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Sammendrag 

Å ta hensyn til målefeil er viktig når man estimerer persistens i økonomiske kjennetegn (slik som 

inntekt) fra en generasjon til en annen. Tradisjonelt har man fokusert på persistens (overføring) kun 

mellom foreldre og barn. I denne situasjonen er disse mekanismene relativt godt forstått, og 

inntektsmålene kan konstrueres slik at konsekvensene av målefeil avhjelpes. Dette er imidlertid ikke 

nødvendigvis tilfelle når man studerer overføring av kjennetegn mellom flere generasjoner. 

 

I denne artikkelen viser vi hvordan målefeil kan bidra til over-estimering av persistens i økonomiske 

kjennetegn over tre generasjoner, altså mellom besteforeldre, foreldre og barnebarn. Ved hjelp av 

simuleringer viser vi at det kan være målefeil i OLS-estimater (estimater basert på minste kvadraters 

metode) selv ved bruk av 30-års gjennomsnitt som inntektsmål og at dette gir en kunstig høy 

koeffisient på bestefars inntekt i en intergenerasjonell inntektsregresjon. Vi bruker også en 

fremgangsmåte med instrumentvariable (IV) som unngår denne typen målefeil. 

 

Ved hjelp av norske registerdata finner vi overføring av målefeil (spillover bias) i estimatet på 

bestefars innflytelse, og kombinasjonen av resultater fra OLS- og IV-estimater peker i retning av at et 

positivt OLS-estimat på besteforeldregenerasjonen kan være for høyt estimert. 

 



1 Introduction

Measurement error in a regressor is often acknowledged in empirical studies, but the focus tends

to be only on potential error in the variable of interest and resulting biases in the corresponding

coefficient. In reality, there is often measurement error in other regressors and this can cause

bias in the coefficient of interest. Although the notion of bias in one coefficient arising from error

in another regressor is a well-known econometric result, it is seldom addressed in practice with

empirical studies.

The emerging multigenerational income mobility literature is a recent exception. The regression

of interest uses offspring income as the dependent variable, with parent income and grandparent

income as two regressors. In this case, the focus is generally on the coefficient on grandparent

income, where a positive coefficient implies lower mobility levels; in a sense, the parental income

measure is a “control” variable. Solon (2018) noted that due to the econometric result just de-

scribed, measurement error in parental income could explain a small positive coefficient estimate

on grandparents’ income.

Our contribution to this literature is to formally show with theory, simulations, and adminis-

trative data the role that measurement error may play in the grandparent coefficient estimates.

We consider well known income measurement issues and characterize their distinct implications

for the multigenerational income mobility estimates, in particular highlighting how small positive

grandparent coefficient estimates could be inflated, and may be a consequence of measurement er-

ror. First, we note that settings with lower intergenerational mobility (i.e., larger intergenerational

persistence parameters) are more susceptible to this bias, due to two parameters underlying the

spillover bias factor: the (parent-grandparent) correlation between the regressors, and the parent-

child regression parameter. Second, our simulations show that even using long-term averages of

income during midlife for all three generations will not eliminate the possibility of estimating a

spurious grandparent coefficient. Third, we also show a counter-intuitive result that, for a given

parental income measure (e.g., a 20-year average), improving the grandparent income measure ac-

tually inflates the spillover bias in the grandparent coefficient, which would otherwise incorrectly

be interpreted as reducing attenuation bias. Additionally, we propose an IV approach that has

the advantage of requiring a shorter timespan of incomes to minimize bias, and serves as a useful
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supplemental approach for gauging bias.

We also use administrative tax data from Norway to provide an empirical illustration of the

bias spillover in the OLS and IV estimates, showing how it inflates the grandparent coefficient

in the multigenerational regression. Our empirical results are consistent with the patterns in our

simulation results, and our preferred estimates of the grandparent coefficient using methods to

mitigate bias are not statistically significantly different from zero. So although we find small positive

coefficient estimates, we cannot rule out the possibility these are spurious. Further considering that

we have very good administrative data, which is not susceptible to some important sources of error

present in survey data, our empirical results can be considered an understatement of the potential

biases.

More broadly, this paper contributes to the empirical literature as a cautionary note to remain

cognizant of measurement error in regressors other than the variable of interest. Our explicit

derivations and thus simulation use some assumptions specific to multigenerational mobility, but

many of the results could apply also in other settings. For instance, the larger the correlation

between the error-ridden regressor and the variable of interest, the larger the magnitude of the

spillover bias. In fact, this correlation may be the actual motivation for including the control

variable, if one believes the control is highly correlated with our variable of interest and would

cause bias if omitted. Further, given that our measurement characterizations are based on income

dynamics, a natural extension is to studies that control for a measure of individual or family income

(e.g., the child health or early childhood schooling literatures).

The rest of the paper proceeds as follows. In the next section, we provide background on

the intergenerational and multigenerational income mobility literatures. Then we formalize the

biases from measurement issues in Section 3, both summarizing the existing results on biases in

the intergenerational (parent-child) literature as well as extending these to the multigenerational

setting. We use these theoretical results to run a simple simulation in Section 4, which illustrates

the nature of these biases in the multigenerational estimates. Section 5 describes our administrative

data and approach, followed by the empirical results. We provide conclusions in Section 6.
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2 Background

Societies throughout the world are concerned with the persistence of poverty (or privilege) across

generations, and there is a large descriptive literature examining the extent to which this intergen-

erational transmission of socioeconomic status occurs.1 Estimating a basic model,

yi0 = β1xi1 + εi, (1)

where yi0 is an outcome for a child in family i and xi1 the same outcome for the parent, gives an

estimate of the summary statistic, β1, describing associations across generations.2 Although this

provides a useful description of mobility, researchers are now attempting to explore whether there

is more to the process—i.e., additional generations—that we should add to our general depiction

of mobility. To paint a more complete picture one can add another generation to equation (1),

estimating:

yi0 = γ1xi1 + γ2xi2 + εi (2)

In this case, γ1 still describes transmission from parents (though now conditional on grandparents)

and γ2 describes the persistence from grandparents to their grandchildren, conditional on parents.

Even a small positive γ2 can have important implications for mobility, indicating slower mobility

than implied by equation (1). For example, Lindahl et al. (2015) find positive estimates of γ2 using

survey data on income and education in Malmö, Sweden, and conclude that “estimates obtained

from data on two generations severely underestimate long-run intergenerational persistence in both

labor earnings and educational attainments.”3

To see this, note that if the model in (1) represents the true underlying transmission process,

1See Solon (1999) and Black & Devereux (2011) for thorough reviews of the literature on two-generation mobility.
2Intercepts are omitted to simplify presentation; the variables should be considered to be in deviation-from-mean

form.
3Several other recent studies also find evidence of a small positive grandparent effect. Lindahl et al. (2014) use

the same survey data from Malmö, Sweden; Hertel & Groh-Samberg (2014) use the Panel Study of Income Dynamics
(PSID) to study persistence in occupational class in the U.S.; Modalsli (2016) uses administrative data on occupations
and incomes for Norway; Long & Ferrie (2018) use wealth-based occupational status measures constructed from U.S.
Census data; Boserup et al. (2014) estimate multigenerational wealth elasticities using Danish administrative records;
Pfeffer (2014) uses the PSID to study educational mobility in the U.S.; Ferrie et al. (2016) further explore educational
mobility in the U.S. using Census data, and Ferrie et al. (2016) consider the possibility that their estimate could be
a consequence of measurement error.
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then we could use our estimates of β1 to approximate the association for further generations. For

example, under simplifying assumptions, the persistence between the outcomes for children and

their grandparents could be approximated by β2
1 . This approximation implies that persistence

declines geometrically, so we would observe fairly rapid mobility across generations.4 However,

several recent multigenerational mobility studies find a positive grandparental coefficient in (2)

(e.g., Clark, 2014; Clark & Cummins, 2015; Long & Ferrie, 2018; Lindahl et al., 2015; Zeng & Xie,

2014; Hällsten, 2014; Olivetti et al., 2014; Modalsli, 2016), which implies a slower than geometric

rate of decline in persistence, or lower mobility.5 For a numerical example, consider Norway,

where the true β1 may be around 0.4.6 In a regression where log income is the outcome (so β1 is an

intergenerational income elasticity), a child whose parents have income 50% above the mean in their

generation would be expected to have income around 20% above the mean in the child’s generation.

Conversely, if the grandparents had income, say, 75% above the mean in their generation, and γ2

is about 0.1 (assuming γ1 is 0.4), would imply the child’s income would be about 27.5% above the

mean.

Recent multigenerational studies use a variety of outcomes, such as education, occupation, or

wealth, and a few have used data on individual’s income.7 Lindahl et al. (2014, 2015) estimate

unconditional and conditional (on parents) effects of grandparents for income and education in

Malmö, Sweden, finding positive effects of grandparents for both outcomes. Modalsli (2016) uses

administrative data on occupations and incomes for Norway, finding that grandparents do matter

conditional on parents. Long & Ferrie (2018) use income-based occupational status measures in

historical censuses for Britain, also finding positive estimates of the grandparent coefficient.

A true small positive grandparent effect is certainly plausible, with a number of possible un-

derlying mechanisms, ranging from biological to social influences or simply through resources.8

4See Stuhler (2014) for further discussion of this approximation.
5Early studies did not find strong evidence of a conditional grandparent effect, but these datasets were often for

a peculiar or non-representative sample (e.g., Warren & Hauser (1997), Hodge (1966) ).
6Nilsen et al. (2012) find an estimate of 0.34 based on measuring income with a 15-year average, implying a

potential attenuation factor of about 0.85 from Mazumder (2005); this implies β1 = 0.42.
7Hertel & Groh-Samberg (2014) use the Panel Study of Income Dynamics (PSID) to study persistence in oc-

cupational class in the U.S.; Long & Ferrie (2018) use wealth-based occupational status measures constructed from
U.S. Census data; Boserup et al. (2014) estimate multigenerational wealth elasticities using Danish administrative
records; Pfeffer (2014) uses the PSID to study educational mobility in the U.S.; Ferrie et al. (2016) further explore
educational mobility in the U.S. using Census data. All of these studies find evidence of a small positive grandparent
effect, and Ferrie et al. (2016) consider the possibility that their estimate could be a consequence of measurement
error.

8The seminal theoretical work by Becker & Tomes (1979) arrives at the perhaps counter intuitive prediction of
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Grandparents may have frequent interactions with grandchildren due to close geographic proxim-

ity, or have labor market connections from which the child may benefit, or they may make direct

financial investments on behalf of the child (in a manner distinctive to how the parents would

choose). Of course, identifying mechanisms is always challenging, whether considering the inter-

generational or multigenerational settings. And, while we by no means wish to decry the potential

for these mechanisms to cause a positive grandparent coefficient, it is important to recognize the

limitations of our empirical estimates given the data available to us.

3 Biases from income measurement issues

Measurement issues have long played an important role in the descriptive mobility literature, and

have received particular attention in the context of income mobility (e.g., Solon, 1992; Zimmerman,

1992; Mazumder, 2005; Haider & Solon, 2006; Nybom & Stuhler, 2014). The measurement issues

stem from the fact that, although we would like to estimate the intergenerational persistence in a

long-term (or lifetime) component of income, we do not observe this. Instead we rely on observed

annual incomes, either from self-reported survey data or administrative records. The sources of bias

that can arise from using such measures include transitory fluctuations in annual income (which we

will consider to implicitly include any measurement error in annual reports) and lifecycle variation

in both the relationship between permanent and annual incomes as well as in the share of annual

income variation due to the transitory components.9 With these issues, the timing and duration of

the lifespan for which we observe annual incomes are crucial to mitigating potential biases.

We begin this section by reviewing results from the existing literature on resulting biases in

OLS and IV estimation of the intergenerational regression in equation (1). In Section 3.2, we then

briefly note how these biases might affect extrapolations of the intergenerational coefficients to

make inferences regarding multigenerational mobility. We turn to multigenerational regressions in

a negative effect of grandparents conditional on parent income, which implies persistence declines at a faster than
geometric rate, or more rapid mobility. The intuition behind a negative coefficient is that if the increased income of
grandparents did not raise the parents’ income, this implies the parent got a poor draw on human capital endowment,
and some of this is passed on to the child. Solon (2014) and Stuhler (2014) also adapt this theoretical framework,
providing further discussion of how and why we might find a conditional grandparental effect, whether negative or
positive.

9For studies relying on retrospective questions in surveys (about own income in previous periods or about parents’
economic status a generation back) the possibility of recall error introduces yet another bias. This will not be directly
addressed here, as an increasing number of studies (including the present one) rely on administrative data that is
collected during or shortly after the year the income is accrued.
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Section 3.3, showing how the income measurement issues play out in OLS and IV estimation of

equation (2).

3.1 Biases in the intergenerational regression

Measurement error (or transitory fluctuations) in annual income along with the life-cycle profile

in income are two well documented sources of bias in intergenerational mobility studies, both of

which can be mitigated with how income is measured. Measuring income during mid-life minimizes

bias from the latter (Haider & Solon, 2006; Nybom & Stuhler, 2014). When income is measured

in this timespan, averaging over several years of income has been shown to substantially reduce

attenuation bias from measurement error or transitory fluctuations (Solon, 1992; Mazumder, 2005).

We begin our summary with the simple case of classical measurement error and no lifecycle

effects, where parental log annual income in year t, x1t, is decomposed into a permanent component

x1 and a white noise error or transitory component, v1t:

xi1t = xi1 + vi1t (3)

In this case, we know that the OLS estimate of β1 is attenuated:

plim(β̂1,OLS) = β1
σ2
x1

σ2
x1 + σ2

v1

, (4)

where σ2
x1 = var(xi1) and σ2

v1 = var(vi1t). Taking the average over T years of log income reduces

the attenuation bias because σ2
v1 is then replaced by σ2

v1 /T in (4). Note that in this simple setting,

taking averages over several years for offspring income (the dependent variable yi0) reduces the

error variance.

Under the strong assumptions of classical measurement error, instrumental variables estimation

(IV) (with a valid instrument) provides consistent estimates of β1. Early intergenerational studies

use fathers’ education to instrument for fathers’ income (e.g., Solon, 1992) as well as annual income

to instrument for multi-year averages (Altonji & Dunn, 1991), though both studies acknowledge

the tenuousness of instrument exogeneity. In the latter approach, a valid instrument can only

affect offspring income through the permanent component of the parental income average (so the
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transitory components cannot be correlated over time). Altonji & Dunn (1991) note that this

may not hold because their IV estimates are consistent with some persistence in the transitory

component of income.

Mazumder (2005) subsequently shows that such persistence implies worse attenuation bias even

when time-averaging with OLS estimation. Suppose the transitory component, vi1t, follows an

AR(1) process with persistence parameter δ:

vi1t = δvi1t−1 + ei1t. (5)

Then the OLS estimate converges to:10

plim(β̂1,OLS) = β1
σ2
x1

σ2
x1 +

1
T

(
σ2
e1

1−δ2

)
φ
, (6)

where

φ = 1 + 2δ
T − 1−δT

1−δ

T (1− δ)
. (7)

In this case, the attenuation bias is not reduced to the same extent by taking multi-year averages

(since 0 > δ > 1), and an IV approach using an annual income measure in year s to instrument

for income in year t (or an average ending in year t) no longer provides a consistent estimate,

though the bias shrinks as s gets further from t. Defining T = s− t, the probability limit of the IV

estimator is:

plim(β̂1,IV ) = β1
σ2
x1

σ2
x1 + δT

σ2
e1

1−δ2

. (8)

Further complicating things is the lifecycle variation in the size of σ2
v1, which has been found to

be U-shaped with the smallest level being in the early 40s (e.g., Mazumder, 2001, 2005).11 When

taking longer term averages of annual income, σ2
v/T can potentially get larger if σ2

v1t grows fast

enough, thus exacerbating attenuation bias rather than reducing it.

Other studies have pointed out that the relationship between annual incomes and permanent

10Solon (1992) originally noted this more complicated probability limit in footnote 17 of his paper, and Mazumder
(2005) subsequently examined the empirical implications.

11For Norway, Nilsen et al. (2012) do not find the full U-shape pattern found for other countries, rather they find
the typical incline beginning in the early 40’s, but with a stable level at younger ages. We discuss the implications of
this further with our empirical results.
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income changes over the lifecycle, and this can lead to attenuation or amplification bias (e.g., Haider

& Solon, 2006). To model this lifecycle variation, equation (3) becomes xi1t = λ1txi1 + vi1t. λ1t

tends to be less than one at younger ages, reaches one around the early 40s when annual income

is a reasonable measure of average lifetime income, and then is greater than one at older ages.

Incorporating λ1t leads to

plim(β̂1,OLS) = β1
λ1tσ

2
x1

λ2
1tσ

2
x1 + σ2

v1

(9)

for OLS estimates from using an annual income measure for parents. If an annual measure is used

for offspring as well, plim(β̂1) in (9) is multiplied by λ0τ (the analogous parameter relating annual

income in year τ to permanent income for offspring). When a T-year average of income is used,

again σ2
v1 is replaced by σ2

v1/T and λ1t is replaced by the average over the included years, λ̄1T .

And, in the case of IV using an annual income to instrument for another, plim(β̂1) simplifies to

β1
λ0τ
λ1t

.

So for OLS and IV, the lifecycle related bias can be attenuating or amplifying in nature, as

shown by studies emphasizing the importance of measuring annual incomes during the age ranges

for which λ1t and λ0τ (or λ̄1T ) are approximately 1 (Haider & Solon, 2006; Nybom & Stuhler,

2014).

Many of the aforementioned intergenerational results have been documented in the literature

(e.g., Solon, 1992; Zimmerman, 1992; Mazumder, 2001, 2005; Haider & Solon, 2006; Nilsen et al.,

2012; Nybom & Stuhler, 2014). And some of these methods for mitigating bias, such as measuring

income at midlife and averaging over several years, have become standard practice. However, even

when these practices are implemented, some bias still remains. In the two-generation setting, this

may not be very problematic because it is generally believed that we know the direction of bias and

often it is fairly small in magnitude. Still, we note in the next section that using these estimates

to make inferences about multigenerational mobility could be misleading if we ignore the leftover

bias.

11



3.2 Comparing estimates from two-generation regressions

As previously mentioned, studies sometimes extrapolate intergenerational regression estimates to

approximate multigenerational mobility, and the above noted biases could lead to false conclusions

of a grandparent effect. For instance, some studies compare estimates of the offspring-grandparent

association (β3) with (β̂1)
2. If β̂3 > (β̂1)

2, this has been interpreted as evidence in favor of a

grandparent effect (e.g., Lindahl et al., 2015; Long & Ferrie, 2018). If we consider the results above

on attenuation bias, it is not clear that comparing β̂3 and (β̂1)
2 is strong enough evidence, even

after properly accounting for estimation error, because of the attenuation bias that is present in

the estimates. Define these attenuation factors θ∗1 and θ∗3 such that β̂1 = θ∗1β1 and β̂3 = θ∗3β3. Then

it is simple to show that even if β3 = (β1)
2, we would find that β̂3 > (β̂1)

2 when the attenuation

factors satisfy θ∗3 > (θ∗1)2. How likely is this to occur? Using the preferred estimates of attenuation

factors in Table 1 of Mazumder (2005), if we use a 10-year average for parents’ income (θ∗1 = 0.79

so (θ∗1)2 = 0.62), then a 4-year (or longer) average (θ∗3 = 0.66) for grandparents’ income can give

θ∗3 > (θ∗1)2, and thus β̂3 > (β̂1)
2.

Another analogous comparison studies consider is whether β̂3 > β̂1β̂2, where β̂2 is an estimate

of the parent-grandparent association (e.g., Lindahl et al., 2015; Adermon et al., 2018). In this

case, if we again consider attenuation bias, we will mistakenly conclude that β̂3 > β̂1β̂2 (despite

the true relationship being β3 = β1β2) if the attenuation factors satisfy θ∗3 > θ∗1θ∗2. Since the same

grandparent income measure is typically used in the offspring-grandparent and parent-grandparent

regressions, θ∗3 = θ∗2, meaning any θ∗1 < 1 can lead us to mistakenly conclude that β̂3 > β̂1β̂2.

Although the biases can be complicated by lifecycle effects as discussed above, if income is measured

during midlife so λ̄t ≈ 1, then it is almost certain that θ∗1 < 1 for any long-term average of income;

even using a 30-year average leaves an attenuation factor of 0.91 in the simulations in Mazumder

(2005).

Although it is feasible that biases may affect the comparisons of intergenerational estimates,

these comparisons were generally made due to data limitations. Now that it is possible to run the

full multigenerational regression, we show in the next section that this presents unique challenges

even with small amounts of bias remaining from parental income measures, as this bias spills over

into—and has the opposite effect on—the grandparent coefficient in equation (2).
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3.3 Biases in the multigenerational regression

We next turn to the multigenerational regression, showing the distinct implications of the measure-

ment issues discussed above, including the consequences from bias that remains even after taking

standard approaches to mitigate the measurement issues. The intergenerational correlation between

parents’ and grandparents’ permanent components of income leads to spillover of these biases, a

standard econometric result. Such spillover is often ignored because the affected coefficient is not

for a variable of interest, but the opposite is true in this case—we are primarily interested in the

grandparent coefficient. Notably, this spillover bias can produce a small positive coefficient esti-

mate when the true parameter for grandparents is zero—or even negative—in the multigenerational

equation in (2).

For intuition, first consider the simple setting where only parental income is measured with

error and the measurement error is classical, but we perfectly observe grandparents’ income (xi2).

Then the coefficient estimate on parents’ income is attenuated, but the coefficient estimate on

grandparents’ income is actually biased upward because the underlying permanent component of

parents’ earnings is positively related to that of the grandparents.

To see the potential effects of bias spillover more precisely, we extend the simple scenario

of classical measurement error to both generations. Consider annual income measures for both

generations that follow equation (3), where now it also matters that vi1t is orthogonal to vi2t, so

annual income is only related across generations through the permanent component of income. This

is reflected below by ρ = corr(xi1, xi2), which is the intergenerational correlation in the permanent

component of income between the parent and grandparent generations. For simplicity, consider

the case of stationarity where var(xi1t) = var(xi2t) = σ2
x and var(vi1t) = var(vi2t) = σ2

v . The

probability limits of the OLS estimators from using annual income measures in the multigenerational

equation (2) are:
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plim(γ̂1,OLS) = γ1
σ2
x

σ2
x + σ2

v

(
σ2
x+σ2

v
σ2
x(1−ρ2)+σ2

v

)
︸ ︷︷ ︸

attenuation, θ1

+γ2
σ2
x

(
ρσ2

v
σ2
x(1−ρ2)+σ2

v

)
σ2
x + σ2

v

(
σ2
x+σ2

v
σ2
x(1−ρ2)+σ2

v

)
︸ ︷︷ ︸

spillover, ω1

(10a)

plim(γ̂2,OLS) = γ1
σ2
x

(
ρσ2

v
σ2
x(1−ρ2)+σ2

v

)
σ2
x + σ2

v

(
σ2
x+σ2

v
σ2
x(1−ρ2)+σ2

v

)
︸ ︷︷ ︸
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︸ ︷︷ ︸

attenuation, θ2

(10b)

The probability limit for each generation’s coefficient is decomposed into a linear combination

of the respective true parameter times an attenuation factor (θ), plus the other generation’s true

parameter times a spillover factor (ω). In a perfect world with no measurement error, and hence

no bias, both attenuation factors would be equal to one, and both spillover factors would be equal

to zero.

With measurement error, these equations show that even if grandparents do not have an effect

on grandchildren’s income conditional on parents—so γ2 = 0 in equation (2)—although the second

element of the plim(γ̂2,OLS) sum will be zero, the first element (γ1ω2) will still be positive. Hence,

despite the true γ2 = 0, one would still estimate a small positive coefficient. Even with the common

practice of using multi-year averages of income, where then the σ2
v in equations (10a) and (10b) are

replaced by (σ2
v/T ), some bias still remains—and will still cause upward bias in the other coefficient

estimate—leaving open the possibility of estimating a spurious grandparent effect.

The size of the spillover bias in plim(γ̂2) is largely driven by the size of γ1 and is also increasing

in ρ, so we would expect it to be more substantial in countries with higher levels of intergenerational

persistence. Conversely, since we expect the grandfather coefficient γ2 to be small (if it is not zero),

we do not expect spillover to be a major contributor to bias in the parental coefficient estimate

γ̂1,OLS . Rather, attenuation bias will still be the primary concern, and since
(

σ2
x+σ2

v
σ2
x(1−ρ2)+σ2

v

)
> 1,

attenuation bias in the parental coefficient will be at least slightly worse in the multigenerational

setting than it was in the intergenerational regression. In this case with stationarity, the attenuation

factors and spillover factors are the same for parents and grandparents, so ω1 = ω2 and θ1 = θ2.

In theory, these could differ across generations without stationarity, and when we incorporate key
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features of more realistic earnings processes.12

Given that the equations above are based on the simple case of classical measurement error, IV

using annual income in one year to instrument for another year would yield consistent estimates of γ1

and γ2.
13 Although classical errors in variables scenario is useful for exposition and for identifying

methods to reduce bias in the intergenerational regression setting, studies recognize this is not

realistic for the actual earnings process, especially to the extent that IV using consecutive annual

incomes would provide consistent estimates. Considering the simple AR(1) process in equation (5)

to capture persistence in the transitory component of earnings for both parents and grandparents,

we replace σ2
v with σ2

e
1−δ2

in the probability limits for the OLS estimators in (10a) and (10b). Or

when we use T-year averages of annual income, each σ2
v is replaced with 1

T

(
σ2
e

1−δ2

)
φ, where φ is

from equation (7).

Studies have shown that the transitory components are correlated over time, but generally

disappear after about 3 years.14 This means that annual earnings measures 4 or 5 (or more)

years apart can be used to instrument for each other, as it seems reasonable to assume that the

measurement errors in these years are uncorrelated with each other and are also uncorrelated with

child’s earnings. Hence, one approach we take is similar to Altonji & Dunn (1991), using parental

annual earnings from one year to instrument for parents’ earnings in a different year, and do the

same for grandparents’ earnings. Again using T = s − t to denote the number of years between

the annual earnings measure used as an instrument (year s) and treated as endogenous (year t),

the probability limits of the IV estimators for γ1 and γ2 are identical to equations (10a) and (10b)

except that each σ2
v is replaced with δT

(
σ2
e

1−δ2

)
. As with the intergenerational case, increasing T

(years between the instrument and endogenous income measures) reduces attenuation bias.

We next turn to lifecycle related biases. The implications of age-related variation in the as-

12The probability limits from the multigenerational regression without assuming stationarity are provided in the
Appendix.

13A few multigenerational studies have used IV approaches to address measurement error, but have done so by
using the outcome for grandparents to instrument for that for parents (Boserup et al., 2014) or similarly have used
great-grandparents to instrument for grandparents (Lindahl et al., 2014). The instrument validity in these cases relies
on the assumption that the grandparents’ (great-grandparents’) outcome does not affect the child’s outcome except
via the parents’ (grandparents’) outcome. Considering the theoretical mechanisms through which grandparents could
exert a direct effect (after conditioning on parents), and the findings in recent research supporting such mechanisms
(e.g., Zeng & Xie, 2014), it is unclear whether this assumption holds for the case of using a grandparent outcome to
instrument for parents.

14Moffitt & Gottschalk (1995) use the PSID data from 1969-87 and find that the transitory component is composed
of serially correlated shocks that die out within 3 years. Using later years of the PSID, Haider (2001) notes that less
than 15% of transitory shock remains after 3 years.
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sociation between annual and permanent income for offspring is straightforward. Assuming we

observe parents’ and grandparents’ permanent income, the multiplicative bias is the same as in

the two generation regression, plim(γ̂1) = λ0τγ1 and plim(γ̂2) = λ0τγ2, so to the extent that λ0τ

is different from 1, both coefficient estimates are biased in the same direction by the same pro-

portion. However, lifecycle bias arising from measurement of parent and grandparent income is

more complicated, again leaving open the possibilities of attenuation or amplification bias. In this

case, now assuming we observe permanent income for the offspring (and still maintaining station-

arity), we distinguish between lifecycle effects with λgt for each generation (g = 1, 2 for parents,

grandparents):

plim(γ̂1,OLS) = γ1
λ1tσ

2
x

λ2
1tσ

2
x + σ2

v

(
λ2
2tσ

2
x+σ2

v
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2
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v

) + γ2
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v
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) (11a)

plim(γ̂2,OLS) = γ1
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) . (11b)

When using T -year averages of income, λgt and σ2
v are replaced with λ̄gT and σ2

v/T , respectively.

So taking long-term averages during midlife helps to ensure that λ̄gT ≈ 1. The other source of age-

related bias is the U-shaped pattern in the size of σ2
v . If the increase in σ2

v is steep enough, then σ2
v/T

may grow as one averages over more years, worsening attenuation bias. In the multigenerational

case, such a scenario would also lead to larger spillover bias for larger T .

For IV, the noisier earnings measures with larger σ2
v also leads to larger spillover and atten-

uation factors. And when considering lifecycle changes in λgt, the probability limits are slightly

more complicated because we have to separately consider λgt for the income measure treated as
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endogenous and λgs for the income measure used as an instrument:

plim(γ̂1,IV ) = γ1
λ1sσ
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plim(γ̂2,IV ) = γ1
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Although λgs appears in these equations, it is λgt (for the endogenous measure) that matters more

for lifecycle bias in IV estimates. So for both estimators it is important to measure income during

the periods of life for which λgt ≈ 1 for each generation, which we do in our empirical approach.

The implications of lifecycle bias are similar to what has been found for the intergenerational case;

measuring income at too old of ages (λgt > 1) leads to downward bias or at too young of ages

(λgt < 1) leads to amplification bias.

Clearly all of these biases can have varying implications, none of which would be easy to see

in isolation if all were incorporated in a probability limit at once. We used simple extensions to

account for key features of the earnings process, reflecting the persistent nature of the transitory

component and changes over the lifecycle, presenting them separately in sets of equations above.

Still, even without incorporating the more complicated models used for realistic earnings processes,

the probability limits do not readily exhibit implications of all measurement issues for the bias

factors. Hence, we further discuss the implications of the measurement issues in the next section,

where we perform simulations to better illustrate and quantify the consequences of these biases in

different scenarios.

4 Simulation

To quantify the implications of these biases in multigenerational regressions, we conduct simple

simulations based on equations (10a)-(12b). We vary the parameters ρ, δ, and λgt to gauge the

extent of these biases in a variety of plausible data generating scenarios, and assess the likelihood

of estimating a spurious grandparent coefficient. Recall, ρ is the correlation in the permanent

component of income, xig, across generations and hence reflects different levels of intergenerational
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persistence in different societies. The parameters δ and λ determine underlying earnings dynamics.

δ is the autocorrelation coefficient in the transitory component of earnings (so a value of zero

corresponds to classical errors in variables), and is an important factor determining the effectiveness

of using time-averaging or IV estimation to reduce attenuation bias. λgt reflects lifecycle variation

in the association between lifetime and annual income in year t for generation g.

As above, we maintain stationarity. And similar to Mazumder (2005), we multiply through

the above probability limits by the total variance of annual earnings, σ2
xt, so that we only need to

make assumptions about the variance shares σ2
v

σ2
xt

and σ2
x

σ2
xt

to calculate the attenuation and spillover

factors (θ and ω).15

4.1 Illustrating attenuation and spillover bias

We consider several different scenarios, varying δ (0.3, 0.5, 0.7), ρ (0.2, 0.4, 0.6), and λgt (0.8, 1,

1.2). We set the variance shares at σ2
v

σ2
xt

= σ2
x

σ2
xt

= 0.5 for our base case, but also set σ2
v

σ2
xt

= 0.7 for

a robustness check. For a given set of these parameters, we vary the number of years over which

income is averaged for parents (T1) and grandparents (T2) for OLS, or similarly, the number of

years between the endogenous and instrument earnings measures for IV. We present results for a

subset of these scenarios for pedagogical purposes, focusing on biases in the grandparent coefficient

and considering a base case with ρ = 0.4, δ = 0.5, and all λgt = 1. This base case is in the middle

columns of Figures 1 (OLS) and Figure 2 (IV), where each dotted line corresponds to a different

T2 (changing the grandparent income measure), and moving along one of these dotted lines from

left to right corresponds to increasing T1 (improving the parental income measure).

Figure 1 shows the bias factors in the OLS estimate of the grandparent coefficient when we use

time-averages of income. If no bias were present, the attenuation factor (θ2) would equal one and

the spillover factor (ω2) would equal zero. For our base case of ρ = 0.4, δ = 0.5, time-averaging

reduces attenuation bias from about 52% (θ2=0.48) when using annual income (T2 = 1) to about

10% (θ2=0.90) with a 30-year average (T2 = 30). The set of graphs in the top row of Figure 1 shows

the calculated attenuation coefficient for grandparents (θ2) for different values of δ. On the left, we

can see that a smaller δ (0.3) implies that time-averaging is more effective at reducing attenuation

bias, a result that has already been shown for intergenerational regressions (Mazumder, 2005).

15Also following Mazumder (2005), we assume σ2
e adjusts so that σ2

v =
σ2
e

1−δ2
holds.
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Figure 1: Attenuation (θ2) and spillover (ω2) bias in OLS coefficient for grandparent
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Similarly, the graph on the right shows that a larger δ means time averaging is less effective. In all

cases, as we improve grandparents’ income measure (moving from one dotted line to another), the

attenuation factor is reduced. Improving the parental income measure by increasing T1 (moving

from left to right along each dotted line), does not help reduce attenuation bias in the grandparent

coefficient. The intergenerational correlation, ρ, also has little impact on the attenuation bias, so

we do not show the attenuation coefficients with different ρ here, though these results are available

upon request.

The issue of spillover bias in the grandparent coefficient, however, is present because of ρ. For

our base case of ρ = 0.4, δ = 0.5, time-averaging reduces the spillover coefficient from about 10%

(ω2=0.1) when using annual incomes for both generations to about 4% (ω2=0.04) with a 30-year

average for each generation. We know ρ > 0 from the substantial body of evidence on parent-child

mobility in many countries. The size of ρ, along with the parent coefficient γ1, determine the size

of the overall spillover bias. 16 As shown in the bottom row of Figure 1, when ρ is small (0.2), the

16Although ρ and γ1 are closely related and we expect them to generally follow similar patterns across countries,
there are a few differences in what is captured in each. ρ reflects intergenerational transmission between the parent and
grandparent generations and abstracts from changes in income inequality. γ1, on the other hand, reflects transmission
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spillover coefficient ω2 is also somewhat small. When we triple ρ to 0.6 the extent of spillover also

approximately triples for shorter-term averages of parent income (i.e, small T1). This combined

with the fact that γ1 is also likely larger for countries with large ρ implies that OLS estimates for

such societies are more susceptible to spurious grandparent effects.

There are also other important patterns to note. First, for a given parental income measure,

attempting to reduce potential attenuation bias in the grandparent coefficient by including more

years in the average income measure for grandparents actually worsens the spillover bias. In ω2,

time-averaging for the grandparent implies replacing the only σ2
v outside of parenthesis by σ2

v/T2,

which effectively shrinks the denominator thereby increasing ω2. (This can be seen explicitly in the

more detailed probability limits in the Appendix.) So if the true γ2 = 0, there is no attenuation to

be concerned about, and the time-averaging for grandparents is actually creating a spurious small

positive grandparent coefficient. This is illustrated below in Figure 3(b). Second, in countries with

large ρ it takes far more years of observed income for parents to eliminate/mitigate the spillover bias.

When ρ = 0.6, for example, even using 30-year averages of income for parents and grandparents—

which is not yet possible in any datasets we know of—the spillover bias is not eliminated.

Although this can be problematic for OLS estimation, there are more promising results for

relatively small T with IV estimation. Figure 2 presents the computed attenuation (θ2) and spillover

(ω2) factors for IV estimation using an individual’s annual income measure in year s to instrument

for that individual’s income in year t. In the figures, Tg indicates the difference in years (s-t)

between the instrument and endogenous measure for parents (g = 1) and grandparents (g = 2).

First, although attenuation bias is again worse the larger δ is, it can be nearly eliminated using

income measures in a relatively short time period (up to about 10 years with high δ). When

T1 = T2 = 1, the attenuation factor θ2 is about 0.65, and reaches about 0.99 at T1 = T2 = 6.

Second, the spillover bias is only slightly smaller than OLS with very small Tg, at about 0.1, but

is nearly eliminated with only about a 6-year timespan of income for parents and grandparents,

giving ω2 < 0.01. Although the spillover is again worse with larger ρ, it is still eliminated with

relatively short timespans of income.

These simulation results are enlightening for multigenerational regressions, but have abstracted

between the child and parent generations, conditional on parents. And, changes in income inequality from the
grandparent to parent generation would be reflected in γ1.
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Figure 2: Attenuation (θ2) and spillover (ω2) bias in IV coefficient for grandparent
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from the two age-related sources of bias: the lifecycle variation in σ2
v and in the association between

annual and lifetime income (λgt). The implications of the former are fairly straightforward. A larger

transitory variance share means a noisier income measure, so for each Tg, the attenuation factor is

smaller (meaning worse attenuation bias). The spillover factor tends to be similar for small T, but

then greater for large T. For example, if we make the transitory variation more important and set

σ2
v

σ2
xt

= 0.7 so σ2
x

σ2
xt

= 0.3, then time-averaging over 30 years for OLS only reduces the attenuation bias

to 20%. And the spillover factor is only reduced to 0.07 with a 30-year average income measure.

For IV, the implications are less extreme. At Tg = 6, the spillover coefficient is below 0.02 and the

attenuation factor reaches 0.98.

The implications of lifecycle variation in the association between annual and lifetime income,

reflected by λgt, are more complicated. See Appendix Figures B.1-B.4 for analogous graphs of the

attenuation and spillover factors. The attenuation coefficient for OLS follows the same patterns

found in previous studies for the intergenerational regression. When λgt > 1, as is the case for

annual incomes measured at older ages, attenuation bias is worse (θg is smaller). When income is

21



measured at younger ages, so λgt < 1, θ2 can be larger than one which means there is amplification

bias rather than attenuation.

The spillover factor (ωg) is larger when λgt < 1 and smaller when λgt > 1, reinforcing the

attenuation or amplification bias from θg. Considering the combined implications of the lifecycle

effects on θg and ωg, the OLS coefficient estimates of γg are possibly biased upward when λgt < 1

and likely biased downward when λgt > 1. Standard practice is to measure income at ages when

λgt ≈ 1, but taking long-term averages of income can extend into age ranges where λgt �= 1. Still,

extending ages symmetrically in both directions leads to a greater likelihood that λ̄gT remains

around one.

With IV estimation, it is the age at which the endogenous earnings is measured that drives

lifecycle bias. If λgt < 1, this can result in substantial amplification bias even after increasing Tg,

while λgt > 1 exacerbates attenuation bias. A simple way to test for this source of lifecycle bias in

IV estimates—and potentially bound the true coefficient—is to do IV estimation twice, where the

instrument and endogenous measures are reversed.

We focused most of our discussion here on the biases in the grandparent coefficient, which is

of primary interest here. The analogous results for θ1 and ω1 for parents are the same by design

(available upon request). However, the extent to which the spillover (ω1) bias affects the magnitude

of our coefficient estimate depends on the size of γ2. Since this is presumably small relative to γ1,

spillover bias will not generally be problematic for the parent coefficient, so changing T2 does not

have appreciable impacts on our estimate of γ1. Rather, addressing the attenuation bias is the

main issue, as is customary with intergenerational income regressions.

4.2 Illustrating a spurious grandfather coefficient

To illustrate the consequences of the biases in Figures 1 and 2 for the actual estimates researchers

obtain, we next present figures with the corresponding coefficient estimates of γ1 and γ2 for our

base case where ρ = 0.4, δ = 0.5. We choose γ1 = 0.4 and γ2 = 0 to be the underlying population

parameters as these are plausible population values for our sample from Norway and reveal the

potential for a spurious grandparent coefficient in this setting.

In Figure 3, the x-axis indicates the number of years used in the time-averages of income for

OLS or the difference in years between the instrument and endogenous earnings measure for IV.
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Figure 3: IV and OLS coefficients when ρ = 0.4, δ = 0.5, γ1 = 0.4, γ2 = 0
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For 3(a) and 3(d), we treat the measures for parents and grandparents symmetrically so T1=T2.

The estimates in Figure 3(a) show that simultaneously averaging over more years for parents and

grandparents both reduces attenuation bias in γ̂1,OLS as well as the spillover bias in γ̂2,OLS . (We

know there is no attenuation bias in γ̂2,OLS because we set γ2 = 0.) However, even with a 25-year

average of income for parents, attenuation bias in γ̂1,OLS still remains. In 3(b), we isolate the effects

of changing the grandparent measure by using what would be considered a reasonable measure for

parent’s income—a 10-year average. This illustrates the fact that improving the grandparent income

measure is causing an increase in γ̂2,OLS , a result that would typically be interpreted as reducing

attenuation bias. In our controlled setting here, we know that this is actually increasing the size of

ω2, hence increasing the size of the spurious grandparent coefficient. Figure 3(c) presents estimates

from the opposite exercise, where we use a 10-year average for grandparents’ income, but vary T1

for parents. The coefficient for parents increases as we reduce attenuation bias by averaging over

more years, while the coefficient estimate for grandparents decreases as the spillover bias is reduced.

More generally, this illustrates how important the parental income measure is to our estimate of
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the grandparent coefficient.

Turning to the IV estimates in 3(d), we see that instrumenting essentially eliminates the at-

tenuation and spillover around T = 6 years, and this holds across the other two treatments of

solely changing the income measures for parents or grandparents in 3(d) and 3(f), respectively. For

IV, using a satisfactory instrument for parents (e.g., T1 = 6) eliminates bias. In 3(f) we see that

using a “good” measure for grandparents causes worse spillover when we do not use a good enough

instrument for parents also (T1 is not large enough). When we are able to use a 6-year distance in

instrument and endogenous income for both generations though—which is feasible in some datasets

now—IV does appear to nearly eliminate bias.

While these simulation results are useful to show the nature of the biases under a known data

generating process, we now turn to our administrative data to illustrate these implications of these

biases in practice.

5 Data and empirical results

5.1 Data

For our empirical analysis we use administrative data from Norway. This data has a uniquely long

full-population coverage of tax records, making it possible to follow individual incomes annually

from 1967 onwards. We use data on labor income (pensjonsgivende inntekt, income that qualifies

for the Norwegian public pension system). This includes wages and income from self employment.

The tax files include an individual identifying number that allows linkage to the Central Population

Register, which has information on family links (fathers’ and mothers’ ID) for most individuals born

in the 1940s or later.

The offspring generation is comprised of men born 1974-1978, with incomes measured at ages 32-

36 (until 2015). This age range is selected to minimize lifecycle bias, while also allowing for averaging

over multiple years of annual income to reduce error variance. Fathers and paternal grandfathers

are then identified using the population register. We use a slightly higher age range (see below) for

fathers and grandfathers because of data availability and the ages are consistent with attempting

to avoid lifecycle bias based on evidence in Nilsen et al. (2012) for similar cohorts in Norway. To

avoid sample composition differences across specifications and approaches, we present results based
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on a balanced sample where all three generations meet the following income requirements.

Sons must have positive income in at least three of five years from ages 32-36. The income

measures are based on the log of annual labor income so we exclude observations with non-positive

earnings. Included in our various constructions of earnings measures for fathers and grandfathers

are averages over 2, 3, 4, 5, 6, 10, 15, 20, and 25 years (requiring 3 or more years of positive earnings,

although in practice there are at least 7 years of positive incomes for the longer-term averages). Our

final analysis sample is comprised of 5,064 sons matched to their fathers and paternal grandfathers.

Table 1 provides descriptive statistics for this sample, along with the general population weighted

by the sample birth year distribution, as well as the unweighted population.

Population Population
Sample (weighted) (unweighted)

Men M+W Men M+W Men M+W

Mean income 371,326 318,171 357,248 304,896 356,160 303,053
Std. dev of income 178,604 162,742 216,022 191,711 217,213 191,891
N (unique individuals) 5,064 9,831 171,939 335,155 171,939 335,155

Fathers’ generation (Birth year range: 1950-1958)

Mean income 281,787 284,347 267,366 269,213
Std. dev of income 136,513 137,667 195,184 199,443
N (unique individuals) 4,673 8,451 292,288 292,288

Father’s fathers’ generation (Birth year range: 1928-1935)

Mean income 201,850 202,197 194,142 203,323
Std. dev of income 70,656 70,299 90,290 96,932
N (unique individuals) 4,455 7,790 164,825 164,825

Table 1: Descriptive statistics. Sample restriction: Birth cohorts 1974-1978, with income in at
least 3 years during ages 32-36, with fathers and grandfathers fulfilling the income requirements
described in the text. Incomes shown are at age 34 for the index generation and at age 40 for the
father and grandfather generations. Income is CPI-adjusted (1998 NOK; 1 NOK = 0.13 USD).
Birth year ranges for fathers and grandfathers refer to the 5th and 95th percentile of the birth year
distribution.

The average labor income of sons in our sample in the year they turn 34 (during 2004-2008)

is 371,326 NOK (inflation adjusted to 1998). This is slightly higher than the population average

shown in the second set of columns. One possible reason for the discrepancy is the role of immigrant

background. Immigrants do in general have lower incomes than natives, and because of the strict

requirement that both fathers’ and grandfathers’ identities are known in the registers, there are

very few immigrants in our data set. The distribution of incomes (as measured by the standard

deviation) is also somewhat lower in our sample than for the full population.
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The fathers in our sample were born in the 1950s, so the corresponding “population” information

is for all men born in the same period (weighted by the distribution of birth years in the sample),

regardless of whether they have children. The slightly lower mean income in the general population

is likely a reflection of the fact that lower-income men have a lower probability of starting a family.

We see a similar difference in the distribution of grandfathers, born in the late 1920s and early

1930s. The birth year distribution of grandfathers is more skewed than that of fathers; because

grandfathers have to be born after 1928 in order to be young enough to have an observed income

at age 39 (in 1967 when the income data start), we cut off a tail of older grandfathers while there is

still a tail of younger grandfathers born in the 1930s. This also means that the average father-son

age difference in our sample is likely to be lower than in the general population.

Although it would be nice to have a larger and unquestionably representative sample for Norway,

it is not necessary for one of our primary purposes in this paper—to illustrate how bias from income

measurement can inflate the grandparent coefficient or even produce a spurious grandparent effect.

For this, it is most important to maintain a balanced sample across methods to avoid sample com-

position issues driving different patterns in our results. Additionally, we present results for males

only. The tendency to omit females (especially mothers and grandmothers) from intergenerational

income analyses arises in large part from female labor force participation patterns and the inability

to observe outcomes. In our case, given that the rationale for our methodological choices is based

on earnings processes for males, it is appropriate to focus on sons, fathers and grandfathers in our

analysis.17

5.2 Empirical approach

We estimate a series of intergenerational and multigenerational regressions to examine the influence

of grandparents on their grandchildren’s earnings, and, in particular, look at the implications of the

income measurement issues in the multigenerational model. In all models, the dependent variable

is the 5-year average of log income for sons over ages 32-36. We also include dummy variables

for the index generation’s year of birth. We begin by estimating two-generation models including

son-father regressions, father-grandfather regressions, as well as son-grandfather regressions:

17The results for samples including daughters are similar, and are discussed below (Section 5.4).
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yi0 = β1 xi1 + εi (13)

yi1 = β2 xi2 + εi (14)

yi0 = β3 xi2 + εi (15)

From these, we obtain several estimates of father-son associations, grandfather-father associa-

tions, as well as grandfather-son associations that are not conditional on fathers’ income. Since

we are using log income (or averages of log income) as our income measures, these coefficients also

have the convenient interpretation of intergenerational income elasticities (IGEs). To examine the

effects of income measurement choices on our estimates, we vary the estimation method as well as

the measures we use for xi1 and xi2. We first estimate these models using OLS with annual log

income measures, and then proceed to average over 2 - 6 years of annual log income, as well as

10, 15, 20, and 25 year averages for longer-term measures. Next, we turn to IV estimation using

annual log income measures 2 - 6 years apart as the instrument and endogenous regressors, again

extending to 10, 15, 20, and 25 years for longer time distances between incomes. While many of

the two-generation OLS results have been shown in prior studies, we use these regressions to show

consistency of our results with these and to compare them to our IV estimates as well as to our

estimates from the multigenerational regressions.

The multigenerational regression we estimate for the conditional association between grandfa-

thers’ income and their grandchild’s income is:

yi0 = γ1 xi1 + γ2 xi2 + εi (16)

We vary the income measures and estimation method used for this model in the same way de-

scribed for the two-generation models. Then, to clearly illustrate the bias spillover implications

in the multigenerational regression, we also vary the income measures separately for fathers and

grandfathers as done in the simulations. First, we consider the case where we have a “good”

measure of father’s income—in our case, the 10-year average of log income—and then vary how

grandfather’s income is measured as described above, using OLS to estimate the models. Second,

we do the same exercise using the long-term average of grandfather’s log income, but varying how
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father’s income is measured.

Next we use analogous approaches with IV estimation. We first vary the instruments from 2-6

years (and 10+ years when sufficient samples sizes are possible) simultaneously for both fathers

and grandfathers. Then we isolate the effects of changing the grandfather IV approach by using the

6-year instrument for fathers while varying that for grandfathers. Finally we illustrate the spillover

bias in the grandfather coefficient by using the 6-year instrument for grandfathers while varying

the instrument for fathers.

5.3 Main results

To examine income mobility across generations in Norway, we begin by showing results for two

generation regressions to illustrate the results of various approaches in this well known setting.

Then we turn to the multigenerational setting, which is of primary interest in this paper, to show

how the biases and methods to alleviate them play out in these models. The three-generation

results exhibit similar consequences for fathers’ coefficients in the multigenerational setting, but

also show that bias spills over into the coefficient for grandfathers.

For both the two- and three-generation models, we begin with the naive approach of using

OLS to estimate models with single annual income measures for fathers and grandfathers, and

then proceed to use the now standard approach of using long-term averages of income, which has

been shown to reduce attenuation bias from the transitory components. Finally, we use our IV

approaches which allow for varying degrees of persistence in the transitory component of annual

income. All results presented are based on a balanced sample of 5,064 sons matched to their fathers

and paternal grandfathers, unless otherwise noted, and use sons’ average log income over ages 32-36

as the dependent variable.

5.3.1 Two-generation regression results

Figure 4 provides OLS estimates (top panel) and IV estimates (bottom panel), along with 95%

confidence intervals, from the two-generation models in equations (13) and (15). Figure 4(a) pro-

vides father-son intergenerational income elasticities, starting with the first estimate based on using

annual log income measures for fathers, and then proceeding to the right with log income averaged

over an increasing number of years. Each of the income measures is centered around age 43, ex-
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Figure 4: OLS and IV estimates from two-generation regressions
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panding symmetrically as the number of years in the average increases. As we average over more

years of log income for fathers, we see the expected pattern of IGEs increasing (ranging from about

0.10 to 0.21). This illustrates the established result that averaging mitigates the attenuation bias

from using annual or short-term income measures as a proxy for permanent income.

One concern that remains even after taking long-term averages of log income is that this does

not eliminate bias from the persistence in the transitory component of annual income. Therefor, we

next use an IV approach using one log annual income measure to instrument for another. If there

is no persistence in vitg, this method produces consistent estimates regardless of the years serving

as the instrument or endogenous variable (assuming they are mid-life to avoid lifecycle bias). To

further allow for varying degrees of persistence, we vary how many years apart the instrument

and endogenous measure are. We use the first annual log income measure in the corresponding

multi-year average as our instrument, and the measure T years later as our instrument. The x-

axis indexes the number of years after the “endogenous” income measure that we measure the

“instrument” income, with all being centered around age 43 to minimize lifecycle bias.
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To the extent that the transitory component is persistent over time, we expect the estimates

to increase as we proceed left to right across Figure 4(c); increasing the years between the endoge-

nous measure and instrument will reduce the attenuation bias as the correlation in the transitory

component falls over time. In general, this is what we see for the father-son persistence estimates.

The estimates range from 0.12 for the case using income only one year later as the instrument to

0.24 when using income measures 6 years apart, and 0.32 when using measures 10 years apart.

Although these estimates are substantially higher than our OLS estimates, they are less precise as

is characteristic of IV estimates, and they are comparable in magnitude to prior IGE estimates of

about 0.34 found for Norway by Nilsen et al. (2012).18

The longer term estimates are based on subsets of our main sample which contributes to the im-

precision (97.3%, 94.7%, 92.5%, 87.3%, respectively, for the 10-, 15-, 20-, and 25-year estimates).19

With these longer timespans possibly extending into ranges where λgt < 1 (as the endogenous

age decreases), the estimates around 0.4 may contain amplification bias. Our “reverse IV” results

(using the younger age as the instrument) support this, as the estimates are substantially smaller

around 0.3, and since it is possible λgt > 1 for these estimates, they may be attenuated. Taken to-

gether, our IV and reverse IV estimates (shown in Appendix) could be considered lower and upper

bounds on the true parameter, and this range of 0.3 to 0.4 is consistent with existing evidence for

Norway.20

Figures 4(b) and 4(d) provide the analogous results for equation (15) relating sons’ income to

grandfathers’ income. We see the expected pattern of OLS estimates increasing as we average over

more annual log income measures, with the estimates ranging from 0.05 when using annual log

income to about 0.08 when using longer term averages. There is a slight decline in the estimate

based on the 25-year averages of log income to 0.07, which may arise from lifecycle effects either in

the form of increasing λ̄2T or increasing σ2
vt.

The IV estimates in Figure 4(d) exhibit a similar pattern, with estimates growing as the years

between the endogenous and instrument income measures increases from one to six years, ranging

18Modalsli (2016) found slightly lower persistence (0.14) in rank-rank intergenerational regressions, but these
estimates were based on incomes at younger ages (28-32) so the smaller estimate is expected.

19Sensitivity checks do not indicate that sample composition is driving these higher estimates.
20The results for fathers and grandfathers based on equation (14) are very similar to the father-son regressions

(results available upon request). The OLS estimates range from 0.11 to 0.21 and the IV estimates range 0.15 to 0.25
for the 1 to 6 years between income measures, and rise to 0.46 with 10 years, though this is based on a smaller sample
(N=3,262).
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from 0.07 to 0.11. The estimate based on a 10-year distance between measures is similar at 0.13,

but the sample is substantially smaller (N=3,535, 69.0%). The samples were even smaller for the

15-, 20-, and 25-year estimates so we omit these results out of concern regarding strong sample

composition effects.

Overall, our results from regressions involving two generations follow the expected patterns es-

tablished in prior studies. We can also consider comparisons of the son-father and son-grandfather

estimates for implications regarding multigenerational mobility with the simple extrapolation dis-

cussed earlier, where β2
1 is used to approximate longer term persistence. If β̂3 > β̂2

1 , researchers

take this to be evidence of slower multigenerational mobility than predicted by the simple inter-

generational model in (13). Suppose we only had data that allowed us to use 5-year averages of

income for parents and grandparents. In that case, β̂3,OLS = 0.098 is more than twice the size

of β̂2
1,OLS = 0.039. If we account for the attenuation bias in these estimates based on our simple

earnings process with δ = 0.5 and σ2
v

σ2
xt

= 0.5, so θ = 0.69), this implies the “true” parameters would

be β3,OLS = 0.098 and β2
1,OLS = 0.039, still exhibiting a large difference. If, however, we consider

our “best” estimates (based on using 25-year average income measures), which are β̂2
1,OLS = 0.046

and again accounting for the attenuation bias (θ = 0.90), this implies β2
1 = 0.057 and β3 = 0.072.

The much smaller difference of only 0.016 suggests mobility could be slightly slower than implied

by the model in (13), but this is a very minor difference. And, if we consider a case with more

persistence (δ = 0.8) so the attenuation factor is 0.77, then the difference is only 0.007. In our

results, comparing intergenerational estimates can be sensitive to the income measures used, and

also the assumed earnings process if we attempt to account for attenuation bias underlying the

estimates.

This is all the more reason we should also look at the multigenerational mobility estimates

from regressions involving all three generations. The extrapolation of intergenerational persistence

estimates to make inferences about long-term mobility stemmed from data limitations, and com-

paring our intergenerational estimates does not allow us to conclusively say whether the mobility

predicted by the traditional intergenerational model understates persistence. We next turn to the

actual multigenerational regressions that have become the focus of current studies, as they are

becoming feasible with some datasets.
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5.3.2 Three-generation regression results

Figure 5: OLS and IV estimates from three-generation regressions
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We now turn to the multigenerational regression results. First, we conduct the same exercise

as in Figure 4, where we take averages of log income, increasing the number of years that we

average over symmetrically for fathers’ and grandfathers’ income. However, it is less clear now

what we should expect for the grandfather coefficients because there are two competing biases.

There is attenuation bias from measurement error in “own” income, yet there is an upward bias

from measurement error in fathers’ income. In our simulation, we found that the reduction in

the attenuation factor (θ) from improving one’s own income measure was more meaningful than

the reduction in the spillover factor (ω) from improving the other generation’s income measure.

Empirically, as shown in Figure 5, the attenuation bias decreases in the coefficient on fathers’

income, as the coefficient estimate increases from about 0.09 to 0.21 as we average over more years.

These estimates are also similar to what we found for the father-son regression results. But the

coefficient on grandfathers’ income fluctuates around 0.04-0.05, when going from annual measures

to averaging over 15 years of income. The point estimates decrease slightly to 0.03 and 0.02 for the
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20- and 25-year measures, and neither of these is statistically significantly different from zero.

Given the strong similarity between the father coefficient estimates for the three generation mod-

els to the analogous estimates from the father-son models—for both the OLS and IV estimates—it

appears that there is little or no spillover bias in the father coefficients from the measurement error

in the grandfather income measures. This is also consistent with a very small (or zero) grandfather

coefficient in the population. To disentangle the two sources of bias (attenuation from own income

measure versus amplification from the other generation’s income measure), we next present results

where we change only one generation’s income measure at a time.

We first use a “good” measure of father’s income (10-year average) throughout all models, while

changing grandfathers’ income measure as before. This allows us to isolate the effect of changing the

grandfather income measure on the coefficient estimate for fathers. The OLS coefficient estimate

for fathers remains essentially constant though at 0.17 as we go from using annual income to longer-

term averages for grandfathers income, indicating no spillover bias in the coefficient estimate for

fathers, which again is consistent with the true γ2 being zero (or very small).

Comparing these OLS results in 5(b) to the results in 5(a) where we simultaneously improve

fathers’ income measures, we can also confirm that spillover bias is present in the grandfather

coefficient estimate. First, note that the estimates in 5(b) for using the 10-year average (so T2 = 10

also) are identical to the 10-year average results in 5(a) by construction. Then focusing on Tg < 10,

we see the grandfather coefficient estimates are larger when T1 also varied from 1 to 10 compared to

when the 10-year average is used for fathers throughout. This implies the spillover bias from using

the worse income measure for fathers (T1 < 10) led to a larger grandfather coefficient estimate in

5(a). Next we see the grandfather coefficient estimates for Tg > 10 are consistent with this as well,

as they are smaller than when the better income measures ( i.e., longer term averages) were also

used for fathers in 5(a). This is clear evidence of spillover bias, and also shows that even using a

10-year average to measure income for fathers is not sufficient to rule out spillover bias causing a

spurious positive grandfather coefficient.

Finally, this exercise of changing the grandfather measure while holding the father measure

constant is also consistent with the counter-intuitive result we found with our simulation. The

pattern of increasing grandfather coefficient estimates is similar to that we saw with our simulation

results that showed improving the grandfather measure for a given father measure could worsen
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spillover. However, here we cannot distinguish this from decreasing attenuation bias since we do

not know the true population parameters.

Next, we perform a similar exercise in 5(c) only now varying fathers’ income measures while

we hold the measure for grandfathers constant at a 10-year average (T2 = 10). By using a “good”

measure of income for grandfathers, we can isolate the attenuation in the coefficient for fathers,

and, more importantly for this setting, the spillover of bias into the coefficient for grandfathers.

As expected, the coefficient for fathers increases from about 0.09 to about 0.21 as we average over

more years, in line with our results from symmetrically improving income measures for fathers and

grandfathers in 5(a).

For grandfathers, the coefficients are decreasing as we improve the income measure for fathers,

showing the reduction in spillover bias. We can also evaluate the counter-intuitive simulation result

by comparing the first coefficient of 0.06 in 5(c) when fathers’ income is measured using annual log

income (and a 10-year average is used for grandfathers) to the estimate of 0.04 in 5(a) when an

annual measure was used for both generations. One might be tempted to interpret this as lower

attenuation bias from using T2 = 10 in 5(c), but the fact that the grandfather coefficient estimates

decrease as we increase T1 (holding T2 constant at 10) indicates that spillover bias is driving the

underlying difference. This is also consistent with our simulation results where the true grandfather

effect was zero and we improved father’s measure to reduce the spillover. Based on our OLS results,

we cannot decisively rule out that the grandfather effect in this sample is spurious and solely an

artifact of measurement error in fathers’ (average) income. If there is persistence in the transitory

component of income, even our OLS estimates based on a 25-year average of log income are likely

still biased.

Our IV approach has the advantage, at least theoretically in our simple simulation, of nearly

eliminating bias in this setting when Tg is large enough for the degree of persistence in vitg (e.g.,

after 6-10 years in our simulation). The bottom graphs in Figure 5 present the IV results analogous

to those for OLS above. First, in 5(d) we instrument for both fathers’ and grandfathers’ income at

the same age, using, respectively, fathers’ and grandfathers’ annual log income from a later year,

increasing the distance between years measured for endogenous and instrument income measures

as indicated on the x-axis. The coefficient for fathers’ income increases from 0.11 to 0.30 as we

increase the number of years between the endogenous and instrument income measures, similar to
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the father-son IV results. The coefficient for grandfathers’ income fluctuates around 0.03-0.05 for

the 1-6 year measures, and is not statistically significant for the 2-6 year estimates. The 10-year

estimate is smaller at 0.01 but is also based on a smaller sample (N=3,449, 68.1%). However,

replicating all of Figure 5 for this smaller sample reveals similar patterns, so sample composition

does not appear to be driving this small estimate. In general though, the pattern of increasing

father coefficients and decreasing grandfather coefficients as we improve the income measures is

also consistent with spillover bias from a poor income measure for fathers causing an upward bias

in the grandfather coefficient.

Next we vary father and grandfather income measures separately to more carefully examine

spillover bias. We first use the 6-year instrument for fathers’ income while changing the instrument

for grandfathers’ income. The pattern of results is similar to the analogous OLS results, with

the coefficient on fathers’ income remaining steady, though at a slightly higher level of 0.23. The

coefficient for grandfathers is never statistically significantly different from zero, but does increase

slightly as we increase T2. To check for lifecycle effects, we turn to our reverse IV results (Appendix

Figure C.6). With the income measure at older ages treated as endogenous (so λt > 1), the pattern

is reversed and the grandfather coefficient is declining as we increase T2 (and is closer to zero).

We next isolate the effects of measurement issues arising from fathers’ income measures by

using a “good” measure for grandfathers’ (the 6-year instrument) in all estimations, while varying

the instrument for fathers’ income. In Figure 5(f) the coefficient on fathers’ income rises from

0.11 to 0.32 as we increase the years between the endogenous and instrument income measures

from 1 to 10 years, which is nearly identical to the IV results in 5(d). Although the coefficient

on grandfathers’ income fluctuates, on average we do see it decreasing as we improve the measure

for fathers’ income, ranging from 0.08 to -0.03. Notably the coefficient is negative in sign for a

couple of the longer-term scenarios, but the grandfather coefficient is not statistically significantly

different from zero in any of these regressions. The reverse IV results are similar though the father

coefficient fluctuates around 0.3 for the longer-term averages, similar to the father-son reverse IV

results.

Overall, our OLS and IV results suggest that the true grandfather coefficient for our sample

is very small, or possibly even zero. The OLS estimates based on longer-term income averages

are around 0.02-0.03. The IV estimates based on longer-term instruments fluctuate around zero,
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with some being negative in sign. None of the longer-term estimates are statistically significantly

different from zero, although the IV estimates are quite imprecise. More importantly though, the

patterns in our empirical results mirror those found in the simulation, especially for OLS. Our IV

estimates vary more widely, likely due to sensitivity to lifecycle effects, and also suggest persistence

in the transitory component of income matters. Although the IV estimates are imprecise, they

do provide a useful secondary empirical exercise for gauging bias. In general, our results show

that empirically researchers must be aware of how sensitive the grandfather coefficient is to the

construction of the parental income measure, and the tendency for the estimates to be positively

biased.

5.4 Robustness checks

The above analysis is conducted with only men in all three generations. This allows us to focus on

a single lineage and avoid measurement issues related to the relatively low labor force participation

of women in the initial two generations. However, for the offspring generation, there are fewer

differences between men and women. To examine whether our results are sensitive to only including

men, we have also conducted our analyses on the sample with both men and women in the final

generation, as well as on a grandfather-father-daughter sample.

Figures 4 and 5 are replicated in the Appendix for the full sample with both men and women

in the youngest generation (Figures C.7 and C.8). In general, the coefficients are slightly lower

than for men only, and more precise. The reduced level reflects generally lower intergenerational

persistence typically found for samples including women, while the improved precision follows from

the increased sample size. The patterns in the coefficients are nearly identical to our results based

on sons only. The only divergence is the 10-year IV estimates, and based on the reverse IV results

for this sample, this appears to be an artifact of lifecycle bias.

6 Conclusion

The role of measurement error in estimating intergenerational income regressions has been ad-

dressed extensively in the literature. The resulting biases are fairly well understood and it has

become standard to construct income measures in a way that mitigates these biases. Even though
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some bias remains, we often have a sense of the size or at least direction of the remaining bias.

However, the implications of measurement error in the multigenerational regression are more com-

plicated and are becoming increasingly important as studies focus on estimating the conditional

effect of grandparents to better understand rates of long-term mobility.

This paper illustrates the implications of measurement error in the multigenerational setting,

showing that the spillover of bias from measurement error in the parents’ income measures could

lead to misleading conclusions regarding the effects of grandparents. Our simulations show that even

using a long-term average of income over 20 years during mid-life does not eliminate the potential

for estimating a spurious grandfather coefficient. In addition, even when the true grandparent

coefficient is zero, for a given measure of fathers’ income, increasing the years we average over for

grandfathers actually worsens the spillover bias. If we observe increasing coefficient estimates as a

result, this could be misinterpreted as reducing attenuation bias in actual data settings where we do

not know the true grandparent coefficient is zero. The IV approach we propose has the advantage

of theoretically mitigating (or eliminating) these biases with relatively short timespans of income,

depending on the degree of persistence in the transitory component of income. And, although the

IV estimator is more susceptible to lifecycle bias, one can easily test for this by obtaining two sets of

IV estimates—the original IV estimates and the “reverse IV” estimates switching the endogenous

and instrument income measures—which then provide bounds on the coefficients.

With our administrative data, we see the expected result that time-averaging reduces attenua-

tion bias in OLS estimates in the intergenerational regression, and we also show similar results for

IV approaches that allow for persistence in the transitory component of annual income measures.

In the multigenerational setting, we show how the spillover of bias from measurement issues in fa-

thers’ income causes upward bias in the coefficient for grandfathers’ income. Our OLS results based

on averaging over log incomes indicates that spillover bias may be causing a spurious grandfather

coefficient estimate. Our IV approach is also consistent with this, and, although the estimates are

imprecise, they leave open the possibility of a zero grandfather coefficient, or even a negative one,

as predicted by Becker & Tomes (1979).

Exploring transmission of socioeconomic status beyond two generations is an important direc-

tion in the literature, but researchers need to be even more cautious about biases from measurement

error than in the intergenerational setting. We focused on measurement issues with income in this
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paper, but measurement issues arise with all other status measures used as well. So, although

the theoretical results presented here are based on models specific to earnings dynamics, the is-

sue of spillover bias from measurement issues is not unique to income and should be taken into

consideration in any multigenerational regression setting.
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Appendix

A Derivations

The following provides derivations of the probability limits shown in the main text of the paper,

though here we do not assume stationarity as done in the paper. This means that below σ2
xg

and

σ2
vg are allowed to vary across generations (g = 1, 2).

In the population, the true multigenerational process is:

yi0 = γ1xi1 + γ2xi2 + εi. (17)

We observe annual earnings measures, x∗it1 for fathers and x∗it2 for grandfathers:

x∗it1 = xi1 + vit1, (18a)

x∗it2 = xi2 + vit2. (18b)

So the equation we estimate with our data is:

yi0 = γ1x
∗
it1 + γ2x

∗
it2 + ε∗it. (19)
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A.1 OLS estimation

We can derive the OLS estimator of γ1 using the Frisch-Waugh-Lovell theorem and some algebra:

γ̂1,OLS = (x∗
′

1 M2x
∗
1)

−1x∗
′

1 M2y (20a)

= [x∗
′

1 (I − x∗2(x
∗′
2 x

∗
2)

−1x∗
′

2 )x
∗
1]
−1x∗

′
1 (I − x∗2(x

∗′
2 x

∗
2)

−1x∗
′

2 )y (20b)

= [x∗
′

1 x
∗
1 − x∗

′
1 x

∗
2(x

∗′
2 x2)

−1x∗
′

2 x
∗
1]
−1[x∗

′
1 y − x∗

′
1 x

∗
2(x

∗′
2 x

∗
2)

−1x∗
′

2 y] (20c)

=

[
N∑
i=1

x∗2i1 −
N∑
i=1

x∗i1x
∗
i2

N∑
i=1

x∗2i2
N∑
i=1

x∗i2x
∗
i1

]−1 [ N∑
i=1

x∗i1yi −
N∑
i=1

x∗i1x
∗
i2

N∑
i=1

x∗2i2
N∑
i=1

x∗i2yi

]

(20d)

...

γ̂1,OLS =

∑N
i=1 x

∗
i1yi

∑N
i=1 x

∗2
i2 −∑N

i=1 x
∗
i1x

∗
i2

∑N
i=1 x

∗
i2yi∑N

i=1 x
∗2
i1

∑N
i=1 x

∗2
i2 −

(∑N
i=1 x

∗
i1x

∗
i2

)2 (20e)

Similarly, for γ2, we get:

γ̂2,OLS =

∑N
i=1 x

∗
i2yi

∑N
i=1 x

∗2
i1 −∑N

i=1 x
∗
i1x

∗
i2

∑N
i=1 x

∗
i1yi∑N

i=1 x
∗2
i1

∑N
i=1 x

∗2
i2 −

(∑N
i=1 x

∗
i1x

∗
i2

)2 (21)

Taking the probability limits gives us:

plim(γ̂1,OLS) =
cov(y, x∗1)var(x∗2)− cov(y, x∗2)cov(x∗1, x∗2)

var(x∗1)var(x∗2)− cov(x∗1, x∗2)2
(22a)

plim(γ̂2,OLS) =
cov(y, x∗2)var(x∗1)− cov(y, x∗1)cov(x∗1, x∗2)

var(x∗1)var(x∗2)− cov(x∗1, x∗2)2
(22b)

Now we substitute equations (18a) and (18b) and use assumptions underlying classical-errors-

in-variables (CEV): x1 and x2 are orthogonal to v1 and v2 as well as orthogonality between v1 and

v2. For notation, we define σ2
xg

≡ var(xig) and σ2
vg ≡ var(vitg) for g = 1, 2 and ρ ≡ corr(x1, x2).
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Then the elements of the probability limits are:

var(x∗g) = σ2
xg

+ σ2
vg (23a)

cov(x∗1, x
∗
2) = ρσx1σx2 (23b)

cov(y, x∗1) = γ1σ
2
x1

+ γ2ρσx1σx2 (23c)

cov(y, x∗2) = γ2σ
2
x2

+ γ1ρσx1σx2 (23d)

Substituting these into (22a) and (22b) and rearranging gives us:

plim(γ̂1,OLS) = γ1
σ2
x1

σ2
x1

+ σ2
v1

(
σ2
x2

+σ2
v2

σ2
x2

(1−ρ2)+σ2
v2

) + γ2

σx1σx2

(
ρσ2

v2
σ2
x2

(1−ρ2)+σ2
v2

)
σ2
x1

+ σ2
v1

(
σ2
x2

+σ2
v2

σ2
x2

(1−ρ2)+σ2
v2

) (24a)

plim(γ̂2,OLS) = γ1

σx1σx2

(
ρσ2

v1
σ2
x1

(1−ρ2)+σ2
v1

)
σ2
x2

+ σ2
v2

(
σ2
x1

+σ2
v1

σ2
x1

(1−ρ2)+σ2
v1

) + γ2
σ2
x2

σ2
x2

+ σ2
v2

(
σ2
x1

+σ2
v1

σ2
x1

(1−ρ2)+σ2
v1

) (24b)

Although assuming that the transitory components are sources of classical measurement error

does lend to the simplicity of these probability limits, it is generally believed that there is some

persistence in the vitg over time. So we can write the AR(1) process for the vit where δ is the

autocorrelation coefficient,

vitg = δvit−1g + eit. (25)

With this process for vitg, each σ2
vg is replaced with σ2

e
1−δ2

in the probability limits above. Or

when we use T-year averages of annual income, each σ2
vg is replaced with:

1

Tg

σ2
e

1− δ2

[
1 + 2δ

(
Tg − 1−δTg

1−δ

Tg(1− δ)

)]
. (26)

A.2 Instrumental variables (IV) estimation

Our IV approach uses log annual earnings in year s (z∗isg) to instrument for log annual earnings in

year t (x∗itg) for that individual. So, in addition to equations (18a) and (18b) above, we have for
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our instruments:

z∗is1 = xi1 + vis1, (27a)

z∗is2 = xi2 + vis2. (27b)

We define A2 = I − x∗2(z∗
′

2 x∗2)−1z∗′2 , and again use the Frisch-Waugh-Lovell theorem and some

algebra to derive the IV estimators:

γ̂1,IV = (z∗
′

1 A2x
∗
1)

−1z∗
′

1 A2y (28a)

= [z∗
′

1 (I − x∗2(z
∗′
2 x∗2)

−1z∗
′

2 )x∗1]
−1z∗

′
1 (I − x∗2(z

∗′
2 x∗2)

−1z∗
′

2 )y (28b)

= [z∗
′

1 x∗1 − z∗
′

1 x∗2(z
∗′
2 x∗2)

−1z∗
′

2 x∗1]
−1[z∗

′
1 y − z∗

′
1 x∗2(z

∗′
2 x∗2)

−1z∗
′

2 y] (28c)

=

⎡
⎣ N∑
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z∗i1x
∗
i1 −

N∑
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z∗i1x
∗
i2
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N∑
i=1

z∗i2x
∗
i2

)−1 N∑
i=1

z∗i2x
∗
i1

⎤
⎦−1 ⎡⎣ N∑

i=1

z∗i1yi −
N∑
i=1

z∗i1x
∗
i2

(
N∑
i=1

z∗i2x
∗
i2

)−1 N∑
i=1

z∗i2yi

⎤
⎦

(28d)

...

γ̂1,IV =

∑N
i=1 z

∗
i1yi

∑N
i=1 z

∗
i2x

∗
i2 −

∑N
i=1 z

∗
i1x

∗
i2

∑N
i=1 z

∗
i2yi∑N

i=1 z
∗
i1x

∗
i1

∑N
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∗
i2x

∗
i2 −

∑N
i=1 z

∗
i1x

∗
i2

∑N
i=1 z

∗
i2x

∗
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(28e)

Similarly, for γ2, we get:

γ̂2,IV =

∑N
i=1 z

∗
i2yi

∑N
i=1 z

∗
i1x

∗
i1 −

∑N
i=1 z

∗
i2x

∗
i1

∑N
i=1 z

∗
i1yi∑N

i=1 z
∗
i2x

∗
i2

∑N
i=1 z

∗
i1x

∗
i1 −

∑N
i=1 z

∗
i2x

∗
i1

∑N
i=1 z

∗
i1x

∗
i2

(29)

Taking the probability limits we get:

plim(γ̂1,IV ) =
cov(z∗1 , y)cov(z∗2 , x∗2)− cov(z∗1 , x∗2)cov(z∗2 , y)
cov(z∗1 , x∗1)cov(z∗2 , x∗2)− cov(z∗1 , x∗2)cov(z∗2 , x∗1)

(30a)

plim(γ̂2,IV ) =
cov(z∗2 , y)cov(z∗1 , x∗1)− cov(z∗2 , x∗1)cov(z∗1 , y)
cov(z∗2 , x∗2)cov(z∗1 , x∗1)− cov(z∗2 , x∗1)cov(z∗1 , x∗2)

(30b)

Now we substitute equations (18a), (18b), (27a), and (27b) and use assumptions underlying

classical-errors-in-variables (CEV): x1 and x2 are orthogonal to v1 and v2; vit1 and vit2 are uncor-

related; vitg and visg are uncorrelated. For notation, we define σ2
xg

≡ var(xig) and σ2
vg ≡ var(vitg)
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for g = 1, 2 and ρ ≡ corr(x1, x2), allowing us to write the elements of the probability limits as:

cov(z∗g , x
∗
g) = σ2

xg
+ cov(visg, vitg) = σ2

xg
+ σ2

vg (31a)

cov(x∗1, z
∗
2) = cov(x∗2, z

∗
1) = ρσx1σx2 (31b)

cov(y, z∗1) = γ1σ
2
x1

+ γ2ρσx1σx2 (31c)

cov(y, z∗2) = γ2σ
2
x2

+ γ1ρσx1σx2 (31d)

Substituting these into the probability limits in (30a) and (30b), and then doing some algebra

shows that plim(γ̂1,IV ) = γ1 and plim(γ̂2,IV ) = γ2. However, if we consider the case of an AR(1)

process for vitg, then (31a) does not hold. Rather, cov(visg, vitg) = δTg
σ2
eg

1−δ2
where Tg = t − s is

the years between the earnings measures xitg and zisg. In this case, the probability limits of the

IV estimators are the same as those for the OLS estimators in (24a) and (24b) except that σ2
vg is

replaced with δTg
σ2
eg

1−δ2
.

Table A.1 summarizes what takes the place of σ2
vg under the two different scenarios for the

transitory component (CEV or AR(1)) for each of our estimation approaches.

Table A.1: Elements that take place of σ2
vg in plim(γ̂1) and plim(γ̂2)

Estimation method vitg ∼ CEV vitg ∼AR(1)

OLS using annual income measures σ2
vg

σ2
e1

1−δ2

OLS using Tg-year averages of income
σ2
vg

Tg

1
Tg

σ2
e1

1−δ2

[
1 + 2δ

(
Tg− 1−δTg

1−δ

Tg(1−δ)

)]

IV using annual incomes Tg years apart n.a. δTg σ2
e1

1−δ2
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A.3 Lifecycle Effects

We can also consider lifecycle profiles in income for fathers and grandfathers, where the relationship

between annual and lifetime or permanent income is written

x∗it1 = λt1xi1 + vit1, (32a)

x∗it2 = λ2txi2 + vit2. (32b)

Considering again the probability limits in equations (24a) and (24b), we can use the equations

in (32a) and (32b) to write the elements of the probability limits as:

var(x∗g) = λtgσ
2
xg

+ σ2
vg (33a)

cov(x∗1, x
∗
2) = λt1λt2ρσx1σx2 (33b)

cov(y, x∗1) = λt1γ1σ
2
x1

+ λt1γ2ρσx1σx2 (33c)

cov(y, x∗2) = λt2γ2σ
2
x2

+ λt2γ1ρσx1σx2 (33d)

Then the OLS probability limits in equations (24a) and (24b) are now:

plim(γ̂1,OLS) = γ1
λ1tσ

2
x1

λ2
1tσ

2
x1

+ σ2
v1

(
λ2
2tσ

2
x2

+σ2
v2

λ2
2tσ

2
x2

(1−ρ2)+σ2
v2

) + γ2

λ1tσx1σx2

(
ρσ2

v2

λ2
2tσ

2
x2

(1−ρ2)+σ2
v2

)
λ2
1tσ

2
x1

+ σ2
v1

(
λ2
2tσ

2
x2

+σ2
v2

λ2
2tσ

2
x2

(1−ρ2)+σ2
v2

) (34a)

plim(γ̂2,OLS) = γ1

λ2tσx1σx2

(
ρσ2

v1

λ2
1tσ

2
x1

(1−ρ2)+σ2
v

)
λ2
2tσ

2
x2

+ σ2
v2

(
λ2
1tσ

2
x1

+σ2
v1

λ2
1tσ

2
x1

(1−ρ2)+σ2
v1

) + γ2
λ2tσ

2
x2

λ2
2tσ

2
x2

+ σ2
v2

(
λ2
1tσ

2
x1

+σ2
v1

λ2
1tσ

2
x1

(1−ρ2)+σ2
v1

) . (34b)

The equations for our instruments can now be written:

z∗is1 = λ1sxi1 + vis1, (35a)

z∗is2 = λ2sxi2 + vis2. (35b)

With IV estimation, if we assume the vitg are essentially white noise error, then the elements
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of the probability limits are:

cov(z∗g , x
∗
g) = σ2

xg
+ cov(visg, vitg) = λgtλgsσ

2
xg

(36a)

cov(x∗1, z
∗
2) = λ1tλ2sρσx1σx2 (36b)

cov(x∗2, z
∗
1) = λ2tλ1sρσx1σx2 (36c)

cov(y, z∗1) = λ1sγ1σ
2
x1

+ λ1sγ2ρσx1σx2 (36d)

cov(y, z∗2) = λ2sγ2σ
2
x2

+ λ2sγ1ρσx1σx2 (36e)

And the probability limits of the estimators are:

plim(γ̂1,IV ) = γ1
1

λ1t
(37a)

plim(γ̂2,IV ) = γ2
1

λ2t
(37b)

With IV estimation and an AR(1) process for vitg, the elements of the probability limits can be

written:

cov(z∗g , x
∗
g) = σ2

xg
+ cov(visg, vitg) = λgtλgsσ

2
xg

+ δ
Tg
g

(
σ2
e

1− δg

)
(38a)

cov(x∗1, z
∗
2) = λ1tλ2sρσx1σx2 (38b)

cov(x∗2, z
∗
1) = λ2tλ1sρσx1σx2 (38c)

cov(y, z∗1) = λ1sγ1σ
2
x1

+ λ1sγ2ρσx1σx2 (38d)

cov(y, z∗2) = λ2sγ2σ
2
x2

+ λ2sγ1ρσx1σx2 (38e)
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The probability limits of the IV estimators are below, except that σ2
vg is replaced by δ

Tg
g

(
σ2
e

1−δg

)
:

plim(γ̂1,IV ) = γ1
λ1sσ

2
x1

λ1sλ1tσ2
x1

+ σ2
v1

(
λ2sλ2tσ2

x2
+σ2

v2
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v2
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ρσ2
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)
(39a)
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ρσ2
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(39b)
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B Simulations

B.1 Simulation results with lifecycle effects

Figure B.1: Attenuation and spillover in OLS estimates when λ1 = λ2 = 1.2
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Figure B.2: Attenuation and spillover in OLS estimates when λ1 = λ2 = 0.8
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Figure B.3: Attenuation and spillover in IV estimates when λ1t = λ2t = 1.2, λ1s = λ2s = 1
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Figure B.4: Attenuation and spillover in IV estimates when λ1t = λ2t = 0.8, λ1s = λ2s = 1
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C Empirical results

C.1 Reverse IV results for main sample

Figure C.5: Attenuation and spillover in 2 generation IV estimates when income at older age is
used as the endogenous measure
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Figure C.6: Attenuation and spillover in 3 generation IV estimates when income at older age is
used as the endogenous measure
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C.2 Figures using men+women sample

Figure C.7: OLS and IV estimates from two-generation regressions. Men and women in final
generation.
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Figure C.8: OLS and IV estimates from three-generation regressions. Men and women in final
generation.
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C.3 Tables of regression coefficients

Men only (for men and women, see below).

See Tables C.2-C.9
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(a) Sons and fathers

Income averaged Age starting from...
over... 39 40 41 42 43 44 45

1 years 0.137 0.119 0.107 0.091 0.097 0.086 0.100
(0.020) (0.017) (0.016) (0.015) (0.014) (0.015) (0.015)

2 years 0.148 0.131 0.117 0.108 0.105 0.108
(0.019) (0.018) (0.017) (0.015) (0.015) (0.015)

3 years 0.153 0.136 0.124 0.114 0.119
(0.020) (0.018) (0.017) (0.016) (0.016)

4 years 0.155 0.141 0.128 0.126
(0.019) (0.018) (0.017) (0.016)

5 years 0.158 0.142 0.137
(0.019) (0.018) (0.017)

6 years 0.158 0.149
(0.019) (0.018)

10 years 0.174
(0.019)

15 years 0.190
(0.019)

20 years 0.209
(0.020)

25 years 0.214
(0.020)

(b) Sons and grandfathers

Income averaged Age starting from...
over... 39 40 41 42 43 44 45

1 years 0.070 0.054 0.043 0.048 0.054 0.045 0.041
(0.019) (0.020) (0.019) (0.015) (0.016) (0.016) (0.013)

2 years 0.073 0.058 0.054 0.059 0.059 0.051
(0.020) (0.021) (0.018) (0.016) (0.017) (0.016)

3 years 0.071 0.063 0.062 0.063 0.060
(0.022) (0.020) (0.018) (0.018) (0.017)

4 years 0.073 0.068 0.066 0.065
(0.021) (0.019) (0.019) (0.018)

5 years 0.077 0.071 0.067
(0.020) (0.020) (0.019)

6 years 0.078 0.072
(0.021) (0.020)

10 years 0.079
(0.021)

15 years 0.082
(0.021)

20 years 0.075
(0.020)

25 years 0.065
(0.019)

Table C.2: OLS estimates from two-generation models. Note: 10-year averages start at age 38;
15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages start at age
31.Estimates from Figure 4 (panels a and b) in bold.58



(a) Sons and fathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years 0.154 0.147 0.138 0.133 0.115 0.149 0.127
(0.022) (0.024) (0.021) (0.020) (0.018) (0.023) (0.018)

2 years 0.167 0.167 0.172 0.146 0.177 0.159
(0.026) (0.025) (0.025) (0.023) (0.027) (0.023)

3 years 0.180 0.199 0.174 0.214 0.171
(0.027) (0.030) (0.028) (0.033) (0.025)

4 years 0.207 0.191 0.248 0.192
(0.031) (0.031) (0.037) (0.028)

5 years 0.202 0.261 0.224
(0.032) (0.039) (0.031)

6 years 0.270 0.237
(0.041) (0.034)

10 years 0.318
(0.053)

15 years 0.414
(0.057)

20 years 0.386
(0.068)

25 years 0.440
(0.076)

(b) Sons and grandfathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years 0.086 0.059 0.077 0.077 0.067 0.067 0.059
(0.034) (0.027) (0.024) (0.022) (0.024) (0.021) (0.021)

2 years 0.072 0.088 0.103 0.082 0.076 0.072
(0.033) (0.027) (0.029) (0.030) (0.024) (0.025)

3 years 0.105 0.109 0.101 0.093 0.083
(0.034) (0.031) (0.036) (0.028) (0.029)

4 years 0.128 0.103 0.117 0.092
(0.037) (0.037) (0.035) (0.033)

5 years 0.114 0.116 0.114
(0.040) (0.035) (0.039)

6 years 0.135 0.105
(0.040) (0.038)

10 years 0.133
(0.077)

15 years

20 years

25 years

Table C.3: IV estimates from two-generation models. Note: 10-year averages start at age 38; 15-
year averages start at age 36; 20-year averages start at age 33; and 25-year averages start at age
31.Estimates from Figure 4 (panels c and d) in bold.59



(a) Sons and fathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years 0.192 0.164 0.147 0.119 0.130 0.109 0.121
(0.026) (0.024) (0.022) (0.018) (0.019) (0.017) (0.017)

2 years 0.232 0.199 0.163 0.147 0.145 0.132
(0.032) (0.029) (0.025) (0.022) (0.021) (0.021)

3 years 0.265 0.212 0.186 0.157 0.162
(0.036) (0.031) (0.029) (0.023) (0.024)

4 years 0.274 0.228 0.194 0.161
(0.037) (0.034) (0.029) (0.025)

5 years 0.300 0.227 0.200
(0.041) (0.033) (0.031)

6 years 0.292 0.234
(0.040) (0.035)

10 years 0.256
(0.041)

15 years 0.301
(0.050)

20 years 0.308
(0.056)

25 years 0.272
(0.050)

(b) Sons and grandfathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years 0.092 0.083 0.053 0.064 0.079 0.059 0.064
(0.025) (0.032) (0.023) (0.020) (0.023) (0.022) (0.020)

2 years 0.109 0.085 0.059 0.081 0.079 0.071
(0.029) (0.033) (0.026) (0.027) (0.024) (0.025)

3 years 0.109 0.088 0.068 0.080 0.086
(0.029) (0.034) (0.031) (0.027) (0.028)

4 years 0.111 0.098 0.069 0.083
(0.030) (0.038) (0.031) (0.030)

5 years 0.116 0.097 0.074
(0.031) (0.038) (0.034)

6 years 0.120 0.091
(0.033) (0.039)

10 years 0.073
(0.051)

15 years

20 years

25 years

Table C.4: “Reverse IV” estimates from two-generation models. Note: 10-year averages start at
age 38; 15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages
start at age 31. 60



Income averaged Age starting from...
over... 39 40 41 42 43 44 45

1 years F 0.133 0.116 0.105 0.088 0.093 0.083 0.097
(0.020) (0.017) (0.016) (0.015) (0.014) (0.015) (0.015)

G 0.048 0.039 0.027 0.036 0.043 0.037 0.030
(0.019) (0.020) (0.019) (0.015) (0.015) (0.016) (0.013)

2 years F 0.143 0.127 0.113 0.103 0.100 0.105
(0.020) (0.018) (0.017) (0.015) (0.015) (0.016)

G 0.047 0.037 0.034 0.044 0.046 0.038
(0.021) (0.021) (0.018) (0.016) (0.017) (0.016)

3 years F 0.148 0.131 0.119 0.109 0.114
(0.020) (0.018) (0.017) (0.016) (0.016)

G 0.043 0.039 0.041 0.047 0.044
(0.022) (0.020) (0.018) (0.018) (0.017)

4 years F 0.150 0.135 0.123 0.121
(0.020) (0.018) (0.017) (0.016)

G 0.043 0.044 0.045 0.046
(0.021) (0.020) (0.019) (0.017)

5 years F 0.152 0.136 0.132
(0.019) (0.018) (0.017)

G 0.046 0.046 0.044
(0.021) (0.020) (0.019)

6 years F 0.152 0.143
(0.019) (0.018)

G 0.047 0.045
(0.021) (0.020)

10 years F 0.167
(0.019)

G 0.044
(0.021)

15 years F 0.183
(0.020)

G 0.043
(0.021)

20 years F 0.204
(0.021)

G 0.032
(0.020)

25 years F 0.210
(0.021)

G 0.023
(0.019)

Table C.5: OLS estimates from three-generation models. Note: 10-year averages start at age 38;
15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages start at age
31. Estimates from Figure 5 (panel a) in bold.
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Income averaged Age starting from...
over... 39 40 41 42 43 44 45

1 years F 0.168 0.170 0.171 0.170 0.169 0.170 0.170
(0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

G 0.043 0.032 0.016 0.023 0.033 0.025 0.023
(0.019) (0.020) (0.019) (0.015) (0.015) (0.016) (0.013)

2 years F 0.168 0.170 0.170 0.168 0.168 0.169
(0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

G 0.044 0.030 0.024 0.033 0.035 0.029
(0.021) (0.021) (0.018) (0.016) (0.017) (0.015)

3 years F 0.169 0.169 0.169 0.168 0.168
(0.019) (0.019) (0.019) (0.019) (0.019)

G 0.039 0.032 0.032 0.036 0.035
(0.022) (0.020) (0.018) (0.018) (0.017)

4 years F 0.168 0.168 0.168 0.168
(0.019) (0.019) (0.019) (0.019)

G 0.039 0.037 0.035 0.036
(0.021) (0.020) (0.019) (0.017)

5 years F 0.168 0.168 0.168
(0.019) (0.019) (0.019)

G 0.042 0.039 0.036
(0.021) (0.020) (0.019)

6 years F 0.167 0.168
(0.019) (0.019)

G 0.043 0.040
(0.021) (0.020)

10 years F 0.167
(0.019)

G 0.044
(0.021)

15 years F 0.167
(0.019)

G 0.048
(0.021)

20 years F 0.168
(0.019)

G 0.041
(0.020)

25 years F 0.169
(0.019)

G 0.033
(0.019)

Table C.6: OLS estimates from three-generation models, long-term average for fathers. Note: 10-
year averages start at age 38; 15-year averages start at age 36; 20-year averages start at age 33;
and 25-year averages start at age 31. Estimates from Figure 5 (panel b) in bold.
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Income averaged Age starting from...
over... 39 40 41 42 43 44 45

1 years F 0.132 0.114 0.101 0.086 0.092 0.081 0.096
(0.020) (0.017) (0.016) (0.015) (0.014) (0.015) (0.015)

G 0.048 0.055 0.058 0.062 0.061 0.064 0.059
(0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021)

2 years F 0.142 0.125 0.110 0.102 0.099 0.103
(0.020) (0.018) (0.017) (0.015) (0.015) (0.016)

G 0.047 0.053 0.056 0.059 0.060 0.059
(0.021) (0.021) (0.021) (0.021) (0.021) (0.021)

3 years F 0.147 0.129 0.118 0.108 0.113
(0.020) (0.018) (0.017) (0.016) (0.016)

G 0.047 0.052 0.055 0.058 0.057
(0.021) (0.021) (0.021) (0.021) (0.021)

4 years F 0.149 0.134 0.122 0.120
(0.020) (0.018) (0.017) (0.016)

G 0.047 0.052 0.055 0.055
(0.021) (0.021) (0.021) (0.021)

5 years F 0.151 0.136 0.131
(0.019) (0.018) (0.017)

G 0.047 0.052 0.053
(0.021) (0.021) (0.021)

6 years F 0.152 0.143
(0.019) (0.018)

G 0.048 0.050
(0.021) (0.021)

10 years F 0.167
(0.019)

G 0.044
(0.021)

15 years F 0.184
(0.020)

G 0.040
(0.021)

20 years F 0.203
(0.021)

G 0.036
(0.021)

25 years F 0.208
(0.021)

G 0.035
(0.021)

Table C.7: OLS estimates from three-generation models, long-term average for grandfathers. Note:
10-year averages start at age 38; 15-year averages start at age 36; 20-year averages start at age 33;
and 25-year averages start at age 31. Estimates from Figure 5 (panel c) in bold.
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Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years F 0.148 0.144 0.132 0.127 0.110 0.144 0.119
(0.023) (0.024) (0.021) (0.020) (0.018) (0.023) (0.018)

G 0.051 0.028 0.048 0.054 0.050 0.043 0.045
(0.034) (0.027) (0.024) (0.022) (0.024) (0.021) (0.022)

2 years F 0.164 0.161 0.162 0.138 0.171 0.149
(0.027) (0.026) (0.025) (0.024) (0.028) (0.024)

G 0.025 0.046 0.064 0.054 0.045 0.050
(0.034) (0.029) (0.029) (0.030) (0.024) (0.026)

3 years F 0.172 0.190 0.166 0.206 0.160
(0.028) (0.031) (0.029) (0.034) (0.026)

G 0.044 0.064 0.055 0.045 0.056
(0.036) (0.032) (0.037) (0.030) (0.031)

4 years F 0.197 0.183 0.243 0.178
(0.032) (0.033) (0.039) (0.029)

G 0.065 0.053 0.032 0.061
(0.039) (0.039) (0.038) (0.036)

5 years F 0.193 0.255 0.213
(0.034) (0.041) (0.034)

G 0.053 0.036 0.051
(0.043) (0.038) (0.042)

6 years F 0.263 0.227
(0.044) (0.036)

G 0.036 0.050
(0.047) (0.044)

10 years F 0.295
(0.052)

G 0.014
(0.084)

15 years F

G

20 years F

G

25 years F

G

Table C.8: IV estimates from three-generation models. Note: 10-year averages start at age 38.
Estimates from Figure 5 (panel d) in bold.
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Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years F 0.229 0.236 0.232 0.227 0.231 0.231 0.229
(0.036) (0.035) (0.035) (0.035) (0.035) (0.035) (0.036)

G 0.043 0.010 0.030 0.044 0.027 0.027 0.026
(0.036) (0.029) (0.026) (0.023) (0.026) (0.022) (0.023)

2 years F 0.235 0.232 0.227 0.229 0.231 0.228
(0.036) (0.035) (0.035) (0.036) (0.036) (0.036)

G 0.012 0.036 0.058 0.034 0.032 0.031
(0.036) (0.031) (0.031) (0.032) (0.026) (0.027)

3 years F 0.229 0.228 0.230 0.228 0.227
(0.036) (0.035) (0.036) (0.036) (0.036)

G 0.042 0.063 0.041 0.040 0.037
(0.038) (0.033) (0.038) (0.032) (0.032)

4 years F 0.223 0.231 0.228 0.224
(0.036) (0.035) (0.036) (0.037)

G 0.074 0.043 0.048 0.043
(0.040) (0.040) (0.039) (0.038)

5 years F 0.228 0.230 0.225
(0.036) (0.036) (0.037)

G 0.048 0.050 0.049
(0.044) (0.040) (0.043)

6 years F 0.226 0.227
(0.037) (0.036)

G 0.058 0.050
(0.046) (0.044)

10 years F 0.198
(0.042)

G 0.058
(0.082)

15 years F

G

20 years F

G

25 years F

G

Table C.9: IV estimates from three-generation models, long-term average for fathers. Note: 10-year
averages start at age 38. Estimates from Figure 5 (panel e) in bold.
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Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years F 0.146 0.140 0.131 0.125 0.109 0.142 0.118
(0.023) (0.024) (0.021) (0.020) (0.018) (0.024) (0.018)

G 0.057 0.066 0.068 0.075 0.081 0.071 0.086
(0.040) (0.038) (0.038) (0.038) (0.038) (0.038) (0.041)

2 years F 0.159 0.161 0.164 0.140 0.168 0.148
(0.027) (0.027) (0.026) (0.023) (0.028) (0.024)

G 0.053 0.059 0.059 0.071 0.067 0.079
(0.041) (0.039) (0.038) (0.038) (0.038) (0.042)

3 years F 0.173 0.193 0.170 0.206 0.161
(0.028) (0.032) (0.028) (0.034) (0.026)

G 0.048 0.050 0.057 0.055 0.077
(0.042) (0.039) (0.038) (0.039) (0.042)

4 years F 0.201 0.190 0.243 0.182
(0.033) (0.032) (0.040) (0.029)

G 0.039 0.051 0.037 0.071
(0.043) (0.039) (0.039) (0.042)

5 years F 0.199 0.260 0.215
(0.033) (0.043) (0.033)

G 0.039 0.031 0.051
(0.043) (0.040) (0.043)

6 years F 0.265 0.227
(0.044) (0.036)

G 0.018 0.050
(0.045) (0.044)

10 years F 0.315
(0.056)

G 0.024
(0.047)

15 years F 0.430
(0.062)

G -0.032
(0.049)

20 years F 0.373
(0.072)

G 0.016
(0.049)

25 years F 0.438
(0.085)

G -0.012
(0.051)

Table C.10: IV estimates from three-generation models, long-term average for grandfathers. Note:
10-year averages start at age 38; 15-year averages start at age 36; 20-year averages start at age 33;
and 25-year averages start at age 31. Estimates from Figure 5 (panel f) in bold.
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Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years F 0.185 0.157 0.143 0.114 0.124 0.104 0.116
(0.027) (0.025) (0.023) (0.018) (0.019) (0.018) (0.017)

G 0.053 0.053 0.025 0.044 0.058 0.044 0.050
(0.025) (0.032) (0.024) (0.020) (0.023) (0.022) (0.020)

2 years F 0.222 0.189 0.159 0.140 0.137 0.129
(0.032) (0.030) (0.025) (0.022) (0.021) (0.021)

G 0.061 0.049 0.025 0.051 0.056 0.050
(0.030) (0.034) (0.027) (0.026) (0.024) (0.027)

3 years F 0.256 0.204 0.180 0.149 0.155
(0.037) (0.032) (0.030) (0.024) (0.025)

G 0.043 0.046 0.031 0.044 0.061
(0.032) (0.034) (0.032) (0.027) (0.030)

4 years F 0.264 0.218 0.188 0.156
(0.039) (0.035) (0.031) (0.026)

G 0.045 0.051 0.023 0.049
(0.032) (0.039) (0.033) (0.033)

5 years F 0.290 0.216 0.195
(0.043) (0.035) (0.033)

G 0.045 0.049 0.027
(0.034) (0.040) (0.037)

6 years F 0.283 0.222
(0.042) (0.036)

G 0.038 0.060
(0.036) (0.045)

10 years F 0.265
(0.048)

G -0.004
(0.056)

15 years F

G

20 years F

G

25 years F

G

Table C.11: “Reverse IV” estimates from three-generation models. Note: 10-year averages start
at age 38; 15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages
start at age 31.
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Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years F 0.227 0.225 0.232 0.230 0.226 0.229 0.227
(0.036) (0.035) (0.036) (0.035) (0.036) (0.035) (0.036)

G 0.045 0.050 0.011 0.021 0.041 0.024 0.034
(0.027) (0.034) (0.025) (0.022) (0.024) (0.023) (0.021)

2 years F 0.225 0.223 0.232 0.229 0.225 0.228
(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)

G 0.052 0.054 0.013 0.027 0.042 0.031
(0.032) (0.036) (0.028) (0.029) (0.025) (0.027)

3 years F 0.223 0.224 0.231 0.228 0.225
(0.036) (0.036) (0.036) (0.036) (0.036)

G 0.054 0.055 0.015 0.028 0.046
(0.033) (0.037) (0.033) (0.030) (0.030)

4 years F 0.224 0.222 0.231 0.228
(0.036) (0.036) (0.036) (0.036)

G 0.055 0.061 0.015 0.028
(0.033) (0.042) (0.034) (0.033)

5 years F 0.223 0.220 0.230
(0.036) (0.036) (0.036)

G 0.057 0.063 0.018
(0.035) (0.043) (0.037)

6 years F 0.220 0.222
(0.037) (0.036)

G 0.061 0.060
(0.037) (0.045)

10 years F 0.249
(0.043)

G -0.020
(0.056)

15 years F

G

20 years F

G

25 years F

G

Table C.12: “Reverse IV” estimates from three-generation models, long-term average for fathers.
Note: 10-year averages start at age 38; 15-year averages start at age 36; 20-year averages start at
age 33; and 25-year averages start at age 31.
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Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years F 0.182 0.154 0.136 0.111 0.123 0.103 0.113
(0.028) (0.026) (0.024) (0.019) (0.020) (0.017) (0.018)

G 0.049 0.058 0.064 0.067 0.066 0.070 0.081
(0.040) (0.039) (0.040) (0.039) (0.039) (0.039) (0.044)

2 years F 0.220 0.187 0.153 0.139 0.137 0.126
(0.033) (0.030) (0.026) (0.023) (0.022) (0.021)

G 0.045 0.053 0.058 0.062 0.062 0.079
(0.039) (0.040) (0.039) (0.039) (0.040) (0.044)

3 years F 0.252 0.200 0.176 0.148 0.154
(0.038) (0.033) (0.031) (0.024) (0.025)

G 0.040 0.048 0.055 0.060 0.073
(0.040) (0.039) (0.040) (0.040) (0.044)

4 years F 0.262 0.220 0.183 0.153
(0.040) (0.036) (0.031) (0.026)

G 0.034 0.046 0.053 0.074
(0.039) (0.040) (0.040) (0.044)

5 years F 0.290 0.219 0.187
(0.045) (0.035) (0.033)

G 0.031 0.045 0.067
(0.040) (0.040) (0.045)

6 years F 0.280 0.222
(0.042) (0.036)

G 0.033 0.060
(0.040) (0.045)

10 years F 0.242
(0.044)

G 0.057
(0.046)

15 years F 0.309
(0.055)

G 0.011
(0.048)

20 years F 0.302
(0.061)

G 0.044
(0.048)

25 years F 0.270
(0.056)

G 0.019
(0.054)

Table C.13: “Reverse IV” estimates from three-generation models, long-term average for grandfa-
thers. Note: 10-year averages start at age 38; 15-year averages start at age 36; 20-year averages
start at age 33; and 25-year averages start at age 31.
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C.4 Tables for sample of men+women

See Tables C.14-C.20
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(a) Sons/daughters and fathers

Income averaged Age starting from...
over... 39 40 41 42 43 44 45

1 years 0.126 0.100 0.094 0.086 0.098 0.080 0.084
(0.013) (0.012) (0.011) (0.011) (0.011) (0.010) (0.011)

2 years 0.130 0.113 0.105 0.105 0.102 0.094
(0.013) (0.012) (0.011) (0.011) (0.011) (0.011)

3 years 0.134 0.120 0.117 0.110 0.109
(0.013) (0.012) (0.012) (0.011) (0.011)

4 years 0.137 0.128 0.120 0.116
(0.013) (0.012) (0.012) (0.012)

5 years 0.143 0.130 0.125
(0.013) (0.012) (0.012)

6 years 0.144 0.134
(0.013) (0.012)

10 years 0.155
(0.013)

15 years 0.169
(0.014)

20 years 0.181
(0.014)

25 years 0.188
(0.014)

(b) Sons/daughters and grandfathers

Income averaged Age starting from...
over... 39 40 41 42 43 44 45

1 years 0.056 0.053 0.043 0.049 0.044 0.048 0.040
(0.017) (0.015) (0.014) (0.012) (0.012) (0.012) (0.010)

2 years 0.065 0.057 0.054 0.054 0.055 0.052
(0.016) (0.015) (0.014) (0.013) (0.013) (0.011)

3 years 0.065 0.062 0.058 0.061 0.058
(0.016) (0.015) (0.014) (0.013) (0.012)

4 years 0.069 0.064 0.063 0.063
(0.016) (0.015) (0.014) (0.013)

5 years 0.070 0.068 0.065
(0.015) (0.015) (0.014)

6 years 0.073 0.070
(0.015) (0.014)

10 years 0.073
(0.015)

15 years 0.082
(0.016)

20 years 0.081
(0.016)

25 years 0.074
(0.015)

Table C.14: OLS estimates from two-generation models. Note: 10-year averages start at age 38;
15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages start at age
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(a) Sons/daughters and fathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years 0.137 0.130 0.119 0.131 0.111 0.121 0.106
(0.015) (0.016) (0.014) (0.015) (0.014) (0.016) (0.014)

2 years 0.153 0.142 0.161 0.137 0.152 0.129
(0.017) (0.017) (0.018) (0.017) (0.019) (0.017)

3 years 0.158 0.180 0.153 0.176 0.143
(0.018) (0.021) (0.019) (0.022) (0.019)

4 years 0.196 0.165 0.193 0.155
(0.022) (0.021) (0.024) (0.021)

5 years 0.181 0.202 0.170
(0.022) (0.024) (0.022)

6 years 0.218 0.181
(0.027) (0.024)

10 years 0.256
(0.034)

15 years 0.335
(0.039)

20 years 0.402
(0.054)

25 years 0.372
(0.054)

(b) Sons/daughters and grandfathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years 0.083 0.060 0.076 0.064 0.073 0.066 0.047
(0.024) (0.019) (0.018) (0.016) (0.017) (0.016) (0.015)

2 years 0.072 0.087 0.081 0.087 0.080 0.058
(0.023) (0.020) (0.020) (0.021) (0.019) (0.018)

3 years 0.101 0.087 0.102 0.094 0.069
(0.025) (0.022) (0.024) (0.021) (0.021)

4 years 0.100 0.108 0.110 0.076
(0.026) (0.025) (0.025) (0.023)

5 years 0.121 0.115 0.090
(0.028) (0.026) (0.028)

6 years 0.133 0.088
(0.030) (0.027)

10 years 0.178
(0.052)

15 years

20 years

25 years

Table C.15: IV estimates from two-generation models. Note: 10-year averages start at age 38;
15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages start at age
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Income averaged Age starting from...
over... 39 40 41 42 43 44 45

1 years F 0.123 0.097 0.092 0.083 0.095 0.077 0.081
(0.013) (0.012) (0.011) (0.011) (0.011) (0.010) (0.011)

G 0.039 0.040 0.030 0.039 0.034 0.041 0.032
(0.016) (0.015) (0.014) (0.012) (0.011) (0.011) (0.009)

2 years F 0.126 0.110 0.102 0.101 0.098 0.091
(0.013) (0.012) (0.012) (0.011) (0.011) (0.011)

G 0.045 0.040 0.039 0.041 0.043 0.042
(0.016) (0.015) (0.014) (0.012) (0.012) (0.011)

3 years F 0.130 0.115 0.113 0.105 0.105
(0.013) (0.012) (0.012) (0.011) (0.011)

G 0.043 0.043 0.040 0.046 0.044
(0.016) (0.015) (0.014) (0.013) (0.012)

4 years F 0.133 0.123 0.115 0.111
(0.013) (0.012) (0.012) (0.012)

G 0.045 0.044 0.045 0.047
(0.016) (0.015) (0.014) (0.013)

5 years F 0.138 0.125 0.120
(0.013) (0.012) (0.012)

G 0.045 0.047 0.046
(0.015) (0.015) (0.014)

6 years F 0.139 0.129
(0.013) (0.012)

G 0.048 0.048
(0.015) (0.014)

10 years F 0.149
(0.013)

G 0.044
(0.015)

15 years F 0.162
(0.014)

G 0.049
(0.016)

20 years F 0.174
(0.014)

G 0.045
(0.016)

25 years F 0.181
(0.015)

G 0.038
(0.015)

Table C.16: OLS estimates from three-generation models. Note: 10-year averages start at age 38;
15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages start at age
31. Men and women in final generation
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Income averaged Age starting from...
over... 39 40 41 42 43 44 45

1 years F 0.151 0.151 0.153 0.151 0.152 0.151 0.151
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

G 0.034 0.033 0.021 0.029 0.028 0.033 0.026
(0.016) (0.015) (0.013) (0.012) (0.011) (0.011) (0.009)

2 years F 0.150 0.151 0.151 0.151 0.151 0.150
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

G 0.040 0.032 0.030 0.033 0.036 0.034
(0.016) (0.015) (0.014) (0.012) (0.012) (0.011)

3 years F 0.150 0.150 0.151 0.150 0.150
(0.013) (0.013) (0.013) (0.013) (0.013)

G 0.038 0.036 0.034 0.039 0.038
(0.016) (0.015) (0.014) (0.013) (0.012)

4 years F 0.150 0.150 0.150 0.150
(0.013) (0.013) (0.013) (0.013)

G 0.041 0.038 0.039 0.040
(0.016) (0.015) (0.014) (0.013)

5 years F 0.150 0.150 0.150
(0.013) (0.013) (0.013)

G 0.042 0.042 0.040
(0.015) (0.015) (0.014)

6 years F 0.150 0.150
(0.013) (0.013)

G 0.045 0.043
(0.015) (0.014)

10 years F 0.149
(0.013)

G 0.044
(0.015)

15 years F 0.148
(0.013)

G 0.052
(0.016)

20 years F 0.148
(0.013)

G 0.052
(0.016)

25 years F 0.149
(0.013)

G 0.046
(0.015)

Table C.17: OLS estimates from three-generation models, long-term average for fathers. Note:
10-year averages start at age 38; 15-year averages start at age 36; 20-year averages start at age 33;
and 25-year averages start at age 31. Men and women in final generation
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Income averaged Age starting from...
over... 39 40 41 42 43 44 45

1 years F 0.122 0.096 0.090 0.082 0.093 0.075 0.079
(0.013) (0.012) (0.011) (0.011) (0.011) (0.010) (0.011)

G 0.050 0.055 0.056 0.059 0.056 0.060 0.058
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

2 years F 0.125 0.108 0.100 0.100 0.097 0.089
(0.013) (0.012) (0.011) (0.011) (0.011) (0.011)

G 0.050 0.053 0.055 0.055 0.055 0.056
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

3 years F 0.129 0.114 0.111 0.104 0.104
(0.013) (0.012) (0.012) (0.012) (0.011)

G 0.049 0.052 0.052 0.054 0.054
(0.015) (0.015) (0.015) (0.015) (0.015)

4 years F 0.132 0.123 0.115 0.111
(0.013) (0.012) (0.012) (0.012)

G 0.049 0.050 0.052 0.052
(0.015) (0.015) (0.015) (0.015)

5 years F 0.138 0.125 0.120
(0.013) (0.012) (0.012)

G 0.047 0.050 0.051
(0.015) (0.015) (0.015)

6 years F 0.139 0.129
(0.013) (0.013)

G 0.047 0.049
(0.015) (0.015)

10 years F 0.149
(0.013)

G 0.044
(0.015)

15 years F 0.163
(0.014)

G 0.041
(0.015)

20 years F 0.175
(0.014)

G 0.039
(0.015)

25 years F 0.182
(0.015)

G 0.037
(0.015)

Table C.18: OLS estimates from three-generation models, long-term average for grandfathers. Note:
10-year averages start at age 38; 15-year averages start at age 36; 20-year averages start at age 33;
and 25-year averages start at age 31. Men and women in final generation
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Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years F 0.132 0.127 0.113 0.126 0.105 0.117 0.101
(0.015) (0.016) (0.014) (0.015) (0.014) (0.016) (0.014)

G 0.057 0.036 0.054 0.045 0.057 0.049 0.034
(0.024) (0.019) (0.018) (0.016) (0.017) (0.016) (0.015)

2 years F 0.150 0.135 0.154 0.128 0.146 0.122
(0.018) (0.017) (0.019) (0.017) (0.019) (0.018)

G 0.037 0.057 0.048 0.064 0.053 0.040
(0.023) (0.021) (0.021) (0.021) (0.019) (0.019)

3 years F 0.150 0.172 0.144 0.167 0.135
(0.019) (0.021) (0.020) (0.023) (0.019)

G 0.059 0.056 0.070 0.058 0.043
(0.025) (0.022) (0.024) (0.022) (0.022)

4 years F 0.188 0.154 0.184 0.145
(0.023) (0.021) (0.025) (0.022)

G 0.056 0.074 0.056 0.048
(0.027) (0.026) (0.026) (0.025)

5 years F 0.169 0.192 0.160
(0.023) (0.025) (0.024)

G 0.078 0.061 0.045
(0.029) (0.028) (0.029)

6 years F 0.206 0.171
(0.029) (0.025)

G 0.070 0.044
(0.032) (0.030)

10 years F 0.200
(0.035)

G 0.104
(0.055)

15 years F

G

20 years F

G

25 years F

G

Table C.19: IV estimates from three-generation models. Note: 10-year averages start at age 38;
15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages start at age
31. Men and women in final generation
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Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years F 0.172 0.176 0.173 0.172 0.173 0.174 0.174
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.025)

G 0.051 0.027 0.045 0.044 0.046 0.039 0.022
(0.025) (0.020) (0.019) (0.017) (0.017) (0.016) (0.016)

2 years F 0.175 0.172 0.171 0.170 0.173 0.173
(0.025) (0.024) (0.024) (0.024) (0.024) (0.025)

G 0.033 0.053 0.055 0.056 0.047 0.027
(0.024) (0.022) (0.021) (0.021) (0.019) (0.019)

3 years F 0.170 0.171 0.169 0.169 0.172
(0.025) (0.024) (0.025) (0.025) (0.025)

G 0.062 0.060 0.065 0.056 0.033
(0.026) (0.023) (0.025) (0.023) (0.023)

4 years F 0.169 0.169 0.169 0.171
(0.025) (0.024) (0.025) (0.025)

G 0.069 0.070 0.065 0.037
(0.027) (0.026) (0.027) (0.026)

5 years F 0.167 0.169 0.171
(0.025) (0.025) (0.025)

G 0.077 0.070 0.043
(0.029) (0.029) (0.029)

6 years F 0.167 0.171
(0.025) (0.025)

G 0.080 0.044
(0.033) (0.030)

10 years F 0.146
(0.027)

G 0.131
(0.055)

15 years F

G

20 years F

G

25 years F

G

Table C.20: IV estimates from three-generation models, long-term average for fathers. Note: 10-
year averages start at age 38; 15-year averages start at age 36; 20-year averages start at age 33;
and 25-year averages start at age 31. Men and women in final generation
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Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45

1 years F 0.125 0.122 0.110 0.122 0.104 0.111 0.098
(0.015) (0.016) (0.014) (0.015) (0.014) (0.016) (0.014)

G 0.054 0.054 0.057 0.059 0.062 0.061 0.067
(0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.029)

2 years F 0.143 0.133 0.153 0.128 0.140 0.119
(0.018) (0.017) (0.019) (0.017) (0.019) (0.018)

G 0.049 0.051 0.045 0.057 0.053 0.063
(0.028) (0.027) (0.028) (0.027) (0.027) (0.029)

3 years F 0.147 0.172 0.146 0.162 0.133
(0.019) (0.022) (0.020) (0.023) (0.019)

G 0.048 0.040 0.047 0.049 0.057
(0.028) (0.028) (0.028) (0.028) (0.029)

4 years F 0.187 0.158 0.180 0.145
(0.023) (0.021) (0.025) (0.022)

G 0.037 0.044 0.038 0.057
(0.028) (0.028) (0.028) (0.029)

5 years F 0.173 0.192 0.160
(0.023) (0.026) (0.024)

G 0.041 0.035 0.046
(0.028) (0.028) (0.030)

6 years F 0.204 0.171
(0.028) (0.025)

G 0.033 0.044
(0.029) (0.030)

10 years F 0.247
(0.036)

G 0.024
(0.031)

15 years F 0.336
(0.042)

G -0.013
(0.033)

20 years F 0.387
(0.056)

G -0.008
(0.034)

25 years F 0.363
(0.058)

G -0.005
(0.035)

Table C.21: IV estimates from three-generation models, long-term average for grandfathers. Note:
10-year averages start at age 38; 15-year averages start at age 36; 20-year averages start at age 33;
and 25-year averages start at age 31. Men and women in final generation
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