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Pseudo-panels allow estimation of panel models when only repeated cross-sections are 

available. This involves grouping individuals into cohorts and using the cohort means 

as if they are observations in a genuine panel. Their practical use is constrained by a 

lack of consensus on how the pseudo-panels should be formed, particularly to address 

potential sampling error bias. We show that grouping can also create substantial 

aggregation bias, calling into question how well pseudo-panels can mimic panel 

estimates. We create two metrics for assessing the grouping process, one for each 

potential source of bias. If both metrics are above certain recommended values, the 

biases from aggregation and sampling error are minimised, meaning results can be 

interpreted as if they were from genuine panels. 
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1. Introduction 

The advantages of using panel datasets, which include both time-series and cross-

section dimensions, for empirical analysis are well known. However, in many settings 

such data may not be available due to the cost and difficulty of following the same set 

of individual agents over a sufficiently long period of time. Instead, what often is 

available is repeated cross-sections (henceforth RCS) where a different set of 

individuals are observed in each time period. Many household surveys, particularly 

those covering a long time span, are of this form. This is especially true in developing 

countries where, since the 1980s, many such surveys have been conducted under the 

World Bank’s Living Standards Measurement Survey (LSMS) project. Consequently, 

pseudo-panels have increasing been used as they allow for panel-type estimation with 

RCS data.    

By grouping individuals into cohorts based on common characteristics that are fixed 

over time, pseudo-panels can be created by treating the cohort means as if they are 

observations in an actual panel. This method was first developed by Deaton (1985) in 

order to estimate a linear fixed effects model. The literature has since expanded to 

incorporate more complex models that otherwise could only be estimated using panel 

data. Examples include dynamic models (Moffitt, 1993; Girma, 2000; Verbeek and 

Vella 2005), duration analysis (Güell and Hu, 2006), incorporating parameter 

heterogeneity (McKenzie, 2004; Antman and McKenzie 2007a), and allowing for 

cohort interactive effects (Juodis, 2017). Pseudo-panels were initially used for 

estimating life cycle models of consumption and labour supply (see Table 1b for 

examples), but have since been applied to a broad range of topics. These include 

agricultural production (Heshmati and Kumbhakar, 1997; Paul and Nehring 2007), 

estimating price elasticities (Gardes et. al., 2005; Meng et. al., 2014), demand for 

medical insurance (Propper, Rees and Green, 2001), and a range of issues within the 

field of development economics (see Table 1a for examples).  

The main concern with estimating pseudo-panels is bias arising from sampling error 

due to the cohort sample means not being representative of the underlying cohort 

population. The literature addresses this by focusing on cell size (the number of 

individuals grouped together to form a cohort) and whether they are large enough that 

sampling error is minimised. However, there is no consensus and little guidance on how 
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large they should be with suggestions ranging from 100 or less (Verbeek and Nijman, 

1992; Imai et. al., 2014) to potentially several thousand (Devereux, 2007b).  

Furthermore, grouping individuals into cohorts may create aggregation bias, something 

the literature has mostly ignored, which may be exacerbated by the creation of larger 

cell sizes as that can only be done by reducing the number of cohorts that individuals 

are aggregated into. This makes the grouping process difficult as there can be a trade-

off between which of the two sources of bias one addresses.  

We show that sampling error cannot be addressed by focusing upon cell size alone as 

the variation created in the cohort data needs to be considered also. We combine these 

two factors into a single metric, called CAWAR, which can easily be calculated in 

practice. Using Monte Carlo simulations, we find critical values of CAWAR beyond 

which sampling error bias is minimised. Then, by applying pseudo-panels onto a panel 

dataset, aggregation bias is explored. We show the bias can be substantial, often 

negating any benefit to using pseudo-panels over OLS, which calls into question the 

validity of some existing applications. Aggregation bias is also linked to sampling error 

as both depend on the cohort level variation; the former can be assessed using a similar 

metric, called AWAR, which ignores cell size. We find critical values for the metric in 

an empirical application. To our knowledge we are the first to provide such measures 

that can be used to formally assess the grouping process, providing some much needed 

guidance to one of the main drawbacks of the practical application of pseudo-panels. 

 

2. Sampling Error 

2.1 Sampling Error in a Linear Fixed Effect Model 

Consider the following static linear model with an additive unobserved individual 

specific effect i  

          T,...,2,1    N,...,2,1      it  tiy iitit x  (1) 

where ity  is the dependent variable of interest, itx  is a vector of explanatory variables, 

i indexes individuals, t indexes time periods, and it is an idiosyncratic error term 
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uncorrelated with ity , itx , and i . Under such circumstances pooled OLS (POLS) is 

inefficient if 0),( iitCov x and a random effects model is appropriate. If instead 

0),( iitCov x then POLS is also biased and a fixed effects model, which 

eliminates i  using a within or first difference transformation, is appropriate. In many 

applications, the individual effects are likely to be correlated with explanatory 

variables, but fixed effects models can only be estimated if panel data exist where the 

same set of individuals are tracked over time.  

Deaton (1985) suggests a methodology for consistently estimating parameters using 

repeated cross-sections, even in the presence of individual effects that are correlated 

with regressors and where a valid external instrument cannot be found. This is done by 

grouping individuals into cohorts based on common characteristics that are time-

invariant and observed in all cross-sections, the classic example is year-of-birth of the 

individual or household head. Then by taking the means of each cohort in each time 

period a synthetic or ‘pseudo’ panel can be created by treating the cohort means as if 

they were observations in a genuine panel. Formally, this amounts to grouping the N 

individuals into c cohorts (where c=1,2,…,C), with each cohort having nc members 

(also known as the cell size), and thus N=C×nc. The cohort version of the model in 

equation (1) is then: 

          T,...,2,1    C,...,2,1      ct  tcy ctctct x  (2) 

As there are additive individual fixed effects, there will be corresponding additive 

cohort fixed effects, shown by ct . However, these cohort fixed effects, as they are the 

average fixed effects of all individuals in each cohort, may not be fixed over time 

because the set of individuals within each cohort changes over time. Furthermore, as 

ct  is unobserved and will in general be correlated with ctx , neither cohort dummies 

nor a within or first difference transformation will account for the fixed effects. The 

only way to do so is if cell sizes are large enough that ct is a very good approximation 

of c , the true cohort population fixed effect, which is fixed over time. In this case one 

can estimate (2) using OLS with cohort dummies, which is known as the efficient Wald 

estimator (henceforth EWALD) following Angrist (1991). Weighted least squares 
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estimation using the square-root of the cell size as weights should be applied to address 

heteroscedasticity, which arises due to cell sizes varying across cohorts (Deaton, 1985; 

Dargay, 2007; Warunsiri and McNown, 2010). 

If cell sizes are not large enough for ct  to be considered a good approximations of ,c  

Deaton proposes an alternative errors-in-variables estimator (henceforth EVE). For this, 

an underlying unobserved cohort population version of equation (2) is proposed where 

the observed cohort sample means are considered as error-ridden estimates of the true 

population means. As the variances and covariances of these sample means can be 

easily calculated from the survey data, EVE can be used to incorporate a sampling error 

correction proposed by Fuller (1975, 1981). Deaton’s EVE has since been shown to be 

biased when T is small as it over-corrects for sampling error, but bias-corrected EVEs 

have been proposed by Verbeek & Nijman (1993) and Devereux (2007a). Nevertheless 

the EVEs only correct for sampling error in simple linear models and even the 

introduction of a quadratic term would require more complex corrections (Wolter and 

Fuller, 1982; Kuha and Temple, 2003). Consequently, nearly all applications of pseudo-

panel estimation have used the simpler and more flexible EWALD estimator.  

2.2 Cell Size and Cohort Level Variation  

As consistency of EWALD depends on nc → ∞ (Moffitt, 1993; Verbeek, 2008), the 

main focus regarding how to construct cohorts has been on whether cell sizes are 

sufficiently large. Verbeek & Nijman (1992) were the first to formally address this, 

showing that under certain assumptions the sampling error bias depends on two key 

factors; the true level of variance at the cohort population level ( 1w ), and the sampling 

error variance of the observed cohort means ( 2w ). Where:  

                                  )(
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cn is the cell size of cohort c. 

2

vσ is the variance of individuals 𝑥𝑖𝑡 observations in cohort c, capturing the homogeneity 

of individuals that are grouped together into a cohort. 

As 1w  increases relative to 2w , the bias from sampling error decreases and so does the 

cell size required for consistent estimation. The authors show that if 5.0/ 2

1 vσw then 

cell sizes of 100-200 are sufficient for obtaining reasonably unbiased estimates. 

Whether this value of 2

1 / vσw  is appropriate in empirical applications is questionable; 

Devereux (2007b) has shown that even with cell sizes in the thousands, small sample 

biases may be difficult to eliminate. This discrepancy arises as Verbeek and Nijman do 

not account for the effect of a lack of time variation in the cohort level observations, 

which can further exacerbate the sampling error bias.  

Although the issue of cell sizes and sampling error has dominated the pseudo-panel 

literature, both in theoretical and applied studies, the number of cohorts one aggregates 

into is also an important consideration. The matter is usually discussed as a bias-vs-

efficiency trade-off; with fixed N, larger cell sizes (nc) can only be obtained by reducing 

the number of cohorts, the latter results in reduced efficiency as there are fewer 

observations in the cohort panel. However, if we consider how cohorts are constructed 

in practice, thinking of cohort construction as a bias-vs-efficiency can be problematic. 

Tables 1a-c shows a sample of how cohorts have been constructed in various 

applications. In order to increase the number of cohorts, one has to either use additional 

construction variables or use finer categories of existing variables. This will change the 

underlying cohort population structure and therefore will also change 1w , 2

vσ , and time 

variation. It is therefore possible for bias to fall as c increases if there is an increase in 
2

1 / vσw  or time variation that offsets the effects of a lower cell size.  
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Table 1a: Pseudo-Panel Estimation in Development Economics 
 

 

 

Table 1b: Pseudo-Panel Estimation of Consumption and Labour Supply 
 

 

  

Table 1c: Pseudo-Panel Estimation of General Models of Individual Behaviour 
 

 

Article  Cohorts Cell size Cohort construction 
Bedi et al. (2004) 38 350 Districts in Kenya 

Christiaensen & Subbarao (2005) 799 10 Communities in Kenya 

Nicita (2009) 63  States in Mexico, location (urban or rural) 

Antman & McKenzie (2007b) 15 100+ 5 year age cohorts, education 

Warunsiri & McNown (2010) 
22 

11 

200+ 

300+ 

1 year age cohorts 

2 year age cohorts  

Cuesta et al. (2011) 224 130 7 year age cohorts, gender, country 

Sprietsma (2012) 108 130 States in Brazil, gender, ethnicity 

Échevin (2013) 166 115.5 5 year age cohorts, education, region 

Fulford (2014) 200+  5 year age cohorts, region, gender 

Imai et al. (2014) 140 73.6 5 year age cohorts, region 

Shimeles & Ncube (2015) 400+ 500+ Age cohorts, gender, country 

Arestoff & Djemai (2016) 175 230-580 1 year age cohorts, country 

Himaz & Aturupane (2016) 
21 

11 

318 

608 

1 year age cohorts 

2 year age cohorts  

Gómez Soler (2016) 6000+ 70-80 Schools in Colombia 

Article Cohorts Cell size Cohort construction 

Browning, Deaton & Irish (1985) 16 192 5 year age cohorts, type of worker 

Banks, Blundell, & Preston (1994) 11 354 5 year age cohorts  

Blundell, Browning, & Meghir (1994) 9 520 5 year age cohorts 

Deaton & Paxson (1994) 

56 

14 

11 

300-400 

200-400 

150-200 

1 year age cohorts for Taiwanese data 

5 year cohorts for US data 

5 year cohorts for British data 

Alessie, Devereux, & Weber (1997) 5 250+ 10 year age cohorts 

Blundell, Duncan, & Meghir (1998) 8 142 10 year age cohorts, education 

Fernandez-Villaverde & Krueger (2007) 10 350 5 year age cohorts 

Attanasio et al. (2009) 15 500+ 5 year age cohorts 

Rupert & Zanella (2015) 6 
180 

2000+ 

5 year age cohorts 

5 year age cohorts 

Article  Cohorts Cell size Cohort construction 

Gassner (1998) 27 226 2 year age cohorts 

Dargay & Vythoulkas (1999) 16 513 5 year age cohorts 

Propper et al. (2001) 70 80 5 year age cohorts, region 

Dargay (2002) 41 190 5 year age cohorts, location 

Gardes et al. (2005)   10 year age cohorts, education 

Campbell & Cocco (2007) 

7 

9 

12 

200+ 

150+ 

100+ 

5 year age cohorts 

10 year age cohorts, region 

5 year age cohorts, if homeowner or renter 

Bernard et al. (2011) 25 131 Region, Size of house  

Jiang & Dunn (2013) 15  5 year age cohorts 

Meng et al. (2014) 72 140 
5 year age cohorts, gender, socioeconomic status, 

region 
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Consider the example of moving from a cohort aggregation specification that uses just 

5-year age bands to one that also includes the gender of the individual. If gender is 

independent and unrelated to any of the explanatory variables then one can expect 1w  

and 2

vσ  to be unchanged. Essentially each existing cohort has been split in half at 

random, thus there is no change in the expected value of the cohort means (leaving 1w  

unchanged). The random division also leaves the similarity of individuals who are 

grouped together into cohorts unchanged (so 2

vσ  is unaffected). However, the higher 

the correlation between gender and the explanatory variable, particularly if there is also 

an interaction between gender and the age profile, the greater the additional variation 

created in the underlying cohort population means (larger 1w ) and the higher the degree 

of homogeneity amongst individuals pooled into cohorts (smaller 2

vσ ). In addition, 

higher correlation is also likely to increase the degree of time variation in the cohort 

level data. Intuitively, if there is no correlation and grouping is random, then the 

expected value of the cohort observations would be identical in each time period. Any 

time variation at the cohort level would also be identical, in expectation, for all cohorts 

and will be cancelled out by the inclusion of time effects. Correlation between the 

cohort selection variable and the explanatory variable is therefore necessary for cohorts 

to have their own individual time variation, which is important to limit the small sample 

bias of EWALD (Devereux, 2007b). Thus it is possible to envisage settings where 

increasing c by including extra variables in the cohort specification may reduce 

sampling error bias. 

As the cell size required to address sampling error can be anywhere between 100 or 

fewer to in the thousands, it is necessary to find the size required for different 

aggregation methods. While 100 is achievable in applied settings (Tables 1a-c show 

most studies meet this criteria), cell size in the thousands would be difficult to create 

apart from in a few large datasets and particularly not those constructed under the 

LSMS. Calculating the required cell size is difficult as it depends on the level of 

variation in the cohort data, which is hard to identify. This is because 1w  and 2

vσ are 

based on unobserved cohort population means ( 

ctx ), and it is unclear how time variation 

is to be captured to address the concerns raised by Devereux (2007b). We address this 
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shortcoming by finding suitable proxies for the three types of variation, combining them 

into one metric, and calculating suitable cell sizes at different values of the metric.  

2.3 Deriving and testing AWAR  

To combine the three types of variation into a single measure, we incorporate time 

variation into the 2

1 / vσw  ratio used by Verbeek and Nijman (1992) to calculate their 

recommended cell size. To do this we add the additional assumption that the cohort 

level explanatory variables follow an AR[1] specification: 

        ct

*

1)-c(t

*

ct eρxx    (5) 

Where *

ctx  represents the true cohort population means and cte  is IID N(0, 2

eσ ). The 

variance of the cohort population means ( 1w ) is: 

         
2

e
1 2-1

σ
w


   (6) 

Verbeek and Nijman implicitly assume ρ=0 and therefore 2

e1 σw  , so the overall level 

of variation in the cohort population means ( 1w ) is equivalent to the genuine level of 

variation across cohort observations ( 2

eσ ). However once autocorrelation is introduced 

1w  may increase without there being any additional genuine variation across cohorts. 

Without correcting for autocorrelation 1w  is likely to overestimate the variation across 

the cohort level observations. Therefore, the ratio of interest should be 22 / ve σσ   rather 

than 2

1 / vσw , which can be calculated as: 

         
)1(

 
2

2

1

2

2

e

vv σ

w

σ

σ 
   (7) 

For practical purposes we find it useful to rescale the metric to use standard deviations 

rather than variances to give a wider range of values, as in practice the metric in (7) 

often lies between 0 and 0.3. One can consider 1w  as the variation across cohort 

observations, while 2

vσ  is the variation of individuals within cohorts. Hence, we call the 

measure Across-to-Within Autocorrelation Adjusted Ratio (AWAR), calculated as: 
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)1(

  AWAR
2/121/2

1e

vv σ

w

σ

σ 
   (8) 

We proxy 1/2

1w  using the standard deviation of the cohort sample means, weighted by 

the square-root of cell size if cell sizes vary across cohorts. For vσ , we take the mean 

(weighted by the square root of cell size) of the standard deviations for individuals 

grouped in each cohort. Time variation, captured by , is estimated using the 

autocorrelation coefficient obtained by regressing the cohort means on their first lag 

and a constant term, with the square-root of cell size used as weights. We conduct 

Monte Carlo simulations to show that sampling error bias changes with AWAR and 

then find the cell sizes required to minimise the bias for different AWAR values. 

The Monte Carlo setup is based mainly on Collado (1998), who tests different pseudo-

panel estimators for a binary response model. Although our purpose is different, the 

data generating process used leads to a simple calculation and implementation of 

AWAR. The setup also allows us to focus on sampling error bias in a linear model 

similar to Devereux (2007b). We first generate the cohort population means ( *

ctx ) as an 

AR[1] process as shown in (5). The initial period values of the cohort population means 

are generated as an IID N(0, 1w ) process where 1w  is, as before, the variance of the 

cohort population means as shown in (6). Similarly, cte  is generated as IID N(0, 2

eσ ) and 

we discard the first ten cross-sections to ensure the 1w  values are as shown in (6). Then 

the individual level explanatory variable is generated as: 

           ),0( i.i.d.~        2

vσNvvxx itit

*

ctit   (9) 

By changing 2

eσ and 2

vσ we can change AWAR, which is the square-root of the ratio of 

these two variances. For different values of AWAR we can then also vary  . We 

generate the unobserved heterogeneity, which is correlated with the explanatory 

variable, following Verbeek and Nijman (1992) as: 

       c c

*

cx     (10) 

T1,...,  allfor  0]|[E and )1,0( i.i.d.~ ,
1

 1, where
1

 


txNx
T

x *

ctcc

T

t

*

ct

*

c   
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Finally, we generate the dependent variable at the individual level as follows: 

        ittc

*

ctit ufxy     (11) 

where  =1, tf  are time fixed effects and )1,0( i.i.d.~ Nuit  

We generate 50 cohorts in each period with 4 periods in total (c=50, T=4), and vary the 

number of individuals in each cohort (nc) so in each time period we have 50nc 

observations at the individual level. We conduct 10,000 repetitions for each set of 

simulations. The AWAR values are calculated from the true parameter values for 

 and , 2

v

2

e σσ , and we also report the sample AWAR which uses the proxies from the 

cohort sample means as described above. In this way we can see if there are any 

significant differences between the true underlying AWAR values and the reported 

sample values. We vary the underlying AWAR values between 0.1 and 1 in steps of 0.1 

for each nc. We report the mean value of the coefficient estimates across the 10,000 

replications and the root-mean-squared-errors (RMSE). As the true coefficient value is 

set equal to unity, the mean estimates can be used to assess the average degree of bias 

(can interpret this in percentage terms by subtracting one from the mean estimate). The 

RMSE can be interpreted as showing the average absolute bias in percentages.  

Table 2 shows the results for varying nc between 30 and 500 over different AWAR 

values, where the latter is altered by just changing 2

eσ  while keeping 2

vσ =1 and  =0.5. 

As predicted, the sampling error bias falls as AWAR increases for each cell size and 

the reverse is also true, with the bias falling as cell size increases for each AWAR value. 

If we assume estimates have sufficiently low bias to be considered accurate when the 

bias is less than 10%, then the highlighted cells give an indication of the minimum 

AWAR value required for accurate estimates for different cell sizes. One sees that cell 

size of 30 can be accurate if AWAR is over 0.6 (0.64 for sample AWAR) but may not 

be accurate even with cell size of 500 if AWAR is close to 0.1, showing the large impact 

of AWAR on required cell size. Thus it is possible that creating more cohorts may lead 

to less biased estimates even if cell sizes fall tenfold or more as long as AWAR 

increases sufficiently. How much AWAR actually varies in empirical applications will 

be demonstrated later, where we show that AWAR can lie between 0.1 and 0.6 

depending on the cohort aggregation method used.  
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Table 2: Simulation Results for Varying the Cell Size 
 

AWAR 

Cell size 

30 50 100 200 500 

Sample 

AWAR 
Mean RMSE 

Sample 

AWAR 
Mean RMSE 

Sample 

AWAR 
Mean RMSE 

Sample 

AWAR 
Mean RMSE 

Sample 

AWAR 
Mean RMSE 

0.1 0.21 0.206 0.799 0.18 0.301 0.703 0.15 0.462 0.543 0.13 0.631 0.375 0.11 0.812 0.194 

0.2 0.28 0.508 0.497 0.25 0.632 0.374 0.23 0.774 0.232 0.21 0.872 0.134 0.21 0.945 0.062 

0.3 0.36 0.698 0.308 0.34 0.793 0.213 0.32 0.886 0.121 0.31 0.939 0.067 0.30 0.975 0.031 

0.4 0.45 0.805 0.202 0.43 0.873 0.134 0.41 0.932 0.074 0.41 0.965 0.041 0.40 0.986 0.020 

0.5 0.54 0.865 0.141 0.52 0.915 0.092 0.51 0.956 0.051 0.50 0.977 0.029 0.50 0.991 0.015 

0.6 0.64 0.903 0.103 0.62 0.939 0.068 0.61 0.968 0.038 0.60 0.984 0.022 0.60 0.994 0.012 

0.7 0.73 0.928 0.079 0.72 0.954 0.052 0.71 0.977 0.029 0.70 0.988 0.017 0.70 0.995 0.009 

0.8 0.83 0.943 0.063 0.81 0.965 0.041 0.81 0.982 0.024 0.80 0.991 0.014 0.80 0.996 0.008 

0.9 0.93 0.954 0.052 0.91 0.972 0.034 0.90 0.986 0.020 0.90 0.993 0.012 0.90 0.997 0.007 

1 1.02 0.962 0.044 1.01 0.977 0.029 1.00 0.989 0.017 1.00 0.994 0.011 1.00 0.998 0.006 

Note: The simulations set T=4, C=50, ρ=0.5, 2
v
σ =1 and 2

e
σ  is altered to vary AWAR. All simulations are conducted with 10,000 replications. Sample AWAR are 

the average values across all simulations. 
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The results in Table 2 are presented to highlight the importance of cohort variation 

when considering cell size. They are not to be interpreted as cell size and AWAR 

combinations to use in practice. This is because the results are only robust to varying 

the number of cohorts and to varying AWAR by changing 2

vσ  rather than 2

eσ (although 

the latter part shows that only the ratio of the two variances matters for addressing bias 

and not their individual magnitudes). These results are not robust to changes in T, with 

larger T reducing the required AWAR for each cell size. The results are also generally 

not robust across the values of  unless T is around 4 or 5. To avoid the cumbersome 

process of having to calculate all the bias minimising combinations of cell size and 

AWAR across all potential values of T and  that one may encounter empirically, we 

collapse AWAR and cell size into a single metric called CAWAR, cell size adjusted 

AWAR.  

2.4 Deriving and testing CAWAR  

Recall that in (7) for AWAR the denominator is the variance across individuals within 

a cohort ( 2

vσ ). This is not the same as the sampling error variance, 2w , identified as the 

other factor alongside 1w  that is important for determining the bias of pseudo-panel 

estimates. To capture sampling error fully, one must incorporate cell size alongside 2

vσ  

as shown in (4). Combining (4) and (7) we can derive CAWAR as (12) below, which 

fully accounts for sampling error. The same proxies can be used as before as CAWAR 

is equivalent to the square of AWAR multiplied by cell size. We use the square of 

AWAR as it is not necessary to rescale using standard deviations.  

2
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v
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





 (12) 

Tables 3a and 3b show that a CAWAR value of at least 12 produces accurate estimates 

(again defined as estimates with less than 10 percent sampling error bias, both on 

average and in absolute terms) irrespective of cell size and number of cohorts. The 

sample CAWAR values suggest that a slightly higher threshold of 13 may be required 
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in actual applications using the proxies identified. These results are robust to different 

absolute magnitudes of 2

eσ  and 2

vσ , with only their ratio being of importance.  

Table 3a: Varying Cell Size for CAWAR 
 

Cell Size CAWAR of 12 

Sample 

CAWAR 

Mean RMSE 

30 13.39 0.912 0.095 

50 13.27 0.912 0.095 

100 13.21 0.912 0.094 

150 13.18 0.911 0.095 

200 13.17 0.912 0.095 

250 13.16 0.912 0.094 

500 13.16 0.911 0.095 

1000 13.15 0.912 0.095 

Note: The simulations set T=4, C=50, ρ=0.5, 2
v
σ =1 and 2

e
σ  is altered 

to keep CAWAR=12 while nc changes. All simulations are conducted 

with 10,000 replications. 

 

Table 3b: Varying the Number of Cohorts for CAWAR 
 

Number of 

Cohorts 

CAWAR of 12 

Sample 

CAWAR 

Mean RMSE 

20 13.13 0.912 0.105 

50 13.29 0.911 0.095 

100 13.31 0.912 0.092 

200 13.35 0.912 0.090 

500 13.37 0.912 0.089 

Note: The simulations set T=4, nc=50, ρ=0.5, 2
v
σ =1 and 2

e
σ =0.24 

CAWAR. All simulations are conducted with 10,000 replications. 

 

Table 4 presents the recommended CAWAR and sample CAWAR values for different 

combinations of T and   for up to 10 time periods (most repeated cross-sections are 

unlikely to extend beyond this, although the relevant thresholds can easily be found by 

expanding the simulations). The recommended CAWAR value varies greatly across T; 

being as high as 20 when there are two time periods, to as low as 6 when T=10. For 

each T, there is also some variation in the recommended CAWAR across different  . 

Interestingly when T is larger (more than 5) a higher  reduces the required threshold, 

whereas it increases for lower T. When T is 4 or 5, the threshold is quite consistent over

 . The thresholds are also consistent over T when the autocorrelation coefficient is 
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lower than 0.4, especially when T≥4 the recommended threshold remains at 10 (11 

using Sample CAWAR). 

Table 4: CAWAR Thresholds for Different Timer Periods 
 

ρ
 

2 Time Periods 3 Time Periods 

CAWAR Sample 

CAWAR 

Mean RMSE CAWAR Sample 

CAWAR 

Mean RMSE 

0 14 14.87 0.933 0.085 12 12.99 0.923 0.086 

0.2 14 14.83 0.923 0.096 12 13.06 0.915 0.094 

0.4 18 18.79 0.928 0.090 12 13.13 0.907 0.103 

0.6 20 20.75 0.926 0.092 14 15.28 0.913 0.096 

0.9 20 22.14 0.914 0.105 14 15.70 0.906 0.104 

  
ρ

 4 Time Periods 5 Time Periods 

CAWAR Sample 

CAWAR 

Mean RMSE CAWAR Sample 

CAWAR 

Mean RMSE 

0 10 11.05 0.910 0.097 10 11.08 0.909 0.096 

0.2 10 11.08 0.901 0.105 10 11.11 0.904 0.101 

0.4 10 11.18 0.898 0.109 10 11.21 0.902 0.103 

0.6 12 13.39 0.911 0.096 10 11.40 0.902 0.102 

0.9 12 13.76 0.908 0.098 10 11.83 0.906 0.099 

 
ρ

 8 Time Periods 10 Time Periods 

CAWAR Sample 

CAWAR 

Mean RMSE CAWAR Sample 

CAWAR 

Mean RMSE 

0 10 11.08 0.909 0.094 10 11.08 0.909 0.093 

0.2 10 11.11 0.907 0.095 10 11.13 0.908 0.094 

0.4 10 11.22 0.910 0.093 10 11.24 0.912 0.090 

0.6 8 9.40 0.897 0.106 8 9.40 0.903 0.099 

0.9 8 9.85 0.916 0.087 6 7.85 0.904 0.098 

Note: The simulations set nc=50, C=50, 2
v
σ =1 and 2

e
σ  is altered to vary CAWAR. All simulations 

are conducted with 10,000 replications. 
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3. Aggregation Bias 

The main concern in estimation of pseudo-panels is bias arising from sampling error. 

CAWAR, by combining both the cell size and cohort level variation, is a useful 

practical measure for assessing and limiting the likelihood of such bias, something that 

is lacking in the literature. However, sampling error bias may not be the only source of 

bias arising from the cohort grouping process. There may be aggregation bias, which 

arises when moving from the individual to the cohort level, potentially due to the loss 

of variation in the cohort level data or the existence of non-linearities that are difficult 

to capture using cohort averages. Pseudo-panels were initially used to estimate life-

cycle models of consumption and labour supply, where the unit of analysis was the age-

cohort itself (Table 1b), hence aggregation bias was not a concern. Applications in other 

fields, particularly development, are interested mainly at household or individual level 

analysis. Aggregation bias now becomes a concern as cohort panels are interpreted as 

if they contain individual level data. There is awareness of this issue and pseudo-panel 

studies in development economics (Table 1a) generally have larger c and use more 

cohort selection variables than those used to estimate life-cycle models (Table 1b). It 

is difficult to know whether this sufficiently addresses aggregation bias as the literature 

has mostly neglected such concerns. 

3.1 Separating Aggregation and Sampling Error 

Aggregation bias is likely to be related to sampling error bias as 1w , 2

vσ , and time 

variation are also linked to aggregation bias. Larger 1w  and time variation indicates the 

cohort means capture more of the distribution of the underlying individual level data, 

while smaller 2

vσ  ensures groups are more representative of their underlying sub-

populations as more homogenous individuals are grouped together. It therefore may be 

difficult to disentangle sampling error from aggregation bias. Nevertheless, it is 

necessary to do so as the presence of the latter calls into question whether pseudo-

panels can be analysed as if they are genuine individual-level panel estimates, as many 

existing studies do. 

Bias from aggregation and sampling error can be separated by estimating pseudo-

panels using panel data. Sampling error bias arises from the fact that ct  is not constant 
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over time as the individuals in a cohort change over time when using RCS data. 

However, when panel data are used the individuals grouped into cohorts are fixed over 

time, thus ct  is also fixed irrespective of cell size. As a result, we can adjust the number 

of cohorts which captures effects of aggregation without affecting sampling error. 

Using the panel fixed effects estimator, the ‘true’ coefficients can be estimated and 

compared to the pseudo-panel estimates, where the difference can be thought of as the 

bias from aggregation. This assumes that the panel estimates are the true values, which 

may not be true due to concerns regarding attrition and measurement error, which will 

be discussed later. If pseudo-panel estimates are all similar to each other and to the 

panel estimates, aggregation is not a concern and the focus of constructing cohorts 

should be mainly on addressing sampling error.  

3.2 Data and Estimation 

The dataset we use to investigate aggregation bias is the Uganda National Panel 

Surveys (UNPS), using the four waves - 2005/06, 2009/10, 2010/2011 and 2011/2012. 

The original 2005/06 data is taken from the Uganda National Household Survey which 

contained a nationally representative sample of about 7,400 households. The panel is 

constructed by re-interviewing 3,123 households from 322 of the original 783 

enumeration areas located all over the country. As not all households were able to be 

re-interviewed there is some attrition over the waves. The dataset contains detailed 

information on household consumption, income, wealth, labour market activities as 

well as information on the characteristics of individuals in the household such as their 

age and education level. The surveys are consistent with LSMS, so are similar to survey 

data available for other developing countries (the variables and the methods used to 

construct cohorts can be replicated for other countries with similar data).  

We estimate a model of household welfare, measured by the natural logarithm of 

monthly household consumption per adult equivalent member (labelled lcons), 

following Deaton and Zaidi (2002). This model is chosen because it is a useful baseline 

for many empirical studies using such household data and fixed effects are likely to be 

present due to unobserved time invariant factors like preferences, the intra-household 

bargaining process, and innate characteristics of household members. The estimation 



Assessing Cohort Aggregation 

17 

 

model is shown below and is a general model of household consumption, similar to 

Glewwe (1991) and Appleton (1996) for example: 

                     sec
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Explanatory variables capture household characteristics; the number of household 

members (HHsize), gender of household head, as well as their age and education level 

(split into none, primary or post-primary). Income and assets variables are captured by 

the main sector of employment of the household head (sector), a dummy for whether 

they also engage in some secondary occupation (secondary), a dummy for whether the 

household received any remittances in the last year (remittance) as well as the log of 

the amount received (lnremit), and the log of total assets owned by the household 

(ltotasset). Geographic characteristics are captured by the region the household is from 

and whether it is based in an urban or rural location (location). Individual effects (𝑓𝑖) 

and time effects (𝑓𝑡) are also included. The variables highlighted in bold are the ones 

of interest as they vary across time and thus are not factored out by the inclusion of 

fixed effects; OLS uses all the explanatory variables whereas fixed effects includes 

only the ones in bold. Another reason for focusing only on these variables is because 

the other variables will be used to construct cohorts and would have to be excluded 

from the pseudo-panel regressions. Hence the pseudo-panel version of the model is:  

                          

(14) 
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We construct cohorts using variables that are widely available and relevant to other 

researchers using similar LSMS data to make our findings as general as possible. 

Important conditions for construction variables are that they are time invariant, 

exogenous and observed for all households in the sample. We use five variables 

commonly used in the literature to construct cohorts: the age of the household head, 

their gender, their education level, the region the household is from and whether it is in 

a rural or urban location. We exclude the use of socioeconomic variables as these are 

likely to be endogenous and many households change categories over time, particularly 
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when looking over a long time period. We exclude ethnicity because it is not highly 

relevant in Uganda (but may be for other countries). Various age bands have been used 

in the literature, the most common being 5 year bands, however others have also used 

1 year, 2 year and 10 year bands. We construct cohorts based on 2 year, 5 year, 10 year 

and 17 year age bands, giving us a good range to assess aggregation. Furthermore, we 

only use households whose head is aged 18-67 at the time of each survey.  

Details of the other four grouping variables are given in Table 5, showing the number 

of categories the variables are divided into and the proportion of households in each 

category. These other four construction variables can be combined with age cohorts in 

16 different ways (4 individually, 6 in pairs, 4 combinations of three variables, one 

which contains all four variables and another one where none are used). Combining 

these 16 different ways with the four different age bands described above gives 64 

potentially different grouping methods to choose from. To this we add another 15 

methods where age is not used but just different combinations of the other four 

construction variables. This gives a total of 79 different ways cohorts may be 

constructed. However not all of the 79 are viable because some will produce too few 

observations at the cohort level to run pseudo-panel regressions for efficient estimation. 

We ignore all groupings that lead to fewer than 40 cohort level observations in total 

(i.e. at least 10 per wave), which leaves a total of 65 potential cohort construction 

methods to choose from. There is a wide spectrum of how aggregated the cohort 

groupings are, with the number of cohorts for each wave being as small as 10 to others 

being over 400. This will be crucial in identifying bias arising from aggregation. 

Table 5: Cohort Construction Variables 
 

Variable Categories Number of 

Observations 

Percentage of 

Total 

Region Central 3,071 31.2 

Eastern 2,261 23.0 

Northern 2,421 24.6 

Western 2,096 21.3 

Gender Male 7,102 72.1 

Female 2,747 27.9 

Location Rural 7,459 75.7 

Urban 2,390 24.3 

Education None 1,482 15.0 

Primary 5,277 53.6 

Post-primary 3,090 31.4 
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Due to attrition and household members splitting off to form news ones, which the 

UNPS also tracks, only around a half of all the households appear in all four waves 

(1,711 out of 3,404). Although using just these households would completely mitigate 

the sampling error problem and isolate aggregation bias, it may lead to bias from 

attrition both in the panel and pseudo-panel estimates. To limit this, we estimate using 

the full sample of households (where around three quarters of households appear in at 

least two waves), meaning sampling error is not fully addressed. We include the results 

using the fully balanced panel in Appendix A and they are largely identical. We 

estimate equation (14) with all 65 cohort specifications using EWALD with weights 

based on the square-root of cell size to address heteroscedasticity. We also drop all 

cohorts that contain less than two households to ensure we retain the grouped element 

and pseudo-panel results are not dominated by cohorts which essentially identify a 

single household thus making it more akin to a genuine panel. 

3.3 Results 

Results from the 65 pseudo-panel regressions are summarised in Figure 1, which graph 

the coefficient estimates for the four main explanatory variables against the number of 

cohorts created. We only show the estimates for lnremit and not remittance as their 

coefficients follow almost identical patterns. We also include the pooled OLS estimate 

(the dashed line), the ‘true’ panel fixed effects estimate (the solid line) and its 95% 

confidence interval (the shaded area).  

Immediately evident is the large impact aggregation into cohorts has on pseudo-panel 

estimates, which range from being very close to the genuine panel estimates to being 

far worse than OLS. This latter issue, of being worse than OLS, highlights the point 

that the reason many pseudo-panel estimates are performing poorly is not because the 

cohort effects are failing to account for the individual effects but instead are coming 

from biases due to the aggregation process itself. This is best typified by the household 

size estimates where the OLS and fixed effects (henceforth FE) coefficients are almost 

identical, meaning accounting for individual heterogeneity has little effect. 

Nevertheless, most of the pseudo-panel estimates perform rather poorly, being quite far 

away from the “true” FE estimate and its 95% confidence interval. A similar problem 

occurs for the log remittances estimates, where most pseudo-panel estimates perform 

worse than OLS, containing a larger upward bias than attributable to the absence of 
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fixed effects. Figure A1 in Appendix A shows the equivalent results for the fully 

balanced panel, which are qualitatively similar. 

Figure 1: Pseudo-panel estimates of the 65 cohort construction methods 
 

 
Note: The scatter plots are the pseudo-panel estimates of equation (14) obtained by the 65 different cohort 

construction methods. The solid line shows the “true” fixed effects estimates of equation (13) for just 

the main variables in bold and excluding the time invariant additional controls. The grey area is its 95% 

confidence interval. The dashed line shows the pooled OLS estimates of equation (13), including all the 

additional controls but not accounting for the individual effects. Both the OLS and fixed effects estimates 

are based on the household level panel data with the data trimmed at the 1st and 99th percentiles. 

 

For log total assets, accounting for unobserved heterogeneity is necessary as the FE 

estimate is significantly smaller in magnitude than the OLS estimate. The pseudo-panel 

estimates generally outperform the OLS estimates, as the inclusion of cohort effects 

picks up the unobserved heterogeneity, and many of the estimates are very close to the 

“true” FE values. However, a significant proportion offer little improvement over OLS 

or are worse, showing that a reduction in bias from the inclusion of cohort effects can 

be offset by increased bias coming from aggregation. One can see a similar pattern for 

secondary occupation, for which including fixed effects is essential: OLS indicates a 

negative and significant coefficient whereas FE results in a positive and significant 

coefficient. The pseudo-panel estimates pick up the effect of fixed effects, with the vast 
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majority of coefficient estimates being positive, although many are still highly biased 

(the magnitudes are often five to ten times larger than the “true” FE coefficient). It also 

demonstrates just how much impact cohort construction has on the coefficient 

estimates, which can vary from being smaller than -0.3 to larger than +0.4 even though 

the OLS and FE estimates are -0.02 and +0.05 respectively. 

Estimates of all four variables improve as the number of cohort increases, consistent 

with bias from aggregation. In addition, for all variables except log remittance, 

aggregation does not affect the bias in a specific way: the pseudo-panel estimates are 

just as likely to be biased upwards as downwards. When the number of cohorts are low 

estimates appear random, often varying with a large distribution around a mean that is 

close to the ‘true’ fixed effects coefficient. When the number of cohorts is larger, at 

around 150-200 or more, pseudo-panel estimates generally converge to the ‘true’ 

coefficients. Consequently, pseudo-panel estimates can suffer from substantial 

aggregation bias, which in some cases can be so large that pooled OLS is a better 

alternative. However, cohorts can be constructed in a way to limit this and achieve 

estimates similar to panel fixed effects.  

Table 6 contains a few of the pseudo-panel results, as well as the OLS and FE estimates, 

to demonstrate this. The third and fourth columns give examples of poor aggregation 

which results in unstable and inaccurate coefficient estimates, whereas the final two 

columns give examples of the opposite. The former pair are based on common cohort 

aggregation methods that can be found in the literature; one uses just 2-year age cohorts 

(similar to Warunsiri and McNown, 2010) and the other uses 5-year age bands 

combined with a geographic variable (location in our case). Both have cell sizes of 

around 100 or more, which is commonly thought as being sufficient to ensure accurate 

estimates. This calls into question studies that use similar aggregation methods and 

interpret results at the household or individual level, where the low c cause both bias 

and efficiency issues. Whether this can be addressed by ensuring c is more than 150-

200, like our results imply, will be addressed later. The last two columns show that 

aggregation bias can be addressed using commonly available construction variables, 

producing pseudo panel estimates that are similar in terms of size and significance to 

panel results. Nevertheless, these estimates, which have more than 300 cohorts in each 

time period, have standard errors that are far larger than the FE and OLS, estimates 



Assessing Cohort Aggregation 

22 

 

indicating efficiency concerns remain even if bias is addressed, causing potential 

concerns regarding inference. In Appendix B we demonstrate some alternative ways of 

estimating pseudo-panels which produce the same coefficient estimates but have 

different standard errors and other qualities that may prove useful. 

Table 6: Panel and Pseudo-Panel estimates of Household Welfare Model 
 

 Pooled 

OLS 

Fixed 

Effects 

Pseudo-

Panel 1 

Pseudo-

Panel 2 

Pseudo- 

Panel 3 

Pseudo- 

Panel 4 

HHsize -0.094*** -0.092*** -0.076*** -0.058*** -0.093*** -0.093*** 

 (0.003) (0.004) (0.015) (0.018) (0.007) (0.007) 

ltot_asset 0.172*** 0.105*** 0.164*** 0.013 0.118*** 0.115*** 

 (0.005) (0.006) (0.037) (0.048) (0.012) (0.012) 

secondary -0.022* 0.051*** 0.133 -0.187 0.060* 0.072** 

 (0.012) (0.012) (0.162) (0.123) (0.031) (0.034) 

lnremit 0.059*** 0.019*** 0.085 0.237*** 0.025* 0.049*** 

 (0.007) (0.007) (0.060) (0.067) (0.015) (0.016) 

remittance -0.652*** -0.205** -0.953 -3.392*** -0.298* -0.543*** 

 (0.080) (0.080) (0.719) (0.863) (0.181) (0.186) 

       

Observations 8,645 8,645 9,849 9,848 8,790 9,426 

Cohorts   26 21 441 372 

Cell Size   98 123 5 6 

Cohort 

Specification 
  2 year 

5 year, 

Location 

2 year, Region, 

Location, 

Education, 

Gender 

2 year, 

Region, 

Education, 

Gender 

AWAR      

HHsize   0.28 0.28 0.55 0.52 

ltot_asset   0.27 0.29 0.64 0.60 

secondary   0.17 0.18 0.59 0.53 

lnremit   0.17 0.12 0.74 0.66 

       

Notes: The OLS and fixed effects estimates are based on the household level panel data with the 

data trimmed at the 1st and 99th percentiles. The pseudo-panel estimates each use a different cohort 

specification, otherwise they are estimated identically. Robust standard errors in parentheses. *** 

p<0.01, ** p<0.05, * p<0.1 

 

One potential concern with the above interpretation is that it assumes the fixed effects 

estimate is unbiased and is therefore the true coefficient with which one can assess the 

pseudo-panel estimates. This may not be the case if there are other sources of bias 

which leads to more aggregated pseudo-panel estimates being less biased than the panel 

estimates. The first source of bias is attrition, which may be more detrimental to panel 

estimates than pseudo-panel estimates even if the latter is also based on the same panel 

data. This is because aggregation into cohorts may reduce the impact of attrition as it 

is likely to have a less severe impact on the cohort means. Another source of bias is 

from measurement error in the household level data, which may be ‘averaged out’ by 
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using cohort means (Antman & McKenzie, 2007b). Constructing more aggregated 

cohorts would reduce the bias arising from both these potential sources. However, as 

the results show that estimates from more aggregated pseudo-panels vary greatly and 

diverge from the fixed effects estimates in a non-systematic manner, we can be 

confident that such additional biases do not play a big role and leave the main 

conclusions regarding aggregation bias unchanged.  

The previous section showed there was no specific cell size which sufficiently 

addressed sampling error as it depends on the level of variation in the cohort data. For 

similar reasons, it is unlikely that aggregation bias can be addressed by creating a 

specific number of cohorts and instead the bias depends on how representative the 

cohort level data are of the underlying households. The latter, to a certain degree, will 

be related to the number of cohorts and hence it may appear that aggregation bias can 

be reduced simply by increasing c. To demonstrate this, we compare the 65 pseudo-

panel estimates based on cohort aggregation using the five construction variables 

mention to those estimated from cohorts constructed with random assignment, which 

we call simulated cohorts.  The cohorts are created by randomly assigning households 

into a cohort for all time periods and varying the number of cohorts households are 

assigned to from 10-450. Thus, we have an additional 440 estimates using the simulated 

cohorts1. We graph the absolute bias (calculated as the difference between the pseudo-

panel and fixed effects estimates) of the simulated and constructed cohorts against the 

number of cohorts created in Figure 2. When c is low, particularly when it is below 40, 

the constructed cohorts perform just as poorly as when cohort assignment is random. 

The bias of the simulated cohorts does fall somewhat as c reaches 100, with fewer 

estimates containing extreme levels of bias. However, beyond this point estimates do 

not improve, retaining the same level of absolute bias on average. In contrast, the 

estimates from constructed cohorts improve as c increases until the bias becomes 

negligible.  

The driver of the improvements for the constructed cohorts is not the increase in c but 

changes in the cohort level variation as c changes due to the addition of extra 

construction variables in the cohort specification or the use of finer sub-categories of 

                                                 
1 In fact we have 453 additional cohorts in the sample due to the difficultly of creating a precise number 

of cohorts when c is large and households are not observed in all periods.  
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age. Previously we discussed the link between aggregation bias and sampling error, 

particularly the link with 1w , 2 vσ , and time variation. As these three types or variation 

are combined to form the AWAR metric, AWAR can potentially be used to assess the 

likelihood of aggregation bias. CAWAR is unlikely to be suitable as it allows larger 

cell size to offset low variation, which is justifiable for sampling error but not 

aggregation.  

Figure 2: Bias of constructed and simulated cohorts 
 

 
Notes: The y-axis calculates the absolute different between the pseudo-panel estimate and the FE 

estimate. Constructed cohorts refers to the 65 cohorts constructed where assignment is based on 

construction variables from the dataset, while simulated cohorts refers to cohorts created by random 

assignment. 
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explanatory variable. A clear negative relationship exists between AWAR and bias for 

all four regressors and there appears to be a critical point, around AWAR of 0.5, beyond 

which all estimates have low bias. This is not to say that below this threshold all 
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even at low AWAR. Instead the threshold ensures confidence that any estimate 

produced will not suffer from substantial bias caused by the aggregation process. In 

Table 6 we report the AWAR statistics for the four pseudo-panel regressions, showing 

the link between AWAR and how well the panel estimates are replicated. Like the 

estimates in the final two columns of Table 6, we find regressions where all explanatory 

variables have AWAR of at least 0.5 generally produce estimates that improve on 

pooled OLS and are similar to FE. In our application, only 4 of the 65 specifications 

meet this condition, highlighting that this may be quite a strict condition to meet. 

However, all the cohort specifications that failed to meet this condition generally have 

one or more poorly estimated regressor, such that the OLS estimate is less biased.  

Figure 3: AWAR and Estimation Bias 
 

 
Notes: The y-axis is calculates the absolute different between the pseudo-panel estimate and the panel 

fixed effects estimate. 
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are vastly different in their nature; one is continuous, one truncated and the other two 

are either categorical or binary. They all have different distributions but still require 

similar AWAR values. The four regressors also capture different properties and 

characteristics of households with little reason to suspect they are highly correlated 

with each other or share similar correlations with the cohort construction variables. 

Consequently, it is likely that similar thresholds would apply for other variables from 

different datasets.  

A greater concern is whether the thresholds change when moving from panel data to 

repeated cross-sections. The within variation (which captures 2 vσ ) is unlikely to change 

between the two types of data as the heterogeneity of households grouped into cohort 

will not be affected. With panel data, as cohort membership is constant, the cohort 

means are likely to be more highly correlated across time than with data that has 

different individuals in each cross-section. Thus, panel data will have less time 

variation (higher  ) and potentially lower across variation (lower 1 w ) as the latter picks 

up some time variation as well as cross-sectional variation. Consequently, repeated 

cross-sections would generally have higher AWAR values (as  is higher and  is 

lower) than panel data. This could affect the thresholds we find if panel data naturally 

has lower AWAR than RCS irrespective of aggregation. We consider this in Appendix 

C, where we re-estimate the above model using the same dataset, once again creating 

the 65 cohort specifications but using just the first two waves. In Figure C2 we 

randomly drop households so that each only appears once, hence getting rid of the panel 

dimension, while in Figure C1 we retain the panel setting. The estimates in Figure C2 

contain both aggregation and sampling error bias, while for those in Figure C1 the 

sampling error is severely reduced due to the use of panel data. We find AWAR is 

generally lower for panel data, but AWAR of 0.5 still seems a reasonable threshold for 

RCS even though it is hard to assess aggregation bias due to the additional presence of 

sampling error.  

 

 

 

 

1w
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4. Implementing AWAR and CAWAR 

The two metrics developed help address different but connected sources of bias one 

encounters when estimating pseudo-panels; sampling error and aggregation. The bias 

from the latter can be so substantial that it negates any benefit of using pseudo-panels 

over simple OLS. Hence, it is important to ensure the cohorts created have AWAR 

close to 0.5 as well as meeting the required CAWAR value needed to limit sampling 

error. Whether these thresholds are met in practice remains a concern, particularly as 

so few cohort aggregation methods met the AWAR threshold in our empirical example. 

We attempt to draw some inferences regarding the likelihood of other datasets meeting 

our suggested criteria using results from our empirical application and the Monte Carlo 

simulations for AWAR.  

The results in the final two columns of Table 6 show that our dataset requires a large 

number of cohorts in order to meet the AWAR threshold, such that average cell sizes 

fall to as low as 5 or 6. Two other cohort specifications also meet the AWAR threshold 

(not reported) but again they have cell sizes of 6 and 8 respectively. The AWAR 

simulations in Table 2 suggest cell size needs to be at least 50, possibly 30, to avoid 

sampling error bias if the data was repeated cross-sections2. The comparison of Figures 

C1 and C2 shows that the same cohort aggregation process produced higher AWAR 

for RCS than panel data. With actual RCS some of the more aggregate cohort 

specifications (which have higher cell size) will meet the AWAR threshold. Even then, 

they are unlikely to have cell sizes higher than 10-15. Therefore, the dataset would need 

to be 3-5 times larger to obtain cell sizes needed to address sampling error while also 

meeting the AWAR threshold for aggregation. Given our dataset has around 2,500 

households in each wave, this implies RCS data may require at least 7,000 observations 

in each wave to address both sources of bias. Many RCS datasets are large enough to 

meet this condition, particularly those used in development economics. For example, 

most studies in Table 1a have datasets with the required number of observation in each 

wave. These calculations assume the cohort specifications and their respective AWAR 

values taken from our empirical application is representative of other datasets. This is 

                                                 

2 The results in Table 2 are applicable to our empirical example as the simulations have the same T and 

the results are robust for different values of ρ and c.  
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not necessarily true; the required number of observations will be lower if there is 

greater correlation between the cohort construction variables and the explanatory 

variables, while the reverse is also true. Nevertheless, it may still be a useful benchmark 

for pseudo-panels with similar data.  

 

5. Conclusion 

Addressing sampling error is a crucial part of estimating pseudo-panel models but there 

is little guidance and consensus regarding how this should be done. We create a 

measure (called CAWAR), which combines the cell sizes created along with three 

important sources of variation in the cohort data, to assess the likelihood of sampling 

error. Using Monte Carlo simulations, we find critical values for the measure beyond 

which sampling error bias is minimised. We also show that when pseudo-panels are 

used to estimate individual level models they can suffer from substantial aggregation 

bias. As aggregation and sampling error biases are related, a similar measure (called 

AWAR) can be used to assess the former. Using panel data, we estimate pseudo-panels 

to isolate aggregation bias and find recommended values for AWAR where this bias is 

minimised.  

Ensuring CAWAR and AWAR meet the recommended values should be the starting 

point of validating pseudo-panel estimation, particularly for individual level models. 

This can be quite a strict requirement that some datasets are unable to fulfil, implying 

they may be unsuited to pseudo-panel estimation. It is therefore important to confirm 

the veracity of these recommended values, particularly as CAWAR has only been 

tested using simulations and AWAR using a panel dataset. The testing we have 

conducted is suited to isolating the two different sources of bias, thus what is required 

for future work is testing them in combination. One way to do this is using a large panel 

data set where the “true” coefficient can be estimated using panel fixed effects. Then a 

random subset of the population can be drawn for each time period to create a repeated 

cross-section with which pseudo-panels can be estimated. The dataset would need to 

be large enough that the subsets in each time period have enough observations to 

produce AWAR and CAWAR that meets the recommended values.  



Assessing Cohort Aggregation 

29 

 

Another possibility would be to use a more complex Monte Carlo setup where the 

individual level data is first generated and then grouped into cohorts using construction 

variables that have varying degrees of correlation with the explanatory variables, in 

order to capture a more realistic aggregation process. This allows the simulations to 

address both sampling error and aggregation, in contrast to our simulations that focus 

exclusively on the former. One could also test if the recommended thresholds change 

for different models as application of pseudo-panels has moved beyond the simple 

linear fixed effects model considered here. Some pertinent examples are nonlinear 

models (particularly ones with a binary response variable), dynamic models, and ones 

with parameter heterogeneity.  

One final avenue for future work is combining different datasets (whether they are RCS 

or panel) by matching on cohorts. If aggregation has been fully addressed, cohorts can 

be thought of as representative households and hence one may be able to combine data 

from different surveys. For example, it may be possible to combine many of the 

Demographic and Health Surveys with household income/expenditure surveys as long 

as they share the same variables required for cohort construction. There are some 

important concerns that arise from this, particularly regarding the sampling methods 

used for the different surveys and the effect of having a different set of individuals not 

just in each time period but also for different variables within a time period. However, 

if such a merger is possible it would widen the scope of research and allow the 

estimation of models not possible before.  
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Appendix A: Replication of Pseudo-Panel results using balanced panels 

 

We reproduce all pseudo-panel results using just households observed in all four waves, 

thus ensuring sampling error is eliminated as cohort membership is fixed. However, 

this comes at the expense of potentially incurring attrition bias with just over half of all 

households being in the balanced panel. Figure A1 and Table A1 shows that using 

balanced panels does not affect the results in the main analysis. From Figure A1 (the 

corollary to Figure 1), one sees that aggregation bias is still evident, with the pattern of 

bias across the number of cohorts being largely the same. The balanced panel does 

produce less biased estimates, with more appearing in the 95% confidence interval of 

the ‘true’ coefficients, but the effect is small. Table A1 also produces similar results to 

its counterpart (Table 6), particularly in terms of bias. However the examples which 

meet the AWAR threshold have poor inference with some variables losing significance. 

This is due to the loss of observations in the balanced panel, although the poor inference 

can be addressed by using alternative estimation techniques discussed in Appendix B. 

Figure A2 shows the relationship between AWAR and aggregation bias is also 

unchanged. 

Figure A1: Pseudo-Panel Estimates using Balanced Panels 
 

 
Notes: Same as for Figure 1 but using balanced panels 
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Table A1: Replication of Table 6 using Balanced Panels 
 

 Pooled 

OLS 

Fixed 

Effects 

Pseudo-

Panel 1 

Pseudo-

Panel 2 

Pseudo- 

Panel 3 

Pseudo- 

Panel 4 

HHsize -0.089*** -0.088*** -0.079*** -0.054** -0.092*** -0.083*** 

 (0.003) (0.004) (0.016) (0.021) (0.008) (0.008) 

ltot_asset 0.174*** 0.105*** 0.112** -0.038*** 0.114*** 0.098*** 

 (0.006) (0.007) (0.043) (0.013) (0.012) (0.012) 

secondary -0.011 0.054*** 0.251* -0.225* 0.051 0.089*** 

 (0.013) (0.013) (0.146) (0.119) (0.031) (0.034) 

lnremit 0.053*** 0.016** -0.038 0.199*** 0.011 0.024 

 (0.008) (0.007) (0.075) (0.060) (0.016) (0.016) 

remittance -0.572*** -0.170** 0.243 -2.745*** -0.138 -0.277 

 (0.089) (0.083) (0.930) (0.762) (0.191) (0.188) 

       

Observations 6,580 6,580 6,842 6,843 5,819 6,344 

Cohorts   24 20 344 309 

Cell Size   73 88 4 5 

Cohort 

Constructors 
  2 year 

5 year, 

Location 

2 year, Region, 

Location, 

Education, 

Gender 

2 year, 

Region, 

Education, 

Gender 

AWAR      

HHsize   0.27 0.27 0.52 0.49 

ltot_asset   0.26 0.36 0.64 0.59 

secondary   0.15 0.15 0.62 0.55 

lnremit   0.13 0.08 0.77 0.66 

       

Notes: Same as Table 6 

 
Figure A2: AWAR and Estimation Bias with Balanced Panels 

 

 
Notes: Same as Figure 3 but using balanced panels 
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Appendix B: Alternative Pseudo-Panel Estimation Techniques 

 

The focus so far has been on the bias of pseudo-panel estimates and ensuring they are 

as close as possible to the “true” fixed effects values. This is not the only concern as 

Table 6 shows that pseudo-panel estimates are also far less efficient than fixed effects, 

with standard errors generally being at least two or three times larger. This has 

important consequences for inference as the pseudo-panel estimates are less significant 

in a number of cases. To a certain degree this is inevitable due to the reduction in the 

number of observations when moving from the household to the cohort level. In Table 

B1 we consider some alternative ways of estimating pseudo-panels which produce the 

same coefficient estimates but different standard errors. The baseline method (which 

we have been using thus far) is shown in Column 3, where the data is aggregated to the 

cohort level and cohort dummies are included to account for fixed effects, what we 

term Cohort LSDV. Cohorts are constructed using 2 year age bands and all four of the 

other construction variables as this specification yielded the closest estimates to the 

“true” FE estimates (which are included in Column 1 to aid comparison). 

The first method considered is estimating using an instrumental variables (IV) approach 

where the model is estimated at the household level but including cohort dummies and 

using the cohort means as instruments for the household level variables. As this 

approach keeps the data at the household level, one may expect the standard errors to 

be lower than for Cohort LSDV as there are more observations. This is not the case 

with standard errors for the IV being almost identical. It also demonstrates that cohort 

aggregation is a similar process to instrumenting and grouping can be as stringent a 

process as selecting a valid instrument. For the second method we keep the data at the 

cohort level but use fixed effects estimation (labelled Cohort FE) rather than cohort 

dummies as this increases the degrees of freedom and. The results in Column 4 indicate 

that, if anything, the standard errors are slightly larger. The coefficients are also slightly 

different as fixed effects estimates requires cell sizes (which are used as regression 

weights) to be constant over time whereas LSDV allows them to vary.  
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Table B1: Alternative techniques for estimating Pseudo-panels 
 

Aggregation 

level 
Household 

 
Cohort 

 Household with cohort 

observations 

 
FE IV 

 Cohort 

LSDV 

Cohort 

FE 

 LSDV 

Cohort Y 

LSDV 

House-hold Y 

         

HHsize -0.092*** -0.093***  -0.093*** -0.094***  -0.093*** -0.093*** 

 (0.004) (0.007)  (0.007) (0.007)  (0.003) (0.008) 

ltot_asset 0.105*** 0.118***  0.118*** 0.118***  0.118*** 0.118*** 

 (0.006) (0.012)  (0.012) (0.013)  (0.006) (0.014) 

secondary 0.051*** 0.060*  0.060* 0.063**  0.060*** 0.060 

 (0.012) (0.032)  (0.031) (0.032)  (0.016) (0.037) 

lnremit 0.019*** 0.025  0.025* 0.026*  0.025*** 0.025 

 (0.007) (0.016)  (0.015) (0.016)  (0.008) (0.019) 

remittance -0.205** -0.298  -0.298* -0.308*  -0.298*** -0.298 

 (0.080) (0.189)  (0.181) (0.187)  (0.092) (0.226) 

         

Observations 8,645 8,790  1,727 1,727  8,790 8,790 

R-squared 0.48 0.67  0.91 0.71  0.92 0.56 

         

Note: The first two columns estimate using household level data to either estimate fixed effects 

regression using the panel nature of the data or an IV regression using cohort means as instruments. 

Columns 3 and 4 use cohort means to create a cohort level panel and account for cohort fixed effects 

either using cohort dummies (Column 3) or fixed effects (Column 4). Cohort LSDV has been used in 

the main analysis to estimate pseudo-panels. Columns 5 and 6 maintains the data at the household level 

but the values of the explanatory variables are the cohort means. Column 5 uses the cohort means for the 

dependent variable whereas Column 6 instead uses the household level values. Robust standard errors 

in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

The final two methods are similar and involve estimating at the household level but 

using the cohort mean observations rather than the household level observations. This 

amounts to the cohort mean observations being repeated in the dataset the same number 

of times as their cell sizes. Cohort dummies are included to account for fixed effects 

and the regression is weighted by the negative of the square-root of the cell for 

consistency with the weighting used in the cohort level regressions. The methods differ 

in that ‘LSDV Cohort Y’ uses cohort mean values for the dependent variable as well 

as the independent variables, whereas ‘LSDV Household Y’ does so only for the 

independent variables and keeps the dependent variable values at the household level.  

Both approaches have a certain advantage over using Cohort LSDV. Cohort Y produces 

standard errors that are very similar to the FE errors, resulting in identical inference 

with estimates having the same significance levels. Although estimating in such a 

manner is questionable as it essentially involves artificially expanding the number of 

observations by replication, it is the only method that produces errors similar to the FE 

values. Thus it is best to continue using Cohort LSDV as the baseline, however one 
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could include Cohort Y alongside it in order to get inference closer to those at the 

household level. The Household Y approach is not as useful for getting improved 

standard errors, but has the advantage of producing an R-squared that is more consistent 

with those from household level models. The R-squared is slightly larger than for the 

FE model but far below those from other pseudo-panel models where the value often 

exceeds 0.9. Thus if one is interested in a goodness-of-fit measure for pseudo-panel 

models then the R-squared from a Household Y model may be the most suitable option.  
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Appendix C: Comparing AWAR on Panel and RCS data 

 

In order to compare AWAR values across panel and RCS data we convert our panel 

data into RCS by randomly dropping households so that the same household does not 

appear in more than one time period. As we have four waves this would mean dropping 

three quarters of our observations, leaving too few for creating suitable cohorts. Thus 

we only use the first two waves, meaning only half the observations in each wave are 

dropped. We re-estimate using all 65 cohort specifications for the first two waves of 

the panel and RCS versions of our data. We then calculate the AWAR value and the 

absolute bias, which is calculated using the panel fixed effects coefficients as the ‘true’ 

values, with results presented in Figures C1 and C2. While the panel data results only 

contain aggregation bias, the RCS will suffer from both aggregation and sampling 

error, hence the latter has larger levels of absolute bias. RCS data also produces larger 

AWAR values, with many more specification meeting the 0.5 threshold. Nevertheless, 

even with the additional sampling error bias, a threshold of 0.5 still looks suitable for 

RCS data.  

 

Figure C1: AWAR and Estimation Bias of first two waves of Panel Data 
 

 
Notes: Same as Figure 3 but just using first two waves of data 
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Figure C2: AWAR and Estimation Bias of first two waves without the panel dimension 
 

 
Notes: Same as Figure 3 but just first two waves of data and randomly dropping households to create a repeated 

cross-section 
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