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Abstract 

This paper describes a proposal for operating a centralized netting queue for non-urgent 
interbank payments that involves take-it-or-leave-it offers and allocates liquidity costs 
using the Shapely value. This method achieves fairness and ensures welfare maximizing 
netting proposals are agreeable to all providers of liquidity.  
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1 Introduction

In most countries, the central bank provides or oversees an infrastructure for settling large-

value (wholesale) payments between banks. Historically, interbank payments were settled

using end-of-day netting systems, but as volumes and values increased, central banks be-

came worried about the risks inherent in deferred net settlement systems, and most opted

to implement a Real-Time Gross Settlement (RTGS) system. With RTGS, payments are

processed individually, immediately and with finality during operational hours. This elimi-

nates settlement risk and the potential unwinding of payments at the cost of increased need

for liquidity to be provided by participants.

Liquidity demands in RTGS systems can be enormous. For example, the Fedwire

Funds Service, which is the large-value payment system in the United States, averaged

close to $3 trillion a day in 2016, compared with an annual GDP of $18.46 trillion, and

TARGET2, the European Union’s large-value payment system, averaged C1.7 trillion a

day in 2016, compared with an annual GDP of C16.5 trillion.1 In order to reduce the high

liquidity demands in their large-value payments systems, central banks around the world

have implemented liquidity savings mechanisms (LSMs).2 LSMs include policies designed

to encourage greater liquidity recycling.3 However, the most effective LSMs are those that

economize on liquidity needs by matching offsetting payments that have been submitted to

a central queue and settling these payments using only the liquidity needed to cover the net

obligations.

In the ideal scenario, the liquidity provided to the queue by participants whose net obli-

gations are positive is sufficient to cover these obligations, and all payments in the queue

1See http://www.federalreserve.gov and http://www.ecb.europa.eu.
2See Norman (2010).
3Liquidity recycling arises from the fact that banks can use incoming liquidity to make outgoing payments,

and, generally, more liquidity will be recycled if banks make payments in a timely fashion. Policies that in-
centivize timely payment processing (e.g., throughput guidelines) or punish delayers (e.g., time-varying tariffs)
make it more likely that liquidity will be recycled and hence reduce the overall liquidity needs of the system.
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can be cleared. In practice, however, this is not always the case. Rather, the queue oper-

ator often must look for a subset of payments that can be settled using available liquidity.

This is a constrained integer programming problem: if there are n payments in the queue,

then there are 2n−1 possible combinations of payments to be considered. For large n this

problem becomes NP-hard. Consequently, systems that employ queues use simple rules for

winnowing down the set of payments, such as first-in, first-out (FIFO) with options for re-

ordering or bypass.4 It is also common for existing centralized queue algorithms to abandon

FIFO altogether and instead seek to maximize value or volume settled. These algorithms

are referred to as sorted-queue algorithms because they operate by sorting the payments

of individual banks in ascending or descending order based on value and then sequentially

removing payments from these lists until liquidity constraints are met.5 Existing central-

ized queuing systems do not always achieve the optimum solution in terms of maximizing

the value of payments settled given available liquidity. Even when they do, meeting this

objective does not necessarily maximize system welfare.

This paper seeks to improve upon existing centralized netting queues by making two

fundamental changes. First, instead of making decisions on how much liquidity to provide

to the queue before netting arrangements are determined, banks receive take-it-or-leave-

it offers that determine which of their payments will be settled as well as their share of

the liquidity cost. This eliminates the need to solve a constrained integer programming

problem. Second, rather than attempting to maximize the value or volume of payments

settled in the queue, I propose using information regarding the instantaneous benefits and

costs of participants in order to define a welfare measure for any set of netted payments. The

full benefits of these two changes are realized through an application of the Shapley value

4FIFO-Reorder involves moving a payment to the end of the queue or changing its priority code. FIFO-
Bypass allows the operator to bypass a large payment if it cannot be settled due to a lack of funds, without the
need to reorder payments.

5For more detailed descriptions of the FIFO and sorted-queue offsetting algorithms, see Fugal et al. (Section
3, 2018).
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cost allocation method, which ensures welfare maximizing netting proposals are always

accepted.

2 Model and Notation

Denote the set of banks in the system by N = {1, ...,n}. Netting proposals are made to the

banks by the queue operator at the end of regularly scheduled time intervals, called netting

cycles, throughout the day.6 Define a matrix P that represents all the payment obligations

submitted to the queue during the current netting cycle. Let element pi j of P denote the

vector of payments from bank i to bank j, with typical element pi jk, where k = 1, ..., t i j,

and t i j denotes the number of payments from i to j. Assume each payment pi jk from bank

i to bank j has a constant, instantaneous delay cost that defines bank i’s current per-dollar

benefit bi jk of processing the payment as an immediate atomic transaction versus having

it remain unsettled and awaiting inclusion in another (future) proposal or being reassigned

for gross settlement. Likewise, assume that each bank i has a known per-dollar cost of

providing liquidity at the current settlement opportunity, which I denote by ci. The cost of

providing liquidity at the current time may differ across banks and intraday.

Using these parameters, banks can assess the instantaneous benefits and costs of any

netting proposal. To demonstrate how, I must first formally define what a netting proposal

is. I begin by defining some related concepts. A netting set G⊆ P is any subset of payments

in the queue. Given a netting set G, let N(G) denote the set of banks that send or receive

payments in G. The liquidity requirement LG of a given netting set G can be obtained by

6Alternatively, the timing of proposals could be event driven (i.e., occur when a certain value of payments
in the queue is reached or when potential welfare benefits from clearing the queue reach a certain level). The
analysis presented in this note applies to any situation where there exists a given set of payments in a queue
that need to settled.
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adding up the net debit positions of all banks. Specifically, let

dG
i = max

{
0,∑

j 6=i
∑

k:pi jk∈G
pi jk−∑

j 6=i
∑

k:p jik∈G
p jik

}
. (1)

The first double-summation term in (1) adds up all of the outgoing payments from i in G,

and the second double-summation term in (1) adds up all of the incoming payments to i in

G. The max operator sets credit positions to zero. Hence, LG = ∑i∈N(G) dG
i .

Definition 1: A netting proposal is a set of payments G⊆ P and liquidity contributions `G
i ,

i = 1, ...,N(G) such that ∑i∈N(G) `
G
i = LG.

Let `G = (`G
1 , ..., `

G
N(G)). The net benefit to bank i of any netting proposal (G, `G) is

given by

Ui(G, `G) = ∑
j 6=i

∑
k:pi jk∈G

bi jk pi jk− ci`
G
i . (2)

Given a netting set G, one way to specify the vector `G would be to assume that liq-

uidity always comes from the cheapest possible sources according to the bank-specific cost

parameters, ci. This would minimize the overall cost of liquidity provision. An alternative

approach is to assume that banks provide liquidity equal to their net debit positions specified

by (1); i.e., set `G
i = dG

i , for i = 1, ...,n. This approach conforms most closely to existing

practices, and it could be preferred in a world where the ci parameters have to be estimated.

Either approach can be used to define liquidity provision in a way that meets the feasibil-

ity requirement in Definition 1 (the latter approach does so trivially), but neither method

ensures that net benefits to all participants under a given proposal are positive. To achieve

this, we need side payments. In what follows, I introduce side payments in the environment

where banks provide liquidity equal to their (positive) net debit positions specified by (1).
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The analysis can be easily redone following the other approach.

2.1 Proposals with Side Payments

Let us begin the discussion of side payments with a very simple example in which there

are only two participants in the system, bank A and bank B. Suppose bank A owes $100

to bank B and bank B owes $80 to bank A. If bank A and bank B are able to net these

obligations, then they will need only $20 worth of liquidity. In existing queue systems, the

required $20 in liquidity would be drawn, if it were available, from bank A, since bank A

is the bank in a net debit position. Is this fair? If bank A did not submit its payment, then

bank B would have to provide $80 worth of liquidity. And, of course, if bank B did not

submit its payment, then bank A would have had to provide $100 worth of liquidity. The

point is that both participants are made better off due to the netting, so perhaps they both

should contribute to the liquidity cost. Furthermore, bank A might have an expectation that

bank B should contribute to the liquidity cost and hence not accept a proposal that does not

meet this expectation.

We need a fair way of allocating costs associated with obtaining the joint benefit of

netting proposals. Economists often turn to the Shapley value (Shapley (1953)) in situa-

tions like this. There is a solid justification for using the Shapley value in cost allocation

problems. Roth and Verrecchia (1979) show that, under reasonable assumptions, it pro-

vides the same expected utility the participants would expect to get from bargaining to an

uncertain outcome.

To define the solution suggested by the Shapley value cost allocation mechanism, I

must define the Shapley value of each participant in the game Γ = (N(G),v) generated by

the netting set G, where v is the characteristic function of the game. The characteristic

function describes the maximum total net benefit that can be obtained by any group of

banks S ⊆ N(G) by settling any subset (including the full set) of their combined payment
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obligations on a net basis. For any S⊆ N(G), let H(S) denote all nonempty sets H ⊆G that

can be formed using only payments in G that are to and from members of S. Then

v(S) = max

{
0,maxH∈H(S)∑

i∈S

[
∑
j 6=i

∑
k:pi jk∈H

bi jk pi jk− cidH
i

]}
. (3)

That is, v(S) is computed as the sum of the benefits from payments settled minus the com-

bined costs of supplying the liquidity required to settle them. The first max operator is there

because banks can always decide to settle no payments, so the value of any coalition S has

to be greater than or equal to zero. The second max operator reflects the possibility that the

maximum net benefit from settling payments in a set G may be obtained by settling a subset

of these payments.

For any G⊆ P, the Shapley value of the game Γ = (N(G),v) is given by

wi = ∑
S⊆N(G)

(s−1)!(n− s)!
n!

[v(S)− v(S− i)] , (4)

where s is the number of banks in group S. The Shapley value of bank i is the weighted sum

of the terms [v(S)− v(S− i)], which represent bank i’s marginal contribution to coalition S.

It can therefore be interpreted as a bank’s expected marginal contribution to a coalition of

banks that seek to net payments, based on the assumption that each bank’s sequential arrival

to the coalition is determined randomly.

Following the Shapley cost allocation method, I now define each bank i’s share of the

cost burden of providing liquidity to settle payments under the proposal (G,dG), where

dG = (dG
1 , ...,d

G
N(G)). I assume

G ∈ argmaxH∈H(N(G)) ∑
i∈N(G)

[
∑
j 6=i

∑
k:pi jk∈H

bi jk pi jk− cidH
i

]
, (5)

which ensures that G is used in the specification of v(N(G)) in (3). This eliminates the need
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to introduce additional notation to to capture the case where (5) is not satisfied and is not a

restriction. Under this assumption, bank i’s share of the cost burden of providing liquidity

to settle payments under the proposal (G,dG), is defined as the gross benefit to bank i of

having its own payments in G settled minus its Shapley value:

CG
i = ∑

j 6=i
∑

k:pi jk∈G
bi jk pi jk−wi. (6)

A property of the Shapley value is that it assigns the total value of the coalition to its

members (efficiency), so that the sum over all banks of the values defined in (4) equals

v(N(G)). It follows that the sum of the cost shares in (6) over all of the banks cover the

actual cost of the proposal: i.e., ∑i∈N(G)CG
i = ∑i∈N(G) cidG

i .

To implement these cost shares, I propose the use of side payments. That is, each bank

provides liquidity equal to its net debit position and then side payments are made so that the

final cost share to each bank equals the amount specified by (6). Formally, side payments

from bank i to bank j associated with any solution of the type given by (6) can be defined

as

σi j =


0 if cidG

i ≥CG
i or c jdG

j ≤CG
j

(CG
i − cidG

i )
c jdG

j −CG
j

∑k:ckdG
k >CG

k
ckdG

k −CG
k

otherwise.
(7)

This takes the amount that bank i owes (if anything) and distributes it among all the banks

that require side payments proportionally based on what each bank is owed, relative to what

all banks that require side payments are owed. This adds up because if we assume c jdG
j >

CG
j and sum σi j over i such that cidG

i < CG
i , then the summation terms in the numerator

and denominator cancel out, leaving the desired amount c jdG
j −CG

j that bank j needs to

receive. Likewise, if we assume cidG
i < CG

i and sum σi j over j such that c jdG
j > CG

j , then

the summation terms in the numerator and denominator cancel out, leaving the desired

amount CG
i − cidG

i that bank i needs to pay.
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3 Individual Rationality

Side payments defined using the Shapley value cost allocation method result in individual

payoffs for each member of the netting set that are greater than what they can achieve

by opting out. Let (G,dG,(σi j)) denote a netting proposal with side payments and let

Ui(G,dG,(σi j)) =Ui(G,dG)−∑ j∈N(G): j 6=i(σi j−σ ji) denote bank i’s corresponding utility.

Then we have

Theorem 1. Consider a netting proposal with side payments (G,dG,(σi j)) with σi j defined

according to (7) for all i, j ∈ N(G). If ∑i∈N(G)Ui(G,dG)≥ 0, then Ui(G,dG,(σi j))≥ 0 for

all i ∈ N(G).

Proof. For any S ⊂ N(G) and S′ ⊂ N(G), with S∩S′ = /0, let H ∈ H(S) denote the netting

set that defines v(S), and let H ′ ∈ H(S′) denote the netting set that defines v(S′), in both

cases according to (3). The netting set options H(S∪ S′) include the netting set that is

formed by combining H and H ′. Hence, v(S∪ S′) ≥ v(S) + v(S′). This establishes that

the characteristic function proposed in (3) is superadditive, which is a sufficient condition

for the Shapley value to be an imputation (trivially, set S′ = i /∈ S). Finally, observe that

under netting proposals with side payments defined according to (7) for all i, j ∈ N(G),

each bank’s payoff is equal to its Shapley value.

The importance of Theorem 1 derives from the fact that, for an arbitrary netting set

G ⊆ P, it may be the case that ∑i∈GUi(G,dG) ≥ 0, but U j(G,dG) < 0 for some j. That

is, a netting set delivers strictly positive total surplus but would be rejected by at least one

member of the netting set in the absence of side payments. This possibility is illustrated in

Example 2, below.
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4 Examples

The first two examples are based on the scenario that I used to motivate side payments in

Section 3. I use this simple scenario to convey not only the desirability of side payments,

but also, in some cases, the necessity. The third example provides a slightly more general

illustration of the main result and demonstrates the fact that the it will sometimes be optimal

to exclude subsets of payments that do not generate surplus from the netting proposal.

Example 1. Suppose bank A owes $100 to bank B and bank B owes $80 to bank A. Assume

that the benefit per dollar to each bank of settling those payments at the current time is

b = .05. In addition, assume that the instantaneous, per-dollar cost of liquidity provision is

the same for both banks and is equal to c = .1.7 Consider the netting proposal (G, `G) =

({pAB, pBA},(`G
A , `

G
B )) = ({100,80},(20,0)). In this simple setting, v(A) = v(B) = 0 be-

cause the payoff specified inside the bracket of (3) that each bank receives from processing

its own payment individually is negative. Hence the banks, acting alone, are better off

not sending payments. In contrast, v(A,B) = $180× .05− $20× .1 = $7 and hence, act-

ing together, the banks are better off making their payments. The marginal contribution

of each bank to the coalition (A,B) is $7, and each bank’s average marginal contribution

is $3.5. The cost share of each bank is equal to the benefit the bank receives from having

its individual payments settled minus its Shapley value: CG
A = .05× 100− 3.5 = 1.5 and

CG
B = .05× 80− 3.5 = .5. This is achieved by having bank A provide $20 in liquidity at

cost $2 and then having bank B make a $0.50 side payment to bank A.

7Both b and c should be small relative to magnitudes of liquidity provided. They reflect only the costs and
benefits of settlement now versus at an uncertain point in the near future. It is also reasonable to set b smaller
than c. This is consistent with assumptions made in Bech and Garratt (2003, 2012). If it were not, then one
might expect the bank to settle the payment via the standard RTGS stream.
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This simple example demonstrates how side payments defined using the Shapley value

create fairness. In the absence of side payments, the net benefits to each bank would be

.05× 100− .1× 20 = 3 for bank A and .05× 80 = 4 for bank B. With side payments, the

net benefit to banks A and B are equal; they are computed as .05×100− .1×20+ .5 = 3.5

and .05× 80− .5 = 3.5, respectively. So with side payments both banks benefit equally

from their cooperation, while without side payments they do not.

Example 2. Consider the same scenario as Example 1, but assume that the instantaneous

benefits and costs for each bank are b = .025 and c = .15, respectively. It is not profitable

to process payments individually, so v(A) = v(B) = 0. Even though I raised the cost of

processing payments and lowered the benefit, the total benefit of netting payments is still

positive: i.e., v(A,B) = $180× .025−$20× .15 = $1.5. The marginal contribution of each

bank to the coalition (A,B) is $1.5 and, hence, each bank’s average marginal contribution is

$0.75. The cost shares of the banks are CG
A = 0.025×100− .75 = 1.75 and CG

B = 0.025×

80− .75 = 1.25. This is achieved by having bank A provide $20 in liquidity at cost $3 and

then having bank B make a $1.25 side payment to bank A.

In this scenario, side payments are required for the netting proposal to be acceptable

to both banks. In the absence of side payments, the net benefits to each bank would be

.05× 100− .15× 20 = −.5 for bank A and .05× 80 = 2 for bank B. With side payments,

the net benefit to banks A and B are both positive (and equal); they are computed as .025×

100− .15× 20+ 1.25 = .75 and .025× 80− 1.25 = .75, respectively. So, it is only in the

case of side payments that the gains to netting payments are realized.

Example 3. Consider a three-bank scenario in which each bank has entered multiple pay-

ments into the queue. Specifically, bank A owes $70 to bank B and $110 to bank C, bank
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B owes $10 to bank A and $30 to bank C, and bank C owes bank $60 to bank A and $30

to bank B. As in the previous example, assume that all the payments are the same priority,

the benefit per dollar to each bank of settling each of their payments at the current time

is b = .05, and the instantaneous, per-dollar cost of liquidity provision is the same for all

banks and is equal to c = .1. The maximum payoff to the grand coalition is obtained by

excluding the $70 payment from bank A to bank B and the $10 from bank B to bank A,

since these payments do not create any other netting opportunities, and, on their own, they

cost more in terms of liquidity than they deliver in benefits. We therefore consider the net-

ting proposal (G, `G) = ({pAC, pBC, pCA, pCB},(`G
A , `

G
B , `

G
C )) = ({110,30,60,30},(50,0,0)).

It is straightforward to show that v(i) = 0 for i ∈ N, v(A,B) = 0, v(B,C) = 3, v(A,C) = 3.5

and v(A,B,C) = 6.5. To demonstrate the computation of the Shapley value for each bank, I

list all of the possible orderings of the banks and then take the average over all orderings of

the marginal contributions of each bank to the total net benefit. Since there are three banks,

there are six possible orderings, as shown in Table 1.

Table 1: Shapley value equals the average of each bank’s marginal contributions over all of
the different orderings.

Order MC A MC B MC C
A,B,C 0 0 6.5
A,C,B 0 3 3.5
B,A,C 0 0 6.5
B,C,A 3.5 0 3
C,A,B 3.5 3 0
C,B,A 3.5 3 0

Shapley value 1.75 1.5 3.25

Using the Shapley values from Table 1, the cost shares of the banks are given by

(CG
A ,C

G
B ,C

G
C ) = (.05×110−1.75, .05×30−1.5, .05× (60+30)−3.25) = (3.75,0,1.25).

These cost shares can be realized by having bank A provide $50 in liquidity at cost $5 and

then having bank C make a $1.25 side payment to bank A.
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5 Concluding Remarks

I make a proposal for a liquidity savings mechanism that involves take-it-or-leave-it pro-

posals from a centralized queue operator that specify netting sets, liquidity provision and

side payments, and argue that such a scheme would be welfare improving. The potential

for welfare improvement relies on the ability of the center to know the benefit and cost pa-

rameters of the participants. On the cost side, this seems reasonable because the center can

measure the intraday cost of liquidity and has access to each participant’s overall liquidity

position throughout the day. It is less likely that the center would know a participant’s in-

stantaneous benefits from processing payments. These benefits are private information that

relate to customer motives for making payments. However, the bank may have information

regarding the payment type, and this can reveal something about how urgent it is. In sep-

arate work, I am investigating the possibility that the center might be able to learn about

banks’ instantaneous costs of liquidity provision and benefits of processing payments by

examining participants’ responses to proposals.

There are two clear advantages to having the center make proposals as opposed to

placing this responsibility in the hands of the participants (see Fugal et al. (2018)). One

key advantage is that the center can see the entire payment file, which is necessary to define

netting sets. Another advantage derives from the fact that the game described in this paper is

not typically convex. As such there is no guarantee that allocations derived from the Shapley

value are in the core (see Shapley (1971)) and hence, in a decentralized setting, there could

be difficulty in reaching agreements on netting proposals.8 The main advantage to having

individual banks make proposals arises from the fact that the proposer knows its own private

information and can incorporate that information into the proposal. This advantage would

8Consider an example with four banks where bank A owes $10 to bank B and $1 to bank D, bank B owes
bank $10 to bank C, bank C owes $10 to bank A and $10 to bank D, and bank D owes $1 to bank A and $10 to
bank B. Set the benefit to all banks equal to b = .1 and assume c > b. Then v(BC) = 0, v(ABC) = v(BCD) = 3,
and v(ABCD) = 3.2, thus violating convexity.
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become less important as the number of participants involved in a proposal increases.
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