
Roger, Lionel

Working Paper

Blinded by the light? Heterogeneity in the luminosity-
growth nexus and the "African growth Miracle"

CREDIT Research Paper, No. 18/04

Provided in Cooperation with:
The University of Nottingham, Centre for Research in Economic Development and International
Trade (CREDIT)

Suggested Citation: Roger, Lionel (2018) : Blinded by the light? Heterogeneity in the luminosity-
growth nexus and the "African growth Miracle", CREDIT Research Paper, No. 18/04, The University
of Nottingham, Centre for Research in Economic Development and International Trade (CREDIT),
Nottingham

This Version is available at:
https://hdl.handle.net/10419/210842

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/210842
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


_____________________________________________________________________ 

CREDIT Research Paper 

 
No.  18/04  

_____________________________________________________________________ 

 

Blinded by the Light? Heterogeneity in the Luminosity-

Growth Nexus and the ‘African Growth Miracle’ 
 

by 

 

Lionel Roger 

Abstract 

 Night-time light emissions are a popular proxy for growth in circumstances where 

official data are deemed unreliable. We show that the underlying relationship varies 

substantially across countries, undermining the imposition of a single slope common in 

the literature. We propose a two-step method to improve country-specific growth 

estimates informed by night-light data, making use of a machine-learning algorithm to 

discern factors driving differences in the luminosity-growth elasticity across countries. 

The improved performance of this strategy over existing approaches is established in a 

number of simulation exercises. Applied to African data between 1992 and 2013 we 

find little evidence of an `African Growth Miracle' undetected by official statistics, as 

suggested by Young (2012); instead, we observe that countries which recently revised 

their GDP figures tend to report substantially inflated growth rates over recent years, 

in line with Jerven (2014)'s hypothesis of purely `statistical growth'. 
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1 Introduction

In 2011, Shanta Devarajan, then the World Bank’s Chief Economist for Africa,

declared ‘Africa’s statistical tragedy’ (Devarajan, 2013): While the continent fi-

nally seemed to have overcome its ‘growth tragedy’ (Easterly and Levine, 1997),

the trouble was that no one could actually be quite sure about it. Poor statis-

tical capacity, paired with the possibility of politically motivated misreporting of

economic performance led to widespread concerns about the reliability of GDP

figures, especially from sub-Saharan African countries (Jerven, 2013). The am-

plitude of the problem is prominently illustrated by the case of Nigeria, where,

after an extensive revision of the statistical office’s methodology, GDP figures were

revised upwards by 60% overnight. Indeed, since 2000, at least 14 African coun-

tries have performed a similar move, with revisions averaging around +20% of the

initial GDP estimates (NNBS, 2013).

While improving future estimates of economic performance does come with its

own challenges (financial, institutional and political), it is a relatively straightfor-

ward task from a technical point of view: compliance with international reporting

standards, more comprehensive and regular surveys across the economy, and ap-

propriate processing of the data can be implemented where there exists political

will and resources are made available. What is inherently more difficult to rec-

tify, however, is information on past growth performances: If Nigeria is now 60%

richer than we used to think, when exactly did this growth come about? Was

there indeed an ‘African Growth Miracle’ in the 1990s and 2000s that escaped

traditional measurement methods, as implied by Young (2012)? Or did African

countries already start into the 1990s with a substantially higher level of income,

and much of the growth that has been attributed to recent periods had actually

already happened much earlier in history (e.g., Jerven, 2015)?

The fundamental issue here is that any effort to correct past growth rates

using conventional methods will be likely to suffer from at least some of the same

deficiencies that also undermined the reliability of the original estimates: Surveys

of the economy – provided there is a will for them to be made available – may not

have been regularly collected. If beliefs about the structure of the economy at the

time of data collection were false, the way in which samples were constructed may

not have been representative of the actual structure of the economy. Historical

tax records may be inaccurate and by construction only cover the formal sector,

which in low-income countries typically accounts only for a small share of the

economy. And in case there has been any politically motivated tinkering with

the data, data recovered from statistical archives may itself have been subject to

manipulation. Statistically speaking, it seems impossible to obtain estimates of
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past growth rates with errors that are uncorrelated with those of the originally

reported growth rates.

Perhaps the most promising and innovative avenue to address this problem

is the use of historical satellite imagery, specifically man-made light emissions at

night. Several studies have established that there exists a high correlation be-

tween economic activity and luminosity, and that lights can therefore serve as a

surprisingly powerful proxy of GDP (e.g., Chen and Nordhaus, 2011; Ghosh et al.,

2010). Crucially, it can convincingly be argued that the measurement error in light

emissions at night is unrelated to the error associated with the figures reported by

national statistical offices. Henderson et al. (2012) offer a statistical framework

that exploits this property in order to construct estimates of GDP growth with

reduced overall measurement error. Combining growth estimates based on lumi-

nosity and reported GDP data, they present revised average growth rates for the

period between 1992 and 2006 for countries with low statistical capacity. While

they cannot discern any systematic pattern of over- or under-reporting in these

countries, the suggested revisions are very large for individual economies: In Nige-

ria and Angola, their growth estimates based on luminosity suggest annual growth

rates about half as high as the official ones: 1.92% instead of 4.04% in Nigeria, and

3.88% instead of 6.99% in Angola. On the other hand, some notoriously disap-

pointing growth performances are radically corrected upwards: In Côte d’Ivoire,

the Democratic Republic of Congo, and Burundi, the change in luminosity sug-

gests growth rates about 3 percentage points higher than official figures. Based

on assumptions about the amplitude of the measurement error in official data,

the authors then report weighted averages of the official growth rates and those

obtained from luminosity. For countries with supposedly bad data, they suggest

an optimal weight of about 50% for the luminosity measure.

The argument put forward in this paper is that the relationship between lumi-

nosity and GDP varies across countries, contrary to one of the central assumptions

of the literature that exploits this relationship. Under these circumstances, the

suggested revisions for individual countries may be highly misleading. To illus-

trate this, consider Poland and Thailand, two countries that are very different in

many respects, but with a similar growth performance over the past two decades

and data that is generally considered reliable: While in both countries, GDP ap-

proximately increased by 230% between 1992 and 2013, the luminosity emitted by

Poland increased by a factor of 2.5, while that of Thailand increased by a factor of

almost 5. One possible explanation is of course that at least one of these countries

has vastly mis-measured or mis-reported their GDP figures. Perhaps a simpler

explanation is that, for some reason, GDP and luminosity interacted differently

in these places. For instance, Poland started the period with a much higher level
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of income, it has a very different location (nearer the pole), a different economic

structure, more people living in urban areas, etc.

The aim of this study is to obtain estimates of past GDP growth rates that

take into account the heterogeneity in the relationship between luminosity and

GDP that can be explained based on such country characteristics. To this end,

we introduce an approach that consists in two steps: In a first step, we will

estimate country-specific coefficients determining the relationship between GDP

and lights1 – that is, our regression will allow for slopes to vary freely between

countries. In a second step, we seek to put some structure in the relationship

between luminosity and GDP: we now treat the coefficients obtained in the first

exercise as the dependent variable, and seek to identify the part of their variation

that can be explained by observable country-characteristics. This allows us to

make predictions of GDP based on luminosity values that take into account cross-

country heterogeneity in the relationship between these variables, to the extent

that this heterogeneity can be traced back to generalisable relationships.

Intuitively speaking, the reasoning behind this two-step procedure is that,

while the first step (estimation of country-specific slopes) does indeed allow for

full heterogeneity in terms of lights-GDP elasticity across countries, the resulting

estimates have no value when it comes to revising the reported growth rates.

Instead, any predictions of GDP growth based on lights using the parameters

estimated in the first step simply tend to replicate the reported growth rates,

whether these were mis-reported / mis-measured or not. The second step serves

the purpose of identifying the systematic part of the variation between them. We

can then predict expected elasticities between GDP and lights conditional on any

country’s characteristics. These conditional elasticities will then form the basis

for our predicted GDP growth rates: By allowing for elasticities to vary between

countries based on their characteristics, we acknowledge the fact that luminosity

doesn’t behave the same in every country of the world, and avoid suggesting large

revisions where these are unwarranted. But by restricting the heterogeneity to

the systematic component that is generalisable across countries, and based on

‘legitimate’ factors, we avoid the simple replication of potentially misreported

growth rates.

One fundamental difficulty we encounter when attempting to discern structure

in the elasticities between lights and GDP is that, unlike for most well-researched

economic phenomena (say, economic growth), there does not exist any theoretical

framework to offer guidance as to which variables may matter, and in what way.

1To clarify: Our study is concerned with GDP growth, not levels of GDP. For the latter,
lights are a relatively poor predictor, that is, they do not predict cross-country variation well
(Henderson et al., 2012). We do, however, predict relative GDP levels within countries, from
which growth rates are then derived. See section 3.2 for details.
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That is, any attempt to specify a model that is parsimonious from the outset

would necessarily be based on relatively arbitrary decisions, and risk the omission

of important predictors. However, in view of predictive accuracy, a certain degree

of parsimony is necessary in order to avoid issues of over-fitting. To overcome this

problem, we employ elastic net regularisation, and leave-one-out (LOO) cross-

validation as a means of obtaining optimal predictive properties. The intuition

behind this is simple: At the core, the elastic net is the ordinary least squares

estimator (OLS), augmented with penalty terms that have the role of shrinking

parameters (or to drop variables, where parameters are shrunk to zero). The

severity of these penalty terms is determined by parameters (α and λ) that can

be adjusted (tuned), typically with the aim of finding the model that yields the

most accurate predictions. The role of cross-validation is then to iteratively divide

the existing sample into a training-set (used to estimate the model) and a test-set

(used to test its predictions), so as to assess every model’s out-of-sample predictive

power. In other words, it finds the model that is most generalisable beyond the

narrow sample the estimator is presented with. We exploit this property in order

to identify the share of the variation in the estimated lights-GDP coefficients that

can credibly be attributed to observable country characteristics, and, crucially, is

not a result of mis-reported or mis-measured GDP data.

As the asymptotic and finite sample properties of our procedure are unknown a

priori, we test and demonstrate its potential on simulated data. We create a setup

in which some countries measure and report their GDP accurately, while others

systematically misreport it. Luminosity series based on the true growth rates

are then generated for every country. Crucially, we introduce variation across

countries in the elasticity at which GDP induces luminosity. This variation is

driven by a range of variables, some of which are simultaneously determinants of

GDP growth. The results suggest that, indeed, our suggested methodology has the

potential to improve the accuracy of GDP growth estimates based on luminosity.

This is mainly because, as opposed to estimators that assume a single elasticity for

all countries, our approach is less prone to suggesting revisions where the reported

data was correct in the first place. When applying our methodology to the real

data, this property appears to hold as well: Our estimator suggests substantially

smaller revisions to growth rates where the official data is recognised to be more

reliable (as suggested by the Penn World Table’s grades of data quality, ranging

from A to E). The alternative estimator that imposes a single slope applies larger

corrections throughout country grades, suggesting equally large revisions for the

countries with the supposedly worst data quality as for those with the best.

We then use our estimates to assess the growth performance of sub-Saharan

African countries between 1992 and 2013, and derive estimates of GDP growth
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rates based on changes in luminosity for each of the African countries in our sam-

ple. We find no indications of an ‘African Growth Miracle’ that would have gone

unnoticed by official statistics, as implied by Young (2012): While official growth

figures and luminosity based estimates diverge substantially for individual coun-

tries, there does not appear to be any particular directionality in this discrepancy.

On aggregate across the continent, the official growth rates are quite well aligned

with those obtained from the luminosity proxy. On the other hand, it appears as

though countries that recently revised their GDP figures after a prolonged period

of time (since 2000 and after at least 10 years; this applies to Botswana, Ethiopia,

Ghana, Niger and Nigeria) had a tendency to report inflated growth rates for

recent years. Between 2003 and 2013, these countries reported annual growth

rates of 7.5% on average, while our luminosity based estimates suggest an average

growth rate of 5.4%. This pattern is consistent with Jerven (2014)’s hypothesis of

‘statistical growth’. According to this narrative, recent improvements in statistical

capacity would have revealed a lot of economic activity that had previously gone

unnoticed by statistical authorities, and spuriously been accounted for as recent

economic growth. Finally, we consider growth rates of individual countries across

three sub-periods. The general pattern here is that the most extreme growth

performances – stellar growth episodes in individual countries or cataclysmic re-

cessions – tend to appear more moderate seen through the luminosity proxy.

We do consider our results to be an improvement over existing lights-based

estimates of growth rates, but emphasise that – like all results in this literature

– they are best considered to be of suggestive nature. Lights are inevitably an

imperfect proxy for economic activity, and idiosyncratic differences in the relation-

ship between lights and GDP beyond what we are able to discern in this study,

paired with randomness due to measurement error, may be driving substantial

shares of the remaining discrepancy between our predictions and reported growth

rates. The type of conclusion that we wish to draw from this exercise is not

that country X should revise its historical growth rates by precisely amount Y.

Instead, we consider our results suggestive of broad patterns, and as a valuable

complement to other sources of information, such as traditional types of data and

historical records. Furthermore, we stress the importance of the observation that

a substantial share of the discrepancy between reported growth rates and those

inferred from luminosity can be closed once we take into account the factors that

drive this relationship: National accounts data may come with deficiencies, but

the risk of overstating those deficiencies is as real as the risk of ignoring them.

The remainder of this paper proceeds as follows: section 2 discusses the pre-

vious literature on night lights. Section 3 describes our methodology. Section 4

applies our methodology to simulated data in order to test and illustrate its ba-
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sic properties. The empirical data we employ and any transformations to it are

described in section 5. Section 6 substantiates the observation that there exists a

sizeable amount of heterogeneity between countries in the lights-GDP relationship.

In section 7, we bring the method to the actual data, and in section 8 we apply

our estimates to recent growth rates from African countries. Section 9 concludes.

2 Literature review

Night time luminosity as a proxy for economic activity is generally employed for

two purposes: First, because of the resolution at which the data is available,

it allows researchers to move beyond the usual administrative units (typically

countries) when investigating the determinants and dynamics of economic devel-

opment (e.g., Alesina et al., 2012; Michalopoulos and Papaioannou, 2013; Hodler

and Raschky, 2014). Second, as it is inherently independent of the measurement or

reporting error by statistical agencies, it has a potential to augment these statistics

and to reduce overall measurement error (Chen and Nordhaus, 2011; Henderson

et al., 2012). It is the latter type of application this study is concerned with. This

section will provide a brief overview of the relevant literature.

To the best of our knowledge, the link between economic activity and lumi-

nosity emitted into space was first noted by Croft (1978). However, the data,

collected by weather satellites of the National Oceanic and Atmospheric Admin-

istration (NOAA), were not systematically stored and made available for research

until relatively recently. The first studies that systematically investigated and

exploited the lights-GDP relationship therefore only emerged in the early to mid-

2000s, with Sutton and Costanza (2002), Ebener et al. (2005), Doll et al. (2006)

and Sutton et al. (2007) each aiming to provide estimates of incomes at the sub-

national level. Ghosh et al. (2009, 2010), while still devoting much of their analysis

to sub-national distributions of economic activity, shift the focus to augmenting

reported national accounts data; in particular, they provide luminosity based es-

timates that are meant to incorporate informal economic activity not reflected in

official statistics.

A more formalised statistical treatment followed by Chen and Nordhaus (2011)

and Henderson et al. (2012). In both studies, the central aim is to augment official

income data at the country level with the information derived from luminosity. In

the presence of measurement error in official income (alternatively, output) data,

and with luminosity as a strong predictor of incomes with errors uncorrelated to

those in official statistics, there must be some linear combination of official figures

and those derived from lights emissions that minimises the overall measurement

error. In Henderson et al. (2012)’s notation:
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ŷi = λzi + (1− λ)ẑi

where zi are the reported official growth figures, ẑi is the luminosity based

proxy, and ŷi is the new synthetic measure of income (output) growth in country

(or region) i. The weight on the luminosity based proxy, (1 − λ), must then be

chosen such that, on expectation, the overall measurement error is minimised.

In their version of the analysis, Chen and Nordhaus (2011) derive such optimal

weights both for output levels and long-term growth rates, separately for countries

with different levels of statistical quality (A–E as classified in older versions of the

Penn World Tables (PWT)). Their findings suggest that luminosity adds value

for countries with low statistical quality (ratings D and E), and that its value

(as quantified by the optimal weights (1 − λ), or θ in their notation) is typically

higher when considering long-run growth rates rather than output levels. The

optimal weights they derive for the luminosity proxy reach just over 30% for long-

run growth rates in countries rated D, and less for other countries. Henderson

et al. (2012) focus on growth rates entirely. Instead of using the A–E rating from

the PWT, the authors rely on the World Bank’s rating of statistical capacity

and divide countries into only two categories, good data and bad data countries

(bad data being defined as scoring less than 3 out of 10 in the statistical capacity

rating). The optimal relative weights of lights and GDP for good and bad data

countries crucially rely on assumptions made about the signal to variance ratio

in reported GDP growth rates from good data countries. The authors’ preferred

choice, assuming 90% signal to variance in good data countries, implies a weight

of about 52% for lights for the 30 countries they qualify as having bad data, and

still 15% for those with good data.

Based on these weights, Henderson et al. (2012) compute the optimal GDP

growth rates for the 30 bad data countries in their sample (optimal in the sense

of minimising the expected total measurement error). The first important obser-

vation is that they do not find evidence of systematic over- or under-reporting of

growth rates across bad data countries. Instead, the discrepancies between official

growth rates and the lights-proxy average around zero. However, many of the

revisions suggested by their results are substantial: In Burundi, where official fig-

ures suggest a negative average growth rate of -0.71% annually between 1992 and

2006, the lights proxy suggests positive growth of 2.89% annually; weighted opti-

mally, the suggested average annual growth rate is 1.13%. At the other end of the

spectrum (and focussing on the African countries in the sample), Angola’s growth

rate is revised downwards from 6.99% annually to 5.38% (with lights suggesting

3.88%), and Nigeria’s from 4.04% to 2.94% (with lights suggesting 1.92%).
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A handful of studies have since been dedicated to gaining a deeper understand-

ing of the relationship between economic activity and lights. Using county-level

GDP series from Brazil, India, the United States and Western Europe, Bickenbach

et al. (2016) show that at a sub-national level, there exists large variability in the

relationship between lights and GDP. Within all of the economies they consider,

they find that the estimated elasticity between lights and GDP differs substan-

tially across regions. For instance, when regressing growth in lights on growth in

GDP, they report a small but significant positive coefficient on lights of 0.09 in

East India, but a negative significant one in West India (−0.14). For Brazil, their

estimates across five regions range between 0.37 (Centro Oeste) and 0.04 (Sul).

Similar discrepancies are observed in the USA and Western Europe, where the

reported GDP data are likely to be particularly accurate. The authors explore

several avenues to restoring parameter consistency (mainly through the inclusion

of a range of control variables, and restricting the sample in a number of ways),

but none of these succeed. They conclude that, at the regional level, luminosity

does not appear to be a useful proxy of economic growth. However, as the au-

thors note, their findings do not necessarily translate to the national level, where

parameters may still be constant.

Wu et al. (2013) explicitly seek to identify factors affecting the relationship be-

tween lights and GDP at the country level. Their analysis differs in one important

aspect from the bulk of the literature: Instead on regressing lights on GDP, which

studies that are concerned with proxying for GDP typically do, they employ lights

as the dependent variable and regress a number of potential determinants on it.

Their choices of variables derive from a rudimentary theoretical framework that

models lights as a normal consumption good. On this basis they hypothesise that,

beyond incomes, luminosity may be affected by factors such as the share of agri-

culture, savings, and latitude. Empirically, their model translates into a standard

linear regression with luminosity on the left hand side, and each of its hypoth-

esised determinants (including GDP) on the right hand side. GDP per capita,

latitude, the degree of spatial agglomeration and the savings rate are found to be

significant determinants of luminosity. Additionally, they separate GDP into its

agricultural and non-agricultural component, finding that non-agricultural pro-

duction is a much stronger driver of luminosity than agricultural production.2 In

a conceptually similar way, Levin and Zhang (2017) investigate the correlates of

luminosity in urban areas using the newer and higher resolution VIIRS luminosity

2Keola et al. (2015) make a similar observation about agriculture not being reflected as
distinctly by luminosity as other sectors, but to a more problematic degree than that observed
by Wu et al. (2013). In order to overcome the issue, they suggest combining luminosity data with
data on landcover, where growth in agricultural production is approximated based on changes
in cultivated land.
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data.3 They identify numerous variables (anthropogenic and physical) that affect

the luminosity of urban areas. The strongest and most persistent correlates be-

yond incomes are found to be snow cover (especially during winter months), rents

from fossil fuels, latitude and road density.

Studies of this type deliver useful insights as to what drives luminosity beyond

only GDP; it is important to highlight, however, that effectively they investigate

the determinants of luminosity, as opposed to the determinants of the relationship

between luminosity and GDP. The study at hand seeks to specifically address

the latter. Furthermore, beyond simply exploring factors that may alter the way

in which economic growth translates into changes in luminosity, we will offer an

empirical framework to improve the predictive power of the lights-based GDP

proxy in the presence of this type of heterogeneity.

3 Methodology: Addressing heterogeneity in the

relationship between GDP and lights

The literature that exploits luminosity as a proxy for economic activity typically

assumes a relationship (implicitly or explicitly) where economic activity generates

lights at some constant elasticity (e.g., Chen and Nordhaus, 2011; Henderson et al.,

2012; Keola et al., 2015). This elasticity is generally assumed to be the same across

all countries, an assumption this study aims to relax.

3.1 Conceptual framework

Our version of the framework therefore describes a basic relationship where eco-

nomic activity (Y ) generates luminosity (L) at some country-specific elasticity

βi:

Lit = Y βi
it ∗ exp(εit).

The relationship is perturbated by an error term εit, which we note for later has

the structure εit = εi+εt+εit, that is, the error term is a composite of time-specific

perturbations in year t = 1, ..., T (e.g., because of degrading and replaced lights-

sensors over time), country-specific perturbations in country i = 1, ..., N (e.g.,

different levels of light emission at the baseline), and an idiosyncratic error term

εit. Generally, E[εit] = E[εi] = E[εt] = E[εit] = 0. The country-specific elasticity

3The recently launched VIIRS series is superior to the DMSP-OLS series employed in this
study in a number of respects (Dai et al., 2017). However, data is only available from 2012
onwards, making the investigation of historical growth rates impossible.
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βi quantifies the extent to which economic activity translates into luminosity for

each country. Taking logarithms, equation 3.1 can be rewritten in linear form:

`it = βiyit + εit

with ` = ln(L) and y = ln(Y ). Since we are interested in predicting GDP from

luminosity, we rearrange this to

yit = γi`it − γiεit, γi =
1

βi
.

Since E[εit] = 0, and `it is fixed, E[Yit] = exp(γi`it), for some given inverse

elasticity γi in country i. This relationship can then be exploited in order to ap-

proximate (true) GDP Y in places where there is uncertainty whether the reported

data is accurate, or where such data is unavailable. Note that the focus lies in

growth rates (i.e., relative changes of Y over time within a given country), so the

absence of an intercept will have no bearing on the results of interest. We consider

the inverse elasticities γi to be a function of a set of determinants that vary at the

country level:

γi = f(Φi,Ψi, ηi)

where Φi are observable determinants, Ψi are unobservable determinants, and

ηi is a random variable.4 We deliberately do not attribute a specific functional

form to f(.), reflecting the fact that there is little theoretical understanding on

how exactly luminosity and GDP interact, and that, from an economic point of

view, there is little interest in describing it per se. Instead, our interest lies in

exploiting the aggregate manifestation of this relationship for predictive purposes.

To this end, we will seek to capture the share of the variation in γ that can

be attributed to the observables Φ, while remaining widely agnostic about the

underlying mechanisms.

3.2 Empirical approach: A procedure in two steps

The broad strategy that we adopt consists in two steps: First, as γi are unknown,

we obtain estimates γ̂i from a fixed effects regression that allows for country-

specific slopes (equation 1 below). Second, we employ the flexible elastic net

estimator to discern the part of the variation in the γ̂is that can be attributed to

observables (Φi) in a way that is generalisable across countries. This will allow

4For all intents and purposes, Ψi and ηi can be considered the same thing. The differentiation
is merely to indicate that we neither believe that we can empirically capture all factors that do
affect the relationship between lights and GDP, nor that it is entirely deterministic.
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us to predict expected inverse elasticities γ̃i, conditional on observable country

characteristics: γ̃i = E[γi|Φi]. These can, in turn, be used to predict Yit, on the

basis of which we can derive estimated growth rates.

Step 1: Estimating naive country-specific slopes (γ̂i): We obtain our first

stage estimates, γ̂i by estimating the following equation using least squares:

zit =
N∑
i=1

γi(`it ×Di) + αi + αt + εit (1)

where zit and `it are the logs of reported GDP figures and luminosity in country

i at time t respectively, Di are country dummies, and αi and αt are country and

year fixed effects. The time fixed effects are mainly necessary in order to account

for differences in sensor sensitivity across years (see data description in section 5).

The country fixed effects serve to absorb differences in levels across countries that

are constant over time, such as different baseline levels of brightness and differences

in units (GDP will be included in local currency units). In order to estimate the

parameters γ̂i, we therefore exploit the temporal variation of luminosity and GDP

within each country.

Step 2: Explaining γ̂i using the elastic net: The main challenge in our

second step is to select and weight relevant predictors of γ̂ from a large set of

candidate variables. At the core, this is because of the inherent lack of knowledge

about f(.): we have very little guidance when it comes to selecting the variables

to include in this predictive exercise (potential elements of Φ, labelled Φ∗). Econo-

metrically, this creates a situation with a large number of variables compared to

the number of observations (N countries). In order to avoid over-fitting – that

is, in order to identify the determinants that apply in a generalisable manner and

beyond our narrow sample – we make use of elastic net regularisation (Zou and

Hastie, 2005). The elastic net estimator is suited to situations with large amounts

of explanatory variables compared to the number of observations, and has been

shown to perform very well in selecting the relevant predictors. It minimises the

following criterion:

L(λ1, λ2, δδδ) = |γ̂γγ −Φ∗Φ∗Φ∗δδδ|2 + λ2|δδδ|2 + λ1|δδδ|1 (2)

with

|δδδ|2 =

p∑
j=1

δ2j ,
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|δδδ|1 =

p∑
j=1

|δj|

.

where δδδ is the vector of coefficients (weights) attributed to the elements of Φ∗Φ∗Φ∗,

which in turn is the set of potential determinants of γ we take into consideration.5

γ̂γγ is the dependent variable, that is, a vector containing the N γ̂is obtained from

estimating equation 1 above. Equation 2 is best discussed by considering the terms

seperately. The first term, |γ̂γγ −Φ∗Φ∗Φ∗δδδ|2 is the square of the residuals, reflecting the

same minimalisation problem as in OLS. The second term, λ2|δδδ|2 = λ2
∑p

j=1 δ
2
j , is

a penalty term, penalising for large coefficients. It is in fact the same term as in a

ridge regression (Hoerl and Kennard, 1970). The third term, λ1|δδδ|1 = λ1
∑p

j=1 |δj|,
is another penalty term, and corresponds to the one employed in a lasso regression

(Tibshirani, 1996). In fact, Zou and Hastie (2005) show that the minimisation of

L(λ1, λ2, δδδ) can be expressed as the optimisation problem

δ̂δδ = arg min
δδδ
|γ̂γγ −Φ∗Φ∗Φ∗δδδ|2, s.t. α|δδδ|1 + (1− α)|δδδ|2 < s for some s (3)

with (1− α) = λ2/(λ1 + λ2). In that sense, the elastic net penalty is a convex

combination of the lasso and the ridge penalty, with α determining the weight

between the two. In fact, both the lasso and the ridge estimator are nested in

the elastic net, as α = 1 corresponds to the lasso, while α = 0 corresponds to

ridge. Both α and λ (or, via algebraic detours, s) will then be calibrated using

n-fold cross-validation in order to minimise the out of sample prediction error (as

measured by the root mean squared error; see appendix F for a more detailed

discussion).

The elastic net estimator is particularly well suited for our application for a

number of reasons. First, it performs particularly well in the presence of large

numbers of predictors compared to the number of observations; in our empirical

application, we will include 57 variables for 129 observations (cf. section 7). Sec-

ond, as opposed to ridge, it has the lasso’s characteristic of selecting variables

(setting weights of poor predictors to zero). This facilitates the interpretation of

the output.6 Third, compared to the lasso, the results and predictions from the

elastic net tend to be more stable, especially if some of the independent variables

are strongly correlated. Fourth, lasso and ridge – the main contenders for the

choice of estimator – are nested in it, so if any of them is superior in terms of

5Ideally, the weights δ = 0 for elements of Φ∗ that are not part of Φ.
6Although we do not focus on the interpretation of the output per se, as our focus is on

predictive power. See Mullainathan and Spiess (2017) for a discussion of the interpretability of
output from machine learning procedures in general.
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out-of-sample predictive power, it will be selected (α = 0 or α = 1).7

Based on the estimated weights δδδ and the known values of Φ∗Φ∗Φ∗, we can then

obtain our predicted parameters γ̃i = E[γi|Φ∗
i ] and fit model 1 using γ̃i rather than

γ̂i. The result is, for each country, a full time series of predicted GDP values based

on luminosity emissions, where luminosity enters with a weight that is consistent

with the country’s characteristics (Ỹit = E[Yit|Φ∗
i , `it]). Growth rates are then

derived from the annual changes in these predicted values in the usual manner

(g̃it = Ỹit−Ỹit−1

Ỹit−1
).

3.3 Alternative estimators

While the main focus of our analysis lies on the results obtained using the two-step

procedure outlined above, we do use alternative modes of estimation for descriptive

purposes, for comparability with the earlier literature, and as a robustness check.

We briefly introduce and discuss the respective equations in this subsection, all of

which will be estimated using least squares.

In order to explore some patterns of the heterogeneity of γ in section 6, we will

divide our sample into G groups that are relatively homogeneous with respect to

selected characteristics. We then impose a single slope coefficient within each of

these groups, estimated via

zit =
G∑
i=1

γg(`it ×Dg) + αi + αt + εit, (4)

where Dg are dummy variables indicating membership to group g. We also

estimate a conventional fixed effects model that imposes a single inverse elasticity

γ for all countries:

zit = γxit + αi + αt + εit. (5)

This is the model employed by the bulk of the literature, including Henderson

et al. (2012) in their baseline estimations. Throughout the paper, equation 5 will

be treated as our main benchmark specification. As a robustness check and for

comparability, our results in section 8 will also be derived on the basis of this

specification.

7Another class of variable selection procedures we considered were step-wise General to Spe-
cific approaches, e.g. Hoover and Perez (2004), which are common in the cross-country growth
literature. The general procedure there would be to run conventional OLS regressions, and to
iteratively eliminate variables based on some measure of explanatory power, e.g., their t-ratios.
We found these to be very sensitive even to small changes (like the order in which the variables
are included) in terms of selected variables as well as in terms of predicted values. Overmore,
they had a strong tendency to overfit.
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Finally, note that when Henderson et al. (2012) proceed to inferring long-run

growth rates to augment the GDP data, they estimate a substantially simplified

cross-sectional equation. In the context of their study, this maintains tractability

of the statistical framework, and enables them to compute optimal weights for

the official data and the lights predictions (see section 2). We do not engage

in such computations, but rather seek to improve the accuracy of the predicted

growth rates directly. Nevertheless, we present basic results (estimates of long

term growth rates over the entire period) inferred from their simplified model. To

this end, we follow them in averaging our variables over the first and last two years

in the sample period (1992/93 and 2012/13), and take the log-difference between

these periods. The estimated equation is then

zLRi = α + `LRi + εi, (6)

where the superscript LR indicates long run growth rates as described.

4 Simulation exercise

The asymptotic and finite sample properties of the methodology outlined in section

3 are unknown. This is partly due to the econometrically unconventional challenge

that we are facing: We effectively seek to reduce measurement error in our target

variable (GDP growth) using a proxy that has an independent measurement error

(lights); at the same time, we wish to account for heterogeneity in the relationship

between this proxy and the measure of interest. Moreover, our methodological

strategy partly relies on machine learning techniques that have no analytical so-

lution. In order to assess the basic properties of our suggested methodology, this

section will therefore present a simple simulation exercise. Section 4.1 provides

a brief description of the data generating process (DGP), which is elaborated in

appendix B. Sections 4.2 and 4.3 illustrate different estimation strategies (long

difference, fixed effects with common slope, and our two-stage procedure described

in section 3) on a single simulated dataset. In section 4.4, we repeat this exer-

cise under 625 different parameter combinations on 31,250 simulated datasets in

a simple Monte Carlo type simulation, and discuss the key insights about our

estimator’s performance.

4.1 Data generating process

Our data generating process (DGP) is designed to reflect the econometric chal-

lenges we are facing, while being tractable in its statistical properties. The simu-

lated dataset needs to feature the following series: (i) a true measure Y (‘GDP’)
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(ii) an indicator plagued with measurement error, Z (‘reported GDP’), (iii) a

proxy for Y that has a measurement error independent of that in Z, ` (‘lights’),

and (iv) determinants (analogous to Φ) and potential determinants (Φ∗) of how

Y and L interact in every unit of observation i (‘country’); that is, determinants

of γ. We design our DGP to exhibit the following features:

1. The resulting series are designed to have econometric properties similar to

the observed data; this concerns time series behaviour, orders of magnitudes

and distributions of growth rates, and measurement error.

2. We introduce a set of countries with accurately reported data, and a set

of countries with poorly reported data. The latter category is modelled to

systematically report biased growth rates; the bias in any bad data country’s

growth rates is determined at random according to a uniform distribution.

Depending on the specific parameters, this distribution can imply a tendency

for bad data countries to over-report or under-report growth, or for the bias

to be centred around zero (no directional bias overall).

3. The elasticity with which y translates into `, γ, is designed to vary between

countries based on a set of determinant variables; our estimator will crucially

face the challenge of discerning those determinant variables from irrelevant

variables.

4. As a potential source of confusion for the estimator, we introduce some

overlap between the determinants of y and the determinants of the elasticity

γ; for instance, investment levels may both affect GDP growth and the

lights-GDP elasticity.

Table 1: Variable parameters in DGP

Parameter Description Example MC min MC max

Nbad Number of bad data countries 20 10 30
SDε Error in lights-GDP relation-

ship
µg µg/0.5 µg/2

Range misrep. Range of misreporting [−0.02; 0.03] [−0.05; 0] [0; 0.05]
SDγ Randomness in inverse elas-

ticities
0.05 0 0.1

Notes: This table summarises the parameters chosen for the DGP both in the illustrative
example above, as well as the range iterated though in the Monte Carlo type simulation. All
parameters are iterated through over an equally spaced grid with 5 values ranging from MC
min to MC max. µg is the respective country’s mean growth rate.

Appendix B provides a detailed summary of the construction of the series (i)–

(iv) designed to fulfil criteria 1–4. The dataset generated for this exercise comprises
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N = 150 units (‘countries’) over T = 22 periods (‘years’); figure 1 illustrates

the resulting GDP and luminosity series (solid and dashed lines respectively) by

plotting them for 12 randomly selected units of the dataset we use to illustrate

our procedure in sections 4.2 and 4.3. The key parameters are reported in table

1, along with the range of parameters that will be explored in section 4.4.

Figure 1: 12 simulated GDP and lights series

Notes: The solid lines depict simulated GDP series, the dashed lines the corresponding proxy
L as generated with the DGP described above for 12 randomly selected units.

4.2 Benchmark estimations

We compare the predictive qualities of our two-step estimator to two more conven-

tional estimators that have been employed in the literature, specified in equations

6 and 5 in section 3.3. Table 2 reports the estimated coefficients and prediction

errors for the single simulated dataset we analyse in this section for illustrative

purposes across different methods.

Long differences Henderson et al. (2012) obtain their estimates of long-run

growth rates (average annual growth between 1992/93 and 2005/06) from a sim-

plified, cross-sectional regression (equation 6 in section 3). On the left hand side,

they include the log-difference of GDP between the first and the last period, on
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Table 2: Predictive performance of estimators (example)

Long diff. FE (single slope) Two-stage

Estimated γ (true: 1.05) 0.24 0.29 0.57

Mean prediction error of average growth rate

Good data countries 1.01% 1.03% 0.66%
Bad data countries 1.15% 1.18% 1.04%
Total 1.03% 1.05% 0.70%

Notes: The estimated γ in the two-stage method refers to the mean across the N γ̂is. The
prediction errors are mean absolute deviations from the true average growth rate in each
country across the entire period.

the right hand side an intercept and the log-difference of luminosity between the

first and the last period. Based on this regression, they then predict the long-run

growth rate for every country based on luminosity. They then report annualised

growth rates derived from these values.

This drastic reduction of the dataset is necessary for their statistical framework

to be applicable (or remain tractable), where one key ambition is to derive optimal

weights for the luminosity based series and official GDP data. In this study, we are

not concerned with deriving such optimal weights, but rather with improving the

lights-based estimates directly by addressing slope heterogeneity. The framework

we suggest to this end crucially relies on the temporal variation within countries

over time, and we cannot (and need not) base our estimates on a purely cross-

sectional dataset. However, for direct comparison, we estimate Henderson et al.

(2012)’s specification on our simulated data. The estimated inverse elasticity γ̂LR

is 0.24 (compared to a true value of 1.05 on average). The predicted average

annual growth rates are, on average, off by about 1.03% in good data countries,

and by 1.15% in bad data countries. This is an improvement for the bad data

countries, where the reported GDP growth deviates from its true value by 1.54%

on average in this dataset. However, the prediction error is of a similar amplitude

for countries where the data is perfectly accurate, effectively deteriorating growth

estimates in these places.

Fixed Effects with single slope Next, we turn to the panel fixed effects esti-

mation with a common slope γ̂, equation 5. This is most similar to what most of

the empirical literature that uses night lights as a proxy of economic activity em-

ploys (e.g., Keola et al., 2015; Bickenbach et al., 2016); in Henderson et al. (2012),

the baseline estimates are derived from this specification. As it is better compara-

ble to our specification with country-specific slopes, we consider this specification

our main benchmark. In order to derive growth rates from the resulting estimates,
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we then produce predictions in levels, derive annual growth rates (GDPt−GDPt−1

GDPt−1
),

and average these over all periods for each country (see section 3.2).

The estimated coefficient γ̂ is 0.29, again substantially smaller than the true

average coefficient of 1.05. In the presence of measurement error, we would in-

deed expect the measured coefficient to be smaller than the structural one due to

attenuation bias. It is worth noting that a large portion of the bias still persists

even when we remove every source of measurement error from our DGP. In this

particular example, the absence of any measurement error in the DGP (leaving

everything else constant) leads to an even less accurate estimate of γ (0.25). This

is consistent with the finding that – where the heterogeneity in the slope is corre-

lated with the independent variable (as it is in our DGP, and as we suspect it to

be the case in the empirical data), a substantial aggregation bias can result from

erroneously imposing a single slope across all units of observation (Ul Haque et al.,

1999). Note that the direction of the bias depends on the sign of the correlation

between the independent variable and the slopes, and may as well be positive.

From a predictive perspective, the fixed effects estimates with a common slope

are roughly at par with the long differences: On average, they are off by 1.03% in

good data countries, and by 1.18% in bad data countries. As with the long differ-

ences method, this is an improvement for bad data countries, but with revisions

being almost equally substantial for good data countries.

4.3 Two-step procedure

Step 1: Estimating naive country-specific slopes (γ̂): In the first step, we

aim to derive country-specific slopes for each of the countries in the dataset. These

estimates are naive in the sense that they take the reported data at face value,

irrespective of whether these estimates are biased by any mis-measurement or mis-

reporting of GDP. We obtain our (naive) country-specific slopes γ̂i from estimating

equation 1 – the fixed effects regression from above, augmented by `it ×Di, that

is, N interaction terms between lights and the country dummies. Figure 2 plots

the estimated coefficients against the true values from the simulated data. The

circles indicate good data countries, the crosses indicate bad data countries as

defined above. The green diagonal line indicates γ̂i = γi, that is, the closer an

estimate is to the line, the more precise it is. Attenuation bias due to measurement

error biases the estimates down compared to their true values, that is, they are

plotted left of the green line in figure 2. At least in this example however, this bias

is weaker than the aggregation bias occuring where a single slope is erroneously

assumed, like in the estimators above. Note also that, due to measurement error,
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Figure 2: Actual versus estimated γ (simulated data)

Notes: Coefficients obtained from estamating equation 1 on the simulated data plotted against
the true coefficients. ◦ indicate good data countries, × are bad data countries. The green line
indicates γ̂i = γi. Attenuation bias from measurement error means the estimated values are
systematically below the actual ones; in the absence of measurement error, the green line and
the datapoints would entirely coincide.

a few γ̂i are negative, even though there are no true negative values of γ.8

On average, the luminosity coefficients obtained from estimating equation 1

are 0.57, much closer to the true average of 1.05 than both methods that impose

a common slope (setting all measurement error to zero in our DGP would yield

E[γ̂] = E[γ] = 1.05 in this example, with all estimated slopes being accurate; there

is no aggregation bias). Using the country-specific γ̂ as estimated to predict GDP

growth from luminosity does, however, by construction not have much potential

to improve estimates from bad data countries. Rather, it essentially reproduces

reported growth rates: For the countries with accurately reported GDP, the pre-

dicted growth rates are only 0.26% off compared to the true (and reported) growth

rates. For countries with systematically misreported GDPs (bad data countries)

it is off by 1.22% on average, which is worse than the previously discussed estima-

8It should be noted that the possibility of negative coefficients points at a limitation of the
conceptual framework adopted by most of the literature, including the study at hand: If the
coefficients obtained are strictly interpreted as the inverse elasticity γ = 1

β with L = Y β , then
a positive γ̂ near zero would imply a structural elasticity β near positive infinity. A negative γ̂
that approaches zero, however, would imply a structural elasticity β that approaches negative
infinity. We note this as a caveat from the narrative point of view, and where this is central
to the analysis it would be desirable to introduce a functional form that does not have such a
drastic discontinuity. In the study at hand, however, the purpose is purely predictive, with the
relevant parameter being γ.
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Figure 3: Actual and estimated determinants of γ

Notes: The bars depict the absolute contributions of each of the determinants of γ. The red bars
indicate the actual contributions, known from our DGP, the blue bars are the contributions to
the predicted γ̃, based on the elastic net estimation. Note that the typical importance of initial
GDP appears inflated in this representation, as the mean is driven by some outliers due to the
exponential distribution we chose for the variable.

tors. The aim of of the next section will be to discern the systematic component

in the variation in γ and improve the predictions for countries where data is poor.

Step 2: Explaining γ̂i using the elastic net In order to avoid simple replica-

tion of the reported growth rates by taking the country-specific slopes at face-value,

we will now employ the elastic net estimator in order to discern the systematic

component in the variation in slopes between countries. In the DGP described in

section 4.1 and specified in appendix B, γ had 8 determinants in total: 3 of them

are simultaneously determinants of economic growth, and 5 others are unrelated.

We also generated another 15 random variables that do not actually affect γ, but

that we will consider potential determinants. All of these variables are included

as independent variables in the elastic net estimator, with γ̂ as the dependent

variable. As discussed in section 3 and further in appendix F, the parameters of

the elastic net estimator are then tuned to attribute weights to the variables that

minimise the out-of-sample prediction error. The aim of this second step estima-

tion is therefore to discern the relevant predictors Φ from the pool of potential

predictors Φ∗, and to attribute optimal weights to each of them. These can then

be employed to derive estimates of γi conditional on country-characteristics Φi,

which we label γ̃i.

Figure 3 depicts the average composition of the γs in red, and the estimated
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contributions in blue. This is quantified by multiplying the estimated weights

δ̂ with the values of Φ∗
i for each country, and then averaging these across coun-

tries. If the elastic net was doing a perfect job in identifying the predictors and

their respective weights, the bars would therefore be identical. However, as we

introduced measurement error in our DGP, and the estimates of γi, γ̂i, are only

approximations of the true values (figure 2) the elastic net will naturally only cap-

ture parts of the structure. In this example, 6 out of 8 elements of Φ are correctly

identified, and 3 variables are falsely attributed non-negligible weights. Note that

the accuracy of these predictions strongly hinges on the amplitude of the diverse

sources of measurement error in our DGP: Setting them to zero completely aligns

true and estimated determinants; with increasing error, the elastic net attributes

smaller and smaller weights to the determinants, and – as a tendency – converges

to the unconditional mean. The R2 of the second stage in this illustrative example

is 50%, slightly lower than the 55% we will obtain in our empirical application.

Discerning the determinants of γ, however, is mainly an auxiliary goal in our

strategy. Ultimately, we aim to improve the predicted GDP growth rates from

changes in luminosity. Indeed, it appears as though we achieve this goal: In the

present example, the predicted GDP growth rates for good data countries are,

on average, 0.70% off when compared to the true growth rates; for good data

countries, the mean error is about 0.66%, a substantial improvement over the

other estimators. For countries with poor data the improvement is still present

but less substantial, with predictions now deviating from actual growth rates by

1.04% on average.

4.4 A simple Monte-Carlo simulation

The example presented above refers to a single iteration using a particular combi-

nation of parameters. While any artificial DGP will only provide a very stylised

view on the matter, we will now repeat the exercise above using several param-

eter combinations for the generated data. In order to keep computing time at

reasonable levels and the exercise tractable, we focus our attention on four key

parameters.9 For each parameter, we iterate through a grid of 5 equally spaced

values, which leads to a total of 625 parameter combinations. Each of these we

repeat 50 times, leading to 31,250 iterations in total. The parameters we vary are:

9The elastic net is a computationally demanding procedure, and one iteration of the procedure
outlined above (including data generation, estimation and prediction) takes about 1.4 seconds
to carry out on the computer that we have at our disposal (including λ-tuning, but excluding
α-tuning). In order to obtain reliable indicators of the estimators’ expected performance given
any parameter combination, we run 50 repetitions per parameter combination. In total, the
simulation takes approximately 12 hours to run in this specification.
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• Number of countries with flawed data (Nbad): When deriving the determi-

nants of γ, our setup treats all countries equally, which avoids any a priori

assumptions about the quality of their data. The larger the number of bad

data countries, the more influential these observations become and poten-

tially undermine the precision of our estimates.

• Error in lights-GDP relationship (SDε): The precision of any estimates will

obviously be influenced by the signal-to-noise ratio in our proxy variable

(luminosity). We therefore vary the standard deviation of the error term εit

in the relationship between lights and GDP.

• Bias in bad data countries (Range misrep.): Misreporting is modelled as

the systematic misreporting of growth figures within a country, where the

amplitude of the misreporting is a (uniformly distributed) random number.

We shift the limits of this distribution, so as to cover the hypothetical case

where bad data countries generally underreport growth rates (e.g, their sta-

tistical offices fail to pick it up), the case where they overreport (e.g., they

tend to manipulate figures upwards), and the case where misreporting has

no direction in particular.

• Randomness in γ (SDγ): The (inverse) elasticity of the relationship between

GDP and lights is unlikely to be fully deterministic, and not all of the de-

terminants are necessarily observable. Our method crucially relies on the

predictability of γ, so we will assess its performance under different values

of it.

The general pattern that emerges is that, in countries where the reported data

are accurate, our two-stage procedure is less prone to suggest false corrections.

Where the reported data are poor, the results are more ambiguous, and overall, the

estimators appear to be more or less on par in these cases. Especially as the bias

in mis-reporting becomes more systematic (that is, on expectation more different

from 0), its performance deteriorates, while the benchmark estimator assuming a

single slope γ remains relatively unaffected by this: In these cases, our estimator

has a tendency of being too ‘lenient’, and increasing parts of the bias from mis-

reporting are reflected in the γ̃is.
10 Appendix C compares the performance of the

estimators across the range of parameters specified in table 1.

Irrespective of the underlying parameters, we observe that the quality of our

predictions from the two-step procedure strongly hinges on the predictability of

10One promising avenue for future research would be to explore weighting country observations
by their statistical capacity or a proxy thereof, that is, giving reliable data more weight when
deriving the systematic component of the variation in γ̂. This would come at the cost of making
a priori assumptions about the quality of the data, but potentially enhance predictive accuracy.
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Figure 4: Mean absolute prediction error by R2 of second stage

Notes: The plotted values are obtained from sorting iterations into bins by their R2 in the second
stage (explanatory power of the elastic net), and then taking the mean absolute prediction error
within each of these bins.

our parameter γi, or more precisely of its estimate γ̂i: The larger the proportion

of the inverse elasticity that we can explain based on Φ∗, the more precise the

subsequent predictions of growth rates, conditional on luminosity. Figure 4 plots

the average prediction error in annual growth rates by the range of R2 in the second

stage, that is, how much of the variation in γ̂i is captured by the elastic net. The

values are obtained by grouping iterations of the simulation into bins, according

to the R2 of the elastic net in the second stage. The prediction errors from the

two-stage procedure are plotted in blue. For comparison, the average prediction

errors from the corresponding iterations obtained from the fixed effects estimator

assuming a common slope γ is plotted in red. For bad data countries, the two-stage

procedure does not substantially outperform the benchmark; instead the measures

are more or less on par. For good data countries, however, it does outperform the

fixed effects estimation even where very little (10-20%) of the variation in the γ̂i is

captured; fewer false corrections are applied to countries countries with accurate

data. As the explanatory power of the second stage goes up, so does the relative

advantage of the two-stage procedure.

Overall, this exercise suggests that there is a potential for the two-stage esti-

mator to improve the predictions based on luminosity by capturing some of the

heterogeneity, in particular by avoiding false corrections. Note also that, com-

pared to alternative approaches in the literature, we do not need to make any a

priori assumptions about countries’ data quality in order to obtain that pattern

(unlike approaches that compute optimal weights depending on the assumed data

quality). In the empirical application that follows, we will report both the esti-
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mates resulting from our procedure, as well as more conventional estimates based

on the assumption of a single slope. Reassuringly, the big picture of the results

remains similar irrespective of the estimator employed.

5 Data

The data we employ in our empirical application can be divided into two datasets:

The primary dataset consists in the series on GDP (Y ) and luminosity (L), our

main variables of interest. The second dataset contains the potential determinants

of this relationship (Φ∗). This encompasses a wide range of geographical and socio-

economic variables at the country level.

5.0.1 Main dataset: Lights and GDP

Lights: The series on luminosity we employ is derived from the version 4 of

the DMSP-OLS nighttime lights time series provided by the US National Oceanic

and Atmospheric Administration (NOAA). The data span from 1992 to 2013, and

come in 30 arc second grids, corresponding to a spatial resolution of about 1km2 at

the equator. It covers the surface of the earth between -65 and 75 degrees latitude,

which corresponds to almost the entirety of the earth’s inhabited land. For each

year, each of the ca. 700 million grid cells is attributed a luminosity value labelled

Digital Number (DN), ranging from 0 (very dark) to 63 (very bright). These values

are the result of pre-processing by NOAA staff, who combine cloud-free imagery

collected throughout the year, and remove glare from solar light, moonlit data, as

well as features from the aurora (northern lights).

One major issue with the use of luminosity data is the contamination with gas

flaring. In areas where residual gas from the production of petroleum-production

is burned, large flames almost constantly illuminate the night sky; in the DMSP-

OLS data, even moderately sized plants can lead to the top-coding (DN values of

63) of several kilometres square. In line with most of the literature, we therefore

remove gas flaring areas as identified by Elvidge et al. (2009). However, these

areas tend to be large and sometimes go far beyond the spots where the flares do

induce excess luminosity. In some areas (Nigeria in particular), this leads to a loss

of substantial parts of the country’s surface. In order to mitigate the problem, we

use MODIS data on landcover (version 5.1) to identify agglomerations (defined as

adjacent built-up areas larger than 10 km2) in the gas-flaring areas, and include

them with a buffer of 50km.

Top-coding is generally an important issue with the DMSP-OLS data: the

scale is capped at 63, and a large share of the lit cells take on this value. This
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can potentially come with a substantial loss of information at the top end of the

distribution (cells that are in reality brighter than what is required for a DN

value of 63). A number of issues follow from this: First, urban centres often

only consist of lit cells. Any increase in luminosity in these places will not be

reflected in the cells’ DN, and small decreases will go unnoticed where luminosity

is high (larger by some margin than the threshold for being top-coded). Second,

particularly densely lit countries (e.g., rich and densely populated ones) may be

disproportionately affected by top-coding, altering the relationship between GDP

and measured luminosity in these places. Our methodology aims at capturing such

effects, by deriving country-specific elasticities based on countries’ properties such

as population density and income per capita. However, this effect is taken to the

extreme in areas that are very small, like city-states and small island countries.

For this reason, and in line with most of the literature, we exclude countries with

a surface area smaller than 5,000 km2. This affects 29 countries, all of them small

island states and city-states.

Especially where the interest lies in growth rates, we must be concerned with

the consistency of luminosity measurements over time. Because the sensitivity of

the sensors declines over time, and satellites are replaced, the reported luminosity

data is indeed not immediately comparable across years. Broadly speaking, the

literature offers two ways of addressing this issue: The most common way, em-

ployed for instance by Henderson et al. (2012), is to include year fixed effects in the

regressions, absorbing global fluctuations in luminosity. Indeed, most of the time–

inconsistencies appear to be global, and mostly consist in shifts in levels. Another

option is to calibrate the luminosity data beforehand, especially where the nature

of the estimation does not lend itself to the inclusion of year fixed effects. For

instance, Tanaka and Keola (2017) propose a methodology for such adjustments

using presumably reliable GDP data from OECD countries as a benchmark to cal-

ibrate luminosity values. Elvidge et al. (2009) seek to identify spots on earth that

arguably emit constant levels of luminosity as a benchmark for calibration (and

choose Sicily). In our application, the inclusion of fixed effects appears to be the

econometrically more tractable option. Moreover, we can thereby avoid making

any strong assumptions about certain places’ constant emissions of luminosity, or

the accuracy of their GDP figures.

In 12 out of 22 years of the DMSP-OLS data, there do actually exist two

series, as satellites were in orbit at the same time and registered luminosity in

parallel. In line with Henderson et al. (2012) and most of the other literature,

we average across satellites in these years. The luminosity values we employ in

our series are expressed in DN/cell and computed for every country and year.

To this end, we take the sum of the luminosity values (DN) on the territory of
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each country, and divide it by the overall number of cells contained in it.11 Coun-

try borders are obtained from the GADM Global Administrative Areas database

version 2.8. Where countries’ territories have changed over time, we follow the

World Development Indicators in how we treat them. Where country GDP series

have retrospectively been split (e.g., Yugoslavia), we use these series and compute

luminosity using current borders. Where the GDP series is incomplete, we include

those years for which it is available. Depending on the exercise, countries with

incomplete data are excluded from the analysis (this is the case for the estimation

of country-specific slopes using equation 1).

Finally, when discussing luminosity data, it is worth noting that the DMSP-

OLS series has effectively been superseded by the VIIRS series. As shown by

Dai et al. (2017), the latter is superior in many respects: It has higher (effective)

resolution, is more consistent across years, and less plagued by issues of top-coding.

However, the purpose of our investigation is to recover historical growth rates, and

VIIRS data is available only from 2012 onwards.

Gross Domestic Product: The GDP series are obtained from the World

Bank’s World Development Indicators 2015 (WDI). As we are interested in real

GDP growth rates, we use the series in constant local currency units (labelled

NY.GDP.MKTP.KN in the WDI), that is, adjusted for inflation but without any

transformations aiming at rendering income values internationally comparable.

This is to minimise any distortions to growth rates stemming from adjustments for

purchasing power or exchange rates (see Deaton and Heston, 2010); furthermore,

it is the series with the widest coverage. The lack of international comparability in

levels is no concern, as our analysis does not touch on cross-sectional GDP levels,

and differences in units will be fully absorbed by country fixed effects.

Both luminosity and GDP values are included as logarithms in order for the co-

efficients to be interpretable in terms of elasticities and to conform to the method-

ological framework outlined in section 3.

5.0.2 Auxiliary dataset: Potential determinants of γ

Our secondary dataset consists in factors that are potential determinants of the

(inverse) elasticity between GDP and lights, labelled Φ∗ in the methodological

framework. Its purpose is to derive the key determinants of γ, and then to predict

11This follows a convention in the literature of considering the density rather than the absolute
level of luminosity emitted by each country. While this may be somewhat sensible from an
intuitive perspective, it has no bearings on our empirical results as the area of a country is fixed
over time, and the scaling will be fully absorbed by country fixed effects.
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expected values of γ̃ that are conditional on these factors for each country. As

in the present setup, γ varies across countries but is assumed to be constant over

time, this dataset is cross-sectional. Time-varying variables will therefore need to

enter in some aggregated form. Depending on the variable, we take averages over

the period 1992-2013, or initial values. Furthermore, for the lack of theoretical

knowledge of the lights-GDP nexus, it is unclear from the outset which transforma-

tion of any given variable is the most sensible one, and has the strongest predictive

power for γ̂. We therefore include the variables in up to three transformations: As

square roots (where this is numerically possible), in levels, and squared. Similarly,

the choice of the variables themselves cannot follow any rigid theoretical under-

standing of the relationship of interest, and a parsimonious specification cannot

be motivated on strong theoretical grounds (see section 3). The included variables

are therefore partly motivated from earlier studies concerned with the relationship

between GDP and lights (especially Wu et al., 2013; Levin and Zhang, 2017; Keola

et al., 2015; Bickenbach et al., 2016), and partly on speculative grounds. We then

leave it to the elastic net estimator to select the variables with a strong predictive

power for γ across and beyond the sample, and to attribute appropriate weights.

Table 3 lists all included factors and the included transformations. Most vari-

ables are obtained from WDI, with the following exceptions: Snow cover is ob-

tained from the National Snow and Ice Data Center; it corresponds to yearly

average snow cover (as a share of the land surface area), aggregated from monthly

data and within the borders provided by the GADM database. The absolute lati-

tude is the latitude of the centroid of a country, computed by the author based on

GADM borders. Furthermore, the sectoral growth variables (agricultural, indus-

trial, services and manufacturing growth) are relative contributions – they express

the share of total growth that is attributable to the respective macro-sector, that

is, they are not growth rates per se.

6 Heterogeneity in the relationship between GDP

and lights

Henderson et al. (2012), as well as the bulk of the studies using a methodology

similar to theirs, estimate a model of the type specified in equation 5 or 6. On this

basis, they estimate an inverse elasticity γ̂ (see section 3), finding a value of about

0.28. Throughout their analysis, this coefficient is assumed to be constant across

countries, and serves as a basis for assessing the accuracy of reported growth rates

in countries with poor statistical capacity.12

12In order to derive optimal weights and compute lights-adjusted growth measures, Henderson

29



Table 3: Potential determinants of γ (Φ∗)

Transformations
Variable Level Square Root Aggregation

Geographic (non-anthropogenic)
Snow cover X X Mean
Absolute latitude (centroid) X X X First
Surface area X X X First
Geographic (anthropogenic)
Population density X X X Mean
Population growth X X Mean
Urban population (share of total) X X X Mean
Forest area (share of total) X X X Mean
Agricultural land (share of total) X X X Mean
Economic
GDP level X X X First
GDP per capita X X X First
Investment (% GDP) X X X Mean
Consumption (% GDP) X X X Mean
Agriculture (% GDP) X X X Mean
Industry (% GDP) X X X Mean
Services (% GDP) X X X Mean
Manufacturing (% GDP) X X X Mean
Agricultural growth (relative) X X Mean
Industrial growth (relative) X X Mean
Services growth (relative) X X Mean
Manufacturing growth (relative) X X Mean
Fossil fuel revenues (% GDP) X X First

30



Figure 5: Estimated γ̂ in 142 countries

The plotted estimates are obtained from a two-ways fixed effects regression with countryspecific
slopes as specified in equations 1. Mean point estimate of γ̂: 0.25 (red line). Mean SE: 0.05.
Standard Errors are clustered at the country-level following MacKinnon and White (1985). The
errorbars indicate 95% confidence intervals. Bars highlighted in green correspond to African
countries.
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Figure 5 plots the coefficients obtained from estimating equation 1, that is, a

twoway fixed effects regression augmented by N `it ×Di interaction terms. This

allows us to obtain country-specific estimates of the slope coefficient γi. While each

of these estimated slopes is based on a small sample of 22 observations (1992-2013),

the strength of the relationship is such that most of the obtained coefficients are

statistically significant from zero at the 5% level (114 out of 142).13 The figure

plots the country-specific coefficients in descending order of the point estimate; the

precise values are reported in tabular form in appendix D. The errorbars around

the point estimates indicate 95% confidence intervals based on standard errors

clustered at the country level computed following MacKinnon and White (1985).

In view of our later application, the bars associated with coefficients for African

countries are highlighted in green. On average, the estimated γ̂ is 0.25, which is

marginally lower than the 0.28 obtained by Henderson et al. (2012), and lower

than what we obtain when estimating equation 5 on the sample at hand (0.30,

see section 7). But, crucially, few of the coefficients do actually correspond to

that mean: in 109 out of 142 countries, the coefficient is statistically significantly

different from the mean at the 5% level. At the extremes, Azerbaijan has the

highest γ̂i at 1.53, and Italy has the lowest at -0.67.

Naturally, the dispersion of the coefficients is the result of a conflation of fac-

tors. First, the OLS coefficient has its own variance by construction, and even

under perfect parameter homogeneity one would expect some variation across co-

efficients obtained from different random samples, even more so in the presence of

measurement error and where there is an element of randomness in the relation-

ship between the variables. However, as suggested by the fairly narrow confidence

intervals, this can only be a small part of the story. Second, there may be struc-

tural differences between countries in the relationship between luminosity and

economic activity that are driven by unobservable factors (Ψ); say, a culturally

driven preference for bright streets. Third, structural differences across countries

that are driven by observable factors (Φ) may lead to differences in the elasticities.

And finally, systematic mis-reporting or mis-measurement of GDP figures will be

reflected in different estimated elasticities across countries. The aim of this study

is then to identify the observable factors Φ that drive the relationship between

GDP and lights, compute expected true coefficients for each country conditional

on these observed factors, and derive luminosity-based growth rates based on those

conditional, country-specific coefficients.

et al. (2012) rely on equation 6 and exclude high-income countries specifically because their γ
appears to differ.

13As the luminosity data only starts in 1992, earlier studies had to rely on sample sizes that
were prohibitively short in order to rely on the time dimension to estimate elasticities based
merely on within country variation.
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Visually inspecting figure 5 already appears to be suggestive of some patterns.

Looking at the very top of the distribution, there appears to be a high number

countries where petroleum production accounts for a large share of the economy:

with Azerbaijan, Bahrain, Kuwait, Turkmenistan and Nigeria, 5 of the 8 countries

with the highest estimated inverse elasticities γ̂ are major oil producers. Beyond

misreporting and measurement error, this is compatible with a number of expla-

nations. For one thing, while we do remove areas that have been identified as

contaminated by gas-flaring by Elvidge et al. (2009), it is likely that some areas

with gas flares still remain (see section 5). Any growth-induced increase in lumi-

nosity may then be dwarfed by the brightness emitted by gas flares irrespective of

other economic activity, resulting in a low elasticity of lights with respect to GDP,

and therefore a high inverse elasticity γi. Alternatively, the relative cheapness

of electricity may imply that even at lower stages of development, luminosity is

already high, and further increases in GDP do not induce much additional lumi-

nosity. At the bottom of the distribution of γ̂is, on the other hand, there appears

to be a bunching of highly developed economies: 10 out of 34 OECD members

are among the 20 countries with the lowest γ̂. The average reported per capita

income in these places in the year 2000 was 24,865$ US, compared to 9,048$ US

in the remaining 122 countries (WDI 2015).

Table 4: Composition of the groups (all values are group means)

Grouping 1: Share of fossil fuels in GDP

Group Fossil fuels (%GDP) N
1 37.6 25
2 1.6 138

Grouping 2: Economic structure

Group Agric. (%GDP) Manuf. (%GDP) Services (%GDP) N
1 26.3 6.8 38.4 33
2 15.6 17.4 49.9 65
3 2.8 13.5 63.6 58

Grouping 3: Regime type (Polity IV)

Group PolityIV N
1 -8.0 16
2 0.3 65
3 8.5 75

Notes: Groupings 1 and 2 are obtained from a k-means clustering algorithm,
grouping 3 follows the Polity IV classification whereby any country with a rating
below -6 is classified as an autocracy, any above 6 as a democracy, and those in
between are labelled anocracies. See appendix A for details.

Figure 6 depicts the results from a grouped regression of the form specified in

equation 4. The plotted coefficients γ̂g are those on the `it ×Dg interactions, and
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Figure 6: Estimated γ̂ by groups of countries

Notes: The plotted estimates are obtained from a two-ways fixed effects regression augmented
by `it×Dg interaction dummies, as specified in equation 4. Standard Errors are clustered at the
country-level following MacKinnon and White (1985). The errorbars indicate 95% confidence
intervals. Details on the construction of the groups can be found in appendix A.

indicate the estimated inverse elasticity as obtained for each of the sub-groups

of countries. The compositions of the groups are summarised in table 4, with

details in appendix A. Grouping 1 uses a k-means sorting algorithm to divide the

countries into two distinct groups (see appendix A), based on the share of their

GDP that that is attributed to exports of fossil fuels (oil, coal, or natural gas).

The resulting groups are unequal in size, with a group of 25 countries that have

an average share of fossil fuels in GDP of 37.6% across the sample period, and a

group of 135 countries where fossil fuels make a very small contribution to GDP,

on average 1.6%. As it would be expected from what we observed in figure 5, the

point estimate of γ̂g is larger for the fossil fuel producing countries (0.38) than

for those with little reliance on fossil fuels (0.32). However, the precision of these

estimates is too low in order for these differences to reach statistical significance.

Grouping 2 is again based on k-means clustering, where countries are sorted

into clusters that are similar in terms of their economic structure, as measured

by the relative shares in GDP of the main sectors (agriculture, manufacturing,

and services, averaged over the sample period). The resulting groups are (1) a

group of 33 countries with a particularly high agricultural share in GDP (26.3%

on average, compared to 15.6% and 2.8% in groups 2 and 3), (2) a group of 65
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countries with a relatively even sectoral composition, and the largest average share

of manufacturing (17.4%), and (3) a group of 58 countries dominated by services

(63.6% of GDP, on average); the latter group comprises all 32 OECD members.

In line with what is suggested by figure 5, group 3 exhibits a much lower γ̂g

(0.17) than the two groups of countries that rely more on agriculture (0.36) and

manufacturing (0.33).

Grouping 3 divides the countries according to their regime type, as suggested

by the Polity IV index (averaged over the sample period; Marshall and Jaggers,

2002, updated version from 2014). Polity IV rates countries’ political regimes on

a scale that ranges from -10 (fully autocratic) to 10 (fully democratic). In order

to form groups, we apply the same threshold values employed by the Polity IV

project, whereby any country with an overall rating below -6 counts as an autoc-

racy, any country with a rating above 6 counts as a democracy, and any country

with a rating between these values counts as an ‘anocracy’. Again, the estimated

standard errors are too large in order for statistically significant differences to

emerge at the 95% level. But the point estimate for democracies (0.23) is, in

economic terms, substantially lower than that for anocracies (0.34) or autocracies

(0.43). This highlights another factor that may be contributing to the dispersion

of (inverse) elasticities: systematic misreporting. The observed pattern suggests

that autocracies emit less luminosity for every increase in reported GDP. This is

consistent with a situation where autocracies have a tendency to over-report their

growth rates. In fact, Magee and Doces (2015) draw precisely this conclusion

based on luminosity data.

Of course, there is some overlap between the groups of countries discerned

above and we have thus far not made any attempts at identifying the underlying

factors that drive differences in the γ̂g: For instance, rich economies tend to rely

more on services, and be more democratic (see appendix A). The analysis that

follows will therefore seek to isolate the relevant drivers of the elasticity between

GDP and lights, and to provide estimates of actual growth rates that take these

factors into account. Note that, in order to avoid replication of systematically

misreported growth rates, e.g. by undemocratic regimes, only factors that are

arguably ‘legitimate’ drivers of the lights-GDP relationship (that is, not suggestive

of misreporting, like regime type) will be considered in the predictive exercise in

section 8.
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7 Explaining the relationship between GDP and

lights

7.1 Estimating the relationship between GDP and lights

In what follows, we will establish the relationship between GDP and lights that

our predictions later on will be based on. In line with the discussion above, we do

so in three different ways: First, for reference, we estimate the long difference as

specified in equation 6; as in Henderson et al., we conflate the first and last two

observations in the sample period (1992/93 and 2012/13). Second, we estimate the

panel FE model as specified in equation 5. And third, we estimate country-specific

slopes in a fixed effects regression augmented by N `it ×Di interaction terms, as

in equation 1. Table 5 summarises the results obtained from these regressions.

Columns 1 to 3 summarise the cross-sectional long difference equation (equation

6), columns 4-6 the panel regressions (equation 5), and column 7 refers to the panel

regression with country-specific slopes. As the latter is only estimated for countries

where observations are available for all 22 years, we report the results for the other

models using the same sub-sample for reference (columns labelled ‘Compl.’). For

the models with a single coefficient (all except column 7), we also report the results

obtained when excluding OECD countries (columns labelled ‘No OECD’). This

is to create comparability to Henderson et al. (2012) who exclude rich economies

from their benchmark estimations, as they find their γ̂ to be smaller.

Table 5: Regression output for different models

Long difference Panel fixed effects Individual

Sample Max No OECD Compl. Max No OECD Compl. Compl.

ln(lights) 0.45∗∗∗ 0.43∗∗∗ 0.42∗∗∗ 0.30∗∗∗ 0.31∗∗∗ 0.30∗∗∗ 0.25�

(0.05) (0.06) (0.05) (0.04) (0.04) (0.03) (0.05)�

R2 0.36 0.32 0.36 0.20 0.20 0.22 0.53
Adj. R2 0.36 0.32 0.36 0.15 0.15 0.17 0.48
N 145 113 142 166 132 142 142
T (avg.) 21.16 21 22 22
Obs. 145 113 142 3512 2773 3124 3124
Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. �Average of country-specific coefficients (standard
errors). The results for individual countries are depicted in figure 5 and listed in appendix
D. The standard errors of all panel estimations (columns 4-7) are clustered at the country
level. R2 and adjusted R2 are within-R2 based on a FE model where the FE have been
differenced out, which explains why they are much smaller than the values typically reported
in the literature (see main text).

Focussing on the long differences reported in columns 1-3, the sample is nat-

urally limited to those countries where luminosity and GDP values are available
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in the years 1992/93 and 2012/13. Using the maximally available sample of 145

countries, the estimated coefficient is 0.45. Restricting the sample to the 113

non-OECD countries does not substantially reduce this estimate (0.43). In fact,

the impact of restricting the sample by only three countries (Finland, Iceland,

Myanmar) in order to match those employed for the estimation of country-specific

coefficients has a larger impact, reducing the estimate to 0.42. Either way, the

differences between the three estimates are small and within about half a standard

error of either estimate, therefore statistically negligible. Note that the values of

the estimated coefficients lie above the 0.32 obtained by Henderson et al. (2012).

This is likely to be due to differences in the sensitivity of satellite sensors across

time, which in the cross-sectional setup cannot be absorbed through time fixed

effects. The magnitude of the coefficient may then be sensitive to the choice of

sample period, without however affecting the predictive qualities within the re-

spective period.

Turning to the estimates obtained from panel fixed effects regressions (equation

5), reported in columns 4 to 6, these estimates are very much in line with the

bulk of the literature, where γ is typically estimated at around 0.3 for the global

sample (Henderson et al., 2012; Chen and Nordhaus, 2011; Keola et al., 2015). The

reported standard errors are clustered at the country level following MacKinnon

and White (1985). Across the sub-samples, there is very little variation in the

coefficient, with the exception that it slightly increases to 0.31 as OECD countries

are excluded from the estimation (column 5). Indeed, our inspection of figure 5 in

section 6 had suggested a bunching of OECD members among the countries with

the lowest γ̂, and we also found a lower value for economies that rely heavily on

services (figure 6).

Compared to most of the literature, consider also the substantially smaller

R2 and adjusted R2. This is due to computational differences: The within-R2

typically reported is based on the model with time fixed effects included as dummy

variables, and accounts also for the predictive power of those terms. We report

the R2 based on the same model but differencing out the time fixed effects; this

is computationally identical, but the resulting R2 does not encompass the fixed

effects’ explanatory power, which we deem more informative.14

Column 7 reports the aggregate results from the estimation of equation 1. The

reported coefficient of 0.25 corresponds to the mean point estimate across all coun-

tries in the sample. The standard error, 0.05, is the mean estimated standard error

for each of these coefficients. The point estimates of the coefficients themselves

14This is related to differences in the software packages employed. Most studies rely on Stata,
which reports a within- and a between R2 that includes the fixed effects’ contribution. We use
the plm package for R for our computations, which differences the fixed effects out.
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range between -0.67 (Italy) and 1.52 (Azerbaijan) with a standard deviation of

0.31 between them. Figure 5 in section 6 plotted the complete distribution of the

measured coefficients including their 95% confidence intervals, and appendix D

reports them in tabular form. The R2 is greatly increased when compared to the

other models, even when accounting for the inclusion of additional explanatory

variables (adjusted R2), which once more underlines the importance of slope het-

erogeneity in this context. The estimated average γ̂i of 0.25 is smaller than the

one estimated under the assumption of a common γ; the most direct comparison

is with column 6, the fixed effects estimate with a single slope (0.30). As discussed

in section 4, this discrepancy can essentially stem from two sources. First, mea-

surement error biases OLS estimates towards zero, more so in smaller samples. As

each of the coefficients we estimate is essentially based on 22 observations, this

may induce a slight decrease in the estimated γs. Second, an aggregation bias can

occur in a fixed effects estimation where slope heterogeneity is falsely assumed, as

we argue is the case (Ul Haque et al., 1999). The direction of this bias depends on

the sign of the correlation between the coefficient (γi) and the explanatory variable

(`), and can therefore not be determined ex ante.

7.2 Predicting country-specific γ̃i and growth rates

As noted in sections 3 and 4, taking the country-specific γ̂s as obtained from

estimating equation 1 defies the purpose of our investigation. Instead of providing

an indication of potential mis-measurement or mis-reporting of GDP, the resulting

predictions would merely replicate the reported long-run growth rates, along with

some noise. In order to circumvent this issue, we will now – analogous to section

4.3 with the simulated data – seek to identify the systematic component of the

variation in γ̂. To this end, we employ the elastic net estimator as described in

section 3.2, using the variables described in section 5 as potential determinants

of γ̂, Φ∗. Figure 7 plots the average absolute contributions of the variables to

the predicted coefficients γ̃i, for those variables that have been attributed non-

zero weights by the elastic net. Note that, for the ease of representation, the

graph aggregates the contributions of the variables in levels and their non-linear

transformations (squares and square roots). Similar to figure 2 in section 4.3, the

depicted values are average absolute contributions: for each country, we multiply

the value of a variable with the respective estimated coefficient (δ̂) – the variable’s

contribution to γ̃i – and then average these values across all countries.

When considering the determinants as elicited by the elastic net, it is impor-

tant to bear in mind the limitations that are inherent to most methods of machine

learning. While in predictive terms, these methods can often dramatically outper-
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Figure 7: Contribution of determinants to γ̃

Notes: The bars depict the absolute contributions of each of the determinants of γ̃i, on average
across all countries. Non-linear transformations and the variables in levels are conflated here for
readability. ‘Industrial growth’ etc. correspond to relative contributions of the sectors to total
GDP growth, that is, they do not correspond to actual growth rates.

form traditional statistical methods, great care must be exerted when interpreting

their output. As shown by Mullainathan and Spiess (2017), the resulting selection

of variables and weights can be quite unstable, even across models that have sim-

ilar predictive power. For the interested reader, we note however that among the

largest six contributors, (i) the share industrial growth, population growth and the

share of agricultural in GDP all increase γ̃, while (ii) the share of consumption

and levels of GDP per capita decrease γ̃. For the share of manufacturing growth

in total growth, the contribution is ambiguous, with the variable in levels entering

with a negative sign, and the squared variable entering positively. The estimated

coefficients are reported in appendix G. We are interested primarily in the pre-

dictive properties; in this respect, our variables can explain 55% of the variation

in γ̂ (as measured by the R2), and the out-of-sample mean squared error at the

optimal combination of α and λ is 0.07 (see appendix F for the cross-validation of

α and λ).

We can now use the expected elasticities γ̃i conditional on country-characteristics

Φ∗
i and luminosity values from each country to predict GDP levels, and then derive

growth rates from the relative changes in these levels (see section 3.2). The dis-

crepancy between the figures thereby obtained and the officially reported growth

rates (according to WDI) is then what we call the ‘suggested revision’ (as in, sug-

gested by the lights proxy). Figure 8 plots the amplitude of the revisions that
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Figure 8: Average corrections by statistical capacity

Notes: The bars describe the average correction suggested by lights based on the respective
estimator. While FE is indiscriminate as it makes similar corrections across countries of different
statistical capacity, the twostage estimator discriminates in the sense that growth rates of poor
data countries are corrected more.

are suggested by our two-stage method, compared to those obtained from a fixed

effects estimation that assumes a single γ. It disaggregates this effect by the sta-

tistical quality of the countries as rated in the Penn World Table (see Summers

and Heston, 1991), with grades ranging from A (best, e.g., USA) to E (worst, e.g.,

Chad).15 Two things can be noted: First, our estimator generally applies smaller

corrections to the countries’ average annual growth rates than the fixed effects

estimates (0.91 pp vs. 1.15 pp across the entire sample). Second, its estimates

suggest substantially smaller revisions on average for countries with supposedly

better data quality, and larger corrections to places with supposedly less reliable

data. This pattern is of course desirable, but almost entirely absent in the alter-

native estimates based on a single slope: there, the suggested revisions are equally

large across levels of statistical quality. We consider this observation indicative

of the idea that our estimates are less prone to suggest undue revisions in places

where the reported data is in fact accurate, a property that is also suggested by

our simulation exercise in section 4.

15Recent vintages of the PWT do not report such country grades anymore. An alternative
measure of statistical capacity is provided in the WDI, but this measure is not provided for most
high-income countries. Furthermore, the PWT estimates date from the beginning of our sample
period, and should therefore give a good representation of the initial quality of statistics.
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8 Application: Economic growth in Africa, 1992-

2013

We now turn to the assessment of recent growth performance in sub-Saharan

Africa. First, we will briefly review the academic debate, and then present our

own results. Note that in our own analysis, we do not engage in any formal

hypothesis testing in the statistical sense of the word. Instead, we seek to provide

well-grounded indicative evidence of growth patterns in SSA and whether these

are reflected in the luminosity data; our focus is therefore on the point estimates.16

8.1 An ‘African Growth Miracle’?

Perhaps the most optimistic view on recent economic developments in SSA comes

from Young (2012), who summarises his findings as the ‘African Growth Mira-

cle’. Based on increases in assets owned by households observed in Demographic

and Health Surveys (DHS) since 1987 and using education as a proxy for in-

come, he estimates that real household consumption per capita in sub-Saharan

Africa has been growing at an annual rate of 3.4% to 3.7% between 1991 and

2004. That is, up to four times the rate reported in national accounts figures.

From a methodologically very different perspective, Pinkovskiy and Sala-i Martin

(2014a,b) arrive at similarly optimistic conclusions. Combining growth rates from

national accounts with distributional data derived from household surveys, and

assuming a log-normal distribution of incomes, they find that poverty in Africa

had been falling at a much higher rate then previously thought. While optimistic

with regards to poverty, unlike Young (2012), they do not challenge aggregate

figures on GDP or consumption.17

Not all research shares this optimism. Harttgen et al. (2013), for instance,

strongly question the empirical foundations of Young’s ‘African Growth Miracle’.

They highlight that Young’s conclusions rest on a number of assumptions that are

unlikely to be met in reality. Crucially, Young assumes constant income elasticities

for assets, ignoring changes in preferences or relative prices. Using educational at-

tainment as a proxy for income, his results also rest on the assumption of constant

16The correct estimation of standard errors for coefficient resulting from estimators with reg-
ularisation terms, such as the elastic net we employ, is an open debate. For the elastic net,
there exists no analytical solution to derive standard errors. One possible avenue would be to
bootstrap the errors, but this does not overcome some fundamental conceptual issues. See, e.g.,
Dezeure et al. (2015) for a more comprehensive discussion of the issue.

17In fact, Pinkovskiy and Sala-i Martin (2014b) explicitly compare the accuracy of national
accounts data versus survey data as a measure of true income using light emissions at night
as a third and independent measure of income. They conclude that national accounts data
consistently outperform aggregate income estimates derived from household surveys.
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returns to education, ignoring the existence of a substantial body of literature indi-

cating that this is not the case. Beyond these methodological objections, Harttgen

et al. (2013) question the validity of asset based measures of consumption in gen-

eral: They show that, empirically, there is almost no correlation between the two

measures. Growth in asset ownership would therefore be more likely to reflect

lower disposal rates (new items last longer), or shifts in preferences and relative

prices, than unobserved growth in consumption. They conclude that the tradi-

tional view, whereby African economies stagnated until 1995 and then started to

grow, cannot convincingly be challenged on these grounds. In contrast to what

Young finds using changes in asset ownership, those income or consumption mea-

sures that are derived immediately from survey means typically indicate lower

growth than those reported in national accounts data. Mediating between Young

(2012) and Harttgen et al. (2013), Johnston and Abreu (2016) note that asset

based indexes are best used as a proxy for changes in wealth, rather than for

changes in income. While Young’s calculations may not be a fair challenge of na-

tional accounts data, they would however reveal substantial increases in household

wealth in wide parts of the continent.

Jerven (2014) reviews the evidence on the growth performance across Africa

over the past two decades, and reaches the conclusion that recent growth rates

are likely to have been over-reported. This is because GDP levels as such are

typically underestimated, as witnessed by recent revisions of GDP figures in many

countries across SSA, e.g., 63% in Ghana or 60% in Nigeria. As statistical capacity

is increasing, economic activity is being registered that previously went unnoticed.

This ‘statistical growth’, as Jerven labels it, appears to be particularly prevalent

in the years that precede a GDP rebasing. Because rebasing is a process that

spans over several years, the direction of future GDP revisions can become clear

long before the actual rebasing is declared; it may then be in the best interest

of statistical offices and incumbent governments to attribute much of the newly

measured economic activity to recent growth. Jerven emphasises that there is

likely to be substantial heterogeneity in the misreporting of recent growth figures,

and that countries with recent revisions in GDP levels are more likely to have

inflated recent growth figures than those where no such revisions took place.

Although they do not explicitly focus on African countries, Henderson et al.

(2012)’s examination of growth patterns based on changes in luminosity still con-

tributes to this debate. 24 out of 30 countries for which they present revised growth

rates (the countries with the lowest statistical capacity rating by the World Bank)

are African. The suggested revisions are negative for 13 of these countries, and

positive for 11; on average, their results suggest a moderate upwards correction of

about 0.12 pp annually between 1992 and 2006 for the 24 African countries with
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the lowest statistical capacity. The aim of the statistical exercise in this paper is to

re-assess and refine these estimates, accounting for the fact that the relationship

between luminosity and GDP growth may indeed differ across countries. Further-

more, we refine the analysis by considering growth patterns within sub-periods,

and across relevant groupings of countries.

8.2 The aggregate picture

We now assess the sub-Saharan African growth experience from 1992 to 2013

in the light of our estimates from an aggregate persepective. Besides looking

at the continent as a whole, we will disaggregate it into relevant groups in two

ways. First, we consider growth experiences of coastal, landlocked and resource-

rich countries separately; this typology by ‘opportunity group’ was introduced by

(Collier and O’Connell, 2009), and has arguably dominated and structured much

of the debate about African growth in recent years (see Thorbecke, 2015, for a

comprehensive overview of typologies). If there was evidence that across these

groups, there has been a substantial bias in reported GDP figures, this could be

considered an indication that at least parts the recent discourse have been flawed.

Second, we sort countries into groups according to whether they recently updated

their base years after a prolonged period of time, in order to examine whether

there is evidence supporting Jerven (2014)’s hypothesis of ‘statistical growth’.

We start by looking at the African continent as a whole, to assess whether there

is any support for an ‘African Growth Miracle’ as declared by Young (2012) in

the lights data. Figure 9 plots the trajectory of real GDP across three sub-groups

of African countries in our final sample, as well as across all these countries as a

whole. The reported values are the unweighted averages of real GDP levels, nor-

malised to their 1992 values. The solid blue line is derived directly from the official

values, as reported in the WDI 2015. The dotted red line reports the predictions

based on luminosity under the assumption of a common elasticity between lights

and GDP across all countries (the predictions obtained from equation 5, or the

model reported in column 6, table 5). The dashed green line plots the predictions

obtained from our two-step method with heterogeneous slopes as described in sec-

tion 3 and 4, and therefore accounts for differences in the relationship between

luminosity and GDP across countries.

Panel (a) presents the most aggregate picture of the evolution of real GDP

across the African countries in our sample. As suggested by the trajectory of

the blue line, the WDI report consistently high growth rates starting from 1994.

Across the entire period, the reported growth rates in the sample average at 4.28%.

A noticeable acceleration in growth rates occurs around 2003: the average growth
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rate between 1993 and 2003 is 3.34%, compared to 5.32% between 2004 and 2013.

Throughout the two decades we consider here, there appears to be, on average

across countries, no substantial discrepancy between officially reported growth

rates and those suggested by the luminosity series, whether we allow for hetero-

geneity in the γs or not. The series follow each other very closely, and only from

2007 onwards there is a slight discrepancy. However, as opposed to the narrative

of an ‘African Growth Miracle’ that would have gone unrecorded in the official

national accounts data, this discrepancy is indeed negative, with the luminosity

measure suggesting slightly less economic growth than the official data. Note how-

ever that the discrepancy is moderate: Over the entire period, the average growth

rate suggested by luminosity (with heterogeneous slopes) is 4.14%, 0.14 pp below

what the official data suggests. For the period after 2007, these figures are 5.32%

and 0.19 pp respectively. Overall, our aggregate results confirm Henderson et al.

(2012)’s finding, whereby there does not appear to be a systematic directional

bias in the mis-reporting or mis-measurement of GDP figures in SSA over the

past decades.

Figure 9: Growth performance by opportunity groups (Collier and O’Connell,
2009)
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(b) Coastal countries
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(c) Landlocked countries
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Coastal, landlocked and resource-rich countries: Arguably the most in-

fluential economic typology of African countries is that by Collier and O’Connell

(2009), who divide them into (resource-scarce) coastal, (resource-scarce) land-

locked, and resource-rich countries (Collier and O’Connell, 2009, p. 126–127). For

the period they consider, 1960–2000, they find that these are central defining fea-

tures of the growth performance of sub-Saharan African countries and developing

countries in general; while growth in SSA was disappointing during that period

across all three categories, it was worst for the category of landlocked countries,

a feature that is commonly considered a major impediment to the participation

in international trade and economic growth. Implicitly or explicitly, much of the

discourse about the economic performance of African countries has evolved along

these lines; if growth rates had been systematically mis-reported across these cate-

gories over the past two decades, this may therefore likely have flawed considerable

parts of the debate.

Panels (b)-(d) disaggregate the African sample into the categories suggested

by Collier and O’Connell (2009).18 All of the series we report agree on the stylised

fact that countries of all three categories have, on average, experienced substantial

growth over the past two decades. The most substantial discrepancy between of-

ficial growth rates and those suggested by changes in luminosity is for landlocked

countries: The WDI suggest some convergence here, with the historically stag-

nating landlocked countries growing at 4.42% annually, as opposed to 3.89% for

coastal and 4.29% for resource-rich countries respectively. Under the assumption

of a common slope across all countries, the luminosity data is somewhat more pes-

simistic in that respect. For the later part of the sample period (2007 onwards), it

indicates an average growth rate of 4.11% as opposed to the 4.42% suggested by

WDI for landlocked economies. However, once we account for the characteristics

that determine the relationship between GDP and lights, most of this discrepancy

is bridged; in fact, the arithmetic average of annual growth rates suggested by the

two-stage estimator is slightly higher than what WDI suggests, at 4.50%.

Countries that recently rebased GDP: Next, we seek to examine the hy-

pothesis that those African economies that have recently performed major rebas-

ings of their GDPs tended to report inflated recent growth rates (Jerven, 2014). As

discussed in section 8.1, this could be the case for a number of resasons: First, the

process of rebasing GDP estimates takes several years, during which the statistical

capacity typically increases. Some previously unrecorded activity may therefore be

18Note that Collier and O’Connell (2009, p. 77) report per capita figures and weight countries
by their population numbers when computing growth rates, as they seek to best describe the
‘experience of the typical African’. We discuss total GDP and focus on the accuracy of the
reported figures, and countries are therefore given equal weight.
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Figure 10: Growth performance of countries with recent GDP revisions
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(a) No major rebase since 2000
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(b) Major rebase since 2000

recorded, showing up as economic growth in official figures (‘statistical growth’).

Second, a rebasing will increase the accuracy of current GDP levels, but it does

not as such give any indication as to when the discrepancy between old and new

estimates came about - that is, when economic growth occured (or did not occur,

in the rare case of downward revisions). It can then simply be easier to attribute it

to recent years. Third, it is politically advantageous for current leaders to be asso-

ciated with good economic performance, and governments may opportunistically

push for growth to be statistically attributed to the present.

Figure 10 is identical to figure 9 in its interpretation, but splits the African

sample into those countries that recently had a major revision to their base year

(panel (b)), and those who didn’t (panel (a)). We define those as the countries

where (i) GDP has been rebased after the year 2000, and (ii) the previous base

year was at least 10 years before the new base year (the IMF recommends an

update to the base year every 5 years). This is the case for 5 countries, namely

Botswana, Ethiopia, Ghana, Niger and Nigeria. Indeed, the discrepancy is large,

in particular after 2003: While the average growth rate according to WDI in these

countries in this period is 7.49% (compared to 4.92% in the countries that didn’t

revise), their performance hardly exceeds the continent’s average when proxied by

lights. This is true both under the assumption of slope heterogeneity, suggesting

5.44% on average between 2003 and 2013 and when imposing a single slope for

all countries (4.83%). The exception among these countries is Niger, where the

two-stage estimates suggest a growth rate 1.10 pp higher than WDI (0.06 pp under

the assumption of a common slope).
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Figure 11: Growth according to official vs. lights data (individual slopes)

(a) Whole period 1993-2013 (b) 1993-1999

(c) 2000-2006 (d) 2007-2013

Notes: Colours indicate the discrepancy between average WDI growth rates and those obtained
from the luminosity proxy, with positive numbers indicating that the luminosity proxy indicates
higher growth. The colour coding is capped at -5 pp and 5 pp, meaning that individual dis-
crepancies can be larger. This is the case for MOZ, COD and BDI in panel (b), NGA, TCD
and ZWE in panel (c), and ETH, TCD and CAF in panel (d) (see appendix H). Borders are
obtained from maplibrary.org for illustrative purposes only, and the authors do not imply the
expression of any opinion concerning the legal status of any country, area or territory.
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8.3 Country-wise estimates

While a comprehensive discussion of individual countries’ growth records and their

conformance with the luminosity proxy is beyond the scope of this paper, we will

discuss some general patterns and particularly noteworthy cases. The maps in

figure 11 provide an overview over the discrepancies between the growth rates

reported in WDI and those predicted with the luminosity data, allowing for het-

erogeneity in γ. Equivalent figures under the assumption of a homogeneous γ as

well as all underlying values in tabular form are provided in appendix H. Negative

deviations (red) indicate that the lights measure suggests lower growth rates than

WDI, positive deviations (green) mean that lights suggest higher growth rates

than WDI. Note that the colour coding is capped at 5 pp and -5 pp deviation

in average annual growth rates, which is exceeded in a few cases (see notes of

the figure). The figure is divided into four panels: panel (a) depicts the average

growth rates over the entire period, 1993-2013 (the first period now being 1993,

as no growth rate can be computed for 1992 which is where our series in levels

starts). Panels (b)-(d) divide the period into three sub-periods of 7 years each.

As a general pattern, the luminosity proxy tends to relativise some of the more

extreme growth experiences, both high and low. For instance, a number of stel-

lar growth records do not find their equivalent in terms of luminosity emissions.

This is most pronounced for Mozambique, where growth rates average at 8.5%

in WDI. Our luminosity estimates suggest a figure that is 3.6 pp lower – a sub-

stantial discrepancy, although 4.9% growth annually is still far above the average

growth rate on the continent. Note also that the discrepancy is to the largest part

concentrated on the first sub-period between 1993 and 1999. While this coincides

with the country’s transition to democracy and a substantial wave of repatriation

(Sheldon and Penvenne, 2018), reported average growth rates of 10.6% (26.8%

in 1996) are not corroborated by light emissions (suggesting instead only 3.8%

of growth annually on average over that period). A similarly large discrepancy

emerges in the case of Nigeria, one of the countries that recently revised its GDP

estimates in a major way: WDI suggest an average growth rate of 6.0% per annum

over the entire period, luminosity only 3.2%. Again, the disagreement between

the luminosity series and official figures are highly concentrated in time. Between

2000 and 2006, WDI report an average annual growth rate of 9.9%, with a maxi-

mum of 33.7% in 2004. This spike is not reflected in the luminosity series, which

suggests a much more moderate 3.3%. In Ethiopia, the discrepancy between the

luminosity based growth rates and the reported ones is concentrated in the latest

period between 2007 and 2013. Where WDI report an average growth rate of

11.6%, our luminosity measure suggests 4.11%.
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At the other end of the spectrum, a few notoriously under-performing coun-

tries have increased their levels of luminosity far beyond what their official growth

record suggests. Interestingly, among the countries with the greatest positive di-

vergence between the luminosity proxy and WDI growth rates, there appears to

be a bunching of particularly conflict torn countries: The greatest positive dis-

crepancies occur in Burundi (3.3 pp), Zimbabwe (3.0 pp), and the Democratic

Republic of Congo (2.31 pp). In Burundi, the episode where the WDI and lumi-

nosity disagree most coincides with a prolonged period of extreme ethnic violence

and civil war. While between 1993 and 1999, the WDI register a decline of, on

average, 3.4% of GDP, luminosity increases to an extent that would suggest eco-

nomic growth of about 3.1% annually – a difference of 6.5 pp. In the Democratic

Republic of Congo, the worst official growth record is also in the first period from

1993 to 1999, a period encompassing the First Congo War (1996–1997). WDI

report an average decline of 4.17% for this period (–13.5% in 1993 alone). The

evolution of the luminosity data suggests a slow increase in economic activity of

1.72% per year. For Zimbabwe, WDI report an average decline of about 6.1% be-

tween 2000 and 2006, again a period marked by severe political tensions, including

wide-spread government violence. Luminosity values, however, suggest that the

economy would still have grown at 1.5% annually.

Evidently, many regularities collapse in periods of armed conflict, and the rela-

tionship between luminosity and GDP may well be one of them. For instance, the

destruction of a power plant can abruptly stop entire cities from emitting artificial

light, while much of the regular economic activity still takes place. On the other

hand, warfare in itself is an activity that may generate substantial amounts of

luminosity; at the extreme, a process of destruction may then be misinterpreted

as constructive economic activity. Once more, we highlight that we consider our

estimations as merely indicative of potential mis-measurement or mis-reporting.

While our methodology aims at incorporating some of the factors that alter the

relationship between lights and GDP, there are natural limits to this ambition.

Especially where the interest lies in individual countries or episodes, interested

scholars should carefully weigh the full body of evidence. Historical and institu-

tional knowledge, as well as official statistics, should in our opinion form the main

pillars of this evidence, and the luminosity can be a valuable complement where

it is weak otherwise.

9 Conclusion

The close relationship between economic activity and light emissions can offer a

unique perspective on historical growth records, especially where the data is weak.
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In this study, we raised the issue of heterogeneity, in the sense that economic

activity may translate into luminosity at different rates in different countries.

We offer a method that allows for the relationship to differ, to the extent where

this can be explained by observable country characteristics. We then apply this

methodology to economic growth in Africa over the past two decades.

At the core, our methodology seeks to disaggregate the elasticity between lights

and GDP, allowing for it to differ across countries. To this end, we split the

estimation of the relevant coefficients into two parts: First, we run a conventional

fixed effects regression, but including a full set of country × lights interaction

terms in order to allow for the slope to differ across countries. The resulting

estimates reveal a strong variation in the relationship across countries, but the

results have little value where the goal is to discern potential mis-measurement

or mis-reporting: Any predictions from this model would merely tend to replicate

each country’s reported GDP series. This is why, in a second step, we apply the

elastic net estimator to discern the part of the variation in the elasticity-coefficients

that can be attributed to observable country characteristics. On this basis, we can

then infer expected elasticities, conditional on countries’ economic and geographic

characteristics. The resulting coefficients are then used to derive GDP growth

rates based on luminosity emissions.

We explore some basic properties of this approach in a simple simulation ex-

ercise. The results suggest that, compared to methods that assume a single coef-

ficient across all countries, our method can offer substantial improvements in the

accuracy of the inferred growth rates. This is mainly due to the the fact that

our estimator suggests less false revisions where the data is indeed accurate. Our

simulations show that the relative success of the method strongly hinges on the

predictability of the elasticity coefficients based on observable characteristics in

a way that is generalisable beyond the narrow sample. With about 55% of the

variation in the parameter of interest (γ̂) explained in our empirical exercise, we

believe that our estimates constitute an improvement over those obtained from

more conventional methods that assume a common coefficient for the relationship

between GDP and lights across all countries. Indeed, we find that the revisions

suggested by our estimator are substantially smaller for countries with good sta-

tistical capacity than for those with poor statistical capacity, a desirable pattern

that does not occur when falsely assuming a common slope.

We apply our estimates to the debate about the recent growth performance of

African countries. Our results do not lend support to claims of an ‘African Growth

Miracle’ (Young, 2012), according to which African countries would have grown

at a rate several times higher than those recorded in the national accounts data.

Instead, our estimates suggest that, overall, the luminosity emissions of African
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countries appear to be in line with what official estimates suggest. When looking at

countries that recently rebased their GDPs after a long period of time (Botswana,

Ethiopia, Ghana, Niger and Nigeria), we find that these countries’ reported growth

rates tend to exceed the growth rates suggested by the luminosity proxy quite

substantially. This is in line with Jerven (2014)’s hypothesis of ‘statistical growth’,

according to which already existing economic activity is discovered with increased

statistical efforts, and in parts spuriously attributed to recent years.

When looking at individual countries’ growth performances, the main pattern

is that the most extreme growth records according to the national accounts data

– both negative and positive – are typically relativised by the luminosity proxy.

For instance, the stellar growth performances of Mozambique and Ethiopia over

the past two decades do not find confirmation in the luminosity data. While the

proxy still suggests that these countries grew substantially above average, it does

not corroborate official series that in some years suggest GDP growth rates of

more than 25%. On the other hand, some extremely negative growth records are

corrected upwards, and the most substantial discrepancies on this end of the spec-

trum are for Burundi, Zimbabwe and the Central African Republic. Interestingly,

the largest upwards revisions appear to be concentrated around periods of armed

conflict.

This latter observations illustrates our case that growth estimates based on

luminosity must be generally considered with care, and evaluated within the spe-

cific context: For instance, in periods of armed conflict, the mechanisms that are

normally at work in a country cease to function. This is true for the collection

of economic data by national statistical offices, but likely also for the interac-

tion between GDP and lights. A damaged power plant may cause the remaining

economic activity of an entire city to go unregistered by the proxy, while lumi-

nosity caused by purely destructive warfare activities may falsely be picked up as

economic growth.

The study sought to incorporate in its methodological framework some of the

country-specific context, by allowing the elasticity between GDP and lights to vary

with a country’s observable characteristics. This does not, of course, cover every

aspect of how luminosity is linked to GDP. This relationship may vary over time,

and be undermined by certain events, observable and unobservable ones. When

assessing any country’s historical growth performance, researchers have a plethora

of evidence to consider. Besides historical and institutional knowledge, national

accounts data, and individual and household level surveys, night time luminosity

should be treated as a valuable complement.
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A Sorting of countries in to groups/clusters

Table 6: Sorting of countries into groups

Fossil Econ. Regime Fossil Econ. Regime

Africa Swaziland 2 2 1

Angola 1 1 2 Chad 1 1 2

Burundi 2 1 2 Togo 2 1 2

Benin 2 2 3 Tunisia 2 2 2

Burkina Faso 2 2 2 Tanzania 2 1 2

Botswana 2 3 3 Uganda 2 1 2

CAF 2 1 2 South Africa 2 3 3

Côte D’Ivoire 2 2 2 Zambia 2 2 2

Cameroon 2 2 2 Zimbabwe 2 2 2

Congo, DR 2 2 2 Americas

Congo, Republic 1 1 2 Argentina 2 2 3

Djibouti 2 3 2 Bahamas 2 3 -

Algeria 1 1 2 Belize 2 2 -

Egypt 2 2 2 Bolivia 2 2 3

Eritrea 2 2 1 Brazil 2 3 3

Ethiopia 2 1 2 Canada 2 3 3

Gabon 1 1 2 Chile 2 3 3

Ghana 2 1 2 Colombia 2 2 3

Guinea 2 1 2 Costa Rica 2 2 3

Gambia 2 1 2 Cuba 2 3 1

Guinea Bissau 2 1 2 Dom. Rep. 2 2 3

Kenya 2 2 2 Ecuador 2 2 3

Liberia 2 - 2 Guatemala 2 2 3

Libya 1 1 2 Guyana 2 1 3

Lesotho 2 2 3 Honduras 2 2 3

Morocco 2 2 2 Haiti 2 - 2

Madagascar 2 2 3 Jamaica 2 3 3

Mali 2 - 3 Mexico 2 3 3

Mozambique 2 2 2 Nicaragua 2 2 3

Mauritania 2 1 2 Panama 2 3 3

Mauritius 2 3 3 Peru 2 2 3

Malawi 2 2 2 Puerto Rico 2 2 -

Namibia 2 2 3 Paraguay 2 2 3

Niger 2 1 2 El Salvador 2 2 3

Continued on next page
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Table 6: Sorting of countries into groups (continued)

Fossil Econ. Regime Fossil Econ. Regime

Nigeria 1 1 2 Suriname 2 2 2

Rwanda 2 1 2 Trinidad & Tob. 1 3 3

Sudan 2 1 2 Uruguay 2 2 3

Senegal 2 2 2 USA 2 3 3

Sierra Leone 2 1 2 Venezuela 1 2 2

South Sudan - - 2

Continued on next page
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Table 6: Sorting of countries into groups (continued)

Fossil Econ. Regime Fossil Econ. Regime

Asia Europe

Afghanistan 2 2 2

UAE 1 - 1 Albania 2 1 3

Armenia 2 2 2 Austria 2 3 3

Azerbaijan 1 1 1 Belgium 2 3 3

Bangladesh 2 2 2 Bulgaria 2 - 3

Bahrain 1 3 1 Bosnia and Herz. 2 2 2

Brunei 1 3 - Belarus 2 2 2

China 2 2 1 Switzerland 2 3 3

Cyprus 2 3 3 Czech Republic 2 3 3

Georgia 2 2 2 Germany 2 3 3

Indonesia 2 2 2 Denmark 2 3 3

India 2 2 3 Spain 2 3 3

Iran 1 2 2 Estonia 2 3 3

Iraq 1 - 2 Finland 2 3 3

Israel 2 - 3 France 2 3 3

Jordan 2 3 2 United Kingdom 2 3 3

Japan 2 3 3 Greece 2 3 3

Kazakhstan 1 2 2 Croatia 2 3 2

Kyrgyzstan 2 2 2 Hungary 2 3 3

Cambodia 2 2 2 Ireland 2 3 3

Korea 2 3 3 Iceland 2 3 -

Kuwait 1 3 1 Italy 2 3 3

Laos 2 1 1 Lithuania 2 3 3

Lebanon 2 3 3 Luxembourg 2 3 3

Sri Lanka 2 2 2 Latvia 2 3 3

Myanmar 2 1 2 Moldova 2 2 3

Mongolia 2 1 3 Macedonia 2 2 3

Malaysia 2 2 2 Montenegro 2 3 3

Nepal 2 1 2 Netherlands 2 3 3

Oman 1 3 1 Norway 2 3 3

Pakistan 2 2 2 Poland 2 3 3

Philippines 2 2 3 Portugal 2 3 3

Palestine 2 3 - Romania 2 2 3

Qatar 1 3 1 Russia 1 3 2

Saudi Arabia 1 3 1 Serbia 2 2 3

Continued on next page
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Table 6: Sorting of countries into groups (continued)

Fossil Econ. Regime Fossil Econ. Regime

Syria 1 2 1 Slovakia 2 3 3

Thailand 2 2 2 Slovenia 2 3 3

Tajikistan 2 2 2 Sweden 2 3 3

Turkmenistan 1 2 1 Ukraine 2 2 3

Timor-Leste 2 1 - Oceania

Turkey 2 2 3 Australia 2 3 3

Uzbekistan 1 1 1 New Caledonia 2 3 -

Viet Nam 2 2 1 New Zealand 2 3 3

Yemen 1 1 2 Papua New G. 2 1 2

B Data Generating Process (detailed)

B.0.1 Income data (Y )

Initial GDP per capita: In order reflect the highly right-skewed distribution of

national incomes, we choose an exponential distribution to generate initial values

of GDP per capita. We scale up the series to values of a similar order of magnitude

of empirically observed income levels as measured in US-Dollars:

yinit ∼ Exp(1) ∗ 10.000 + 500 (7)

The resulting distribution is depicted in the top left panel of figure 12.

Co-determinants of growth and γ: In order to satisfy requirement 4, we

introduce three variables that simultaneously determine GDP growth rates of Y

and the inverse elasticity between GDP and lights γ for each of the countries.

First, we introduce one arbitrary uniformely distributed variable v1 ∼ U(0.2, 0.8)

that will both increase GDP growth rates and affect each country’s γ (e.g., levels

of investment). Second, we introduce some beta-convergence, with countries that

have smaller initial GDP per capita values tending to have larger growth rates;

GDP per capita will also affect γ. And third, population growth will naturally

enter total GDP growth rates, and we include it as another determinant of γ (see

below).

Per capita GDP growth: In order to approximately match the mean and

variance of empirical per capita growth rates, we choose an unconditional mean

of per capita growth rates of 0.03; the expected annual growth rate per capita for
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Figure 12: Distribution of key series of the simulated data

Notes: Kernel density plots of the distribution of key values in the simulated data. The plotted
distributions refer to the simulated data discussed in sections 4.1 to 4.3.

any given country is then gi,det = 0.03 + (v1 − 0.5) + ((µyinit
− yinit)/10 ∗ µyinit

),

where µyinit
is the mean initial GDP per capita across countries; the last term

therefore introduces convergence. Beyond this deterministic component, we add

some stochasticity, and the average growth rates in each country are are distributed

gi ∼ N(gi,det, 0.01). Panel 2 in figure 12 plots the resulting distribution of average

per capita growth rates.

Population growth: To obtain figures similar to empirical figures in their

amplitude and distribution, we generate initial population numbers popinit ∼
Exp(1) ∗ 106; these then grow at country-specific rates popgrowth ∼ N(0.1, 0.1)

that remain constant across time. Figure 12, panel 3 plots the distribution of

population growth rates.

The final GDP series is then simply Yt = yt ∗ popt.
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B.0.2 Generating an imperfect proxy ` (lights)

Next, we generate a proxy ` of y, where y induces ` with (inverse) elasticity γ and

some measurement error. Importantly, we want to allow for γ to vary across units

of observation (countries) based on a number of determinants. We therefore first

introduce a basic DGP for γ.

DGP for γ: The country-specific component of the inverse elasticities γ are

partly determined by the confounding factors (v1, yinit and popgrowth) that affect

both the elasticities as well as GDP growth, and partly by factors that only affect

the elasticities. The latter are each generated as detj ∼ N(0, SDdet). We also

generate a number of identically defined variables that do not enter the γs, in

order to assess the variable selection properties of our proposed estimator. In the

present set-up, we generate 20 of these normally distributed variables, 5 of which

enter as determinants into the GDP predictions. The deterministic component

of the γs is defined as γdet = cγ +
∑5

j=1 detj + f(v1) + f(yinit) + f(popgrowth),

with cγ = 0.5. We add an element of randomness by generating the final γs as

γi ∼ N(γdet,i, SDγ). Panel 4 in figure 12 depicts the resulting distribution.

Proxy series `: Based on the generated unit-specific γis, we can now generate

luminosity measures from the true income measure Y . In line with section 3, we

determine Lit = Y βi
it ∗ exp(εit), where βi = 1

γi
. Moreover, εit = εt + εi + εit, such

that the measurement error in the lights-GDP relationship is a composite of a

time specific component (e.g., variability in the sensor sensitivity) that will be

accounted for with time fixed effects (εt ∼ N(1, SDtime) and an idiosyncratic error

(εt ∼ N(1, SDidio)).

Figure 1 plots Y and L for 12 randomly selected units (countries). The solid

line represents the simulated GDP series, and the dashed line represents L; as

intended, L follows GDP with some error, and with different elasticities in different

countries.

‘Bad data’ countries In order to simulate misreporting, we create another

series of reported GDP (z). We therefore divide our sample into two groups:

Good data countries, where the reported GDP data is accurate, that is, equal to

the true series. And bad data countries, where the reported GDP growth rates are

systematically biased. The direction and amplitude of the bias contains an element

of randomness. We opt for the systematic error to be distributed uniformly in a

range specified by Range misrep.. The number of bad data countries is determined

by Nbad
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C Results of simulation exercise

Figure 13: Predictive power across the parameter range

Figure 13 plots the mean error in the predicted average annual growth rates

across the (simulated) sample for a range of parameters. Each row shows how this
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measure changes as the respective parameter (see label of the x-axis) is changed,

keeping all other parameters constant. The values at which the (respectively)

other parameters are kept constant are Nbad = 20, SDε = µg/1.25, SDγ = 0.05

and a range of misreporting of U [−0.25; 0.25] (almost identical to the illustratory

example in the main body, with minor deviations as the intervals do not exactly

coincide with those values). The blue lines refer to the two-stage estimator, the

red line to the single-slope fixed effects.
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D Estimated country-specific coefficients γ̂i

Table 7: Country-specific γ̂

γ̂ SE γ̂ SE γ̂ SE γ̂ SE

AGO 0.44 0.02 DEU -0.16 0.06 KEN 0.23 0.04 POL 0.24 0.03
ALB 0.29 0.03 DJI 0.04 0.03 KGZ 0.12 0.04 PRI -0.24 0.11
ARE 0.41 0.05 DNK -0.06 0.04 KOR 0.68 0.07 PRT -0.26 0.05
ARG 0.16 0.05 DOM 0.52 0.05 KWT 0.79 0.07 PRY 0.07 0.04
ARM 0.50 0.03 DZA 0.14 0.04 LAO 0.36 0.02 ROU 0.04 0.03
AUS 0.27 0.08 ECU 0.12 0.04 LBN 0.14 0.03 RUS 0.24 0.04
AUT -0.13 0.05 EGY 0.39 0.05 LBR 0.34 0.01 RWA 0.47 0.02
AZE 1.53 0.04 ESP -0.05 0.08 LKA 0.45 0.04 SAU 0.34 0.04
BDI 0.03 0.03 ETH 0.54 0.03 LSO 0.16 0.04 SDN 0.42 0.03
BEL 0.05 0.07 FIN -0.02 0.05 LUX 0.19 0.06 SEN 0.20 0.04
BEN 0.20 0.03 FRA -0.27 0.08 MAR 0.23 0.04 SLE 0.30 0.02
BFA 0.45 0.03 GAB -0.19 0.04 MDA 0.35 0.02 SLV 0.03 0.06
BGD 0.59 0.05 GBR 0.04 0.11 MDG 0.06 0.04 SUR 0.14 0.04
BGR 0.14 0.05 GEO 0.26 0.02 MEX 0.00 0.07 SVK 0.01 0.02
BHR 1.12 0.12 GHA 0.51 0.04 MKD -0.08 0.05 SWE 0.00 0.02
BHS -0.24 0.09 GIN 0.10 0.04 MLI 0.54 0.03 SWZ -0.04 0.04
BLR 0.32 0.03 GMB 0.07 0.02 MNG 0.46 0.03 TCD 0.40 0.02
BLZ 0.22 0.03 GNB 0.20 0.01 MOZ 0.58 0.03 TGO 0.13 0.04
BOL 0.21 0.04 GRC -0.20 0.06 MRT 0.27 0.04 THA 0.17 0.03
BRA 0.14 0.05 GTM 0.13 0.03 MUS 0.45 0.06 TJK -0.09 0.08
BRN -0.16 0.04 GUY 0.19 0.04 MWI 0.40 0.05 TKM 0.76 0.05
BWA 0.28 0.04 HKG 0.65 0.17 MYS 0.34 0.03 TTO 0.46 0.04
CAF 0.21 0.02 HND 0.13 0.03 NAM 0.36 0.05 TUN 0.32 0.05
CAN 0.05 0.03 HUN -0.01 0.05 NER 0.24 0.04 TUR 0.22 0.04
CHE -0.18 0.06 IDN 0.31 0.04 NGA 0.75 0.05 TZA 0.54 0.04
CHL 0.28 0.04 IND 0.86 0.05 NIC 0.20 0.04 UGA 0.62 0.04
CHN 1.05 0.03 IRL 0.57 0.05 NLD 0.00 0.07 UKR 0.38 0.02
CIV -0.08 0.03 IRN 0.26 0.05 NOR -0.03 0.02 URY 0.20 0.04
CMR 0.20 0.05 IRQ 0.51 0.04 NPL 0.26 0.04 USA -0.01 0.09
COD 0.07 0.05 ISL 0.03 0.02 NZL 0.09 0.08 UZB -0.05 0.05
COG 0.14 0.03 ISR 0.59 0.09 OMN 0.06 0.03 VEN 0.07 0.07
COL 0.28 0.06 ITA -0.67 0.09 PAK 0.46 0.09 VNM 0.37 0.02
CRI 0.35 0.04 JAM -0.50 0.09 PAN 0.52 0.04 YEM 0.11 0.03
CUB 0.22 0.04 JOR 0.48 0.04 PER 0.42 0.04 ZAF 0.18 0.08
CYP 0.13 0.07 JPN -0.33 0.12 PHL 0.33 0.05 ZMB 0.72 0.05
CZE 0.05 0.05 KAZ 0.52 0.02 PNG 0.08 0.06 ZWE 1.22 0.03
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E Value and composition of γ̃i by country

Table 8: Country-specific coefficients γ̃

ALB 0.28 COG 0.32 HUN 0.17 MRT 0.43 SEN 0.24
ARG 0.19 COL 0.20 IDN 0.35 MUS 0.30 SLE 0.36
ARM 0.24 CRI 0.20 IND 0.47 MWI 0.21 SLV 0.24
AUS 0.14 CUB 0.08 IRL 0.09 MYS 0.28 SUR 0.16
AUT 0.01 CYP -0.04 IRN 0.26 NAM 0.25 SVK 0.22
AZE 0.89 CZE 0.23 ITA -0.14 NER 0.43 SWE 0.00
BDI 0.35 DEU -0.07 JAM 0.06 NGA 0.33 SWZ 0.20
BEL 0.08 DJI 0.20 JOR 0.25 NIC 0.17 TCD 0.44
BEN 0.21 DNK -0.07 JPN -0.18 NLD 0.07 TGO 0.29
BFA 0.30 DOM 0.19 KAZ 0.31 NOR -0.07 THA 0.30
BGD 0.77 DZA 0.26 KEN 0.28 NPL 0.25 TJK 0.07
BHR 0.81 ECU 0.29 KGZ 0.04 NZL 0.02 TTO 0.48
BHS 0.20 EGY 0.32 KOR 0.34 OMN 0.36 TUN 0.19
BLR 0.36 ESP -0.07 KWT 0.76 PAK 0.30 TUR 0.24
BLZ 0.12 ETH 0.32 LAO 0.40 PAN 0.21 TZA 0.34
BOL 0.33 FRA -0.09 LBN 0.26 PER 0.28 UGA 0.37
BRA 0.16 GAB 0.07 LKA 0.31 PHL 0.33 UKR 0.40
BRN -0.04 GBR -0.09 LSO 0.23 PNG 0.29 URY 0.09
BWA 0.21 GEO 0.15 LUX -0.07 POL 0.22 USA -0.11
CAF 0.15 GHA 0.43 MAR 0.21 PRT -0.06 UZB 0.32
CAN 0.06 GIN 0.38 MDA 0.52 PRY 0.17 VEN 0.11
CHE -0.02 GMB 0.22 MDG 0.22 ROU 0.14 VNM 0.43
CHL 0.19 GRC -0.08 MEX 0.18 RUS 0.26 ZAF 0.14
CIV 0.16 GTM 0.19 MKD 0.21 RWA 0.29 ZMB 0.35
CMR 0.16 GUY 0.10 MNG 0.40 SAU 0.46 ZWE 0.55
COD 0.37 HND 0.20 MOZ 0.26 SDN 0.36
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Figure 14: Contribution of determinants to γ̃ by country

Notes: The bars depict the absolute contributions of each of the determinants of γ̃i for each
country individualy. Non-linear transformations and the variables in levels are conflated here for
readability. ‘Industrial growth’ etc. correspond to relative contributions of the sectors to total
GDP growth, that is, they are not actual growth rates.
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F Cross-validation

The goal of cross-validation is to find the parameters that lead to the model with

the smallest out-of-sample prediction error. In other words, it serves to avoid

over-fitting, which may be a serious issue where the number of variables is large

compared to the number of observations: Instead of finding a model of general

validity, a regression may then simply end up ‘memorising’ the data in the sample,

that is, as in-sample predictions become better, out of sample predictions become

worse. As in most empirical applications, testing the out-of-sample predictions is

complicated by the fact that we only observe the sample itself.

Cross-validation tackles this problem by iteratively dividing the existing sample

into a training set and a test set. The training set is the one that is used to estimate

the model, while the test set is ‘hidden’. Once the model has been estimated, it

is then used to predict the dependent variable based on the independent variables

(here: γ̂ based on Φ∗Φ∗Φ∗). The (squared) prediction error – ‘out-of-sample’, as the

test set was not in the sample underlying the estimated model – of this prediction

is to be minimised. The key choice to make at this point is about the division

of the sample into training and test set. We use ‘leave-one-out’ cross-validation

(LOO), which is particularly rigorous as it uses every country as a test sample

once, using the remaining countries as a training sample. For every combination

of the parameters to be tuned, the elastic net estimation is therefore carried out

N times; thanks to the limited size of our dataset (N = 129 in this exercise), this

is feasible within reasonable computation times.

We perform this procedure for both alpha and λ; note that this notation (with

a single λ) refers to a slightly re-parametrised version of equation 2:

L(λ, α,δδδ) = |γ̂γγ −Φ∗Φ∗Φ∗δδδ|2 + λ[(1− α)|δδδ|2 + α|δδδ|1] (8)

so α still refers to the parameter that dominates the relative importance of

the lasso and the ridge penalty, and λ is the overall strength of the penalty. Note

that as we tune α, for every value of α we iterate through the entire range of

λs. The mean-squared error reported in figure 15 is then the one resulting from

the specification with the optimal λ given that α. Figure 16 then reports the

mean-squared error obtained from different values of λ given the optimal α. As a

general observation, relative importance of the lasso and the ridge penalty hardly

matters for the predictive properties of the estimated model: The out-of-sample

mean-squared error is almost invariable to the choice of α (figure 15). On the

other hand, the choice of λ is very influential, highlighting the importance of the

regularisation procedure: With the (virtually) unrestricted model (very small λ,

all 56 candidate variables included), the out of sample prediction error is about
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Figure 15: Cross-validation of α

Notes: The points indicate the mean squared error at different values of alpha (see text for
details). The grey bars indicate the 95% confidence intervals for these point estimates. The
value of α appears to have negligible impact on the quality of the predictions, i.e., the lasso and
the ridge penalies have very similar impact.

Figure 16: Cross-validation of λ

Notes: The points indicate the mean squared error at different values of λ (see text for details).
The grey bars indicate the 95% confidence intervals for these point estimates. The numbers in
the top row along the x-axis indicate the degrees of freedom, that is, the number of variables
with non-zero coefficient. Compared to the case with (virtually) no regularisation, we can halve
the out-of-sample prediction error by tuning lambda.

0.16, compared to a mean of the dependent variable, γ̂, of 0.25. At the optimum,

the MSE is 0.07.
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G Coefficients δ̂ from elastic net

Table 9: Estimated coefficients, elastic net

Variable Coeff. Variable Coeff. Variable Coeff.

Investment - Investment (Sq.) 0.000 Investment (Sqrt.) -
Consumption -0.000 Consumption (Sq.) - 0.000 Consumption (Sqrt.) -0.012

Agriculture 0.000 Agriculture (Sq.) - Agriculture (Sqrt.) 0.007
Industry - Industry (Sq.) - 0.000 Industry (Sqrt.) -

Sevices - Sevices (Sq.) - 0.000 Sevices (Sqrt.) -
Pop. Density 0.000 Pop. Density (Sq.) 0.000 Pop. Density (Sqrt.) 0.000
Pop. growth 0.021 Pop. growth (Sq.) 0.001
Urban pop. -0.000 Urban pop. (Sq.) - Urban pop. (Sqrt.) -0.001
Forest land -0.000 Forest land (Sq.) - 0.000 Forest land (Sqrt.) -0.000
Agric. land - Agric. land (Sq.) - Agric. land (Sqrt.) 0.002

Manufacturing - Manufacturing (Sq.) - 0.000 Manufacturing (Sqrt.) -
Agric. growth -0.633 Agric. growth (Sq.) - 2.216

Indust. growth 2.356 Indust. growth (Sq.) 10.459
Serv. growth - Serv. growth (Sq.) -

Manuf. Growth -0.718 Manuf. Growth (Sq.) 21.902
GDP level -0.000 GDP level (Sq.) - GDP level (Sqrt.) -0.000

GDP per capita -0.000 GDP per capita (Sq.) - GDP per capita (Sqrt.) -0.000
Snow cover - Snow cover (Sq.) -

Latitude - Latitude (Sq.) - Latitude (Sqrt.) -
Surface area 0.000 Surface area (Sq.) - Surface area (Sqrt.) 0.000

Fossil fuels - Fossil fuels (Sq.) 0.000

Notes: The reported coefficients are normalised by the respective variables standard deviation.
Coefficients reported as (–)0.000 are in fact rounded very small non-zero coefficients, coefficients
that have been eliminated (attributed weights that are actually zero) are reported as a dash (-).
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H Discrepancy between lights and GDP series

H.1 Suggested corrections to growth rates (tabular)

Table 10: WDI vs. luminosity estimates of growth (1993-2013, 1993-1999)

Full period (1993-2013) 1993-1999

WDI EN ∆ EN FE ∆ FE LD ∆ LD WDI EN ∆ EN FE ∆ FE

AGO 6.28 5.16 -1.12 5.71 -0.57 2.62 2.28 -0.34
BDI 1.03 4.33 3.30 3.87 2.84 3.36 2.34 -3.41 3.08 6.49 2.51 5.92
BEN 4.40 3.75 -0.65 4.19 -0.21 4.29 -0.11 4.75 3.27 -1.48 3.61 -1.14
BFA 5.88 4.87 -1.01 4.69 -1.20 4.86 -1.03 6.08 5.01 -1.06 4.56 -1.51
BWA 4.82 3.82 -1.00 4.29 -0.53 4.46 -0.36 5.26 3.65 -1.61 4.11 -1.15
CAF 0.64 2.39 1.75 2.27 1.63 1.83 1.19 3.15 1.76 -1.38 1.46 -1.68
CIV 2.40 3.72 1.32 4.69 2.29 4.69 2.29 3.68 4.51 0.83 6.50 2.82
CMR 3.29 3.04 -0.24 3.45 0.16 3.36 0.07 2.49 2.29 -0.20 2.45 -0.04
COD 1.59 3.90 2.31 3.50 1.90 3.42 1.83 -4.17 1.72 5.90 1.43 5.60
COG 3.21 4.47 1.25 4.21 1.00 4.24 1.03 0.33 1.72 1.38 1.38 1.05
DJI 1.91 3.50 1.59 3.89 1.98 3.54 1.63 -1.95 1.38 3.32 0.93 2.88
ETH 7.79 5.10 -2.70 4.74 -3.05 4.97 -2.83 5.67 4.76 -0.91 4.13 -1.54
GAB 2.25 2.79 0.53 3.72 1.46 3.69 1.44 2.36 1.97 -0.40 2.30 -0.06
GHA 5.83 5.10 -0.73 4.11 -1.72 4.14 -1.69 4.31 6.21 1.90 4.41 0.10
GMB 3.42 4.19 0.77 4.69 1.26 4.59 1.17 3.01 3.69 0.68 4.01 1.00
GNB 0.92 1.53 0.61 2.26 1.34 0.05 -0.59 -0.65
KEN 3.72 4.03 0.31 4.01 0.29 3.93 0.21 2.52 3.71 1.19 3.47 0.95
LBR 8.83 6.64 -2.19 7.87 -0.96 15.91 6.06 -9.85
LSO 3.87 3.86 -0.01 4.14 0.27 4.03 0.16 3.16 3.70 0.54 3.91 0.75
MDG 2.73 3.78 1.05 4.15 1.42 3.71 0.98 2.60 4.42 1.83 5.01 2.42
MLI 7.22 4.87 -2.36 4.91 -2.32 4.72 4.74 0.02
MOZ 8.54 4.90 -3.65 5.12 -3.42 5.62 -2.92 10.65 3.78 -6.87 3.73 -6.92
MRT 4.33 5.59 1.26 4.45 0.12 4.43 0.10 3.56 6.24 2.68 4.43 0.87
MUS 4.32 3.55 -0.76 3.44 -0.87 3.29 -1.02 4.78 3.99 -0.79 3.62 -1.16
MWI 4.57 3.13 -1.44 3.34 -1.23 3.21 -1.36 4.89 2.52 -2.37 2.56 -2.33
NAM 4.05 3.53 -0.52 3.66 -0.39 3.54 -0.51 2.59 2.89 0.30 2.80 0.21
NER 4.20 5.31 1.10 4.26 0.06 4.18 -0.03 3.44 4.53 1.09 3.28 -0.16
NGA 5.97 3.23 -2.74 3.06 -2.91 2.65 -3.32 1.95 1.63 -0.33 1.33 -0.62
RWA 6.13 4.88 -1.25 4.79 -1.34 4.28 -1.84 2.84 2.99 0.15 2.65 -0.19
SDN 5.19 4.88 -0.32 4.29 -0.90 4.31 -0.89 5.07 3.22 -1.85 2.62 -2.45
SEN 3.71 3.99 0.27 4.28 0.56 4.14 0.42 3.43 3.55 0.11 3.68 0.25
SLE 4.94 5.69 0.74 4.91 -0.03 4.10 -0.84 -1.84 -0.57 1.27 -0.54 1.30
SWZ 2.60 3.40 0.80 3.78 1.18 3.82 1.22 3.26 3.20 -0.06 3.60 0.34
TCD 6.39 7.49 1.10 5.60 -0.79 6.01 -0.38 1.40 4.19 2.79 2.96 1.56
TGO 3.13 3.45 0.32 3.40 0.26 3.30 0.16 4.45 2.61 -1.83 2.37 -2.08
TZA 5.46 4.45 -1.02 4.07 -1.39 3.78 -1.68 3.28 4.79 1.51 4.05 0.77
UGA 7.04 5.11 -1.92 4.41 -2.63 4.23 -2.80 7.63 5.31 -2.32 4.19 -3.44
ZAF 3.05 2.86 -0.19 3.16 0.12 3.01 -0.04 2.48 2.34 -0.14 2.60 0.13
ZMB 5.41 3.79 -1.62 3.48 -1.93 3.42 -1.99 2.20 2.28 0.09 1.91 -0.29
ZWE 0.29 3.32 3.03 2.75 2.46 2.27 1.98 3.65 4.04 0.39 2.65 -1.00

Notes: EN are the estimates obtained from the two-step procedure involving the elastic net
estimator (and equation 1), FE those obtained from the Fixed Effects estimation with a common
slope (equation 5), LD those from the long-difference specification (equation 6). LD are only
obtained for the full period. ∆ indicates the difference between the respective estimate and the
growth rates implied by WDI.

71



Table 11: WDI vs. luminosity estimates of growth (2000-2013)

2000-2006 2007-2013

WDI EN ∆ EN FE ∆ FE WDI EN ∆ EN FE ∆ FE

AGO 7.92 6.15 -1.76 8.30 7.04 -1.26
BDI 2.22 5.68 3.46 5.45 3.23 4.27 4.21 -0.06 3.65 -0.62
BEN 4.20 3.75 -0.45 3.81 -0.38 4.26 4.23 -0.03 5.16 0.90
BFA 5.71 4.99 -0.72 5.09 -0.62 5.85 4.61 -1.24 4.40 -1.45
BWA 4.08 4.88 0.80 5.40 1.32 5.11 2.93 -2.19 3.35 -1.76
CAF 1.53 3.03 1.49 2.34 0.81 -2.77 2.37 5.14 3.00 5.77
CIV -0.07 4.05 4.13 4.30 4.37 3.59 2.60 -0.99 3.26 -0.33
CMR 3.71 3.81 0.10 3.86 0.15 3.66 3.03 -0.64 4.05 0.39
COD 2.53 4.96 2.43 4.87 2.34 6.42 5.02 -1.40 4.19 -2.23
COG 4.89 5.99 1.10 5.96 1.07 4.41 5.69 1.28 5.28 0.87
DJI 2.87 5.64 2.77 6.54 3.67 4.82 3.48 -1.34 4.20 -0.62
ETH 7.14 6.42 -0.71 6.33 -0.81 10.57 4.11 -6.46 3.77 -6.80
GAB 0.46 3.94 3.48 4.03 3.57 3.94 2.45 -1.48 4.82 0.88
GHA 5.04 3.16 -1.88 3.55 -1.50 8.13 5.92 -2.20 4.37 -3.76
GMB 3.16 4.60 1.43 4.97 1.81 4.09 4.29 0.20 5.07 0.98
GNB 1.18 3.02 1.84 1.61 2.28 0.67
KEN 3.62 3.72 0.10 3.87 0.25 5.02 4.66 -0.36 4.70 -0.32
LBR 3.01 8.17 5.16 7.57 5.69 -1.88
LSO 3.41 4.09 0.68 4.27 0.86 5.03 3.79 -1.24 4.25 -0.78
MDG 3.25 3.14 -0.12 3.03 -0.22 2.34 3.79 1.45 4.40 2.06
MLI 7.46 6.06 -1.40 9.49 3.79 -5.70
MOZ 8.01 5.26 -2.75 5.57 -2.44 6.97 5.65 -1.32 6.07 -0.90
MRT 5.97 4.39 -1.58 4.38 -1.59 3.46 6.15 2.69 4.55 1.09
MUS 4.04 3.93 -0.12 4.07 0.03 4.12 2.73 -1.39 2.63 -1.49
MWI 2.49 4.14 1.65 4.37 1.88 6.34 2.73 -3.61 3.10 -3.24
NAM 5.08 4.00 -1.08 4.16 -0.92 4.49 3.71 -0.78 4.01 -0.48
NER 3.48 3.68 0.19 3.89 0.40 5.68 7.72 2.03 5.61 -0.07
NGA 9.89 3.25 -6.65 3.46 -6.43 6.06 4.83 -1.24 4.38 -1.68
RWA 7.86 3.91 -3.96 4.04 -3.82 7.67 7.73 0.06 7.66 -0.01
SDN 6.92 6.04 -0.88 5.76 -1.16 3.59 5.37 1.78 4.50 0.90
SEN 4.15 4.88 0.73 5.25 1.10 3.55 3.54 -0.02 3.90 0.35
SLE 7.35 9.34 1.99 8.36 1.02 9.32 8.29 -1.03 6.92 -2.40
SWZ 2.23 4.20 1.97 4.46 2.23 2.30 2.79 0.49 3.27 0.97
TCD 12.23 6.13 -6.10 5.46 -6.76 5.54 12.13 6.60 8.36 2.82
TGO 1.28 2.90 1.62 3.02 1.74 3.67 4.84 1.16 4.81 1.14
TZA 6.52 3.58 -2.95 3.76 -2.76 6.58 4.97 -1.61 4.41 -2.17
UGA 6.78 3.29 -3.49 3.53 -3.25 6.70 6.74 0.04 5.51 -1.19
ZAF 4.14 3.97 -0.17 4.12 -0.02 2.53 2.28 -0.25 2.77 0.24
ZMB 6.12 4.30 -1.82 4.37 -1.75 7.92 4.80 -3.12 4.16 -3.75
ZWE -6.07 1.47 7.54 2.70 8.77 3.28 4.45 1.17 2.89 -0.40

Notes: See table 10.
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H.2 Suggested corrections with single γ̂

Figure 17: Growth according to official vs. lights data (common slope)

(a) Whole period 1993-2013 (b) 1993-1999

(c) 2000-2006 (d) 2007-2013

Notes: See figure 11
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