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Abstract 

The selection of upper order statistics in tail estimation is notoriously difficult. Methods 
that are based on asymptotic arguments, like minimizing the asymptotic MSE, do not 
perform well in finite samples. Here, we advance a data-driven method that minimizes the 
maximum distance between the fitted Pareto type tail and the observed quantile. To analyze 
the finite sample properties of the metric, we perform rigorous simulation studies. In most 
cases, the finite sample-based methods perform best. To demonstrate the economic 
relevance of choosing the proper methodology, we use daily equity return data from the 
CRSP database and find economically relevant variation between the tail index estimates.  
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1 Introduction

In various research fields, like geography and economics, distributions ex-
hibit heavy tails, e.g., the scaling behaviour described by the power laws
of Pareto. In this literature, the tail index, α, is the shape parameter in
the power that determines how heavy the tail is (a higher α corresponds
to a thinner tail). The most popular estimator for the tail index is by Hill
(1975), which is the quasi-maximum likelihood estimator. In the statistical
literature, there is an ongoing debate on the number of tail observations k
that are used in the estimation of α. The choice of k leads to a trade-off
between the bias and variance of the estimator. Although practitioners tend
to use “Eye-Ball” methods (Resnick and Starica, 1997), the typical approach
suggested in the statistical literature is choosing k by minimizing the asymp-
totic mean squared error (MSE). The methods that are used to find k are
asymptotically consistent but have unsatisfactory finite sample properties.
This paper proposes a novel approach for choosing the optimal k, labelled
k∗. The methodology is based on fitting the tail of a heavy-tailed distribution
by minimizing the maximum deviation in the quantile dimension. We show
this method outperforms other methods put forth in the literature.

Hall (1990) and Danielsson et al. (2001) use a bootstrap procedure to mini-
mize the MSE. Drees and Kaufmann (1998) exploit the same bias and vari-
ance trade-off but use the maximum random fluctuation of the estimator to
locate the point where the trade-off is optimal. These methods are based
on asymptotic arguments, but these methods may not perform very well in
finite samples.

The shortcomings of the currently available methods motivate our new ap-
proach. In this paper, we propose using the penalty function of the Kolmogorov-
Smirnov (KS) test statistic to fit the tail of the distribution. The KS statistic
is measured as the maximum difference between the empirical distribution
and a parametric distribution in the probability dimension. Clauset et al.
(2009) use this metric to find the optimal k. In a response, Drees et al.
(2018) find that the KS statistic chooses values that are too low for the op-
timal k and therefore introduces a large variances for the Hill estimate. In
this paper, we use KS statistic, but with a twist. Instead of minimizing the
distance between the empirical distribution and the parametric distribution
in the probability dimension, we minimize the distance in the quantile di-
mension. This measure is henceforth referred to as the KS-distance metric.
All heavy-tailed distributions in the sense of regular variation (see below)
are characterized by ultimate power law behaviour. For a large subset of
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distributions, the tails, to a first-order expansion at infinity, correspond to
the tail of a Pareto distribution. The estimates of the shape parameter α use
k of the highest order statistics, assuming that these order statistics fit well
to a Pareto tail. By varying k, we are able to simultaneously fit the empirical
distribution and elicit k∗.

The particular choice of the metric is mainly motivated by the fact that
small deviations in the probability distribution lead to increasingly large dis-
tortions in the quantile dimension. Deep into the tail, the difference in the
probability dimension is of order 1/n, but in the quantile dimension this is of

order (n/k)
1/α. This effect is amplified as one moves deeper into the tail of

the distribution. Basing the metric in the quantile domain therefore puts a
natural emphasis on fitting tail observations as opposed to the centre obser-
vations. Furthermore, by focusing on the maximum, the metric is not diluted
by the numerous centre observations.

These intuitive arguments are backed by rigorous simulation analyses and
tests. In the simulation study, we draw i.i.d. samples from the Fréchet, sym-
metric stable and the Student-t distribution. For these distribution families,
Hall’s second-order expansion of the cumulative distribution function (CDF)
holds. Given this expansion, Hall and Welsh (1985) derive the theoretical k∗,
which minimizes the asymptotic MSE. This allows us to study the relation-
ship between the chosen k∗ and the estimated tail index. Furthermore, we
employ dependent time series in the simulation exercise. The autoregressive
conditional heteroskedastic (ARCH) stochastic processes by Engle (1982)
model the volatility clustering in time-series data. For the ARCH process,
we do not know the variance and the bias of the Hill estimator. However,
the tail index is known. Therefore, we are able to evaluate the performance
of the methods under the clustering of extremes.

To test the performance of the KS-distance metric, we analyze it from four
different perspectives. Firstly, we test the KS-distance metric against vari-
ous other penalty functions. We use the MSE, mean absolute error and the
metric used in Dietrich et al. (2002) to benchmark the performance of our
penalty function. To evaluate the ability of different metrics to correctly
penalize errors, we use results derived by Hall and Welsh (1985). Hall and
Welsh derive the theoretical k∗ for the class of distributions that adhere to
Hall’s second-order expansion of the CDF. These results stipulate the be-
haviour of k∗ as a function of the sample size and α.
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Secondly, we contrast the performance of the KS-distance metric with the
other existing methods. We find that the KS-distance metric and the auto-
mated Eye-Ball method outperform other heuristic and statistical method-
ologies. For the Student-t, symmetric stable and the Fréchet distributions,
the competing methodologies do not reproduce the expected patterns for k∗

as derived by Hall and Welsh (1985). This leads to a larger bias in α̂ for less-
heavy-tailed distributions. The theoretically motivated methodologies often
choose a high value for k∗ (too many order statistics close to the centre of the
distribution), which corresponds to a large bias. For the ARCH processes,
the methods by Drees and Kaufmann (1998), Danielsson et al. (2001) and
the fixed sample fraction introduce a large bias in the Hill estimator. For the
dependent time series, the automated Eye-Ball method and the KS-distance
metric produce small biases. This is comforting as most economic time series
exhibit volatility clustering.

In addition to estimating the tail index, we model the quantile estimates for
the various competing methods, since the ultimate goal is to produce/obtain
reliable estimates of the possible losses. When we analyze the quantile esti-
mates, the KS-distance metric and the automated Eye-Ball method perform
best for the quantiles greater than the 99% probability level. For the quan-
tiles further towards the centre of the distribution, other methods produce
smaller errors. Both the KS-distance metric and the automated Eye-Ball
method have a tendency to pick a small k∗ and therefore fit the tail close to
the maximum. The other methodologies often use a larger number of order
statistics and consequently fit better closer towards the centre of the distri-
bution.

In the last section of this paper, we show that the choice of k∗ can be eco-
nomically important. For this purpose we use individual daily stock price in-
formation from the Centre for Research in Security Prices (CRSP) database.
For 17,918 individual stocks, we estimate the left and right tail index of the
equity returns. We measure the average absolute difference between the es-
timated α and find that the average difference between the methods ranges
from 0.39 to 1.44. These differences are outside of the confidence interval
of the Hill estimator. For example, shifting the Hill estimate from 4 to 3
by using a different methodology suddenly implies that the fourth moment,
which captures the variance of the volatility, does not exist.

To further demonstrate the impact of the choice of k, we use the KS-distance
metric to estimate the conditional tail risk measure by Kelly and Jiang
(2014). Kelly and Jiang (2014) use the cross-section of individual stock re-
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turns to estimate tail risk in the economy at a given moment in time. They
find that the exposure to the conditional (on time) tail index commences a
risk premium. They find, furthermore, that the tail index predicts the excess
return of the market portfolio. The threshold for this application is set to 5%
of the daily returns collected in the given month.1 We redo the analysis by
applying a threshold of 2.5%, 1%, 0.5%, and the KS-distance metric. We find
that the risk premium halves from 4% to 2% by applying the KS-distance
measure. We find, moreover, that the return predictability by the tail risk
measure disappears.

The paper first introduces the Hill estimator and the KS-distance metric
along with the other methods from the literature. This is followed by pre-
senting the results from various simulations in section 3. Section 4 exhibits
the estimates for the daily stock return data, followed by concluding remarks.

2 Extreme value theory methodology

The first part of this section provides a review of the main extreme value
theory (EVT) results. It is the stepping stone for the semi-parametric com-
ponent of the metric. The second part introduces the alternative methods
for determining the optimal number of order statistics.

2.1 Extreme value theory

Consider a series X1, X2, ..., Xn of i.i.d. random variables with CDF F. Sup-
pose one is interested in the probability that the maximum is not beyond a
certain threshold x. This probability is given by

P {max (X1, ..., Xn) ≤ x} = P {X1 ≤ x, ..., Xn ≤ x} iid
= [F (x)]n .

EVT gives the conditions under which there exists sequences of norming
constants an and bn such that

lim
n→∞

[F (anx+ bn)]n → G (x) ,

where G (x) is a well-defined non-degenerate CDF. There are three possible
G (x), depending on the tail shape of F (x). This paper concentrates on the

1The average number of daily observations in a month is approximately 80,000. The
lowest cross-sectional sample is about 35,000 in the beginning of the sample period and
the highest around the year 2000 with a sample size of 130,000.
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distributions that have a regularly varying tail,

1− F (x)

x−
1
γL (x)

= 1, as x −→∞, γ > 0, (1)

where L is a slowly varying function i.e, lim
t→∞

L(tx)/L(t) = 1. Here 1/γ = α

is the index of regular variation, or the tail index. The α determines how
heavy the tail is. Since α corresponds to the number of bounded moments,
we often discuss results in terms of α rather than γ. The heavy-tailed limit
distribution is the Fréchet distribution (Balkema and De Haan, 1974):

Gγ>0 (x) = e−x
−1/γ

.

Note that Gγ>0 (x) satisfies (1). Hence the tail behaves approximately as a

power function, x−
1
γ . This implies that the distribution for the maximum has

a one-to-one relationship with the shape of the tail of F (x). As a consequence,
the entire tail can be utilized for fitting instead of just using maxima; see
Mandelbrot (1963) and Balkema and De Haan (1974).

Different estimators for α are proposed in the literature (Hill, 1975; Pickands,
1975; De Haan and Resnick, 1980; Hall, 1982; Mason, 1982; Davis and Resnick,
1984; Csörgo et al., 1985; Hall and Welsh, 1985). The most popular tool for
estimating the tail index is the Hill (1975) estimator

γ̂ =
1

α̂
=

1

k

k−1∑
i=0

(log (Xn−i,n)− log (Xn−k,n)) , (2)

where k is the number of upper-order statistics used in the estimation of α.
Figure 1 depicts the reciprocal of the Hill estimates for a sample drawn from
a Student-t(4) distribution plotted against an increasing number of order
statistics k. The estimate of α varies with k quite substantially. This shows
that the choice of k matters for obtaining the proper estimate.

The pattern in Figure 1 can be decomposed in the variance and the bias
of the Hill estimator. For small k, the variance of the Hill estimator is rel-
atively high. As k increases, the volatility subsides and the bias kicks in.
One can find the bias and variance of the estimator for parametric distribu-
tions for the subclass of distributions in (1) that satisfy the so-called Hall
expansion2

1− F (x) = Ax−1/γ
[
1 +Bx−β + o

(
x−β
)]
. (3)

2Most known heavy-tailed parametric distributions, like the Student-t, symmetric sta-
ble and Fréchet distribution, conform to the Hall expansion. The parameter values A, α,
B and β for these distributions are presented in Table 5 of the Appendix.
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Using the Hall expansion one shows the asymptotic bias as

E

[
1

α̂
− 1

α
| Xn−i,n > s

]
=
−βBs−β

α (α + β)
+ o

(
s−β
)
. (4)

Equation (4) provides the relationship between the threshold s and the bias
of the Hill estimator. From (4) one notices that as s becomes smaller, i.e.,
the threshold moves towards the centre of the distribution, the bias increases.

Figure 1: Hill plot for the Student-t (4) distribution

This graph depicts the estimate of α for different levels of k. The sample is drawn from a
Student-t distribution with 4 degrees of freedom so that α = 4. The sample size is 10,000.
This graph is known as the Hill plot.

The asymptotic variance of the Hill estimator is,3

var

(
1

α̂

)
=

sα

nA

1

α2
+ o

(
sα

n

)
.

The variance is also a function of s. As s decreases, the variance becomes
smaller. When comparing the bias squared and the variance, one notices
a trade-off. For large s, the bias is small, and the variance dominates. In
contrast, for small s the bias dominates. Suppose one likes to choose a k∗

that balances the two vices. Given this objective, how can we extract the
asymptotic MSE from the data?

3The bias and the variance expressions are based on the second-order expansion by
Hall and Welsh (1985). Given the bias and the variance, the optimal threshold, s∗, which
minimizes the MSE can be derived. See Appendix A.1 for further details.
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2.2 Finding k∗

Various methods exist for choosing k∗. These methods can be roughly divided
into two groups. The first group of methods comes from the theoretical
statistics literature and is based on asymptotic arguments. The second group
of methods stems from suggestions by practitioners. The latter are more
heuristic in nature, but some perform surprisingly well.

2.2.1 Theoretical-based methods

Hall (1990) and Danielsson et al. (2001) utilize the bias and the variance
to minimize the asymptotic mean squared error (AMSE). They propose a
bootstrap procedure that minimizes the AMSE by choosing k appropriately.
Hall devises a sub-sample bootstrap to find the k∗ under the restrictive as-
sumption α = β in (3). To obtain the optimal rate4 in the bootstrap, the
assumption of α = β is crucial.

In general, β differs from α, and one is faced with eliciting the optimal
rate from the data. To this end, Danielsson et al. (2001) propose a double
bootstrap procedure to estimate

lim
n→∞

mse = E
[
(γ̂ − γ)2] .

For the AMSE, γ is unknown. To tackle this problem the theoretical γ in
the AMSE expression is replaced with a control variate. However, a simple
bootstrap is inconsistent in the tail area. Consequently, a sub-sample boot-
strap is applied. Furthermore, to be able to scale the sub-sample MSE back
to the original sample size, a second, even smaller sub-sample bootstrap is
needed. As a by-product of their procedure the ratio of α/β is also estimated.

A second approach is proposed by Drees and Kaufmann (1998). They in-
troduce a sequential procedure that yields an asymptotically consistent es-
timator of k∗. Their estimator relies on the fact that the maximum random
fluctuation of the estimator is of the order (log log n)1/2 for all intermediate
sequences kn. This procedure also yields a consistent estimate of α/β.

The theoretical methods by Danielsson et al. (2001) and Drees and Kauf-
mann (1998) are asymptotically consistent methods. As the arguments are
based on asymptotic reasoning, the question is how well these methods per-
form in finite samples.5

4The sub-sample bootstrap size needs to increase slower than n to achieve asymptotic
optimality in the bootstrap procedure.

5For more details, see Appendix A.3.
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2.2.2 Heuristics

Applications in the economic literature frequently resort to heuristic rules for
choosing k. These rules are based on finding the regions where, as k increases,
the variance substantially decreases. The algorithms based on “Eye-Balling”
the Hill plot seek a substantial drop in the variance as k is increased. To
formalize an automated Eye-Ball method, we use a sequential procedure.
This leads to the following estimator,

k∗eye = min

{
k ∈ 2, ..., n+ − w|h < 1

w

∑w

i=1
I {α̂ (k + i) < α̂ (k)± ε}

}
. (5)

Here w is the size of the moving window, which is typically 1% of the full
sample. This window is used to evaluate the volatility of the Hill estimate.
The ε gives the range between which [α̂ (k + 1) , ..., α̂ (k + w)] are within the
permitted bound around α̂ (k). No less than h% of the estimates should be
within the bound of α̂ (k) for k to be considered as a possible candidate. Here
h is typically around 90%, and ε is chosen to be 0.3. The n+ is the number
of positive observations in the data.6

Many applications take a more blunt approach and use a fixed percentage
of the total sample. Heuristic rules are easy to apply but are somewhat ar-
bitrary. This has consequences for the application in which these are used.
In accordance with the theoretical k∗, put forth by Hall and Welsh (1985),
different distributions have different optimal regions and different rates of
convergence. Furthermore, the optimal sample fraction depends on the sam-
ple size. Therefore, choosing a fixed portion of the sample is not appropriate.

2.3 KS-Distance metric

The shortcomings of the existing methods outlined above motivate our alter-
native approach. Our approach is based on minimizing the distance between
the empirical distribution and a semi-parametric distribution. This proce-
dure is partially inspired by Bickel and Sakov (2008). Bickel and Sakov show
that a sub-sample bootstrap is consistent in many cases but may fail in some
important examples. Through an adaptive rule based on the minimization of
the KS test statistic they find the proper sub-sample bootstrap size.7 We use

6In the Monte Carlo studies, we choose n+ to be a prespecified threshold, which also
applies to the other methods. This threshold will later be defined as T .

7The KS statistic is the supremum of the absolute difference between the empirical
CDF and a parametric CDF, i.e., sup

x
|Fn (x)− F (x)|.
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their idea of matching the tail of the empirical CDF to a theoretical distri-
bution for finding α (k∗). This matching process requires a semi-parametric
form for the theoretical distribution. The scaled Pareto distribution is the
ideal candidate for matching the empirical tail. After all, by definition, all
distributions in this class satisfy (1) and the Pareto distribution is the only
distribution for which (1) holds over the entire support, as it does not contain
a second-order term.

2.3.1 The distance metric

The starting point for locating k∗ is the first-order term in (3):

P (X ≤ x) = F(x) = 1− Ax−α[1 + o(1)]. (6)

This function is identical to a Pareto distribution if the higher-order terms
are ignored. By inverting (6), we get the quantile function

x ≈
[

P (X ≥ x)

A

] 1
−α

. (7)

To turn the quantile function into an estimator, the empirical probability
j/n is substituted for P (X ≥ x). A is replaced with the Weissman (1978)
estimator k

n
(Xn−k+1,n)α, and α is estimated by the Hill estimator.8 The

quantile is thus estimated by

q (j, k) = Xn−k+1,n

(
k

j

)1/α̂k

. (8)

Here j indicates that the quantile estimate is measured at probability (n−j)/n .

Given the quantile estimator, the empirical quantile and the penalty function,
we get:

QT = inf
k

[
sup
j
|Xn−j,n − q (j, k)|

]
, for j = 1, ..., T, (9)

where T > k is the region over which the KS-distance metric is measured.
Here Xn−j,n is the empirical quantile and q (j, k) is the quantile estimate from
(8). k, which produces the smallest maximum horizontal deviation along all
the tail observation up to T , is k∗ for the Hill estimator.9

8The estimate of A is obtained by inverting P = Ax−α at threshold Xn−k+1,n.
9In Appendix A.2, we model the KS-distance metric in terms of a Brownian motion

representation. This allows us to study the properties of the KS-distance metric as an
appropriate penalty function in a more general setting.
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2.3.2 Motivation for the KS-distance metric

The metric in (9) deviates from the classic Kolmogorov-Smirnov statistic.
The adjustment is that the distance is measured in the quantile dimension
rather than the probability distribution dimension. There are several rea-
sons for this choice. The first reason is that most economic variables, such
as gains and losses, are concepts in the quantile dimension rather than the
probability dimension. Various risk measures, such as value at risk and ex-
pected shortfall, are concepts related to quantiles at a given probability level.

The second motivation is more technical. Our analysis is solely focused on
the tail of the distribution, rather than the centre observations. For tail ob-
servations, small changes in probabilities lead to large changes in quantiles.
Consequently, small mistakes in estimating probabilities lead to large devi-
ations in the quantiles. We therefore prefer to minimize the mistakes made
in the quantile dimension rather than the probability distribution dimension.

Given the decision to measure over the quantile dimension, a function is
needed to penalize deviations from the empirical distribution. The inner
part of the penalty function takes the absolute difference between the quan-
tiles instead of, for instance, the squared difference. A small error in the tail
is automatically magnified. Therefore, fitting the tail quantiles already intro-
duces a natural way to put emphasis on the larger deviations. It consequently
does not necessitate additional penalizing, like the squared differences do.

To translate all the absolute differences along the tail into one metric, we
use the maximum over the absolute distances. Taking the maximum has as
a benefit that the metric is not diluted by the numerous centre observations.
This, for instance, is the case when the differences are averaged.

3 Simulations

For the simulations, we choose a wide range of heavy-tailed distributions
and processes. One prerequisite is that the tail index for these distributions
is known. We choose CDFs that differ with respect to the tail index and
second-order terms. These imply different rates of convergence as n → ∞,
and differences in the bias and variance trade-offs.

For the simulation study, we choose distribution families that adhere to the
Hall expansion in Equation (3). Therefore, we know α and k∗, where k∗ min-
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imizes the AMSE. We use three distribution families to draw i.i.d. samples
from: The Fréchet, symmetric stable and the Student-t distribution.10 We
also employ dependent time series. The ARCH stochastic processes by En-
gle (1982) model the volatility clustering in time-series data. For the ARCH
process, we do not know the variance and the bias of the Hill estimator.
However, the tail index is known.11 Therefore, we are able to evaluate the
performance of the methods under the clustering of extremes.

In the simulation study, estimates of α and k∗ for different penalty func-
tions are analyzed. We evaluate six properties. The first property is the
bias in the estimate of α. Secondly, we compare the α estimates for different
members within the same distribution family, like the Student-t distribution.

Thirdly, from Hall and Welsh (1985) we have the level of k∗ that minimizes
the AMSE for a given parametric distribution and sample size.12 This allows
us to evaluate how close the different criteria come to the k∗. The fourth
property addresses the theoretical relationship between α and k∗. It turns
out that α and k∗ are inversely related within most distribution families. The
fifth property of k∗ is that for n → ∞ and k (n) → ∞ that k/n → 0. This
entails that, for the same distribution, a larger sample size implies that a
smaller proportion of observations is used for the estimation of α.

Lastly, in order to locate the optimal k∗ in practice, we consider a range
of higher-order statistics up to a threshold Xn−T,n. The selected k∗ should
be insensitive to the choice of the nuisance threshold T .

3.1 Alternative penalty functions

We contrast the performance of the KS-distance metric to three other met-
rics presented in Appendix A.4. These metrics are the mean squared, mean
absolute deviations and the discretized version of the metric used by Dietrich
et al. (2002). For a thorough analysis, we draw samples from the Student-t,
symmetric stable and Fréchet distribution families.13

10The tail index for the Student-t distribution is equal to the degrees of freedom. For the
symmetric stable distribution it is the characteristic exponent. For the Fréchet distribution
it is the shape parameter. Henceforth we refer to these distribution parameters as α.

11See De Haan, Resnick, Rootzén, and De Vries (1989).
12See Appendix A.1 for the derivation of the optimal threshold.
13The parameter values of these distribution families for the Hall expansion in (3) are

given in Table 5 in the Appendix.
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In Figure 2, the level of α(k∗) is displayed against the threshold T over which
the specified metric is optimized. These plots give an indication whether the
α(k∗) is at the right level and is insensitive to the nuisance parameter T .
The first fact to notice from Figure 2 is that the curves are relatively flat
for the KS-distance metric. More importantly, the curves come closest to
the theoretical level of α. On the basis of the mean square distance, mean
absolute distance, and the metric by Dietrich et al. (2002), the estimates of
α(k∗) do not stabilize, except for the Student-t (2) distribution. The more
or less monotonic decline in the three graphs indicates that the level of k∗ is
dependent on the area you optimize over for these three criteria.

Figure 2: Optimal α̂ for the quantile metrics (Student-t distribution)
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This figure depicts simulation results of the average optimally chosen α(k) for a given
level of T . Here T is the number of extreme-order statistics over which the metric is
optimized. In the upper left graph this is done for the KS-distance metric for different
Student-t distributions with degrees of freedom α. This is also done for the mean squared
distance, mean absolute distance and the criteria used by Dietrich et al. (2002). The
simulation experiment has 10,000 iterations for sample size n=10,000.

In Figure 8 in the Appendix, we show that the stability of the KS metric
with regards to the choice of the nuisance parameter T also holds for the
symmetric stable distributions. The estimates of the level of α are biased.
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There is a positive bias of 0.1 for the α between 1.1 and 1.7. For the specific
case of α = 1.9, all methods have trouble finding the correct α. This is be-
cause the symmetric stable distribution with α = 1.9 comes close to α = 2.
At the characteristic exponent 2 there is a switch from distributions that ex-
hibit power law behaviour with infinite variance to the normal distribution
with exponentially declining tails and all moments bounded. The normal
distribution falls in the domain of attraction of the Gumbel distribution and
is therefore outside of the domain where the Hill estimator is applicable.

As can be observed from Figure 9 in Appendix C, all the estimates of α
have a small bias when the samples are drawn from the Fréchet distribution
family. Therefore the choice of k∗ is less crucial. In contrast to α, k∗ appears
to be sensitive to the choice of T . Nevertheless, this has little effect on α̂ due
to the particular structure of the AMSE for the Fréchet CDF.14 From Figure
10 we see that the bias is relatively small for the Fréchet distribution. This
makes the choice of k∗ less important in contrast to the other distributions.

Figure 3 depicts the average k∗ for the Student-t distribution family. These
figures show the properties of k∗ as the interval [Xn,n, Xn−T,n] over which the
metric is optimized changes. We observe that the average k∗ as a function
of T stabilizes for the KS-distance metric. This indicates that the choice of
k∗ is stable once T is sufficiently large. For the Student-t (2) distribution no
such stabilization occurs. Judging from Figure 8, however, the precise choice
of k∗ does not seem very important for the case of two degrees of freedom.
The average mean squared distance displays roughly the same properties as
the KS-distance metric. Although the choice of k seems to roughly stabilize,
this does not automatically translate into a stable and optimal estimation of
α (k). This stabilization does not occur for the mean absolute difference and
the metric by Dietrich et al. (2002).

Next, we study the relationship of the average level of k∗ for the different
members within the distribution family. In Figure 3 we observe that for the
KS-distance metric k∗ is an increasing function of the degrees of freedom for
the Student-t distribution. This is the pattern that we expect based on k∗

derived by minimizing the AMSE. This pattern is not observed for the other
criteria. Additionally, from Figure 10 we see that the bias is relatively small
for the Fréchet distribution. This makes the choice of k∗ less important in
contrast to the other distributions.

14The results are based on the second-order expansion. This might be different when
higher-order terms are used.
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Figure 3: Optimal k for quantile metrics (Student-t distribution)
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This figure depicts simulation results of the average optimally chosen k for a given level
of T . Here T is the number of extreme-order statistics over which the metric is optimized.
In the upper left graph this is done for the KS-distance metric for different Student-t
distributions with degrees of freedom α. This is also done for the mean squared distance,
mean absolute distance and the criteria used by Dietrich et al. (2002). The simulation
experiment has 10,000 iterations for sample size n = 10, 000.

Figure 8 in the Appendix depicts the results for the symmetric stable distri-
bution. There is less stability in these plots compared with the plots for the
Student-t distribution. Until approximately T = 600, the chosen levels k∗

are coherent relative to one another for the symmetric stable distributions
with different values of α. For larger values of T , the levels of k∗ start to cut
across one another.

The symmetric stable distribution is relatively difficult to analyze. Figure
10 in the Appendix shows a hump shape for the Hill plot of the symmetric
stable distribution. Sun and De Vries (2018) show that the positive sign of
the scale parameter of the third-order term in the Hall expansion explains
the hump shape. This convexity can lead to two intersections of the Hill plot
with the true value of α. The region where k is small, the high volatility
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region, has an intermediate probability containing the best estimate. As k
increases and moves into the hump, the volatility subsides; however, the bias
kicks in. These estimates are biased and therefore have a low probability
of containing the best estimate. As k increases further towards T , the Hill
estimates move back in the range of the true α. These estimates have a lower
variance and possibly a better estimate than the initial volatile part. This is a
possible explanation for the shape of k∗ as a function of T in the KS-distance
metric plotted in Figure 8. The increase in k∗ after a flat line between 500
and 1,000 is an indication that the effect of the third-order term is kicking in.

In MC simulation studies none of the metrics attain the optimal level of
k∗. Based on the other desirable attributes described at the start of this sec-
tion, the KS-distance metric outperforms the other metrics. Furthermore,
the chosen k∗ should not change as the interval for the metric changes, i.e.,
change in T . The KS-distance metric is the only metric that is robust to
changes in T . This alleviates the concern of arbitrarily chosen parameters
driving the results.15

3.2 Monte Carlo: Comparing existing methods

Given the choice of the KS-distance metric as the appropriate penalty func-
tion, the literature offers competing methods for choosing k∗. These are the
double bootstrap and the method by Drees and Kaufmann (1998) reviewed
in Appendix A.3. Additionally, we use the automated Eye-Ball method, fixed
sample proportion and the theoretical threshold (TH) in an MC horse race.16

In the horse race, we judge the methods on their ability to estimate the tail
index and to reproduce the patterns in α and k∗. In addition, we evaluate
the ability to estimate the different quantiles. Even though the methodolo-
gies are focused on the Hill estimator, estimating the quantiles can give an
interesting new dimension to the performance of these methodologies. For
the quantile estimator, both the shape and scale parameters need to be esti-
mated. These are both dependent on k∗.

Table 1 presents the results from the MC horse race for the heavy-tailed
distributions and processes with the mean estimates of α for the different
methodologies. From Table 1 it is clear that all methods for the Student-t
distribution exhibit an increasing bias as the degrees of freedom increase.

15For additional simulation results with different sample sizes n, consult the tables and
figures from Monte Carlo simulations in the online Appendix.

16The k∗ based on the minimization of the theoretical AMSE is only reported for com-
parison as a benchmark. In practice one does not know the TH optimal k∗.
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This problem is most prominent for the double bootstrap method and the
iterative method of Drees and Kaufmann (1998). The KS-distance metric,
TH and the automated Eye-Ball method give estimates that are closest to
the true value of the tail index. Based on these results for the Student-t
distribution, we conclude that the KS-distance metric performs better than
other implementable methods. However, the automated Eye-Ball method is
only performing marginally inferior to the KS-distance metric.

Table 1: Estimates of α (k∗) for different methods
α KS Dis TH 5% Eye-Ball Drees Du Bo

Student-t

2 2.01 1.92 1.85 1.98 1.70 1.71
3 2.85 2.79 2.45 2.83 2.24 2.20
4 3.53 3.58 2.87 3.48 2.64 2.52
5 4.10 4.32 3.16 3.96 2.92 2.75
6 4.49 4.96 3.38 4.29 3.14 2.92

Stable

1.1 1.21 1.11 1.11 1.10 1.07 1.09
1.3 1.39 1.33 1.37 1.32 1.33 1.36
1.5 1.58 1.57 1.72 1.54 1.68 1.71
1.7 1.78 1.84 2.32 1.84 2.18 2.19
1.9 2.31 2.55 3.55 3.36 3.13 2.90

Fréchet

2 2.01 1.99 1.98 2.00 1.92 1.93
3 2.93 3.01 2.97 3.00 2.88 2.90
4 3.79 4.05 3.96 3.99 3.85 3.87
5 4.71 5.09 4.95 4.99 4.81 4.84
6 5.63 6.14 5.94 5.98 5.77 5.81

ARCH

2.30 2.59 2.13 2.34 1.93 1.88
2.68 2.87 2.39 2.66 2.16 2.05
3.17 3.22 2.69 3.04 2.42 2.22
3.82 3.66 3.02 3.50 2.71 2.39
4.73 4.18 3.38 4.03 3.04 2.55

This table depicts the mean for the estimated α for the different methodologies. The
samples are drawn from four different heavy-tailed distribution families. The samples are
drawn from the Student-t, symmetric stable, Fréchet distribution and ARCH process. The
different methods are stated in the first row. KS Dis is the Kolmogorov-Smirnov distance
metric in (9). TH is based on the theoretically derived optimal k from minimizing the
MSE for specific parametric distributions, presented in Equation (11) in the Appendix.
The automated Eye-Ball method in (5) is the heuristic method aimed at finding the
first stable region in the Hill plot. For the column Drees, the k∗ is determined by the
methodology described by Drees and Kaufmann (1998). Du Bo is the double bootstrap
procedure by Danielsson et al. (2001). Here, α indicates the corresponding theoretical
tail exponent for the particular distribution which the sample is drawn from. The sample
size is n = 10, 000 for 10, 000 repetitions.

The simulation results for the symmetric stable distribution do not point
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towards a method that is clearly superior. For α = 1.1 and α = 1.3, most
of the other methods perform better in terms of the mean estimate than the
KS-distance metric. For α ≥ 1.5, the KS-distance metric and the automated
Eye-Ball method start outperforming the competing methods. For α = 1.9,
the competing methods completely miss the mark. The same is true for the
KS-distance metric, but the bias is the smallest among all the methods. As
previously discussed, the difficulty for relatively high values of α stem from
the fact that the symmetric stable distribution becomes the thin-tailed nor-
mal distribution at the boundary.

The bias of the Hill estimator for the Fréchet distribution is relatively small
compared to the Student-t and symmetric stable distribution. Therefore, all
the methods perform relatively well. The automated Eye-Ball method has
the best performance for this family of distributions. The bias in the KS-
distance metric is large relative to the other metrics for higher α’s. Because
the bias in the Fréchet distribution is small, the bias due to the KS-distance
metric is still limited in absolute terms.

The Hill plot for the ARCH process is similar to that of the Student-t dis-
tribution. Therefore, we expect that methods that performed well for the
Student-t distribution will also do well for the ARCH process. Table 1 shows
that, for the ARCH process, the KS-distance metric and the automated Eye-
Ball method indeed outperform the other methods. For the very heavy-tailed
processes the automated Eye-Ball method has a smaller bias. For α ≥ 3.172,
the KS-distance metric shows a smaller bias. The other methods show a
substantial bias over the whole range of α. To conclude, the KS-distance
metric and the automated Eye-Ball method are the preferred methods since
these perform best across a wide range of α values.

Table 6 in Appendix B gives k∗ for the different distributions and crite-
ria. The patterns in k∗ for the various distributions give a mixed picture.
The automated Eye-Ball method chooses low values of k∗ across the different
distributions. For the Student-t distribution the average number of observa-
tions used for the estimation increases with α. This goes against the results
for k∗TH . The same holds true when the sample is drawn from the symmetric
stable distribution.

The method by Drees and Kaufmann (1998) shows the negative relationship
between the α implied from the parametric distribution and the choice of
k∗ within the family of distributions. However, the levels for the Student-
t and symmetric stable distribution family are far higher than desired. In
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part, this is because the practical criterion is based on asymptotic arguments.
In addition, the bootstrap has a slow rate of convergence. In practice this
leads the criterion function to be flat and volatile near the optimum. As a
consequence, often no clear global minimum is found.

3.3 Simulation results for the quantiles

We also analyze how the different metrics influence the quantile estimates.
For many of the economic questions this is more relevant than the precise
value of the tail index.

Figure 4: Quantile estimation median difference (Student-t distribution)
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This figure shows the bias induced by using the quantile estimator presented in Equation
(8). We use the k∗ from the different methodologies to estimate α(k∗) and the scale
parameter A(k∗) for the quantile estimator. The 10,000 samples of size n = 10, 000 are
drawn from the Student-t distribution family with the shape parameter indicated at the
top of the picture. The i on the horizontal axis gives the probability level i/n at which
the quantile is estimated. Moving rightwards along the X-axis represents a move towards
the center of the distribution.
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Figure 4 depicts how well the various methods perform in estimating the
quantiles of the distribution.17 Estimating the quantile beyond the 99.5%
quantile is notoriously difficult. Therefore all methods introduce large mis-
takes. With the exception of the KS-distance metric for the Student-t distri-
bution with two degrees of freedom, the KS-distance metric, the automated
Eye-Ball method and the theoretical MSE produce smaller mistakes in the
extreme tail region. For the Student-t distribution, the method by Drees
and Kaufmann (1998), the double bootstrap and the 5% fixed sample size
approach generate a comparatively large mistake in the 99% to 100% quan-
tile region. The flip side is that these methods have small mistakes for the
quantiles further towards the centre of the distribution.

Figure 11 in the Appendix depicts the results for the symmetric stable dis-
tribution. A very similar picture to the Student-t distribution emerges. The
KS-distance metric introduces a relatively small mistake in the very extreme
tail quantiles but performs weakly for the quantiles closer to the centre of
the distribution. The results for the Fréchet distribution are presented in
Figure 12 in the Appendix. All methods seem to produce small mistakes for
the less extreme quantiles. It is only in the extreme tail quantiles that the
KS-distance metric sets itself apart from the other methods. This reconfirms
the results for the Student-t and symmetric stable distribution, that the KS-
distance metric is most effective in modelling the most extreme part of the
distribution.

Based on the analysis of the Monte Carlo horse race, we conclude that both
the KS-distance metric and the automated Eye-Ball method have a superior
performance over the other implementable methods. Both methods perform
well based on α̂. However, based on the analysis of the choice of k∗, the
KS-distance metric shows a better pattern. This translates into a smaller
bias in the simulation study for the Student-t and symmetric stable distribu-
tion for higher values of α. The conclusions for quantile estimation are more
sobering. Since the KS-distance metric and the automated Eye-Ball method
perform well deep in the tail of the distribution, they have a relatively large
bias towards the centre.

The performance of the methods of Drees and Kaufmann (1998) and Daniels-
son et al. (2001) in finite samples is inferior to the other methods, notwith-

17In these figures we study the median difference. Due to a small number of extreme
outliers in the tail quantiles closer to the centre of the distribution, we opt to depict the
median instead of the average. The qualitative results holds for the average difference.
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standing the proofs showing that the methods are asymptotically consistent.
Using a fixed percentage of observations, such as 5%, ignores the information
that can be obtained from the Hill plot. For larger samples this often means
that α is estimated with a relatively large bias, as can be observed from the
Monte Carlo simulation. This leads to the conclusion that the KS-distance
metric overall comes out as the preferred approach.

4 Application: Financial return series

We now take the KS-distance metric to real data. We use the methods
from the horse race to estimate the tail indexes for the return distribution of
individual U.S. stocks. The various methods used in the horse race are used
to estimate the tail exponent for returns on U.S. stocks.

4.1 Data

The stock market data is obtained from the Centre for Research in Security
Prices (CRSP). The CRSP database contains individual stock data from
1925-12-31 to 2015-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca. In
total, 17,918 stocks are used. Every stock included in the analysis needs to
trade on one of the four exchanges during the measurement period.18 We
exclude stocks with less than 48 months of data. For the accuracy of EVT
estimators typically a large total sample size is required because only a small
sample fraction is informative regarding the tail shape properties.

4.2 Empirical impact

The mean absolute differences between the different methods’ tail exponent
estimates are displayed in Table 2. The differences are quite substantial for
both the left and right tail.19 On the basis of the results the methods can be
divided into two groups. The first group consists of the KS-distance metric
and the automated Eye-Ball method. The second group is the theory-based
methods. The KS-distance metric and the automated Eye-Ball method show
a relatively large deviation from the estimates that are obtained with the
double bootstrap and the iterative method by Drees and Kaufmann (1998).

18In the CRSP database exchange codes -2, -1 and 0 indicate that a stock is not traded
on one of the four exchanges and thus no price data is recorded for these days.

19For descriptive statistics on the tail estimates of the left and right tail consult Table
7 in the Appendix. In Table 8 we also report the results for the median difference. The
results for the median are similar to the mean results but smaller.
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This result is in line with the Monte Carlo simulations, where the KS-distance
metric and automated Eye-Ball method estimates are relatively close to one
another. Both methodologies use a low fraction of the total sample for α̂
in the simulations. The same holds for the return data. The lower panel of
Table 2 shows that the double bootstrap procedure has the smallest average
difference in choosing k∗ with the method by Drees and Kaufmann (1998).
Given that the Hill estimator is normally distributed with a standard devia-
tion of 1/α, it implies that a large portion of the estimates of the two different
groups are significantly different from one another.20

Table 2: Mean absolute differences between different methodologies
Left Tail Right Tail

KS Dis 5% Eye-Ball Drees Du Bo KS Dis 5% Eye-Ball Drees Du Bo
KS Dis 0 0.84 0.59 1.11 1.44 0 0.75 0.54 0.88 1.22

5% 0.84 0 0.56 0.49 0.74 0.75 0 0.55 0.39 0.63
Eye-Ball 0.59 0.56 0 0.92 1.22 0.54 0.55 0 0.77 1.12

Drees 1.11 0.49 0.92 0 0.49 0.88 0.39 0.77 0 0.50
DB 1.44 0.74 1.22 0.49 0 1.22 0.63 1.12 0.50 0

(a) Estimates α (k∗)i

Left Tail Right Tail
KS Dis 5% Eye-Ball Drees Du Bo KS Dis 5% Eye-Ball Drees Du Bo

KS Dis 0 127 78 224 361 0 128 85 195 350
5% 127 0 142 140 268 128 0 149 120 264

Eye-Ball 78 142 0 267 409 85 149 0 244 413
Drees 224 140 267 0 168 195 120 244 0 191
DB 361 268 409 168 0 350 264 413 191 0

(b) Estimates k∗i
This table presents mean absolute difference between α̂ (k∗)i and k∗ by applying the five
different methods to choose k∗ for the left and right tail of stock returns. The data are
from the CRSP database that contains all the individual stocks data from 1925-12-31 to
2015-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca. The five different methods are
the KS-distance metric, 5% threshold, automated Eye-Ball method, the iterative method
by Drees and Kaufmann (1998) and the double bootstrap by Danielsson et al. (2001).
Different statistics are calculated for the distribution of α̂. The stocks for which one of
the methods has α̂ > 1, 000 are excluded. The maximum k is cut off at 15% of the total
sample size. There are 17,918 companies included in the analysis.

Comparing the results between the horse race and this financial applica-
tion does show parallels. In the horse race the KS-distance metric and the
automated Eye-Ball method perform well and have estimates close to one
another. This is also the case for the analysis on the equity return data. The
methods by Drees and Kaufmann (1998) and Danielsson et al. (2001) gener-
ate estimates of α which are close to one another for the financial data. In

20The results for the right tail of the empirical distribution are somewhat proportionally
smaller, but the same relative differences are preserved among methodologies.

22



the Monte Carlo horse race, they show poor finite sample properties. Even
though these patterns might be coincidental, it does cast doubt on the ap-
plicability of these methods for real-world empirical estimations.

4.3 Cross-sectional Hill estimator

Most applications estimate α and quantiles from time-series data on stock
prices, see e.g., Jansen and De Vries (1991). Other applications use a single
cross-section to determine the power law for city size or income distribution,
e.g., Gabaix (1999) and Reed (2003). Recent work by Kelly and Jiang (2014)
use the cross-section of individual U.S. stock returns to estimate a tail in-
dex conditional on time t. They find that stocks that are more exposed to
the time variation in the tail index command a risk premium. Stocks that
covary less or negatively with the tail index provide a hedging opportunity.
These stocks sell at a discount relative to the stocks with high exposures.
Additionally, they find persistence in their time varying tail index estimates.
If investors are averse to an increase in tail risk, then a shock to tail risk
is informative about the future level of risk. Therefore, a shock in tail risk
increases their demand for compensation (for holding that risk), i.e., the risk
premium, for investing in the stock market. The persistence induces pre-
dictability of the risk premium by changes in conditional tail risk.

Here we reproduce the results of the original paper and investigate the in-
fluence picking an appropriate threshold has. In the paper, daily returns
on all the stocks within a month are collected and used to estimate the tail
index for month t. In Kelly and Jiang (2014), the threshold is chosen at
5% of the sample. This provides a monthly series of αt estimates. They
subsequently measure the covariation of each stock with α̂t and rank the
stocks according to their exposure. If αt is a priced risk factor, then the risk
premium on different stocks and the exposure should be positively correlated.

Table 3 shows the results for the cross-sectional pricing of tail risk based
on αt estimated with different thresholds. The first row reproduces the ap-
proximate 4% risk premium that Kelly and Jiang (2014) originally find on
stocks with a high covariance relative to low covarying stocks. In the second
to fourth rows, we move k closer to the tail of the distribution to estimate αt.
For these lower thresholds, the risk premium halves and becomes insignifi-
cant at a 10% confidence level. The risk premia based on αKS is also halved
relative to the estimates based on the 5% threshold, but is significant.21

21The results are quantitatively similar when the exposures are jointly estimated with
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Table 3: Cross-sectional pricing of tail risk
Low 2 3 4 High High-low t-stat

α̂5% 7.02 8.29 9.33 10.12 11.81 4.78 2.07
α̂2.5% 7.17 8.34 9.15 10.25 11.67 4.50 2.12
α̂1% 8.18 8.33 8.67 10.13 11.26 3.09 1.40
α̂0.5% 8.16 8.58 8.84 9.89 11.11 2.95 1.49
α̂KS 8.40 8.67 8.65 9.76 11.11 2.71 1.81

(a) Loading on αt from single-factor model

Low 2 3 4 High High-low t-stat
α̂5% 8.72 8.60 8.71 9.12 11.42 2.70 1.79
α̂2.5% 8.62 8.55 8.48 9.50 11.43 2.81 1.94
α̂1% 9.27 7.90 8.57 9.26 11.58 2.30 1.75
α̂0.5% 9.60 8.28 8.45 9.18 11.06 1.46 1.04
α̂KS 9.15 9.03 8.55 9.20 10.64 1.49 1.91

(b) Loading on αt from joint estimation with Fama-French factors

This table reports return statistics for portfolios formed on the basis of tail risk beta
based on different thresholds for the tail index estimation. Each month, stocks are
sorted into quintile portfolios based on predictive tail loadings that are estimated from
monthly data over the previous ten years. These equally weighted portfolios are based
on NYSE/AMEX/NASDAQ stocks with CRSP share codes 10 and 11. The rows indicate
which threshold is used to estimate the cross-sectional tail index for each month. The
subscripts on α in the first four rows of each table indicate the sample fraction used to
estimate αt. The last row uses the KS-distance metric to estimate αt. Panel (a) reports
results where the tail risk beta is estimated in a single-factor model. In panel (b) a multi-
factor model, including the Fama-French factors, is estimated to retrieve the tail risk beta.
The rightmost columns report results for the high minus low zero net investment portfolio
that is long quintile portfolio five and short quintile one and associated t-statistics. For
12-month returns, t-statistics use Newey and West (1987) standard errors based on 12
lags. Stocks with prices below $5 at the portfolio formation date are excluded.

Table 4 presents the results predicting the risk premium at different horizons
with α̂t. The results show that as the threshold moves further down into
the tail of the distribution, the predictive power of α̂t drops for the different
horizons. Both the R2 and the t-statistic on the coefficients drop with the
threshold level. When we apply the KS-distance metric, the predictive result
disappears. The KS-distance metric picks a different sample fraction as a
threshold to find the best fit for the tail index each month.

This implies that the predictive results are most likely not driven by the
variation in the tail index when modelling the most extreme observations.
Given that the average cross-sectional sample size is between 35.000 and

other known risk factors.
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Table 4: Predictive regression U.S. stock index different horizons
1 month 1 Year 3 Year

Coeff t-stat. R2 Coeff t-stat. R2 Coeff t-stat. R2

α̂5% 0.10 2.60 1.02 1.01 2.35 7.17 3.02 2.36 19.90
α̂2.5% 0.10 2.44 0.90 0.98 2.11 5.84 3.07 2.23 17.60
α̂1% 0.08 1.98 0.60 0.78 1.71 3.63 2.62 1.92 12.21
α̂0.5% 0.08 1.93 0.57 0.57 1.39 2.14 1.97 1.61 7.53
α̂KS 0.02 0.56 0.05 0.02 0.10 0.01 -0.09 -0.14 0.02

This table reports results from monthly predictive regressions of CRSP value-weighted
market index returns over one-month, one-year, and three-year horizons. The different
rows report forecasting results based on our estimated tail-risk time series with different
thresholds. Because overlapping monthly observations are used, test statistics are
calculated using Hodrick (1992) standard errors for overlapping data with lag length
equal to the number of months in each horizon.

120.000, the 5% threshold is far removed from the tail of the distribution.22

It therefore seems that picking the threshold is an important choice in eco-
nomic applications. This is especially true for the applications that are truly
interested in the region of the distribution where EVT is applicable.

22In additional regression results, we show that the predictive power of α5% cannot be
explained by the variance, skewness or kurtosis of the cross-sectional distribution.
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5 Conclusion

In this paper we propose a new approach to choose the optimal number of
order statistics for the Hill estimator. We employ the KS distance over the
quantile dimension to fit the Pareto quantile estimator to the empirical dis-
tribution. The scale and shape coefficients of the Pareto quantile estimator
are dependent on the tail index estimate and therefore on the number of or-
der statistics used for the estimation. By fitting the tail of the distribution,
we find the optimal sample fraction for the Hill estimator.

To study its properties we perform rigorous simulation studies. We contrast
this new approach with methods from the theoretical statistical literature
and heuristic methods used in the applied literature. We show that the
KS-distance metric overcomes the problems asymptotic valid methods have
in finite samples. The KS-distance metric and automated Eye-Ball method
outperform the competing theoretical methods based on the size of the bias.
Additionally, we benchmark the quantile estimates produced by the different
methodologies. The various methodologies have different areas in the tail
where they outperform other competing methods. The KS-distance metric is
best suited for estimating the quantiles deep in the tail, where the theoreti-
cal methods do better in the tail region towards the centre of the distribution.

To show that the choice of the proper number of order statistics matters,
we estimate the tail indexes for the universe of daily CRSP U.S. stock re-
turns. From the results, the methods can be divided into two groups. We
find that the heuristic methods that perform well in the simulation studies
have estimates close to one another in our financial application. Applying
the correct methodology to choose the threshold for the Hill estimator can
therefore have substantial consequences for the perception of the riskiness of
the asset. With the KS-distance metric we also estimate the conditional tail
risk measure by Kelly and Jiang (2014). They use a 5% threshold for the Hill
estimator to estimate a conditional tail index from the cross-section of indi-
vidual stock returns. With the KS-distance metric choosing the threshold,
tail risk is a robust systematic risk factor in determining the cross-section of
expected returns. However, tail risk no longer predicts the risk premium on
the market index.
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A Appendix

A.1 Optimal theoretical threshold

From the variance and the bias the mse = var + (bias)2 is

mse =
sα

nA

1

α2
+

(
βBs−β

α (α + β)

)2

+ o

(
sα

n

)
+ o

(
s−2β

)
.

For the AMSE the small terms go to 0,

amse =
sα

nA

1

α2
+

(
βBs−β

α (α + β)

)2

.

Taking the derivative w.r.t. s and setting it to zero gives optimal threshold

s∗ =

[
2AB2β3α−1

(α + β)2

] 1
α+2β

n
1

α+2β .

Substituting s∗ back into the MSE gives

amse∗ =
1

Aα

[
1

α
+

1

2β

] [
2AB2β3α−1

(α + β)2

] α
α+2β

n−
2β

α+2β + o
(
n−

2β
α+2β

)
. (10)

Hall and Welsh (1985) show that there does not exist an estimator that can
improve on the rate that the AMSE disappears as n increases. Given s∗ and
noticing that 1 − F (s) = As−α

[
1 + s−β

]
gives the following result for the

number of upper-order statistics:

n
−2β
α+2βM (s∗) →

n→∞
A

[
2AB2β3α−1

(α + β)2

]− α
α+2β

. (11)

Through the Hall expansion we have the functional forms for α, β, A and B
for the Student-t, Stable and Fréchet distribution.23

A.2 Brownian motion representation

There are various ways to study the behaviour of the KS-distance metric.
Here we study the properties of the KS-distance metric by modelling the
quantile process with a Brownian motion representation. This allows us to
simulate under more general conditions than simulating from fully paramet-
ric distributions. Even though this does not allow us to verify the correct

23See Table 5 for the parameter values for the specific distributions.
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estimation of the tail index, it does facilitate the study of the behaviour of
the penalty function.

By Theorem 2.4.8 from De Haan and Ferreira (2007, page 52 and 76) the
KS-distance metric in (9) can be written as

arg min
0<k<T

sup
0<l<T

k

∣∣∣xn−lk,n − (l)−γ̂ xn−k,n

∣∣∣ =

arg min
0<k<T

sup
0<l<T

k

∣∣∣∣∣ γ√kU
(n
k

)
l−γ̂

[
l−1w (l)− w (1)−A0

(n
k

) √k
γ

l−ρ − 1

ρ

]∣∣∣∣∣ , (12)

where l = i/k, ρ ≤ 0, U (n/k) =
(

1
1−F

)←
, w (l) is a Brownian motion and

A0 (n/k) is a suitable normalizing function. We use the expectation of γ

γ̂ = γ +
γ√
k

∫ 1

0

(
l−1w (l)− w (1)

)
dl +

A0 (n/k)

1− ρ
.

For the case that the CDF satisfies the Hall expansion (6) the functions
U
(
n
k

)
and A0

(
n
k

)
can be given further content. This is also needed for the

simulations that are performed below. Applying the De Bruijn inversion24

we arrive at,

U
(n
k

)
= Aγ(n/k)γ

[
1 +

B

α
A−βγ (n/k)−βγ

]
and

A0 (n/k) = − β/α

αB−1Aβ/α n
k
β/α

.

Simulating the limit function (12) allows us to study the metric under rela-
tively general conditions. Simulating the function in Equation (12) necessi-
tates a choice of values for parameters α, β, A and B. For the robustness of
the Monte Carlo simulations, we use distributions and processes that differ
along the dimension of these parameters. The Student-t, symmetric stable
and Fréchet distribution all satisfy the power expansion in (3).

The upper panel in Figure 5 in Appendix C shows for a given k at which
order statistic the maximum quantile distance is found for the parameters
of the Student-t distribution family. The lower panel shows what the value

24See Bingham et al. (1989, page 29).
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is of that distance for the given k. These two panels provide insight into
how the KS-distance metric picks k∗ under relatively general conditions. It
is clear that the largest deviations for k large are almost always found at the
most extreme observation. By choosing a large k, the Pareto distribution is
better fitted towards the centre of the distribution. As a consequence, the
largest deviation is found towards the more extreme observations. By the
same logic, for k small, the largest deviations are more frequently found at
the less extreme observations.

The lower panel shows that the smallest largest deviation is found for k = 2.
A small value of k is desirable as this minimizes the bias of the Hill estimator.
Given that the modeled γ̂ is based on the expectation of the Hill estimator,
it is therefore not surprising the limit in (12) picks k = 2 as the optimal
threshold. This threshold minimizes the bias present in the Hill estimator.
This also holds for the parameters retrieved from the symmetric stable and
Fréchet distribution.

A.3 Theory-based methods

Hall (1990) and Danielsson et al. (2001) utilize the bias and the variance to
minimize the AMSE. They propose a bootstrap method that minimizes the
AMSE by choosing k appropriately. For the distributions that satisfy the
second-order expansion by Hall, the sample fraction at which the AMSE is
minimized can be determined. Hall devises a sub-sample bootstrap to find
the k∗ under the restrictive assumption α = β in (3). To obtain the optimal
rate25 in the bootstrap, the assumption of α = β is crucial.

In general, β differs from α, and one is faced with eliciting the optimal
rate from the data. To this end, Danielsson et al. (2001) propose a double
bootstrap to estimate

lim
n→∞

mse = E
[
(γ̂ − γ)2] .

In the AMSE the value of γ is unknown. To tackle this problem the theoret-
ical γ value in the MSE expression is replaced with a control variate. For the
control variate an alternative estimator to the Hill estimator is used, namely
γ̂∗. The control variate has an AMSE with the same rate of convergence as
the AMSE of γ̂.

25The sub-sample bootstrap size needs to increase slower than n to achieve asymptotic
optimality in the bootstrap procedure.
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Due to the use of this control variate, the true value 0 is known. Therefore,
a bootstrap procedure can be used to construct an estimate of the MSE of
γ̂ − γ̂∗. However, a simple bootstrap is inconsistent in the tail area. Con-
sequently, a sub-sample bootstrap is applied. Furthermore, to be able to
scale the sub-sample MSE back to the original sample size, a second even
smaller sub-sample bootstrap is performed as well. As a by-product of their
procedure the ratio of α/β is also estimated. This bypasses the restrictive
assumption made in Hall (1990). The AMSE of the control variate is

Q (n1, k1) := E

([
M∗

n1
(k1)− 2

(
γ∗n1

(k1)
)2
]2
)
,

where

M∗
n1

(k1) =
1

k1

k1∑
i=0

(
log

(
Xn1−i,n1

Xn1−k1,n1

)2
)
.

Here n1 = n1−ε is the smaller sub-sample for the bootstrap. The Q function
is minimized over two dimensions, namely: n1 and k1. Given the optimal n∗1
and k∗1 a second bootstrap with a smaller sample size n2 is executed to find
k∗2. Here n2 is typically chosen to be n2 = n2

1/n. The optimal number of
order statistics is,

k̂∗DB =
(k2)2

k1

[
log (k1)2

(2 log (n1)− log (k1))2

] log(n1)−log(k1)
log(n1)

.

A second approach is the method by Drees and Kaufmann (1998). Drees
and Kaufmann (1998) rely on the results by Hall and Welsh (1985). They
show that if the underlying CDF satisfies the Hall expansion, the AMSE of
the Hill estimator is minimal for

k∗DK ∼

(
A2ρ (ρ+ 1)2

2β2ρ3

)1/(2ρ+1)

n2ρ/(2ρ+1),

with ρ > 0, where, for convenience, ρ = α/β, A > 0 and β 6= 0. Drees and
Kaufmann (1998) show that for the estimation of the second-order tail index

ρ̂ :=

∣∣∣∣∣log

∣∣∣∣∣ γ̂−1
n,t1 − γ̂−1

n,s

γ̂−1
n,t2 − γ̂−1

n,s

∣∣∣∣∣ / log

(
t1
t2

)∣∣∣∣∣
and

λ̂0 :=

∣∣∣∣∣(2ρ̂)−1/2

(
n

t1

)ρ̂ γ̂−1
n,t1 − γ̂−1

n,s

γ̂n,s

∣∣∣∣∣
2/(2ρ̂+1)
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that
k̂n :=

[
λ̂0n

2ρ̂/(2ρ̂+1)
]

(13)

is a consistent estimator of k∗DK .

Drees and Kaufmann (1998) introduce a sequential procedure that yields an
asymptotically consistent estimator of k∗. Their estimator relies on the fact
that the maximum random fluctuation i1/2 (γ̂n,i − γ), with 2 ≤ i ≤ kn, is of

the order (log log n)1/2 for all intermediate sequences kn. This property is
used to define the stopping time,

kn (rn) = min

{
k ∈ {2, .., n} | max

2≤i≤kn
i1/2 |γ̂n,i − γ̂n,k| > rn

}
,

where the threshold rn = 2.5γ̃nn
1/4 is a sequence larger than (log log n)1/2

and smaller than n1/2. Here γ̃n is the initial estimator for γ with k = 2
√
n+,

where n+ is the number of positive observations in the sample. Given that
|γ̂n,i − γ̂n,k| is composed of a variance and a bias, the bias dominates if the

absolute difference exceeds the (log log n)1/2. Under conditions rn = o
(
n1/2

)
and (log log n)1/2 = o (rn) one shows that kn (rn) ∼ const. (rnn

ρ)2/(2ρ+1) so

that
(
kn
(
rξn
)
/kn (rn)ξ

)1/(1−ξ)
with ξ ∈ (0, 1) has the optimal order k̂n de-

fined in (13). This leads to the adaptive estimator

k∗DK :=

[
(2ρ̂n + 1)−1/ρ̂n

(
2γ̃2

nρ̂n
)1/(2ρ̂n+1)

(
kn
(
rξn
)
/kn (rn)ξ

)1/(1−ξ)
]

with

ρ̂n,λ (rn) := log

max
2≤i≤[λkn(rn)]

i1/2
∣∣∣γ̂n,i − γ̂n,[λkn(rn)]

∣∣∣
max

2≤i≤kn(rn)
i1/2

∣∣∣γ̂n,i − γ̂n,kn(rn)

∣∣∣ / log (λ)− 1

2
,

where λ ∈ (0, 1).
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A.4 Alternative penalty functions

To benchmark the relative performance of the penalty function of the KS-
distance metric, we introduce four additional metrics for the simulation exer-
cise. The following three are introduced for a comparative MC study to serve
as benchmarks for the relative performance of the specific penalty function
in (9). The last distance metric in this section is used in the MC horse race.

The following two metrics average the difference measured over the region
indicated by T . The first alternative penalty function is the average squared
distance in the quantile dimension,

Q2,n =
1

T

T∑
j=1

(xn−j,n − q (j, k))2 .

The second alternative measure is the average absolute distance

Q3,n =
1

T

T∑
j=1

|xn−j,n − q (j, k)| .

These two penalty functions are intuitive and are often used in the econo-
metric literature.

The third metric we consider is motivated by the theoretical test statistic
by Dietrich et al. (2002). They develop a statistic to test whether the ex-
treme value conditions apply. We take the discrete form of this statistic and
adjust it for our own purpose, resulting in

Q4,n =
T∑
j=1

(xn−j,n − q (j, k))2

[q′ (j, k)]2
=

1

T

T∑
j=1

(
xn−j,n −

(
k
j

) 1
α̂k xn−k+1,n

)2

[
− 1
α̂k

(
j
k

)−(1+ 1
α̂k

)
(xn−k+1,n) n

k

]2 .
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B Tables

Table 5: Hall expansion parameters values
Stable Student-t Fréchet

α (1, 2) (2,∞) (2,∞)
β α 2 α

A 1
π
Γ (α) sin

(
απ
2

)
1√
απ

Γ(α+1
2 )

Γ(α2 )
α(α−1)/2 1

B −1
2

Γ(2α) sin(απ)

Γ(α) sin(απ2 )
−α2

2
α+1
α+2

1
2
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Table 6: Estimates of k∗ under different methods

α KS Dif TH 5% Eye-Ball Drees Du Bo

Student-t

2 509.89 281.00 500.00 19.67 1036.73 968.18
3 343.13 132.00 500.00 35.21 841.59 895.65
4 227.99 78.00 500.00 51.48 754.68 859.72
5 164.88 53.00 500.00 69.02 708.41 837.61
6 140.07 40.00 500.00 84.55 677.95 823.24

Stable

1.1 240.82 817.00 500.00 8.00 1481.88 1180.98
1.3 172.74 292.00 500.00 10.14 1466.24 1218.68
1.5 137.18 146.00 500.00 12.66 1376.89 1214.89
1.7 200.45 74.00 500.00 18.88 1176.03 1153.69
1.9 667.03 27.00 500.00 108.09 861.59 1061.44

Fréchet

2 217.71 928.00 500.00 19.26 1500.70 1305.65
3 231.47 928.00 500.00 34.99 1501.00 1304.65
4 226.54 928.00 500.00 51.35 1501.00 1305.28
5 227.16 928.00 500.00 67.51 1501.00 1303.90
6 229.31 928.00 500.00 84.04 1501.00 1304.10

ARCH

2.30 290.39 500.00 31.32 1131.36 1244.62
2.68 300.24 500.00 36.21 1036.93 1244.78
3.17 290.97 500.00 42.90 947.32 1245.28
3.82 246.72 500.00 52.81 864.97 1246.05
4.73 202.79 500.00 64.75 791.26 1247.14

This table depicts the mean for the estimated k∗ for the different methodologies. The
samples are drawn from four different heavy-tailed distribution families. The samples are
drawn from the Student-t, symmetric stable, Fréchet distribution and ARCH process. The
different methods are stated in the first row. KS Dis is the Kolmogorov-Smirnov distance
metric in (9). TH is based on the theoretically derived optimal k from minimizing the
MSE for specific parametric distributions, presented in Equation (11) in the Appendix.
The automated Eye-Ball method in (5) is the heuristic method aimed at finding the first
stable region in the Hill plot. For the column Drees, k∗ is determined by the methodology
described by Drees and Kaufmann (1998). Du Bo is the double bootstrap procedure by
Danielsson et al. (2001). Here α indicates the corresponding theoretical tail exponent for
the particular distribution from which the sample is drawn. The sample size is n = 10, 000
for 10, 000 repetitions.
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Table 7: Descriptive statistics stock data estimates
Left Tail Right Tail

KS Dis 5% Eye-Ball Drees Du Bo KS Dis 5% Eye-Ball Drees Du Bo
Mean 3.40 2.70 3.19 2.41 1.98 2.97 2.37 2.87 2.22 1.77

Median 3.35 2.72 3.19 2.32 2.05 2.90 2.39 2.87 2.13 1.83
St. Dev. 0.81 0.58 0.65 0.94 0.53 0.81 0.52 0.63 0.76 0.55

Min 0.27 0.16 0.16 0.48 0.19 0.54 0.12 0.11 0.32 0.12
Max 7.79 15.04 8.52 53.00 10.09 7.48 7.22 7.09 45.42 34.91

Skewness 0.40 0.71 0.09 18.34 -0.58 0.42 -0.22 0.15 17.52 12.51
Kurtosis 3.07 19.53 4.56 717.86 11.60 3.01 6.79 4.11 779.80 740.25

(a) Estimates α (k∗)i
Left Tail Right Tail

KS Dis 5% Eye-Ball Drees Du Bo KS Dis 5% Eye-Ball Drees Du Bo
Mean 93.36 185.05 43.85 307.37 452.71 103.07 185.07 35.99 277.36 449.36

Median 47 147 33 259 355 54 147 27 237 352
St. Dev. 125.86 122.21 40.02 190.35 313.67 132.95 122.28 31.94 177.98 314.10

Min 1 50 1 1 97 1 50 1 1 1
Max 1, 455 623 773 1, 869 1, 628 1, 819 623 643 1, 869 1, 655

Skewness 3.45 1.54 3.96 1.56 1.58 3.17 1.54 3.42 1.54 1.58
Kurtosis 20.81 5.18 34.61 6.46 5.34 18.70 5.18 28.55 6.90 5.33

(b) Estimates k∗i
This table presents descriptive statistics for estimates of α̂ (k∗)i and k∗ by applying the
five different methods to choose k∗ for left and right tail of stock returns. The data are
from the CRSP database that contains all the individual stocks data from 1925-12-31 to
2015-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca. The five different methods are
the KS-distance metric, 5% threshold, automated Eye-Ball method, the iterative method
by Drees and Kaufmann (1998) and the double bootstrap by Danielsson et al. (2001).
Different statistics are calculated for the distribution of α̂. The stocks for which one of
the methods has α̂ > 1, 000 are excluded. The maximum k is cut off at 15% of the total
sample size. There are 17,918 companies included in the analysis.
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Table 8: Median absolute differences between different methodologies
Left Tail Right Tail

KS Dis 5% Eye-Ball Drees Du Bo KS Dis 5% Eye-Ball Drees Du Bo
KS Dis 0 0.70 0.46 1.02 1.40 0 0.59 0.42 0.74 1.16

5% 0.70 0 0.50 0.40 0.68 0.59 0 0.50 0.30 0.59
Eye-Ball 0.46 0.50 0 0.86 1.19 0.42 0.50 0 0.73 1.10

Drees 1.02 0.40 0.86 0 0.27 0.74 0.30 0.73 0 0.31
DB 1.40 0.68 1.19 0.27 0 1.16 0.59 1.10 0.31 0

(a) Estimates α (k∗)i
Left Tail Right Tail

KS Dis 5% Eye-Ball Drees Du Bo KS Dis 5% Eye-Ball Drees Du Bo
KS Dis 0 94 35 183 272 0 94 36 159 256

5% 94 0 107 122 207 94 0 114 102 204
Eye-Ball 35 107 0 220 312 36 114 0 206 318

Drees 183 122 220 0 90 159 102 206 0 112
DB 272 207 312 90 0 256 204 318 112 0

(b) Estimates k∗i
This table presents the median absolute difference between α̂ (k∗)i and k∗ by applying the
five different methods to choose k∗ for left and right tail of U.S. stock returns. The five
different methods are the KS-distance metric, 5% threshold, automated Eye-Ball method,
the iterative method by Drees and Kaufmann (1998) and the double bootstrap by Daniels-
son et al. (2001). Different statistics are calculated for the distribution of α̂. The stocks
for which one of the methods has α̂ > 1, 000 are excluded. The maximum k is cut off at
15% of the sample size. There are 17,918 companies included in the analysis.

Table 9: The correlation of estimates between different methodologies
Left Tail Right Tail

KS Dis 5% Eye-Ball Drees Du Bo KS Dis 5% Eye-Ball Drees Du Bo
KS Dis 1 0.38 0.49 0.24 0.24 1 0.41 0.55 0.32 0.26

5% 0.38 1 0.68 0.33 0.65 0.41 1 0.72 0.39 0.62
Eye-Ball 0.49 0.68 1 0.26 0.49 0.55 0.72 1 0.37 0.45

Drees 0.24 0.33 0.26 1 0.24 0.32 0.39 0.37 1 0.25
DB 0.24 0.65 0.49 0.24 1 0.26 0.62 0.45 0.25 1

(a) Estimates α (k∗)i
Left Tail Right Tail

KS Dis 5% Eye-Ball Drees Du Bo KS Dis 5% Eye-Ball Drees Du Bo
KS Dis 1 0.35 -0.04 0.34 0.35 1 0.30 -0.02 0.31 0.30

5% 0.35 1 0.33 0.75 1.00 0.30 1 0.42 0.71 1.00
Eye-Ball -0.04 0.33 1 0.08 0.33 -0.02 0.42 1 0.17 0.41

Drees 0.34 0.75 0.08 1 0.75 0.31 0.71 0.17 1 0.71
DB 0.35 1.00 0.33 0.75 1 0.30 1.00 0.41 0.71 1

(b) Estimates k∗i
This table presents the correlation matrix for the estimates of α̂ (k∗)i and k∗ by apply-
ing the five different methods for left and right tail of U.S. stock returns. The different
methods are the KS-distance metric, 5% threshold, automated Eye-Ball method, the it-
erative method by Drees and Kaufmann (1998) and the double bootstrap by Danielsson
et al. (2001). The stocks for which one of the methods has α̂ > 1, 000 are excluded. The
maximum k is cut off at 15% of the sample size. There are 17,918 companies included in
the analysis.
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Figure 5: These two figures show the simulations for the limit criterion function in (12).
The parameters are for the Student-t distribution and are from Table 5 in Appendix B.
The value for α for the different lines is stated in the legend. Here T is 1,500; therefore,
the interval between w(si) − w(si+1) is normally distributed with mean 0 and variance
1/k. The path of the Brownian motion is simulated 1,000 times. The top figure shows the
average number of order statistics at which the largest absolute distance is found for a
given k. The bottom graph depicts the average distance found for the largest deviation
at a given k. The top and bottom graphs are related by the fact that the bottom graph
depicts the distances found at the ith observation found in the top graph.
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Figure 6: These two figures show the simulations for the limit criterion function in
(12). The parameters are for the symmetric Stable distribution and are from Table 5
in Appendix B. The value for α for the different lines is stated in the legend. Here T is
1,500; therefore, the interval between w(si) − w(si+1) is normally distributed with mean
0 and variance 1/k. The path of the Brownian motion is simulated 1,000 times. The top
figure shows the average number of order statistics at which the largest absolute distance
is found for a given k. The bottom graph depicts the average distance found for the largest
deviation at a given k. The top and bottom graphs are related by the fact that the bottom
graph depicts the distances found at the ith observation found in the top graph. Note:
For α = 1.1 the line in the lower panel stabilizes around 1150.
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Figure 7: These two figures show the simulations for the limit criterion function in (12).
The parameters are for the Fréchet distribution and are from Table 5 in Appendix B.
The value for α for the different lines is stated in the legend. Here T is 1,500; therefore,
the interval between w(si) − w(si+1) is normally distributed with mean 0 and variance
1/k. The path of the Brownian motion is simulated 1,000 times. The top figure shows the
average number of order statistics at which the largest absolute distance is found for a
given k. The bottom graph depicts the average distance found for the largest deviation
at a given k. The top and bottom graphs are related by the fact that the bottom graph
depicts the distances found at the ith observation found in the top graph.
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Figure 8: α̂ (k∗) for quantile metrics (symmetric stable Distribution)
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This figure depicts simulation results of the average optimally chosen k∗ and α(k∗) for a
given level of T . Here T is the number of extreme-order statistics over which the metric
is optimized. The upper four graphs depict the optimal α(k∗) and the lower four graphs
show the choice of k∗ for different values of T . This is also done for the mean squared
distance, mean absolute distance and the criteria used by Dietrich et al. (2002). For the
simulations we draw a sample of 10,000 from a symmetric stable(α) distribution.
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Figure 9: α̂ for quantile metrics (Fréchet Distribution)
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This figure depicts simulation results of the average optimally chosen k∗ and α(k∗) for a
given level of T . Here T is the number of extreme-order statistics over which the metric
is optimized. The upper four graphs depict the optimal α(k∗) and the lower four graphs
show the choice of k∗ for different values of T . This is also done for the mean squared
distance, mean absolute distance and the criteria used by Dietrich et al. (2002). For the
simulations we draw a sample of 10,000 from a Fréchet(α) distribution.
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Figure 10: Shape of the Hill plot for different distributions
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The figure depicts the Hill estimates for the Student-t, symmetric stable, Fréchet(3)
distribution and ARCH process against the number of order-statistics used in the
estimation. The legend indicates the value of the tail index given the distributional
family. For the ARCH process, we use the Kesten theorem to derive the tail index for
a range of ar(1) coefficients. These graphs are constructed by taking the average Hill
estimates over 500 simulations.
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Figure 11: Quantile estimation median difference (symmetric stable distribution)
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This figure show the median difference induced by using the quantile estimator presented
in Equation (8). We use the k∗ from the different methodologies to estimate α(k∗)
and the scale parameter A(k∗) for the quantile estimator. The 10,000 samples of size
n = 10, 000 are drawn from the Stable distribution family with the shape parameter
indicated at the top of the picture. The i on the horizontal axis gives the probability level
i/n at which the quantile is estimated. Moving rightwards along the X-axis represents a
move towards the center of the distribution.
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Figure 12: Quantile estimation median difference (Fréchet distribution)
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This figure show the median difference induced by using the quantile estimator presented
in Equation (8). We use the k∗ from the different methodologies to estimate α(k∗)
and the scale parameter A(k∗) for the quantile estimator. The 10,000 samples of size
n = 10, 000 are drawn from the Fréchet distribution family with the shape parameter
indicated at the top of the picture. The i on the horizontal axis gives the probability level
i/n at which the quantile is estimated. Moving rightwards along the X-axis represents a
move towards the center of the distribution.
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