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1 Introduction

Correct estimates of the elasticity of import demand are crucial to accurately estimate

the gains from trade, predict the impact of trade policies and impute the size of trade

costs from data on international trade flows. The lower are these estimates, the greater

the benefits of international trade and economic integration in most trade models.

Estimations of the elasticity of import demand are traditionally performed using

trade value data and “trade unit values” that are constructed by dividing trade values

by trade quantities. An alternative approach is to estimate import demand elasticities

using data on traded quantities instead of trade values. However, the international

economics literature has avoided using import quantity data when estimating import

demand elasticities, and authors typically claim that measurement error in the quantity

data is at issue. The literature often cites Kemp (1962), who warned of the bias caused

by measurement errors when estimating import demand elasticities.

The purpose of this paper is to show that the choice between trade values and traded

quantity data for import demand elasticity estimations is not innocuous. We apply the

method of partial identification of demand and supply elasticities developed by Leamer

(1981) to estimate the upper and lower bounds on the set of possible estimates for the

elasticity of import demand. Using detailed product-level data on U.S. imports for the

years 1993–2006, we estimate elasticities based on trade value versus trade quantity

data. We show that using trade quantities yields estimates of import demand elasticity

upper bounds that are substantially smaller than if trade values are employed. Since

the lower bounds are identical using both approaches, this implies that the range of

plausible estimates is much smaller when using traded quantities compared to the

standard approach of using trade values. The pattern of the upper and lower bounds

in both approaches closely matches our theoretical predictions for the asymptotic bias

of each bound.

Given earlier authors’ concerns regarding measurement error, we also theoretically

derive the asymptotic bias of our estimators for the upper and lower bounds in the

presence of measurement error in both trade quantities and trade values. We show

that our original theoretical results are not overturned unless measurement error is

sufficiently more severe in the quantity data than the value data.

The literature typically derives point estimates of import demand elasticities using
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trade value data, based on the methodology developed by Feenstra (1994). We adapt

this methodology in order to derive point estimates using traded quantity data. Taking

this new approach to the data, we find that the point estimates based on quantity data

are lower on average than the corresponding point estimates using trade value data.

Our results contribute to a recent literature that attemps to quantity the gains

from trade for different countries and time periods employing workhorse models of

international trade. Using the framework developed by Arkolakis et al. (2012) and

Ossa (2015), we show that the demand elasticity point estimates using traded quantity

data imply larger gains from trade compared to the traditional approach using point

estimates based on trade value data. We also argue that the quantity-based point

estimates or the quantity-based upper bounds of the demand elasticities provide an

alternative to using value-based point estimates to gauge the gains from trade.

Our results also have important implications for previous studies that measure vari-

ous impacts of trade using import demand elasticities based on trade values. Prominent

examples include previous studies of the gains from increased variety due to imports

(Broda and Weinstein, 2006), and the size of trade costs (Jacks et al., 2008, 2011; Chen

and Novy, 2011; Novy, 2013) . Import demand elasticities have also been used in the

calibration countless applied models of international trade.1

While we test and motivate our analysis in the context of international trade, our

results are generalizable to any estimation of demand elasticities where price data must

be constructed from quantity and value data, and the econometrician must select the

most appropriate model. For example, household survey data on expenditures and

quantities is used to estimate price elasticities (Deaton, 1987, 1990). Unit values are

also prevalent in firm-level datasets, and are used to estimate price elasticities for unit

labor costs (Carlsson and Skans, 2012) and electricity unit values (Davis et al., 2013).

The rest of the study proceeds as follows. In section 2 we present the theory behind

the partial identification of the import demand elasticities and derive the asymptotic

bias associated with the upper and lower bound estimators. Section 3 describes our

data and empirical methodology, including how we derive point estimates based on

traded quantity data. In section 4 we present the results estimating the upper bounds,

lower bounds and point estimates of the import demand elasticity using U.S. import

1Import demand elasticities are commonly used to calculate the trade elasticity, and this approach is
conceptually distinct from estimates of the trade elasticity using the Ricardian models of international
trade, such as Simonovska and Waugh (2014) and Caliendo and Parro (2015).
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data. Given our new estimates, we quantify the impact of these new estimates on the

welfare gains from trade in Section 5. Section 6 concludes.

2 Partially Identifying Import Demand Elasticities

We begin by theoretically deriving the difference in asymptotic bias when estimating

import demand elasticities using quantity data or value data. The import demand

elasticity for a good can be naively estimated by regressing traded quantities on prices:

lnxct = −β ln pct + εct, (1)

where xct is the quantity demanded from country c in year t, and pct is its corresponding

price.2 However, estimating (1) by OLS will lead to biased and inconsistent estimates of

β if the errors are correlated with prices, i.e., E(εct ln pct) > 0. This positive covariance

arises if εct contains demand shocks — a positive demand shock raises both quantity and

price. An IV approach is one potential solution, but the absence of good instruments

in this context has lead to alternative approaches in the literature.

The challenge of estimating import demand and supply elasticities in the absence of

good instruments has a long tradition in economics. The study of an under-identified

supply and demand system was pioneered by Working (1927), who shows that under

certain conditions the data trace out the demand curve if the supply curve is more vari-

able than the demand curve. Leamer (1981) shows that in a demand–supply system

with zero covariance between the residuals, the set of possible maximum likelihood esti-

mates is defined by a hyperbola. Leamer (1981) also shows that if the demand elasticity

is assumed to be negative and the supply elasticity is assumed to be positive, then the

set of maximum likelihood estimates for one elasticity is the interval between the direct

least-squares estimate (regressing quantities on prices) and the reverse least-squares

estimates (regressing prices on quantities). Leamer (1981) furthermore establishes that

(1) defines either the upper or the lower bound on the true estimate of the demand

elasticity, and that the reverse least square estimate will define the other bound. In

what follows, we employ Leamer’s (1981) partial identification approach to estimating

an upper and a lower bound for the elasticity of import demand.

2Note that we express the elasticity of demand as a positive value. For simplicity and without loss
of generality, we omit the constant in the regression equation and assume all variables have mean zero.
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2.1 Quantity–Price Approach (Leamer, 1981)

The main principle of partial identification is to estimate an interval in which the true

parameter lies. Establishing a valid interval requires proving that the upper bound is

above the true parameter, and the lower bound is below the true parameter. For these

bounds to be informative, the interval should be as narrow as possible, while at the

same time ensuring that the bounds bracket the parameter of interest.

We now derive the asymptotic bias of the estimators for the least squares and reverse

least squares regressions of import quantities on import prices. The demand equation

is given by (1), and the supply equation is given by:

lnxct = γ ln pct + ηct, (2)

which yields the following reduced form:

lnxct =
γ

γ + β
εct +

β

γ + β
ηct,

ln pct =
1

γ + β
εct −

1

γ + β
ηct.

The probability limit of the OLS estimate of β using (1) is3

plim β̂ = −E(lnxct ln pct)

E ((ln pct)2)
=
βσ2

η − γσ2
ε + (γ − β)σεη

σ2
ε + σ2

η − 2σεη
,

where σεη = E(εctηct), σε = var(εct), and ση = var(ηct). Now, consider the reverse

regression of ln pct on ln xct. The probability limit of the OLS estimator is

plim β̂R = −E(lnxct ln pct)

E ((lnxct)2)
=

βσ2
η − γσ2

ε + (γ − β)σεη

γ2σ2
ε + β2σ2

η + (β + γ)σεη
.

Assume the supply and demand shocks are uncorrelated, i.e. σεη = 0. This yields the

3Throughout, we assume that the data satisfy sufficient moment and dependence conditions for a
law of large numbers to hold.
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following probability limits for the least squares and reverse least squares estimates:4:

plim β̂ = β − (γ + β)
σ2
ε

σ2
ε + σ2

η

≤ β, (3)

1

plim β̂R
= β + (γ + β)

γσ2
ε

βσ2
η − γσ2

ε

R β (4)

It is clear from (3) that the least squares estimate, which captures the lower bound,

brackets the true β from below. With an additional parametric assumption on the sign

of the denominator in (4), we obtain the Leamer (1981) result that the least squares

and reverse least squares estimates constitute the upper and lower bound on β:

0 ≤ plim β̂ ≤ β ≤ 1

plim β̂R
⇔ βσ2

η − γσ2
ε > 0. (5)

2.2 Value-Based Approach

In international trade data, the price is constructed as the average unit value of each

trade flow i.e. pct = vct/xct, where vct is the value of trade. Taking logs and rearranging

yields

ln vct = ln pct + lnxct. (6)

This simple relationship between trade values, trade quantities and trade unit values in

the data implies that β and γ can be estimated using any two of the components from

(6) and then transforming the resulting point estimate. For example, one can use (6)

to transform (1) and (2) into regression of trade values on trade unit values, yielding

the following expressions for demand and supply:

ln vct = (1− β) ln pct + εct, (7)

ln vct = (γ + 1) ln pct + ηct. (8)

4Leamer (1981) shows that the hyperbola of the maximum likelihood estimates is given by

γ̂2
(
β̂s2p − spx

)
+ β̂2

(
−γ̂s2p + spx

)
=
(
β̂ − γ̂

)
s2x, where s2p and s2x are the sample variances and spx is

the sample covariance. Assuming a non–negative supply elasticity, the upper bound for the demand

elasticity is found by imposing γ̂ = 0, which yields β̂ =
s2x
spx

, the inverse of the least squares estimate

of p on x.
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Feenstra’s (1994) point estimates are based on structural equations similar to (7)

and (8), which require using constructed trade unit values. The reduced form of this

system of equations is given by:

ln vct =
1 + γ

γ + β
εct +

β − 1

γ + β
ηct,

ln pct =
1

γ + β
εct −

1

γ + β
ηct.

The probability limit of the lower bound on β using (7) is the OLS regression of trade

values on prices, transformed using (6):

1− plim β̂P = 1− E(ln vct ln pct)

E ((ln pct)2)
= β − (γ + β)

σ2
ε

σ2
ε + σ2

η

≤ β. (9)

Note that the probability limit of the lower bound in (9) is identical to (3). This stems

from the fact that price is on the right hand side when estimating the lower bounds,

regardless of whether quantities or values are the dependent variable. We can show,

however, that the upper bounds are not identical to the quantity–price approach. The

probability limit for the upper bound based on the reverse least squares estimation

takes the following form:5

plim

(
−1− β̂R,P

β̂R,P

)
= −

1− E(ln vct ln pct)
E((ln vct)2)

E(ln vct ln pct)
E((ln vct)2)

= β + (β + γ)
(1 + γ)σ2

ε

(β − 1)σ2
η − (1 + γ)σ2

ε

. (10)

It is clear from the denominator in (10) that the reverse least squares regression will

unambiguously not bound the true β from above if β < 1. However, β > 1 is a

common assumption in the literature and will be satisfied for may imported products.

Feenstra (1994) assumes a demand elasticity in excess of unity due to CES preferences,

and Scobie and Johnson (1975) argue that the elasticity of demand will be elastic if

supplying countries are sufficiently “small” in the sense that there are several suppliers

5Inverting equation (7) without the error term yields the transformed reverse least squares estimate

β̂R,P = 1
1−β̂P

. Rearranging yields β̂P = − 1−β̂R,P

β̂R,P
.
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of a similar good to the export market. It is also evident in (10) that the upper

bound based on trade value data will hold under in some cases in the presence of a

downward-sloping supply curve. The numerator of the bias term in (10) is larger than

the numerator in equation (4), which suggests that the upper bound is likely larger

using trade value data compared to using trade quantity data.6

To illustrate the relationships between the bounds, we plot the predicted asymptotic

biases of each estimator for various values of the true import demand elasticity. The

results of this exercise are reported in figure 1 where we plot β between 0 and 10,

and we hold constant γ = 1 and σ2
ε/σ

2
η = 0.5. It is evident from the figure that the

upper bound based on trade value data is larger than the Leamer upper bound for

most values of β. Figure 1 also illustrates that the upper bound based on trade value

data is highly unstable at low values of β, and becomes negative when the true import

demand elasticity is below a certain threshold. The quantity-based approach is thus

particularly well–suited to situations where the true import demand elasticity is low.

2.3 Measurement Error

Next, we investigate whether our theoretical results hold in the presence of measurement

error. Kemp (1962) was the first to warn of the bias caused by measurement errors

when using quantity data for the purpose of estimating import demand elasticities. In

Kemp’s case, the bias was caused by constructing quantity indices from trade value and

price index data. In the second paragraph of Kemp (1962), he writes:

In aggregative studies, however, the quantity variables almost always is

constructed by dividing the index of import prices into an index of the total

money value of imports. The quantity variable is subject therefore to a

measurement error of its own.

In his derivations, Kemp assumes a measurement error term in the price index data,

but not in the money value of imports. Kemp goes on to show that using constructed

6As suggested by Scobie and Johnson (1975), another way to partially estimate import demand
elasticities is to regress lnxct on ln vct and vice versa, thus avoiding the need to construct price data.
We derive the asymptotic bias of the upper and lower bounds using this approach in the Appendix.
We find that the quantity–value lower bound is identical to the Leamer upper bound, and that the
quantity–value upper bound is identical to the upper bound based on trade value data. Since the lower
bound is not likely to bracket the true elasticity in this case, estimating import demand elasticities
without constructing trade unit values thus leads to implausibly high estimates.
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quantity index data leads to biased and inconsistent estimates of the import demand

elasticity, which correspond to our lower bound estimates. In the context of contem-

porary international trade data, however, the raw Comtrade data reports the value of

trade and its quantity (in weight or units). In the raw 10-digit US import data, for ex-

ample, there are 47 different types of quantity measures. Moreover, one cannot rule out

that measurement error exists in the contemporary trade value data. Transfer pricing,

for example, can lead to measurement error in the trade value data.

To allow for measurement error, we express the observed data as

ln vct = ln ṽct + uct

lnxct = ln x̃ct + wct

where ṽct and x̃ct denote the true (unobserved) data. The measurement error variances

and covariances are σ2
u, σ

2
w, and σuw. Because ln pct = ln vct − lnxct, the measurement

error in prices is uct−wct. We assume classical measurement error, i.e., the measurement

errors are uncorrelated with the true values.7

We first present the probability limits on the bounds in the quantity-based specifi-

cation. Incorporating measurement error, the probability limit of β using (1) is

plim β̂ = −E(lnxct ln pct)

E ((ln pct)2)

=
βσ2

η − γσ2
ε + (β + γ)2 (σ2

w − σuw)

σ2
ε + σ2

η + (β + γ)2 (σ2
u + σ2

w − 2σuw)

= β − (β + γ)
σ2
ε + β (β + γ) (σ2

u − σuw) + (β − 1) (β + γ) (σ2
w − σuw)

σ2
ε + σ2

η + (β + γ)2 (σ2
u + σ2

w − 2σuw)
(11)

7Unobserved quality can also be treated as a component of the measurement error. For example,
define the lnṽct to be the value of country c’s product if it were of average quality and uct to be the
quality differential. This term would also appear in the price because prices are constructed from unit
values, i.e., pct = vct/xct.
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For the reverse regression, we have

1

plim β̂R
= − E ((lnxct)

2)

E(lnxct ln pct)

=
γ2σ2

ε + β2σ2
η + (β + γ)2 σ2

w

βσ2
η − γσ2

ε − (β + γ)2 (σuw − σ2
w)

= β + (β + γ)
γσ2

ε + β (β + γ) (σuw − σ2
w) + (β + γ)σ2

w

βσ2
η − γσ2

ε − (β + γ)2 (σuw − σ2
w)

(12)

For the value-based approach, the probability limit of βP using the direct regression

in (7) is identical to (11) in the presence of measurement error. The reverse regression,

however, is not identical to (12), and 1/βRP takes the following form:

1

plim β̂R
=
γ (1 + γ)σ2

ε + β (β − 1)σ2
η + (β + γ)2 σ2

u − (β + γ)2 (σ2
u − σuw)

(β − 1)σ2
η − (1 + γ)σ2

ε − (β + γ)2 (σ2
u − σuw)

= β + (β + γ)
(1 + γ)σ2

ε + (β + γ)σ2
u + (β − 1) (β + γ) (σ2

u − σuw)

(β − 1)σ2
η − (1 + γ)σ2

ε − (β + γ)2 (σ2
u − σuw)

. (13)

The parameter restrictions required for the bounds to hold in the presence of mea-

surement error are now more complicated because they also hinge on the magnitudes

of the error variance and covariance. We therefore study three specific cases of mea-

surement error. In the first case, we assume that the measurement error variance in

traded quantities and trade values, and their covariance, are equal in magnitude, which

we call the “quantity and value error” case. This case implies that there is no error in

the unit values (prices). In the second and third cases, we assume that there is mea-

surement error in either traded quantities or trade values. The results of this exercise

are illustrated in figure 2. In all cases, when a measurement error is non-zero, we set

its variance equal to 5% of the variance of the supply shock (σ2
η).

For the lower bound, equal quantity and value error causes the measurement error

to drop out of (11), so the quantity and value error case is identical to no measurement

error. If β > 1, then both quantity and value measurement error reduce the lower

bound, so the bound remains valid for any parameter values. For β < 1, however,

value measurement error increases the bound and it may become invalid depending on

the other parameters. The top panel of figure 2 shows that the lower bound becomes
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uninformative for large values of β, especially for value measurement error.

For the upper bound, measurement error in quantities only attenuates the quantity-

based bound, and measurement error in values only attenuates the value-based bound.

The middle panel of figure 2 shows the true import demand elasticity along with the

quantity-based upper bound with no measurement error, with measurement error of

equal magnitude in quantities and values, and with measurement error in quantities

only. Equal quantity and value error unambiguously increases the numerator in the

bound formula. Thus, just as for the no measurement error case, the bound remains

valid for any value of β above a threshold. Measurement error in quantities only atten-

uates the quantity-based upper bound, and the bound may be invalid for large values

of β.

The bottom panel of figure 2 shows the true import demand elasticity along with the

upper bound based on trade value data with no measurement error, with measurement

error of equal magnitude in quantities and values, and with measurement error in values

only. As for the quantity-based case, equal quantity and value error unambiguously

increases the numerator in the bound formula, and the bound is valid for any value of

β above a threshold. Measurement error in values only inflates the upper bound based

on trade value data and increases the threshold value of β at which it becomes invalid.

Overall, our partial identification theoretical results suggest that it is best to esti-

mate import demand elasticities using traded quantities if there is relatively low mea-

surement error in quantities, relatively low measurement error in general, or if the error

is similar in magnitude in the quantity and value data, i.e., there is little measurement

error in prices. If measurement error in the data is suspected to be large, then the

choice between using traded quantity data or trade value data becomes more perti-

nent. In this case, if measurement error is a relatively larger problem in the quantity

data then it should be avoided, while if measurement error is relatively larger problem

in the value data then it should be avoided. In general, quantity data is particularly

well-suited to estimating import demand elasticities for goods with an expected low

elasticity. With these theoretical predictions in hand, we now describe the trade data

and estimate the bounds on the elasticity of substitution and the point estimates using

the Leamer (1981) and Feenstra (1994) approaches.
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3 Data and Empirical Application to U.S. Imports

We now describe how we estimate the upper and lower bounds using traded quantity

and trade value data. We first describe the data, then provide our estimating equations

for the bounds, and finally explain how we derive point estimates using the quantity

data.

3.1 Data

Our main data source is the U.S. import data available at the Center for International

Data, which is based on data from the U.S. Customs Service.8 The data includes the

value of U.S. imports (in USD) and its associated quantity by country of origin at

the 10-digit HS level. We focus on the years 1993–2006. From the trade values and

trade quantities we compute trade unit values. We thus observe the trade value, trade

quantity and trade unit values by HS product, partner country and year. We study

the U.S. since it is a large importer that imports from many countries, even within

narrowly defined product categories, and also since it allows us to relate our results to

those of Feenstra (1994), Broda and Weinstein (2006) and Soderbery (2015).

We perform our estimations at the 8-, 6-, 4-, and 3-digit HS levels, which we achieve

by aggregating the data across products. There are 47 different types of quantity units

in the data. Since it is crucial to use the same quantity unit for each product, we keep

only the trade flows that use the most common quantity unit before aggregating the

data to more coarse product definitions. The units used to measure quantity are very

often the same, even within broad product categories. Approximately 5 percent of trade

flow observations are dropped when harmonizing the quantity units at the 8-digit HS

level. When harmonizing quantity units at the 3-digit HS level, our most aggregated

product definition, we drop approximately 20 percent of observations.

As a robustness check we perform our estimations using data from the COMTRADE

database, which is administered by the United Nations. We use importer-reported data

for U.S. imports at the 6-digit HS level for the years 1991–2015, where both the value

of trade (in USD) and the quantity of trade (in kilograms) are reported.

In order to calculate the gains from trade for each imported product, we require data

8See Feenstra et al. (2002) for a detailed description of the U.S. import data. The data can be
found at http://cid.econ.ucdavis.edu/usix.html
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on import penetration ratios for each product, which we take from the U.S. Bureau of

Economic Analysis (BEA) 2007 input-output tables, available at the 6-digit level. We

collapse the BEA commodity/industry classification to the 4-digit level, then merge it

with the Center for International Data U.S. import data at the 4-digit NAICS level.9

3.2 Empirical Method

Following Feenstra (1994), we also difference the data with respect to a reference country

k. Normalizing the data with respect to a reference country absorbs the origin–product–

year fixed effect, which contains the importer’s price index term that would arise in a

CES demand framework. We do not convert the trade data into import shares, since

the differencing with respect to a reference country already controls for total imports.10

Using logged imports instead of import shares also corresponds more closely with our

theoretical framework.

We estimate the lower and upper bounds of the elasticity of import demand for each

good at the 3-, 4-, 6- and 8-digit HS level of aggregation, normalizing the variables as

described above. Formally, the Leamer lower bound regression for good g is:

∆k lnxgct = −β̂g∆k ln pgct + ςgct, (14)

where

∆k lnxgct ≡ ∆ lnxgct −∆ lnxgkt,

∆k ln pgct ≡ ∆ ln pgct −∆ ln pgkt

The Leamer upper bound regression is:

∆k ln pgct = −β̂Rg ∆k lnxgct + υgct, (15)

9To assess the extent of measurement error in trade values and traded quantities due to human
manipulation of the data, we test whether or not the data deviates from Benford’s Law. Benford’s
Law describes the distribution of first digits in economic or accounting data. The results are reported
in figure A.1 in the Appendix. We find that the distribution of first digits is very similar among the
quantity and value data, which suggests that measurement error due to manipulation of the data is
highly similar between quantities and values.

10Total imports in the denominator of the shares cancels out when differencing with respect to a
reference country. In the case of quantities, ln (xgct/Xgt) − ln (xgkt/Xgt) = lnxgct − lnxgkt, where
Xt =

∑
c∈Cgt

xgct.
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The lower bound regression based on trade values is:

∆k ln vgct = −β̂Pg ∆k ln pgct + ξgct, (16)

where

∆k ln vgct ≡ ∆ ln vgct −∆ ln vgkt,

The upper bound regression based on trade values is:

∆k ln pgct = −β̂R,Pg ∆k ln vgct + ζgct, (17)

We also develop a method for deriving point estimates of import demand elasticities

using data on traded quantities instead of trade values, based on Feenstra’s (1994)

method. The structural model’s “demand” and “supply” equations are as follows:

∆k lnxgct = −σxg∆k ln pgct + εkgct (18)

∆k ln pgct = ωxg∆k lnxgct + δkgct (19)

where εkgct and δkgct are unobservable demand and supply shocks, respectively and ω ≥
0 is the inverse supply elasticity. Feenstra (1994) derives equations similar to (18)

and (19), but using expenditure shares instead of quantity shares, from a model of

CES preferences, using the Armington (1969) assumption of product differentiation

by country of origin.11 Note, however, that σxg in (18) is identical to our estimate of

the Leamer lower bound, β̂Rg , in equation (14). Moreover, ωxg in (19) is the reverse

least squares estimate, which is the same as our estimate of the Leamer upper bound

with the opposite sign, β̂Rg , in equation (15). Thus, the structural equations used

to establish point estimates of the elasticity of demand are directly related to the

estimating equations of the upper and lower bounds.

Feenstra’s innovation is to multiply εkgct and δkgct together to convert equations (18)

and (19) into one estimable equation. Following Feenstra (1994), we assume that εkgct

and δkgct are independent. We define ρxg =
σx
gω

x
g

1+σx
gω

x
g
∈ [0, 1), scale by 1

σx
g(1−ρxg)

and rearrange

11Harberger (1957) shows that this system yields an elasticity of substitution with more general
assumptions on consumer preferences than CES.
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to obtain the analogue of Feenstra’s (1994) estimating equation:

(
∆k ln pgct

)2
= θx1g

(
∆k lnxgct

)2
+ θx2g

(
∆k ln pgct∆

k lnxgct
)

+ ugct, (20)

where

θx1g =
ρxg(

σxg
)2 (

1− ρxg
) ,

θx2g =
2ρxg − 1

σxg
(
1− ρxg

) (21)

and

ugct =
εgctδgct

σxg
(
1− ρxg

) (22)

Feenstra (1994) shows that estimating (20) by 2SLS, where the instruments are

dummy variables across the countries c 6= k, leads to consistent estimates of θx1g and

θx2g. We implement the most recent refinement of Feenstra’s method, by Soderbery

(2015), who applies a limited information maximum likelihood (LIML) estimator to

reduce bias and improve constrained search efficiencies.

Once we have obtained the estimates of θ̂x1g and θ̂x2g, the values of σ̂xg and ρ̂xg can

be solved from the quadratic equations in (21). As long as θ̂x1g > 0, these equations

yield two solutions for σ̂xg , one positive and one negative.12 We restrict attention to the

positive solution. Formally:

ρ̂xg =
1

2
+

1

4
− 1

4 +
(
θ̂x2g

)2
/θ̂x1g


1/2

if θx2g > 0, (23)

ρ̂xg =
1

2
−

1

4
− 1

4 +
(
θ̂x2g

)2
/θ̂x1g


1/2

if θx2g < 0, (24)

σ̂xg =

(
2ρ̂xg − 1

1− ρ̂xg

)
1

θ̂x2g
> 0. (25)

12This system can also be solved in terms of σxg and ωxg , where θx1g = ωxg/σ
x
g and θx2g =(

σqgω
x
g − 1

)
/σxg . It is clear here that θx1g must be positive so that σxg and ωxg are both positive.
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If θx1g is negative, then the solution fails to provide estimates of σxg and ρxg that

satisfy the restriction that σxg > 0 and 0 ≤ ρxg < 1. The restriction on ρxg implies

that the supply elasticity must be non-negative, i.e. ωxg > 0, which falls directly from

Leamer’s (1981) inequality constraints. In the event that θx1g is negative or there is

an imaginary solution, then we apply the constrained search algorithm developed by

Soderbery (2015).

4 Results

4.1 Partial identification using quantity data

We first estimate the upper and lower bounds using the trade value – trade unit value

specification as given by (16) and (17), which produces the bounds on the set of plausible

point estimates based on quantity data. We call this set of possible estimates the “value-

based bounds”. The results for each 3-digit HS import product are illustrated in figure

3. The x-axis ranks each HS3 product by its lower bound (least squares) estimate.

While all lower bound estimates are positive and lie close to one, the estimates of the

upper bound vary widely. For many products with a small lower bound estimate, the

corresponding reverse least squares estimate is negative, which agrees with the predicted

asymptotic bias. For several products the upper bound is very high. We thus truncate

the figure to display estimates between 0 and 30. We also report all “value-based point

estimates” based on trade values that the Soderbery (2015) procedure yields. The vast

majority of the point estimates lie within the bounds given by the estimates of equations

(16) and equation (17), with only a few exceptions.

We then estimate the point estimates and the upper and lower bounds using the

Leamer trade quantity – trade unit value specification as given by (14) and (15), which

we call the “Leamer bounds”. We report both the Leamer bounds and the value-based

bounds, plus the value-based point estimates, in figure 4. As predicted by the theory,

the quantity-basd and value-based lower bounds are identical, while the Leamer upper

bound is far below the value-based upper bound. It is also evident that many of the

value-based point estimates (around one third) lie above the Leamer upper bound. This

suggests that many of the elasticity estimates used in the literature may be implausably

large. Finally, it is evident that the Leamer upper bounds are positive and lie above the
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lower bounds for all products, including those for which the value-based upper bound

was negative.

We also check whether our results regarding the difference between the Leamer and

value-based bounds are sensitive to the level of product aggregation. Imbs and Mejean

(2015) show, for example, that estimates of trade elasticities are smaller in aggregate

data than at finer levels of aggregation. In figures A.3 and A.4 in the Appendix we

illustrate the alternative bounds with the original bounds and point estimates at the HS

4-digit and 6-digit levels respectively. We find that the difference between the Feenstra

and Leamer upper bounds persists at finer levels of product aggregation. We also find

that many of the value-based point estimates lie below the Feenstra and Leamer lower

bounds even at finer levels of aggregation.

4.2 Point estimates using quantity data

We now turn to our point estimates of the import demand elasticities using quantity

data, and compare them with the point estimates derived from using trade value data,

which is the standard approach in the literature. In figure 5 we illustrate the point

estimates based on traded quantity data for each 3-digit HS import product, which we

call the “quantity-based point estimates”, as well as the corresponding value-based point

estimate using trade value data. We also include the Leamer bounds, which allows us

to discern how well the point estimates fit withing the set of plausible estimates. Figure

5 illustrates that nearly all our quantity-based point estimates lie within the bounds.

The figure also illustrates that the value-based point estimates tend to be larger on

average, especially for those products where the value-based point estimate lies above

the Leamer bound. We also calculate the quantity-based point estimates at the 4-digit,

6-digit and 8-digit levels.

Descriptive statistics of all of the bounds and point estimates at the 3-digit, 4-digit

and 6-digit level are provided in Table 1, where we report the number of products,

the raw mean and the median. The mean and median of the Leamer upper bounds

are always lower than the corresponding measure of the value-based upper bounds,

regardless of the level of product aggregation. The median is lower than the mean in

all cases for the upper bounds, which is driven by a small number of products with

relatively high upper bounds. The difference between the mean and the median is
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especially pronounced for the value-based upper bounds. Table 1 also highlights that

the quantity-based point estimates are lower than the value-based point estimates in all

cases, for all levels of product aggregation. The raw average and median of the point

estimates are very stable across product aggregations.

5 Implications for the Gains from Trade

We now quantify the economic importance of our alternative approach to measuring

import demand elasticities for the welfare gains from economic integration. We use

the framework developed by Arkolakis et al. (2012), which distills the welfare effect of

openness to trade across a wide array of trade models into a simple formula:

Ŵj = λ̂
1/ε
jj , (26)

where Ŵj is the percentage change in welfare in destination country j, λ̂jj equals

the percentage change in country j’s internal trade (1 minus the import penetration

ratio), and ε is the elasticity of imports with respect to variable trade costs, also known

as the “trade elasticity”. In the Armington (1969) model, ε = 1 − σ, where σ is the

import demand elasticity.13 The formula given in (26) thus highlights that estimates of

the import demand elasticity play a central roll in measuring the gains from trade.

We first follow Arkolakis et al. (2012) and calculate the gains from economic in-

tregration for the U.S. in 2000, where the import penetration ratio was seven percent,

which implies λjj = 0.93. Using the average quantity-based point estimate at the 8-

digit level from Panel D of Table 1 (2.64), the gains from trade compared to autarky

are 1−0.931/(1−2.64) = 4.5 percent. Using the corresponding 8-digit average value-based

point estimate (6.24), the gains from trade are 1 − 0.931/(1−6.24) = 1.4 percent. The

quantity-based point estimates suggest gains from trade that are more than three times

as large as the value-based point estimates.

We also calculate the gains from trade on at the industry level, using the 4-digit BEA

commodity classification, both separately for each commodity and also aggregating over

commodities. Ossa (2015), for example, shows that the gains from trade are often higher

when calculated at the industry-level and then aggregated. We first calculate the point

13In the Melitz (2003) model, ε = 1 − σ − γj , where γj is the extensive margin elasticity. In the
Ricardian model, ε = 1− σ + γijj − γiij , where γijj and γiij denote the extensive margin elasticities.
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estimates at the 4-digit BEA level. These estimations yield 50 BEA commodities for

which we have viable value-based and quantity-based point estimates, and we report

these estimates in figure A.6 in the Appendix. We then combine these point estimates

with data on the import penetration ratio from the 2007 BEA input-output tables.

Following the aggregation approach by Ossa (2015) and Costinot and Rodrguez-Clare

(2014), we find that the overall gains from trade are 97 percent using point estimates

based on traded quantity data versus 42 percent using point estimates based on trade

value data. Using the upper bounds on the import demand elasticities instead of point

estimates yields more conservative gains, but difference between the approaches remains

large. Using the quantity-based upper bounds yields a 34.3 percent overall gain, while

using the value-based upper bounds yields a 6.3 percent overall gain.

We also calculate the gains from trade separately for each BEA commodity. We

report the gains from trade across the 10th, 25th, 50th, 75th and 90th percentiles of

these commodities in Table 2. The gains from trade are clearly higher when using the

quantity-based point estimates compared to the value-based point estimates across the

entire distribution of commodities. The gains from trade for the median commodity is

91.0 percent using the quantity-based point estimates, compared to 53.8 percent when

using the value-based point estimates. This difference in the gains from trade is driven

by the fact that the quantity-based point estimates of the import demand elasticities

are lower than the value-based point estimates for most goods. Using traded quantity

data instead of trade value data to estimate import demand elasticities thus leads to

much higher estimated gains. We also report the gains from trade using the Leamer

and value-based upper bound elasticity estimates in Table 2. The calculated gains from

trade based on these bounds provide a conservative estimate of the gains from trade.

The gains from trade for the median commodity is 16.1 percent using the Leamer upper

bounds, and only 2.9 using the value-based upper bounds.

6 Conclusion

Accurate estimates of import demand elasticities are essential for measuring the gains

from trade and predicting the impact of trade policies. The international economics

literature has typically estimated these elasticities using trade value data instead of

trade quantities. Using partial identification methods, we show theoretically that the
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upper bound on the import demand elasticity is more biased upward compared to using

traded quantity data. We confirm our theoretical predictions using detailed U.S. import

data. We also generate import demand elasticity point estimates based on traded

quantity data and compare them with corresponding point estimates using trade value

data. Our results suggest that import demand elasticities are lower than previously

thought for many goods, which implies that the gains from economic integration have

been underestimated in earlier studies.

While we test and motivate our analysis in the context of international trade, our

results are generalizable to any estimation of demand elasticities where price data must

be constructed from quantity and value data, and the econometrician must select the

most appropriate model. Our derivations of the asymptotic bias suggest that using

quantity data is superior to value data in cases where measurement error is of similar

magnitude in the quantity and value data.

Our results have many implications in international economics that we leave for

further research, such as analyzing the impact on the variety gains from trade or the

magnitude of trade costs implied by trade flow data. Given that these elasticities are so

important for understanding the gains from trade, it is hoped that our study encourages

discussion on the pros and cons of using quantity versus value data when estimating

demand elasticities.
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Figure 3: Value-based bounds and point estimates, by 3-digit HS, U.S., 1993-2006.
Source: UC Davis Center for International Data, authors’ calculations
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Figure 4: Leamer bounds, value-based bounds and point estimates, by 3-digit HS, U.S.,
1993-2006.
Source: UC Davis Center for International Data, authors’ calculations
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Figure 5: Value-based point estimates, quantity-based point estimates and Leamer bounds
by 3-digit HS, U.S., 1993-2006.
Source: UC Davis Center for International Data, authors’ calculations
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Table 1: U.S. Import Elasticity Descriptive Statistics

Quantity- Value- Value- Value-
Based Leamer Leamer Based Based Based
Point Lower Upper Point Lower Upper

Estimate Bound Bound Estimate Bound Bound

Panel A: 3-digit HS
count 101 101 101 101 101 64
mean 1.53 1.08 2.43 2.75 1.08 18.1
median 1.30 1.07 2.04 1.53 1.07 8.85

Panel B: 4-digit HS
count 645 645 645 645 645 431
mean 1.56 1.09 3.59 7.36 1.09 40.1
median 1.33 1.09 2.36 1.63 1.09 10.3

Panel C: 6-digit HS
count 2734 2734 2734 2734 2734 1765
mean 2.20 1.14 6.02 6.15 1.14 98.0
median 1.43 1.11 3.01 1.75 1.11 10.4

Panel D: 8-digit HS
count 4847 4847 4847 4847 4847 3012
mean 2.64 1.14 13.9 6.24 1.14 82.7
median 1.47 1.09 3.40 1.82 1.09 10.9

Notes: the sample is restricted to those products for which value- and quantity-based point
estimates exist. Source: UC Davis Center for International Data, authors’ calculations.
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Table 2: U.S. Gains from Trade by 4-Digit BEA Commodity-Level Data

Percentile
10th 25th 50th 75th 90th

Quantity-based point estimates 7.9 18.1 91.0 349.8 4744.2
Value-based point estimates 3.3 14.6 53.8 184.8 943.6
Leamer upper bounds 2.3 8.1 16.1 94.7 311.5
Value-based upper bounds 0.2 1.0 2.9 6.8 10.6

Source: UC Davis Center for International Data, Bureau of
Economic Analysis, authors’ calculations.
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A Appendix

A.1 Deviations from Benford’s Law in the Traded Quantity

and Trade Value Data

In order to access the extent of measurement error in trade values and traded quanti-

ties due to human manipulation of the data, we test whether or not the data deviates

from Benford’s Law. Benford’s Law describes the distribution of first digits in eco-

nomic or accounting data. For each 10-digit product, the goodness-of-fit test statistic

is calculated using product-level export data according to the following formula:

N
9∑
d=1

(
fd − f̂d

)2
fd

,

where f̂d is the fraction of digit d in the data and fd is the fraction predicted by

Benford’s law. The test statistic converges to a χ2 distribution with eight degrees of

freedom as N approaches infinity. The corresponding 10%, 5% and 1% critical values

are 13.4, 15.5, and 20.1.

The distributions of the χ2 goodness-of-fit test statistic values for the U.S. import

value and import quantity are illustrated in figure A.1. We find that the distribution

of first digits is very similar among the quantity and value data, which suggests that

measurement error due to manipulation of the data is highly similar between quantities

and values.
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10-digit HS, U.S., 1993-2006.
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A.2 Partial Identification using the Quantity–Value Approach

As suggested by Scobie and Johnson (1975), another way to estimate import demand

elasticities is regress lnxct on ln vct, thus avoiding the need to construct price data. We

again use (6) to transform (1) and (2) into a regression of trade quantities on trade

values. The regression equation is

lnxct =
−β

1− β
ln vct +

1

1− β
εct, (27)

where we denote the OLS coefficient δ̂X . We define δ̂V as the coefficient from the reverse

regression of ln vct on ln xct:

lnxct =
γ

1 + γ
ln vct +

1

1 + γ
ηct. (28)

The corresponding estimates of β are

β̂X =
δ̂X

δ̂X − 1
, (29)

β̂V =
1

1− δ̂V
. (30)

The reduced form is given by

ln vct =
1 + γ

γ + β
εct −

1− β
γ + β

ηct,

lnxct =
γ

γ + β
εct +

β

γ + β
ηct.

The probability limit of the OLS estimates of δX abd δV are thus

plim δ̂X =
β(β − 1)σ2

η + γ(1 + γ)σ2
ε

(1 + γ)2σ2
ε + (1− β)2σ2

η

, (31)

plim δ̂V =
β(β − 1)σ2

η + γ(1 + γ)σ2
ε

γ2σ2
ε + β2σ2

η

. (32)
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These direct OLS estimates, when expressed in terms of βX and βV , are:

plim β̂X = β + (β + γ)
(1 + γ)σ2

ε

(β − 1)σ2
η − (1 + γ)σ2

ε

, (33)

plim β̂V = β + (γ + β)
γσ2

ε

βσ2
η − γσ2

ε

R β. (34)

The probability limit of the lower bound in this case is equivalent to the Leamer upper

bound, while the probability limit of the upper bound is equivalent to the value-based

upper bound. It follows that the quantity-value lower bound will not hold if the Leamer

upper bound holds. It also follows that the union of the Leamer and quantity-value

bounds is equal to the value-based bounds.

Regressing trade quantities on trade values tends to overestimate the lower bound.

In the vast majority of cases where the Leamer upper bound parameter restrictions are

met, this implies that the parameter assumptions required for the quantity–value lower

bound to hold are unlikely to be met.

In figure A.2 we combine all three approaches, which includes the upper and lower

bounds using the regressions of trade value on trade quantity and vice versa, as given

by equations (27) and (28), plus the value-based point estimates. As predicted from

the asymptotic bias of the estimators, the results suggest that the lower bound on the

quantity–value lower bound is equal to the Leamer upper bound, and in many cases is

larger than the value-based point estimates. The Feenstra and quantity–value upper

bounds also very similar. It can also be seen that union of the Leamer bounds and

the quantity–value bounds are equivalent to the value-based bounds, precisely as the

theory predicts.

A.2.1 Quantity–Value Approach with Measurement Error

When regressing traded quantities on trade values, the probability limit of the OLS

estimates of δX abd δV are

plim δ̂X =
β(β − 1)σ2

η + γ(1 + γ)σ2
ε + (γ + β)2σuw

(1 + γ)2σ2
ε + (1− β)2σ2

η + (γ + β)2σ2
u

,

plim δ̂V =
β(β − 1)σ2

η + γ(1 + γ)σ2
ε + (γ + β)2σuw

γ2σ2
ε + β2σ2

η + (γ + β)2σ2
w

.
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These direct OLS estimates, when expressed in terms of βX abd βV , yield probability

limits equal to equations (13) and (12) respectively

plim β̂X = β + (β + γ)
(1 + γ)σ2

ε + (β + γ)σ2
u + (β − 1) (β + γ) (σ2

u − σuw)

(β − 1)σ2
η − (1 + γ)σ2

ε − (β + γ)2 (σ2
u − σuw)

., (35)

plim β̂V = β + (β + γ)
γσ2

ε + β (β + γ) (σuw − σ2
w) + (β + γ)σ2

w

βσ2
η − γσ2

ε − (β + γ)2 (σuw − σ2
w)

. (36)
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Figure A.2: Bounds using all three approaches and value-based point estimates, by 3-digit
HS, U.S., 1993-2006.
Source: UC Davis Center for International Data, authors’ calculations
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Figure A.3: Leamer bounds, value-based bounds and point estimates, by 4-digit HS, U.S.,
1993-2006.
Source: UC Davis Center for International Data, authors’ calculations
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Figure A.4: Leamer bounds, Feenstra bounds and point estimates, by 6-digit HS, U.S.,
1993-2006.
Source: UC Davis Center for International Data, authors’ calculations37
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Figure A.5: Value-based point estimates, quantity-based point estimates and Leamer
bounds by 3-digit HS, U.S., 1991-2015.
Source: Comtrade, authors’ calculations
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Figure A.6: Value-based point estimates, quantity-based point estimates and Leamer
bounds by 4-digit BEA commodity, U.S., 1993-2006.
Source: UC Davis Center for International Data and BEA, authors’ calculations
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