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This paper studies the decision problem of risk averse single-output producers and 

suppliers under uncertainties in input prices, in a two-moment decision model with 

the presence of a dependent background risk. This framework is based on the utility 

from the expected value and the standard deviation of the uncertain random total 

profit of the supplier. Our theoretical framework for studying producers’ responses to 

risks allows not only for analysing risk averse suppliers’ attitude towards endogenous 

and background risks, but also to identify how the changes in the connectivity (i.e. 

correlation) between these two broad sources of risks will affect the risk averse 

suppliers’ decision at the optimum. All comparative static effects are described in 

terms of the relative sensitivity of the supplier towards risks. This analytical 

framework has a number of potential application in development economics, such as 

optimal production decision under energy price uncertainty, output price uncertainty, 

and exchange rate uncertainty. 
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1. Introduction 

Exposure to risk is inherent within all businesses. Managers devote most of their efforts to 

avoid and mitigate risks for meeting their targets. Thereby, risk is a negative consequence or 

loss that materializes with a certain probability (e.g., Wagner and Bode 2006, 2008, 2009; 

Tang and Musa 2011). The higher the loss and probability of risk, the higher is the negative 

impact on a firm’s performance. Supply Chains (SC) of firms are inherently vulnerable to 

risk. While SCs have become more complex and globalized during the past decades, more 

severe SC incidents are reported in the news and academic world (e.g., Sheffi, 2007; Waters, 

2011). The number of negative events affecting SCs exceed by far the memorable natural 

hazards like the Japanese Tsunami or hurricane Katrina in the US. Two main impacts of SC 

risks have been confirmed by several authors (e.g., Meena et al., 2011; Tang and Musa, 

2011). On the one hand, Hendricks and Sighal (2005) observed a negative impact on 

financial performance of a firm after SC risk incidents. On the other hand, materialized risks 

have a negative impact on the operational performance of a SC (throughput, service level, 

lead times, etc.) (Wagner and Bode, 2008). Hence, SC risks must be considered by firms as 

seriously as other business risks (Elkins et al. 2005; Wagner and Bode, 2009; Heckmann et 

al., 2015). 

In a mature stream of literature on SC risk (e.g., Peck 2005, 2006; Wagner and Bode 2006; 

Pettit et al., 2013), various kinds of risks have been identified and classified. For instance, 

Chopra and Sodhi (2004) in their seminal work, characterized nine risk sources in SCs 

(disruptions, delays, systems, forecasts, intellectual property, procurement, receivables, 

inventory, and capacity). Whereas a simpler categorization by Jüttner (2005) comprises risks 

on the multiple fronts of demand, supply, and the environment. Rao and Goldsby (2009) and 

Sodhi et al. (2012) found that most of the articles are considered to be either qualitative or 

conceptual and more recently, Heckmann et al. (2015) classified them into four groups like 

modelling, conceptual, case study, and survey based. For quantitative descriptions of SC 

risks, one can find the following methodological approaches: optimization, multivariate 

analysis, stochastic programming, simulation, and real options (Tang and Musa, 2011). This 

demonstrates a certain difficulty to find a uniform or standardized method for describing SC 

risks and leaves great potential for developing applicable models for decision making. Since 

risks in practice are rather manifold, simultaneously hard to assess, and hidden along the 

entire SC, it is less feasible to fit them all into a specific risk model. 



 

The unique contribution of this paper is to employ a two-moment decision model in the 

context of a risk averse supplier facing uncertainties in input prices, with the presence of a 

correlated background risk, that can be thought of an aggregate of all other sources of supply 

uncertainty other than input price risk. For analytical simplicity, we have considered a single 

output supplier with fixed contract, facing stochastic production costs, stemmed from the 

uncertainties in input prices. The major advantage of the mean–standard deviation model lies 

in its simplicity and ease of interpretation. Its effects can be illustrated in terms of risk and 

returns, and such models remain two-dimensional even with multidimensional risks or choice 

variables. This approach enables us to directly model such decision problem without any 

specific assumptions on the higher-order and cross derivatives of the utility function. To the 

best of our knowledge, this is the first study contributing to the literature of supply chain 

uncertainty in this context. 

Although this modelling technique sometimes is misinterpreted as the special case of the 

standard von Neumann–Morgenstern expected utility framework, the two-moment decision 

making modelling approach is completely different and a novel-yet-simplest approach. The 

reason is: when the random variables under some choice set differ only in terms of the scale 

(standard deviation) and location (mean) parameters of the distribution, then an expected 

utility ranking of these random variables can be based on the means and standard deviations 

of the alternatives' risky outcomes, if uncertainty represented by a stochastic variable and the 

decision maker's decision variable interact in a linear way (Meyer, 1987) when uncertainty 

stems from the change in distribution of only one random variable (which is, in the context of 

this research, either only randomness in input prices or randomness in output prices). 

However, in the presence of above-mentioned background risk, on the top of price risks, with 

linear interaction between the risk averse supplier’s decision and the two sources of risks, the 

location – scale condition holds if these two risks are jointly elliptically distributed (see for 

example, Chamberlain, 1983; Owen and Rabinovitch, 1983; Eichner and Wagener, 2009). 

The rest of the paper in structured the following pattern: First, a review of the relevant 

literature looks into SC risks and their management. At this point we identify the most 

important risks and mitigation measures on the supply-side of a SC. Second, methods are 

explained and data collected from a group of SC experts. A detailed simulation thus 

investigates the impact of mitigation measures on total SC risk. Finally, theoretical and 

practical applications are discussed in the conclusion section. 



 

 

2. Supply-side Risks and Risks Management 

When investigating risks and the impact of mitigation measures in SCs, there are two areas of 

academic literature that support the research questions: (1) Risk in general and supply-side 

risks in particular, and (2) Risk Management.  

(1) Risk is a negative consequence or loss that materializes with a certain probability 

(Wagner and Bode, 2006; Tang and Musa, 2011). The higher the loss and probability of a 

risk, the higher the negative impact on firm performance. Several researchers identified such 

supply chain risks (e.g., Chopra and Sodhi, 2004; Wagner and Bode, 2009; Hopp et al., 

2012). Supply-side risks are of highest importance due to the high cost share of the 

procurement function. Since supply-side risks are a mature field of research, we conducted a 

literature survey in the selected management review, operations management, and MS/OR 

journals using Google scholar and Scopus. The search included articles from the year 2004 to 

2015. In total, we identified 33 comparatively different SC risks reported in these articles. 

Based on the frequency of occurrences, Table 1 lists the top ten SC risks. The given risks are 

still highly aggregated as more likely domains or areas of risk.  

Table 1: Important supply-side risks based on literature survey 

Supply-side Risks Selected Sources 

Contract risk Elkins et al. (2005); Van Weele (2010) 

Natural hazard risk Manuj and Mentzer (2008); Wagner and Bode (2009); 

Tang and Musa (2011); Meena et al. (2011) 

Technology, process, and 

infrastructure risk 

Olson and Wu (2010); Ritchie and Brindley (2009); 

Ivanov and Sokolov (2010) 

Supplier default risk Ritchie and Brindley (2007); Van Weele (2010) 

Supply quality risk Chopra and Sodhi, (2004); Tuncel and Alpan, (2010) 

Logistics/transportation risk Zsidisin, Ragatz, and Melnyk (2005); Wagner and 

Bode (2009) 

Supplier capacity risk Peck (2005); Bode and Wagner (2009) 

Price risk Hallikas et al. (2004); Zsidisin, Ragatz, and Melnyk 

(2005); Wagner and Bode (2009) 

Supplier lead time risk Talluri et al. (2013) 

Socio-political risk Tang and Musa (2011); Ivanov and Sokolov (2010) 

 



 

It is possible to find many sub-risks in these for further analysis. SC risk connectivity is the 

degree of interdependency of risks occurring at the same level or node of the SC.  Risks, 

even at the same level or node of a supply chain, are interconnected: supplier default risk can 

be connected with supplier quality risk or supplier capacity risk; socio-political risk can be 

connected with supplier default or quality risk. 

 

2. The Model 

Consider a single-output competitive producer’s profit function under supply uncertainty 

brought about input price risks. 

�̃� = 𝑝𝑥𝐹(𝑣) − 𝑝�̃�𝑣 + �̃�     (1) 

Where, 𝑝�̃� is distributed according to an objective cumulative distribution function over 

support [𝑝𝑣, 𝑝𝑣], denoting random per-unit price of input 𝑣 to produce output 𝑥. The 

production function 𝐹(𝑣) is concave, with 𝐹′(𝑣) > 0, 𝐹′′(𝑣) < 0. There is a aggregated 

background risk component, �̃�. Such background risk may be viewed as a weighted average 

of all random components affecting the supplier’s decision other than the pricing risk; 

namely quality uncertainty, contract risk, natural hazard risk, technology, process, and 

infrastructure risk, logistic/transportation risks, supplier capacity risk, lead time risk, and 

socio-political risk. For analytical simplicity, we assume that the background risk is additive. 

Expectation of background risk is: 𝐸(�̃�) = 𝜇𝑍. Input price risk and background risk are 

correlated. The preference function of the firm is 𝑈 = 𝑉(𝜇, 𝜎), with 𝑉𝜇(𝜇, 𝜎) > 0, 𝑉𝜎(𝜇, 𝜎) <

 0. In particular, we are implicitly assuming that the supplier is risk averse. 

Expected profit is given by: 

𝜇 = 𝐸(�̃�) = 𝑝𝑥𝐹(𝑣) − 𝜇𝑣𝑣 + 𝜇𝑍. 

Profit risk is defined as follows: 

𝜎 = √𝜎𝑣
2𝑣2 + 𝜎𝑍

2 − 2𝑣cov(𝑝�̃�, �̃�), 

where 𝜎𝑣, 𝜎𝑍 and cov(𝑝�̃�, �̃�) are respectively the standard deviation of input price risk, 

standard deviation of background risk, and the correlation between both sources of risk. 

Without any loss of generality, we are assuming linear correlation between these two 



 

elliptically distributed risks (Embrechts et al., 2002). Therefore, while expected profits 

exhibit a ‘trend shock’, profit risk does not. Notwithstanding, the standard deviation of 

profits depends upon both 𝑝�̃� and �̃�, since optimum profits depend upon the realisation of 𝑝�̃� 

and �̃�. Hence both arguments in the preference function are affected by volatility in input 

prices and the background risk. 

The marginal rate of substitution (MRS) between risk and return is defined by 

𝑆 = −
𝑉𝜎(𝜇, 𝜎)

𝑉𝜇(𝜇, 𝜎)
. 

𝑆 > 0 is the two-parameter equivalent to Arrow–Pratt measure of absolute risk aversion (or, 

equivalently, risk attitude). The supplier solves the following problem 

max
(𝑣≥0) 𝑉(𝜇, 𝜎).       (2) 

Before proceeding to the comparative static exercises, let us introduce fewer concepts that 

will be used in the analyses. 

Definition 1. The elasticity of the marginal rate of substitution between risk and return with 

respect to the standard deviation of the supplier’s random final profit is     

𝜖𝜎(𝜇, 𝜎) =
𝜕𝑆(𝜇, 𝜎)

𝜕𝜎
 

𝜎

𝑆(𝜇, 𝜎)
, with 𝜎 > 0. 

The elasticity indicates the percentage change in risk aversion over the percentage change in 

final profit standard deviation, keeping the mean 𝜇 constant. 

Definition 2.  The elasticity of the marginal rate of substitution between risk and return with 

respect to the mean of final profit is defined as  

𝜖𝜇(𝜇, 𝜎) =  
𝜕𝑆(𝜇, 𝜎)

𝜕𝜇
 

𝜇

𝑆(𝜇, 𝜎)
. 

The elasticity 𝜖𝜇(𝜇, 𝜎) indicates the percentage change in risk aversion over the percentage 

change in expected final profit, keeping the standard deviation 𝜎 constant. 

With these definitions in hand, let us begin with our first set of comparative static exercises, 

i.e. decision of optimal input usage only with respect to the changes in the distribution of the 

input prices. 

 



 

3. Optimum input supply without background risk 

To start with, we are assuming background risks, �̃�, is zero, i.e. 

�̃� = 𝑝𝑥𝐹(𝑣) − 𝑝�̃�𝑣        (1.1) 

The key comparative static exercise we are going to explore is how much does our supplier 

optimally uses input (and equivalently, optimally supplies) when facing uncertainties 

regarding the input prices. 

When we consider interior solutions of this decision problem (since, corner solution would 

fetch the possibility of 𝑣∗ = 0, which is not the focus of this paper: the risk averse supplier 

does always like to supply positive quantity at the optimum), the optimum is then determined 

by 

(𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣 − 𝜎𝑣 𝑆(𝜇∗, 𝜎∗)) 𝑉𝜇(𝜇∗, 𝜎∗) = 0    (3) 

Or, 

(𝑝𝑥𝐹′(𝑣∗)−𝜇𝑣)

𝜎𝑣
= 𝑆(𝜇∗, 𝜎∗)      (4) 

Where 𝑉𝜇(𝜇∗, 𝜎∗) > 0, 𝑉𝜎(𝜇∗, 𝜎∗) < 0, and the asterisk denotes the optimum. Hence, we are 

now going to demonstrate the comparative static properties of the model in relative terms, 

i.e., the comparative statics depend on how sensitively the supplier’s risk attitude responds to 

changes in expected final profit and risk. The left-hand side of this marginal condition (i.e. 

Equation (4)) describes the slope of the opportunity line; the right-hand side denotes the 

slope of the indifference curve. 

Corollary 1: When two single-product suppliers are competing among each other, but with 

different risk attitude, for example, S1 < S2 (i.e. firm 1 is more risk loving than firm 2), we 

would obtain 𝑣1
∗ > 𝑣2

∗. 

Proof. Given Equation (4), we have 

(𝑝𝑥𝐹′(𝑣2
∗) − 𝜇𝑣) > (𝑝𝑥𝐹′(𝑣1

∗) − 𝜇𝑣) 

Since 𝑅(𝐾) is a concave function, we obtain 𝑣1
∗ > 𝑣2

∗.    (Q.E.D.) 



 

Now let us first trace out the change in optimum input usage and output supply owing to the 

increase in the input price risk (i.e. increase in 𝜎𝑣). 

Since,  𝑉𝜇(𝜇∗, 𝜎∗) > 0, Equation (3) can be rewritten further as: 

𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣 − 𝜎𝑣 𝑆(𝜇∗, 𝜎∗) = 0      (3.1) 

Implicit differentiation of Equation (3.1) with respect to (w.r.t. hereafter) 𝜎𝑣 yields 

sgn (𝑑𝑣∗ 𝑑𝜎𝑣⁄ ) = −sgn 𝑆(𝜇∗, 𝜎∗)[1 + (𝜕𝑆(𝜇∗, 𝜎∗) 𝜕𝜎⁄ )(𝜎∗ 𝑆(𝜇∗, 𝜎∗)⁄ )] 

= −sgn[1 + 𝜖𝜎(𝜇∗, 𝜎∗)]                          (5) 

Hence, a risk averse supplier may optimally supply less when input price-risk increases, 

however, if and only if the elasticity of risk aversion is greater than −1. This leads to the 

following proposition. 

Proposition 1. Higher volatility in input prices leads to a reduction in optimum supply if and 

only if 𝜖𝜎(𝜇∗, 𝜎∗) > −1. 

Now we shall explore the relationship between the firm’s optimum supply decision with 

respect to a change in the expected input price, i.e., 𝜇𝑣. 

Implicit differentiation of Equation (3.1) w.r.t. 𝜇𝑣 yields 

sgn (𝑑𝑣∗ 𝑑𝜇𝑣⁄ ) = sgn(𝑅∗𝜖𝜇(𝜇∗, 𝜎∗) − 1)     (6) 

Where 𝑅∗ = 𝜎∗𝑆(𝜇∗, 𝜎∗) 𝜇∗⁄  can be shown (0, 1]: 

𝑅∗ = (
𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣

𝜎𝑣 
) (

𝜎𝑣𝑣∗

𝑝𝑥𝐹(𝑣∗) − 𝜇𝑣𝑣∗
) 

=
𝑝𝑥𝑣∗𝐹′(𝑣∗) − 𝜇𝑣𝑣∗

𝑝𝑥𝐹(𝑣∗) − 𝜇𝑣𝑣∗
≤ 1, 

Since by the concavity property, 𝐹′(𝑣∗) < 𝐹(𝑣∗)/𝑣∗. Hence, (𝑑𝑣∗ 𝑑𝜇𝑣⁄ ) < 0, if and only if 

𝜖𝜇 < 1. Hence, we can arrive at our next proposition. 



 

Proposition 2. An increase in the expected input prices may induce the supplier to supply 

less if and only if 𝜖𝜇(𝜇∗, 𝜎∗) < 1. 

Any change in the distribution of the input prices leads to an unequivocally negative 

“substitution effect” (lower supply due to higher price-risk) and an ambiguous “wealth 

effect” (similar to “income effect” in economics). Thus, the net effect (of the changes in the 

distribution of input price risk) on 𝑣∗ depends on the relative magnitudes of these two effects. 

 

4. Analysis with Background Risk. 

With background risk, the equivalent F.O.C. is: 

𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣 − (
𝜕𝜎

𝜕𝑣
)

𝑣=𝑣∗
𝑆(𝜇∗, 𝜎∗) = 0     (7) 

Now, we have (
𝜕𝜎

𝜕𝑣
)

𝑣=𝑣∗
= [𝜎𝑣

2𝑣∗ − cov(𝑝�̃�, 𝑍)]
1

𝜎
= (𝑝

𝑥
𝐹′(𝑣∗) − 𝜇

𝑣
) 𝑆(𝜇∗, 𝜎∗)⁄ > 0, 

since for optimal supply to be positive (𝑣∗ > 0), expected markup (i.e. 𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣) must 

also be positive. In other words, we are dealing with the interior solution of the F.O.C. in 

Equation (7). 

Next, let us trace out the impact on the decision to optimally supply owing to the changes in 

the covariance and also in the distribution of background risk (in relative terms). 

Implicit differentiation of Equation (7) w.r.t. cov(𝑝
�̃�

, �̃�) yields 

sgn (𝜕𝑣∗ 𝜕cov(𝑝
�̃�

, �̃�)⁄ ) = sgn [𝜖𝜎 −
1

𝑅(𝑣∗)
] 

where  𝑅(𝑣∗) = (
𝜕𝜎

𝜕𝑣
)

𝑣=𝑣∗
(

𝑣∗

𝜎(𝑣∗)
) > 0      (8) 

Therefore, for 𝜕𝑣∗ 𝜕cov(𝑝�̃�, �̃�)⁄ < 0, we must have 𝜖𝜎 <
1

𝑅(𝑣∗)
. This result confirms that our 

risk averse supplier will be inclined to supply lesser quantity when the input price is more 

highly correlated with the background risk, compared to the scenario when the correlation 

between the two sources of risk is low, if and only if 𝜖𝜎 <
1

𝑅(𝑣∗)
. These results can be 

summarized in our third proposition. 



 

 

Proposition 3. If both sources of risks become more concordant, the supplier would behave 

in more risk aversion fashion, if and only if 𝜖𝜎 <
1

𝑅(𝑣∗)
. 

Moving on to tracing out the implication of change in the volatility of background risk, 

ceteris paribus, implicit differentiation of Equation (7) w.r.t. 𝜎𝑍 gives 

sgn (𝜕𝑣∗ 𝜕σZ⁄ ) = −sgn [(𝜕𝜎 𝜕𝑣⁄ )𝑣=𝑣∗(𝜎𝑍 𝜎⁄ )𝑆𝜎(𝜇∗, 𝜎∗)].  (9) 

Therefore, 𝑆𝜎(𝜇∗, 𝜎∗) > 0. If we assume, following Eichner and Wagener (2009) that the risk 

averse supplier’s indifference curves enter the 𝜇- axis of the (𝜇, 𝜎) plane with zero slope [i.e. 

𝑆(𝜇, 0) = 𝑉𝜎(𝜇, 0) = 0], then as Eichner and Wagener (2003) proved, we too would have 

𝑆 − 𝜎𝑆𝜎 < 0, which is equivalent to stating that 𝑆𝜎𝜎 > 0. This property is termed as 

“variance vulnerability” property (a’ la Eichner and Wagener, 2003) of the risk averse 

supplier. 

In other words, higher degree of background risks will prevent the risk averse supplier from 

supplying more if and only if the indifference curve in the (𝜇, 𝜎)-plane is upward sloping and 

convex from the origin. Hence, we arrive at our next proposition. 

 

Proposition 4. The risk averse supplier will reduce optimum supply in response to the 

increased volatility of the background risk, if and only if 𝑆𝜎(𝜇∗, 𝜎∗) > 0. 

Similarly, by implicit differentiation of Equation (7) w.r.t. 𝜇𝑍 we obtain 

sgn (𝜕𝑣∗ 𝜕𝜇𝑧 ⁄ ) = sgn ((𝑑𝜎 𝑑𝑣⁄ )𝑣=𝑣∗𝑆𝜇(𝜇∗, 𝜎∗)) 

This implies 𝑆𝜇(𝜇∗, 𝜎∗) < 0, and the supplier shows decreasing absolute risk aversion 

(DARA hereafter) for 𝜕𝑣∗ 𝜕𝜇𝑧 ⁄ > 0. Hence we can state the following proposition. 

 

Proposition 5. The risk averse supplier may optimally supply more with higher expected 

background risk if and only if 𝑆𝜇(𝜇∗, 𝜎∗) < 0. 



 

 

5. A Parametric Example. 

Let us exemplify our propositions and their significance by a parametric example. We apply 

the following specific utility function, likewise Saha (1997); Eichner and Wagener (2009); 

Broll et al. (2015); Broll and Mukherjee (2017); and so on. 

𝑉 = 𝜇𝑎 − 𝜎𝑏        (10) 

The first-order condition of the supplier’s decision problem suggests slope of the opportunity 

line must be equal to the MRS. 

Our optimization exercise becomes 

max 𝑉(𝜇, 𝜎) 

with 𝜇 = 𝑝𝑥𝐹(𝑣) − 𝜇𝑣𝑣 + 𝜇𝑍  

and 

𝜎 =  [𝜎𝑣
2𝑣2 + 𝜎𝑍

2 − 2𝑣cov(𝑝�̃�, �̃�)]
1
2. 

The first order condition would become: 

𝑎𝜇𝑎−1[𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣] − 𝑏[𝜎𝑣
2𝑣∗2 + 𝜎𝑍

2 − 2𝑣cov(𝑝�̃�, �̃�)]
𝑏−2

[𝜎𝑣
2𝑣∗ − cov(𝑝

�̃�
, �̃�)] = 0 

Or,  

Φ = 0          (11) 

According to the “Definition 1” and “Definition 2”, the relative changes in the degree of risk 

aversion with respect to the standard deviation and mean of the random final profit are 

respectively,  

𝜖𝜎 = 𝑏 − 1, 𝜖𝜇 = 1 − 𝑎. 

Hence, from the F.O.C. we can derive the following results as corollaries to the propositions 

1-5. 



 

Corollary 2. Under the preferences given by (10), we have 

(a) An increase in 𝜎𝑣 (ceteris paribus), leads to the risk averse supplier to supply less 

optimally if and only if 𝑏 > 2. 

Proof. 
𝜕𝑣∗

𝜕𝜎𝑣
< 0 ⟺ Φ𝜎𝑣

< 0 

⟺ −𝑏𝜎𝑏−4𝑣∗𝜎𝑣[2𝜎2 + (𝑏 − 2)𝑣∗{𝜎𝑣
2𝑣∗ − cov(𝑝�̃�, �̃�)}] < 0 

Since, {𝜎𝑣
2𝑣∗ − cov(𝑝�̃�, �̃�)} = (𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣) 𝑆(𝜇∗, 𝜎∗)⁄ , which is positive as we are 

dealing with interior solution of the decision problem where the supplier always chooses to 

supply positive quantity, we can state that 𝑏 > 2 or 𝜖𝜎(= 𝑏 − 1) > 1 > −1 is the necessary 

and sufficient condition for the risk averse supplier to reduce the optimal quantity to be 

supplied, which is equivalent to our generic result in Proposition 1 (which states that the 

necessary and sufficient condition for 
𝜕𝑣∗

𝜕𝜎𝑣
< 0 is 𝜖𝜎 > −1). 

(b) An increase in 𝜇𝑣 (ceteris paribus) induces the supplier into more risk taking 

behaviour if and only if, 𝑎 > 0. 

Proof. 
𝜕𝑣∗

𝜕𝜇𝑣
< 0 ⟺ Φ𝜎𝑣

< 0 

⟺ −𝑎𝜇𝑎−2[𝜇𝑍 + 𝑎𝑣∗(𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣) + 𝑝𝑥(𝐹(𝑣) − 𝑣𝐹′(𝑣))] < 0. 

Now, since 𝐹(𝑣) is concave, (𝐹(𝑣) − 𝑣𝐹′(𝑣)) > 0, for interior solution (i.e. positive 𝑣∗), 

(𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣) > 0 (as argued before); 
𝜕𝑣∗

𝜕𝜇𝑣
< 0 if and only if, 𝑎 > 0, or 𝜖𝜇(= 1 − 𝑎) < 1, 

which is also identical to our generic result in Proposition 2. 

(c) Owing to an increase in 𝑐𝑜𝑣(𝑝�̃�, 𝑍), the supplier would behave in more risk aversion 

fashion, if and only if 𝑏 < (1 {𝜎𝑣
2𝑣∗ − 𝑐𝑜𝑣(𝑝�̃�, �̃�)}⁄ + 2). 

Proof. 𝜕𝑣∗ 𝜕cov(𝑝�̃�, �̃�)⁄ < 0 ⟺ Φcov(𝑝�̃�,�̃�) < 0, or, 

sgn (𝜕𝑣∗ 𝜕cov(𝑝�̃�, �̃�)⁄ ) = sgn [(𝑏 − 2) − 1 {𝜎𝑣
2𝑣∗ − cov(𝑝�̃�, �̃�)}⁄ ] < 0 

This would be true if and only if (𝑏 − 1) < (1 {𝜎𝑣
2𝑣∗ − cov(𝑝�̃�, �̃�)}⁄ + 1), which is also 

identical to our generic result in Proposition 3. 



 

(d) Owing to increase in 𝜎𝑍, the risk averse supplier will reduce optimum supply if and 

only if 𝑏 > 2. 

Proof. 𝜕𝑣∗ 𝜕σZ⁄ < 0, ⟺ Φ𝜎𝑍
< 0, or 

⟺ 𝑏(2 − 𝑏){𝜎𝑣
2𝑣∗ − cov(𝑝�̃�, �̃�)}𝜎𝑍𝜎𝑏−4 < 0. 

This would hold if and only if 𝑏 > 2, i.e. (𝑏
𝑎⁄ )(𝑏 − 1)𝜇1−𝑎𝜎𝑏−2 > 0 (since, 𝑎 > 0), or 

equivalently, 𝑆𝜎(𝜇∗, 𝜎∗) > 0. One should also note that 𝑏 > 2 implies 𝑆𝜎𝜎(𝜇∗, 𝜎∗) > 0 as 

well (i.e. “variance vulnerability” property also holds). Therefore, this result also confirms 

our generic result in Proposition 4. 

(e) The risk averse supplier may optimally supply more with higher expected background 

risk if and only if 

Proof. 
𝜕𝑣∗

𝜕𝜇𝑍
> 0, ⟺ Φ𝜇𝑍

> 0 

⟺  𝑎(𝑎 − 1)𝜇𝑎−2[𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣] > 0 

Since, for interior solution (i.e. positive 𝑣∗), (𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣) > 0 (as argued before), 
𝜕𝑣∗

𝜕𝜇𝑍
>

0 if and only if 𝑎 > 1, or 𝜖𝜇(= 1 − 𝑎) < 0, which is also identical to our generic result in 

Proposition 5. 

Thus all our comparative static results in Sections 3 and 4, stated in terms of propositions 1-5 

are satisfied in terms of the preference parameters 𝑎 and 𝑏 in the context of this specific 

market. 

 

6. Empirical Relevance 

In this section, we show how to an empirically estimate a risk averse supplier's preferences 

under mean–standard deviation approach of final profit. 

Using our specific utility function 𝑉 = 𝜇𝑎 − 𝜎𝑏, we obtain from the F.O.C. in Equation (4) 

(𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣) = (𝑏
𝑎⁄ )𝜇1−𝑎(𝑣∗)𝑏−1𝜎𝑣

𝑏      

 (12) 



 

Taking logarithms in both sides of Equation (12) we obtain, 

ln(𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣)𝑡 − ln(𝑏
𝑎⁄ ) + (𝑎 − 1) ln 𝜇𝑡 + (1 − 𝑏) ln 𝑣𝑡

∗ − 𝑏 ln 𝜎𝑣𝑡
+ 𝛿𝑡 = 0

 (13) 

Where “t” denotes time-observation, 𝛿𝑡 is error term. 

Let us present some numerical examples to illustrate propositions 1-2. Let the expected 

marginal revenue is 1.3, 𝑎 = 1; 𝜇𝑣 = 0.3. We consider three possible values for 𝑏 (=

2, 2.5, 1). Now we want to check for each of these three values for 𝑏, if we increase 𝜎𝑣 from 

0.1 to 1 (with an increment of 0.1), then how the optimum 𝑣∗ will be changed. We shall use 

the following formula for optimum 𝑣∗: 

𝑣∗ = [
𝑎(𝑝𝑥𝐹(𝑣∗)−𝜇𝑣𝑣∗)𝑎−1

𝑏𝜎𝑣
𝑏 (𝑝𝑥𝐹′(𝑣∗) − 𝜇𝑣)]

1

𝑏−1
    

 (14) 

So let us first solve Equation (14) for given 𝜎𝑣 and at 𝑏 = 2. We obtain 𝑣∗ = 50. Then for 

𝜎𝑣 = 0.2, 0.3, … ,1; the respective values of 𝑣∗ will be 12.50, 5.56, 3.13, 2, 1.39, 1.02, 0.78, 

0.62, 0.5. Similarly, we solve for optimum 𝑣∗ at 𝑏 = 2.5 and 𝑏 = 3; each for 𝜎𝑣 =

0.1(0.1)1. Let me summarise the results in the table below: 

 

Table 1: Optimum 𝒗 for different 𝝈𝒗 at 𝒂 = 𝟏; 𝝁𝒗 = 𝟎. 𝟑; expected MR = 1.3. 

 

𝜎𝑣 =0.1 𝜎𝑣= 0.2 𝜎𝑣= 0.3 𝜎𝑣= 0.4 𝜎𝑣= 0.5 𝜎𝑣= 0.6 𝜎𝑣= 0.7 𝜎𝑣= 0.8 𝜎𝑣= 0.9 𝜎𝑣= 1 

𝑏 = 2 50.00 12.50 5.56 3.13 2.00 1.39 1.02 0.78 0.62 0.50 

𝑏 =2.5 126.49 22.36 8.11 3.95 2.26 1.43 0.98 0.70 0.52 0.40 

𝑏 =3 333.33 41.67 12.35 5.21 2.67 1.54 0.97 0.65 0.46 0.33 

 

 



 

Figure 1: Values of optimum 𝒗 when 𝝈𝒗 rises 

 

 

From above table and figure, we can see clearly that when risk increases, the supplier's 

optimum supply 𝑣∗ will decrease. Also one should note that 𝜖𝜎(= 𝑏 − 1) > 1 > −1 for each 

of the cases 𝑏 = 2, 2.5, 1. This is in line with our Proposition 1 and Corollary 2(a).  

Turning to Proposition 2, taking the expected marginal revenue as 1.3, 𝑎 = 1; 𝜎𝑣 = 0.3; we 

obtain the following results: 

 

Table 2: Optimum 𝒗 for different 𝝁𝒗 at 𝒂 = 𝟏; 𝝈𝒗 = 𝟎. 𝟑; expected MR = 1.3. 

 

𝜇𝑣 =0.1 𝜇𝑣= 0.2 𝜇𝑣= 0.3 𝜇𝑣= 0.4 𝜇𝑣= 0.5 𝜇𝑣= 0.6 𝜇𝑣= 0.7 𝜇𝑣= 0.8 𝜇𝑣= 0.9 𝜇𝑣= 1 

𝑏 = 2 6.67 6.11 5.56 5.00 4.44 3.89 3.33 2.78 2.22 1.67 

𝑏 =2.5 9.16 8.65 8.11 7.56 6.99 6.40 5.77 5.11 4.41 3.64 

𝑏 =3 13.52 12.95 12.35 11.71 11.04 10.33 9.56 8.73 7.81 6.76 

 

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2

Optimum v (at b=2) Optimum v (at b=2.5) Optimum v (at b=3)

Values of optimum 𝑣 when 𝜎𝑣 rises

𝝈𝒗

𝒗∗



 

Figure 2: Values of optimum 𝒗 when 𝝁𝒗 rises 

 

 

Therefore, when the mean of the input prices increases, the supplier’s optimum supply falls 

when 𝑎 > 0(= 1). This is in line with Proposition 2 and Corollary 2(b). 

 

7. Concluding Remarks 

The aim of this paper has been to explore the decision of a risk averse supplier on how much 

to be optimally supplied under input price risk, with the presence of a correlated background 

risk. In the first case, when the supplier only faces changes in the distribution of the input 

prices, the risk averse supplier’s optimum supply decision is contingent upon the relative 

sensitivity of the risk aversion, i.e. the willingness to sell for changes in the distribution of 

the input prices. 

In the second case, the presence of additional supply-side risks, clubbed as a collective 

“background risk”, affects the decision making through additional riskiness and correlation 

with the input price risk. When the risk averse suppler confronts with higher background risk 

(ceteris paribus) or, most importantly, “tightly coupled” risks (i.e. interaction of the highly 

correlated price risk and background risk), the supplier would behave in more risk averse 

way. However, with only an increase in the expectation of the background risk, the supplier 



 

may supply more abroad if and only if the risk preference structure exhibits DARA (in the 

context of two-moment decision model). 

An attractive feature of the conditions we derive for the decision problem of the risk averse 

supplier using the two-moment approach is their simplicity in interpretation – the sufficiency 

conditions are based on the supplier’s relative sensitivity towards risks, which is more 

intuitive and appealing as empirically testable predictions; in contrast to the alternative (such 

as expected utility) approaches, which would depend on higher-order derivatives of utility 

functions and their composites. 
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