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Inverse Hyperbolic Sine Transformation

Ghislain B. D. Aihounton and Arne Henningsen

20th December 2019

Abstract

The inverse hyperbolic sine (IHS) transformation is frequently applied in econometric studies to trans-
form right-skewed variables that include zero or negative values. We confirm a previous study that shows
that regression results can largely depend on the units of measurement of IHS-transformed variables.
Hence, arbitrary choices regarding the units of measurement for these variables can have a considerable
effect on recommendations for policies or business decisions. In order to address this problem, we suggest
a procedure for choosing units of measurement for THS-transformed variables. A Monte Carlo simulation
assesses this procedure under various scenarios and a replication of the study by Bellemare and Wichman
(2019) illustrates the relevance and applicability of our suggested procedure.

Keywords: inverse hyperbolic sine, arcsinh, unit of measurement, scale factor

JEL codes: C1, C5

1 Introduction

The inverse hyperbolic sine (IHS or arcsinh) transformation, which empirical economists frequently apply to
reduce the skewness of variables with zero or negative values has a major weakness in that it is not invariant to
the unit of measurement of the transformed variable. Hence, the arbitrary choice of the unit of measurement
(e.g., whether the variable is measured in Euros per year or in 1,000 USD per month) affects the regression
results and, potentially, also the implications for policy recommendations or business decisions. This paper
addresses the question about how to choose a suitable unit of measurement for ITHS-transformed variables.

Although econometric methods do not require any specific distributional assumptions of explanatory or
dependent variables,! empirical economists frequently apply the logarithmic (log) transformation in order
to reduce the skewness and narrow the ranges of variables that have heavily right-skewed distributions.
In many empirical applications, this has the advantage that the assumptions of regressions models (e.g.,
homoscedasticity) are more likely to be fulfilled, while the estimated coefficients are more robust to outliers
and extreme values (Wooldridge, 2016, p. 172). As the log transformation can only be applied to strictly
positive values, several studies add a “small” positive number to variables with zero values or replace zero
values by a “small” positive number before they apply the log transformation. However, these arbitrary
manipulations of the variables change the original structure of the data (Duan et al., 1983), and the arbitrary
choice of a “small” positive value can substantially affect the empirical results (N’guessan et al., 2017).

In order to avoid these problems, the inverse hyperbolic sine transformation can be used instead of the

log transformation (see, e.g., Johnson, 1949; Burbidge et al., 1988). This is because it can be applied to

IThese methods demand that explanatory variables have a variance larger than zero. However, we do not consider this to
be a distributional assumption.



zero and even negative values without any arbitrary manipulations of the original variable and it allows
a similar interpretation of the regression results as the log transformation (see, e.g., Carroll et al., 2003;
Carboni, 2012; Ravallion, 2017; Bahar and Rapoport, 2018; Bellemare and Wichman, 2019). Moreover, the
IHS transformation has been used to overcome problems in regression analyses with right-skewed censored
dependent variables (Carboni, 2012).

However, the way in which the IHS-transformation transforms the variable largely depends on the mag-
nitude of the values of the transformed variable and, thus, its unit of measurement. More specifically, if one
chooses the unit of measurement in a way that the values of the transformed variable are all rather small
(e.g., weekly food expenditure of individual households in millions of USD), the THS transformation has only
a negligible effect on the variable (see left panel of Figure 1). In contrast, if one chooses the unit of measure-
ment in a way that the values of the transformed variable are all rather large (e.g., annual food expenditure
of individual households in USD), the IHS transformation is almost identical to a log transformation except

for an upward shift by the value of log(2) (see right panel of Figure 1).
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Figure 1: IHS transformation for small and large numbers

In order to investigate the dependence of the IHS transformation on the units of measurement, some studies
(e.g., Pence, 2006; Bellemare et al., 2013; Bellemare and Wichman, 2019) use different scale factors to rescale
THS-transformed variables to different units of measurement before they apply the THS transformation. While
the main results of the empirical study of Bellemare et al. (2013) and of the simulation study of Bellemare
and Wichman (2019, Table 1) are robust to the scale factor and, thus, the unit of measurement of the THS-
transformed variable, the results of the empirical analysis of Pence (2006) are substantially affected by the
scale factor. In order to find the optimal scale factor, Carroll et al. (2003) and Pence (2006) estimate the
scale factor along with the model coefficients in a Maximum-Likelihood estimation. Although this approach
seems to be the best way to choose the scale of IHS-transformed variables, it has not been widely adopted in
empirical studies. Reluctance to use this approach is probably due to its non-linearity in parameters so that
standard econometric estimators that are implemented in many software packages (e.g., OLS, GLS, various
time-series and panel-data estimators) cannot be applied.

Our paper suggests various simple-to-obtain criteria for choosing the unit of measurement for IHS-
transformed variables and uses Monte-Carlo simulations and a real-world application to investigate the
suitability of these criteria in empirical applications. Our results indicate that the R?-value and the pre-
dictive R?-value (Montgomery, 2012) of the regression are the most suitable general-purpose criteria for



choosing the units of measurement for IHS-transformed variables. However, under specific circumstances,
some additional criteria can be used to increase the robustness and reliability of our suggested procedure.
The following section describes the THS transformation and presents potential criteria for choosing units
of measurement for IHS-transformed variables. Section 3 describes our Monte-Carlo simulations and presents
the results of these simulations. Section 4 demonstrates our suggested procedure by applying it to an empirical

application with real-world data. Finally, Section 5 concludes.

2 THS transformation

Let us assume that we want to regress a dependent variable y; on a set of covariates z;, e.g., by:

yi = a+ Br; + &4, (1)

where ¢; is the error term, subscript ¢ indicates the observation, and « is an intercept and (3 is a vector of
the slope coeflicients to be estimated.

If the relationship between some of the covariates x; and the dependent variable y; is expected to be
non-linear or some of the covariates or the dependent variable have a skewed distribution, applied economists

frequently transform some or all of the variables:

gi = Y (y:) (2)
T = f* (i), (3)

where f¥(-) is a function and f® () is a set of functions that transform some or all of the (dependent and

explanatory) variables so that the regression model becomes:
i = 6+ BE; + &, (4)

where the tilde signs (7) above «, 8, and ¢ indicate that the transformation of the variables, in many cases,
also affects the coefficients and the error term.

The most commonly used transformation for right-skewed variables is the logarithmic transformation,
while the IHS transformation is usually recommended if the variables include some zero or even negative
values (see, e.g., Bellemare and Wichman, 2019), e.g., income of individual persons, consumption of specific
goods, or health expenditure. The THS transformation of a variable z is defined as:

Z = arcsinh (2) = log (z + V22 + 1) . (5)

However, in contrast to a regression of equation (1) with linear variables or a regression of equation (4)
with log-transformed variables, a regression with one or more IHS-transformed variables is not invariant to
the units of measurement of these variables so that the arbitrary choice of the units of measurement affects
the regression results and, potentially, recommendations for policies or business decisions.? As illustrated in
the left panel of Figure 1, if one chooses the unit of measurement for a variable in a way that all values are

rather small (e.g., smaller than 0.4), the ITHS transformation has almost no effect and the estimation results

2Changing the unit of measurement of a linear dependent variable scales the intercept and all slope coefficients accordingly.
Changing the units of measurement of a linear explanatory variable inversely scales the slope coefficient of this variable. Changing
the unit of measurement of a log-transformed dependent or explanatory variable affects only the intercept. In spite of these
effects on the coefficients, we consider these specifications to be invariant to units of measurement because none of them affects
the practical interpretation of the results or unit-free measures such as elasticities or R? values.



are similar to those of a regression with linear variables (see also Bellemare and Wichman, 2019). Thus, if one
wants to reduce the right-skewness of a variable, it does not make much sense to apply the IHS transformation
to this variable if it has small values or if it is scaled to have small values because this has almost no effect on
the skewness. In contrast, if one chooses the unit of measurement for a variable in a way that all values are
rather large (e.g., larger than 3), the IHS transformation is almost identical to the log transformation (see
right panel of Figure 1), and the estimation results are similar to those of a regression with log-transformed
variables. However, if a variable contains zero values, it is impossible to scale this variable in a way that all
values are rather large because zero values remain zero values no matter what unit of measurement is used.
In the presence of zero values, changing the unit of measurement to larger units (i.e., multiplying the variable
with a number smaller than one) moves the zero values “closer” to the non-zero values, while changing the
unit of measurement to smaller units (i.e., multiplying the variable with a number larger than one) moves

the zero values “further apart” from the non-zero values (see Figure 2).
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Figure 2: Histograms of IHS-transformed earnings in 1978 used in the empirical illustration in Section 4

As the unit of measurement for a variable clearly affects the THS transformation (see Figures 1 and 2), it
also affects the functional relationship that is implied by regression models with IHS-transformed variables
(see Figures 3 and 4). Given that the assumed functional relationship affects the regression results, it is
extremely important to carefully select the units of measurement for IHS-transformed variables. However,
as the true functional relationship is usually unknown, the question arises of how an empirical analyst can
choose suitable units of measurement for IHS-transformed variables.

Carroll et al. (2003) and Pence (2006) suggest including a scale factor for the IHS-transformed variable
in the regression and estimating this scale factor jointly with the intercept and the slope coefficients. If both
the dependent variable and the explanatory variable are THS-transformed, one would get, for instance, the
regression model:

arcsinh (0,y;) = & + Barcsinh (,2;) + &, (6)

where it is assumed that there is only a single explanatory variable (x;), 6, is the scale factor of the dependent
variable, and 6, is the scale factor of the explanatory variable. However, this regression specification is non-
linear in parameters 6, and 6, which is undesirable in many empirical applications.

A simpler approach would be to estimate the regression model with different sets of scale factors (6,,6,)
and then to choose a set of scale factors based on one or more criteria. Table 1 lists potential criteria for
choosing scale factors that determine the units of measurement for IHS-transformed variables. One group of

these criteria assesses the “fit” of the regression model such as the R? value of the regression, the predictive R?
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Figure 3: Functional relationships when using different units of measurement for an IHS-transformed explana-
tory variable (i.e., earnings in 1978 as used in the empirical illustration in Section 4; the slope coefficient is
adjusted so that the range of the dependent variable is the same for all three units of measurement for the
explanatory variable)

[{e}
o
] < © 7 x g_
o . 3 .
[CEESY F [¥e]
N g | § 3 g- §3 8
5 <X 8 > P 4 o
o O 0 e = =
> g o o 85
P _ 2 v o g v 3
[a) > < — g
(2R o I s ¥ ©
S5 0 o ISERA S o
s 5 9 S o o = d 8
w 2 8 7 = 4 ® 7 g d S ]
2 < 9] £ £ n
= 0 %) =
s 5 . 23 g 23 o |
S © £ = N £ £ S
T E o %% R
ESS I
> % g4 PoE 2 8 5 g4
S s 4 n 83
=1 > g -~ £
B =
o o - >
T T T T T T T T T T T T © T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
X X X

Figure 4: Functional relationships when using different units of measurement for an ITHS-transformed de-
pendent variable (i.e., earnings in 1978 as used in the empirical illustration in Section 4; the intercept and
slope coefficient are adjusted so that the range of the explanatory variable is the same for all three units of
measurement for the dependent variable)



value based on the “prediction error sum of squares” (PRESS) obtained by leave-one-out cross-validation (see,
e.g., Montgomery, 2012), and the log-likelihood value of the regression. However, if the dependent variable
is IHS-transformed, different scale factors 6, imply different non-linear transformations of the dependent
variable. Therefore,whether the above-mentioned goodness-of-fit criteria can be used to compare regression
analyses with different scale factors applied to an IHS-transformed dependent variable is questionable. A
prominent method to compare regression models with different non-linear transformations of the dependent
variable is to adjust the log-likelihood value by adding the logarithm of the Jacobian of the transformation
(Davidson and MacKinnon, 2004, p. 438-440). The adjusted log-likelihood value for regression analyses with

an IHS-transformed dependent variable that is scaled by a factor 6, is derived as:

nQObs
logLikAdj = logLik — 3 > In (6557 +1) +nObs - In(6,), (7)

i=1

where logLikAdj is the adjusted log-likelihood value, logLik is the (unadjusted) log-likelihood value, and
nObs is the number of observations (see, e.g., Carroll et al., 2003; Pence, 2006).> A second group of the
potential criteria listed in Table 1 assesses the distribution of the regression residuals, e.g., how similar
the distribution is to a normal distribution, how platykurtic or leptokurtic it is (Royston et al., 2011), or
how symmetric it is.* Finally, a third group of criteria assesses the appropriateness of model assumptions,
specifically homoscedasticity and the specified functional relationship between the explanatory variables and
the dependent variable (see Medina et al., 2018).

3 Monte Carlo simulation

We conduct a Monte Carlo simulation to assess the suitability of the suggested criteria for choosing the scale

factor and, thereby, the units of measurement for IHS-transformed variables.?

3.1 Data generating process

We generate artificial data sets for the Monte Carlo simulation under different scenarios. The generation of
each artificial data set entails the following three steps (the abbreviations of the simulation parameters that

differ between the scenarios are explained in Table 2):

1. Generation of the explanatory variable
We use pseudo-random numbers from a log-normal distribution to generate a vector with “nObs” €
{100, 1000, 5000} elements, where the mean value of the corresponding normal distribution is set to
zero and its variance is set to “xVar” € {0.1,1,10}, where larger values of “xVar” result in a more
right-skewed distribution of the explanatory variable with more ‘outliers’ on the right-hand side of the
distribution. Then we obtain the “xZero” € {0,0.1,0.3,0.5} quantile of this vector and subtract this

3Several studies that scale IHS-transformed variables (e.g., Carroll et al., 2003; Pence, 2006) divide the THS-transformed value
by the scale factor so that the transformed variable is Z = arcsinh (6z) /0 = log (Gz + V6222 + 1) /0, where 6 denotes the scale

factor. If this procedure is applied to the dependent variable, the last term of equation (7), i.e., nObs - In (6y), must be omitted.

4We note that Ordinary Least Squares (OLS) and many other regression methods—besides the fact that the error terms are
independent and identically distributed (iid) with an expectation of zero—do not require any further assumptions about the
distribution of the error term, e.g., neither a symmetric distribution nor a normal distribution (except for inference in small
samples).

5Both the Monte Carlo simulation and the empirical illustration are conducted with the statistical software “R” (R Core
Team, 2019) using the add-on packages “DescTools” (Signorell, 2019), “haven” (Wickham and Miller, 2019), “lmtest” (Zeileis and
Hothorn, 2002), “moments” (Komsta and Novomestky, 2015), and “xtable” (Dahl et al., 2019) and code from Hopper (2014).



Table 1: Potential criteria for choosing the units of measurement for IHS-transformed variables in regression

analyses

Abbreviation Description Rationale for using the criterion

rSquared R? value of the regression a larger value indicates a better fit of
the model

pSquared predictive R? value a larger value indicates a better
out-of-sample prediction performance

logLik log-likelihood value of the regression a larger value indicates a better fit of
the model

logLikAdj log-likelihood value of the regression a larger value indicates a better fit of

adjusted as described in equation (7)

the model

Kolmogorov-Smirnov

test statistic of the
Kolmogorov-Smirnov test for
normality applied to the residuals

a smaller value indicates that the
distribution of the residuals is closer to
a normal distribution

Shapiro-Wilk

test statistic of the Shapiro-Wilk test
for normality in small samples applied
to the residuals

a larger value indicates that the
distribution of the residuals is closer to
a normal distribution

Shapiro-Fancia

test statistic of the Shapiro-Fancia test
for normality in large samples applied
to the residuals

a larger value indicates that the
distribution of the residuals is closer to
a normal distribution

Anderson

test statistic of the Anderson-Darling
test for normality applied to the
residuals

a smaller value indicates that the
distribution of the residuals is closer to
a normal distribution

Jarque-Bera

test statistic of the Jarque-Bera test
for normality applied to the residuals

a smaller value indicates that the
distribution of the residuals is closer to
a normal distribution

Pearson test statistic of the Pearson test for a smaller value indicates that the
normality applied to the residuals distribution of the residuals is closer to
a normal distribution
kurtosis the kurtosis (= fourth moment of the a value closer to zero indicates that
distribution) of the residuals the “peakedness” of the distribution of
the residuals is more similar to a
normal distribution
skewness the skewness (= third moment of the a value closer to zero indicates a more

distribution) of the residuals

symmetric distribution of the residuals

Breusch-Pagan

test statistic of the Breusch-Pagan test
of homoscedasticity

a smaller value indicates a higher
degree of homoscedasticity

RESET

test statistic of the Regression
Equation Specification Error Test
suggested by Ramsey (1969)

a smaller value indicates a more
appropriate specification of the
regression model




quantile from each element of the vector. Finally, we set all negative values to zero. This procedure
generates a vector x with values that have a right-skewed distribution, for which a larger value of “xVar”
results in a more right-skewed distribution with more extreme ‘outliers’, and that are left-censored at

zero with “xZero” being the proportion of values equal to zero.

. Error term
We use pseudo-random numbers from a normal distribution (“rDist” = n), a Student ¢-distribution
with 3 degrees of freedom (“rDist” = t), or a skew normal distribution with shape parameter oo = 4

(“rDist” = sn) to generate a vector with “nObs” € {100, 1000, 5000} elements, where the location and
shape parameters of these distributions are chosen so that the distributions have an expected value of
zero and the resulting regressions have an R?-value of approximately “R2” € {0.1,0.5,0.8,0.95}.% This
procedure generates a vector £ with normally distributed values (if “rDist” = n), with many ‘outliers’
(if “rDist” = t), or with a skewed distribution (if “rDist” = sn).

. Dependent variable

We calculate a vector of values by equation (4) with & = 1, B =1, & = arcsinh () with z as obtained in
step 1, and € as obtained in step 2. Then we obtain the “yZero” € {0,0.1,0.3,0.5} quantile of this vector
and subtract this quantile from each element of the vector and set all negative values to zero, which
results in the vector § of THS-transformed values of the dependent variable. Finally, we obtain the
non-transformed values of the dependent variable by y = sinh () . This procedure generates a vector y
with values that have a right-skewed distribution and that are left-censored at zero with “yZero” being

the proportion of values equal to zero.

Table 2: Scenarios used in the Monte Carlo simulation

Abbreviation Description Base scenario Alternative scenarios
nObs number of observations 1000 100, 5000
xVar variance of the normally 1 0.1, 10

distributed variable, from which
the log-normally distributed
explanatory variable is derived:
right-skewness and prevalence of
‘outliers’ in the explanatory
variable

xZero share of observations for which 0.1 0, 0.3, 0.5

the explanatory variable is zero

yZero share of observations for which 0.1 0,0.3, 0.5

the dependent variable is zero

rDist distribution of the error term normal (n) Student t with 3 degrees of

freedom (t), skew normal with
shape parameter o = 4 (sn)

approximate R? value 0.80 0.1, 0.5, 0.95

6In order to obtain an R2-value of approximately “R2”, we set the variance of the error term to (R2*1 — 1) -VAR (& + Bil),

where VAR (d + B{ﬁ) is the variance of the “deterministic” part of the dependent variable, i.e., the dependent variable before

adding the error term (see third step of this procedure).



3.2 Simulation procedure

For each generated data set, we calculate the ‘true’ elasticity of the dependent variable y with respect to the

explanatory variable = at the mean values of these variables as derived by Bellemare and Wichman (2019):

\/ 0292 + 1
— A 8
‘ ZJ\/W ®)

where 3 = 6, = 0, = 1, y is the mean value of y, and Z is the mean value of x. Furthermore, we estimate

‘Hl

CD

equation (6) with the scale factors 6, and 6, set to given values so that the regression equation is linear in
(the remaining) parameters. We estimate this equation with each combination of 6, € {1076,107°,...,10°},
and 0, € {10_67 1075,..., 106} by Ordinary Least Squares (OLS). For each of these 169 regression analyses,
we calculate the estimated elasticity by equation (8), where B is the estimated slope coefficient and ¢, and
0, are the scale factors used in the respective regression. Finally, we obtain the values of the criteria listed
in Table 1 to find out which scale factors are the most suitable according to each of these criteria.

We repeat the entire procedure with 5,000 artificially generated data sets” for the base scenario as well as
for each of the 15 alternative scenarios defined in Table 2.8 For each scenario and each criteria for choosing

the scale factor(s), we calculate the bias and root mean squared error (RMSE) of the elasticity estimate:
5000

. 1 .
biasg. = 5000 ; (ejsc - ejs)

1 5000 5
RMSE;. = m Z (e;sc - Ejs) ’
j=1

where biass. is the bias in scenario s when using criteria ¢ for choosing the scale factors, RM SFE. is the
root mean squared error in scenario s when using criteria c for choosing the scale factors, €. is the elasticity
obtained when using criteria c for choosing the scale factors in replication j of scenario s, and €, is the ‘true’
elasticity in replication j of scenario s.

3.3 Results

Tables 3, 4, 5, and 6 summarise the simulation results for four different setups. These tables present the
biases and RMSEs of the elasticities that are obtained from the regression analyses with the scale factors
that were chosen by the criteria listed in Table 1 under the scenarios described in Table 2. Additionally,
these tables present the biases and RMSEs of the elasticities obtained by using the ‘correct’ scale factors,
ie., 0, =6, =1, so that we can use these values as benchmarks for assessing the performance of the various
criteria for choosing the scale factors or unit of measurement for the IHS transformed variables.

Even when using the ‘correct’ scale factors, i.e., 0, = 6, = 1, none of the elasticity estimates are completely
unbiased, which is caused by the censoring of the dependent variable (which gives a biased estimate of the

slope coefficient, i.e., F [5 — 1} # 0, in all scenarios in which “yZero” is larger than zero) and a correlation

"We investigated how the initial state of the pseudo-random number generator and the number of replications affect the
results and found out that the effect of the initial state of the pseudo-random number generator on the simulation results is
negligibly small when the number of replications is 5,000 or more.

8For the alternative scenarios, we altered only one simulation parameter to an “alternative” value at a time and kept all other
simulation parameters at their “base” values. This keeps our Monte Carlo simulation concise and easily comprehensible, while
an analysis with all 1728 combinations of simulation parameters would make it impossible to present the results in a journal
paper. We make the R code for our Monte Carlo simulation freely available so that everyone can re-run the analysis for any
scenario they consider relevant.



between the estimate of the slope coefficient and the remaining part of the right-hand side of equation (8)

(so that even if the estimate of the slope coefficient is unbiased, i.e., E {B — 1] =0, El§] = F {B: . n} =

E[l1-k|+E Kﬁ — 1) . H} =e¢+FE {(B — 1) . I€:| = €, where ¢ is the estimated elasticity, § is the estimated
slope coefficient, and k = (z/y) (\/g2 +1/Vz2 + 1)) However, given that the elasticities are in the order

of magnitude of one, the biases are relatively small in most scenarios. Only the scenarios in which half of
the values of the dependent variable are censored at zero® or the R2-value of the regression is only 10% give
substantially biased estimates even if the ‘correct’ scale factors are used.

Table 3 focuses on the scale factor of the dependent variable, i.e., 0,, by always using the ‘true’ scale
factor of the explanatory variable, i.e., 8, = 1. This setup mimics the problem that analysts have when only
the dependent variable is IHS-transformed. The main results are:

e Almost all criteria result in relatively small biases and RMSEs for a large proportion of scenarios, while

criteria “rSquared” and “pSquared” are the only criteria that perform relatively well across all scenarios.

e The criteria that assess the similarity of the distribution of the residuals with the normal distribution
outperform the criteria “rSquared” and “pSquared” in a few scenarios, but these criteria perform poorly
when the error terms are not normally distributed. However, as one can never be sure in real-world
empirical applications that the ‘true’ error terms are indeed normally-distributed, the criteria that
assess the similarity of the distribution of the residuals with the normal distribution seem to be not

well suited to real-world empirical applications.

e Criterion “logLikAdj”, i.e., the adjusted log-likelihood value, generally performs equally well as criteria
“rSquared” and “pSquared” in many scenarios, but it performs poorly in the scenarios with a very right-
skewed explanatory variable and with an R2-value of only 10%. Furthermore, it performs extremely
poorly in scenarios with 30% or more censored values of the dependent variable. Hence, although
criterion “logLikAdj” seems to be very well suited from a theoretical point of view, one needs to be

cautious when using it in empirical applications.

e Criteria “skewness”’, “Breusch-Pagan”, and “RESET” perform reasonably well in most scenarios and,

thus, may be used as additional criteria in specific empirical applications.

Table 4 focuses on the scale factor of the explanatory variable, i.e., 6,, by always using the ‘true’ scale
factor of the dependent variable, i.e., 8, = 1. This setup mimics the problem that analysts have when only
an explanatory variable is IHS-transformed. In this setup, criteria “logLik” and “logLikAdj” are monotonic
transformations of the R2-value and, thus, always indicate the same scale factors as criterion “rSquared”.
Hence, these two criteria are omitted in Table 4. The main results are:

e Most criteria perform substantially worse in this setup than in the case where one needs to choose a
scale factor for the dependent variable. Hence, it seems to be more difficult to find an appropriate scale

factor for an explanatory variable than for a dependent variable.

e However, criteria “rSquared” (and, thus, “logLik” and “logLikAdj”), “pSquared”, and “RESET” are also
suitable for choosing the scale factor for an explanatory variable as they perform similarly well as in

the case where one needs to choose a scale factor for the dependent variable.

e All other criteria perform substantially worse in all but a few specific scenarios and, thus, seem to be

unsuitable for empirical applications.

9Hence, in empirical applications in which the dependent variable is censored at around half or more of the observations, we
suggest using a regression method for censored dependent variables instead of OLS.
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Table 5 simultaneously looks at the scale factor of the dependent and the explanatory variable, i.e., both
0, and 0,. This setup mimics the problem that analysts have when both the dependent variable and an

explanatory variable are IHS-transformed. The main results are:

e The biases and RMSEs are similar to or higher than the biases and RMSEs for the case where one
needs to choose a scale factor for the explanatory variable. This indicates that finding suitable values
for two scale factors simultaneously is slightly more difficult than finding a suitable value for the scale
factor for just an explanatory variable and much more difficult than finding a suitable value for the

scale factor of the dependent variable only.
e Criteria “rSquared” and “pSquared” again generally result in relatively small biases and RMSEs.

e Criterion “logLikAdj”, i.e., the adjusted log-likelihood value, performs equally well as criteria “rSquared”
and “pSquared” in many scenarios, but it performs extremely poorly in scenarios with 30% or more
censored values of the dependent variable.

e If 10% or less of the values of the dependent variable are censored, we suggest using criterion “logLikAd;j”
in addition to criteria “rSquared” and “pSquared”; while all other criteria perform substantially worse in
most scenarios and, thus, seem to be unsuitable for empirical applications with both an IHS-transformed

dependent variable and one or more IHS-transformed explanatory variables.

Table 6 also simultaneously looks at the scale factor of the dependent and the explanatory variable. However,
in contrast to the previous setup, the two scale factors are restricted to be equal, i.e., 8, = 6,. This setup
mimics the problem that analysts have when both the dependent variable and an explanatory variable are
THS-transformed and it is reasonable to assume that the scale factors of the dependent variable and the
explanatory variable are equal, e.g., when the IHS-transformed explanatory variable consists of lagged values
of an THS-transformed dependent variable. The main results are:

The results for this setup are generally similar to those of the first setup that focuses on the scale factor

for the dependent variable.

Criteria “rSquared”, “pSquared”, and “RESET” generally perform the best across all scenarios.

Criterion “skewness” and the criteria that compare the distribution of the residuals with a normal
distribution also perform rather well across all scenarios, even in the scenarios with non-normally

distributed error terms.

Criteria “logLik”; “logLikAdj”, “kurtosis”, and “Breusch-Pagan” perform poorly in some of the scenarios.

Overall, in all four different setups regarding the IHS-transformed variables and in almost all scenarios,
criteria “rSquared” and “pSquared” result in biases and RMSEs that are among the smallest among all criteria
and that are very similar to those obtained by using the ‘correct’ scale factors. Thus, criteria “rSquared”
and “pSquared” can be considered the best general-purpose criteria for choosing the scale factors for THS-
transformed variables. Depending on the empirical specifications and the data used, criteria “RESET”,
“logLikAdj”, “Breusch-Pagan”, “skewness” and those that compare the distribution of the residuals with a

normal distribution can be used as additional criteria, e.g., for robustness checks.
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4 Empirical illustration

As an empirical illustration, we replicate and extend an empirical example used in Bellemare and Wichman
(2019) who use data from Dehejia and Wahba (1999) to analyse how a randomised treatment with the
National Supported Work (NSW) program affects annual income as initially done by LaLonde (1986). The
(simplified) specification used by Bellemare and Wichman (2019) is:

arcsinh (0yy;) = a + 6D, + ( arcsinh (6,2;) + &;, (9)

where y; is person #’s earnings (in USD) in 1978, D; is a dummy variable that indicates whether person 4
received the treatment or not, x; is person i’s earnings (in USD) in 1975, which is used as a control variable,
€; is the error term, o, 8, and ¢ are the coeflicients to be estimated, and 6, and 6, are scale factors that are
not applied by Bellemare and Wichman (2019), which means 6, = 8, = 1. The pre-treatment earnings (i.e.,
variable z;) are zero in 65% of the observations, while the post-treatment earnings (i.e., variable y;) are zero
in 31% of the observations.

We estimate equation (9) by OLS using scale factors 6,,6, € {1072,1078,...,10%}, where we set 6, = 0,
because variables y; and x; are the same variables with the same unit of measurement that are just observed
in different years. For each scale factor, Table 7 presents: (i) the estimates of coefficients § and 3; (ii) “three
different semi-elasticities, which measure the effect of the treatment on the post-treatment earnings using
equations (10), (11), and (12) of Bellemare and Wichman (2019) for calculations without approximation,
approximate calculations, and approximate calculations with small-sample correction, respectively; (iii) the
elasticity that measures the effect of the pre-treatment earnings on the post-treatment earnings using equa-
tion (16) of Bellemare and Wichman (2019), and; (iv) the various criteria that can potentially be used for
choosing the scale factor. When we apply scale factor 6, = 6, = 1, we obtain the same results that are re-
ported in column (4) of Table 3 of Bellemare and Wichman (2019) because the two specifications are identical.
When the scale factor 6, = 6, approaches zero, the values of the scaled variables 6,y; and 0,x; become so
small that the THS transformation approaches a linear transformation (see left panel of Figure 1) so that the
estimation approaches a regression with non-transformed variables and, thus, we obtain basically the same
results as reported in column (1) of Table 3 of Bellemare and Wichman (2019), e.g., the same intercept and
coefficient of the treatment dummy after scaling them by the inverse of the scale factor, the same coefficient
and elasticity of the pre-treatment earnings, the same t-statistic of all three coefficients, the same adjusted
and unadjusted R2-values, and the same adjusted log-likelihood values.'?

The semi-elasticity that quantifies the effect of the treatment on the post-treatment earnings calculated
without approximation by equation (10) of Bellemare and Wichman (2019) largely depends on the scale
factor. With an arbitrarily chosen unit of measurement and scale factor, the estimated effect of participation
in the program on the earnings could be between 31% and 2,451% (Table 7) or even higher with a higher
scale factor or a smaller unit of measurement. The semi-elasticities that are calculated with the approximate
equations (11) or (12) of Bellemare and Wichman (2019) also largely depend on the scale factor and—given
that they assume ‘large’ numbers—give poor approximations when very small scale factors are used. The
elasticity that indicates the effect of the pre-treatment earnings on the post-treatment earnings varies much

less than the semi-elasticity, but it still varies substantially between 0.043 and 0.091 for different units of

10The semi-elasticity that measures the effect of the treatment on the earnings that is reported in column (1) of Table 3 of
Bellemare and Wichman (2019) differs from our semi-elasticity in Table 7 because it is calculated in a different way, i.e., by using
the average post-treatment earnings over the entire sample rather than the expected post-treatment earnings of the non-treated
persons as denominator. If one performs a linear regression with non-transformed variables and divides the estimated coefficient
of the treatment dummy by the expected post-treatment earnings of a non-treated person with all other variables equal to the
sample mean, one obtains the same semi-elasticity as reported for the smallest scale factor in Table 7.

16



"1 8[qe], Ul paqrIdsep se a[eds [ewjdo a7} SUISOOYD 10J BIISILID 8I€ SUIPESY UTUN[OD IS0 [[B Pu®
‘(6107) uewydIpy pue arews(dg Jo (91) uolyenba Aq paje[nored g1 Ul sSuILIes YY) Jo A)Id13se[d ays st (97) sSurures o, ‘GLeT Ul SSUILIRd PIULIOJSURII-SH] 817 JO JUSIIYJO0D oY)
st s8urures 1002, ‘((610g) UBWIDIA\ Pue orewd[[ed Jo (g1) uoljenbs Aq paje[nored U0I1091100 sjdures-[[Rus [Ilm JUauIeal] a3 Jo Ajoise[o-Twas ayewixoldde ayq st (g1) jyuaurieoI)
e[, ‘(610g) UBWDIA\ pPuUR olewd[og jo (1) uorienbe Aq poje[noled justrieal) oyj) Jo Ayonsefo-twes ayewrxordde o) st (11) juswgesl) o, ‘(610g) UBWYDIAN PUR dIRUID[[og
jo (1) woryenbe £q worjewrxordde JnNOYIIM PaYRINOTED JUSUIILAI} BY[) JO A)IDI)Se[a-TwIas oY) ST (Q]) JUSWIIRaI) B8, ‘AWITUND JUSI)RSI) YY) JO JUSIDNJP0D Y] ST JUBUIJRAI) JO0D, :DION

€€°0 898 080~ €L1 €C8T  7'6L 6'T9 T1I.°0 1.0 ¢€0 T6ST- L6LT- G¥00'0  9.T0°0 960°0 900 ©%'6 19vc 197¢ ye'e  dsn ¢-0T 60T
¢e’0 ve'8 080~  €L1 6091 €'8L 19 1.0  TL0  T€0  TL8I-  €9LT1- 9¥00°0  9.T0°0 9G0°0 90°0 8E€'8 L6'8T L6'8T 66'c dSN g-0T g0T
¢e’0 6V'8 6.0~ €L1 LIGT 172 809 1.0 1.0 1€0 8vlc- €oll- Ly00'0  LL10°0  L90°0 90°0 8C'L €9VI €9VI1 gL'¢ dadsn ,-o01 20T
ce’0 ¢vr'8  6L°0-  ELT 6671 ¢'GL 009 ¢L0 ¢L0 0¢0 <cche- 1891~ 8¥00°0  8LT0°0 8G0°0 900 €29 €¢Il €TTI1 0¢'c  dsN ¢-01 90T
€0 <€8 640~ €ELT 01T  ¥'€L 0'6¢ ¢L0 <¢L0 0€0 069¢- G€91- 6¥00°0 08100 6900 900 Go'¢ 198 19'8 9¢’'c  dsN ¢-01 g0T
1€°0 92’8 8.0~ ¢l 6S7T  8°0. 8'.¢ €L0 ¢L0 620 ¥962-  €8GI- 149000 I8T0°0  090°0 900 GS€¥ 679 679 T0'¢c  dSN 30T 70T
0€'0  TT'8 L0~ TLT €86 SR T°9¢ €L°0 €L0 8¢0 TIgE ¥¢9l- €G00°0  €810°0 T90°0 900 €9°¢ L87F L8 LLT  dSN ¢-0T ¢0T
6’0 <¢6'L 9.0~ ¢Tl'l 0€6 €9 8€s PLO0 VL0 L0 69¥E- L9PI- 99000  9810°0 €900 900 6LC 69€ 69°€ ¢Sl  dSN £-01 201
220 ¥9L VL0 TLT 748 YAVAS 9'0¢ 9.°0 G0 920 969¢-  LLET- 6900°0  68T0°0 990°0 L0°0 ¥I'C 69¢C 69°C 8¢'T dsN {-01 10T
gc’0  61°L 0.0~ 691 94 €0¢ 84y LL°0 LL0 V&0  ¥I6E-  I8¢I- ¥900°0 #6100  0L0°0 100 8S'T 18T 181 €0'T  dsn 00T

0z2°0 1€9 €90- 991 689 €1y L8 080 080 ¢¢'0 80TF¥- 0911- ©L00°0 ¢0c0'0  8L0°0 800 60T 021 0Z'T 1—0T-68°2L dSN {01
91'0 8¢V Lv'0- 891 cLS ¢ce '8¢ 480 480 0¢0 €9¢¥-  L66- 0800°0  0T¢0°0 160°0 60°0 890 ¢L'0 ¢cL'0 1—0T-€¥'G¢ dsn z0T
¢€’'0 TT'0 90°0- 99T 89¢ 1'8¢ 91l  16°0 T16°0 810 ¥9€V-  P9L- 0.00°0  ¢0c0°0 1600 11°0 ¥€0 9€0 8¢°0 1—0T-66'c dSN ¢OT
G0'0 98¢ G6°0 L9°€ €97 gLe €€r 060 060 <SIT°0 99%¥- 18¢C- 1600°0 ¢€¢0'0  ¥¥P0°0 <T°0 ¢I'0 @I'0 1€°0 —0T-¥T'T dsSnN 50T
6£'0 ¢9V 8¢¢C ¥6'€T  S¥¥ ¢'98¥E 08T 080 180 PI'0 9¢%P- 689 €600°0 <¢Pc0’'0 €¥0'0 LT'0 <¢00 <00 8¢°0 z—0T-CL'T dsn 01
ov'o 0ov'y ¥9'c V98T LLY 0'86.¥ €81 6.L°0 080 <S1°0 TIPSy~ L2091 26000 Iy¢0'0  €¥0°0 LT°0 00°0 000 8¢°0 ¢—0T-GL'T dSN o0T
0’0o 6¢€v  ¥9¢C 99°GT  LLYV ¢'gI8% €81 6.0 080 ST'0 TIPSy~ T1€9C 6000 1¥¢0°0  €¥0°0 LT°0 00°0 000 8¢°0 y—0T-GL'T dsn ,0T

TTTTTITOT
[eNeololoBoloBohoho)
JOJORI B[S |5 = o~~~

0¥'o  6¢v  ¥9'¢ 99°¢1  LLy  LGI8Y €81 640 080 <10 IvSy-  999¢ 6000 1¥60°0  €¥0°0  LZ1°0 000 00°0 8¢0 ¢—0T- 6L T dsn g01
0¥'0 6% ¥9'¢ 99°GT  LLY L'GI8y €8T 6.°0 080 GI'0 19SSy~ T89F T600°0 1y¢0°0  €¥0°0  LZT°0 000 00°0 8¢°0 90T -GL'T dsN 40T
»n o [ w0 w0 = I~ ko) = @ o 1) @ @ o e
= £ ¢ & ¢ & ¢ £ §£ %2 & =2 » 2 = g & & 5 g g
&2 £ = g = 2 = g g B £ £ e £ 8 o = = = -7
& 2 g 2 g g Z = 5 5 = = g g g g 3 g 3 g e
! =2 2 7y = i 4 3 3 0% > = 3 = & 1 & ® 3 ™
T 7 W = T T o =~ 3. a =. = =+ = =+ va m
g & o3| = z & = E = =) =} &
B g 5 = ¢ 508 g &8 2 B
© a, =~ n — » = = = 5 ¢
& 5 g = ~ = ~ C=
— — —
= ~ s = = 3
e » = e 3
5 g
< =+

(sorqerrea quapuadopur pue juepuadsp 10q Jo SHI) SHNSAI Uorjense rearidms G0 :L 9[qel,

17



measurement. So the question arises, which unit of measurement and, thus, which corresponding semi-
elasticity and elasticity should we choose?

Criterion “logLik” monotonically increases with decreasing scale factors, while criterion “logLikAdj” mono-
tonically increases with increasing scale factors, even far beyond the range of the scale factors that are pre-
sented in Table 7. Hence, these two criteria seem to be unsuitable in the specific case of our empirical
illustration, which could be related to the result of our Monte-Carlo simulation where these two criteria
perform very poorly in some of the scenarios, particularly when there is a high proportion of zero values
in the dependent variable as is the case in our empirical illustration. Criteria “rSquared”, “pSquared”, and
“Kolmogorov-Smirnov” indicate that measuring earnings in 100,000 USD per year (i.e., scaling the original
variable by 107°) is most appropriate, while criteria “Anderson” and “RESET” suggest that earnings should
be measured in 10,000 USD per year (i.e., scaling the original variable by 10=%), while criterion “Breusch-
Pagan” and the remaining criteria that assess the distribution of the residuals point to measuring earnings
in 1,000 USD per year (i.e., scaling the original variable by 10~3) (Table 7). Hence, the semi-elasticity of the
treatment is likely between 0.31 and 0.38 and the elasticity of the pre-treatment earnings is likely between
0.043 and 0.091. Given that our Monte-Carlo simulation indicates that the criteria “rSquared”, “pSquared”,
and “RESET” are the the most reliable criteria, we can narrow down the range of the elasticity of the
pre-treatment earnings to 0.043 to 0.044.

In a real-world application, we recommend repeating the search procedure with scale factors in the range
of those scale factors that are most appropriate according to relevant criteria and with narrower distances
between the scale factors (e.g., with scale factors 10755, 107%2% 1075, 10=*75, ..., 1072 in our empirical
application), at least if the regression results substantially differ between the scale factors that are pointed out
to be suitable by relevant criteria. Furthermore, we emphasize that the search procedure should be conducted
with all covariates that are used in the final regression model because the functional relationship between
the covariates and the dependent variable and, thus, the suitability of the scale factors of THS-transformed

variables can depend on the covariates that are used in the regression model.

5 Conclusion

The inverse hyperbolic sine (IHS) transformation is frequently used in econometric analyses to transform
right-skewed variables when the logarithmic transformation cannot be applied due to zero or negative values.
We confirm the results of Pence (2006) who finds that the unit of measurement of IHS-transformed variables
can substantially affect the regression results. Our Monte Carlo simulation shows that one can repeat the
regression analysis with different units of measurement and then use the R2-value and the predictive R?-value
(Montgomery, 2012) of the regression to choose suitable units of measurement for IHS-transformed variables.
Depending on the empirical specifications and the data used, several other criteria can be used additionally
to increase the robustness and reliability of the choice of the units of measurement. An empirical illustration
with real-word data demonstrates the applicability of our approach. Both our Monte Carlo simulation and
our empirical illustration cast some doubt on the suitability of using the adjusted log-likelihood value for
choosing the units of measurement for IHS-transformed variables and, thus, the one-step procedure suggested
by Carroll et al. (2003) and Pence (2006). Given that our analysis includes only a limited number of Monte
Carlo scenarios and only one application with real-world data, we suggest that empirical analysts and applied
econometricians extend our study to cover their specifications and data sets, e.g., by using and adjusting
the code for our Monte Carlo analysis that we provide as an online supplement to this paper. Given the
substantial dependence of regression results on the units of measurement for THS-transformed variables, using
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our approach to choose suitable units of measurement, for IHS-transformed variables can contribute to more

reliable estimates of econometric analyses and, thus, to better policies and business decisions.
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