yields

EPn

[
sup
G∈G

WΛ(G)−WΛ(Ĝ)

]
≤ 4CT |Λ′(0)|Υ

κ

√
v

n
.

Setting C = 4CT completes the proof of (3.8).

The proof of (3.9) is found in the online supplement.
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Abstract

This online supplement contains the materials and proofs omitted from Kitagawa

and Tetenov (2018), “Equality-minded Treatment Choice.”

B Illustrative Example

In this section, we illustrate the properties of rank-dependent SWFs in comparison with the

utilitarian one in a simple setting with the Gini SWF, WGini(F ) =
∫∞

0
(1−F (y))2dy. We first

compare the welfare ordering on the parametric family of log-normal outcome distributions.

Second, we consider a simple treatment choice problem with binary X in order to illustrate

how the optimal rules fundamentally differ between the two SWFs.

First, consider the welfare ordering over the family of log-normal distributions of out-

comes, Y ∼ log N(μ, σ2), ignoring the treatment choice problem. The mean of Y is given

by E(Y ) = exp(μ + σ2/2). The Gini inequality coefficient for log N(μ, σ2) is given by

2Φ
(
σ/

√
2
)
− 1 (see, e.g., Cowell (1995)), where Φ(∙) is the cdf of the standard normal

distribution. By (2.4), we have

WGini(μ, σ) ≡ 2 exp

(

μ +
σ2

2

)[

1 − Φ

(
σ
√

2

)]

. (B.1)

This welfare function is increasing in μ, whereas it is not monotonic in σ. For instance, when

μ = 0, WGini(μ, σ) is decreasing in σ for σ < 0.87 and increasing for σ > 0.87. See Figure B.1

for a plot of WGini(μ, σ) over σ ∈ [0, 2] holding μ = 0 fixed. The U-shape of the Gini social

∗Cemmap/University College London, Department of Economics. Email: t.kitagawa@ucl.ac.uk
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welfare indicates that for σ < 0.87, the negative contribution to the social welfare from an

increase in the Gini coefficient dominates the positive contribution from an increase in the

mean, while for σ > 0.87, this relationship reverses. In Figure B.2, we plot the densities of

the log-normal distributions for σ = 0.25, 0.5, and 1. Since E(Y ) is monotonically increasing

both in μ and σ, higher σ is always preferable in terms of the utilitarian social welfare. In

contrast, as shown in the welfare values plotted in Figure B.1, the Gini social welfare yields

the complete opposite welfare ordering over the three log-normal distributions in Figure B.2.

Consider now the treatment choice problem. Suppose there is only one binary covariate

X ∈ {a, b} with Pr(X = a) = Pr(X = b) = 1/2. Consider the following parameterization of

the potential outcome distributions:

Y1|(X = a) ∼ log N(μa, σ
2
a), Y0|(X = a) ∼ log N(0, 0.82),

Y1|(X = b) ∼ log N(μb, σ
2
b), Y0|(X = b) ∼ log N(0, 0.82). (B.2)

According to Theorem 2.1, it suffices to consider non-randomized rules to search for an opti-

mal one. We therefore consider ranking the following four policies: G = {∅, {a}, {b}, {a, b}} ≡

{G∅, Ga, Gb, Gab}.

Suppose σa = σb = 0.8 and μa, μb > 0. Then, in each subpopulation of X = a and

X = b, the distribution of Y1 stochastically dominates the distribution of Y0. Since the

rank-dependent social welfare is clearly monotonic in the first-order stochastic dominance

relationship, treating both {X = a} and {X = b} maximizes the Gini social welfare. This

optimal rule indeed coincides with that of the utilitarian welfare case. In general, when

stochastic dominance relationships between Y1|X- and Y0|X-distributions are present for all

X, the optimal rule for the rank-dependent social welfare agrees with the utilitarian one and

can be obtained by solving the treatment choice problem separately in each subpopulation.

These results change drastically once we let σa 6= σb. Suppose we fix μa = μb = 0, while

we vary both σa and σb over [0.1, 1.6]. As the mean of a log normal random variable is

3
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Figure B.3: Optimal policies under the additive welfare. Log-normal potential outcome

distributions with μa = μb = 0.
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increasing in σ, the optimal treatment rule for the additive welfare is obtained by

G∗
Add =






G∅ if σa < 0.8 and σb < 0.8,

Ga if σa ≥ 0.8 and σb < 0.8,

Gb if σa < 0.8 and σb ≥ 0.8,

Gab if σa ≥ 0.8 and σb ≥ 0.8.

In Figure B.3, we plot the optimal treatment rule under the additive welfare at each grid point

of (σa, σb) ∈ [0.1, 1.6]2. Since the additive social welfare is separable over the subpopulations,

a treatment preferable for one subpopulation does not depend on the treatment assigned to

the other subpopulation. The regions in which different rules from G are optimal form a

quadrant partition, as shown in Figure B.3.

In Figure B.4, we plot the optimal policies in terms of the Gini social welfare. The regions

in which different rules from G are optimal are strikingly different compared with the additive

welfare case (G∗
Add) shown in Figure B.3. In the neighborhood of (σa, σb) = (0.8, 0.8), the

subpopulations to be treated under the Gini social welfare are the converse of those to be

treated under the utilitarian welfare. This is because the Gini social welfare is decreasing in

σ in the neighborhood of σ = 0.8 (Figure B.1), while the additive welfare is monotonically

increasing in σ. Another notable difference is that in contrast to the quadrant partition

observed in the additive welfare case, the partition in the equality-minded welfare case is

more complex. Some treatment rules are optimal in disconnected regions, e.g., Gab is optimal

in the south-west and the north-east regions of the plot. Furthermore, the region in which

Ga is optimal can border the region in which Gb is optimal. On the border between these

regions, the policy maker chooses whether to treat X = a only or X = b only, rather than

whether to additionally treat the other subpopulation.

C EWM with Estimated Propensity Score

Unknown propensity score is common in observational studies. This section considers the

equality-minded EWM approach with estimated propensity scores and investigates the in-

fluence of the lack of knowledge on propensity scores on the uniform convergence rate of the

5



welfare loss criterion.

Let ê(x) be an estimator for the propensity score Pr(D = 1|X = x). The empirical welfare

criterion of assignment policy {X ∈ G} with the estimated propensity scores plugged in is

given by

Ŵ e
Λ(G) =

∫ ∞

0

Λ(F̂ e
G(y) ∨ 0)dy,

F̂ e
G(y) ≡ 1 −

1

n

n∑

i=1

[
Di

ê(Xi)
∙ 1{Xi ∈ G} +

(1 − Di)

1 − ê(Xi)
∙ 1{Xi /∈ G}

]

∙ 1{Yi > y}.

The equality-EWM rule with estimated propensity score is defined accordingly as

Ĝe ∈ arg max
G∈G

Ŵ e
Λ(G).

To characterize the uniform convergence rate of the welfare loss of Ĝe, we first assume that

ê(∙) is uniformly consistent to the true propensity score e(∙) in the following sense.

Assumption C.1. For a class of data generating processes Pe, there exist sequences φn, φ̃n →

∞ as n → ∞ such that

lim sup
n→∞

sup
P∈Pe

φnEP n

[
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

]

< ∞, (C.1)

lim sup
n→∞

sup
P∈Pe

φnEP n

[
1

n

n∑

i=1

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣

]

< ∞,

lim sup
n→∞

sup
P∈Pe

EP n

[(

φ̃n max
1≤i≤n

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

)2
]

< ∞, and (C.2)

lim sup
n→∞

sup
P∈Pe

EP n

[(

φ̃n max
1≤i≤n

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣

)2
]

< ∞

hold.

When the class of data generating processes Pe constrains the propensity score to a

parametric family with compact support of X, a parametric estimator ê(Xi) satisfies this as-

sumption with φn = φ̃n = n1/2. When the propensity scores are estimated nonparametrically

instead, φn and φ̃n are generally slower than n1/2. The rates of φn and φ̃n for nonparamet-

rically estimated propensity scores depend on the smoothness of e(∙) and the dimension of

X, as we discuss further below.
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Theorem C.1. Suppose Assumptions 2.1, 2.2 and 3.1 hold. For a class of data generating

processes Pe, if an estimator for the propensity score satisfies Assumption C.1, then

sup
P∈Pe∩P

EP n

[

sup
G∈G

WΛ(G) − WΛ(Ĝe)

]

≤ O

(

φ−1
n ∨

√
v

n

)

. (C.3)

Proof. See Appendix D.

This theorem extends Theorem 2.5 (e) of Kitagawa and Tetenov (2018a) to the cases of

rank-dependent social welfare or unbounded outcome or both. The shown uniform conver-

gence rate implies that the parametrically estimated propensity score achieving φn = n1/2

does not affect the convergence rate property of the welfare loss. With nonparametrically

estimated propensity score, on the other hand, the uniform welfare loss convergence rate

can be slower than the one with the known propensity score obtained in Theorem 3.1. For

instance, if ê(Xi) is estimated by local polynomial regression (with proper trimming), then

for a suitably defined Pe, we have φn = n
1

2+dx/βe and φ̃n = log n ∙ (log n/n)
1

2+dx/βe , where

βe ≥ 1 is the parameter constraining smoothness of e(∙) in terms of the degree of the Hölder

class of functions and dx ≥ 1 is the dimension of X. Since 1
2+dx/βe

< 1
2
, the upper bound of

the uniform convergence rate shown in Theorem C.1 implies

sup
P∈Pe∩P

EP n

[

sup
G∈G

WΛ(G) − WΛ(Ĝe)

]

≤ O
(
n
− 1

2+dx/βe

)
, (C.4)

as long as the VC-dimension of G is either constant or does not grow too fast as the sample

size increases. For a formal derivation of (C.4) and the precise construction of the local

polynomial estimator for e(∙), see Appendix D.

D Additional proofs

Proof of Theorem 3.1 (ii). Similarly to inequalities (A.14) and (A.15) shown in Appendix

A, the average welfare regret for the normalized cdf case can be bounded by

EP n

[

sup
G∈G

WΛ(G) − WΛ(ĜR)

]

≤ 2|Λ′(0)|
∫ ∞

0

EP n

[

sup
G∈G

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣

]

dy. (D.1)

We hence focus on bounding
∫∞

0
EP n

[

sup
G∈G

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣

]

dy.
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Let wG(Zi) be as defined in (A.16), and let

An,G ≡ {F̂G(−∞) < 1} = {n−1

n∑

i=1

wG(Zi) > 0}

denote the event that the normalizing term in F̂ R
G (y) at policy G is nonzero, and Ac

n,G ≡

{F̂G(−∞) = 1} = {n−1
∑n

i=1 wG(Zi) = 0} be the complement of An,G. Using the indicator

functions for An,G and Ac
n,G, F̂R

G (y) can be written as

F̂ R
G (y) =

[

1 −
1

n

n∑

i=1

wR
G,i1{Yi > y}

]

∙ 1{An,G} + [1 − 1{y < min
1≤i≤n

Yi}] ∙ 1{A
c
n,G}, (D.2)

where

wR
G,i =

wG(Zi)

n−1
∑n

i=1 fG(Zi) + 1
, fG(Zi) = wG(Zi) − 1. (D.3)

By the triangle inequality,

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣ ≤

∣
∣
∣F̂R

G (y) − F̂G(y)
∣
∣
∣+
∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣

≤

∣
∣
∣
∣
∣
1

n

n∑

i=1

[
wR

G,i − wG(Zi)
]
1{Yi > y}

∣
∣
∣
∣
∣
∙ 1{An,G} + 1{y < min

1≤i≤n
Yi} ∙ 1{A

c
n,G} +

∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣ .

(D.4)

Let

S−
n ≡ inf

G∈G

1

n

n∑

i=1

fG(Zi),

Sn ≡ sup
G∈G

∣
∣
∣
∣
∣
1

n

n∑

i=1

fG(Zi)

∣
∣
∣
∣
∣
.

For δ ∈ (0, 1) fixed, define

Ωn,δ ≡ {Sn − EP n(Sn) ≤ δ/2} = {−Sn ≥ −EP n(Sn) − δ/2}.

By Lemma A.3, {fG : G ∈ G} is a VC-subgraph class of functions with VC-dimension at

most v with EP (fG) = 0 and an envelope ‖fG‖∞ ≤ 1−κ
κ

. Hence, by Lemma A.4,

EP n(Sn) ≤ C1
1 − κ

κ

√
v

n
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holds, where C1 is the universal constant defined in Lemma A.4. Accordingly, for all n >

n(δ, v) ≡
(

C1(1−κ)
κ(1−δ)

)2

v, −EPn(Sn)−δ/2 > −1+δ/2 holds. Since S−
n ≥ −Sn holds, Ωn,δ being

true and n > n(δ, v) imply S−
n > −1 + δ/2. Hence, on Ωn,δ and for n > n(δ, v), we have

0 ≤ wR
G,i ≤ (2/δ)wG(Zi) and

∣
∣wR

G,i − wG(Zi)
∣
∣ = wR

G,i

∣
∣
∣
∣
∣
1

n

n∑

i=1

fG(Zi)

∣
∣
∣
∣
∣
≤

2

δ
∙ wG(Zi)Sn. (D.5)

On Ωc
n,δ and for G such that An,G is true, we have 0 ≤ wR

G,i ≤ n and

∣
∣wR

G,i − wG(Zi)
∣
∣ ≤ n

1 − κ

κ
. (D.6)

Combining (D.5) and (D.6), (D.4) can be rewritten as

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣

≤
2

δ
∙ Sn ∙

1

n

n∑

i=1

wG(Zi)1{Yi > y} ∙ 1{Ωn,δ ∩ An,G} + n
1 − κ

κ
∙
1

n

n∑

i=1

1{Yi > y} ∙ 1{Ωc
n,δ ∩ An,G}

+ 1{y < min
1≤i≤n

Yi} ∙ 1{Ωn,δ ∩ Ac
n,G} + 1{y < min

1≤i≤n
Yi} ∙ 1{Ω

c
n,δ ∩ Ac

n,G} +
∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣

(D.7)

Note that {S−
n > −1} is equivalent to

{

inf
G∈G

n−1
∑n

i=1 wG(Zi) > 0

}

, implying that An,G is

true for all G ∈ G. Hence, for n > n(δ, v), Ωn,δ ∩ An,G = Ωn,δ, and Ωn,δ ∩ Ac
n,G = ∅ hold for

all G ∈ G. By also noting wG(Zi) ≤ Di

e(Xi)
+ 1−Di

1−e(Xi)
, (D.7) can be further bounded by

≤
2

δ
∙ Sn ∙

1

n

n∑

i=1

[
Di

e(Xi)
+

1 − Di

1 − e(Xi)

]

1{Yi > y} ∙ 1{Ωn,δ}

+ n
1 − κ

κ
∙
1

n

n∑

i=1

1{Yi > y} ∙ 1{Ωc
n,δ ∩ An,G}

+ 1{y < min
1≤i≤n

Yi} ∙ 1{Ω
c
n,δ ∩ Ac

n,G} +
∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣

≤
2

δ
∙ Sn [P (Y1 > y) + P (Y0 > y)] ∙ 1{Ωn,δ}

+
2

δ
∙

(

1 −
δ

2

)

∙
1

n

n∑

i=1

[(
Di

e(Xi)
+

1 − Di

1 − e(Xi)

)

1{Yi > y} − P (Y1 > y) − P (Y0 > y)

]

∙ 1{Ωn,δ}

+ n
1 − κ

κ
∙
1

n

n∑

i=1

1{Yi > y} ∙ 1{Ωc
n,δ} +

∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣ ,
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≤
2

δ
∙ Sn [P (Y1 > y) + P (Y0 > y)]

+
2

δ
∙

(

1 −
δ

2

)

∙
1

n

n∑

i=1

[(
Di

e(Xi)
+

1 − Di

1 − e(Xi)

)

1{Yi > y} − P (Y1 > y) − P (Y0 > y)

]

(D.8)

+ n
1 − κ

κ
∙
1

n

n∑

i=1

1{Yi > y} ∙ 1{Ωc
n,δ} +

∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣ ,

where the second inequality follows from the fact that Sn ≤
(
1 − δ

2

)
holds on Ωn,δ and for

n > n(δ, v), and n1−κ
κ

≥ 1 and n−1
∑n

i=1 1{Yi > y} ≥ 1{y < min1≤i≤n Yi} hold for all y. Since

the second term in (D.8) has mean zero, EP n

[
supG∈G

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣
]

can be bounded by

EP n

[

sup
G∈G

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣

]

≤
2

δ
∙ EP n [Sn] ∙ (P (Y1 > y) + P (Y0 > y))

︸ ︷︷ ︸
(i)

+ n
1 − κ

κ
∙ EP n

[
1

n

n∑

i=1

1{Yi > y} ∙ 1{Ωc
n,δ}

]

︸ ︷︷ ︸
(ii)

+ EP n

[

sup
G∈G

∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣

]

︸ ︷︷ ︸
(iii)

. (D.9)

By Assumption 3.1 (TC) and Lemma A.4, the integral of term (i) in (D.9) can be bounded

as

∫ ∞

0

(i)dy ≤
4C1

δ
∙
1 − κ

κ

√
v

n
Υ, (D.10)

where we use EP n [Sn] ≤ C1
1−κ

κ

√
v
n

and
∫∞

0
P (Yd > y)dy ≤

∫∞
0

√
P (Yd > y)dy ≤ Υ.

Consider term (ii); by the Cauchy-Schwarz inequality,

(ii) ≤ n
1 − κ

κ

√√
√
√
√EP n





(
1

n

n∑

i=1

1{Yi > y}

)2



√

P n(Ωc
n,δ)

≤ n
1 − κ

κ

√
P (Y > y)

√
P n(Ωc

n,δ)

Bernstein’s inequality (see, e.g., Theorem 12.2 in Boucheron et al. (2013)) implies that

P n(Ωc
n,δ) ≤ 2P n

(

−S−
n − EP n(−S−

n ) ≥
δ

2

)

≤ 2 exp

{

−
(δ/2)2n

2[2(Σ2
f + σ2

f ) + f̄ δ/2]

}

,
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where Σ2
f ≡ EP n

[

sup
G∈G

1
n

∑n
i=1 f 2

G(Zi)

]

≤
(

1−κ
κ

)2
, σ2

f ≡ sup
G∈G

1
n

∑n
i=1 EP (f 2

G(Zi)) ≤
(

1−κ
κ

)2
, and

f̄ ≡ sup
G∈G

‖fG‖∞ ≤ 1−κ
κ

. Hence,

√
P n(Ωn,δ) ≤

√
2 exp

{

−
δ2n

16[2(Σ2
f + σ2

f ) + f̄ δ/2]

}

≤
√

2 exp

{

−
δ2κ2n

16[4(1 − κ)2 + (1 − κ)κδ/2]

}

≤
√

2 exp
{
−c1(δ)κ

2n
}

holds, where c1(δ) = δ2/(64+8δ) > 0. The integral of term (ii) can be therefore bounded by

∫ ∞

0

(ii)dy ≤
2
√

2(1 − κ)Υ

κ
∙ n exp

{
−c1(δ)κ

2n
}

. (D.11)

As shown in the proof of Theorem 3.1 (i), Lemma A.5 applies to term (iii) to yield

∫ ∞

0

(iii)dy ≤
2CT ∙ Υ

κ

√
v

n
(D.12)

Combining (D.1), (D.9), (D.10), (D.11), and (D.12), and setting δ = 1/2, we conclude

EP n

[

sup
G∈G

WΛ(G) − WΛ(ĜR)

]

≤
Λ′(0)Υ

κ

[

CR
1

√
v

n
+ 4

√
2n exp{−CR

2 κ2n}

]

for all n > n(1/2, v) = CR
3

(
1−κ

κ

)2
v, where CR

1 = 16C1 + 4CT , CR
2 = c1(1/2) = 1/272, and

CR
3 = 4C2

1 .

Proof of Theorem 3.2. We consider a suitable subclass P∗ ⊂ P , for which the worst case

welfare loss can be bounded from below by a distribution-free term that converges at rate

n−1/2. Specifically, we restrict distributions of potential outcomes to those whose sup-

ports are restricted to [0, Υ]. Any such distribution satisfies Assumption 3.1 (TC), since
∫∞

0

√
P (Yd > y)dy =

∫ Υ

0

√
P (Yd > y)dy ≤ Υ.

To simplify the proof, we normalize the range of outcomes to Y ∈ [0, 1]. We rescale the

ourcome to Y ∈ [0, Υ] in the final step of the proof by multiplying Υ to the regret lower

bound, as the rank-dependent SWF is equivariant to a multiplicative positive constant to

Y .
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The construction of P∗ proceeds as follows. We restrict the range of outcomes to binary

Y ∈ {0, 1}. By the definition of VC-dimension, there exists a set of v points in X , denoted

x1, . . . , xv ∈ X that are shattered by G. We constrain the marginal distribution of X to be

supported only on (x1, . . . , xv). Let τ ∗ ∈ (0, 1] stated in the current theorem be given. We

put mass p ≡ τ∗

v−1
at xi for all i < v, and mass 1 − τ ∗ at xv. The constructed marginal

distribution of X is common in P∗. Let the distribution of the treatment indicator D be

independent of (Y0, Y1, X), and let D follow the Bernoulli distribution with Pr(D = 1) = 1/2.

Let b = (b1, . . . , bv−1) ∈ {0, 1}v−1 be a bit vector used to index a member of P∗, i.e.,

P∗ = {Pb : b ∈ {0, 1}v−1} consists of a finite number of DGPs. For each j = 1, . . . , (v − 1),

and depending on b, construct the following conditional distributions of potential outcomes

given X = xj ; if bj = 1,

Y0|(X = xj) ∼ Ber

(
1 − γ

2

)

, Y1|(X = xj) ∼ Ber

(
1 + γ

2

)

, (D.13)

and, if bj = 0,

Y0|(X = xj) ∼ Ber

(
1 + γ

2

)

, Y1|(X = xj) ∼ Ber

(
1 − γ

2

)

, (D.14)

where Ber(m) denotes the Bernoulli distribution with mean m and γ ∈ (0, 1) is chosen

properly in a later step of the proof. For j = v, we set the distribution of potential outcomes

to be degenerate at the maximum value of Y , P (Y0 = Y1 = 1|X = xv) = 1. Clearly, Pb ∈ P

for every b ∈ {0, 1}v−1. We accordingly define P∗ =
{
Pb : b ∈ {0, 1}v−1} ⊂ P .

Note that when the outcome distribution is Bernoulli with mean μ, the equality-minded

welfare function equals WΛ = Λ(1 − μ), which is a non-decreasing function of μ. Hence,

given knowledge of Pb, an optimal treatment assignment rule for the equality-minded welfare

coincides with that for the utilitarian welfare case,

G∗
b = {xj : j < v, bj = 1} ,

which is feasible, since G∗
b ∈ G by the construction of the support points of X. The maxi-

mized social welfare is accordingly obtained as

WΛ(G∗
b) = Λ (1 − μ∗) ,

μ∗ ≡ p(v − 1)

(
1 + γ

2

)

+ (1 − τ ∗) = τ ∗

(
1 + γ

2

)

+ (1 − τ ∗),
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which does not depend on b.

Let Ĝ be an arbitrary treatment choice rule as a function of observations Zi ≡ (Yi, Di, Xi),

i = 1, . . . , n, and b̂ ∈{0, 1}(v−1) be a binary vector whose j-th element is b̂j = 1{xj ∈ Ĝ}.

Let μĜ be the mean of outcome Y when the treatment assignment rule Ĝ is implemented

for a given realization of the sample. Outcomes are binary for all P ∈ P∗, hence

μĜ ≡
∫

Ĝ

Pr(Y1 = 1|X = x)dPX(x) +

∫

Ĝc

Pr(Y0 = 1|X = x)dPX(x).

Consider π (b), a prior distribution for b, such that b1, . . . , bv−1 are iid and b1 ∼ Ber(1/2).

The welfare loss satisfies the following inequalities:

sup
P∈P

EP n

[

sup
G∈G

WΛ(G) − WΛ(Ĝ)

]

≥ sup
Pb∈P∗

EP n
b

[
WΛ(G∗

b) − WΛ(Ĝ)
]

≥
∫

b

EP n
b

[
WΛ(G∗

b) − WΛ(Ĝ)
]
dπ(b)

=

∫

b

EP n
b

[
Λ(1 − μ∗) − Λ(1 − μĜ)

]
dπ(b)

≥
∫

b

EP n
b

[
|Λ′(1 − μĜ)|(μ∗ − μĜ)

]
dπ(b)

≥ |Λ′(τ ∗)|
∫

b

EP n
b

[
μ∗ − μĜ

]
dπ(b), (D.15)

where the fourth line follows since Λ(∙) is convex and non-increasing. The fifth line follows

from the observation that for all P ∈ P∗, μG ≥ 1 − τ ∗ for any treatment rule G, therefore

|Λ′(1 − μĜ)| ≥ |Λ′(τ ∗)|.

Consider now bounding
∫
b
EP n

b

[
μ∗ − μĜ

]
dπ(b) from below. Building on the lower bound

calculation for the classification risk of the empirical risk minimizing classifier in Lugosi

(2002), the proof of Theorem 2.2 in Kitagawa and Tetenov (2018a) considers bounding a

similar quantity, though the current construction of P∗ is different from the construction in

that paper. Therefore, in what follows, we reproduce the proof of Theorem 2.2 in Kitagawa

and Tetenov (2018a) with some necessary modifications.

Consider

∫

b

EP n
b

[
μ∗ − μĜ

]
dπ(b) ≥ γ

∫

b

EP n
b

[
PX(G∗

b4Ĝ)
]
dπ(b)

= γ

∫

b

∫

Z1,...,Zn

PX

(
{b(X) 6= b̂(X)}

)
dP n (Z1, . . . , Zn|b) dπ(b)

13



≥ inf
Ĝ

γ

∫

b

∫

Z1,...,Zn

PX

(
{b(X) 6= b̂(X)}

)
dP n (Z1, . . . , Zn|b) dπ(b)

where each b(X) and b̂(X) is an element of b and b̂ such that b(xj) = bj , b̂(xj) = b̂j ,

and b(xv) = b̂(xv) = 0. Note that the last expression can be seen as the minimized Bayes

risk with the loss function corresponding to the classification error for predicting binary

unknown random variable b(X). Hence, the minimizer of the Bayes risk is attained by the

Bayes classifier,

Ĝ∗ =

{

xj : π(bj = 1|Z1, . . . , Zn) ≥
1

2
, j < v

}

,

where π(bj|Z1, . . . , Zn) is the posterior of bj . The minimized Bayes risk is given by

γ

∫

Z1,...,Zn

EX [min {π (b(X) = 1|Z1, . . . , Zn) , 1 − π (b(X) = 1|Z1, . . . , Zn)}] dP̃ n

= γ

∫

Z1,...,Zn

v−1∑

j=1

p [min {π (bj = 1|Z1, . . . , Zn) , 1 − π(bj = 1|Z1, . . . , Zn)}] dP̃ n,

(D.16)

where P̃ n is the marginal likelihood of {(Yi, Di, Xi) : i = 1, . . . , n} corresponding to prior

π(b). For each j = 1, . . . , (v − 1) let

k+
j = # {i : Xi = xj , YiDi = 1 or (1 − Yi)(1 − Di) = 1} ,

k−
j = # {i : Xi = xj , (1 − Yi)Di = 1 or Yi(1 − Di) = 1} .

The posterior for bj = 1 can be written as

π(bj = 1|Z1, . . . , Zn) =






1
2

if #{i : Xi = xj} = 0,

( 1+γ
2 )

k+
j ( 1−γ

2 )
k−
j

( 1+γ
2 )

k+
j ( 1−γ

2 )
k−
j +( 1+γ

2 )
k−
j ( 1−γ

2 )
k+
j

otherwise.

Hence,

min {π (bj = 1|Z1, . . . , Zn) , 1 − π(bj = 1|Z1, . . . , Zn)}

=
min

{(
1+γ

2

)k+
j
(

1−γ
2

)k−
j ,
(

1+γ
2

)k−
j
(

1−γ
2

)k+
j

}

(
1+γ

2

)k+
j
(

1−γ
2

)k−
j +

(
1+γ

2

)k−
j
(

1−γ
2

)k+
j

=
min

{
1, (1+γ

1−γ
)k+

j −k−
j

}

1 + (1+γ
1−γ

)k+
j −k−

j

14



=
1

1 + a|k+
j −k−

j |
, where a =

1 + γ

1 − γ
> 1. (D.17)

Coarsen an observation of (Yi, Di) into Ỹi defined as

Ỹi =






1 if YiDi + (1 − Yi)(1 − Di) = 1,

−1 otherwise.

(D.18)

Since k+
j − k−

j =
∑

i:Xi=xj
Ỹi, plugging (D.17) into (D.16) yields

γ
v−1∑

j=1

pEP̃ n

[
1

1 + a

∣
∣
∣
∑

i:Xi=xj
Ỹi

∣
∣
∣

]

≥
γ

2

v−1∑

j=1

pEP̃ n

[
1

a

∣
∣
∣
∑

i:Xi=xj
Ỹi

∣
∣
∣

]

≥
γ

2
p

v−1∑

i=1

a
−EP̃n

∣
∣
∣
∑

i:Xi=xj
Ỹi

∣
∣
∣
,

where EP̃ n(∙) is the expectation with respect to the marginal likelihood of {(Yi, Di, Xi), i =

1, . . . , n}. The second inequality follows by a > 1, and the third inequality follows by

Jensen’s inequality. Given our prior specification for b, the marginal distribution of Yi is

Pr(Ỹi = 1) = Pr(Ỹi = −1) = 1/2. Hence,

EP̃ n

∣
∣
∣
∣
∑

i:Xi=xj

Ỹi

∣
∣
∣
∣ =

n∑

k=0

(
n

k

)

pk (1 − p)n−k E

∣
∣
∣
∣2B(k,

1

2
) − k

∣
∣
∣
∣

holds, where B(k, 1
2
) is a random variable following the binomial distribution with parameters

k and 1
2
. By noting

E

∣
∣
∣
∣B(k,

1

2
) −

k

2

∣
∣
∣
∣ ≤

√

E

(

B(k,
1

2
) −

k

2

)2

( ∵ Cauchy-Schwartz inequality)

=

√
k

4
,

we obtain

EP̃ n

∣
∣
∣
∣
∑

i:Xi=xj

Ỹi

∣
∣
∣
∣ ≤

n∑

k=0

(
n

k

)

pk (1 − p)n−k
√

k

= E
√

B (n, p)

≤
√

np. ( ∵ Jensen’s inequality).

Hence, the Bayes risk (D.16) is bounded from below by

γ

2
p(v − 1)a−

√
np

≥
γ

2
p(v − 1)e−(a−1)

√
np ( ∵ 1 + x ≤ ex ∀x)

=
pγ

2
(v − 1)e−

2γ
1−γ

√
np, (D.19)
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therefore

∫

b

EP n
b

[
μ∗ − μĜ

]
dπ(b) ≥

pγ

2
(v − 1)e−

2γ
1−γ

√
np. (D.20)

This lower bound of the Bayes risk has the slowest convergence rate when γ is set to be

proportional to n−1/2. Specifically, let γ =
√

v−1
nτ∗ . Then for all n ≥ 4(v− 1)/τ ∗, γ ≤ 1/2 and

since p = τ∗

v−1
,

−
2γ

1 − γ

√
np = −

2

1 − γ

√
v − 1

nτ ∗

√
nτ ∗

v − 1
= −

2

1 − γ
≥ −4.

Then

pγ

2
(v − 1)e−

2γ
1−γ

√
np ≥

pγ

2
(v − 1)e−4 =

τ ∗

2

√
v − 1

nτ ∗
e−4 =

e−4

2

√
τ ∗

√
v − 1

n
.

Inserting this bound into (D.20) and multiplying by Υ provides a lower bound for (D.15).

This completes the proof.

Proof of Proposition 4.1. Similarly to inequality (A.15) shown in Appendix A, the average

welfare regret of the capacity-constrained estimated policy satisfies

EP n

[

sup
G∈G

WK
Λ (G) − WK

Λ (ĜK)

]

≤ 2|Λ′(0)|
∫ ∞

0

EP n

[

sup
G∈G

∣
∣
∣F̂K

G (y) − FK
G (y)

∣
∣
∣

]

dy. (D.21)

We hence focus on bounding EP n

[

sup
G∈G

∣
∣
∣F̂K

G (y) − FK
G (y)

∣
∣
∣

]

.

Expressing F̂ K
G (y) and FK

G (y) as

F̂ K
G (y) = 1 −

1

n

n∑

i=1

ŵK
G,i ∙ 1{Yi > y},

FK
G (y) = 1 − EP [wK

G (Z) ∙ 1{Y > y}],

where

wK
G (Z) =

1 − D

1 − e(X)
+ min

{

1,
K

PX(G)

}

w̃G(Z),

ŵK
G,i =

1 − Di

1 − e(Xi)
+ min

{

1,
K

PX,n(G)

}

w̃G(Zi),
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where w̃G(Zi) =
[

Di

e(Xi)
− 1−Di

1−e(Xi)

]
∙ 1{Xi ∈ G}. Note that ‖w̃G‖∞ ≤ κ−1. Define

F̃K
G (y) = 1 −

1

n

n∑

i=1

wK
G (Zi) ∙ 1{Yi > y}.

We consider

sup
G∈G

∣
∣
∣F̂K

G (y) − FK
G (y)

∣
∣
∣ ≤ sup

G∈G

∣
∣
∣F̂K

G (y) − F̃K
G (y)

∣
∣
∣

︸ ︷︷ ︸
(iv)

+ sup
G∈G

∣
∣
∣F̃K

G (y) − FK
G (y)

∣
∣
∣

︸ ︷︷ ︸
(v)

, (D.22)

and derive bounds for
∫∞

0
EP n [(iv)]dy and

∫∞
0

EP n [(v)]dy.

For term (iv), we have

∣
∣
∣F̂K

G (y) − F̃K
G (y)

∣
∣
∣ ≤

1

n

n∑

i=1

∣
∣ŵK

G,i − wK
G (Zi)

∣
∣ ∙ 1{Yi > y}

≤ κ−1

∣
∣
∣
∣

K

max{K,PX,n(G)}
−

K

max{K,PX(G)}

∣
∣
∣
∣ ∙

1

n

n∑

i=1

1{Yi > y}

≤
1

κK
|PX,n(G) − PX(G)| ∙

1

n

n∑

i=1

1{Yi > y}.

=
1

κK
|PX,n(G) − PX(G)| ∙ P (Y > y)

+
1

κK
|PX,n(G) − PX(G)| ∙

1

n

n∑

i=1

[1{Yi > y} − P (Y > y)] . (D.23)

Note that by Lemma A.4, EP n

[

sup
G∈G

|PX,n(G) − PX(G)|

]

≤ C1

√
v/n. By the Cauchy-

Schwarz inequality,

EP n

[

sup
G∈G

|PX,n(G) − PX(G)| ∙
1

n

n∑

i=1

[1{Yi > y} − P (Y > y)]

]

≤

√√
√
√EP n

[(

sup
G∈G

|PX,n(G) − PX(G)|

)2
]

∙

√
P (Y > y)(1 − P (Y > y))

n

≤

√
P (Y > y)

n
, (D.24)

where the second inequality follows from

sup
G∈G

|PX,n(G) − PX(G)|2 ≤
1

n

n∑

i=1

(1{Xi ∈ G} − PX(G))2 ≤ 1.
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Hence, by noting 1 ≤
√

v,

∫ ∞

0

EP n [(iv)] ≤
2 (C1 + 1) Υ

κK
∙

√
v

n
(D.25)

Next, consider term (v). Let F̃K
∅ (y) = 1 − n−1

∑n
i=1

1−Di

1−e(Xi)
∙ 1{Yi > y}. We decompose

term (v) as follows:

∣
∣
∣F̃K

G (y) − FK
G (y)

∣
∣
∣ ≤
∣
∣
∣(F̃K

G (y) − F̃K
∅ (y)) − (FK

G (y) − FK
∅ (y))

∣
∣
∣+ |F̃K

∅ (y) − FK
∅ (y)|

= min

{

1,
K

PX(G)

} ∣∣
∣
∣
∣
1

n

n∑

i=1

w̃G(Zi) ∙ 1{Yi > y} − EP [w̃G(Z) ∙ 1{Y > y}]

∣
∣
∣
∣
∣

+ |F̃K
∅ (y) − FK

∅ (y)|

≤

∣
∣
∣
∣
∣
1

n

n∑

i=1

w̃G(Zi) ∙ 1{Yi > y} − EP [w̃G(Z) ∙ 1{Y > y}]

∣
∣
∣
∣
∣
+ |F̃K

∅ (y) − FK
∅ (y)|.

(D.26)

Hence,

∫ ∞

0

EP n

[

sup
G∈G

∣
∣
∣F̃K

G (y) − FK
G (y)

∣
∣
∣

]

≤
∫ ∞

0

EP n

[

sup
G∈G

∣
∣
∣
∣
∣
1

n

n∑

i=1

w̃G(Zi) ∙ 1{Yi > y} − EP [w̃G(Z) ∙ 1{Y > y}]

∣
∣
∣
∣
∣

]

dy

+

∫ ∞

0

EP n

[
|F̃K

∅ (y) − FK
∅ (y)|

]
dy

≤2CT
Υ

κ

√
v

n
+

∫ ∞

0

EP n

[
|F̃K

∅ (y) − FK
∅ (y)|

]
dy, (D.27)

where the second inequality follows from Lemma A.5 with M = 2Υ and F̄ = κ−1, where CT

is the universal constant defined there.

To bound the second term in (D.27),

∫ ∞

0

EP n

[
|F̃K

∅ (y) − FK
∅ (y)|

]
dy ≤

∫ ∞

0

√√
√
√V ar

(
1

n

n∑

i=1

1 − Di

1 − e(Xi)
∙ 1{Y0i > y}

)

dy

=

∫ ∞

0

√
1

n

{

EP

[(
1

1 − e(X)

)

P (Y0 > y|X)

]

− P (Y0 > y)2

}

≤
∫ ∞

0

√
1

n
EP

[(
1

1 − e(X)

)

P (Y0 > y|X)

]

18



≤
1

κ
√

n

∫ ∞

0

√
P (Y0 > y)dy ≤

Υ

κ

√
v

n
. (D.28)

Combining (D.21), (D.22), (D.25), (D.27), and (D.28), and noting 1 ≤
√

v, we conclude

EP n

[

sup
G∈G

WK
Λ (G) − WK

Λ (ĜK)

]

≤

(
CK1

K
+ CK2

)

|Λ′(0)|
Υ

κ

√
v

n
,

where CK1 = 4(C1 + 1) and CK2 = 2(2CT + 1).

Proof of Theorem C.1. For any G ∈ G, it holds

WΛ(G) − WΛ(Ĝe) ≤ ŴΛ(G) − Ŵ e
Λ(G) − ŴΛ(Ĝe) + Ŵ e

Λ(Ĝe)

+WΛ(G) − WΛ(Ĝe) − ŴΛ(G) + ŴΛ(Ĝe)

≤ 2 sup
G∈G

|ŴΛ(G) − Ŵ e
Λ(G)| + 2 sup

G∈G

∣
∣
∣ŴΛ(G) − WΛ(G)

∣
∣
∣ , (D.29)

where the first inequality uses Ŵ e
Λ(Ĝe) − Ŵ e

Λ(G) ≥ 0. The mean of the second term in the

right-hand side of (D.29) is O(n−1/2) as shown in Theorem 3.1 (i).

For the first term in the right-hand side of (D.29), following the inequalities shown in

(A.14), we have

|ŴΛ(G) − Ŵ e
Λ(G)| ≤ |Λ′(0)|

∫ ∞

0

|F̂G(y) − F̂ e
G(y)|dy. (D.30)

For every y, the upper bound of |F̂G(y) − F̂ e
G(y)| uniform in G can be obtained as

|F̂G(y) − F̂ e
G(y)|

≤
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣Di1{Yi > y}1{Xi ∈ G}

+
1

n

n∑

i=1

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣ (1 − Di)1{Yi > y}1{Xi /∈ G}

≤
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣ ∙ 1{Y1i > y} +

1

n

n∑

i=1

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣ ∙ 1{Y0i > y}

=
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣ ∙ P (Y1i > y)

︸ ︷︷ ︸
(vi)

+
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣ ∙ [1{Y1i > y} − P (Y1i > y)]

︸ ︷︷ ︸
(vii)
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+
1

n

n∑

i=1

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣ ∙ P (Y0i > y)

︸ ︷︷ ︸
(viii)

+
1

n

n∑

i=1

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣ ∙ [1{Y0i > y} − P (Y0i > y)]

︸ ︷︷ ︸
(ix)

. (D.31)

We derive the convergence rates of the integrated means of terms (vi) - (ix) in (D.31),

separately; by Assumption C.1,

∫ ∞

0

EP n [(vi)]dy ≤ EP n

[
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

]

∙ Υ = O(φ−1
n ).

∫ ∞

0

EP n [(vii)]dy ≤
∫ ∞

0

EP n

[

max
1≤i≤n

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣ ∙

1

n

n∑

i=1

[1{Y1i > y} − P (Y1i > y)]

]

dy

≤

√√
√
√EP n

[(

max
1≤i≤n

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

)2
]∫ ∞

0

√
P (Y1i > y)(1 − P (Y1i > y))

n
dy

≤ O(φ̃
−1

n ) ∙
Υ
√

n
= O

(
φ̃
−1

n /
√

n
)

.

Similarly, we obtain
∫∞

0
EP n [(viii)]dy ≤ O(φ−1

n ) and
∫∞

0
EP n [(ix)]dy ≤ O

(
φ̃
−1

n /
√

n
)
.

These convergence rates for terms (vi) - (ix) and (D.30) imply that

EP n

[

sup
G∈G

∣
∣
∣ŴΛ(G) − Ŵ e

Λ(G)
∣
∣
∣

]

= O

(

φ−1
n +

φ̃
−1

n√
n

)

Hence, by (D.29) and noting that φ̃
−1

n n−1/2 converges faster than n−1/2, we conclude

EP n

[

sup
G∈G

WΛ(G) − WΛ(Ĝe)

]

≤ O
(
(φ−1

n + φ̃
−1

n n−1/2) ∨ n−1/2
)

= O
(
φ−1

n ∨ n−1/2
)
.

E Equality-minded EWM with Nonparametrically Es-

timated Propensity Score

In this appendix, we consider the equality-minded EWM approach with unknown propensity

score estimated nonparametrically by local polynomial regressions. We provide regularity
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conditions under which the nonparametric estimator of the propensity score satisfies As-

sumption C.1 with an explicit characterization of φn and φ̃n.

We consider the leave-one-out local polynomial estimator for e(∙), i.e., ê(Xi) is constructed

by fitting the local polynomials excluding the i-th observation. For any multi-index s =

(s1, . . . , sdx) ∈ Ndx and any (x1, . . . , xdx) ∈ Rdx , we define |s| ≡
∑dx

i=1 si, s! ≡ s1! ∙ ∙ ∙ sdx !,

xs ≡ xs1
1 ∙ ∙ ∙ xsdx

dx
, and ‖x‖ ≡

(
x2

1 + ∙ ∙ ∙ + x2
dx

)
. Let K(∙) : Rdx → R be a kernel function and

h > 0 be a bandwidth, whose dependence on the sample size is implicit in the notation.

At each Xi, i = 1, . . . , n, we define the leave-one-out local polynomial coefficient estimators

with degree l ≥ 0 as

θ̂(Xi) = arg min
θ

∑

j 6=i

[

Dj − θT U

(
Xj − Xi

h

)]2

K

(
Xj − Xi

h

)

,

where U
(

Xj−Xi

h

)
is the vector with elements indexed by the multi-index s, i.e., U

(
Xj−Xi

h

)
≡

((
Xj−Xi

h

)s)

|s|≤l
. With a slight abuse of notation, we define U (0) = (1, 0, . . . , 0)T . Let λn(Xi)

be the smallest eigenvalue of B(Xi) ≡
(
nhdx

)−1∑
j 6=i U

(
Xj−Xi

h

)
UT
(

Xj−Xi

h

)
K
(

Xi−Xj

h

)
.

Accordingly, we construct the leave-one-out local polynomial fit for e(Xi) by

ẽ(Xi) = UT (0)θ̂(Xi) ∙ 1 {λn(Xi) ≥ tn} (E.1)

where tn is a positive sequence that slowly converges to zero, such as tn ∝ (log n)−1. This

trimming constant regularizes the regressor matrix of the local polynomial regression and

simplifies the proof of the uniform consistency of the local polynomial estimator.

To characterize Pe in Assumption C.1, we impose the following restrictions, which are

identical to Assumption E.2 in Kitagawa and Tetenov (2018b).

Assumption E.1. (Smooth-e) Smoothness of the propensity score: The propensity score

e(∙) belongs to a Hölder class of functions with degree βe ≥ 1 and constant Le < ∞. 1

1Let Ds denote the differential operator Ds ≡ ∂s1+∙∙∙+sdx

∂x
s1
1 ∙∙∙x

sdx
dx

. Let β ≥ 1 be an integer. For any x ∈ Rdx

and any (β − 1) times continuously differentiable function f : Rdx → R, we denote the Taylor expansion

polynomial of degree (β − 1) at point x by fx(x′) ≡
∑

|s|≤β−1
(x′−x)s

s! Dsf(x). Let L > 0. The Hölder class of

functions in Rdx with degree β and constant 0 < L < ∞ is defined as the set of function f : Rdx → R that are

(β − 1) times continuously differentiable and satisfy, for any x and x′ ∈ Rdx , the inequality |fx(x′) − f(x)| ≤

L ‖x − x′‖β .
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(PX) Support and Density Restrictions on PX : Let X ⊂ Rdx be the support of PX . Let

Leb(∙) be the Lebesgue measure on Rdx and B(x, r) be the open ball centered at x ∈ Rdx

with radius r. There exist constants c and r0 such that

Leb (X ∩ B(x, r)) ≥ cLeb(B(x, r)) ∀0 < r ≤ r0, ∀x ∈ X , (E.2)

and PX has the density function dPX

dx
(∙) with respect to the Lebesgue measure of Rdx that

is bounded from above and bounded away from zero, 0 < p
X

≤ dPX

dx
(x) ≤ p̄X < ∞ for all

x ∈ X .

(Ker) Bounded Kernel with Compact Support: The kernel function K(∙) has support [−1, 1]dx ,
∫
Rdx K(u)du = 1, and supu K (u) ≤ Kmax < ∞.

Assumption E.1 (PX) is borrowed from Audibert and Tsybakov (2007), and it provides

regularity conditions on the marginal distribution of X. Inequality condition (E.2) constrains

the shape of the support of X, and it essentially rules out the case where X has “sharp”

spikes, i.e., X ∩B(x, r) has an empty interior or Leb (X ∩ B(x, r)) converges to zero as r → 0

faster than the rate of r2 for some x on the boundary of X .

The next lemma collects several properties of the local polynomial estimators that are

useful to prove the bound shown in (C.4). These claims are borrowed from Theorem 3.2 in

Audibert and Tsybakov (2007) and Lemma E.4 in Kitagawa and Tetenov (2018b).

Lemma E.1. Let Pe consist of the data generating processes satisfying Assumption E.1

(Smooth-e) and (PX). Let ẽ(Xi) be the leave-one-out estimator for the propensity score de-

fined in (E.1) whose kernel function satisfies E.1 (Ker).

(i) There exist positive constants c2, c3, and c4 that depend only on βe, dx, Le, c, r0, p
X

,

and p̄X , such that, for any 0 < h < r0/c, any c4h
βe < δ, and any n ≥ 2,

P n−1 (|ẽ(x) − e (x)| > δ) ≤ c2 exp
(
−c3nhdxδ2

)
,

holds for almost all x with respect to PX , where P n−1 (∙) is the distribution of
{
(Yi, Di, Xi)

n−1
i=1

}
.

(ii)

sup
P∈Pe

∫

X
EP n−1 [|ẽ(x) − e (x)|] dPX(x) ≤ O(hβe) + O

(
1

√
nhdx

)
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holds. Hence, a choice of bandwidth that optimizes the upper bound of the convergence rate

is h ∝ n
− 1

2βe+dx and the resulting uniform convergence rate is

sup
P∈Pe

∫

X
EP n−1 [|ẽ(x) − e (x)|] dPX(x) ≤ O

(
n
− 1

2+dx/βe

)
. (E.3)

(iii)

sup
P∈Pe

EP n

[

(max
1≤i≤n

|ẽ(Xi) − e (Xi)|)
2

]

≤ O

(
h2βe

t2n

)

+ O

(
log n

nhdxt2n

)

holds. In particular, when the bandwidth is chosen as in claim (ii) of the current proposition,

the resulting uniform convergence rate is

sup
P∈Pe

EP n

[

(max
1≤i≤n

|ẽ(Xi) − e (Xi)|)
2

]

≤ O
(
t−2
n log n ∙ n− 2

2+dx/βe

)
. (E.4)

Making use of Lemma E.1, the next proposition shows a propensity score estimator

constructed by suitably trimming ẽ(Xi) satisfies Assumption C.1 with an explicit character-

ization of the growing sequences φn and φ̃n.

Proposition E.1. Let Pe consist of data generating processes that satisfy Assumption E.1

(Smooth-e) and (PX). Let ẽ(Xi) be the leave-one-out local polynomial estimator with degree

l = (βe − 1), trimming sequence for the least eigenvalue tn = (log n)−1, bandwidth sequence

h ∝ n
− 1

2βe+dx , and whose kernel satisfies Assumption E.1 (Ker). Let

ê(Xi) ≡ min {1 − εn, max{εn, ẽ(Xi)}} ∈ [εn, 1 − εn] (E.5)

with a sequence of trimming constants εn that satisfies εn = O(n−a) for some a > 0. Then,

ê(Xi) satisfies Assumption C.1 with φn = n
1

2+dx/βe and φ̃n = (log n)−3/2 ∙ n
1

2+dx/βe .

Proof of Proposition E.1. Assume that n is large enough so that εn ≤ κ/2 holds. Since

ê(Xi) = ẽ(Xi) whenever ẽ(Xi) ∈
[

κ
2
, 1 − κ

2

]
⊂ [εn, 1 − εn], the following bounds are valid

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣ ≤






2
κ2 |ẽ(Xi) − e(Xi)| if ẽ(Xi) ∈

[
κ
2
, 1 − κ

2

]

(κεn)−1 if ẽ(Xi) /∈
[

κ
2
, 1 − κ

2

]
.

Hence,

EP n

[
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

]

= EP n

[∣∣
∣
∣

1

e(Xn)
−

1

ê(Xn)

∣
∣
∣
∣

]
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≤
2

κ2
EP n |ẽ(Xn) − e(Xn)| + (κεn)−1P n

(
ẽ(Xn) /∈

[κ
2
, 1 −

κ

2

])

(E.6)

By Lemma E.1 (ii),

sup
P∈Pe

EP n |ẽ(Xn) − e(Xn)| = sup
P∈Pe

∫

X
EP n−1 [|ẽ(x) − e(x)|] dPX(x) ≤ O

(
n
− 1

2+dx/βe

)
.

Furthermore, by Lemma E.1 (i),

P n
(

ẽ (Xn) /∈
[κ
2
, 1 −

κ

2

])
=

∫

X
P n−1

(
ẽ (x) /∈

[κ
2
, 1 −

κ

2

])
dPX (x)

≤
∫

X
P n−1

(
|ẽ (x) − e(x)| >

κ

2

)
dPX (x)

≤ c2 exp

(

−
c3κ

2

4
nhdx

)

(E.7)

holds for all n satisfying c4h
βe < κ/2, where c2, c3, and c4 are the constants defined in Lemma

E.1 (i). Since εn is assumed to converge at a polynomial rate, ε−1
n P n

(
ê (Xn) /∈

[
κ
2
, 1 − κ

2

])

converges faster than O(n
− 1

2+dx/βe ). Thus, from (E.6), we conclude sup
P∈Pe

EP n

[
1
n

∑n
i=1 |ê(Xi) − e(Xi)|

]
≤

O
(
n
− 1

2+dx/βe

)
, i.e., φn = n

1
2+dx/βe .

For the bounds for the mean of the squared maximum, we have

EP n

[(

max
1≤i≤n

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

)2
]

≤
4

κ4
EP n

[(

max
1≤i≤n

|ẽ(Xn) − e(Xn)|

)2
]

+ (κεn)−2P n
(
ẽ(Xn) /∈

[κ
2
, 1 −

κ

2

])

By Lemma E.1 (iii) and (E.7), EP n

[(
max1≤i≤n

∣
∣
∣ 1
e(Xi)

− 1
ê(Xi)

∣
∣
∣
)2
]

≤ O
(
(log n)3 ∙ n− 2

2+dx/βe

)
,

i.e., φ̃n = (log n)−3/2 ∙ n
1

2+dx/βe .

The other convergence rate bounds in Assumption C.1 can be shown similarly.

Combining Proposition E.1 with Theorem C.1 proves the claim made in equation (C.4).
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