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Ghislain B. D. Aihounton and Arne Henningsen

20th December 2019

Abstract

The inverse hyperbolic sine (IHS) transformation is frequently applied in econometric studies to trans-

form right-skewed variables that include zero or negative values. We con�rm a previous study that shows

that regression results can largely depend on the units of measurement of IHS-transformed variables.

Hence, arbitrary choices regarding the units of measurement for these variables can have a considerable

e�ect on recommendations for policies or business decisions. In order to address this problem, we suggest

a procedure for choosing units of measurement for IHS-transformed variables. A Monte Carlo simulation

assesses this procedure under various scenarios and a replication of the study by Bellemare and Wichman

(2019) illustrates the relevance and applicability of our suggested procedure.

Keywords: inverse hyperbolic sine, arcsinh, unit of measurement, scale factor

JEL codes: C1, C5

1 Introduction

The inverse hyperbolic sine (IHS or arcsinh) transformation, which empirical economists frequently apply to

reduce the skewness of variables with zero or negative values has a major weakness in that it is not invariant to

the unit of measurement of the transformed variable. Hence, the arbitrary choice of the unit of measurement

(e.g., whether the variable is measured in Euros per year or in 1,000 USD per month) a�ects the regression

results and, potentially, also the implications for policy recommendations or business decisions. This paper

addresses the question about how to choose a suitable unit of measurement for IHS-transformed variables.

Although econometric methods do not require any speci�c distributional assumptions of explanatory or

dependent variables,1 empirical economists frequently apply the logarithmic (log) transformation in order

to reduce the skewness and narrow the ranges of variables that have heavily right-skewed distributions.

In many empirical applications, this has the advantage that the assumptions of regressions models (e.g.,

homoscedasticity) are more likely to be ful�lled, while the estimated coe�cients are more robust to outliers

and extreme values (Wooldridge, 2016, p. 172). As the log transformation can only be applied to strictly

positive values, several studies add a �small� positive number to variables with zero values or replace zero

values by a �small� positive number before they apply the log transformation. However, these arbitrary

manipulations of the variables change the original structure of the data (Duan et al., 1983), and the arbitrary

choice of a �small� positive value can substantially a�ect the empirical results (N'guessan et al., 2017).

In order to avoid these problems, the inverse hyperbolic sine transformation can be used instead of the

log transformation (see, e.g., Johnson, 1949; Burbidge et al., 1988). This is because it can be applied to

1These methods demand that explanatory variables have a variance larger than zero. However, we do not consider this to
be a distributional assumption.
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zero and even negative values without any arbitrary manipulations of the original variable and it allows

a similar interpretation of the regression results as the log transformation (see, e.g., Carroll et al., 2003;

Carboni, 2012; Ravallion, 2017; Bahar and Rapoport, 2018; Bellemare and Wichman, 2019). Moreover, the

IHS transformation has been used to overcome problems in regression analyses with right-skewed censored

dependent variables (Carboni, 2012).

However, the way in which the IHS-transformation transforms the variable largely depends on the mag-

nitude of the values of the transformed variable and, thus, its unit of measurement. More speci�cally, if one

chooses the unit of measurement in a way that the values of the transformed variable are all rather small

(e.g., weekly food expenditure of individual households in millions of USD), the IHS transformation has only

a negligible e�ect on the variable (see left panel of Figure 1). In contrast, if one chooses the unit of measure-

ment in a way that the values of the transformed variable are all rather large (e.g., annual food expenditure

of individual households in USD), the IHS transformation is almost identical to a log transformation except

for an upward shift by the value of log(2) (see right panel of Figure 1).
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Figure 1: IHS transformation for small and large numbers

In order to investigate the dependence of the IHS transformation on the units of measurement, some studies

(e.g., Pence, 2006; Bellemare et al., 2013; Bellemare and Wichman, 2019) use di�erent scale factors to rescale

IHS-transformed variables to di�erent units of measurement before they apply the IHS transformation. While

the main results of the empirical study of Bellemare et al. (2013) and of the simulation study of Bellemare

and Wichman (2019, Table 1) are robust to the scale factor and, thus, the unit of measurement of the IHS-

transformed variable, the results of the empirical analysis of Pence (2006) are substantially a�ected by the

scale factor. In order to �nd the optimal scale factor, Carroll et al. (2003) and Pence (2006) estimate the

scale factor along with the model coe�cients in a Maximum-Likelihood estimation. Although this approach

seems to be the best way to choose the scale of IHS-transformed variables, it has not been widely adopted in

empirical studies. Reluctance to use this approach is probably due to its non-linearity in parameters so that

standard econometric estimators that are implemented in many software packages (e.g., OLS, GLS, various

time-series and panel-data estimators) cannot be applied.

Our paper suggests various simple-to-obtain criteria for choosing the unit of measurement for IHS-

transformed variables and uses Monte-Carlo simulations and a real-world application to investigate the

suitability of these criteria in empirical applications. Our results indicate that the R2-value and the pre-

dictive R2-value (Montgomery, 2012) of the regression are the most suitable general-purpose criteria for
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choosing the units of measurement for IHS-transformed variables. However, under speci�c circumstances,

some additional criteria can be used to increase the robustness and reliability of our suggested procedure.

The following section describes the IHS transformation and presents potential criteria for choosing units

of measurement for IHS-transformed variables. Section 3 describes our Monte-Carlo simulations and presents

the results of these simulations. Section 4 demonstrates our suggested procedure by applying it to an empirical

application with real-world data. Finally, Section 5 concludes.

2 IHS transformation

Let us assume that we want to regress a dependent variable yi on a set of covariates xi, e.g., by:

yi = α+ βxi + εi, (1)

where εi is the error term, subscript i indicates the observation, and α is an intercept and β is a vector of

the slope coe�cients to be estimated.

If the relationship between some of the covariates xi and the dependent variable yi is expected to be

non-linear or some of the covariates or the dependent variable have a skewed distribution, applied economists

frequently transform some or all of the variables:

ỹi = fy (yi) (2)

x̃i = fx (xi) , (3)

where fy (·) is a function and fx (·) is a set of functions that transform some or all of the (dependent and

explanatory) variables so that the regression model becomes:

ỹi = α̃+ β̃x̃i + ε̃i, (4)

where the tilde signs (̃ ) above α, β, and ε indicate that the transformation of the variables, in many cases,

also a�ects the coe�cients and the error term.

The most commonly used transformation for right-skewed variables is the logarithmic transformation,

while the IHS transformation is usually recommended if the variables include some zero or even negative

values (see, e.g., Bellemare and Wichman, 2019), e.g., income of individual persons, consumption of speci�c

goods, or health expenditure. The IHS transformation of a variable z is de�ned as:

z̃ = arcsinh (z) = log
(
z +

√
z2 + 1

)
. (5)

However, in contrast to a regression of equation (1) with linear variables or a regression of equation (4)

with log-transformed variables, a regression with one or more IHS-transformed variables is not invariant to

the units of measurement of these variables so that the arbitrary choice of the units of measurement a�ects

the regression results and, potentially, recommendations for policies or business decisions.2 As illustrated in

the left panel of Figure 1, if one chooses the unit of measurement for a variable in a way that all values are

rather small (e.g., smaller than 0.4), the IHS transformation has almost no e�ect and the estimation results

2Changing the unit of measurement of a linear dependent variable scales the intercept and all slope coe�cients accordingly.
Changing the units of measurement of a linear explanatory variable inversely scales the slope coe�cient of this variable. Changing
the unit of measurement of a log-transformed dependent or explanatory variable a�ects only the intercept. In spite of these
e�ects on the coe�cients, we consider these speci�cations to be invariant to units of measurement because none of them a�ects
the practical interpretation of the results or unit-free measures such as elasticities or R2 values.
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are similar to those of a regression with linear variables (see also Bellemare and Wichman, 2019). Thus, if one

wants to reduce the right-skewness of a variable, it does not make much sense to apply the IHS transformation

to this variable if it has small values or if it is scaled to have small values because this has almost no e�ect on

the skewness. In contrast, if one chooses the unit of measurement for a variable in a way that all values are

rather large (e.g., larger than 3), the IHS transformation is almost identical to the log transformation (see

right panel of Figure 1), and the estimation results are similar to those of a regression with log-transformed

variables. However, if a variable contains zero values, it is impossible to scale this variable in a way that all

values are rather large because zero values remain zero values no matter what unit of measurement is used.

In the presence of zero values, changing the unit of measurement to larger units (i.e., multiplying the variable

with a number smaller than one) moves the zero values �closer� to the non-zero values, while changing the

unit of measurement to smaller units (i.e., multiplying the variable with a number larger than one) moves

the zero values �further apart� from the non-zero values (see Figure 2).
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Figure 2: Histograms of IHS-transformed earnings in 1978 used in the empirical illustration in Section 4

As the unit of measurement for a variable clearly a�ects the IHS transformation (see Figures 1 and 2), it

also a�ects the functional relationship that is implied by regression models with IHS-transformed variables

(see Figures 3 and 4). Given that the assumed functional relationship a�ects the regression results, it is

extremely important to carefully select the units of measurement for IHS-transformed variables. However,

as the true functional relationship is usually unknown, the question arises of how an empirical analyst can

choose suitable units of measurement for IHS-transformed variables.

Carroll et al. (2003) and Pence (2006) suggest including a scale factor for the IHS-transformed variable

in the regression and estimating this scale factor jointly with the intercept and the slope coe�cients. If both

the dependent variable and the explanatory variable are IHS-transformed, one would get, for instance, the

regression model:

arcsinh (θyyi) = α̃+ β̃ arcsinh (θxxi) + ε̃i, (6)

where it is assumed that there is only a single explanatory variable (xi), θy is the scale factor of the dependent

variable, and θx is the scale factor of the explanatory variable. However, this regression speci�cation is non-

linear in parameters θy and θx, which is undesirable in many empirical applications.

A simpler approach would be to estimate the regression model with di�erent sets of scale factors (θy, θx)

and then to choose a set of scale factors based on one or more criteria. Table 1 lists potential criteria for

choosing scale factors that determine the units of measurement for IHS-transformed variables. One group of

these criteria assesses the ��t� of the regression model such as the R2 value of the regression, the predictive R2

4
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adjusted so that the range of the dependent variable is the same for all three units of measurement for the
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value based on the �prediction error sum of squares� (PRESS) obtained by leave-one-out cross-validation (see,

e.g., Montgomery, 2012), and the log-likelihood value of the regression. However, if the dependent variable

is IHS-transformed, di�erent scale factors θy imply di�erent non-linear transformations of the dependent

variable. Therefore,whether the above-mentioned goodness-of-�t criteria can be used to compare regression

analyses with di�erent scale factors applied to an IHS-transformed dependent variable is questionable. A

prominent method to compare regression models with di�erent non-linear transformations of the dependent

variable is to adjust the log-likelihood value by adding the logarithm of the Jacobian of the transformation

(Davidson and MacKinnon, 2004, p. 438�440). The adjusted log-likelihood value for regression analyses with

an IHS-transformed dependent variable that is scaled by a factor θy is derived as:

logLikAdj = logLik − 1

2

nObs∑
i=1

ln
(
θ2yy

2
i + 1

)
+ nObs · ln (θy) , (7)

where logLikAdj is the adjusted log-likelihood value, logLik is the (unadjusted) log-likelihood value, and

nObs is the number of observations (see, e.g., Carroll et al., 2003; Pence, 2006).3 A second group of the

potential criteria listed in Table 1 assesses the distribution of the regression residuals, e.g., how similar

the distribution is to a normal distribution, how platykurtic or leptokurtic it is (Royston et al., 2011), or

how symmetric it is.4 Finally, a third group of criteria assesses the appropriateness of model assumptions,

speci�cally homoscedasticity and the speci�ed functional relationship between the explanatory variables and

the dependent variable (see Medina et al., 2018).

3 Monte Carlo simulation

We conduct a Monte Carlo simulation to assess the suitability of the suggested criteria for choosing the scale

factor and, thereby, the units of measurement for IHS-transformed variables.5

3.1 Data generating process

We generate arti�cial data sets for the Monte Carlo simulation under di�erent scenarios. The generation of

each arti�cial data set entails the following three steps (the abbreviations of the simulation parameters that

di�er between the scenarios are explained in Table 2):

1. Generation of the explanatory variable

We use pseudo-random numbers from a log-normal distribution to generate a vector with �nObs� ∈
{100, 1000, 5000} elements, where the mean value of the corresponding normal distribution is set to

zero and its variance is set to �xVar� ∈ {0.1, 1, 10}, where larger values of �xVar� result in a more

right-skewed distribution of the explanatory variable with more `outliers' on the right-hand side of the

distribution. Then we obtain the �xZero� ∈ {0, 0.1, 0.3, 0.5} quantile of this vector and subtract this

3Several studies that scale IHS-transformed variables (e.g., Carroll et al., 2003; Pence, 2006) divide the IHS-transformed value

by the scale factor so that the transformed variable is z̃ = arcsinh (θz) /θ = log
(
θz +

√
θ2z2 + 1

)
/θ, where θ denotes the scale

factor. If this procedure is applied to the dependent variable, the last term of equation (7), i.e., nObs · ln (θy), must be omitted.
4We note that Ordinary Least Squares (OLS) and many other regression methods�besides the fact that the error terms are

independent and identically distributed (iid) with an expectation of zero�do not require any further assumptions about the
distribution of the error term, e.g., neither a symmetric distribution nor a normal distribution (except for inference in small
samples).

5Both the Monte Carlo simulation and the empirical illustration are conducted with the statistical software �R� (R Core
Team, 2019) using the add-on packages �DescTools� (Signorell, 2019), �haven� (Wickham and Miller, 2019), �lmtest� (Zeileis and
Hothorn, 2002), �moments� (Komsta and Novomestky, 2015), and �xtable� (Dahl et al., 2019) and code from Hopper (2014).
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Table 1: Potential criteria for choosing the units of measurement for IHS-transformed variables in regression
analyses

Abbreviation Description Rationale for using the criterion

rSquared R2 value of the regression a larger value indicates a better �t of
the model

pSquared predictive R2 value a larger value indicates a better
out-of-sample prediction performance

logLik log-likelihood value of the regression a larger value indicates a better �t of
the model

logLikAdj log-likelihood value of the regression
adjusted as described in equation (7)

a larger value indicates a better �t of
the model

Kolmogorov-Smirnov test statistic of the
Kolmogorov-Smirnov test for
normality applied to the residuals

a smaller value indicates that the
distribution of the residuals is closer to
a normal distribution

Shapiro-Wilk test statistic of the Shapiro-Wilk test
for normality in small samples applied
to the residuals

a larger value indicates that the
distribution of the residuals is closer to
a normal distribution

Shapiro-Fancia test statistic of the Shapiro-Fancia test
for normality in large samples applied
to the residuals

a larger value indicates that the
distribution of the residuals is closer to
a normal distribution

Anderson test statistic of the Anderson-Darling
test for normality applied to the
residuals

a smaller value indicates that the
distribution of the residuals is closer to
a normal distribution

Jarque-Bera test statistic of the Jarque-Bera test
for normality applied to the residuals

a smaller value indicates that the
distribution of the residuals is closer to
a normal distribution

Pearson test statistic of the Pearson test for
normality applied to the residuals

a smaller value indicates that the
distribution of the residuals is closer to
a normal distribution

kurtosis the kurtosis (= fourth moment of the
distribution) of the residuals

a value closer to zero indicates that
the �peakedness� of the distribution of
the residuals is more similar to a
normal distribution

skewness the skewness (= third moment of the
distribution) of the residuals

a value closer to zero indicates a more
symmetric distribution of the residuals

Breusch-Pagan test statistic of the Breusch-Pagan test
of homoscedasticity

a smaller value indicates a higher
degree of homoscedasticity

RESET test statistic of the Regression
Equation Speci�cation Error Test
suggested by Ramsey (1969)

a smaller value indicates a more
appropriate speci�cation of the
regression model

7



quantile from each element of the vector. Finally, we set all negative values to zero. This procedure

generates a vector x with values that have a right-skewed distribution, for which a larger value of �xVar�

results in a more right-skewed distribution with more extreme `outliers', and that are left-censored at

zero with �xZero� being the proportion of values equal to zero.

2. Error term

We use pseudo-random numbers from a normal distribution (�rDist� = n), a Student t-distribution

with 3 degrees of freedom (�rDist� = t), or a skew normal distribution with shape parameter α = 4

(�rDist� = sn) to generate a vector with �nObs� ∈ {100, 1000, 5000} elements, where the location and

shape parameters of these distributions are chosen so that the distributions have an expected value of

zero and the resulting regressions have an R2-value of approximately �R2� ∈ {0.1, 0.5, 0.8, 0.95}.6 This

procedure generates a vector ε̃ with normally distributed values (if �rDist� = n), with many `outliers'

(if �rDist� = t), or with a skewed distribution (if �rDist� = sn).

3. Dependent variable

We calculate a vector of values by equation (4) with α̃ = 1, β̃ = 1, x̃ = arcsinh (x) with x as obtained in

step 1, and ε̃ as obtained in step 2. Then we obtain the �yZero� ∈ {0, 0.1, 0.3, 0.5} quantile of this vector
and subtract this quantile from each element of the vector and set all negative values to zero, which

results in the vector ỹ of IHS-transformed values of the dependent variable. Finally, we obtain the

non-transformed values of the dependent variable by y = sinh (ỹ) . This procedure generates a vector y

with values that have a right-skewed distribution and that are left-censored at zero with �yZero� being

the proportion of values equal to zero.

Table 2: Scenarios used in the Monte Carlo simulation

Abbreviation Description Base scenario Alternative scenarios

nObs number of observations 1000 100, 5000

xVar variance of the normally
distributed variable, from which
the log-normally distributed
explanatory variable is derived:
right-skewness and prevalence of
`outliers' in the explanatory
variable

1 0.1, 10

xZero share of observations for which
the explanatory variable is zero

0.1 0, 0.3, 0.5

yZero share of observations for which
the dependent variable is zero

0.1 0, 0.3, 0.5

rDist distribution of the error term normal (n) Student t with 3 degrees of
freedom (t), skew normal with
shape parameter α = 4 (sn)

R2 approximate R2 value 0.80 0.1, 0.5, 0.95

6In order to obtain an R2-value of approximately �R2�, we set the variance of the error term to
(
R2−1 − 1

)
·VAR

(
α̃+ β̃x̃i

)
,

where VAR
(
α̃+ β̃x̃

)
is the variance of the �deterministic� part of the dependent variable, i.e., the dependent variable before

adding the error term (see third step of this procedure).
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3.2 Simulation procedure

For each generated data set, we calculate the `true' elasticity of the dependent variable y with respect to the

explanatory variable x at the mean values of these variables as derived by Bellemare and Wichman (2019):

ε = β̃
θxx̄

θy ȳ

√
θ2y ȳ

2 + 1√
θ2xx̄

2 + 1
, (8)

where β̃ = θx = θy = 1, ȳ is the mean value of y, and x̄ is the mean value of x. Furthermore, we estimate

equation (6) with the scale factors θy and θx set to given values so that the regression equation is linear in

(the remaining) parameters. We estimate this equation with each combination of θy ∈
{

10−6, 10−5, . . . , 106
}
,

and θx ∈
{

10−6, 10−5, . . . , 106
}
by Ordinary Least Squares (OLS). For each of these 169 regression analyses,

we calculate the estimated elasticity by equation (8), where β̃ is the estimated slope coe�cient and θy and

θx are the scale factors used in the respective regression. Finally, we obtain the values of the criteria listed

in Table 1 to �nd out which scale factors are the most suitable according to each of these criteria.

We repeat the entire procedure with 5,000 arti�cially generated data sets7 for the base scenario as well as

for each of the 15 alternative scenarios de�ned in Table 2.8 For each scenario and each criteria for choosing

the scale factor(s), we calculate the bias and root mean squared error (RMSE) of the elasticity estimate:

biassc =
1

5000

5000∑
j=1

(
ε∗jsc − εjs

)

RMSEsc =

√√√√ 1

5000

5000∑
j=1

(
ε∗jsc − εjs

)2
,

where biassc is the bias in scenario s when using criteria c for choosing the scale factors, RMSEsc is the

root mean squared error in scenario s when using criteria c for choosing the scale factors, ε∗jsc is the elasticity

obtained when using criteria c for choosing the scale factors in replication j of scenario s, and εjs is the `true'

elasticity in replication j of scenario s.

3.3 Results

Tables 3, 4, 5, and 6 summarise the simulation results for four di�erent setups. These tables present the

biases and RMSEs of the elasticities that are obtained from the regression analyses with the scale factors

that were chosen by the criteria listed in Table 1 under the scenarios described in Table 2. Additionally,

these tables present the biases and RMSEs of the elasticities obtained by using the `correct' scale factors,

i.e., θx = θy = 1, so that we can use these values as benchmarks for assessing the performance of the various

criteria for choosing the scale factors or unit of measurement for the IHS transformed variables.

Even when using the `correct' scale factors, i.e., θx = θy = 1, none of the elasticity estimates are completely

unbiased, which is caused by the censoring of the dependent variable (which gives a biased estimate of the

slope coe�cient, i.e., E
[

ˆ̃
β − 1

]
6= 0, in all scenarios in which �yZero� is larger than zero) and a correlation

7We investigated how the initial state of the pseudo-random number generator and the number of replications a�ect the
results and found out that the e�ect of the initial state of the pseudo-random number generator on the simulation results is
negligibly small when the number of replications is 5,000 or more.

8For the alternative scenarios, we altered only one simulation parameter to an �alternative� value at a time and kept all other
simulation parameters at their �base� values. This keeps our Monte Carlo simulation concise and easily comprehensible, while
an analysis with all 1728 combinations of simulation parameters would make it impossible to present the results in a journal
paper. We make the R code for our Monte Carlo simulation freely available so that everyone can re-run the analysis for any
scenario they consider relevant.
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between the estimate of the slope coe�cient and the remaining part of the right-hand side of equation (8)

(so that even if the estimate of the slope coe�cient is unbiased, i.e., E
[

ˆ̃
β − 1

]
= 0, E [ε̂] = E

[
ˆ̃
β · κ

]
=

E [1 · κ] + E
[(

ˆ̃
β − 1

)
· κ
]

= ε + E
[(

ˆ̃
β − 1

)
· κ
]
6= ε, where ε̂ is the estimated elasticity,

ˆ̃
β is the estimated

slope coe�cient, and κ = (x/y)
(√

ȳ2 + 1/
√
x̄2 + 1

)
). However, given that the elasticities are in the order

of magnitude of one, the biases are relatively small in most scenarios. Only the scenarios in which half of

the values of the dependent variable are censored at zero9 or the R2-value of the regression is only 10% give

substantially biased estimates even if the `correct' scale factors are used.

Table 3 focuses on the scale factor of the dependent variable, i.e., θy, by always using the `true' scale

factor of the explanatory variable, i.e., θx = 1. This setup mimics the problem that analysts have when only

the dependent variable is IHS-transformed. The main results are:

• Almost all criteria result in relatively small biases and RMSEs for a large proportion of scenarios, while

criteria �rSquared� and �pSquared� are the only criteria that perform relatively well across all scenarios.

• The criteria that assess the similarity of the distribution of the residuals with the normal distribution

outperform the criteria �rSquared� and �pSquared� in a few scenarios, but these criteria perform poorly

when the error terms are not normally distributed. However, as one can never be sure in real-world

empirical applications that the `true' error terms are indeed normally-distributed, the criteria that

assess the similarity of the distribution of the residuals with the normal distribution seem to be not

well suited to real-world empirical applications.

• Criterion �logLikAdj�, i.e., the adjusted log-likelihood value, generally performs equally well as criteria

�rSquared� and �pSquared� in many scenarios, but it performs poorly in the scenarios with a very right-

skewed explanatory variable and with an R2-value of only 10%. Furthermore, it performs extremely

poorly in scenarios with 30% or more censored values of the dependent variable. Hence, although

criterion �logLikAdj� seems to be very well suited from a theoretical point of view, one needs to be

cautious when using it in empirical applications.

• Criteria �skewness�, �Breusch-Pagan�, and �RESET� perform reasonably well in most scenarios and,

thus, may be used as additional criteria in speci�c empirical applications.

Table 4 focuses on the scale factor of the explanatory variable, i.e., θx, by always using the `true' scale

factor of the dependent variable, i.e., θy = 1. This setup mimics the problem that analysts have when only

an explanatory variable is IHS-transformed. In this setup, criteria �logLik� and �logLikAdj� are monotonic

transformations of the R2-value and, thus, always indicate the same scale factors as criterion �rSquared�.

Hence, these two criteria are omitted in Table 4. The main results are:

• Most criteria perform substantially worse in this setup than in the case where one needs to choose a

scale factor for the dependent variable. Hence, it seems to be more di�cult to �nd an appropriate scale

factor for an explanatory variable than for a dependent variable.

• However, criteria �rSquared� (and, thus, �logLik� and �logLikAdj�), �pSquared�, and �RESET� are also

suitable for choosing the scale factor for an explanatory variable as they perform similarly well as in

the case where one needs to choose a scale factor for the dependent variable.

• All other criteria perform substantially worse in all but a few speci�c scenarios and, thus, seem to be

unsuitable for empirical applications.

9Hence, in empirical applications in which the dependent variable is censored at around half or more of the observations, we
suggest using a regression method for censored dependent variables instead of OLS.
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Table 5 simultaneously looks at the scale factor of the dependent and the explanatory variable, i.e., both

θy and θx. This setup mimics the problem that analysts have when both the dependent variable and an

explanatory variable are IHS-transformed. The main results are:

• The biases and RMSEs are similar to or higher than the biases and RMSEs for the case where one

needs to choose a scale factor for the explanatory variable. This indicates that �nding suitable values

for two scale factors simultaneously is slightly more di�cult than �nding a suitable value for the scale

factor for just an explanatory variable and much more di�cult than �nding a suitable value for the

scale factor of the dependent variable only.

• Criteria �rSquared� and �pSquared� again generally result in relatively small biases and RMSEs.

• Criterion �logLikAdj�, i.e., the adjusted log-likelihood value, performs equally well as criteria �rSquared�

and �pSquared� in many scenarios, but it performs extremely poorly in scenarios with 30% or more

censored values of the dependent variable.

• If 10% or less of the values of the dependent variable are censored, we suggest using criterion �logLikAdj�

in addition to criteria �rSquared� and �pSquared�, while all other criteria perform substantially worse in

most scenarios and, thus, seem to be unsuitable for empirical applications with both an IHS-transformed

dependent variable and one or more IHS-transformed explanatory variables.

Table 6 also simultaneously looks at the scale factor of the dependent and the explanatory variable. However,

in contrast to the previous setup, the two scale factors are restricted to be equal, i.e., θy = θx. This setup

mimics the problem that analysts have when both the dependent variable and an explanatory variable are

IHS-transformed and it is reasonable to assume that the scale factors of the dependent variable and the

explanatory variable are equal, e.g., when the IHS-transformed explanatory variable consists of lagged values

of an IHS-transformed dependent variable. The main results are:

• The results for this setup are generally similar to those of the �rst setup that focuses on the scale factor

for the dependent variable.

• Criteria �rSquared�, �pSquared�, and �RESET� generally perform the best across all scenarios.

• Criterion �skewness� and the criteria that compare the distribution of the residuals with a normal

distribution also perform rather well across all scenarios, even in the scenarios with non-normally

distributed error terms.

• Criteria �logLik�, �logLikAdj�, �kurtosis�, and �Breusch-Pagan� perform poorly in some of the scenarios.

Overall, in all four di�erent setups regarding the IHS-transformed variables and in almost all scenarios,

criteria �rSquared� and �pSquared� result in biases and RMSEs that are among the smallest among all criteria

and that are very similar to those obtained by using the `correct' scale factors. Thus, criteria �rSquared�

and �pSquared� can be considered the best general-purpose criteria for choosing the scale factors for IHS-

transformed variables. Depending on the empirical speci�cations and the data used, criteria �RESET�,

�logLikAdj�, �Breusch-Pagan�, �skewness� and those that compare the distribution of the residuals with a

normal distribution can be used as additional criteria, e.g., for robustness checks.
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4 Empirical illustration

As an empirical illustration, we replicate and extend an empirical example used in Bellemare and Wichman

(2019) who use data from Dehejia and Wahba (1999) to analyse how a randomised treatment with the

National Supported Work (NSW) program a�ects annual income as initially done by LaLonde (1986). The

(simpli�ed) speci�cation used by Bellemare and Wichman (2019) is:

arcsinh (θyyi) = α+ δDi + β arcsinh (θxxi) + ε̃i, (9)

where yi is person i's earnings (in USD) in 1978, Di is a dummy variable that indicates whether person i

received the treatment or not, xi is person i's earnings (in USD) in 1975, which is used as a control variable,

ε̃i is the error term, α, β, and δ are the coe�cients to be estimated, and θy and θx are scale factors that are

not applied by Bellemare and Wichman (2019), which means θy = θx = 1. The pre-treatment earnings (i.e.,

variable xi) are zero in 65% of the observations, while the post-treatment earnings (i.e., variable yi) are zero

in 31% of the observations.

We estimate equation (9) by OLS using scale factors θy, θx ∈
{

10−9, 10−8, . . . , 109
}
, where we set θy = θx,

because variables yi and xi are the same variables with the same unit of measurement that are just observed

in di�erent years. For each scale factor, Table 7 presents: (i) the estimates of coe�cients δ and β; (ii)~three

di�erent semi-elasticities, which measure the e�ect of the treatment on the post-treatment earnings using

equations (10), (11), and (12) of Bellemare and Wichman (2019) for calculations without approximation,

approximate calculations, and approximate calculations with small-sample correction, respectively; (iii) the

elasticity that measures the e�ect of the pre-treatment earnings on the post-treatment earnings using equa-

tion (16) of Bellemare and Wichman (2019), and; (iv) the various criteria that can potentially be used for

choosing the scale factor. When we apply scale factor θy = θx = 1, we obtain the same results that are re-

ported in column (4) of Table 3 of Bellemare and Wichman (2019) because the two speci�cations are identical.

When the scale factor θy = θx approaches zero, the values of the scaled variables θyyi and θxxi become so

small that the IHS transformation approaches a linear transformation (see left panel of Figure 1) so that the

estimation approaches a regression with non-transformed variables and, thus, we obtain basically the same

results as reported in column (1) of Table 3 of Bellemare and Wichman (2019), e.g., the same intercept and

coe�cient of the treatment dummy after scaling them by the inverse of the scale factor, the same coe�cient

and elasticity of the pre-treatment earnings, the same t-statistic of all three coe�cients, the same adjusted

and unadjusted R2-values, and the same adjusted log-likelihood values.10

The semi-elasticity that quanti�es the e�ect of the treatment on the post-treatment earnings calculated

without approximation by equation (10) of Bellemare and Wichman (2019) largely depends on the scale

factor. With an arbitrarily chosen unit of measurement and scale factor, the estimated e�ect of participation

in the program on the earnings could be between 31% and 2,451% (Table 7) or even higher with a higher

scale factor or a smaller unit of measurement. The semi-elasticities that are calculated with the approximate

equations (11) or (12) of Bellemare and Wichman (2019) also largely depend on the scale factor and�given

that they assume `large' numbers�give poor approximations when very small scale factors are used. The

elasticity that indicates the e�ect of the pre-treatment earnings on the post-treatment earnings varies much

less than the semi-elasticity, but it still varies substantially between 0.043 and 0.091 for di�erent units of

10The semi-elasticity that measures the e�ect of the treatment on the earnings that is reported in column (1) of Table 3 of
Bellemare and Wichman (2019) di�ers from our semi-elasticity in Table 7 because it is calculated in a di�erent way, i.e., by using
the average post-treatment earnings over the entire sample rather than the expected post-treatment earnings of the non-treated
persons as denominator. If one performs a linear regression with non-transformed variables and divides the estimated coe�cient
of the treatment dummy by the expected post-treatment earnings of a non-treated person with all other variables equal to the
sample mean, one obtains the same semi-elasticity as reported for the smallest scale factor in Table 7.
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measurement. So the question arises, which unit of measurement and, thus, which corresponding semi-

elasticity and elasticity should we choose?

Criterion �logLik� monotonically increases with decreasing scale factors, while criterion �logLikAdj� mono-

tonically increases with increasing scale factors, even far beyond the range of the scale factors that are pre-

sented in Table 7. Hence, these two criteria seem to be unsuitable in the speci�c case of our empirical

illustration, which could be related to the result of our Monte-Carlo simulation where these two criteria

perform very poorly in some of the scenarios, particularly when there is a high proportion of zero values

in the dependent variable as is the case in our empirical illustration. Criteria �rSquared�, �pSquared�, and

�Kolmogorov-Smirnov� indicate that measuring earnings in 100,000 USD per year (i.e., scaling the original

variable by 10−5) is most appropriate, while criteria �Anderson� and �RESET� suggest that earnings should

be measured in 10,000 USD per year (i.e., scaling the original variable by 10−4), while criterion �Breusch-

Pagan� and the remaining criteria that assess the distribution of the residuals point to measuring earnings

in 1,000 USD per year (i.e., scaling the original variable by 10−3) (Table 7). Hence, the semi-elasticity of the

treatment is likely between 0.31 and 0.38 and the elasticity of the pre-treatment earnings is likely between

0.043 and 0.091. Given that our Monte-Carlo simulation indicates that the criteria �rSquared�, �pSquared�,

and �RESET� are the the most reliable criteria, we can narrow down the range of the elasticity of the

pre-treatment earnings to 0.043 to 0.044.

In a real-world application, we recommend repeating the search procedure with scale factors in the range

of those scale factors that are most appropriate according to relevant criteria and with narrower distances

between the scale factors (e.g., with scale factors 10−5.5, 10−5.25, 10−5, 10−4.75, . . ., 10−2.5 in our empirical

application), at least if the regression results substantially di�er between the scale factors that are pointed out

to be suitable by relevant criteria. Furthermore, we emphasize that the search procedure should be conducted

with all covariates that are used in the �nal regression model because the functional relationship between

the covariates and the dependent variable and, thus, the suitability of the scale factors of IHS-transformed

variables can depend on the covariates that are used in the regression model.

5 Conclusion

The inverse hyperbolic sine (IHS) transformation is frequently used in econometric analyses to transform

right-skewed variables when the logarithmic transformation cannot be applied due to zero or negative values.

We con�rm the results of Pence (2006) who �nds that the unit of measurement of IHS-transformed variables

can substantially a�ect the regression results. Our Monte Carlo simulation shows that one can repeat the

regression analysis with di�erent units of measurement and then use the R2-value and the predictive R2-value

(Montgomery, 2012) of the regression to choose suitable units of measurement for IHS-transformed variables.

Depending on the empirical speci�cations and the data used, several other criteria can be used additionally

to increase the robustness and reliability of the choice of the units of measurement. An empirical illustration

with real-word data demonstrates the applicability of our approach. Both our Monte Carlo simulation and

our empirical illustration cast some doubt on the suitability of using the adjusted log-likelihood value for

choosing the units of measurement for IHS-transformed variables and, thus, the one-step procedure suggested

by Carroll et al. (2003) and Pence (2006). Given that our analysis includes only a limited number of Monte

Carlo scenarios and only one application with real-world data, we suggest that empirical analysts and applied

econometricians extend our study to cover their speci�cations and data sets, e.g., by using and adjusting

the code for our Monte Carlo analysis that we provide as an online supplement to this paper. Given the

substantial dependence of regression results on the units of measurement for IHS-transformed variables, using

18



our approach to choose suitable units of measurement for IHS-transformed variables can contribute to more

reliable estimates of econometric analyses and, thus, to better policies and business decisions.
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