A Service of

[ ) [ J
(] [ )
J ﬂ Leibniz-Informationszentrum
° Wirtschaft
o Leibniz Information Centre
h for Economics

Make Your Publications Visible.

Chernozhukov, Victor; Fernandez-Val, Ivan; Weidner, Martin

Working Paper

Network and panel quantile effects via distribution

regression

cemmap working paper, No. CWP70/18

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

Suggested Citation: Chernozhukov, Victor; Fernandez-Val, Ivan; Weidner, Martin (2018) : Network and
panel quantile effects via distribution regression, cemmap working paper, No. CWP70/18, Centre
for Microdata Methods and Practice (cemmap), London,

https://doi.org/10.1920/wp.cem.2018.7018

This Version is available at:
https://hdl.handle.net/10419/211090

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1920/wp.cem.2018.7018%0A
https://hdl.handle.net/10419/211090
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

cemmap

centre for microdata methods and practice

Network and panel quantile
effects via distribution regression

Victor Chernozhukov
Ilvan Fernandez-Val
Martin Weidner

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP70/18

An ESRC Research Centre



NETWORK AND PANEL QUANTILE EFFECTS VIA DISTRIBUTION
REGRESSION

VICTOR CHERNOZHUKOV, IVAN FERNANDEZ-VAL, AND MARTIN WEIDNER

ABSTRACT. This paper provides a method to construct simultaneous confidence bands
for quantile functions and quantile effects in nonlinear network and panel models with
unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome
variables. The method is based upon projection of simultaneous confidence bands for
distribution functions constructed from fixed effects distribution regression estimators.
These fixed effects estimators are bias corrected to deal with the incidental parameter
problem. Under asymptotic sequences where both dimensions of the data set grow at the
same rate, the confidence bands for the quantile functions and effects have correct joint
coverage in large samples. An empirical application to gravity models of trade illustrates
the applicability of the methods to network data.

1. INTRODUCTION

Standard regression analyzes average effects of covariates on outcome variables. In many
applications it is equally important to consider distributional effects. For example, a policy
maker might be interested in the effect of an education reform not only on the mean but
also the entire distribution of test scores or wages. Availability of panel data is very useful
to identify ceteris paribus average and distributional effects because it allows the researcher
to control for multiple sources of unobserved heterogeneity that might cause endogeneity or
omitted variable problems. The idea is to use variation of the covariates over time for each
individual or over individuals for each time period to account for unobserved individual
and time effects. In this paper we develop inference methods for distributional effects in
nonlinear models with two-way unobserved effects. They apply not only to traditional
panel data models where the unobserved effects correspond to individual and time fixed
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effects, but also to models for other types of data where the unobserved effects reflect some
grouping structure such as unobserved sender and receiver effects in network data models.

We develop inference methods for quantile functions and effects. The quantile function
corresponds to the marginal distribution of the outcome in a counterfactual scenario where
the treatment covariate of interest is set exogenously at a desired level and the rest of
the covariates and unobserved effects are held fixed, extending the construction of Cher-
nozhukov Fernandez-Val and Melly (2013) for the cross section case. The quantile effect is
the difference of quantile functions at two different treatment levels. Our methods apply
to continuous and discrete treatments by appropriate choice of the treatment levels, and
have causal interpretation under standard unconfoundedness assumptions for panel data.
The inference is based upon the generic method of Chernozhukov, Fernandez-Val, Melly,
and Wuthrich (2016) that projects joint confidence bands for distributions into joint con-
fidence bands for quantile functions and effects. This method has the appealing feature
that applies without modification to any type of outcome, let it be continuous, discrete or
mixed.

The key input for the inference method is a joint confidence band for the counterfac-
tual distributions at the treatment levels of interest. We construct this band from fixed
effects distribution regression (FE-DR) estimators of the conditional distribution of the
outcome given the observed covariates and unobserved effects. In doing so, we extend
the distribution regression approach to model conditional distributions with unobserved
effects. This version of the DR model is semiparametric because not only the DR coef-
ficients can vary with the level of the outcome as in the cross section case, but also the
distribution of the unobserved effects is left unrestricted. We show that the FE-DR es-
timator can be obtained as a sequence of binary response fixed effects estimators where
the binary response is an indicator of the outcome passing some threshold. To deal with
the incidental parameter problem associated with the estimation of the unobserved effects
(Neyman and Scott (1948)), we extend the analytical bias corrections of Fernandez-Val and
Weidner (2016) for single binary response estimators to multiple (possibly a continuum)
of binary response estimators. In particular, we establish functional central limit theorems
for the fixed effects estimators of the DR coefficients and associated counterfactual distri-
butions, and show the validity of the bias corrections under asymptotic sequences where
the two dimensions of the data set pass to infinity at the same rate. As in the single
binary response model, the bias corrections remove the asymptotic bias of the fixed effects
estimators without increasing their asymptotic variances.

We implement the inference method using multiplier bootstrap (Giné and Zinn, 1984).
This version of bootstrap constructs draws of an estimator as weighted averages of its in-
fluence function, where the weights are independent from the data. Compared to empirical
bootstrap, multiplier bootstrap has the computational advantage that it does not involve
any parameter reestimation. This advantage is particularly convenient in our setting be-
cause the parameter estimation require multiple nonlinear optimizations that can be highly
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dimensional due to the fixed effects. Multiplier bootstrap is also convenient to account for
data dependencies. In network data, for example, it might be important to account for
reciprocity or pairwise clustering. Reciprocity arises because observational units corre-
sponding to the same pair of agents but reversing their roles as sender and receiver might
be dependent even after conditioning on the unobserved effects. By setting the weights of
these observational units equal, we account for this dependence in the multiplier bootstrap.
In addition to the previous practical reasons, there are some theoretical reasons for choos-
ing multiplier bootstrap. Thus, Chernozhukov, Chetverikov and Kato (2016) established
bootstrap functional central limit theorems for multiplier bootstrap in high dimensional
settings that cover the network and panel models that we consider.

The methods developed in this paper apply to models that include unobserved effects to
capture grouping or clustering structures in the data such as models for panel and network
data. These effects allow us to control for unobserved group heterogeneity that might be
related to the covariates causing endogeneity or omitted variable bias. They also serve to
parsimoniously account for dependencies in the data. We illustrate the wide applicability
with an empirical example to gravity models of trade. In this case the outcome is the
volume of trade between two countries and each observational unit corresponds to a country
pair indexed by exporter country (sender) and importer country (receiver). We estimate
the distributional effects of gravity variables such as the geographical distance controlling
for exporter and importer country effects that pick up unobserved heterogeneity possibly
correlated with the gravity variables. We uncover significant heterogeneity in the effects of
distance and other gravity variables across the distribution, which is missed by traditional
mean methods. We also find that the Poisson model, which is commonly used in the
trade literature to deal with zero trade in many country pairs, does not provide a good
approximation to the distribution of the volume of trade due to heavy tails.

Literature review. Unlike mean effects, there are different ways to define distributional
and quantile effects. For example, we can distinguish conditional effects versus uncondi-
tional or marginalized effects, or quantile effects versus quantiles of the effects. Here we
give a brief review of the recent literature on distributional and quantile effects in panel
data models emphasizing the following aspects: (1) type of effect considered; (2) type of
unobserved effects in the model; and (3) asymptotic approximation. For the unobserved
effects, we distinguish models with one-way effects versus two-way effects. For the asymp-
totic approximation we distinguish short panels with large N and fixed T versus long panels
with large NV and large T' , where N and T denote the dimensions of the panel. We focus
mainly on fixed effects approaches where the unobserved effects are treated as parameters
to be estimated, but also mention some correlated random effects approaches that impose
restrictions on the distribution of the unobserved effects. This paper deals with inference
on marginalized quantile effects in large panels with two-way effects, which has not been
previously considered in the literature. Indeed, to the best of our knowledge, it is the first
paper to provide inference methods for quantile treatment effects from panel and network
models with two-way fixed effects.
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Koenker (2004) introduced fixed effects quantile regression estimators of conditional
quantile effects in large panel models with one-way individual effects using shrinkage to con-
trol the variability in the estimation of the unobserved effects. Lamarche (2010) discussed
the optimal choice of a tuning parameter in Koenker’s method. In the same framework,
Kato, Galvao, and Montes-Rojas (2012), Galvao, Lamarche and Lima (2013), Galvao and
Kato (2016) and Arellano and Weidner (2016) considered fixed effects quantile regression
estimators without shrinkage and developed bias corrections. All these papers require that
T pass to infinity faster than N, making it difficult to extend the theory to models with
two-way individual and time effects. Graham, Hahn and Powell (2009) found a special case
where the fixed effects quantile regression estimator does not suffer of incidental parameter
problem. Machado and Santos Silva (2018) has recently proposed a method to estimate
conditional quantile effects in a location-scale model via moments.

In short panels, Rosen (2012) showed that a linear quantile restriction is not sufficient
to point identify conditional effects in a panel linear quantile regression model with un-
observed individual effects. Chernozhukov, Fernandez-Val, Hahn and Newey (2013) and
Chernozhukov, Fernandez-Val, Hoderlein, Holzmann and Newey (2015) discussed identifi-
cation and estimation of marginalized quantile effects in nonseparable panel models with
unobserved individual effects and location and scale time effects under a time homogeneity
assumption. They showed that the effects are point identified only for some subpopulations
and characterized these subpopulations. Graham, Hahn, Poirier and Powell (2015) consid-
ered quantiles of effects in linear quantile regression models with two-way effects. Finally,
Abrevaya and Dahl (2008) and Arellano and Bonhomme (2016) developed estimators for
conditional quantile effects in linear quantile regression model with unobserved individual
effects using correlated random effects approaches. None of the previous quantile regression
based methods apply to discrete outcomes.

Finally, we review previous applications of panel data methods to network data. These
include Charbonneau (2017), Cruz-Gonzalez, Fernandez-Val and Weidner (2016), Dzemski
(2017), Fernandez-Val and Weidner (2016), Graham (2016, 2017), Jochmans (2018), and
Yan, Jiang, Fienberg and Leng (2016), which developed methods for models of network
formation with unobserved sender and receiver effects for directed and undirected networks.
None of these papers consider estimation of quantile effects as the outcome variable is
binary, whether or not a link is formed between two agents.

Plan of the paper. Section 2 introduces the distribution regression model with unob-
served effects for network and panel data, and describes the quantities of interest including
model parameters, distributions, quantiles and quantile effects. Section 3 discusses fixed
effects estimation, bias corrections to deal with the incidental parameter problem, and
uniform inference methods. Section 4 provides asymptotic theory for the fixed effects es-
timators, bias corrections, and multiplier bootstrap. Section 5 and 6 report results of the
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empirical application to the gravity models of trade and a Monte Carlo simulation cali-
brated to the application, respectively. The proofs of the main results are given in the
Appendix, and additional technical results are provided in the Supplementary Appendix.

Notation. For any two real numbers a and b, a Vb = max{a, b} and a Ab = min{a,b}. For
a real number a, |a] denotes the integer part of a. For a set A, | A| denotes the cardinality
or number of elements of A.

2. MODEL AND PARAMETERS OF INTEREST

2.1. Distribution Regression Model with Unobserved Effects. We observe the data
set {(yij, xi;j) : (4,7) € D}, where y;; is a scalar outcome variable with region of interest
Y, and z;; is a vector of covariates with support X C R% 1 The variable ¥ij can be
discrete, continuous or mixed. The subscripts ¢ and j index individuals and time periods in
traditional panels, but they might index other dimensions in more general data structures.
In our empirical application, for example, we use a panel where y;; is the volume of trade
between country ¢ and country j, and z;; includes gravity variables such as the distance
between country ¢ and country j. Both ¢ and j index countries as exporters and importers
respectively. The set D contains the indexes of the pairs (7, ) that are observed. It is a
subset of the set of all possible pairs Dy := {(i,5) : ¢ = 1,...,1;5 = 1,...,J}, where I
and J are the dimensions of the panel. We introduce D to allow for missing data that are
common in panel and network applications. For example, in the trade application I = J
and D =Dy \{(4,7) : i =1,..., 1} because we do not observe trade of a country with itself.
We denote the total number of observed units by n, i.e. n = |D]|.

Let v; and w; denote vectors of unspecified dimension that contain unobserved random
variables or effects that might be related to the covariates x;;. In traditional panels, v;
are individual effects that capture unobserved individual heterogeneity and w; are time
effects that account for aggregate shocks. More generally, these variables serve to capture
some forms of endogeneity and group dependencies in a parsimonious fashion. We specify
the conditional distribution of y;; given (z;;, v;, w;) using the distribution regression (DR)
model with unobserved effects

Fy (v | wij, vi,wi) = Ay(P(xi5) B(y) + alvi,y) +v(wj,y), yed, (4,5) €D, (1)

where A, is a known link function such as the normal or logistic distribution, which may
vary with y, © — P(x) is a dictionary of transformations of = such us polynomials, b-
splines and tensor products, 3(y) is an unknown parameter vector, which can vary with
y, and (v,y) — a(v,y) and (w,y) — y(w,y) are unspecified measurable functions. This
DR model is a semiparametric model for the conditional distribution because y — 0(y) :=
(By),a1(y), - ar(y),m(y),...,vs(y)) is a function-valued parameter and the dimension

Lyt yi; has unbounded support, then the region ) is usually a subset of the support to avoid tail
estimation.
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of 6(y) varies with I and J, although we do not make this dependence explicit. We shall
treat the dimension of P(z) as fixed in the asymptotic analysis

When y;; is continuous, the model (1) has the following representation as an implicit
nonseparable model by the probability integral transform

Ay, (P (i) B(yij) + a(visyij) +v(wi, yig)) = wig, wij | 2ij,vi,wj ~ U(0, 1),

where the error u;; represents the unobserved ranking of the observation y;; in the condi-
tional distribution. The parameters of the model are related to derivatives of the condi-
tional quantiles. Let Qy,.(u | zij,v;, w;) be the u-quantile of y;; conditional on (x5, v;, w;)
defined as the left-inverse of y > F,.(y | @ij, vi, w;) at u, namely
Qy;; (u | ij,v5,wy) = inf{ly € Y : Fy, (y | 25, vi, ws) > up Asup{y € V},
and z;; = (:I:Z-Ij,...,:1:?]-1).2 Then, it can be shown that if P(z;) = zij, vy = Fy,;(y |
Tij, Vi, w;) is strictly increasing in the support of y;;, dA,(z)/0z > 0 for all y in the
support of y;; and x;; = Qy,, (u | T4, v;, w;) is differentiable,
o k
/Bk(y)’y:Qyij(u|x7jj7’07j,w]’) x —8xijyij(u | zij, vi,w5), k=1,...,ds, 31:;3 = 0/0x3;,

and

Be(y) O Qui; (u | Tij, viy wy)

Br(y) y=Quy; (ulzij viw;) 890%@%]- (u | @ij, vi,wj)’

Gk=1,....d,

provided that 0.« Qy,, (u | ®ij, vi, w;) # 0.3 The DR coefficients therefore are proportional
ij

to (minus) derivatives of the conditional quantile function, and ratios of DR coefficients
correspond to ratios of derivatives.

Remark 1 (Parametric models). There are many parametric models that are special
cases of the DR model. Thus, Chernozhukov, Fernandez-Val and Melly (2013) and Cher-
nozhukov, Fernandez-Val, Melly, and Wuthrich (2016) showed that the standard linear
model, Cox proportional hazard model and Poisson regression model are encompassed by
the DR model in the cross section case. These inclusions carry over to the panel versions
of these models with two-way unobserved effects. ]

2We use the convention inf{()} = +oc.
3Indeed, A, (@i;B(y) + a(vi,y) + v(wj,y)) = u at y = Qy,; (u | ij,vi,w;). Differencing this expression
with respect to mfj yields
Oy (23;B(y) + e(vi,y) + (w5, y)) /0y

ﬂk(y)‘ = ij V4 DT asz 7(“’ | l'i',’l_)i,'w')7
y=Qu;; (ulwijvpwy) Ay (2 8(y) + e(vi, y) + v(wj, ) 5 ’ ’

y=Qy,; (ulzij,viwy)
where A\, (z) = 9OA,(z)/0z. Note that the first term of the right hand side does not depend on k and
is positive because y — Fy, (y | zij,vi,ws) = Ay(23;8(y) + a(vi,y) + v(wj,y)) is strictly increasing at

Yy = Qyij (u | mij7vivw1)'
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2.2. Estimands. In addition to the model parameter 3(y), we are interested in measuring
the effect on the outcome of changing one of the covariates holding the rest of the covariates
and the unobserved effects fixed. Let x = (t,2’)’, where t is the covariate of interest or
treatment and z are the rest of the covariates that usually play the role of controls. One
effect of interest is the quantile (left-inverse) function (QF)

Qu(r) = F (1) :==inf{y € Y : Fiu(y) = 7} Asup{y € Y}, 7€ (0,1),
where
Fily) =n" Y Ay(P(th,21) B(y) + alvi,y) + v(w),y)),
(i,j)€D

tfj is a level of the treatment that may depend on ¢;;, and k£ € {0,1}. We provide examples
below. Note that in the construction of the counterfactual distribution Fj, we marginal-
ize (x;j,v;, w;) using the empirical distribution. The resulting effects are finite population
effects. We shall focus on these effects because conditioning on the covariates and unob-

served effects is natural in the trade application.* We construct the quantile effect function
(QEF) by taking differences of the QF at two treatment levels

A(r) = Qi(1) = Qo(7), 7€ (0,1).

We can also obtain the average effect using the relationship between averages and dis-
tributions. Thus, the average effect is

A = 1 — po,
where iy, is the counterfactual average obtained from Fj as
= [ 1y 2 0) = Al dy. ke (0.1} )

The integral in (2) is over the real line, but the formula nevertheless is applicable to the
case where the support of dF}, is discrete or mixed.

The choice of the levels t,?j and tzlj is usually based on the scale of the treatment:

e If the treatment is binary, A(7) is the 7-quantile treatment effect with t?j =0 and
th=1.

e If the treatment is continuous, A(7) is the 7-quantile effect of a unitary or one
standard deviation increase in the treatment with t% = t;; and t}j = t;; + d, where
d is 1 or the standard deviation of t;;.

e If the treatment is the logarithm of a continuous treatment, A(7) is the 7-quantile
effect of doubling the treatment (100% increase) with t% = t;; and tj; = t;; +log 2.

4The distinction between finite and infinite population effects does not affect estimation, but affects
inference (Abadie, Athey, Imbens and Wooldridge, 2014). The estimators of infinite population effects
need to account for the additional sampling variation coming from the estimation of the distribution of
(2ig, vi, wy).
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For example, in the trade application we use the levels to = 0 and tl 1 for binary
covariates such as the indicators for common legal system and free trade area, and t?j =t
and tilj = t;; + log 2 for the logarithm of distance.

All the previous estimands have causal interpretation under the standard unconfound-
edness or conditional independence assumption for panel data where the conditioning set
includes not only the observed controls but also the unobserved effects.

3. FIXED EFFECTS ESTIMATION AND UNIFORM INFERENCE

To simplify the notation in this section we write P(z;;) = x;; without loss of generality,
and define a;(y) := a(v;,y) and v;(y) = y(w;,y).

3.1. Fixed Effects Distribution Regression Estimator. The parameters of the PDR
model can be estimated from multiple binary regressions with two-way effects. To see this,
note that the conditional distribution in (1) can be expressed as

Ay (23;8(y) + ciy) +vi(y) = E[{yi; <y} | zij, vi, wy].
Accordingly, we can construct a collection of binary variables,
Wy <y}, (,j) €D, ye,

and estimate the parameters for each y by conditional maximum likelihood with fixed ef-

fects. Thus, (/9\(y) = (E(y), ar(y),...,ar(y), 11(y),...,7s(y)), the fized effects distribution
regression estimator of 6(y) := (B(y), a1(y),...,ar(y), v1(y),...,vs(y)), is obtained as

~

O(y) € argmax Z (1{yw < y}log Ay(z}; 8 + a; + ;)
OeR%HIHT () Nep

1y > y}logll — Ay(ely8 + o w)}), 3)

for y € Y. When the link function is the normal or logistic distribution, the previous
program is concave and smooth in parameters and therefore has good computational prop-
erties. See Fernandez-Val and Weidner (2016) and Cruz-Gonzalez, Fernandez-Val and Wei-
dner (2016) for a discussion of computation of logit and probit regressions with two-way
effects.

The quantile functions and effects are estimated via plug-in rule, i.e.,

Qk( ) = ( )Asup{y € Y}, 7€ (0,1), ke{0,1},
where

T A A Bly) + @uly) + 35(9), y €V,

(4,7)€D
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and
A(r) = Qi(r) — Qo(r) 7€ (0,1).

Remark 2 (Computation). When ) is not finite, we replace ) by a finite subset Y such
that the Hausdorff distance between ) and ) goes to zero at a rate faster than 1/y/n. For
example, if ) is an interval [y, ], then ) can be a fine mesh of \/nloglogn equidistant
points covering Y, ie., ¥ = {y,y + d,y + 2d,...,y} for d = (§ — y)/(v/nloglogn). If ¥
is the support of y;;, Y can be a grid of /nloglogn sample quantiles with equidistant
indexes.

3.2. Incidental Parameter Problem and Bias Corrections. Fixed effects estimators
can be severely biased in nonlinear models because of the incidental parameter problem
(Neyman and Scott, 1948). These models include the binary regressions that we estimate to
obtain the DR coefficients and estimands. We deal with the incidental parameter problem
using the analytical bias corrections of Fernandez-Val and Weidner (2016) for parameters
and average partial effects (APE) in binary regressions with two-way effects. We note
here that the distributions Fy(y) and Fj(y) can be seen as APE, i.e., they are averages of
functions of the data, unobserved effects and parameters.

The bias corrections are based on expansions of the bias of the fixed effects estimators
as I,J — oo. For example,

I

n

J

E[Fu(y) — Fuly)) =~ B () + =Dy () + B (), (4)

where nR,(CF) (y) = o(I vV J).5 In Section 4 we establish that this expansion holds uniformly
inye)and k € {0,1}, ie.,

sup R ()] = o(T Vv 7).
ke{0,1},yey

This result generalizes the analysis of Fernandez-Val and Weidner (2016) from a single
binary regression to multiple (possibly a continuum) of binary regressions. This general-
ization is required to implement our inference methods for quantile functions and effects.

The expansion (4) is the basis for the bias corrections. Let EI(CF) (y) and ﬁI(CF)(y) be

estimators of B y) and D y), which are uniformly consistent in y € ) and k € {0,1}.
k k
Bias corrected fixed effects estimators of Fj, and @ are formed as

Qr(r) = Fi(r)Asup{y € V},

Fuly) = Fuly) L Buly) ~ 2Duly), ye.

5Fernandez-Val and Weidner (2016) considered the case where n = I.J, i.e., there is no missing data, so
that I/n=1/J and J/n =1/1I.
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We also use the corrected estimators ﬁk as the basis for inference and to form a bias
corrected estimator of the average effect.

Remark 3 (Shape Restrictions). If the bias corrected estimator y ~— Fj(y) is non-
monotone on Y, we can rearrange it into a monotone function by simply sorting the values
of function in a nondecreasing order. Chernozhukov, Fernandez-Val and Galichon (2009)
showed that the rearrangement improves the finite sample properties of the estimator.
Similarly, if the ﬁk(y) takes values outside of [0, 1], winsorizing its range to this interval
improves the finite sample properties of the estimator (Chen, Chernozhukov, Fernandez-
Val, Kostyshak and Luo (2018)). [

3.3. Uniform Inference. One inference goal is to construct confidence bands that cover
the QF 7 — Qi(7) and the QEF 7 — A(7) simultaneously over a set of quantiles 7 C
[e,1 —¢], for some 0 < € < 1/2, and treatment levels k € K C {0,1}. The set T is chosen
such that Q(7) € [inf{y € Y}, sup{y € V}], for all 7 € T and k € K.

We use the generic method of Chernozhukov, Ferndndez-Val, Melly and Wiithrich (2016)
to construct confidence bands for quantile functions and effects from confidence bands for
the corresponding distributions. Let D denote the space of weakly increasing functions,
mapping ) to [0,1]. Assume we have a confidence band I = [Ly, U] for F, with lower
and upper endpoint functions y +— Li(y) and y +— Ug(y) such that Ly, Uy € D and
Li(y) < Ui(y) for all y € V.5 We say that I covers F}, if F, € I pointwise, namely
Li(y) < Fi(y) < Ug(y) for ally € Y. If U, and Ly are some data-dependent bands, we say
that I is a confidence band for Fj of level p, if I covers Fj with probability at least p.
Similarly, we say that the set of bands {I} : k € K} is a joint confidence band for the set of
functions {Fy, : k € K} of level p, if I}, covers Fj, with probability at least p simultaneously
over k € K. The index set K can be a singleton to cover individual confidence bands or
K = {0,1} to cover joint confidence bands. In Section 4 we provide a multiplier bootstrap
algorithm for computing joint confidence bands based on the joint asymptotic distribution
of the bias corrected estimators {Fj : k € K}.

The following result provides a method to construct joint confidence bands for {Qy =
F{ 'k € K}, from joint confidence bands for {F}, : k € K}.

Lemma 1 (Chernozhukov, Ferndndez-Val, Melly and Wiithrich (2016, Thm. 2(1))). Con-
sider a set of distribution functions {F} : k € K} and endpoint functions {Lj : k € K}
and {Uy : k € K} with components in the class D. If {Fy : k € K} is jointly covered by
{I), : k € K} with probability p, then {Qy = Fi~ : k € K} is jointly covered by {15~ : k € K}
with probability p, where

I (r)=[Ug (1), L (1)], T€T, kek.

1, Ui 1s a confidence band for [} that does not obey the constraint L, U, € D, we can transform
O1f [}, U}) i fid band for Fy that d bey th int Ly, Uj, € D f
[L%, Ui] into a new band [Lg, Uy| such that Ly, Uy € D using the rearrangement method of Chernozhukov,
Fernandez-Val and Galichon (2009).
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This Lemma establishes that we can construct confidence bands for quantile functions
by inverting the endpoint functions of confidence bands for distribution functions. The
geometric intuition is that the inversion amounts to rotate and flip the bands, and these
operations preserve coverage.

We next construct simultaneous confidence bands for the quantile effect function 7 —
A(T1) defined by

A(T) =Q1(1) = Qo(r) = Ff (1) — F§ (1), 7€T.

The basic idea is to take appropriate differences of the bands for the quantile functions )4
and Q¢ as the confidence band for the quantile effect. Specifically, suppose we have the
set of confidence bands {I;~ = [U{,Li7] : kK = 0,1} for the set of functions {F}~ : k =
0,1} of level p. Chernozhukov, Fernandez-Val, Melly and Wiithrich (2016) showed that a
confidence band for the difference @1 — Qo of size p can be constructed as [U;~ — L&, L —
Ug ], ie., I§ © I§ where © is the pointwise Minkowski difference.

Lemma 2 (Chernozhukov, Ferndndez-Val, Melly and Wiithrich (2016, Thm. 2(2))). Con-
sider a set of distribution functions {Fy, : k = 0,1} and endpoint functions {Ly : k = 0,1}
and {Uy : k = 0,1}, with components in the class D. If the set of distribution functions
{Fy : k =0,1} is jointly covered by the set of bands {I} : k = 0,1} with probability p, then
the quantile effect function A = F\~ — F;~ is covered by I\ with probability at least p,
where I\ is defined by:

IN() = U7 (7). Ly (Nl e [Ug (1), L (1)] = U (7) = Lg (1), Li (1) =Ug ()], 7€T.

4. ASYMPTOTIC THEORY

This section derives the asymptotic properties of the fixed effect estimators of y — SB(y)
and {F} : k € K}, as both dimensions I and J grow to infinity. We focus on the case
where the link function is the logistic distribution at all levels, A, = A, where A(§) =
(1 + exp(—£))~t. We choose the logistic distribution for analytical convenience. In this
case the Hessian of the log-likelihood function does not depend on ¥, leading to several
simplifications in the asymptotic expansions. In particular, there are various terms that
drop out from the second order expansions that we use to characterize the structure of
the incidental parameter bias of the estimators f(y) and F (y). For the case of single
binary regressions, Fernandez-Val and Weidner (2016) showed that the properties of fixed
effects estimators are similar for the logistic distribution and other smooth log-concave
distributions such as the normal distribution. Accordingly, we expect that our results
can be extended to other link functions, but at the cost of more complicated proofs and
derivations to account for additional terms.

We make the following assumptions:
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Assumption 1 (Sampling and Model Conditions).

(i) Sampling: The outcome variable y;; is independently distributed over i and j con-
ditional on all the observed and unobserved covariates Cp = { (45, vi,w;) : (i,7) €

D}.
(ii) Model: For ally € Y,
Fyij (y|CB) = Fyij (v | xiﬁviij) = A(x;,‘jﬁ(y) + a(vi, y) + ’Y(wj’y))v
where y — B(y), y — a(y) and y — v(-,y) are measurable functions.

(i) Compactness: XYW, the support of (xi;,vs,w;), is a compact set, and y — o(vs,y)
and y — y(wj,y) are a.s. uniformly bounded on ).

(iv) Compactness and smoothness: FEither Y is a discrete finite set, or Y C R is a
bounded interval. In the latter case, we assume that the conditional density function
Jyi; (| @i, vi,wy) exists, is uniformly bounded above and away from zero, and is
uniformly continuous in y on int(Y), uniformly in (x;j,vi, w;) on XVW, where
int(Y) is the interior of ).

(v) Missing data: There is only a fixred number of missing observations for every i and
J, that is, max;(J — [{(¢',5") € D :i' =i}]) < ¢ and max;({ — [{(V',j)) e D:j =
J}H) < ea for some constant ca < oo that is independent of the sample size.

(vi) Non-collinearity: The regressors x;; are non-collinear after projecting out the two-
way fized effects, that is, there exists a constant cg > 0, independent of the sample
size, such that

. . 1
SeRis 1 [d|=1} (a)eRI+7 | 7 D (@ —ai=b)’| = e
{6€Rdx . ||5]|=1} (ab)€ (i.9)eD

(vil) Asymptotics: We consider asymptotic sequences where I, J, — oo with I,,/J, — ¢
for some positive and finite ¢, as the total sample sizen — oco. We drop the indexing
by n from I,, and J,, i.e. we shall write I and J.

Remark 4 (Assumption 1). Part (i) holds if (y;;,z45) is i.i.d. over i and j, v; is i.i.d. over
i, and w; is i.i.d. over j; but it is more general as it does not restrict the distribution
of (x;j,v;, w;) nor its dependence across i and j. We show how to relax this assumption
allowing for a form of weak conditional dependence in Section 4.4. Part (ii) holds if the
observed covariates are strictly exogenous conditional on the unobserved effects and the
conditional distribution is correctly specified for all y € V. We expect that our theory
carries over to predetermined or weakly exogenous covariates that are relevant in panel
data models, following the analysis Fernandez-Val and Weidner (2016). We focus on the
strict exogeneity assumption because it is applicable to both panel and network data, and
leave the extension to weak exogeneity to future research. Part (iii) imposes that the
support of the covariates and the unobserved effects is a compact set. For fixed values y
it is possible to obtain asymptotic results of our estimators without the compact support
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assumption, see e.g. Yan, Jiang, Fienberg and Leng (2016), but deriving empirical process
results that hold uniformly over y is much more involved without this assumption. The
compact support assumption guarantees that the conditional probabilities of the events
{yij <y} are bounded away from zero and one, that is, the network of binarized outcomes
1{yi; < y} is assumed to be dense. In the network econometrics literature Charbonneau
(2017), Graham (2017) and Jochmans (2018) provide methods that are also applicable to
sparse networks. Part (iv) can be slightly weakened to Lipschitz continuity with uniformly
bounded Lipschitz constant, instead of differentiability. It covers discrete, continuous,
and mixed outcomes with mass points at the boundary of the support such as censored
variables. For the mixed outcomes, the data generating process for the mass points can be
arbitrarily different from the rest of the support because the density y ~— f,..(y | -) only
needs to be continuous in the interior of ). If the panel is balanced, part (vi) can be stated
as

1 I J
7722 Tty > el
i=1 j=1

where Z;; = xijj — v — xj + Ty T = J Z}]:l zij, vj = I} Zi]:1 zij, and z.. =
(1J)~! Ele Z}'le xi;. This is the typical condition in linear panel models requiring that all
the covariates display variation in both dimensions. The asymptotic sequences considered
in part (v) are convenient because they exactly balance the order of the bias and standard
deviation of the fixed effect estimator yielding a non-degenerate asymptotic distribution.m

4.1. Asymptotic Distribution of the Uncorrected Estimator. We introduce first
some further notation. Denote the ¢*" derivatives of the cdf A by A@, and define AE?) (y) =

A@ (2, 8(y) + ai(y) +v(y) and A, (1) = AD (] Bly) + aily) +;(y)) with x5 =
(tfj,zgj)’ and ¢ = 1,2,.... For £ € {1,...,d,} define the following projections of the ¢’th
covariate xfj,

(a,c)eRI+J

(b Ai) comg min | ST AD) (o —ai— )| 5)
(4,9)€D

and let o, ;(y) and v, ;(y) be the d,-vectors with components ai’i(y) and vﬁ’j(y), where

E . . E ( . . e
2i(y) is the ith component of a;(y) and 7, ;(y) is the jth component of v, (y). Also

define z;;(y) = zij — i(y) — Ve, (v) and X4 1(y) = X455 — 02,i(y) — V2,5 (y). Notice that
X;jk(y) is defined using projections of x;; instead of x;jj. Also, while the locations of
ag,i(y) and 7, ;(y) are not identified, Z;;(y) and X;;x(y) are uniquely defined. Analogous
to the projection of xfj above, we define ¥;; x(y) = o (y) + 'yj‘-l’(y), where

o

2

A (y)
(@YW, () earg min | S AP [ “EET -] |- (6)
(a,c)ERITT (i,)€D Az(j)(y)
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For example, if x;; 1 = 245, then ¥;; 1 (y) = 1. Furthermore, we define’

Z A xz] )xij(y),> aﬂsz Z AUk Xuk( )7

(7] )ED (73 yeD

and

(1 Sien A W) wy)]
12 zj@ A@<y>

| — > ieD, AY )%(y)
T _Z S en, A )
2_jep, [Ag,)k(y) - AE?) (y)\l’ij,k(y)}
ZJ'GD AQ)(ZJ)
PN (y) = % EJ:Z@ [Agj)k(y) (Aléf)(y)qfw(y)}’
J=1 ZZED A (y)

where D; := {(¢,7') € D : i =i} and D; := {(¢/,j) € D : 7 = j} are the subsets of
observational units that contain the index 7 and j, respectively. In the previous expressions,
05F(y) is a 1 x d, vector for each k € K that we stack in the || x d, matrix 0gF (y) =

[03Fk(y) : k € KJ]. Similarly, Fj(y), B,gA) (y), D,(CA)(y) and V;;1(y) are scalars for each
k € K, that we stack in the |K| x 1 vectors F(y) = [Fi(y) : k € K], BN (y) = [B,E:A) (y) :
ke K] D) = DV () : ke K], Wij(y) = [Tinly) : k€ K],

9

I
1
Bl(gA) (y) = 27 Z

Let ¢£°()) be the space of real-valued bounded functions on ) equipped with the sup-
norm || - ||y, and ~» denote weak convergence (in distribution). We establish a functional
central limit theorem for the fixed effects estimators of y — S(y) and y — F(y) in Y. All
stochastic statements are conditional on {(z;;,v;,w;) : (4,) € D}.

Theorem 1 (FCLT for Fixed Effects DR Estimators). Let Assumption 1 hold. For all

Y1, Y2 € Y with y1 > yo we assume the existence of

V(y1,y2)—th* D Aij(y) [T = Agj(y2)] Fij(yr) Tuj(y2)'s

n—oo 1

(4,5)€D
Q(y1,y2)—Pgmg > Mii(yn) [1 = Agj(y2)] Eij(w1)Z45 (1),
T Ggep

7 The FOC of problem (5) imply that > (ij)ep Agjl.’)k(y) Z;j(y)" = 0, and we can therefore equivalently
write 93 Fe(y) = & S yen Aja ) Fiir(®) = @) = § T pen Aja®) i) = 2w)]"
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Ehere Zij(v) :Eij(y) +QgF(y)W‘1(y) Tij(y). Let V(ya,y1) == V(y,42), Qy2.y1) ==
Qy1,y2), and W(y1) := V(y1,y1). Then, in the metric space £>°(Y)%,

Vit |3 - 8) - 5P - 2D

n

®) <y>} - 20(y),

and, in the metric space £°°(y)"€‘,

v} Bly) — Fly) — = [BOG) + @sF ) BO(y)] ~ L [DD ) + @05F (1)) D)

n

B(F) () D) (y)
~ ZF)(y),

as stochastic processes indexed by y € Y, wherey — ZP)(y) andy r—> ZWF) (y) are tight zero-
mean Gaussianfprocesses with covariance functions (y1,y2) — W ( D VgL, y2) W (y2)
and (y1,y2) — Q(y1,y2), respectively.

Assumption 1(vi) guarantees the invertibility of W (y) and W (y). Notice that W (y)
is equal to the limit of W (y) because AS)(y) = A;j(y) [1 — Ayj(y)] by the properties of
the logistic distribution. This information equality follows by the correct specification
condition in Assumption 1(ii). By Assumption 1(v), we could have used v/I.J instead of
v/n, 1/J instead of I/n, and 1/I instead of J/n. We prefer the expressions in the theorem,
because they might provide a more accurate finite-sample approximation.

Remark 5 (Comparison with binary response models). Fernandez-Val and Weidner (2016)
derived central limit theorems (CLTs) for the fixed effects estimators of coefficients and
APEs in panel regressions with two-way effects. Pointwise, for given y € ), Theorem 1
yields these CLTs. Moreover, it covers multiple binary regressions by establishing the
limiting distribution of B(y) and F (y) treated as stochastic processes indexed by y € ).
This generalization is key for our inference results and does not follow from well-known
empirical process results. We need to deal with a double asymptotic approximation where
both I and J grow to infinity, and to bound all the remainder terms in the second order
expansions used by Fernandez-Val and Weidner (2016) uniformly over y € ). We refer to
the appendix and supplementary material for more details. ]

Remark 6 (Case Xijk = xi;). When X5, = i; the asymptotic bias of ﬁk vanishes,
because B( )( ) = D(A)( ) =0, and 0gF)(y) = 0 (see footnote 7). In fact, in that case Fp
is equal to the empirical distribution function, namely

)=+ > Hus v}

n
(4,7)€D (4,7)€D
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by the first order conditions of the fixed effects logit DR, estimator with respect to the fixed
effect parameters. This property provides another appealing feature to choose the logistic
distribution. |

4.2. Bias Corrections. Theorem 1 shows that the fixed effects DR estimator has asymp-
totic bias of the same order as the asymptotic standard deviation under the approximation
that we consider. The finite-sample implications are that this estimator can have substan-
tial bias and that confidence regions constructed around it can have severe undercoverage.
We deal with these problems by removing the first order bias of the estimator.

We estimate the bias components using the plug-in rule. Define /A\gjq.) (y) = A9D(z] B(y) +
) +35) and R, (y) = R0, B0) +81(4) + 3 (1)), Replacing AD(y) and ALY, 1)
by /A\l(]l)(y) and /A\S)k(y) in the definitions of o’ (y), v4(y), a¥(y), and v¥(y) yields the
corresponding estimators. We plug-in these estimators to obtain Zj;(y) = z;j — azi(y) —
Ve,i (W), Xij, k(y) = Xijk — Qi (y) —Va,j(y), and Wi (y) = ag’(@/)Jr?}P(y)- Then we construct

Z AW E W) Fw),  GsFily Z AD, ()20,
U)ED W
and
! N IR
B(ﬂ) (y) _lw_l(y) 1 Z ZjGDi Aij (y) Tij (y)]
et )
i -I = Yen Ay )

A () 7

5(6)@):_%{4\/71@) 72 ; mA(y))x;;(y)
L 1€D;
) - 12132]@ [Ki?k@) R ) Tia(w)]
= S ep AL () |

~(2 ~ N
DM (y) = 12‘]: 2 ien, [Agj)k(y) Az(j)(y)\l’ij,k(y)}

= ien, A )
We also define the |K| x d, matrix OBF( ) = [(65Fk(y)) : k € K], and the || x 1 vectors

~

BW(y) = B w) : k € K], DP)(y) = D (y) : k € KL, Tis(y) = [Wyyuly) : k € K.
Finally, we also construct the estimator of the asymptotic variance of F(y)

Z AP () Ely) E)".
(zy )eD

where Z(y) = Wy (y) + (05 F ()W () Zi; (y).

—
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The following theorem shows that the estimators of the asymptotic bias and variance
are consistent, uniformly in y € ). For a matrix A, we denote by ||A| the Frobenius norm
of A, i.e. ||A|| = trace(AA’).

Theorem 2 (Uniform Consistency of Estimators of Bias and Variance Components). Let
Assumption 1 hold. Then,

sup |[W(y) = W(y)|| = or (1), sup||9F (y) — 95F (v)|| = or (1),
yey yey
sup [BO(y) — BO )| =op1),  sup|[ DD (y) - DO (y)|| = 0p(1),
yey yey
sup [ B () = BO@)|| =op(1),  sup [ DV (y) = DO (y)|| = 0p(1),
yey yey
sup |[9y) — 2y) | = op(1).

yey

Bias corrected estimators of 3(y) and F'(y) are formed as

Blw) = Bly) — B ) ~ 25O ), @
and
Fy) = Bo) — L[BW ) T Hn) D)
F(y) = F(y) = = |BY(y) + 05F (1) BO )| = =[DV(y) + (95F (1)) D (v)
B (y) D) (y)

Alternatively, we could define the bias corrected version of F (y) as

LS A (Bl + ) +3) | - S BVG) -

(z,])eD
where £(y) := (@1(y), ... a1(y),71(y), - -,7s(y)) is a solution to

(max, > (yy < y}log Aal;Bly) +ai+1y) + Hyy > y}logll - Alal;B(y) + i+ 7).
(i,J)€D

It can be shown that sup,cy LD ﬁg(y) — fk(y) = op(1), that is, the difference between
those alternative bias corrected estimators is asymptotically negligible. There is no obvious
reason to prefer one over the other, and we present result for f’k in the following, which
equivalently hold for F, ,;“.8

8We use the estimator F, & in the numerical examples for computational convenience as the bias correction
involves estimating less terms.
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Remark 7 (Alternative Approaches). The conditional approach of Charbonneau (2017)
and Jochmans (2018) for the logit model with two-way effects could be also adopted to
estimate the coefficient 3(y). However, this approach does not produce estimators of F'(y)
as it is based on differencing-out the unobserved effects. The bias correction method pro-
posed is analytical in that it requires explicit characterization and estimation of the bias.
A natural alternative is a correction based on Jackknife or bootstrap following the anal-
ysis of Cruz-Gonzalez, Fernandez-Val and Weidner (2016), Dhaene and Jochmans (2015),
Fernandez-Val and Weidner (2016), Hahn and Newey (2004), and Kim and Sun (2016) for
nonlinear panel models. We do not consider any of these corrections because they require
repeated parameter estimation that can be computationally expensive in this case. ]

Combining Theorem 1 and 2 we obtain the following functional central limit theorem
for the bias corrected estimators.

Corollary 1 (FCLT for Bias Corrected Fixed Effects DR Estimators). Let Assumption 1
hold. Then, in the metric space {>°(Y)%,

Vi [Bly) - Bw)] ~ 29(y),

and, in the metric space £°°(y)"€‘,

Vi |F(y) = F(y)| — 25(),

as stochastic processes indexed by y € Y, where ZP¥) (y) and ZF) (y) are the same Gaussian
processes that appear in Theorem 1.

4.3. Uniform Confidence Bands and Bootstrap. We show how to construct pointwise
and uniform confidence bands for y — [B(y) and y — F(y) on ) using Corollary 1. The
uniform bands for F' can be used as inputs in Lemmas 1 and 2 to construct uniform bands
for the QFs 7 +— Qi(7) = Fi (1), k € K, and the QEF 7 — A(7) on 7.

Let B C {1,...,d,} be the set of indexes for the coefficients of interest. For given y € Y,
te B, ke, and p € (0,1), a pointwise p-confidence interval for 5y(y), the £’th component

of 5(y), is

[Be(y) £ @71 (1 — p/2)5, (y)], (8)
and a pointwise p-confidence intervals for Fi(y) is

[Fi(y) £ @' (1 - p/2)55, ()],
where ® denotes the cdf of the standard normal distribution, o, (y) is the standard error of

Be(y) given in (13), and o, (y) is the standard error of Fi(y) given in (14). These intervals
have coverage p in large samples by Corollary 1 and Theorem 2.

We construct joint uniform bands for the coefficients and distributions using Kolmogorov-
Smirnov type critical values, instead of quantiles from the normal distribution. A uniform
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p-confidence band joint for the vector of functions {8,(y) : £ € B,y € Y} is

Is = {[Bely) £ 1553 (P)35, ()] : € € Boy € V), (9)
where tg%, (p) is the p-quantile of the maximal t-statistic
B)
Z
tﬁ% — sup M (10)

yeY, LeB Jéﬁ)(y) 7

where Uéﬁ) (y) = [W(y)*l]zm, the square root of the (£,£) element of the matrix W (y)~!.

Similarly, a uniform p-confidence band joint for the set of distribution functions {Fy(y) :
keK,yel}is

Ir = {[Fily) £ 68,0 (9)] : k € K,y € VY, (11)

where t,(CFg, (p) is the p-quantile of the maximal t-statistic

K,y = sup ﬁ, (12)

where a,(CF) (y) = [ﬁ(y)]i/z, the square root of the (k,k) element of the matrix Q(y,y).

The previous confidence bands also have coverage p in large samples by Corollary 1 and
Theorem 2.

The maximal t-statistics used to construct the bands Iz and Ir are not pivotal, but their
distributions can be approximated by simulation after replacing the variance functions of
the limit processes by uniformly consistent estimators. In practice, however, we find it
more convenient to use resampling methods. We consider a multiplier bootstrap scheme
that resamples the efficient scores or influence functions of the fixed effects estimators 3(y)
and F (y). This scheme is computationally convenient because it does not need to solve the
high dimensional nonlinear fixed effects conditional maximum likelihood program (3) or
making any bias correction in each bootstrap replication. In these constructions we rely on
the uncorrected fixed effects estimators instead of the bias corrected estimators, because
they have the same influence functions and the uncorrected estimators are consistent under
the asymptotic approximation that we consider.

To describe the standard errors and multiplier bootstrap we need to introduce some
notation for the influence functions of #(y) and F(y). Let 6 = (5, a1,...,a5,71,...,77) be

a generic value for the parameter (y), the influence function of 8(y) is the (dg+I-+.J)-vector
7 (6(s). where

V(0) = HO)' [1{y;; <y} — Mai;B+ ai +1)wiy, wij = (wij,€i1,¢5.5), y €V,
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e; r is a unit vector of dimension I with a one in the position i, e; s is defined analogously,
H(0)" is the Moore-Penrose pseudo-inverse of H(f), and

1
H(0) =~ > AD@B + i + v wiwiy, AV (2) = A2)A(—2),
(i,5)€D
is minus the Hessian of the log-likelihood with respect to 0, which does not depend on y in
the case of the logistic distribution.” The influence function of F(y) is gozzt’j +(0(y)), where

w6 (0) = Ji(0)07;(0),
and

1
Te(0) == > AW 84 i+ ) Wik, Wik = (Kijks €015 €,7)-
(4,7)€D

The standard error of By(y) is constructed as
1/2
G, (y) =n"" | D YLOW)LOW) | (13)
(i,J)€D 00
the square root of the (¢, ¢) element of the sandwich matrix n =2 >(ij)eD ¢Z“'] (é\(y))@bz’](g(y))’
Similarly, the standard error of Fj,(y) is constructed as
1/2

Gy =n"" > @l 0w)?] . (14)
(4,7)€D

The following algorithm describes a multiplier bootstrap scheme to obtain the critical
values for a set of parameters indexed by ¢ € B C {1,...,d,;} and a set of distributions
indexed by k € K C {0,1}. This scheme is based on perturbing the first order conditions
of the fixed effects estimators with random multipliers independent from the data.

Algorithm 1 (Multiplier Bootstrap). (1) Let Y be some grid that satisfies the conditions
of Remark 2. (2) Draw the bootstrap multipliers {w;; : (i,j) € D} independently from the
data as wii = @} — > nep @iy /n, @ff ~ dd.d. N(0,1). Here we have normalized the
multipliers to have zero mean as a finite-sample adjustment. (3) For each y € Y, obtain
the bootstrap draws of 0(y) as 0™ (y) = O(y) +n~1 > j)ep Wit (0(y)), and of Fi(y) as
F'(y) = Fr(y) +n~! 2 (i.j)eD wf;goi’jk(ﬁ(y)), k € K. (4) Construct the bootstrap draw of
the mazimal t-statistic for the parameters, tg%}m = max,cy 518" (v) — Be(W)l/75,(y),
where 0g,(y) is defined in (13), and ¢§Jﬂ(9) is the component of w%(ﬂ) corresponding to
Be. Similarly, construct the bootstrap draw of the mazimal t-statistic for the distributions,

9We use the Moore-Penrose pseudo-inverse because H () is singular if we do not impose a normalization
on the location of «;(y) and ~v;(y).
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F), 5 S ~ ~ , .
tl(c,%im = maX,cy rek |Fi"(y) — Fr(y)|/0 R, (y), where 5, (y) is defined in (14). (5) Repeat
steps (1)—(8) M times and index the bootstrap draws by m € {1,..., M}. In the numerical
examples we set M = 500. (6) Obtain the bootstrap estimators of the critical values as

?é;ﬁ%;(]?) = p — quantile of {tg;)f;m :1<m< M},
?(IC?J(P) = p — quantile of {tl(é})’m :1<m< M},

The next result shows that the multiplier bootstrap provides consistent estimators of
the critical values of the inferential statistics. The proof follows from Theorem 2.2 of
Chernozhukov, Chetverikov and Kato (2016).

Theorem 3 (Consistency of Multiplier Bootstrap Inference). Let Assumption 1 hold.
Then, conditional on the data {(yij, zi;) : (¢,5) € D}, as n — oo and M — oo

70 (9) 7

Y p) —p tB,y(p) and thF,) (F)

y(p) =P tic 3 (p),

where tgﬁ%,(p) and t,(gj),(p) are defined in (10) and (12), respectively.

Theorem 3 together with Theorems 1 and 2 guarantee the asymptotic validity of the
confidence bands Ig and Ir defined in (9) and (11) with the critical values ¢ (p) and

B?y
t;Cng(p) replaced by the bootstrap estimators Z(Bﬂ ;)V (p) and Z(ICF) (p).

4.4. Pairwise Clustering Dependence or Reciprocity. The conditional independence
of Assumption 1(i) can be relaxed to allow for some forms of conditional weak dependence.
A form of dependence that is relevant for network data is pairwise clustering or reciprocity
where the observational units with symmetric indexes (7, j) and (j,4) might be dependent
due to unobservable factors not accounted by unobserved effects.!® In the trade applica-
tion, for example, these factors may include distributional channels or multinational firms
operating in both countries.

The presence of reciprocity does not change the bias of the fixed effects estimators,
but affects the standard errors and the implementation of the multiplier bootstrap. The
standard error of SBy(y) becomes

1/2

Fal) =n" | 3 {eh@w) + @)} el @w) | (15)

(4,5)€D 00

10Cameron and Miller (2014) consider other patterns of dependence in linear models for dyadic data.
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Similarly, the standard error of ﬁk(y) needs to be adjusted to
1/2
or ) =n""| Y (eh@W) + el 0w) § ol 0w) (16)
k ij,k Y (pﬂ,k Y (pzj,k Y :
(4,J)€D
In the previous expressions we assume that if (¢,j) € D then (j,7) € D to simplify the

notation. The modified multiplier bootstrap algorithm becomes:

Algorithm 2 (Multiplier Bootstrap with Pairwise Clustering). (1) Let ) be some grid that
satisfies the conditions of Remark 2. (2) Draw the bootstrap multipliers {w]} : (i,j) € D} in-
dependently from the data as wi} = & =3 nep @iy /n, &ff ~ i.i.d. N(0,1) if i < j, and

ij ij
wij =y ifi > j. (3) For eachy € Y, obtain the bootstrap draws 0f0( ) as 0™ (y) = 0(y)+
nt Z(i,j)e’Dwijw?j( 6(y)), and of Fi(y) as F"(y) = Fr(y) + 07" T jyen winels 1 (0()),

k € K. (4) Construct the bootstrap draw of the maximal t—statistic for the parameters,

tl(gﬁ%}m = MaX,cy sep |67 (y)—Be(y)| /T8, (y), where ag,(y) is defined in (15), and and @bzﬂ( )
is the component of ¢y( ) corresponding to Be. Similarly, construct the bootstrap draw of

the maximal t-statistic for the distributions, t( ym = MaX,cy pek |F (y) — Fi(y )/or, (y),
where 0, (y) is defined in (16). (5) Repeat steps (1)-(3) M times and index the bootstrap

draws by m € {1,...,M}. In the numerical examples we set M = 500. (6) Obtain the
bootstrap estimators of the critical values as

%f’ég)(p) = p— quantile of{t l :1<m < M}

The clustered multiplier bootstrap preserves the dependence in the symmetric pairs (4, )
and (j,4) by assigning the same multiplier to each of these pairs.

4.5. Average Effect. A bias corrected estimator of the average effect can be formed as

A= ﬁl - ﬁ07 (17)
where

iy = / 1(y > 0) — CEy(y)]dy, k < {0,1}.

Here the integral is over the real line, and C is an operator that extends Fj, (y) from Y to
R as a step function, that is, it maps any f:) — R to Cf : R = R, where Cf(y) = 0 for
y<infY, Cf(y)=1for y >sup), and Cf(y) = f(sup{y/ € ¥ : 3/ < y}) otherwise. The
following central limit theorem for the bias corrected estimator of the average effect is a
corollary of Theorem 1 and 2 together with the functional delta method.
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Corollary 2 (CLT for Bias Corrected Fixed Effects Estimators of Average Effect). Let
Assumption 1 hold and fy dFy(y) =1, k € {0,1}. Then,

Vi (B-a) = - / ez ) - ez )| dy = 29, (18)

where ZF) (y) = [ZéF) (y), Z§F) (y)] is the same Gaussian process that appears in Theorem 1
with K = {0,1}.

Remark 8 (Support of V). The condition that [, dFj(y) = 1 guarantees that ) is the
support of the potential outcome corresponding to the distribution Fj, so that (2) yields
the average potential outcome under Fj. Together with Assumption 1, this condition is
satisfied when Y is discrete with finite support ), or continuous or mixed with bounded
support ) and conditional density bounded away from zero in the interior of ). This
support condition is not required for the estimation of the quantile effects.

We can construct confidence intervals for the average effect using Corollary 2. Let
1/2

~ ~

Ga=n"t| > @, Gy=- / [Cw?j,l(e(y))—cw?j,o(e(y)) dy.

Then, oa is an estimator of oa, the standard deviation of the limit process Z(&) in (18),
and

In=[A+ 07" (1 - p/2)5al,
is an asymptotic p-confidence interval for A. The normal critical value ®~!(1 — p/2) can
be replaced by a multiplier bootstrap critical value $A) (p) obtained from Algorithm 1 as

1A (p) = p — quantile of {tA)" 1 <m < M}
where t8)™ = |A™ — A| /G and A™ = A+ 07t Y p WG

The standard errors and critical values of the average effects can be adjusted to account
for pairwise clustering following the procedure described in Section 4.4. Thus, the pairwise
clustering robust standard error is

1/2
Ga=n""| Y {By+ i}y
(4,9)€D

5. QUANTILE EFFECTS IN GRAVITY EQUATIONS FOR INTERNATIONAL TRADE

We consider an empirical application to gravity equations for bilateral trade between
countries. We use data from Helpman, Melitz and Rubinstein (2008), extracted from the
Feenstra’s World Trade Flows, CIA’s World Factbook and Andrew Rose’s web site. These
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data contain information on bilateral trade flows and other trade-related variables for 157
countries in 1986.1' The data set contains network data where both i and j index countries
as senders (exporters) and receivers (importers), and therefore I = J = 157. The outcome
y;j is the volume of trade in thousands of constant 2000 US dollars from country i to
country j, and the covariates x;; include determinants of bilateral trade flows such as the
logarithm of the distance in kilometers between country i’s capital and country j’s capital
and indicators for common colonial ties, currency union, regional free trade area (FTA),
border, legal system, language, and religion. Following Anderson and van Wincoop (2003),
we include unobserved importer and exporter country effects.'? These effects control for
other country specific characteristics that may affect trade such as GDP, tariffs, population,
institutions, infrastructures or natural resources. We allow for these characteristics to
affect differently the imports and exports of each country, and be arbitrarily related with
the observed covariates.

Table 1 reports descriptive statistics of the variables used in the analysis. There are 157 x
156 = 24,492 observations corresponding to different pairs of countries. The observations
with ¢ = j are missing because we do not observe trade flows from a country to itself.
The trade variable in the first row is an indicator for positive volume of trade. There are
no trade flows for 55% of the country pairs. The volume of trade variable exhibits much
larger standard deviation than the mean. Since this variable is bounded below at zero,
this indicates the presence of a very heavy upper tail in the distribution. This feature also
makes quantile methods specially well-suited for this application on robustness grounds.'3

The previous literature estimated nonlinear parametric models such as Poisson, Negative
Binomial, Tobit and Heckman-selection models to deal with the large number of zeros in
the volume of trade (e.g., Eaton and Kortum, 2001, Santos Silva and Tenreyro, 2006, and
Helpman, Melitz and Rubinstein, 2008).14 These models impose strong conditions on the
process that generates the zeros and/or on the conditional heteroskedasticity of the volume
of trade. The DR model deals with zeros and any other fixed censoring points in a very
flexible and natural fashion as it specifies the conditional distribution separately at the
mass point. In particular, the model coefficients at zero can be arbitrarily different from
the model coefficients at other values of the volume of trade. Moreover, the DR model can
also accommodate conditional heteroskedasticity.

Figure 1 shows estimates and 95% pointwise confidence intervals for the DR coefficients
of log distance and common legal system plotted against the quantile indexes of the volume

Hpe original data set includes 158 countries. We exclude Congo because it did not export to any other
country in 1986.

12800 Harrigan (1994) for an earlier empirical international trade application that includes unobserved
country effects.

131 results not reported, we find that estimates of average effects are very sensitive to the trimming of
outliers at the top of the distribution.

1456e Head and Mayer (2014) for a recent survey on gravity equations in international trade.
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TABLE 1. Descriptive Statistics

Mean Std. Dev.

Trade 0.45 0.50
Trade Volume 84,542 1,082,219
Log Distance 4.18 0.78
Legal 0.37 0.48
Language 0.29 0.45
Religion 0.17 0.25
Border 0.02 0.13
Currency 0.01 0.09
FTA 0.01 0.08
Colony 0.01 0.10
Country Pairs 24,492

Source: Helpman, Melitz and Rubinstein (08)

of trade. We report uncorrected and bias corrected fixed effects estimates obtained from
(3) and (7), respectively. The confidence intervals are constructed using (8). The x-axis
starts at .54, the maximum quantile index corresponding to zero volume of trade. The
region of interest ) corresponds to the interval between zero and the 0.95-quantile of the
volume of trade. The difference between the uncorrected and bias corrected estimates is
the same order of magnitude as the width of the confidence intervals for the coefficient of
log distance. We find the largest estimated biases for both coefficients at highest quantiles
of the volume of trade, where the indicators 1{y;; < y} take on many ones. The signs of the
DR coefficients indicate that increasing distance has a negative effect and having a common
legal system has a positive effect on the volume of trade throughout the distribution. Recall
that the sign of the effect in terms of volume of trade, y;;, is the opposite to the sign of
the DR coefficient.

Figures 2 and 3 show estimates and 95% uniform confidence bands for distribution and
quantile functions of the volume of trade at different values of the log of distance and the
common legal system. The left panels plot the functions when distance takes the observed
levels (dist) and two times the observed values (2*dist), i.e. when we counterfactually
double all the distances between the countries. The right panels plot the functions when
all the countries have the same legal system (legal=1) and different systems (legal=0). The
confidence bands for the distribution are obtained by Algorithm 1 with 500 bootstrap repli-
cations and standard normal multipliers, and a grid of values ) that includes the sample
quantiles of the volume of trade with indexes {.54,.55,...,.95}. The bands are joint for the
two functions displayed in each panel. The confidence bands for the quantile functions are
obtained by inverting and rotating the bands for the corresponding distribution functions
using Lemma 1.
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FIGURE 2. Estimates and 95% uniform confidence bands for distribution
functions of the volume of trade.

Figure 4 displays estimates and 95% uniform confidence bands for the quantile effects
of the log of distance and the common legal system on the volume of trade, constructed
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FIGURE 3. Estimates and 95% uniform confidence bands for quantile func-
tions of the volume of trade.

using Lemma 2. For comparison, we also include estimates from a Poisson model. Here,
we replace the DR estimators of the distributions by

Fi(y)=— > explijry i kek, (19)
(ij)eD g=0 7’

where |y | is the integer part of y, Ajj . = exp(x;jvkﬁ—i—&ﬁ—ﬁj), and 0 = (B, (O PN N I
is the Poisson fixed effects conditional maximum likelihood estimator
0 € arg oo max Z [yij (23,8 + i + ) — exp(a7;8 + i +75)].
(ij)eD

We find that distance and common legal system have heterogeneously increasing effects
along the distribution. For example, the negative effects of doubling the distance grows
more than proportionally as we move up to the upper tail of the distribution of volume of
trade. Putting all the countries under the same legal system has little effects in the extensive
margin of trade, but has a strong positive effect at the upper tail of the distribution.
The Poisson estimates lie outside the DR confidence bands reflecting heavy tails in the
conditional distribution of the volume of trade that is missed by the Poisson model.'?
Figure 5 shows confidence bands of the quantile effects that account for pairwise clustering.
The bands are constructed from confidence bands from the distributions using Algorithm 2

15T his misspecification problem with the Poisson model is well-known in the international trade lit-
erature. The Poisson estimator is treated as a quasi-likelihood estimator and standard errors robust to
misspecification are reported (Santos Silva and Tenreyro, 2006).
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with 500 bootstrap draws and standard normal multipliers. Accounting for unobservables
that affect symmetrically to the country pairs has very little effect on the width of the
bands in this case.
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6. MONTECARLO SIMULATION

We conduct a Montecarlo simulation calibrated to the empirical application of Section
5. The outcome is generated by the censored logistic process

ys; = max{z};8 + a; +7; + oA (u;) /oL, 0}, (i,5) €D,
where D = {(i,j) : 1 < 4,5 < 157,i # j}, ;; is the value of the covariates for the
observational unit (4,7) in the trade data set, o, = 7/+/3, the standard deviation of the
logistic distribution, and (5, &y, ..., ar,71,...,7.7,0) are Tobit fixed effect estimates of the

parameters in the trade data set with lower censoring point at zero.'® We consider two
designs: independent errors with ug; ~ ii.d U(0,1), and pairwise dependent errors with

ui; = ®(0.75¢;; + V1 — 0.75%;;), where ¢j; ~ iid N(0,1) and ® is the standard normal
CDF.'" In both cases the conditional distribution function of y;; 1s a special case of the
DR model (1) with link function A, = A, the logistic distribution, for all y,

Bly) =orlery — B)/o, aily) =—0L0;/0, and v;(y) = —0L7;/0,
where e is a unit vector of dimension d, with a one in the first component. As in the

empirical application, the region of interest ) is the interval between zero and the 0.95-
quantile of the volume of trade in the data set. All the results are based on 500 simulated

panels {(y;;, zi;) : (i,7) € D}

Figures 6 and 7 report the biases, standard deviations and root mean square errors
(rmses) of the fixed effects estimators of the DR coefficients of log-distance and legal system
as a function of the quantiles of y;; in the design with independent errors.'® All the results
are in percentage of the true value of the parameter. As predicted by the large sample
theory, the fixed effects estimator displays a bias of the same order of magnitude as the
standard deviation. As in fig. 1, the bias is more severe for the coefficient of log distance.
The bias correction removes most of the bias and does not increase the standard deviation,
yielding a reduction in rmse of about 5% for the coefficient of log distance at the highest
quantile indexes.

Figure 8 reports the biases, standard deviations and rmses of the estimators of the
counterfactual distributions at two levels of log-distance as a function of the quantiles of
y;; in the design with independent errors. The levels of distance in these distributions
are the same as in the empirical application, i.e. k¥ = 0 and k = 1 correspond to the
observed values and two times the observed values, respectively. All the results are in

16ywe upper winsorize the volume of trade y;; at the 95.5% quantile to reduce the effect of outliers in
the Tobit estimation of the parameters.

1TThe Spearman rank correlation between u;; and uj; in the design with pairwise-dependent errors is
0.73.

18The design with pairwise dependent errors produces similar results, which are not reported for the
sake of brevity.
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percentage of the true value of the functions. In this case we find that the uncorrected and
bias corrected estimators display small biases relative to their standard deviations, and
have similar standard deviations and rmses at both treatment levels. Indeed the standard
deviations and rmses are difficult to distinguish in the figure as they are almost superposed.
In results not reported, we find very similar patterns in the design with pairwise dependent
errors and for the estimators of the counterfactual distributions at the same two levels of
legal as in the empirical application.

Table 2 shows results on the finite sample properties of 95% confidence bands for the
DR coefficients and counterfactual distributions in the design with independent errors. The
confidence bands are constructed by multiplier bootstrap with 500 draws, standard normal
weights, and a grid of values ) that includes the sample quantiles of the volume of trade
with indexes {.54,.55,...,.95} in the trade data set. For the coefficients, it reports the
average length of the confidence bands integrated over threshold values, the average value
of the estimated critical values, and the empirical coverages of the confidence bands. For
the distributions, it reports the same measures averaged also over the two treatment levels
and where the coverage of the bands is joint for the two counterfactual distributions.'® For
comparison, it also reports the coverage of pointwise confidence bands using the normal
distribution, i.e. with critical value equal to 1.96. The last row computes the ratio of
the standard error averaged across simulations to the simulation standard deviation, inte-
grated over threshold values for the coefficients and over thresholds and treatment levels
for the distributions. We consider standard errors and confidence bands with and without
accounting for pairwise clustering. All the results are computed for confidence bands cen-
tered at the uncorrected fixed effects estimates and at the bias corrected estimates. For
the coeflicients, we find that the bands centered at the uncorrected estimates undercover
the true coefficients, whereas the bands centered at the bias corrected estimates have cov-
erages close to the nominal level. The joint coverage of the bands for the distributions is
close to the nominal level regardless of whether they are centered at the uncorrected or
bias corrected estimates. We attribute this similarity in coverage to the small biases in the
uncorrected estimates of the distributions found in fig. 8. As expected, pointwise bands
severely undercover the entire functions. The standard errors based on the asymptotic dis-
tribution provide a good approximation to the sampling variability of both the uncorrected
and bias corrected estimators. Accounting for pairwise clustering in this design where it is
not necessary has very little effect on the quality of the inference.

Table 3 reports the same results as table 2 for the design with pairwise dependent errors.
The bands that do not account for pairwise clustering undercover the functions because
the standard errors underestimate the standard deviations of the estimators. Compared
to the design with independent errors, the critical values are similar but the bands that

197phe joint coverage of the bands for the quantile functions and quantile effect is determined by the
joint coverage of the bands of the distribution functions in our construction. We refer to Chernozhukov,
Fernandez-Val, Melly and Wiithrich (2016) for a numerical analysis on the marginal coverage of the bands
for the quantile effects.
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FIGURE 8. Bias, standard deviation and root mean squared error for the
estimators of the counterfactual distributions of log-distance.

account for clustering are wider due to the increase in the standard errors. To sum up,
inference methods robust to pairwise clustering perform well in both designs, whereas
inference methods that do not account for clustering undercover in the presence of pairwise
dependence. The bias corrections are effective in reducing bias and bringing the coverage
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TABLE 2. 95% Confidence Bands — Design with Independent Errors

Uncorrected Bias Corrected
/Bldist ﬂlegal Edist Eegal ﬁldist ﬁlegal ﬂdist ﬂegal

Unclustered Inference
Average Length 0.24 035 0.01 0.02 024 035 0.01 0.02
Average Critical Value 290 289 310 3.13 290 289 3.10 3.13
Coverage uniform band (%) 83 91 94 93 95 94 94 94
Coverage pointwise band (%) 35 58 35 29 60 64 35 29

Average SE/SD 0.97 1.01 099 101 1.00 1.04 099 1.01
Pairwise Clustered Inference

Average Length 0.23 0.35 0.01 0.02 0.23 035 0.01 0.02

Average Critical Value 2.89 289 3.09 312 289 289 3.09 3.12

Coverage uniform band (%) 82 92 93 93 94 93 93 93
Coverage pointwise band (%) 35 57 35 30 59 63 36 29
Average SE/SD 097 101 099 101 100 104 099 1.01

Notes: Nominal level of critical values is 95%. 500 simulations with 500 multiplier bootstrap draws.

TABLE 3. 95% Confidence Bands — Design with Pairwise Dependent Errors

Uncorrected Bias Corrected
ﬁldist ﬁlegal Edist Eeyal ﬂldist /Blegal Edist Eegal

Unclustered Inference
Average Length 024 035 0.01 0.02 024 035 0.01 0.02
Average Critical Value 290 289 3.10 3.13 290 289 3.10 3.13
Coverage uniform band (%) 64 73 73 68 80 78 74 68
Coverage pointwise band (%) 21 27 11 8 32 36 12 8

Average SE/SD 0.77 0.76 077 077 0.79 0.78 077 0.77
Pairwise Clustered Inference

Average Length 0.30 0.44 0.02 0.02 0.30 0.44 0.02 0.02

Average Critical Value 2.82 282 3.02 305 282 282 3.02 3.05

Coverage uniform band (%) 86 92 93 92 96 93 93 92
Coverage pointwise band (%) 47 59 44 37 67 66 43 37
Average SE/SD 1.00 099 1.00 099 1.03 1.01 1.00 0.99

Notes: Nominal level of critical values is 95%. 500 simulations with 500 multiplier bootstrap draws.

probabilities of the bands close to their nominal level for the coefficients, whereas they have
little effect for the distributions.
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APPENDIX A. PROOFS OF MAIN TEXT RESULTS

We present the proofs of Theorems 1 and 2, and relegate various technical details to the
supplementary appendix. Once Theorems 1 and 2 are shown, the proof of Theorem 3 for
the multiplier bootstrap follows from Theorem 2.2 in Chernozhukov, Chetverikov and Kato
(2016). The uniform confidence bands I for the cdfs in (11) obtained by the multiplier
bootstrap can then be inverted and differenced to obtain uniform confidence bands for
the quantile function and quantile effects, see Chernozhukov, Ferndndez-Val, Melly and
Wiithrich (2016) and also Lemma 1 and 2 above. This appendix thus contains the proofs
of all the main results that are new to the current paper. The proofs for all of the lemmas
below are given in the supplementary appendix. All stochastic statements in the following
are conditional on {(z;;,v;,w;) : (4,7) € D}.

As explained in Section 4, we consider the logistic cdf Ay(7) = A(7) = (1 + exp(—m))~*
for all our theorems. In the following we indicate the dependence on y € ) as a subscript,
for example, we write 6, instead of A(y) from now on. We use the column vector w;; =
(i, €5.1-€; 7)', as in Section 4.3, and can then write the single index my;; == 27,8, +
Qi + Vy,j simply as my;; = wi;0y. The corresponding estimator is 7y;; = ngﬁy, We
also define minus the log-likelihood function as ¢y ;;(7w) := —1{y;; < y}log A(m) — 1{y;; >
y}log[l — A(m)]. Let m, be a n-vector containing 7, ;;, (i,7) € D. For a given y € ) we
can then rewrite the estimation problem in (3) as

- . dot1+J _
Ty = arg min Z lyii(Tyij)s s.t. d0 e R DMy =W
' (ig)eD

0, (A1)

’
(]

In the following we denote the true parameter values by 6°, and correspondingly we write

0 _ / 0 : . . . . .
Ty.i; = Wi;0y, In order to distinguish the true value from generic values like the argument

my,i; in the last display. For the k’th derivative of ¢, ;;(m, ;) with respect to m ;; we write

0,8y ij(myi5), and we drop the argument when the derivative is evaluated at 7r27ij, that is,

Onilyij = Opnly ij (”2,@')- The normalized score for observation i, j then reads
_ 1)\ ~1/2
Syij = [On2lyis] " Onllyij = (A;QJ) Only.ij)
where Ag(/{i)j = A(l)(wgﬂj) = aﬂA(W;ij), as defined in Section 4.1. Note that Es, ;; = 0 and
Eszyij = 1.

Let s, be the n-vector obtained by stacking the elements s, ;; across all observations
(i,7) € D. Similarly, let A?(Jl) be the n x n diagonal matrix with diagonal elements given
by Az(/lgj, (i,j) € D. Finally, let w be the n x (d, + I + J) matrix with rows given by ng,
(i,7) € D. We define the n x n symmetric idempotent matrix

Q= (A0) " w (waPw) v (a0,
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where t is the Moore-Penrose pseudoinverse. For the elements of this matrix we write
Qy.ij,irj- We have (sty)ij = Z(i’,j’)eD Qy,ijirjrSy,ijr- The constraint 36 : m, ;5 = w0, in

(A.1) can then equivalently be written as®’

Qy (Az(/l)>1/2 Ty = (Azgl))lﬂ Ty- (A2)
<1>>1/2

The matrix @, projects onto the column span of (Ay w. This projector acts in the

1/2
space of weighted index vectors [(A;?j) Tyij @ (4,7) € D], and the weighting of each

1/2
Ty,ij DY (Az(/ll) j) is natural, because A; 2 ; 1s simply the expected Hessian for observation
(4,9)-

A.1. Technical Lemmas. We require some results for the proofs of the main theorems

below. The following lemma provides an asymptotic expansion of 7 ;; — 7127”..

Lemma 3 (Score expansion of fixed effect estimates). Under Assumption 1, fory € Y and

(1,7) € D, we have

A(2) 2
Mm\Y2 - 0\ _ 1

(Ay,ij> (ﬂyyij - 7ry,z’j) = —(Qysy); Z Qy,iji'j’ 3/2 (sty)i/]’/ + Tyij

(i',j)ED <Ay7l)] )

: o o ~1/2
and the remainder 1, ;; satisfies sup,ey max jyep |1yij| = op(n /2y,

N\)—t

The expansion in the preceding lemma is a second-order stochastic expansion, because
it does not only describe the terms linear in the score s,, but also the terms quadratic
in s,. We need to keep track of those quadratic terms, because they yield the leading
order incidental parameter biases that appear in Theorem 1. The remainder r,;; contains
higher-order terms in s, (cubic, quartic, etc), which turn out not to matter for the result

in Theorem 1. Note also that A;Z)J = Opsly;j. Thus, the term quadric in the score is
proportional to the third derivative of the objective function.

We now want to decompose the projector @), into the parts stemming from x;;, e; r and
e;.7, respectively. We have already introduced the d,-vector z, ;; = Z;;(y) in Section 4.1.
Let z, be the n x d, matrix with rows given by ! (i,j) € D. The d, x d, matrix

Yig?
W, = W(y) = n! ’A( )a:y was also introduced in Section 4.1. Invertibility of W, is
1/2
201 matrix notation the constraint can be written as my = w0y, and we thus have Q Aél) Ty =

1/2 1/2 1/2 1/2 1/2
Qy (A?(,l)) wly = (Aél)) wly = (A;l)> my, where we also used that @ (A?(Jl)) w= (Aél)) w,
which follows from the definition of Q.



36 VICTOR CHERNOZHUKOV, IVAN FERNANDEZ-VAL, AND MARTIN WEIDNER

guaranteed by Assumption 1(vi), and uniform boundedness of Aélz)] and (A?(le))_ , as

formalized by the following lemma.

Lemma 4 (Invertibility of W,). Let Assumption 1 hold. Then sup,cy [|W, || = Op(1).

2)

Next, define w;; = eir and w

g’) = ej,7, and let w® and w®) be the corresponding n x I

and n x J matrices with rows given by wg) Z(j’)

QY i=n~t (M) Crwo (a) "

1/2 / f /
QU™ = (A / [w® )] ({w@)?ww)} A [w@),w(?’)]) 0@, 0] (a)
Zyj is defined as the part of x,,; that is orthogonal to the fixed effects under a metric

1/2
given by AL We have Q?(,FE) (A?(Jl)) Zy = 0, which implies that

Y,ij
Qy = QY +Qff® (A.3)

1/2 1/2
and also Ql(,l)Ql(/FE) = gFE)Ql(/l) = 0. Also, because Qél) (Az(/l)) / Ty = (A§1)> / z, and

and w;;’ , respectively. Let

1/2

1/2
QéFE) (A?(Jl)) / Zy = 0, we obtain

Q (A0) 75, = (@ + @) (a0) 5, = (a) 5, (A4)

We have thus decomposed @), into the component stemming from the regressors and a
component stemming from the fixed effects. For the elements of stl),
M) (A0 A Y o1
Quijiry =" (Ay,ij Ay,l"j’) Tyig Wy Ty,irgr (A.5)
Next, define the projection matrices

QY = (Aén)l”w(z) (w@) ,Ag)w(z))—l W@ (A?(jn)”,

QW .= (Aén)”? w® <w<3> fAél)ww))‘l (37 (Aén)”?

Notice that w(® ’A(yl)w@) and w(®) ’Az(,,l)w(?’) are simply diagonal I x I and J x .J matrices

with diagonal entries ) jeD; A;lzj and Ziepj A?(Jll) = respectively, and therefore
1/2 1/2
@ (A5 A5) 9 (A5 A5)
Q7 ., =1 =1) Q7 L, =1(=7) . (A.6)
Y,i5,1' A Y,i5,4' A
Zj”G'Di y,i§" Zi"EDj y,i"j

It is not exactly true that Q?(/FE) equals Q?(f) + Qg,?)), but Lemma 5 shows that this is

approximately true in a well-defined sense.
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Lemma 5 (Properties of Q). Under Assumption 1,

D) Q= Q%) + Q™ and QY™ = QY + QY + QY™ where

sup ma, e @)y | = Optn).
(i) supyecy max(; jyep Dy jep |Qy.ijirjr| = Op(1), and
SUPyey MAX(; j)eD D (ir j1)eD ‘fo)” = Op(1).
(iii) supyey max( jep max(w jnep |Qyivy| = Op(n~'/?).

Remark 9 (Bias of T, ;;). According to part (i) of this lemma the remainder term Qg(fem) =

QéFE) — Qf) — Qég) has elements uniformly bounded of order n~!, and it can easily be seen
from (A.5) that the same is true for Qg(,l), because the elements of 7, are also uniformly

bounded under our assumptions. By contrast, Q?(f) and Q:S/S) have elements of order J !
and 1!, respectively, that is, of order n~1/2. Using this and the fact that Sy,ij has variance
one and is independent across observations (i, j) we find

2
E [(sty)ij} - Z [Qy,z‘j,z"j’]2 = Qyﬂ'j,ij = Qg(fz?j,z’j + Qg(j’z)j,ij + OP(nil)

(#,3")€D
AL AL
= — + — +Op(n1), (A7)

(1) (1)
> jreD; Ay,ij/ Zi'eDj Ay,i/j
where we use that @, is idempotent in the second step, and (A.6) in the third step.

Combining this wi